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ABSTRACT

CHARLOTTE SUSAN DULANEY STAHL. Vortices in coherent and partially
coherent optical beams. (Under the direction of DR. GREGORY GBUR)

Vortices in optical beams have been the subject of extensive study since their sta-

tus as a generic feature of light was established. They have found extensive use in

optical trapping systems, astronomy, microscopy and are being investigated for free

space communication systems. Related to optical vortices are correlation vortices in

the coherence functions of partially coherent beams. Partially coherent beams have

attracted interest as information carriers because of their resistance to scrambling

on propagation. However, their analysis is more di�cult than that of fully coher-

ent beams due to the necessity of using correlation functions which increases the

dimensionality of the integrals needed.

In this dissertation we demonstrate a complete description of a partially coherent

vortex beam on propagation, and derive a new partially coherent beam class based

on Laguerre-Gauss beams. We also give an analytic description of di�raction through

any polygonal aperture, and demonstrate the triangular aperture case. We conclude

with a study of fully coherent, partially coherent and incoherent beams propagated

through turbulence.



iv

ACKNOWLEDGEMENTS

I would like to thank Dr. Greg Gbur for all his shared knowledge, guidance, mentoring

and patience over the course of this work.

Thanks are also due to the Department of Optical Science and Engineering and

the Graduate School for GASP scholarships, and the Air Force O�ce of Scienti�c

Research (AFOSR) for their support through grant (FA9550-16-1-0240).



v

DEDICATION

To my family, who set me on this path and saw me through to the end.



vi

TABLE OF CONTENTS

LIST OF FIGURES viii

LIST OF TABLES xii

CHAPTER 1: HISTORY 1

1.1. Optical coherence theory 1

1.2. Singular Optics 6

1.3. Coherence Vortices 9

CHAPTER 2: OPTICAL PRELIMINARIES 10

2.1. Singular Optics 10

2.2. Laguerre-Gauss Beams 12

2.3. Cross-Spectral Density Function 15

2.4. Gaussian Schell-Model Beams 18

CHAPTER 3: PARTIALLY COHERENT VORTEX BEAMS 20

3.1. Beam Wander Model 20

3.2. Complete Representation of a 1st order LG beam on propagation 21

3.2.1. Derivation 21

3.2.2. Discussion 28

3.3. Partially Coherent Vortex Beams of Any Order 32

3.3.1. Derivation 32

3.3.2. Characteristics of PCVB singularities 38

3.3.3. Phase Structures of PCVBs 39

3.3.3.1. Topological Charge of PCVBs 43



vii

3.3.4. Orbital Angular Momentum 46

CHAPTER 4: DIFFRACTION THROUGH A TRIANGULAR
APERTURE

50

4.1. Background 50

4.2. Derivation 52

4.3. Exact Analytical Solution 63

4.4. Conclusion 64

CHAPTER 5: PROPAGATION OF VORTEX BEAMS THROUGH THE
ATMOSPHERE

66

5.1. Methodology Background 66

5.2. Beam Comparisons 70

5.2.1. Coherent Vortex Array 71

5.2.2. Incoherent Vortex Radial Array 73

5.2.3. Ponomerenko Partially Coherent Beams 76

5.2.4. Beam Wander Model Partially Coherent Beams 78

5.3. Conclusions 82

CHAPTER 6: CONCLUSIONS 83

REFERENCES 85

APPENDIX A: PENTAGONAL APERTURE 91



viii

LIST OF FIGURES

FIGURE 1.1: Young's illustration of sunlight di�racted around a wire,
taken from the 1807 published edition of his lectures.

3

FIGURE 1.2: Young's schematic illustration of two pinhole di�raction,
taken from the 1807 published edition of his lectures.

3

FIGURE 1.3: Young's original drawing showing his conceptualization of
the wave fronts emerging from the pinholes and interfering, based on
his observation of water waves.

3

FIGURE 1.4: A schematic diagram of the Michelson-Morley interferome-
ter. Light from an oil lamp at A is collected and sent to a half-silvered
mirror at B, where the light is split. Each beam takes multiple trips
between mirrors before being sent to the telescope at F . The di�er-
ence in path length can be controlled by a screwed mirror at E1, and
a compensator plate at C makes up the path di�erence from passing
through rather than being re�ected by the half-silvered mirror. [1]

4

FIGURE 1.5: Schematic diagram of a) edge dislocations and b) screw
dislocations.

8

FIGURE 2.1: Plot of the simplest type of vortex beam, m=1. a) Intensity
plot showing the null spot in the center and b) phase plot.

11

FIGURE 2.2: Examples of Laguerre Gauss beams in the waist plane, with
w0 = 5 mm. The a) intensity and b) phase plots for a beam with
m = 1, n = 0. The c) intensity and d) phase plots for a beam with
m = 2, n = 1. The c) intensity and d) phase plots for a beam with
m = −3, n = 2.

14

FIGURE 3.1: Zero manifolds of partially coherent beams on propaga-
tion in sum and di�erence coordinates. Radial positions a) slightly
incoherent beam, (δ = 2 mm) and b) moderately incoherent beam
(δ = 8 mm). In both �gures, w0 = 1 mm, λ = 500 nm

29

FIGURE 3.2: Zero manifolds of a partially coherent vortex beam on
propagation. Angular positions on propagation, with w0 = 1 mm,
λ = 500 nm.

31



ix

FIGURE 3.3: Phase of the cross-spectral density of a PCVB with m=3.
For each of the images above, the beam waist w0 = 5mm, λ = 500nm,
(x1, y1) = (0.0, .001)m and m = 3. Phase plot for a beam with a)
δ = 0.00001m, c) δ = 0.001m, e) δ = 0.1m. Real and imaginary parts
with locations of vortices circled for beam with b) δ = 0.00001m, d)
δ = 0.001m, f) δ = 0.1m.

40

FIGURE 3.4: Phase of the cross-spectral density of a PCVB of di�erent
vortex orders. For each of the images above, the beam waist w0 =
5mm, λ = 500nm, (x1, y1) = (.001, .001)m, and δ = .001m. a)
m = 1 b) m = 2 c) m = 3 d) m = 4. The pairs of clockwise and
anticlockwise vortices can be seen along the line x = y bisecting
the elliptical structure. For every increase in order, another pair is
formed.

41

FIGURE 3.5: Topological charge of a PCVB as a function of δ as expressed
in Eq. 3.76, showing the gradual loss of charge as beam wander is
increased. The detector radius is a = 1 cm.

44

FIGURE 3.6: Topological charge of a PCVB as a function of beam wander.
The beam waist w0 = 5mm, and λ = 500nm The detector radius was
set at 1cm. As δ increases, the coherence of the beam decreases, and
the detectable topological charge drops. a) (x1, y1) = (.0001, .0001)m
b) (x1, y1) = (.001, .001)m. Shifting the �xed point farther away from
the origin has the same e�ect as increasing the coherence.

45

FIGURE 3.7: Normalized orbital angular momentum �ux density for dif-
ferent states of coherence. For each of the images above, the beam
waist w0 = 5mm, λ = 500nm, and r1 = r2. a) δ = 0.001m b)
δ = 0.01m c) δ = 0.1m. Note that this is plotted on a larger range
to make clear the asymptotic behavior.

49

FIGURE 4.1: Example of di�raction through a triangular aperture, done
with the FFT method, for a) m = 3 b) m = −3, with a = 4λ,
w0 = 2a.

51

FIGURE 4.2: Diagram of the triangular aperture, side length a centered
on the origin.

52

FIGURE 4.3: Bright di�raction lines produced by the second side of the
triangular aperture, for (a) m = 0 (b) m = 1 (c) m = 2. We have
used a = 4λ, w0 = 2a.

57



x

FIGURE 4.4: Di�raction pattern for various vortex orders, with (a) m =
0, (b) m = 1, (c) m = −2, (d) m = 4. We have used a = 4λ and
w0 = 2a.

58

FIGURE 4.5: Di�raction pattern for an m = 1 vortex, with x0 = 0 and
(a) y0 = 0 (b) y0 = 0.318a (c) y0 = 0.636a (d) y0 = 2a. We have
used a = 4λ, w0 = 2a.

59

FIGURE 4.6: Di�raction pattern for an m = 1 vortex, with y0 = 0 and
(a) x0 = 0 (b) x0 = 0.318a (c) x0 = 0.636a (d) x0 = 2a. We have
again used a = 4λ, w0 = 2a.

60

FIGURE 4.7: Di�raction pattern for mixed-mode beam, with (a) b = 0
(b) b = 0.5 (c) b = .9 (d) b = 1.0 We have again used a = 4λ,
w0 = 2a.

61

FIGURE 4.8: Comparison of the analytic result with the FFT result, for
m = 1, y0 = 0 and (a), (c) x0 = 0 FFT and analytic, (b), (d)
x0 = 0.159a, FFT and analytic.

62

FIGURE 4.9: Comparison of the di�raction pattern of an m = 1 vortex
from (a) the FFT calculation and (b) the analytic formula, Eq.(4.24).

65

FIGURE 5.1: Sample plot of the phase structure of a coherent vortex beam
in the a) source plane b) detector plane after 10 km of propagation
through turbulence with a Rytov variable of σ2

1 = .954. The black
mask is present to show only what would be seen by a detector. The
red circle highlights the creation of a vortex pair.

69

FIGURE 5.2: Sample plots of the a) intensity and b) phase of a coherent
radial array in the source plane.

72

FIGURE 5.3: Coherent Array Beam compared with a coherent beam on
propagation. The blue shading shows the standard deviation away
from the average detected topological charge of the coherent beam,
while the red shading shows the same for the coherent array beam.
The radius at which the beamlets are placed is a) r = .01 cm and b)
r = 1.0 cm. Propagated 10 km with a Rytov variance of 0.95 using
10 phase screens.

73



xi

FIGURE 5.4: Plots showing the detectable topological charge as a func-
tion of propagation distance for a ICAB, for arrays of di�erent radii:
a) r = 0.01 cm b)r = 0.1 cm c) r = 1.0 cm d) r = 2.0 cm. The blue
shading shows the standard deviation away from the average detected
topological charge of the coherent beam, while the red shading shows
the same for the incoherent array beam. Propagated 10 km with a
Rytov variance of 0.95 using 10 phase screens.

74

FIGURE 5.5: Comparison of ICABs with di�erent numbers of beamlets.
a) N = 3 b) N = 5 c)N = 10 d)N = 20. The blue shading shows the
standard deviation away from the average detected topological charge
of the coherent beam, while the red shading shows the same for the
incoherent array beam. Propagated 10 km with a Rytov variance of
0.95 using 10 phase screens.

75

FIGURE 5.6: Comparison of a) two SVCB, m = 5 and m = 4 and b) two
N = 20 ICAB, m = 5, m = 4. The shaded areas represent the vari-
ence in the detected charge. While the varience in the SVCBs over-
laps, leading to uncertainty in which beam is detected, the smaller
varience in the ICAB eliminates this uncertainty.

76

FIGURE 5.7: PMM beam with nmax = 5, m = 5 with a) λnm = 0.1 and
b) λnm = 1.0. Propagated 10 km with a Rytov variance of 0.95 using
10 phase screens.

77

FIGURE 5.8: PMM beam comparison with λnm = 1.0 and a) nmax = 2,
b) nmax = 10, c) nmax = 20, and d) nmax = 30. Propagated 10 km
with a Rytov variance of 0.95 using 10 phase screens.

78

FIGURE 5.9: BWVB with δ = 0.5 and numbers of beamlets a) N = 5,
b) N = 25, c) N = 50, and d) N = 100. Propagated 10 km with a
Rytov variance of 0.95 using 10 phase screens.

80

FIGURE 5.10: Comparison of BWVB with N = 25 and a) δ = 0.1 cm,
b) δ = 0.5 cm, c) δ = 1.0 cm, and d) δ = 2.0 cm. Propagated 10 km
with a Rytov variance of 0.95 using 10 phase screens.

81

FIGURE A.1: On-axis di�raction pattern of a LGVB through a pentag-
onal aperture. a = 4λ, w0 = 2a.

92



xii

LIST OF TABLES

TABLE 4.1: Coe�cients of Parameterization for Each Side of the Triangle 54

TABLE A.1: Coe�cients of Parameterization for Each Side of a Pentagon 91



xiii

LIST OF ABBREVIATIONS

BWVB Beam wander vortex beam

CAB Coherent array beam

DFT Discrete Fourier Transform

FFT Fast Fourier Transform

GSM Gaussian Schell model

ICAB Incoherent array beam

LG Laguerre-Gauss

LGVB Laguerre-Gauss vortex eam

OAM Orbital angular momentum

PCVB Partially coherent vortex beam

SVCB Single vortex coherent beam



CHAPTER 1: HISTORY

Research into partially coherent vortex beams is the convergence of two di�erent

branches of optical research, one dealing with topological phase properties of propa-

gating �elds and one dealing with the statistical properties of light. The �rst branch

is singular optics, which is a relatively young �eld that examines vortices (or sin-

gularities) which occur as a typical feature in coherent wave �elds. The second is

optical coherence theory, elements of which began to appear in the 19th century but

took o� in earnest in the 1930s. Optical coherence theory examines the e�ects of

random �uctuations on observed properties of light. At their intersection is research

into correlation singularities in partially coherent beams.

1.1 Optical coherence theory

Coherent light has been a critical component of optics for over two centuries. Fully

coherent light is completely correlated in both spatial and temporal dimensions. The

monochromatic plane wave of thought-experiments and simpli�ed optical calcula-

tions is in essence a wave that has complete spatial and temporal coherence. Each

wavefront is perfectly uniform and the phase undergoes no variation at all. In prac-

tice, light must be specially prepared to have the necessary criteria to approximate

this mathematical nicety. Take for example Young's two pinhole experiment, which

demonstrated the wave-like nature of light. It relies on spatially coherent light in

order to produce the well-known fringe pattern. In order to conduct this experiment

in an age well before lasers, which now cheaply provide the coherent, collimated beam

required, Young used a mirror to direct sunlight onto a pinhole in a piece of thick card

paper attached to a shutter so that the resulting beam of light projected onto the far
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wall. In order to obtain the very narrow separation required between the split beam

paths, he initially used a thin card, a knife's edge, a hair or �ne wire [2]. Because

sunlight is broadband, Young's interference patterns were colorful (see Figure 1.1)

and allowed him to calculate the di�erence in "undulations" between red and purple

light [2].

The celebrated Michelson-Morley experiment had even greater challenges in an

age before lasers. Designed to detect drift in the "aether" or the medium which

was imagined to support electromagnetic waves in a vacuum, their experiment was

comprised of a two arm interferometer. The thought was that the earth, which

moves very rapidly through space, would create "wind" in the aether and that this

"wind" could be detected by the di�erence in speed between light traveling with it

and orthogonal to it. An interferometer is limited by the coherence length of the light

used, and the experimenters conducted the experiment with white light from an oil

lamp rather than quasi-monochromatic light from a sodium lamp, despite its very

short coherence length. Using an oil lamp as their light source, they had to precisely

match the path lengths between the two arms of their interferometer, an engineering

challenge in and of itself (see Michelson's diagram, Fig.1.4). The apparatus then had

to be set up in a deep basement of a stone building, resting on top of a block of

sandstone, �oating on a pool of mercury 1 to eliminate vibration [1] . The results

of this dedication to precision are the "most famous null result" that disproved the

existence of aether as the medium through which light traveled.

Despite relying on high coherence for experiments, and having experience with

the limitations of real light sources, there was only scattered interest in describing

non-ideal or partially coherent light throughout the nineteenth and early twentieth

centuries. In their classic text, "Principles of Optics", Born and Wolf cite Émile

1That this experiment worked at all is rather incredible. Michelson interferometers are so com-
monplace in physics labs and relatively easy to set up with cheap diode lasers that it's easy to gloss
over the di�culty of this experiment until you see a picture of their original device and learn that
Michelson had a nervous breakdown trying to get the data [3][Chapter 2]
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Figure 1.1: Young's illustration of sunlight di�racted around a wire, taken from the
1807 published edition of his lectures.

Figure 1.2: Young's schematic illustration of two pinhole di�raction, taken from the
1807 published edition of his lectures.

Figure 1.3: Young's original drawing showing his conceptualization of the wave fronts
emerging from the pinholes and interfering, based on his observation of water waves.
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Figure 1.4: A schematic diagram of the Michelson-Morley interferometer. Light from
an oil lamp at A is collected and sent to a half-silvered mirror at B, where the light
is split. Each beam takes multiple trips between mirrors before being sent to the
telescope at F . The di�erence in path length can be controlled by a screwed mirror
at E1, and a compensator plate at C makes up the path di�erence from passing
through rather than being re�ected by the half-silvered mirror. [1]
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Verdet's 1865 paper "Étude sur la constitution de la lumiere non polarisée et de la

lumiere partiellement polarisée" [4] as the �rst paper to investigate the subject of

partial coherence as part of a theoretical calculation of the coherence of sunlight.

There followed some �tful interest in partial coherence in relation to other problems.

Michelson investigated the relationship between fringe visibility in the 1890s [5, 6, 7]

and the intensity distribution at the source, but this work was not linked to coherence

e�ects until later [8]. There was another lull in developments until 1907 when von Laue

published the �rst quantitative measurements of the correlation of "light vibrations"

[8] in connection with his study of the thermodynamics of light [9]. Berek made

additional contributions, as it related to his work on image formation in microscopes

[10, 11].

Partial coherence begins to �nally be studied in its own right with van Cittert in

1934 [12], who derived the joint probability distribution for the product of �elds at

any two points on a screen when illuminated by a planar source of �nite extent, and

in 1939 derived the probability distribution for the product of �elds at a single point

at two di�erent times illuminated by a source of �nite extent [13]. A simpler method

was determined by Zernike, who de�ned the "degree of coherence" of lightwaves in

relation to quantities susceptible to experimental veri�cation. While Zernike's degree

of coherence is essentially the same as van Cittert's correlation coe�cients, it had

the advantage of being easier to apply to practical problems [8, Section 10.1]. Their

two approaches were later combined into the van Cittert-Zernike theorem, which has

proven to be particularly useful for problems in astronomy. However, while this work

did begin to �ll in the gap between coherent light and incoherent light, it was only

narrowly applicable to spatially incoherent sources and small path di�erences. For the

�eld to truly blossom, a more general approach was required. This was accomplished

independently by Wolf [14], and Blanc-Lapierre and Dumontet [15], though Wolf is

now the best known of the formulators. They introduced more general correlation
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functions to the study of partial coherence, and discovered that the correlation func-

tions obey a pair of wave equations (now known as the Wolf equations), implying that

the correlations in wave �elds propagate along with the actual electromagnetic distur-

bances. Additional coherence functions have been added as the �eld has developed,

allowing for the study of increasingly complicated scenarios. The twenty-�rst century

has ushered in the understanding that coherence and polarization are not entirely

separable e�ects but two facets of how lightwaves may be organized [16][Preface].

1.2 Singular Optics

In wave mechanics, a singular point occurs wherever the amplitude (or, equivalently,

intensity) of the wave�eld drops to zero, and the phase becomes, by mathematical

necessity, unde�ned. If the singular point occurs in a �uid, such as the ocean, it may

manifest as a point which neither rises nor falls with the tide [17], with such points

being known as amphidromies. In optics, such points appear as dark regions if the

�eld is projected onto a screen, such as occurs in Young's two pinhole experiment

(see Figure 1.2). These areas have become known as phase singularities. Such areas

of null intensity caused by the wave nature of light have been known about as long

as the wave theory of light, but have historically attracted little attention. What

was of interest in Young's two pinhole experiment was not the bands of darkness,

but the bands of light. Even 161 years after light's wave-like nature was proven

by the aforementioned experiment, so-called singular areas attracted little interest as

exempli�ed by this quotation from Arnold Sommerfeld's 1964 monograph Optics [18]:

Visual inspection shows that there are �nite regions, several wave-

lengths in extent, which have, to a su�cient degree of approximation,

the character of a homogeneous plane wave and also retain this character

as the wave propagates. Hence, these regions indeed satisfy the above

postulated condition for regions of good approximation. Only the zero

points seem to be exceptions. However, just because the amplitude van-
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ishes there, they do not produce any stronger e�ect than other points of

varying intensity.

It would take another ten years before Nye and Berry would argue that the accepted

wisdom was misguided with their seminal 1974 paper "Dislocations in wavetrains" [19]

which demonstrated that the phase structure around singular points is very similar

to the defects found in crystals, known as dislocations. They were able to show that

this was no mere mathematical curiosity but rather that these were the generic, or

"typical", features in propagating wave�elds. Any system where three or more wave-

fronts interfere will exhibit dislocations. In this sense, Young's two pinhole di�raction

pattern is not generic.

Crystal dislocations are defects in regular crystalline structures and may have one

of several forms: edge, screw, or mixed edge-screw. An edge dislocation occurs when

one plane is forced in between two others, as seen in Fig 1.5(a). A screw dislocation

occurs when one portion of the crystal is forced to slip, but reconnects to form a

helical lattice, as seen in Fig 1.5(b), much like a spiral staircase. A mixed edge screw

shows features of both. Nye and Berry were able to demonstrate theoretically all three

types of dislocations occurred around optical phase singularities, but found screw and

mixed to be more typical. These structures have come to be known as optical vortices,

since the most common dislocation, the screw type, is reminiscent of the vortices seen

in �uids.

In their paper, Nye and Berry examine how the phase structure of beams with

singularities resembles the di�erent types of crystal dislocations. This undercut the

assumption that just because there was little intensity there was little of interest in

the area of null points. On the contrary, a whole host of interesting and, as would

later be discovered, useful phenomena occur around points of zero intensity. While

producing stable, coherent vortex modes may present challenges that will be discussed

in a later section, optical vortices are ubiquitous. As Nye put it, "These are threads
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a) b)

Figure 1.5: Schematic diagram of a) edge dislocations and b) screw dislocations.

of nothingness that exist, in general, in all wave �elds, and they turn out to be phase

singularities." [20]

The �eld of singular optics developed as researchers set about learning about these

previously ignored vortices and describing their behavior2. A major development was

the discovery that light can carry not just spin angular momentum as predicted by

Poynting [22] and measured by Beth [23], but also orbital angular momentum (OAM).

This OAM is closely associated with the presence of optical vortices.

Singular optics has over the past few decades also yielded practical results. Optical

spanners and tweezers make the manipulation of small objects without mechanical

contact possible [24], such as capturing or rotating cells, which is of particular use

to biologists, while arranging multiple vortices can create micro�uidic pumps [25].

Optical vortex coronagraphy expands the information gathering powers of telescopes

[26]; optical vortices can also be used in phase contrast microscopy [27]. They also

show promise for use in free space optical communication [28], as vortex beams are

more stable under perturbation than non-vortex beams, thanks in part to their orbital

2A curious parallel to a more familiar, and imagination capturing, vortex structure has been
explored separately by both Nye [21] and Berry [17], that of the tidal whirlpool.
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angular momentum.

1.3 Coherence Vortices

On the face of it, it may have seemed unlikely that coherence theory would overlap

with singular optics. Partially coherent �elds do not have zeros of intensity as a

generic feature, and their phase is not well-de�ned. Since phase singularities require

both a well-de�ned phase and spots of zero intensity, it would be reasonable not to

expect optical vortices in such beams.

This expectation was challenged by Schouten et alia in 2003 [29], when they theo-

retically predicted correlation singularities in the special case of Young's two pinhole

experiment conducted with partially coherent light. These correlation singularities,

like the zeros in a Young's experiment with coherent light, are nongeneric. But this

observation sparked a series of independent investigations by several research groups

into these unusual structures. Gbur and Visser investigated correlation singularities

in partially coherent beams [30], while Freund demonstrated their occurrence in op-

tical Lissajous �elds [31]. Bogatyryova et alia proposed and implemented a method

for creating partially coherent beams with both optical and correlation vortices [32],

and Palacios et alia demonstrated correlation singularities in the cross-correlation

function of a partially coherent vortex beam [33]. Work continued with the charac-

terization of a type of partially coherent Laguerre Gauss beam of the �rst order in

the waist plane [34], and characterization of the orbital angular momentum carried

by such partially coherent beams [35].



CHAPTER 2: OPTICAL PRELIMINARIES

In this chapter we lay out some of the foundations for the research contained in

the following chapters.In particular we will provide a mathematical introduction to

singular optics and coherence theory. We will largely concern ourselves with studies

involving the class of beams known as Laguerre-Gauss (LG) beams, which are scalar

wave�elds with a vortex structure. In Chapter 3, we investigate the behavior of the

cross spectral density function of an ensemble of LG beams, and we will introduce

and de�ne for the cross spectral density function in this chapter.

2.1 Singular Optics

To begin, we examine a strictly monochromatic scalar plane wave,

V (r, t) = U(r) exp[−iωt], (2.1)

where U(r) is the space dependent component which, in vacuum, must satisfy the

Helmholtz equation,

(∇2 + k2)U = 0, (2.2)

where ∇2 is the Laplacian operator and k = ω/c. This is also known as the time-

independent wave equation, and can be used to solve for a wave's propagation. To

introduce a simple vortex structure, we may approximate U(r) in the plane z = 0 as

U(ρ, φ) = ρ exp [±iφ] = x± iy. (2.3)
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Figure 2.1: Plot of the simplest type of vortex beam, m=1. a) Intensity plot showing
the null spot in the center and b) phase plot.

This describes, locally near the origin, a vortex whose core extends along the z-axis.

Because of the requirement that the �eld must be continuous, the amplitude must

go to zero at the origin, and so the phase is unde�ned. For ρ > 0, φ increases in

a right-handed or left handed spiral, depending on the sign in the exponent. It is

only because the phase is unde�ned at the central point that it is able to take on,

e�ectively, all values between 0 and 2π around that point. This is illustrated in Figure

2.1(b).

In describing optical vortex beams, this basic mathematical descriptor of a vortex

is paired with a Gaussian envelope to limit the intensity as in an actual system the

transverse intensity. So, in the waist plane, the lowest order vortex beams could be

written

u(x, y) = (x± iy) exp

[
(x2 + y2)

w2

]
, (2.4)

where w de�nes the width of the Gaussian envelope. The intensity of such a beam

can be seen in 2.1(a). We may also introduce higher-order vortex beams, for which

the phase changes by ±2πm in a closed counterclockwise path about the origin, in
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the form

u(x, y) = (x± iy)m exp

[
(x2 + y2)

w2

]
. (2.5)

More properties of vortices will be discussed in the following chapters.

2.2 Laguerre-Gauss Beams

The simplest class of pure vortex beams are the Laguerre-Gauss (LG) beams, which

are solutions to the paraxial wave equation in cylindrical coordinates and are relatively

easy to produce experimentally. They can be produced in single mode lasers with

cylindrically symmetric cavities [36], by passing a Gaussian beam through a spiral

phase plate [37], or through a computer generated hologram [38]. The have the format

of Eq. (2.5) in the waist plane. As a complete orthonormal set of solutions to the

paraxial wave equation, they may be written as

Un
m(x, y, z) =

√
2n!

πw2
0(n+ |m|)!

(√
2(x± iy)

w(z)

)|m|
L|m|n

(
2(x2 + y2)

w2
z

)
(2.6)

× exp

[
−(x2 + y2)

σ2

]
exp [−iΦ(z)]

per [39, Chapter 2.2] where
1

σ2
=

1

w2
z

+
ik

Rz

, (2.7)

with the beam width on propagation being

wz = w0

√
1 +

(
z

z0

)2

, (2.8)

and the radius of curvature on propagation being

Rz = z

[
1 +

(z0
z

)2]
, (2.9)



13

both of which depend on the Rayleigh range, which is de�ned as the distance at which

the beam width is
√

2w0,

z0 =
πw2

0

λ
, (2.10)

where w0 is the radius of the beam at its waist and λ is the wavelength. The wavenum-

ber k is de�ned as

k =
2π

λ
, (2.11)

and Φ(z) is the Gouy phase shift,

Φ(z) = arctan(z/z0). (2.12)

The intensity and phase for several beams of this type are shown in Figure 2.2.

We limit ourselves in the follow chapters primarily to discussions of beams that have

a zero radial index (n = 0) and a non-zero azimuthal index (m 6= 0). These beams

have a central singularity around which the phase increases, and lack ring dislocations

in the radial direction. In such cases, the Laguerre polynomial term simpli�es to

L
|m|
0

[
2(x2 + y2)

w2(z)

]
= 1. (2.13)

Furthermore, the Gouy phase term, Φ(z), has no impact on the following calcu-

lations and simulations; in most cases it vanishes when the cross spectral density is

�rst calculated. It represents a constant phase in any z-plane and so will not a�ect

the location or types of singularities. Thus any leading coe�cients to the equation as

a whole have no impact on the phase structure of the correlation singularities. The

normalization coe�cients can be grouped together into a single, real term
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a) b)

c) d)

e) f)

Figure 2.2: Examples of Laguerre Gauss beams in the waist plane, with w0 = 5 mm.
The a) intensity and b) phase plots for a beam with m = 1, n = 0. The c) intensity
and d) phase plots for a beam with m = 2, n = 1. The c) intensity and d) phase
plots for a beam with m = −3, n = 2.
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C =

√
2

πw2
0(|m|)!

(√
2

wz

)|m|
. (2.14)

Thus we are left with a much simpli�ed formula for the beams of interest,

Um(x, y, z) = C(x± iy)|m| exp

[
−(x2 + y2)

σ2

]
, (2.15)

which will be used for the remainder of this dissertation. This form has the advan-

tage of making the transverse structure of the beam easier to interpret. The single

exponential term determines the transverse beam envelope and wavefront curvature

while the (x± iy) term controls the vortex structure.

2.3 Cross-Spectral Density Function

When dealing with partially coherent beams, the mutual coherence function has

historically been the quantity of choice to describe coherence properties. The quantity

Γ(r1, r2, τ) = 〈V ∗(r1, t)V (r2, t+ τ)〉 (2.16)

is the space-time formulation of the cross-correlation function of time averaged �elds

[40, Section 4.3], where V (r, t) is the wave�eld which is statistically stationary in

the wide sense, and 〈...〉 represents a time average. In 1955 Wolf described how this

mutual coherence function satis�es a pair of wave equations,

∇2
1Γ(r1, r2, τ)− 1

c2
δ2

δτ 2
Γ(r1, r2, τ) = 0, (2.17)

∇2
2Γ(r1, r2, τ)− 1

c2
δ2

δτ 2
Γ(r1, r2, τ) = 0, (2.18)

implying that the mutual coherence function propagates in a similar manner to a

coherent wave.
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More recently it has been realized that the cross-spectral density, which is the

Fourier temporal transform of the mutual coherence function, allows researchers to

more easily �nd analytic solutions to second-order coherence phenomena. The cross-

spectral density is de�ned as

W (r1, r2, ω) =
1

2π

∫ ∞
−∞

Γ(r1, r2, τ) exp [iωτ ] dτ. (2.19)

It has been shown [41] that the cross spectral density function may be expressed as

an average of an ensemble of monochromatic realizations of the �eld for any partially

coherent �eld at frequency ω, written as

W (r1, r2, ω) = 〈U∗(r1, ω), U(r2, ω)〉ω , (2.20)

where 〈...〉ω indicates an average over the frequency ensemble, and allows for the

determination of the cross spectral density of a wave�eld without �rst having to �nd

the mutual coherence function.

Like the mutual coherence function, cross spectral density function obeys a pair of

wave equations in the absence of sources [16, Section 4.1], in this case the Helmholtz

equations

[∇2
j + k2]W (r1, r2, ω) = 0, j = 1, 2, (2.21)

which are comparable to the equations for a monochromatic �eld, Eq. (2.2). It

follows that with one observation point �xed, it behaves in an identical manner to a

monochromatic wave�eld and is capable of demonstrating the same types of behavior,

including vortices with the same phase and topological characteristics. These vortices

are known as correlation vortices, sometimes also called coherence vortices in earlier

works. Although it has been shown that they are closely related [42], correlation
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vortices are distinct from optical vortices in several important ways. While optical

vortices are phase singularities occurring around null-points in the wave�eld, and thus

their location is set, the location of correlation vortices is heavily dependent on the

choice of observation point since the cross spectral density is a two-point correlation

function. Thus while optical and correlation vortices are related, they are physically

distinct features.

In principle, the formulation above is exact, and correlation singularities can exist

for every frequency in a partially coherent �eld and at di�erent locations for each of

those frequencies. However, this dissertation will restrict itself to the case of a quasi-

monochromatic wave�eld, where ∆ω � ω0 and the �eld appears monochromatic

over many cycles. We will drop ω from the cross-spectral density from here on for

notational brevity.

A few additional quantities related to the cross-spectral density will be useful in

the following sections. The spectral density function,

S(r) = W (r, r), (2.22)

which gives the intensity at a frequency ω, and for a quasi-monochromatic �eld is a

good representation of the intensity. We will also use the spectral degree of coherence

µ(r1, r2) =
W (r1, r2)√

W (r1, r1)W (r2, r2)
. (2.23)

It can be shown that 0 < |µ| < 1, with 0 indicating incoherence and 1 being full

coherence. From these de�nitions it follows that

W (r1, r2) =
√
S(r1)S(r2)µ(r1.r2), (2.24)

which we will take advantage of in the following section.
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2.4 Gaussian Schell-Model Beams

One type of beam that is frequently encountered in optical coherence theory is the

Gaussian Schell model (GSM) beam. Schell-model sources are de�ned as sources for

which their spectral degree of coherence, µ(ρ1,ρ2, ω), depends only on the di�erence

in position between observation points ρ1 and ρ2, so that their spectral degree of

coherence may be expressed as µ(ρ2−ρ1, ω) [16, Section 5.3.1]. Thus a Schell model

source will have a cross spectral density

W (ρ1,ρ2, ω) =
√
S(ρ1)

√
S(ρ2)µ(ρ2 − ρ1, ω). (2.25)

where S(ρ) is the spectral density function. If, additionally, the source is locally

coherent, then it will be able to form a beam [43].

In the case of a Gaussian Schell model sources, we add the additional constraint

that the spatial distribution of its spectral density and its spectral degree of coherence

are Gaussian. This creates an analytically tractable model of a source with with a

variable coherence, as can seen with a simple example. Consider a GSM beam with

a spectral density

S(ρ1 + ρ2) = A2 exp[−ρ2/2σ2
s ] (2.26)

and a spectral degree of coherence

µ(ρ2 − ρ1) = exp[−(ρ2 − ρ1)
2/(2 ∗ σ2

µ)]. (2.27)

In the limit as σµ → ∞, the spectral degree of coherence approaches unity and the

source is fully coherent. This is of course an idealize GSM source. If we consider

instead a quasi-monochromatic circular source of radius a though this limit must be

interpreted with some caution, since it assumed that a >> σµ and the source cannot
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be in�nite in size. However, this can usefully model real laser sources operating in

the lowest Hermite-Gauss modes [16, Section 5.3.1].



CHAPTER 3: PARTIALLY COHERENT VORTEX BEAMS

This chapter deals with the derivation and properties of a new class of partially

coherent vortex beams (PCVBs). We begin with a description of the beam wander

model, which we use to derive the characteristics of partially coherent beams in an

analytically tractable manner. The second section details the properties of the �rst

order vortex case on propagation, previously published in [44], while the third section

is concerned with the creation of an in�nite class of PCVBs and their behavior at

higher orders, previously published in [45].

3.1 Beam Wander Model

It is di�cult to derive coherence properties directly from physics, so we must employ

models. Such models, to be most useful, should allow us to make beams with any

spatial coherence. This role is ful�lled by the beam wander model, where by the

cross-spectral density is modi�ed to be

W (r1, r2) =

∫
U∗±(r1 − r0, z1)U±(r2 − r0, z2)f(r0)d

2r0, (3.1)

where

f(r) =
1

πδ
exp

[
−r2

δ2

]
, (3.2)

which introduces �uctuations into the �eld by allowing the position of the core of

the beam to be a random vector with a Gaussian distribution, the width of which

can be increased or decreased to model a particular degree of coherence. That is, the

beam "wanders" around the origin. If it wanders only slightly (δ ≈ 0) then the beam
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approximates the fully coherent case. The more it is allowed to wander, the lower the

spatial coherence 1. An increase in δ corresponds to a decrease in coherence, while a

small δ corresponds to a more coherent beam. As a rule of thumb, the beam begins

to exhibit behavior noticeably di�erent from the coherent case when δ is the same

order of magnitude as the beam width. This model was �rst used by Gbur et alia to

investigate the existence of correlation singularities in quasi-monochromatic, partially

coherent wave�elds [46]. It should be noted that PCVBs are not purely theoretical

constructs. Partially coherent vortex beams have been generated experimentally using

a variety of techniques, including coherent sources and computer generated holograms

[47] and incoherent sources and spiral phase plates [48].

3.2 Complete Representation of a 1st order LG beam on propagation

Before addressing the derivation of an entire class of vortex beams, it is helpful

to fully understand the lowest order case. While several papers address the charac-

teristics of the partially coherent �rst-order Laguerre-Gauss beam in the waist plane

(e.g., [46, 49]) the behavior of such a beam on propagation has not yet been eluci-

dated. This was in part due to the di�culty in addressing the additional dimensions

needed because of the doubling of variables in a correlation function. A �eld in a

transverse plane requires two variables, while its corresponding correlation function

requires four. Likewise, to describe a �eld on propagation requires three variables,

and its correlation function requires six.

3.2.1 Derivation

We begin with the beam wander model as described in the previous section (3.1),

and the simpli�ed LG beam (2.15) with m = ±1,

1To speak extremely casually, but visually, it may be thought of as a laser mounted on a washing
machine. If the washer is o�, it does not wander at all, and the beam remains coherent. If the
washer is doing a normal load, there is some vibration, and some blurring of the beam, but some
coherent e�ects remain. If the washer is spinning an unbalanced load of towels, the beam is shaking
all over the place and is e�ectively incoherent.
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W (x1, y1, z1;x2, y2, z2) =
|C|2

πδ

∫ [
(x1 − x0)∓ (y1 − y0)

]
× exp

{
− 1

σ̃2
1

(
(x1 − x0)2 + (y1 − y0)2

)}
×
[
(x2 − x0)± (y2 − y0)

]
× exp

{
− 1

σ2
2

(
(x2 − x0)2 + (y2 − y0)2

)}
× exp

{
−(x20 + y20)

δ2

}
dx0dy0, (3.3)

where σ̃2
n is the complex conjugate of σ2

n for n = 1, 2. This integral can be evaluated

analytically with some e�ort. We begin by grouping exponents and completing the

square such that

A ≡ 1

σ̃2
1

+
1

σ2
2

+
1

δ2
, (3.4)

Bx =
x1
σ̃2
1

+
x2
σ2
2

, (3.5)

By =
y1
σ̃2
1

+
y2
σ2
2

, (3.6)

so the integral becomes

W (r1, r2) = D(r1, r2)

∫ [
(x1 − x0)∓ i(y1 − y0)

][
(x2 − x0)± i(y2 − y0)

]
× exp

{
−A(x0 −By/A)2

}
exp

{
−A(y0 −By/A)2

}
dx0dy0, (3.7)

rn = (xn, yn, zn), n = 1, 2,
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where

D(r1, r2) =
|C|2

πδ
exp

{
B2
x

A
+
B2
y

A
− 1

σ̃2
1

(x21 + y21)− 1

σ2
2

(x22 + y22)

}
. (3.8)

By expanding the terms in the square brackets, we can rewrite the single integral as

four separate integrals

W (r1, r2) = D(r1, r2)

×
[
(x1 ∓ iy1)(x2 ± iy2)

∫
exp

{
−A(x0 −Bx/A)2

}
exp

{
−A(y0 −By/A)2

}
dx0dy0

− (x2 ± iy2)
∫

(x0 ∓ iy0) exp
{
−A(x0 −Bx/A)2

}
exp

{
−A(y0 −By/A)2

}
dx0dy0

− (x2 ∓ iy1)
∫

(x0 ± iy0) exp
{
−A(x0 −Bx/A)2

}
exp

{
−A(y0 −By/A)2

}
dx0dy0

+

∫
(x20 + y20) exp

{
−A(x0 −Bx/A)2

}
exp

{
−A(y0 −By/A)2

}
dx0dy0

]
, (3.9)

of known solutions. Thus we may write the cross-spectral density as

W (r1, r2) = D(r1, r2)
π

A2
exp{B2

x +B2
y}

×
[
(x1 ∓ iy1)(x2 ± iy2) +Bx(−x1 − x2 − iy2 + iy1)

+By(−ix1 + ix2 + y1 + y2) +B2
x/A

2 +B2
y/A

2 + 1/A
]
. (3.10)
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This expression can be written more compactly by employing this somewhat lengthy

list of de�nitions:

1

σ2
n

=
1

w2
n

− ik

2Rn

, n = 1, 2, (3.11)

1

α2
n

=
1

δ2
+

1

σ2
n

, n = 1, 2, (3.12)

1

β2
2

=
1

δ2
+

1

σ2∗
1

+
1

σ2
2

, (3.13)

wn ≡ w(zn), n = 1, 2, (3.14)

Rn ≡ R(zn), n = 1, 2, (3.15)

Q = D
π

A2
exp{B2

x +B2
y}, (3.16)

with σ2
n describing the width of the Gaussian envelope of the beam and δ the degree

of incoherence as previously mentioned. As described in Section 2.2, σ2
n depends on zn

through its dependence on the beam width (Eq. (2.8)) and Rayleigh range (Eq.(2.9)).

Finally, Q is a complex, position dependent factor that nevertheless plays no role in

the location of the zeros. Because we are only interested in those solutions where

Re{W} and Im{W} are simultaneously zero, and Q is a common coe�cient, it is

divided out and has no e�ect on the location or structure of the correlation vortices.

As such, it will be suppressed after its appearance in the equation below for the sake

of brevity and clarity.

Thus armed with these de�nitions, we may with much e�ort write our solution in

the pleasingly compact form

W (ρ1,ρ2, z1, z2) = Q

{[
1

α2
2

(x1 ∓ iy1)−
1

σ2
2

(x2 ∓ iy2)
]

×
[

1

α̃2
1

(x2 ± iy2)−
1

σ̃2
1

(x1 ± iy1)
]

+
1

β2
2

}
.

(3.17)

In order to locate the singularities in the cross-spectral density, we search for posi-
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tions where the real and imaginary parts are simultaneously zero. As written above,

Equation (3.17) is in six spatial variables. It can be shown that the cross-spectral

density only equals zero when

z1 = z2 ≡ z. (3.18)

This is more easily done using the results in the form of Eq.( 3.10). We begin with the

observation that everything outside the square brackets divides out when the equation

is set to zero, and suppress them for the next stage of the calculation. Furthermore,

A, Bx, and By are all complex, arising from their dependence on σ1, σ2. Thus they

may be written as

A =

(
1

w2
z1

+
1

w2
z2

+
1

δ2

)
+ i

(
k

2Rz2

− k

2Rz1

)
, (3.19)

Bx =

(
x1
w2
z1

+
x2
w2
z2

)
+ i

(
kx2
2Rz2

− kx1
2Rz1

)
, (3.20)

By =

(
y1
w2
z1

+
y2
w2
z2

)
+ i

(
ky2
2Rz2

− ky1
2Rz1

)
, (3.21)

and with some e�ort the cross spectral density may be separated into its real and

imaginary parts. We begin by looking at the imaginary part, which may be written
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as

0 = ±x1y2 ∓ x2y1 (3.22)

+
1

|A|2

{
(−x1 − x2)

[
ξxþ−

(
x1
w2
z1

+
x2
w2
z2

)
Υ

]
+ (−y1 − y2)

[(
x1
w2
z1

+
x2
w2
z2

)
þ + ξxΥ

]

+ (−x1 + x2)

[(
y1
w2
z1

+
y2
w2
z2

)
þ + ξyΥ

]
+ (y1 + y2)

[
ξyþ−

(
y1
w2
z1

+
y2
w2
z2

)
Υ

]}

+
1

|A|4

{
2ξx

(
x1
w2
z1

+
x2
w2
z2

)(
þ2 − Υ 2

)
+ 2þΥ

[(
x1
w2
z1

+
x2
w2
z2

)2

− ξ2x
]

+ 2ξy

(
y1
w2
z1

+
y2
w2
z2

)(
þ2 − Υ 2

)
+ 2þΥ

[(
y1
w2
z1

+
y2
w2
z2

)2

− ξ2y
]}

+
Υ

þ2 − Υ 2
,

where

þ =
1

w2
z1

+
1

w2
z2

+
1

δ2
(3.23)

Υ =
k

2Rz2

− k

2Rz1

(3.24)

ξx =
kx2
2Rz2

− kx1
2Rz1

(3.25)

ξy =
ky2
2Rz2

− ky1
2Rz1

(3.26)

(3.27)

all of which depend on z1, z2 through the Rayleigh range and beam width. This

monstrous expression becomes solvable, and indeed tractable, if

z1 = z2 = z. (3.28)
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In this case, A becomes entirely real

A =
2

w2
z

+
1

δ2
, (3.29)

and the term

Υ = 0. (3.30)

In this case, the expression simpli�es greatly to

0 = ±x1y2 ∓ x2y1

+
1

A
(−x1 − x2)

[(
k(x2 − x1)

2Rz

)]
+

1

A
(−y1 − y2)

[(
x1 + x2
w2
z

)]
+

1

A
(−x1 + x2)

[(
y1 + y2
w2
z

)]
+

1

A
(y1 + y2)

[(
k(y2 − y1)

2Rz

)]
+

1

A2

[
2

(
x1 + x2
w2
z

)(
k(x2 − x1)

2Rz

)]
+

1

A2

[
2

(
y1 + y2
w2
z

)(
k(y2 − y1)

2Rz

)]
. (3.31)

As a check, we can evaluate this expression at the waist plane where Rz = 0, and

�nd that it goes to zero when

x1
x2

=
y1
y2

(3.32)

which matches the conditions found by [34]. We can now return to Eq. (3.17) and

proceed with the further simpli�ed form

W (ρ1,ρ2, z1, z2) =

{[
1

α2
(x1 ∓ iy1)−

1

σ2
(x2 ∓ iy2)

]
×
[

1

α2∗ (x2 ± iy2)−
1

σ2∗ (x1 ± iy1)
]

+
1

β2
2

}
.

(3.33)
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With this, we now investigate how zeros of W evolve.

3.2.2 Discussion

As noted, singularities of the cross-spectral density will occur where the real and

imaginary parts are simultaneously equal to zero. The topology of these zeros (as

will be seen in Section 3.3) is quite complex, especially when examined in terms of

ρ1 and ρ2. It is therefore helpful, even necessary, to move onto a di�erent coordinate

system to study their behavior on propagation. Thus we introduce here the sum and

di�erence coordinates

ρ+ ≡
ρ1 + ρ2

2
,

ρ− ≡ ρ2 − ρ1, (3.34)

and the coe�cients

η =
1

α2σ∗2
, (3.35)

2χ =

(
1

|α|4
+

1

|σ|4

)
, (3.36)

2Z =

(
1

|α|4
− 1

|σ|4

)
. (3.37)

Using this simpli�ed schema, the real and imaginary portions of the cross spectral

density may be expressed as

Re(W ) = −2 Re(η)

[
x2+ + y2+ +

x2− + y2−
4

]
+ 2χ

[
x2+ + y2+ −

x2− + y2−
4

]
+

1

β2
2

, (3.38)

Im(W ) = 2i Im(η) [x+x− + y+y−]

± i2Z [x+y− + y+x−] . (3.39)
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Figure 3.1: Zero manifolds of partially coherent beams on propagation in sum and
di�erence coordinates. Radial positions a) slightly incoherent beam, (δ = 2 mm) and
b) moderately incoherent beam (δ = 8 mm). In both �gures, w0 = 1 mm, λ = 500 nm

These equations may be further simpli�ed by moving into polar coordinates and

judicious use of trigonometric identities. By doing this we are able to see that the

imaginary portion of the cross-spectral density is only zero when

tan Φ = ±Im(η)

Z
(3.40)

where Φ = φ+−φ−, which gives us an imaginary part that depends only on the angle

between ρ+ and ρ−. Doing likewise to the real part yields

[−2 Re(η) + 2χ]ρ2+ +
1

2
[−Re(η)− χ]ρ2− +

1

β2
2

= 0, (3.41)

which depends solely on ρ+, ρ−, without any angular dependence.

The results of Equations (3.40) and (3.41) are plotted in Figure 3.1. Although the

sum/di�erence coordinates may seem like they further remove the usefulness of our

results, they permit several conclusions. Equation (3.41), for example, is a hyperbola

for all distances, but the positioning of the hyperbolas is particularly interesting.

While the arms of the hyperbolas for partially coherent beams lies between the ρ+

and ρ− axis, the more coherent the beam the more the hyperbola arms asymptotically
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approach ρ− = 2ρ+. This is readily shown from Eq. (3.41). If we use the standard

form for hyperbolas [50, Section 9.4]

x2

a2
− y2

b2
= 1, (3.42)

we can easily �nd that for Eq. (3.41)

1

a2
= 2β2

2(Re{η} − χ) (3.43)

1

b2
=

1

2
β2
2(−Re{η} − χ). (3.44)

Using the formula for the asymptotes of hyperbolas [50, Section 9.4],

y = ± b
a
x (3.45)

we see that

ρ− = 2

√
Re{η} − χ
−Re{η} − χ

ρ+, (3.46)

which if we take the limit as δ− > 0, becomes

ρ− = 2ρ+. (3.47)

This can be seen from Eq. (3.34) to be identical to the condition for fully coherent

vortices that either ρ1 = 0 or ρ2 = 0. Figure 3.1(a) shows the hyperbolas for a slightly

incoherent beam, and Figure 3.1(b) that of a moderately incoherent beam. In both

cases they tend on propagation to approach the coherent case, in agreement with the

van Cittert-Zernike theorem.

It is worth examining the moderately incoherent case, with δ = 8mm, shown in

Fig. 3.1(b), in more detail. For this value of the wander parameter, the beam is
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Figure 3.2: Zero manifolds of a partially coherent vortex beam on propagation. An-
gular positions on propagation, with w0 = 1 mm, λ = 500 nm.

allowed to wander up to eight times the width of the beam at its waist, and can be

considered signi�cantly incoherent. At short propagation distances, the hyperbola

very nearly meet at the ρ− = 0 line, indicating that correlation singularities can be

found at any radial distance from the center of the beam, provided ρ1 ≈ ρ2. As the

�eld propagates, however, the hyperbolas angle away and asymptotically approach the

coherent limit. However, it can be be readily shown from Eq. (3.40) that the upper

and lower branches of the hyperbola will remain separated by a distance ∆ρ− = 2δ

for large values of z. This implies that, for a distant observation point ρ1, the �eld

will appear to have a coherent vortex at the origin in ρ2. When ρ1 is close to the

origin, however, the zero hyperbolas deviate signi�cantly from straight line coherent

case. Thus it would appear that after a lengthy propagation, there will appear a

correlation vortex at the origin only if the observation point is su�ciently distant

from the origin.

Also interesting is the behavior of the angular position of the singularities on prop-

agation, as illustrated in Fig. 3.2. As the �eld propagates, the angle between the

vectors ρ+ and ρ− quickly diverges from Φ = 0 and, for beams which are initially

highly incoherent, approaches ∓π/2, corresponding to a vortex charge of m = ±1.

While this "kink" in the location of the singularities does eventually return to Φ = 0
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as the beam propagates, highly incoherent beams may never do so in a reasonable

distance. For example, at δ = 20mm, we still have Φ = 0.1 even at z = 50km.

The origin of this �kink� in the angle is a result of what may loosely be called an

interaction between the phase due to the wavefront curvature R(z) and the phase

of the original vortex. In the waist plane and at large distances, the curvature is

approximately in�nite, i.e. the wavefront is planar, and the phase due to the wavefront

curvature is constant. At intermediate propagation distances, however, the two phases

mix to produce a charge-dependent change in the topology of the singularity. It is

to be noted that this angular shift may provide a non-interferometric method for

measuring the topological charge of a partially coherent vortex beam, as the charge

can be determined from the location of the zeros, rather than the phase structure of

the beam.

These results represent the �rst theoretical treatment of the full propagation charac-

teristics of a partially coherent vortex beam. However, it only describes the �rst-order.

Additional work is needed to describe higher-order beams.

3.3 Partially Coherent Vortex Beams of Any Order

Now that we have considered the �rst order PCVB's behavior on propagation and

determined that correlation vortices will only occur in the same transverse plane (i.e.

z1 = z2 = z), we are more ably equipped to address ourselves to the problem of the

derivation of a complete class of partially coherent vortex beams of arbitrary order.

3.3.1 Derivation

As previously noted, it is mathematically convenient when working with partially

coherent beams to work in the frequency domain with the cross-spectral density

function W (r1, r2, ω), which we write here as

W (r1, r2) = 〈Ũ(r1 − r0)U(r2 − r0)〉ω, (3.48)
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where 〈...〉ω again represents an average over an ensemble of monochromatic �elds.

We use again a tilde throughout this section to represent the complex conjugate for

notational convenience, and suppress ω for brevity.

We begin our calculation with the equation for a monochromatic Laguerre-Gauss

beam of radial order 0, azimuthal order ±m, with m ≥ 0, expressed as

U(x, y, z) = C(x± iy)m exp−
[

1

σ2
(x2 + y2)

]
exp [−iωt], (3.49)

where

C ≡

√
2

πw2
z |m|!

(√
2

wz

)|m|
exp [−iΦ(z)], (3.50)

and Φ(z), wz, Rz and σ are as de�ned in the previous section.

In discussing correlation singularities, we will restrict ourselves to the case where

r1 and r2 lie in the same transverse plane (i.e. z1 = z2 ≡ z), since it was shown in the

previous section that singularities only appear in this case. We can use Eq. (3.49) to

generate mth-order partially coherent beams by introducing it into the beam wander

model discussed in Section 3.1. Thus we are able to write the cross-spectral density

integral as

W (r1, r2) = (3.51)

|C|2

πδ2

∫
[(x1 − x0)∓ i(y1 − y0)]m [(x2 − x0)± i(y2 − y0)]m

× exp

{
− 1

σ̃2

[
(x1 − x0)2 + (y1 − y0)2

]}
× exp

{
− 1

σ2

[
(x2 − x0)2 + (y2 − y0)2

]}
× exp

{
−x

2
0 + y20
δ2

}
dx0dy0.

This integral can be solved analytically with careful use of the binomial theorem,
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which allows us to reduce it to a sum of integrals of Gaussian form with known

solutions. Those not interested in the lengthy derivation can skip to the result in Eq.

(3.70). We begin by completing the square with respect to x0 and y0 in the exponent,

introducing the quantities

A ≡ 1

σ̃2
+

1

σ2
+

1

δ2
=

2

w2
z

+
1

δ2
, (3.52)

Bx ≡ 2
(x1
σ̃2

+
x2
σ2

)
, (3.53)

By ≡ 2
( y1
σ̃2

+
y2
σ2

)
. (3.54)

This allows us to put the cross-spectral density into the form

W (r1, r2) =
|C|2

πδ2
exp

[
B2
x/A

]
exp

[
B2
y/A

]
(3.55)

× exp

[
− 1

σ̃2

[
x21 + y21

]]
exp

[
− 1

σ2

[
x22 + y22

]]
×
∫

[(x1 − x0)∓ i(y1 − y0)]m [(x2 − x0)± i(y2 − y0)]m

× exp
[
−A(x0 −Bx/A)2

]
exp

[
−A(y0 −By/A)2

]
dx0dy0.

As the exponential factors outside the integral do not signi�cantly a�ect the structure

of the �eld, we de�ne a new function

D(r1, r2) ≡
|C|2

πδ2
exp

[
B2
x/A

]
exp

[
B2
y/A

]
(3.56)

× exp

[
− 1

σ̃2

[
x21 + y21

]]
exp

[
− 1

σ2

[
x22 + y22

]]
,

for brevity. We can now make the coordinate transformation

X ≡ x0 −
Bx

2A
, (3.57)

Y ≡ y0 −
By

2A
, (3.58)
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and introduce

H±j ≡ xj ± yj −
(
Bx

A
± iBy

A

)
, j = 1, 2. (3.59)

We can now rewrite the integral in the relatively simple form

W (r1, r2) = D(r1, r2)

∫ [
H∓1 − (X ∓ iY )

]m
exp

[
−AX2

]
(3.60)

×
[
H±2 − (X ± iY )

]m
exp

[
−AY 2

]
dXdY.

This integral is still too di�cult to directly integrate, but it is now possible to apply

the binomial expansion twice to the integrand, so that

[
H∓1 − (X ∓ iY )

]m
=

m∑
k=0

(
m

k

)
(−H∓1 )m−k(X ∓ iY )k, (3.61)

[
H
±]
2 − (X ± iY )

]m
=

m∑
l=0

(
m

l

)
(−H±2 )m−l(X ± iY )l. (3.62)

We thus have

W (r1, r2) = D(r1, r2)
m∑
k=0

m∑
l=0

(
m

k

)(
m

l

)
(3.63)

×
∫

(−H∓1 )m−k(X ∓ iY )k(−H±2 )m−l(X ± iY )l

× exp
[
−A(X2 + Y 2)

]
dXdY.

We now note that the integrand has a rotational symmetry about the (X, Y ) origin.

By moving into polar coordinates such that

X + iY = ρ exp[iφ], (3.64)



36

we can rewrite the cross-spectral density equation into the more easily integrable form

W (r1, r2) = D(r1, r2)
m∑
k=0

m∑
l=0

(
m

k

)(
m

l

)
(3.65)

× (−H∓1 )m−k(−H±2 )m−l

×
∫
ρk+l exp

[
−Aρ2

]
exp [±i(l − k)φ] ρdρdφ.

The integral over φ is equal to 2πδlk, where δlk is the Kronecker delta. Summing over

l then reduces the double sum to a single sum with l = k. So now the cross-spectral

density is reduced to

W (r1, r2) = 2πD(r1, r2)
m∑
l=0

(
m

l

)2

(−H∓1 )m−l(−H±2 )m−l (3.66)

×
∫
ρ2l+1 exp

[
−Aρ2

]
dρ.

The remaining integral can be directly related to the Gamma function,

Γ(n) = (n− 1)!, (3.67)

so that

W (r1, r2) = 2πD(r1, r2)
m∑
l=0

(
m

l

)2

(−H∓1 )m−l(−H±2 )m−l
Γ(l + 1)

2Al+1
, (3.68)

where Γ(l + 1) is the Gamma function.

In this form, it is di�cult to see the functional dependence, as H±j depends on

the position vectors r1 and r2. With some rearrangement however, we may readily

rewrite

H±2 =

[
1− 1

σ2A

]
(x2 ± iy2)−

1

σ̃2A
(x1 ± iy1), (3.69)
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with a similar expression for H∓1 . We may �nally write a complete expression for the

cross-spectral density of a PCVB of any azimuthal order as

W (r1, r2) = πD(r1, r2)

{m−1∑
l=0

(
m

l

)2
Γ(l + 1)

A2m−l+1
(3.70)

×
[

1

α̃2
(x2 ± iy2)−

1

σ̃2
(x1 ± iy1)

]m−l
×
[

1

α2
(x1 ∓ iy1)−

1

σ2
(x2 ∓ iy2)

]m−l
+

Γ(m+ 1)

Am+1

}
,

where

1

α2
≡ 1

σ2
+

1

δ2
. (3.71)

Equation (3.70) is the main result of this section. In it we have an analytic expression

for an entire class of partially coherent vortex beams of any azimuthal order at any

propagation distance.

We can make a few basic observations concerning this result. Firstly, it is a straight-

forward matter to show that the exponential factor D(r1, r2) can be rewritten as

D(r1, r2) =
|C|2

πδ2
exp

[
− ρ22
Aσ2δ2

]
exp

[
− ρ21
Aσ̃2δ2

]
exp

[
−|ρ1 − ρ2|2

A|σ|4

]
. (3.72)

This indicates that the exponential factors have the form of a Gaussian Schell-model

beam, discussed in Section 2.4, in which the spectral degree of coherence depends

only on the di�erence between the two points r1 and r2. However, the cross-spectral

density in its entirety is not Schell-model due to the vortex terms.

We can also �nd an estimate for the correlation length for the beam from this

function. Looking more closely at the scaling factor 1/∆2 ≡ 1/A|σ|4 of Eq. (3.72)
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and taking it in the z = 0 plane we �nd it takes the simple form

∆2 = 2w2
z +

w4
z

δ2
. (3.73)

For su�ciently small values of δ, the correlation length is approximately ∆ ∼ w2
z/δ,

demonstrating the inverse relationship between beam wander and coherence.

This also highlights a limitation of the beam wander model. As δ → ∞, the

correlation length reaches a minimum of 2w2
z . This lower limit is a result of the

partially coherent �eld being constructed of fully coherent beams of e�ective width

2w2
z . To get a smaller correlation, one must use a smaller beam width.

3.3.2 Characteristics of PCVB singularities

We are now interested in studying how the structure of the PCVB is a�ected when

the spatial coherence of the beam is reduced, or, equivalently, the beam allowed to

wander more. Correlation vortices exist at those pairs of points r1 and r2 for which

Re{W} = 0 and Im{W} = 0.

Due to the di�culties in visualizing the behavior of a four-dimensional correlation

function, even when viewed solely in a transverse plane and not considering propa-

gation e�ects, it is helpful to hold one of the position vectors constant. The phase

structure of the cross-spectral density can then be plotted as function of the two

variables of the remaining vector. This allows for a far easier assessment of the singu-

larities' characteristics for a variety of conditions. It must noted that it is necessary

to have the �xed point displaced from the central beam axis if vortices are to be ob-

served. When r1 lies directly on axis [i.e., (x1, y1) = (0, 0)], the system is completely

rotationally symmetric with respect to r2 and the only singularities observed are zero

circles, known as ring dislocations, as seen in [33]. When r1 is non-zero a variety of

interesting vortex structures can be observed.
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3.3.3 Phase Structures of PCVBs

We begin by considering the behavior of an m = 3 PCVB and its associated

singularities as the coherence decreases, as illustrated in Fig. 3.3. Parts (a), (c) and

(e) show the color-coded phase of the correlation function as δ increases from nearly

coherent to nearly incoherent. The zero lines of the real and imaginary parts of the

cross-spectral density are shown in (b), (d) and (f) to more clearly demonstrate the

relationship between the zeros of the function and the phase structure. For these

images we have taken the �xed point to lie along the y-axis (y = 1 mm), while the

beam's width is w0 = 5 mm.

For a highly coherent beam, (a) and (b), there is e�ectively a single, third-order

vortex at the origin, as would be expected for a fully coherent beam, with the phase

increasing by 6π (i.e., 2πm, with m = 3) as one progresses counterclockwise around

the central singularity.

As the coherence decreases, (c) and (d), the central singularity separates into three

�rst-order singularities, all evidently lying along the y-axis. The singularities align

on this axis due to our choice of �xed point, which is also on the y-axis and provides

the only break in rotational symmetry. This splitting of the singularity is expected,

as only �rst-order singularities are stable under wave�eld perturbations, including a

decrease in coherence.

As the coherence decreases further, (e) and (f), new singularities appear, with equal

and opposite signs of the original singularities, coming in from the point at in�nity.

As correlation vortices themselves do not possess any energy or inertia, they are able

to move, in essence, �in�nitely fast,� coming from in�nity to a �nite distance with a

�nite change in coherence. In the low-coherence limit, the equiphase contours around

each vortex compress, result in two step-like jumps of π as one goes around the vortex

instead of a smooth 2π ramp.

The existence of these vortices can be deduced from Eq. (3.70), which shows
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Figure 3.3: Phase of the cross-spectral density of a PCVB with m=3. For each of the
images above, the beam waist w0 = 5mm, λ = 500nm, (x1, y1) = (0.0, .001)m and
m = 3. Phase plot for a beam with a) δ = 0.00001m, c) δ = 0.001m, e) δ = 0.1m. Real
and imaginary parts with locations of vortices circled for beam with b) δ = 0.00001m,
d) δ = 0.001m, f) δ = 0.1m.
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a) b)

c) d)

Figure 3.4: Phase of the cross-spectral density of a PCVB of di�erent vortex orders.
For each of the images above, the beam waist w0 = 5mm, λ = 500nm, (x1, y1) =
(.001, .001)m, and δ = .001m. a) m = 1 b) m = 2 c) m = 3 d) m = 4. The pairs of
clockwise and anticlockwise vortices can be seen along the line x = y bisecting the
elliptical structure. For every increase in order, another pair is formed.
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that the cross-spectral density contains a 2mth-order polynomial in z2 = x2 + iy2.

Alternately, this can be thought of as an mth-order polynomial in z2 and an mth-

order polynomial in z̃2. Thus we expect 2m distinct roots for this polynomial, which

would suggest 2m vortices, divided equally between left- and right-handed vortices.

A feature of particular interest that can be seen in Fig. 3.3(f) is that the vortices

in fact do not lie along a straight line, but instead lie on circles formed by the circular

form of the imaginary and real zeros of the cross-spectral density. This is distinct

from the m = 1 case, discussed in Ref. [44], where it was shown that for the waist

plane of the beam the two correlation vortices lie along a straight line which intersects

the origin. It can be shown from Eq. (3.70) that this is approximately true for the

|m| > 1 case only when the �eld is highly coherent. The circles associated with the

zeros of the real part of the cross-spectral density can be found by taking the limit as

δ →∞ in Eq. (3.70). We then arrive at an expression for the cross-spectral density

of

W (r1, r2) = πD(r1, r2)
w2m+2
z

2m+1

{m−1∑
l=0

(
m

l

)
Γ(l + 1) (3.74)

× (−1)m−l|z2 − z1|2(m−l) + Γ(m+ 1)

}
,

where we have used z1 = x1± iy1, etc. This expression is completely real-valued, and

is a 2mth-order polynomial in |z2 − z1|, indicating that the 2m zeros of the real part

of W (r1, r2), with respect to r2, lie on circles centered on r1.

The approximate zeros of the imaginary part of W (r1, r2) come from returning to

Eq. (3.70) and keeping the lowest order terms with respect to 1/δ2. The condition

for the imaginary part of W (r1, r2) to vanish is then

y1
x1

=
y2
x2
, (3.75)
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or approximately a line passing through the origin and r. We note here that the

circles of Eq. (3.74) have �nite radii as δ → ∞; we interpret this as a consequence

of the fact that the correlation length of the �eld never approaches zero, as indicated

by Eq. (3.73). This suggests that a more advanced model will be necessary to study

partially coherent vortex beams in the low coherence limit. We also note that the

position of the vortices changes in a non-trivial manner as the �eld propagates, as

was discussed for the m = 1 case in Ref. [44] and in Section 3.2.2.

The equal and opposite sets of vortices can be seen for di�erent values of m in Fig.

3.4. Now the �xed point has been placed on the diagonal, and all zeros consequently

lie along a diagonal line running through the origin. In this zoomed out cross-section

of the beam, the individual groups of positive and negative vortices appear as a single

high-order vortex, though in fact they are closely spaced sets of �rst-order vortices.

It is to be noted again that it is necessary to have the �xed point displaced from

the central beam axis if the vortices are to be observed. When r1 lies directly on

axis, the system is completely rotationally symmetric with respect to r2 and the only

singularities observed are ring dislocations as seen in Ref. [32].

3.3.3.1 Topological Charge of PCVBs

As already seen in previous examples, the phase always changes by an integer mul-

tiple of 2π when one follows a closed counterclockwise trajectory around a vortex; this

integer is known as the topological charge. It can be shown that the net topological

charge of a vortex beam is in general conserved, and typically vortices only appear or

disappear in pairs of equal and opposite charge that conserves the net charge. These

properties of vortices, discreteness and stability, make them of interest for free-space

optical communications, because they indicate that a vortex might be a turbulence-

resistant carrier of information [51]. However, it is important to understand what

e�ect decreasing coherence has on the detectable topological charge of a PCVB; here

we quantify this relationship.
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Figure 3.5: Topological charge of a PCVB as a function of δ as expressed in Eq. 3.76,
showing the gradual loss of charge as beam wander is increased. The detector radius
is a = 1 cm.

It is to be noted that there are several possible ways to measure the topological

charge of the PCVBs; we consider two here. Provided the �eld �uctuations are slow

enough, the instantaneous topological charge within an aperture can be measured and

the average value calculated. Using the beam wander model, the measured topological

charge will be m if r0 lies within a circular aperture A of radius a, and 0 if r0 lies

outside the aperture. The average topological charge t̄ of a beam will be given by

t̄ = m

∫
A

f(r0)d
2r0 = m[1− exp(−a2/δ2)]. (3.76)

If δ = 0, t̄ = m and if δ →∞, t̄→ 0, as can be seen in Figure 3.5.

That being said, we typically might expect the �uctuations of the �eld to be too
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Figure 3.6: Topological charge of a PCVB as a function of beam wander. The beam
waist w0 = 5mm, and λ = 500nm The detector radius was set at 1cm. As δ increases,
the coherence of the beam decreases, and the detectable topological charge drops. a)
(x1, y1) = (.0001, .0001)m b) (x1, y1) = (.001, .001)m. Shifting the �xed point farther
away from the origin has the same e�ect as increasing the coherence.

fast to directly measure; in such a situation, we can only measure the topological

charge of the cross-spectral density. To do so, one must choose a �xed point r1 and

determine the charge with respect to the point r2. This can only be accomplished

using interferometry.

Figure 3.6 shows the topological charge of PCVBs of three di�erent orders as a

function of δ. The topological charge is calculated within a circular aperture of

radius 1 cm. The point r1 must again be �xed for the calculation, and the loss of

charge is shown for two di�erent positions of this �xed point in (a) and (b). It can

be seen that as δ increases, and coherence therefore decreases, the topological charge

is lost in discrete drops. Evidently the charge is more robust for a �xed point further

away from the origin, but it is still lost for a wander parameter δ signi�cantly smaller

than the aperture size. Higher-order beams maintain some amount of charge longer

than lower-order beams, while lower order beams maintain their initial charge value

for larger values of δ.

This result suggests that the use of vortices and partial coherence together in

any application will naturally involve a trade-o�. Though partially coherent beams

typically propagate through the atmosphere with smaller intensity �uctuations than
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their fully coherent counterparts, these beams will also typically start out with a

topological charge reduced from the fully coherent case. The optimal balance of

vortex and coherence properties will depend on the speci�cs of the application.

We have already seen that this loss of topological charge can be attributed to

the appearance of oppositely-charged vortices from in�nity. An alternative way to

explain the e�ect, perhaps more readily understandable, is to return to the beam

wander model. As the coherence is decreased, and the beam is allowed to wander

more from the central axis, it will spend more time with its vortex lying outside of

the region of the aperture, and undetectable. One would expect that the average

topological charge would therefore also be reduced.

3.3.4 Orbital Angular Momentum

It has long been known [52] that a vortex structure in an optical beam can be

connected to the orbital angular momentum (OAM) of the beam, and it is therefore

of interest to study how the OAM of PCVBs depend on the state of coherence.

The quantity of interest is the z-component of the orbital angular momentum �ux

density �owing across a plane of constant z, which represents the �ux density of OAM

as a function of position in the cross section of the beam. For a partially coherent,

electromagnetic �eld this �ux density may be expressed as [35]2

Lorbit(r, r
′, ω) =

−ε0
2k

Im

{
y
∂′

∂x1
Wyy(r, r

′, ω)− x ∂
′

∂y
Wyy(r, r

′, ω)

− x ∂
′

∂y
Wxx(r, r

′, ω) + y
∂′

∂x
Wxx(r, r

′, ω)

}
r=r′

(3.77)

where Wyy,Wxx represent the diagonal elements of the cross-correlation tensor. For

an unpolarized beam,Wxx = Wyy = W , and the expression simpli�es to

Lorbit(r, ω) =
−ε0
k

Im

{
y
∂′

∂x1
W (r, r′, ω)− x ∂′

∂y1
W (r, r′, ω)

}
r=r′

. (3.78)

2The analogous expression in Ref. [35] contained a sign error that has been corrected here.
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On substitution from Eq. 3.70 into 3.78, we have

Lorbit(r, ω) = β
πε0
k

exp[−2r2/w2
zβ]

m∑
n

Cm
n (m− n)r2(m−n), (3.79)

where

Cm
n ≡

(
m

n

)2 |c|2

πδ2
Γ(n+ 1)

A(n+1)
β−2(m−n), (3.80)

β ≡
(

1 +
2δ2

w2
z

)
, (3.81)

and r =
√
x2 + y2.

This unnormalized quantity depends on both the intensity of the beam and the

density of the angular momentum. We de�ne a normalized angular momentum �ux

density, which may be roughly understood as the orbital angular momentum density

per photon of a vortex beam as a function of radial position,

lorb(r, ω) =
~ωLorbit(r, ω)

S(r, ω)
, (3.82)

where S(r, ω) is the z-component of the Poynting vector,

S(r, ω) =
k

µ0ω
W (r, r, ω) (3.83)

=
πk

µ0ω
exp[−2r2/w2

zβ]
m∑
n=0

Cm
n r

2(m−n). (3.84)

With a small amount of e�ort, the normalized OAM �ux density can be shown to

have the form

lorb(r, ω) = ~β
∑m−1

n=0 C
m
n (m− n)r2(m−n)∑m−1

n=0 C
m
n r

2(m−n) + Cm
m

. (3.85)
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From this expression, the behavior of the OAM density as a function of vortex order

may be evaluated. For small values of r, the expression takes on the approximate

form

lorb(r, ω) ≈ ~
(

1 +
2δ2

w2
z

)
Cm
m−1r

2

Cm
m

(3.86)

which is quadratic in r, while for larger values of r the e�ect of Cm
n in the denominator

of Eq. (3.85) is negligible and the value approaches a constant of

lorb(r, ω) ≈ m~
(

1 +
2δ2

w2
z

)
. (3.87)

Taken together, these features describe a Rankine vortex, already observed for

the �rst order in [53, 35]. This type of vortex can be seen in tropical cyclones [39,

Section 9.8], where the wind speeds in the core increase linearly with radius and fall

o� inversely with the radius outside the core. The eye wall therefore rotates in a rigid

fashion, while the spiral arms rotate in a �uid manner. There are several features of

interest here. As can be seen from the equation or in Figure 3.7, the value of the OAM

at large r increases by integer multiples of the OAM of a �rst order (m = 1) beam.

Additionally, the degree of coherence has a substantial e�ect on how rapidly the vortex

behavior shifts from rigid body-like rotation in the interior to �uid-like rotation at

large r. For high coherence beams, this transition is abrupt and occurs near the edge

of the beam waist (wz). For lower coherence beams, the transition is very gradual and

occurs at multiple beam waist lengths, while asymptotically approaching the same

constant value as a more coherent beam.
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a) b) c)

Figure 3.7: Normalized orbital angular momentum �ux density for di�erent states of
coherence. For each of the images above, the beam waist w0 = 5mm, λ = 500nm,
and r1 = r2. a) δ = 0.001m b) δ = 0.01m c) δ = 0.1m. Note that this is plotted on a
larger range to make clear the asymptotic behavior.



CHAPTER 4: DIFFRACTION THROUGH A TRIANGULAR APERTURE

It is one thing to create a vortex, but it another thing to detect it. In the previous

chapter we described a new class of partially coherent vortex beams. This chapter

focuses on the di�raction of coherent vortex beams through a triangular aperture as

a measurement technique for the charge of vortex beams. Portions of this chapter

have been previously published [54].

4.1 Background

As has been previously mentioned, optical vortices are stable topological features

of a wave�eld, and are well known to be resistant to perturbations of both amplitude

and phase, such as occur in propagation through a turbulent atmosphere [51] or even

partial obstruction by objects [55]. This is particularly interesting because of the

associated discrete topological charge of the vortex beams, which we have seen is

de�ned as the number of cycles which the phase ψ(r) of the �eld increases around a

closed path C with the singularity contained within, i.e. in integral form

m ≡ 1

2π

∮
C

∇ψ(r) · dr. (4.1)

This charge must be an integer value due to the continuity of the wave�eld, which

makes it potentially very useful as an information carrier, particularly when the sta-

bility of vortex beams is also considered. However, because the charge is contained in

the phase of the �eld, new techniques are necessary to detect the charge in a manner

that is both reliable and e�cient. One method that has shown promise is di�raction

through a triangular aperture [56, 57], which is particularly appealing due to its sim-

plicity and straightforward interpretation. A vortex beam topological charge m will
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a) b)

Figure 4.1: Example of di�raction through a triangular aperture, done with the FFT
method, for a) m = 3 b) m = −3, with a = 4λ, w0 = 2a.

produce a di�raction pattern with m + 1 bright spots on a side, and the orientation

of the array indicates the sign of the charge, as seen in Fig 4.1. This method works

for both narrow band and pulsed beams [58], and has been used to help analyze the

creation of new vortices in a "fractional vortex beam" [59].

However, despite its experimental simplicity and usefulness, previous theoretical

explorations of this e�ect have relied on direct numerical integration or have ignored

the amplitude of the �eld in the calculation. In addition, they have focused only

on the most idealized situation, which is to say a single beam centered on axis.

There have to date been no explorations of non-ideal cases, e.g. o�-axis di�raction

or mixed charge beams, with the exception of the fractional vortex case previously

mentioned. The usefulness of this detection method in real world applications such

as the aforementioned free space communication depend on its behavior in such non-

ideal circumstances. For instance, turbulence can cause beams to wander and their

modes to scramble. A detection method that can account for this degradation would

be especially useful.

In this chapter we present an analytic derivation of the di�raction of a vortex beam

through a triangular aperture, taking into account its intensity as well as its phase



52

x

y

side 1

side 2side 3

Figure 4.2: Diagram of the triangular aperture, side length a centered on the origin.

and allowing for the core of the beam to be o� center of the aperture or allowing the

beam to be a superposition of modes. The previous theoretical treatments cannot

easily account for either o�-axis beam or multi-mode. We compare our results to those

produced by exact numerical simulation, and discuss those results in the context of

vortex detection. Additionally, we show how our results can be extended to di�raction

of a vortex by any polygonal aperture.

4.2 Derivation

We begin by considering the geometry illustrated in Fig 4.2. A Laguerre-Gauss

vortex beam (LGVB) is di�racted through the triangular aperture illustrated. The

aperture is centered on the origin with side length a which is smaller than the width

of the beam w0, while the core of the LGVB can be o�-set from the origin to the
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point (x0, y0). Assuming that the aperture opening is signi�cantly smaller than the

width of the beam, we can neglect the Gaussian envelope of the beam, and thus in

the aperture plane the beam has the form

U±m(x, y) =
[(x− x0)± i(y − y0)]m

wm0
. (4.2)

Furthermore, since the aperture side length is greater than the wavelength, we will

initially treat the di�raction through the aperture as primarily an edge e�ect. Treat-

ing this type of superwavelength aperture di�raction with a geometrical theory of

di�raction is well established [60] and is indeed employed in previous phase only

investigations of the phenomenon. However, unlike previous calculations, we explic-

itly include the amplitude in the integration. Thus the total di�racted �eld may be

written as

U(kx, ky) ∼
∮
C

[(x− x0)± i(y − y0)]m

wm0
exp [−i(kxx+ kyy)]dl′, (4.3)

where C represents the boundary of the triangle, dl′ is the in�nitesimal path element

and (kx, ky) is the transverse wavenumber, i.e. k2 = k2x + k2y + k2z . In accordance with

the Fraunho�er di�raction theory, this di�racted �eld may be interpreted as either

the �eld in the far-zone of the aperture or the �eld in the rear focal plane of a 2f

focusing system, with the aperture in the front focal plane; we leave o� any scaling

factors in the integral associated with either speci�c case.

The integral along each leg of the triangle may be expressed by a linear parame-

terization:

x = a[αxt+ βx], y = a[αyt+ βy], (4.4)

with−1/2 ≤ t ≤ 1/2. The constants αi and βi are coe�cients of the parameterization.
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Table 4.1: Coe�cients of Parameterization for Each Side of the Triangle

Side αx βx αy βy

1 1 0 0 −
√

3/6

2 -1/2 1/4
√

3/2
√

3/12

3 -1/2 -1/4 −
√

3/2
√

3/12

Their values for the triangular case are given in Table 4.1. However, they can also

be found for an aperture of arbitrary shape with some e�ort. The parameterization

coe�cients for a pentagon can be found in Appendix A along with a sample plot.

Our di�raction integral for a single side is thus

U(kx, ky) ∼ γ exp [−iχa]

∫ 1/2

−1/2

[aαt+ (aβ − z0)]m

wm0
exp [−iκat]dt, (4.5)

with

α ≡ αx ± iαy,

β ≡ βx ± iβy,

γ ≡ a|α|,

and

χ ≡ kxβx + kyβy = k · β,

κ ≡ kxαx + kyαy = k ·α,

z0 ≡ xo ± iy0. (4.6)

Although this notation appears somewhat verbose, it allows us to evaluate all three

(or, in general, n) sides with a single form.

To begin performing the integral, we expand the vortex �eld into a �nite series
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using the binomial expansion so that

[aαt+ (aβ − z0)]m =
m∑
n=0

m!

n!(m− n)!
(aαt)n(aβ − z0)m−n. (4.7)

This allows us to write the integral as

U(kx, ky) ∼γ
exp [−iχa]

wm0

m∑
n=0

m!

n!(m− n)!
(aαt)n(aβ − z0)m−n

×
∫ 1/2

−1/2
tn exp [−iκat]dt. (4.8)

The remaining integrals can now be found using the identity

∫
tn exp [ct]dt =

dn

dcn

∫
exp [ct]dt, (4.9)

which, by letting c = −iκa, gives us

∫ 1/2

−1/2
tn exp [−iκat]dt =

(
i

κ

)n
dn

dan
j0

(κa
2

)
, (4.10)

where j0(x) is the zeroth-order spherical Bessel function

j0(x) =
sin(x)

x
. (4.11)

For notational brevity let us de�ne a new function

fn(κ, a) =

(
i

κ

)n
dn

dan
j0

(κa
2

)
, (4.12)

which allows us to write

U(kx, ky) ∼γ
exp [−iχa]

wm0

m∑
n=0

m!

n!(m− n)!
(aαt)n(aβ − z0)m−n(aα)nfn(κ, a). (4.13)
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This equation, along with the parameterizations, gives us an approximate analytic

expression for the di�raction of a vortex of arbitrary order and center position through

one side of a polygonal aperture.Combining expressions for all edges of the aperture, it

can be used to quickly evaluate the di�raction patterns of any number of vortex beams

simultaneously superimposed with arbitrary positions relative to the axis. That is, a

beam of order n can in general be expressed as the sum of n �elds in the form of Eq.

(4.13). However, with a little extra rearrangement, additional insight into the overall

structure of the di�raction pattern may be obtained. This may be accomplished by

employing the generalized Leibniz rule, i.e.

dm

dum
[f(u)g(u)] =

m∑
n=0

m!

n!(m− n)!

dn[f(u)]

dun
dm−n[g(u)]

dum−n
. (4.14)

In order to apply this rule we must �rst e�ect a change in the variable of di�erentiation

so that

fn(κ, a) =
1

(aα)n

[
d

d(−iκ/α)

]n
jo(κa/2). (4.15)

Upon substitution into Eq. (4.13), the expression becomes

U(kx, ky) ∼
γ exp [−iχa]

wm0

m∑
n=0

m!

n!(m− n)!

[
d

d(−iκ/α)

]n
jo(κa/2). (4.16)

Additionally, we note that

(aβ − z0)m−n = exp [iκ(aβ − z0)/α]

[
d

d(−iκ/α)

]m−n
exp [−iκ(aβ − z0)/α] . (4.17)
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a) b)a) c)

Figure 4.3: Bright di�raction lines produced by the second side of the triangular
aperture, for (a) m = 0 (b) m = 1 (c) m = 2. We have used a = 4λ, w0 = 2a.

Using this substitution, we may apply the Leibniz rule and write

U(kx, ky) ∼
γ exp [−iχa]

wm0
exp [iκ(aβ − z0)/α] (iα)m

[
d

dκ

]m
× {exp [−iκ(aβ − z0)/α] j0(κa/2)} . (4.18)

In this we have a concise expression for the di�raction of a vortex by a single edge

of triangular aperture and one that gives immediate insight into the origin of the m-

lobed triangular di�raction pattern that appears for a vortex of order m. Each edge

will produce a di�raction pattern parallel to α as κ = k ·α. For the m = 0 case, the

largest value of U(kx, ky) will be at the origin of the function j0(κa/2). This produces

a bright line perpendicular to α centered at the origin of the di�raction plane, shown

in Figure 4.3a. In the m = 1 case, the largest values of U(kx, ky) will be the largest

values of d[j0(κa/2)]/dκ, which will be two lines corresponding with the slopes of the

central peak of j0(κa/2); this is illustrated in Figure 4.3b. Each higher derivative of

j0(κa/2) will introduce another bright line to the di�raction pattern; the m = 2 case

is shown in Figure 4.3c.

Equation (4.18) also suggests a way to roughly estimate how far the vortex core

may be displaced before the di�raction pattern is signi�cantly a�ected. We begin

with the observation that the peaks of the di�raction pattern will for lower orders
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a) b) c) d)

Figure 4.4: Di�raction pattern for various vortex orders, with (a) m = 0, (b) m = 1,
(c) m = −2, (d) m = 4. We have used a = 4λ and w0 = 2a.

be bounded by the �rst zero of the zeroth order spherical Bessel function, located

at κa = π; we thus restrict ourselves to this relationship. We now note that the

components of the complex exponential will have a small in�uence provided that

∣∣∣κz0
α

∣∣∣ < 1. (4.19)

Thus we �nd the condition on z0 after substituting the value of κa into this expression

to be

∣∣∣z0
a

∣∣∣ < |α|
π

=
1

π
, (4.20)

so we can expect that the o� axis e�ects will become detrimental when [z0/a] ∼ 0.318.

We now return to our primary result (Eq 4.13) and use it to explore the di�rac-

tion patterns of various vortex beam con�gurations for vortex beams di�racted by a

triangular aperture. First, we plot the familiar on axis case where z0 = 0. As seen

in Figure 4.4, we have reproduced the experimental results and the expected result

of the m + 1 lobed triangle as the most prominent feature of the di�raction pattern

and that the orientation depends on the sign of the charge.

Next to be considered is the case where z0 6= 0, i.e. where the vortex core is shifted

relative to the center of the aperture. Figure 4.5 shows the evolution of the di�raction

pattern when the core is shifted vertically. The leftmost spot gradually dims while



59

a) b)

c) d)

Figure 4.5: Di�raction pattern for an m = 1 vortex, with x0 = 0 and (a) y0 = 0 (b)
y0 = 0.318a (c) y0 = 0.636a (d) y0 = 2a. We have used a = 4λ, w0 = 2a.

the intensities of the rightmost spots gradually increase until they merge together into

an oblong intensity spot. As suggested in the previous section, y0 = 0.318a seems to

be a rough threshold for where the distinctiveness of the di�raction pattern begins

to disintegrate. Beyond that point the triangle is no longer visible. When the vortex

core is moved entirely outside the aperture, the di�raction pattern mimics the m = 0

case. This is the expected result because the �eld within the aperture in such a case

is e�ectively a tilted plane wave.

A horizontally displaced vortex core will display similar behavior on di�raction. As

seen in Figure 4.6 the lower bright intensity spot transforms into the single intensity

spot once the vortex center passes outside of the critical region.

The evolution of the three-lobed direction pattern to the single-lobed pattern de-

pends entirely on the direction of the core displacement. This suggests that the



60

a) b)

c) d)

Figure 4.6: Di�raction pattern for an m = 1 vortex, with y0 = 0 and (a) x0 = 0 (b)
x0 = 0.318a (c) x0 = 0.636a (d) x0 = 2a. We have again used a = 4λ, w0 = 2a.

changes in the intensity pattern could be used to determine, and correct for the

displacement of the vortex beam. This ability may be useful in free-space optical

communications, where atmospheric turbulence tends to introduce wandering of an

optical beam and any vortices within it.

We may also use our analytic model to investigate the di�raction pattern of a

coherent superposition of modes. Such cases are of interest for two reasons: (1)

multimode vortex beams have been proposed as a way to multiplex information in

free-space communication, (2) propagation through atmospheric turbulence tends to

induce mode mixing even for beam which are initially single mode. We consider as an

example the particular case in which we superimpose an m = 0 mode with an m = 1
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a) b)

c) d)

Figure 4.7: Di�raction pattern for mixed-mode beam, with (a) b = 0 (b) b = 0.5 (c)
b = .9 (d) b = 1.0 We have again used a = 4λ, w0 = 2a.

mode in the form

U(x, y) = (1− b)U0(x, y) + bU1(x, y), (4.21)

with b a real-valued weighting parameter. The results of the calculation are shown in

Figure 4.7. It can be seen that the lower-order mode dominates the di�raction pattern

until the amplitude of the higher-order mode is quite large, b = 0.9. On re�ection, this

is understandable because the higher-order modes naturally have a smaller intensity

near their central axis, resulting in them being dominated by lower-order modes.

As a �nal veri�cation of these results, it is worth asking how well our analytic

results, which only consider edge di�raction e�ects, line up with the exact Fast Fourier
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a) b)

c) d)

Figure 4.8: Comparison of the analytic result with the FFT result, for m = 1, y0 = 0
and (a), (c) x0 = 0 FFT and analytic, (b), (d) x0 = 0.159a, FFT and analytic.

Transform (FFT) calculation of the di�racted �eld from the full aperture. An example

of this comparison is shown in Fig.4.8, for horizontal displacement of the vortex center.

The primary multispot intensity structure is the same for both methods, but there is

a large array of secondary spots visible in the analytic result that are not present in

the exact result. Additionally, the central lobed pattern seems to be lost more quickly

upon displacement in the exact result. However, these results show that the analytic

calculation maintains the most important aspects of the di�raction patterns.



63

4.3 Exact Analytical Solution

In the previous sections, we have emphasized that our analytical model is useful

both for understanding the underlying physics and for providing qualitatively accurate

results for di�raction through a triangular aperture. It is worth noting here, however,

that it is possible to extend the edge di�raction integral to an integral over the entire

area of the triangle and that this too may be evaluated analytically. This was not done

for the bulk of this chapter because the result is signi�cantly more complicated and

does not provide the same physical insight as the simpler model, thus trading precision

for clarity. Furthermore, the process outlined introduces a removable singularity at

κ = 0 in the solution, which must be accounted for. We include the calculation here

for the sake of completeness.

We integrate Eq. (4.18) over the side length a from 0 to A, where now we use A is

the edge length of the triangular aperture. This integral must be multiplied by
√

3/6

in order for the total integral over l and a to cover an area equal to one-third of the

total triangle area.

It is to be noted that the derivative of Eq. (4.18) could be pulled completely outside

the integrand if not for the presence of the second exponential from the left. To deal

with this, we let κ→ κ′ in the exponent and then take the limit in the end as κ′ → κ,

or

U(kx, ky) ∼
√

3

6
(iα)m|α| ∂

m

∂κm

{
e−iχaei(κ

′−κ)(aβ−z0)/ακa/2

κ/2

}
κ′=κ

. (4.22)

Writing the sine function as complex exponentials, we have the expression

U(kx, ky) ∼ 2

√
3

6
(iα)m|α| ∂

m

∂κm

{
e−i(κ

′−κ)z0/α e
−iχa

κ

× ei(κ′−κ)aβ/α e
iκa/2 − e−iκa/2

2i

}
κ′=κ

. (4.23)
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Now the variable a only appears in complex exponents. We may readily integrate

with respect to a to �nd

U(kx, ky) ∼ a

√
3

6
(iα)m|α| ∂

m

∂κm

{
e−i(κ

′−κ)z0/α

iκ

× [eiδ+j0(δ+)− eiδ−j0(δ−)]

}
κ′=κ

, (4.24)

where

j0(x) =
sin(x)

x
(4.25)

is the zeroth order Bessel function and for brevity we have introduced

δ± ≡ a[−χ+ (κ′ − κ)β/α± κ/2]/2. (4.26)

Each side of the triangle may be treated in the same manner to derive the total �eld.

For small values of m, the derivatives may be calculated analytically and the limit

taken to get the �nal result. A comparison between the exact FFT result and the

results derived from Eq.(4.24) is shown in Fig.(4.9), and it can be seen that there is

an excellent correspondence in numeric and analytic results.

4.4 Conclusion

We have derived an analytic model for the di�raction of a vortex beam by a tri-

angular aperture and have used this model to provide insight into the nature of the

di�raction pattern that arises. The model also allows us to estimate the stability of

the vortex di�raction pattern in a number of circumstances, including o�-axis beams

and mixed-mode beams. Though the system appears to be relatively stable with re-

spect to o�-axis detection of a vortex, it does not appear to be as suitable for mixed

mode beams, as the higher order modes are generally overwhelmed by the lower-order
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a) b)

Figure 4.9: Comparison of the di�raction pattern of an m = 1 vortex from (a) the
FFT calculation and (b) the analytic formula, Eq.(4.24).

modes in the di�raction pattern. The results are in good agreement with exact FFT

calculations.



CHAPTER 5: PROPAGATION OF VORTEX BEAMS THROUGH THE

ATMOSPHERE

It has been mentioned several times already that one of the potential uses for

partially coherent vortex beams (PCVBs) is in free-space communication. Some work

has been done showing coherent vortex beams doing well in free-space communication

experiments [61, 62, 63]. Partially coherent beams are less prone to speckle and

vortex cores are more stable under turbulence than non-vortex beams. Therefore a

combination may be advantageous in applications that require clean propagation over

large distances in a non-uniform medium. In this chapter we present the results of

simulation work on the propagation of PCVBs through turbulent atmosphere.

5.1 Methodology Background

One of the major di�culties in studying free-space propagation of beams is the

complex nature of the atmosphere. Temperature, time of day, wind, humidity, pollu-

tion and other variables [64, Chapter6 ] all a�ect the optical pro�le. The atmosphere

is not static but turbulent, leading to continuous random �uctuations in the opti-

cal properties of a beam's path. Developing a model that describes these e�ects in

all circumstances while remaining tractable has proved a challenge. A rigorous and

general theory for atmospheric propagation is still awaiting development, although

researchers have well-developed models for certain asymptotic regimes, particularly

weak �uctuations [65].

The Rytov approximation remains a useful tool for studying the propagation of

waves under weak �uctuations. While it can be used to directly calculate the mean

propagated �eld for short distances, it codi�es into several coe�cients the physical
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parameters that can be used to describe the overall e�ect of propagation through

random media. In particular, it gives us the index of refraction structure parameter of

the atmosphere, C2
n( m−2/3), and the Rytov variance, σ2

1, which is rigorously speaking

the scintillation index of an unbounded plane wave in weak �uctuations, and roughly

speaking is a measure of the in�uence of turbulence on an optical beam. When using

this parameter, we can characterize conditions where σ2
1 < 1 as weak turbulence

conditions, and moderate to strong turbulence as σ2
1 ≥ 1.

It also incorporates the concept of the power spectrum to describe the spatial

correlations of the refractive index. A number of power spectra have been proposed,

but all have limitations. The Kolmogorov spectrum is the simplest,

Φn(κ) = 0.033C2
nκ
−11/3, (5.1)

but is limited in validity to the range

2π/L0 < κ < 2π/l0, (5.2)

where κ is the wavenumber, l0 is the inner scale, which describes the smallest eddy

size, and L0 is the outer scale, which describes the largest eddy size [64][2.2]. Larger

eddies exhibit a laminar type �ow, while smaller eddies are dissipative. Thus the

Kolmogorov power spectrum is limited to the so-called inertial range, as is the von

Kármán spectrum[64, Section 2.2],

Φn(κ) = 0.033C2
n(κ2 + κ2

0)
−11/6, (5.3)

which is valid when

0 < κ < 2π/l0. (5.4)
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If e�ects outside this range must be accounted for, other spectrums must be employed.

We will be restricting ourselves to the weak turbulence, inertial range, and be using

the Kolmogorov power spectrum.

Unfortunately, while the Rytov method gives us useful tools for characterizing

the atmosphere, it is not well suited to analyzing longer propagation distances. In

theory, one could use the extended Huygens-Fresnel principle [65, Section 1.4.2], which

describes the optical wave �eld at the detector as

U(r, L) = − ik

2πL
exp[ikl]

∫ ∫ infty

−∞
U0(s, 0) exp

[
ik|s− r|2

2L
+ ψ(r, s)

]
, (5.5)

where the point (s, 0) is the origin of a spherical wave propagating to point (r, L)

and ψ(r, s) = ψ1(r, s) + ψ2(r, s) is the random component of the complex phase of

the wave, to study longer distance propagations. However, employing the extended

Huygens-Fresnel principle to analytically propagate a beam is prohibitively complex

for all but a few special cases, such as Gaussian, spherical or planar waves. The

primary equation of interest when employing the extended Huygens-Fresnel principle

is a fourth order moment generating function that involves eight integrals, and relies

on the ensemble average of three other second order moment generating functions

(see [65][1.4.2]). Simpler models may give reasonable approximations in small ranges,

but fail to account for all observed e�ects. Direct simulation may seem a possibility

in an age of cheap processing, but the large number of variables makes this extremely

time costly. One modeling method that strikes an e�ective balance between these

concerns is the thin phase screen propagation method introduced by Knepp [66] and

discussed by Martin and Flatté [67]. This method treats the atmosphere's optical

pro�le not as a continuous, �uctuating medium but as a series of static, randomly

generated phase screens of in�nitesimal thickness and simulates propagation via a

series of Discrete Fourier Transforms (DFT). A 256× 256 array is typically su�cient,
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a) b)

Figure 5.1: Sample plot of the phase structure of a coherent vortex beam in the a)
source plane b) detector plane after 10 km of propagation through turbulence with a
Rytov variable of σ2

1 = .954. The black mask is present to show only what would be
seen by a detector. The red circle highlights the creation of a vortex pair.

with an appropriate number of iterations, to model the essential behavior of a beam

through weak to moderate turbulence. The basic procedure for a single phase screen

interaction/propagation for a beam ψ(r) with a phase screen Φ(r), traveling in the

z-direction, is

1. ψ(r, z) = ψ(r, z−) exp[iΦ(r)]

2. DFT ψ(r, z)→ Ψ(κ, z)

3. Ψ(κ, z′−) = Ψ(κ, z) exp[−iκ2∆z/2k]

4. Inverse DFT Ψ(κ, z′−)→ ψ(r, z′−).

It is worthwhile to go into each of these steps in more detail, as there is some

subtlety in both the implementation and in the notation. In the �rst step, the �eld

impinging on the screen is "scrambled" by the randomly generated phase screen,

which for every element in the array involves a small, random phase perturbation.

The new scrambled �eld then undergoes a discrete Fourier Transform into κ-space,

where it is then "propagated" for the inter-screen distance, ∆z. The bounds of κ-

space will depend on the programmer's choice of κ, generally either a von Kármán or
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a Kolmorgorov type. We chose a Kolmorgorov spectrum with cuto�. This scrambled,

propagated �eld is then inverse Fourier Transformed back into ρ-space, and represents

the �eld about to impinge on the next phase screen. An example of this process,

implemented in Python using the Numpy package, is

def Propagate(beamArray, screenArray, deltaz, k, kappaArray):

"""

Models the propagation through a single screen array.

"""

temp1 = beamArray*exp(I*screenArray)

temp2 = fftshift(fft2(temp1))

temp3 = temp2*exp(-I*kappaArray**2 *deltaz/(2*k))

newfield = ifft2(fftshift(temp3))

return newfield

This algorithm can then be incorporated into a function to model the propagation

over multiple screens to simulate propagation over a long distance and changes in

atmosphere. The thin phase screen method is relatively straightforward to implement

in the coding environment of the researcher's choice, and is �exible enough to study

a wide variety of beams and conditions1. For example, it was employed by Cheng

et alia to study the propagation of vector vortex beams and compare them to scalar

vortex beams and fundamental Gaussians[69]. An example of the phase structure of

a coherent vortex beam, m = 5, after such simulated propagation is shown in Figure

5.1. While the 5 increases from 0 to 2π can still be seen the beam is visibly scrambled.

5.2 Beam Comparisons

There are a number of di�erent beam arrangements that are potentially better

information carriers through turbulence than a coherent vortex beam. In this section

we explore four such beams and compare each to a standard coherent vortex beam. In

1including acoustic waves instead of optical ones [68].
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each case, the wavenumber k = 40536 cm−1, the beam (or beamlet) waist w0 = 2 cm,

and the detector radius is 4 cm.

While the topological charge of a beam is a conserved quantity, there are two

factors which can result in its "loss" at the detector, which is only able to detect

the net topological charge around its edge. The �rst is that turbulence can induce

pair formation, whereby a pair of vortices of opposite sign are spontaneously formed.

Since they have opposite charge, the total charge of the beam is conserved, but if

one of these pairs is near the edge of the detector, or only one is within the detector

and the other lies entirely outside, this can alter the detected topological charge of

the beam. The second is the fact that turbulence can alter the path of the vortex

core or cores enough to push them out of the detectors boundaries. Small changes

in inclination, over the course of several kilometers, can easily result in a vortex core

missing a detector whose radius is only on the order of centimeters. A beam which

is more prone to wander out of the detector will therefore have greater variability

in the detected charge, which would pose a problem in certain applications, such as

multiplexing data through beams of di�erent charge.

5.2.1 Coherent Vortex Array

One beam con�guration that may improve the distance at which a topological

charge is detectable through turbulence is a coherent array of beams (CAB). The

thought behind this con�guration is that while a single-vortex, high-order coherent

beam (SVCB) may wander outside the detector range, losing completely the ability to

be detected, multiple �rst-order vortices may wander independently and increase the

chance that at least some charge remains detectable. Such a beam withm singularities

in this case would be described as

U(x, y) = [(x− x1) + i(y − y1)][...][(x− xm) + i(y − ym)] exp[−(x2 + y2)/w02],

(5.6)
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a) b)

Figure 5.2: Sample plots of the a) intensity and b) phase of a coherent radial array
in the source plane.

with

xj = R cos(2πj/m), (5.7)

yj = R sin(2πj/m), (5.8)

which produces a beam in the source place with charge m. The intensity and phase

of such a beam are shown in Fig 5.2. It has a bright central core with the singularities

arrayed around the edge of the beam. The phases of the beamlets combine to form an

m order phase. However, as can be seen in Fig 5.3, after passing through turbulence

the beams quickly degrade as the single charge beams rapidly wander outside the

detector radius. After the 10 km propagation, the SVCB still has a detectable charge

of t = 4.539±0.588 , while the CAB has a charge of t = 0.9575±0.728. This holds true

regardless of how tightly the CAB is formed, as can be seen in Fig 5.3. The CAB in

Fig 5.3a has its component vortices arranged only 0.1 mm apart, but its propagation

is not improved over the CAB where the vortices are arranged 1.0 cm apart, as seen in

Fig 5.3b. Regardless of the con�guration, the CAB is highly susceptible to turbulence

and is only poorly detected.
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Figure 5.3: Coherent Array Beam compared with a coherent beam on propagation.
The blue shading shows the standard deviation away from the average detected topo-
logical charge of the coherent beam, while the red shading shows the same for the
coherent array beam. The radius at which the beamlets are placed is a) r = .01 cm
and b) r = 1.0 cm. Propagated 10 km with a Rytov variance of 0.95 using 10 phase
screens.

5.2.2 Incoherent Vortex Radial Array

If a coherent array of beams fails to propagate well, it is not unreasonable to ask

how an incoherent array of beams (ICAB) propagates. That is, instead of generating

a beam in the manner of Eq. (5.6), we compose an array of "beamlets"

u(x, y) = ((x− xj) + i(y − yj))m exp[−(x2 + y2)/w02], (5.9)

with xj, yj as de�ned in Eq. (5.7) for N beamlets. The beamlets are taken to be

incoherent, i.e. they do not interfere with each other. Note that unlike the coher-

ent array, each beamlet must have charge m for the overall beam to have charge

m. A set of randomized phase screens is generated, and each beamlet is simulated

propagating through separately, and the topological charge found for its individual

propagation. The total topological charge is the unweighted sum of the individual

topological charges. Once all N beamlets have been propagated through the same set
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a) b)

c) d)

Figure 5.4: Plots showing the detectable topological charge as a function of propaga-
tion distance for a ICAB, for arrays of di�erent radii: a) r = 0.01 cm b)r = 0.1 cm
c) r = 1.0 cm d) r = 2.0 cm. The blue shading shows the standard deviation away
from the average detected topological charge of the coherent beam, while the red
shading shows the same for the incoherent array beam. Propagated 10 km with a
Rytov variance of 0.95 using 10 phase screens.

of screens, a new set of screens are generated and the process repeated for the chosen

number of iterations. Propagated in this manner, the beamlets cannot interfere with

each other.

As can be seen in Figure 5.4, the ICAB does signi�cantly better than the CAB (Fig.

5.3). For N = 5, however, it only has slight advantages over a SVCB. For a tightly

arranged array, there is no advantage over a SVCB, but at a wider spacing, roughly

50-75% of the beam width w0, the ICAB experiences less variance in its detected

topological charge. A rather odd feature is observed when the radius of the array is

the same as the beam width (Fig. 5.4d). In the source plane there is a large drop in

detected topological charge that after propagation increases for a short distance.

With this range of radial array values, we can examine whether the number of

beamlets has an e�ect on the array's detectable charge. As seen in Figure 5.5, a larger
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Figure 5.5: Comparison of ICABs with di�erent numbers of beamlets. a) N = 3 b)
N = 5 c)N = 10 d)N = 20. The blue shading shows the standard deviation away
from the average detected topological charge of the coherent beam, while the red
shading shows the same for the incoherent array beam. Propagated 10 km with a
Rytov variance of 0.95 using 10 phase screens.
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Figure 5.6: Comparison of a) two SVCB, m = 5 and m = 4 and b) two N = 20 ICAB,
m = 5, m = 4. The shaded areas represent the varience in the detected charge. While
the varience in the SVCBs overlaps, leading to uncertainty in which beam is detected,
the smaller varience in the ICAB eliminates this uncertainty.

number of beamlets results in a reduction in charge variance, but does not improve

the average topological charge detected over a coherent beam. The reduction in the

variance of the detected charge may be desirable, such as to avoid overlap between

the detected charge of higher and lower order ICABs in multiplexed beams.

5.2.3 Ponomerenko Partially Coherent Beams

Another type of partially coherent beam composed of mixed modes, described by

Ponomerenko et alia in [32]. This beam class is de�ned by its cross-spectral density

being of the form

W (x, y) =
m∑
n=0

λnmu
∗
nm(x, y)unm(x′, y′) (5.10)

where each mode is

unm =

(
(x± iy)

w(z)

)|m|
L|m|n

(
2(x2 + y2)

w2
0

)
exp

[
−(x2 + y2)

w2
0

]
(5.11)
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a) b)

Figure 5.7: PMM beam with nmax = 5, m = 5 with a) λnm = 0.1 and b) λnm = 1.0.
Propagated 10 km with a Rytov variance of 0.95 using 10 phase screens.

and λnm provides the modal weights. This is simulated in a similar manner to the

partially coherent radial array. Each mode is separately propagated through a set

of phase screens, the topological charge calculated for each mode, and saved in an

array. After each mode has been propagated through the full set of screens, the total

detected topological charge is calculated as a weighted sum of the modal charges. A

new set of screens is generated, and the process is repeated for enough iterations to

result in a stable average.

As seen in Figure 5.7, a more incoherent beam shows a very small reduction in

detected topological charge spread. However, λnm is not the only parameter that

may be varied. We may also inquire into the e�ect of larger or smaller nmax on the

detectable charge. Since λnm equal to unity gives the most reduction in spread, we

use that value for all λnm in our comparison. As seen in Figure 5.8, a larger nmax

leads to a greatly reduced detected topological charge spread on propagation, and

a slight reduction in the rate at which the detected charge drops, but at a cost to

overall detected charge. For every additional 10 orders to nmax, there is a drop of

∼ .25 in the detected charge, beginning in the source plane. For an nmax = 20 for an

m = 5 beam, the detectable charge in the source plane is ≈ 4.5, and for nmax = 30

for an m = 5 beam, the detectable charge in the source plane is only ≈ 4.25. Thus

for this beam class, stability and low variance comes at the cost of overall detectable
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Figure 5.8: PMM beam comparison with λnm = 1.0 and a) nmax = 2, b) nmax = 10,
c) nmax = 20, and d) nmax = 30. Propagated 10 km with a Rytov variance of 0.95
using 10 phase screens.

charge for the entire propagation.

5.2.4 Beam Wander Model Partially Coherent Beams

Finally, we look at a partially coherent beam class which approximates by the beam

wander model used in Chapter 3. This beam class combines elements of the incoherent

radial array and the Ponomerenko beams. The beams are composite beams; like the

Ponomerenko beams each beamlet is individually weighted, and like the incoherent

array the vortex cores are not placed in the center of the beam. In this case, the

beamlets are given a random position and the beamlets given a weight based on their

position and the selected coherence parameter δ, so that

u(x, y, δ) = ((x− δnx) + i(y − δny))m exp

[
−(x2 + y2)

w2
0

]
(5.12)
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where δnx, δny are randomly generated numbers from a normal distribution of width

δ. Each beamlet's weight, ∆n is calculated by

∆n = exp

[−(δ2nx + δ2ny)

δ2

]
(5.13)

for each of N beamlets. We will refer to this model for brevity as the beam wan-

der vortex beam (BWVB). As with the two previous beam classes, each beamlet is

propagated by itself through a set of randomized phase screens and its topological

charge determined. This is repeated for each of the N beamlets, and a weighted sum

is taken as the total detected topological charge.

This gives several parameters to vary for each beam. The number of beamlets is

an obvious place to begin. As seen in Figure 5.9, there is an advantage both in terms

of average detected charge and the variance to using a larger number of beams. A

beam composed of N = 5 beamlets has a variance of ∆t = ±.49, while a beam with

N = 25 has ∆t = ±.32. However, increasing the number of beamlets inde�nitely

does not increase performance. A beam with N = 50 has ∆t = ±.31, which is not

very di�erent from an N = 25 beam, but with ∼ 30% greater computational time.

If instead we hold the number of beams constant but vary δ, we can see the e�ect of

the coherence parameter on the propagation. As seen in Figure 5.10, for a small δ the

beam approaches the coherent case, as expected. For a larger coherence parameter

of δ = 1.0 cm the variance is reduced compared to the coherent case, but there is no

di�erence in the average topological charge after propagation. For a large coherence

parameter of δ = 2.0 cm, the detectable charge is reduced, albeit slightly, in the source

plane, with a signi�cant topological charge variance even in the source plane and the

detectable charge continues to drop over the course of the propagation more steeply

than the coherent beam. However, the variance at the detector plane is roughly half

that of the coherent plane.
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Figure 5.9: BWVB with δ = 0.5 and numbers of beamlets a) N = 5, b) N = 25, c)
N = 50, and d) N = 100. Propagated 10 km with a Rytov variance of 0.95 using 10
phase screens.
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Figure 5.10: Comparison of BWVB with N = 25 and a) δ = 0.1 cm, b) δ = 0.5 cm,
c) δ = 1.0 cm, and d) δ = 2.0 cm. Propagated 10 km with a Rytov variance of 0.95
using 10 phase screens.
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5.3 Conclusions

A few broad conclusions may be drawn from the variety of beam propagations pre-

sented above. Compared to coherent beams with a single vortex core, coherent beams

with the vortex cores split propagate very poorly except over very short distances.

Partially coherent beams exhibit less variance as the beams propagate, but do not

improve overall charge detectability. Incoherent arrays of vortex beams propagate

signi�cantly better than coherent beams, and beams of di�erent initial charge values

remain distinct after 10 km of propagation.



CHAPTER 6: CONCLUSIONS

In this thesis, we have set forth to advance the study of correlation vortices by

providing a complete description of a partially coherent beam class, to provide a the-

oretical foundation for a promising vortex charge detection method, and examine the

propagation characteristics of a number of incoherent, partially coherent and fully

coherent beams for their potential use in free space communication. This work was

undertaken to increase our understanding of di�erent types of optical and correlation

vortex beams, in the hopes that with increased understanding and theoretical foun-

dation other researchers may utilize these beams in �elds as diverse as astronomy and

biology.

In Chapter 3, we �rst derived a complete description of a partially coherent Laguerre-

Gauss beam of the �rst azimuthal order, both in the source plane and on propaga-

tion. We showed that the correlation vortices will only occur in transverse planes, i.e.

z1 = z2 = z, and that the correlation vortices undergo a non-trivial twist on prop-

agation. We then went on to describe an in�nite class of partially coherent vortex

beams, derived using azimuthal Laguerre-Gauss beams and the beam wander model

for construction of partially coherent beams. From this we were able to demonstrate

some limitations of the beam wander model, namely that beams constructed in this

manner will have a coherence length limited by the width of the beams, and that

the coe�cients of the beam have a Gaussian-Schell structure. We were also able to

describe the orbital angular momentum of the beam by deriving the orbital angular

momentum �ux density, roughly understood as the angular momentum per photon,

and showed that it has the structure of a Rankine vortex for highly and moderately

coherent beams. Further work could be done by examining PCVBs constructed of LG
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beam of any radial or azimuthal order, or constructed beams with the beam wander

model and other types of coherent vortex beams.

In Chapter 4, we undertook to give a rigorous theoretical foundation to the well

known phenomena of vortex di�raction through a triangular aperture. We �rst laid

out a derivation using both amplitude and phase of the beam but taking into account

only the edge di�raction e�ects, in accordance with established principles of geometri-

cal optics, and demonstrated that this model gives considerable insight into the origin

of the lobe patterns. For completeness and comparison's sake we then calculated the

di�raction over the entire aperture. We showed that the edge-di�raction case gave

much the same results as the more rigorous exact calculation, but with addition in-

sight and tractability. We showed that this model, unlike previous work, was able to

model di�raction for beams imperfectly aligned with the aperture, and mixed mode

beams, although the method is more suited to the former than the latter. Finally, we

compared results from our calculations to that of exact Fast Fourier Transform, and

found them to be in good agreement. Further work would investigate its possibilities

for detecting the charge of partially coherent beams, using pattern recognition algo-

rithms to adjust the alignment of the beam, and any advantages apertures with more

sides might have.

Finally in Chapter 5, we examined how well incoherent, partially coherent and

fully coherent vortex beams propagate through 10 km of atmospheric turbulence.

We employed the thin phase screen method of simulating the propagation of waves

through turbulence and found that while partially coherent beams experienced less

variance on propagation than a coherent vortex beam, a coherent vortex array fails

to propagate except over very short distances. Incoherent arrays propagated with

the least amount of variance and di�erent orders remain distinguishable after 10 km

of propagation. This characteristic may be useful in applications such as free-space

communication, and data multiplexing.
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APPENDIX A: PENTAGONAL APERTURE

Below is the table of parameterization coe�cients for a pentagon. In the table,

h =
1

2
tan

(
3

10
π

)
(A.1)

L =

√
h2 +

(
1

2

)2

(A.2)

b = L sin

(
1

10
π

)
(A.3)

ν = cos

(
4

10
π

)
(A.4)

Table A.1: Coe�cients of Parameterization for Each Side of a Pentagon

Side αx βx αy βy

1 1 0 0 −h
2 ν 1/2 + ν/2 b+ h −h/2 + b/2
3 −1/2− ν 1/4 + ν/2 L− b b/2 + L/2
4 −1/2− ν −1/4− ν/2 b− L b/2 + L/2
5 ν −1 + ν −b− h b/2− h/2
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Figure A.1: On-axis di�raction pattern of a LGVB through a pentagonal aperture.
a = 4λ, w0 = 2a.


