
 

 

ON COMPOSITIONALLY AWARE AND NAÏVE APPROACHES TO NORMALIZATION 

OF 16S MICROBIOME DATA 

 

 

 

by 

 

Aaron Matthew Yerke 

 

 

 

 

A dissertation submitted to the faculty of 

The University of North Carolina at Charlotte 

in partial fulfillment of the requirements 

for the degree of Doctor of Philosophy in 

Bioinformatics and Computational Biology 

 

Charlotte 

 

2022 

 

 

 

 

 

 

 

 

        Approved by: 

 

______________________________ 

Dr. Anthony Fodor 

 

______________________________ 

Dr. Elizabeth Cooper 

 

______________________________ 

Dr. ZhengChang Su 

 

______________________________ 

Dr. Alex Dornburg 

 

______________________________ 

Dr. Gabriel Terejanu 

 



 

 

 

ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

©2022 

Aaron Matthew Yerke 

ALL RIGHTS RESERVED 

 

  



 

 

 

iii 

Abstract 

AARON MATTHEW YERKE. On Compositionally Aware and Naïve Approaches to 

Normalization of 16S Microbiome Data.  

(Under the direction of DR. ANTHONY FODOR)  
 

Compositional data refers to any data that represents parts of a whole, and DNA sequencing data 

is compositional in nature. This is due to the constraint on our current sequencing technologies 

that allow us to record a sample of the sequences rather than recording all the sequences. This 

means that sequencing data breaks the assumption of independence (Gloor et al., 2017). It has 

been long known that analysis of compositional data is challenging and can lead to spurious 

correlations. However, DNA sequencing data is inherently noisy due to both limitations of 

sequencing technology and its biological nature. Read depth, the number of sequencing reads 

from each sample, is known to be a confounding factor in many studies also plays a role in 

creating artifacts in this type of data. In this work, we demonstrate that read depth drives 

variance in four different datasets and propose a method for quantifying artifacts generated by 

read depth. We use this new method to compare untransformed data, several compositionally 

aware transformations, and a transformation which we call “lognorm” that normalizes samples 

by read depth in log space. Ultimately, we find that lognorm consistently had less read depth 

artifacts than the other transformations. 

One way to determine the value of a data transformation is to show that it improves the 

performance of a machine learning classifier. We compared several common transformations to 

see if they improve the accuracy of a random forest and found that lognorm consistently 

significantly improves the accuracy of random forest. We believe that lognorm improves 

https://www.zotero.org/google-docs/?lLMvRJ
https://www.zotero.org/google-docs/?lLMvRJ
https://www.zotero.org/google-docs/?lLMvRJ
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accuracy by reducing read depth artifacts and allows the machine learning algorithm to learn 

from smaller signals within the data. 
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Chapter 1:  Research overview 

 

During my doctoral studies, I have two published papers on which I am co-author (described 

below) and one paper on which I am co-first author. In addition, this dissertation describes one 

project (chapter 3) which is close to publication ready and which we anticipate submission to 

https://www.biorxiv.org and for peer review shortly.  Finally, we describe three projects which 

are more exploratory and will likely need additional coding or analyses before submission. This 

includes that last chapter of the dissertation (chapter 4) which describes an interesting artifact 

where sequencing depth is well correlated with many important meta-data variables as well as 

two projects briefly described below including a pipeline development project (BiolockJ) and an 

intriguing initial observation where different machine libraries can have substantial differences 

in performance on identical data.  

Published 

1. A substitute variety for agronomically and medicinally important Serenoa repens (saw 

palmetto) 

 

Background: Serenoa repens (saw palmetto) is a small shrub that is native to Southeastern 

USA. The berries of uncultivated “green” saw palmetto are harvested and used for medicinal and 

health supplemental purposes, however it faces the challenge of being endangered due to 

overexploitation and its natural habitat loss. Further, the berries are an important part of the local 
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ecology. Besides the wild green variety of saw palmetto, there is a “silver” variety that is a 

cultivated commercially as a decorative landscaping plant.  

Study aim: The aim of this study was to determine if berries of silver saw palmetto are a suitable 

substitute for the berries of wild green saw palmetto.  

• My contributions: My role in the project was to perform the statistical analysis such as 

principal component analysis of tissue specific metabolites identified through multiple 

imaging and mass-spectrometry to show that the metabolite profile was very similar 

between the two berry varieties.  

I compared each metabolite from each imaging/chromatography/spectrometry technique 

to determine if they were different using statistical methods such as Student’s t-test and 

found that most of the biologically relevant ones were not statistically different. R scripts 

used for data processing and figure creation can be found at 

https://github.com/palomnyk/comparison_of_two_species. I am a co-author on this 

publication. 

Study conclusions: A few metabolites differed greatly between the two types of berries, but they 

had little medical relevance. Our findings indicated that differences in the plants were only 

morphological (color and shape) and that their bioactive phytochemical constituents’ profiles 

were similar enough to support substitution for similar medicinal/therapeutic purposes. 

Full citation: Jaiswal, Yogini, Daniel Weber, Aaron Yerke, Yanling Xue, Danielle Lehman, 

Taufika Williams, Tiqiao Xiao, Daniel Haddad, and Leonard Williams. "A substitute variety for 

agronomically and medicinally important Serenoa repens (saw palmetto)." Scientific reports 9, 

no. 1 (2019): 1-12. 

https://github.com/palomnyk/comparison_of_two_species
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2. 3D Imaging and metabolomic profiling reveal higher neuroactive kavalactone 

contents in lateral roots and crown root peels of Piper methysticum (kava) 

Background: Kava is a small shrub whose peeled roots are consumed for their medicinal and 

recreational neuroactive properties. Kava is native to the Pacific islands where it has a long 

history of use in traditional medicine as a sedative, anesthetic, emetic, and euphoriant. Due to 

these properties, its use is being explored in the treatment of a wide range of neurological 

conditions including (but not limited to) alcoholism, depression, anxiety, psychosis, and sleep 

disorders. Despite its usefulness, there have been reports of kava causing hepatic toxicity. 

Study aim: The aim of this study was to determine if specific parts of the kava plant have 

hepatotoxic metabolites. Traditionally, only the roots consumed, therefore we hypothesized that 

other parts of the plant may have some toxic properties and that if used as adulterants would 

have the potential to cause the hepatotoxic effects. 

• My contributions: I provided the statistical analyses such as principal component 

analysis and mixed linear modeling of tissue specific metabolites identified through 

mass-spectrometry techniques. These data were multidimensional and cofounded, 

providing an interesting challenge. My work helped show that hepatotoxic metabolites 

were found in the stems and not the root cores or peels. R scripts used for data processing 

and figure creation can be found at 

https://github.com/palomnyk/root_stem_crown_comparison .  I am a co-first author on 

this publication (full disclosure, the author co-first author is my spouse). 

 

 

https://github.com/palomnyk/root_stem_crown_comparison
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Study conclusions: This work concluded that the hepatoxic metabolites are found in the stems 

of the plants and challenged the practice of excluding peels from kava products. 

Full citation: Jaiswal, Yogini S., Aaron M. Yerke, M. Caleb Bagley, Måns Ekelöf, Daniel 

Weber, Daniel Haddad, Anthony Fodor, David C. Muddiman, and Leonard L. Williams. "3D 

Imaging and metabolomic profiling reveal higher neuroactive kavalactone contents in lateral 

roots and crown root peels of Piper methysticum (kava)." GigaScience 9, no. 9 (2020): giaa096. 

 

3. Avenanthramide Metabotype from Whole-Grain Oat Intake is Influenced by 

Faecalibacterium prausnitzii in Healthy Adults 

Background: Avenanthramides (AVAs) are a type of polyphenols that are consumed only from 

oats and provide many health benefits through their anti-inflammatory effects. The metabolism 

of these molecules is initiated by the gut microflora rather than enzymes endemic to humans or 

mice, however until this project, the identity of this bacterium was not known. There are many 

AVAs, but they are structurally very similar. Our study focused on the AVA-C, also known as 

2c, which is one of the most abundant AVAs in oats. 

Study aim: My portion of the study focused on determining which bacteria was responsible for 

the initial steps in AVA metabolism based on metagenomic data and individual variations in 

response to whole-grain oats. 

My contributions: Before joining UNCC’s Bioinformatics Department as a PhD student, I 

worked on this project as a technician and organized the stool collection to make the 

metagenomic dataset. I also processed and stored the stool samples. After joining Dr. Fodor’s 
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group, I continued to work on the dataset. I provided statistical analysis that demonstrated that F. 

prausnitzii was the best candidate for initiating AVA-C metabolism.  

Study conclusions: Ultimately, a sample of F. prausnitzii was purchased and it was shown to 

perform the reaction in vitro. Stool of specific pathogen–free mice that were inoculated with F. 

prausnitzii but not in germ free mice was shown to perform the required reaction, thus allowing 

us to conclude that the bacteria is able to perform the required step of AVA-C metabolism. I am 

a co-author on this publication. 

• Full citation: Pei Wang, Shuwei Zhang, Aaron Yerke, Christina L Ohland, Raad Z 

Gharaibeh, Farnaz Fouladi, Anthony A Fodor, Christian Jobin, Shengmin Sang, 

Avenanthramide Metabotype from Whole-Grain Oat Intake is Influenced by 

Faecalibacterium prausnitzii in Healthy Adults, The Journal of Nutrition, 2021;, 

nxab006, https://doi.org/10.1093/jn/nxab006 

In Preparation 

1. Introducing BiolockJ – A unique tool for managing bioinformatics pipelines  

 

Background: The Fodor lab is developing their own unique platform that helps address the 

reproducibility crisis, BioLockJ. BioLockJ consists of a lightweight Java based framework that 

executes BASH scripts to call external applications called BioModules. The BioModules 

perform the heavy lifting, so to speak, by handling sequence processing, taxonomy assignment, 

univariate modelling, and report generations. 

https://doi.org/10.1093/jn/nxab006
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BioLockJ is meant to help a user go from raw data to publishable figures with minimal 

documentation overhead - all the information needed by BioLockJ should fit on a single page - 

the BioLockJ configuration file. To have replicable research, a user could publish their raw data, 

along with a single BioLockJ configuration file, which would indicate which BioModules would 

be run and basic input for them. BioLockJ will then be able to regenerate the publish-quality 

output. 

The BioLockJ team has leveraged Docker, software that is used for making containers, for batch 

processing. This makes it very scalable and flexible in terms of operating systems. Thus with 

Docker integration, BioModules will have their own container with their dependencies 

preloaded. The BioLockJ team has created over 36 BioModules for running common statistical, 

genome assembly, or metagenomic packages such as QIIME, Kraken, or Metaphlan, as well as 

some custom modules for different statistical applications.  

There are also customizable BioModules for Java, python, or R, so that community members can 

build their own modules. This is important because it allows users to expand the scope of 

BioLockJ’s application.  

My contributions: My initial contribution was to build a simple graphic user interface (GUI) 

using web development tools such as JavaScript, HTML, and CSS. However, as BiolockJ 

developed, this GUI became obsolete. As BiolockJ grew, I helped the overall application design, 

such as developing the Docker containers and porting data from one container to another. I also 

helped conceptualize the new GUI that has been recently developed by others in the group. My 
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programing, documentation, and other contributions to this project can be found at: 

https://github.com/BioLockJ-Dev-Team/BioLockJ  

Study conclusions: The Fodor group is already relying on BiolockJ to run our own pipelines. 

This is a robust and flexible platform to process raw data to publishable figures. 

 

 

  

https://github.com/BioLockJ-Dev-Team/BioLockJ
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Chapter 2: Compositional transformations for sequencing data 

Overview 

Microbial communities are complex biological entities that are crucial in virtually all natural and 

human-associated ecosystems. Advances in DNA sequencing techniques have made study of 

microbiomes possible on a scale that was previously impossible. This dissertation asks what the 

best way is to optimize the preprocessing and transformation steps in microbial DNA sequencing 

analysis to study the interaction of microbial communities with human hosts and other 

environments such as soil or water (Figure 2). 

 

Figure 1: Improvements to microbial DNA sequencing analysis.  

The standard analysis involves many steps (middle flowchart). Aim 1 describes our comparison 

of multiple transformations on the same dataset to find the best transformation for that dataset. 

Aim 2 describes an iterative process by which we find the best filtering threshold based on the 

number of artifacts. 

Two of the biggest inherent challenges with DNA sequencing datasets are sparsity and 

compositionality (Gloor et al. 2017). Sparsity simply means that many taxa are only observed in 

Microbiome Data
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Transformation
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transformation
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a few samples. Compositionality arises when the elements of a dataset are constrained to be parts 

of a whole. DNA sequences, like many other measurements in science, are inherently 

compositional data. In one sample, for example, 80% of the sequences might be assigned to 

phyla Firmicutes, 20% to Bacteroidetes, 15% Proteobacteria and 5% other. The population is 

constrained to 100%, so if one group changes, for example, Firmicutes increases, then the 

percentage of one or more different taxa must decrease. This means that assumption of 

independence in statistical modeling cannot reliably be assumed for compositional data and 

different techniques must therefore be used. 

 

Current DNA sequencing technology samples DNA sequences with each sequence’s absolute 

abundance as an unknown value. The resulting data is compositional because the values 

represent a proportion of an arbitrary and generally inconsistent number of reads known as read 

depth, rather than absolute counts. The read depth varies from sample to sample. 

Using well-known, large, and publicly available microbiome datasets, this dissertation attempts 

to overcome some of the inherent challenges to analyzing this type of data.  

Objective 1: Rigorous evaluation of commonly used compositional data transformations 

 

Compositional data analysis has been an active research area for over 120 years (Pearson 1897). 

The standard methods for treating it is to transform it in such a way as to remove the constraining 

value. This process, however, makes the data more abstract and interpretation of results more 

difficult, but allows for the ability to use standard statistical methods that assume independence. 
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The most common treatments are variants of a log ratio transformation, as there is no constraint 

on the size of a log ratio. Each transformation has its pros and cons. One recently introduced 

transformation, Phylogenetic Isometric Log Ratio (PhILR) allows the use of phylogenetic trees 

in selecting and placing the elements into the ilr equation, offering possible advantages over 

others in using biologically relevant information as part of the transformation (Silverman et al. 

2017). 

 

With this aim, we evaluate these data transformations to identify any advantages that they offer, 

including use of various phylogenetic trees. This aim will reanalyze public datasets to determine 

if the new techniques can find new relationships in the data or validate previous results. 

Additionally, we will process the same dataset using multiple transformations to determine if any 

perform better at training machine learning models (MLM). The final step in this aim will be to 

assess if any of the transformations increase the statistical power of datasets for inference. 

 

Objective 2: Develop statistical analysis method for understanding and reducing artifacts 

associated with samples that have different amounts of read depth. 

In routine sequencing data processing, samples that have little or no sequences in them are 

removed, by setting a read depth threshold. This removes samples that might have been 

problematic for the sequencer at the expense of removing true samples with low abundance taxa. 

In the literature, we have often observed that an arbitrary threshold is often used rather than one 

that arises from rigorous evaluation. We find that the choice of which samples to include can 
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introduce subtle artifacts into all stages of the analysis, despite the use of compositionally aware 

transformations. 

The discovery of these artifacts and their use in setting the filtering threshold provide researchers 

the opportunity to see how these choices affect the shape of their data and may indicate that 

compositional awareness is not the only factor to evaluate in a data transformation. 

 

In summary, DNA sequencing analysis plays an important role in identifying genomic 

delineations in various diseases, diagnostics, and selection of the line of treatment. The research 

performed in this dissertation will provide insights into critical issues in an important analysis 

method that can ultimately improve the understanding of genetic factors related to human and 

animal diseases and crop improvements. 

Background 

The compositional nature of sequencing data 

Compositional data arises when the elements of a dataset are constrained to be parts of a whole. 

Sequencing data is compositional in nature due to the fact that sequence counts are not counts of 

material input, but rather a proportion of an arbitrary and generally inconsistent read depth 

(Gloor et al., 2017). To understand why compositional data requires different statistical 

approaches than standard count data, we should first look at the shape of the sample space. Each 

sample can be presented as a point in the sample space and the dimensions of the sample space 

are determined by the features of the data. In the case of DNA microbiome data, the features are 

the sequences or taxonomical classifications.  

https://www.zotero.org/google-docs/?aPvVqw
https://www.zotero.org/google-docs/?aPvVqw
https://www.zotero.org/google-docs/?aPvVqw
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A two-part composition can be represented on two orthogonal axes as a straight line segment 

connecting each axis where the axis is 1, forming an isosceles right triangle with these axes. This 

straight line, which makes a hypotenuse with the axes, represents all possible values of the 

composition making it the sample space of the composition (Figure 3). 

 

Figure 2: Graphical representation of the sample space of a 2-dimensional sequencing data.  

(A) Example data of a single sample with counts in two taxa. Below the counts are the 

conversion of the numbers to percentages. The data are shown plotted on the brown simplex (B). 

The sample space (represented by red and green line segments) spans points 0,1 to 1,0. The 

purple dot represent the example data and is plotted at 0.92, 0.08. Since there are a limited 

number of sequences that sequencers can pick-up at a time, the sample space is finite, if the 

purple dot moved and the red line segment decreased, the green area would increase. If instead, 

the purple dot moved to the right, the red area would increase and the green area would 

decrease. 

The triangle that is made by the sample spaces and axes is called a unit simplex, which is the 

simplest object that can be made in a given space. As dimensions are added to the sample data, 

the unit simplex will increase in axes. A three dimensional dataset will be represented on a 

simplex three orthogonal axis and the sample space will be a plane that touches each axis at 

length 1 (John Aitchison 1994) (Figure 4).  
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Figure 3: Graphical representation of the sample space of a 3-dimensional sequencing data. 

(A) Example data of a single sample with counts in three taxa. Below the counts are the 

conversion of the numbers to percentages. The data are shown plotted on the orange 

triangular plane (B). The sample spans points 0,1,0, 1,0,0, to 0,0,1. Taxa 3 (dashed black 

line) is partially hidden and runs away from the other two axis (brown lines). The purple dot 

represents the example data and is plotted at approximately 0.12, 0.63, 0.25. If we rotate our 

view of the plot in such that we are looking at the equilateral triangular plane of the samples 

space with the origin centered behind the plane, we can see more clearly, the approximate 

location of the purple sample data (C). From this view, this plot is equivalent to a ternary or 

simplex plot. 

For each new dimension that is added to the data, a new orthogonal axis is added to the simplex, 

and the hyper-plane of the sample space grows to include it, however it is impossible to draw. A 

microbiome dataset containing k taxa could be modeled as a hyperplane on a k-dimensional 

simplex. A unit simplex where the maximum value for any point is 1 and none of the points are 

negative, and this is known as the Aitchison simplex (Aitchison, 1982) (Table 1). The constraint 

on the sum of the points helps the Aitchison simplex to represent the lack of independence in the 

points - if one taxa increases, another must decrease to keep the sum constant. It is also possible 

https://www.zotero.org/google-docs/?Til1CU
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to think of read depth as the constraining number for each axis rather than 1 since 1 is arbitrarily 

chosen to simplify calculations, however changing this number changes only the scale, but not 

the shape of the sample space. 

 

 

Table 1: Data transformation and methods used and their formulas and references 

Name Formula 

D-part simplex 

𝑆𝐷 =  {𝒙 =  [ 𝑥𝑟1, 𝑥𝑟2, 𝑥𝑠1, 𝑥𝑠2, …  𝑥𝐷];  𝑥𝑖  >  0 , 𝑖 =  1, 2, . . . , 𝐷; ∑

𝐷

𝑖=1

𝑥𝑖  

=  𝑘 } 

Geometric mean 𝐺(𝑥)  =  √𝑥1, 𝑥2, . . . 𝑥𝐷
𝐷  

Centered log 

ratio (Aitchison, 

1982) 

𝑐𝑙𝑟(𝑥) = ln[
𝑥1

𝑔𝑚(𝑥)
, …, 

𝑥𝐷

𝑔𝑚(𝑥)
] 

Additive log 

ratio (Aitchison, 

1982) 

𝑎𝑙𝑟(𝑥)  =  [𝑙𝑜𝑔(
𝑥1

𝑥𝐷
) . . . . 𝑙𝑜𝑔(

𝑥𝐷−1

𝑥𝐷
)] 

Isometric log 

ratio (Egozcue 

et al., 2003) 

𝑖𝑙𝑟(𝑟, 𝑠)  =  √
𝑟𝑠

𝑟 + 𝑠
 𝑙𝑛 [

𝑔𝑚(𝑥1 ,...,𝑥𝑟)

𝑔𝑚(𝑥𝑟+1,...,𝑥𝑟+𝑠)
]  

https://www.zotero.org/google-docs/?I39ErU
https://www.zotero.org/google-docs/?I39ErU
https://www.zotero.org/google-docs/?2fsp6A
https://www.zotero.org/google-docs/?2fsp6A
https://www.zotero.org/google-docs/?sAy3fI
https://www.zotero.org/google-docs/?sAy3fI
https://www.zotero.org/google-docs/?sAy3fI
https://www.zotero.org/google-docs/?sAy3fI
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Number of 

possible 

combinations of 

ilr (Greenacre 

and Grunsky, 

2018) 

(2𝑥𝐷  −  2)!

(2𝑥𝐷−1)(𝑥𝐷 − 1)!
 

Relative 

abundance/naïve 

proportion 

RC/n 

Logged relative 

abundance 

(Logged) 

𝑙𝑜𝑔 (
𝑅𝐶

𝑛
+ 𝑃𝐶)  

Log 

normalization 

(lognorm) 

(Fodor et al. 

2012) 

𝑙𝑜𝑔 (
𝑅𝐶

𝑛
×

∑ 𝑥

𝑁
+ 𝑃𝐶)  

 

Margalef 

richness index 

 (RC - 1) / Log (n) 

 

Shannon Wiener 

diversity index 

(Shannon 1948) 

H = -Σ (RC/N)D * ln((RC/N)D) 

https://www.zotero.org/google-docs/?ythlb2
https://www.zotero.org/google-docs/?ythlb2
https://www.zotero.org/google-docs/?ythlb2
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Euclidean norm  

√|𝑎|
2

+  |𝑏|
2

 

 

Aitchison norm 

or closure (C) 

𝐶(𝑥{1}, 𝑥{2}, … , 𝑥{𝐷}) = [ 
𝑥{1}

∑ 𝑥𝑖𝐷
𝑖=1

,
𝑥{2}

∑ 𝑥𝑖𝐷
𝑖=2

, … ,
𝑥{𝑆}

∑ 𝑥𝑆𝐷
𝑖=𝑆

] 

For these formulas: 𝑔𝑚(𝑥)is the geometric mean of x and D is the dimensions of the matrix x. 

𝑆𝐷 represents a simplex of D dimension with individual dimensions represented as 𝑥𝐷. In the 

case of a metagenomic dataset, the D dimensions could be taxa or OTUs. The variables r and s 

represent arbitrary subsets of 𝑆𝐷 and 𝑥 are compositional counts of r and s - in a metagenomic 

datasets, they would represent different taxa. RC = raw counts in a cell, n = number of 

sequences in a sample, Σx = total number of counts in the table, N = total number of samples, 

PC = pseudo-count, usually taken to be equal to “1”. Table is modified from Matthew Brown’s 

dissertation (Brown n.d.). 

Compositional data transformations 

Common statistical methods assume that data are not bound by this summation constraint, and 

thus problems may arise if they are used on compositional data. The assumption of independence 

in parametric statistics means that they assume that the data may occupy any point in real space, 

rather than being limited to a narrow hyperplane. In order to use parametric techniques, the data 

must first be transformed in such a way that the sample space is in real space. An ideal 

transformation would also preserve the metrics of compositional data (Egozcue et al. 2003) and 

the resulting data should be easily interpretable. 

The center-log ratio transform and the additive log ratio transform are standard techniques 

In the 1980s, Aitchison realized that sample space for a logarithm of ratios is real space and 

came up with two such methods (Table 1), the center-log ratio transform (clr), and the additive 
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log ratio transform (alr) (Figure 5) that transform compositional data from Aitchison’s simplex 

to real space (J Aitchison 1982). 

 

Figure 4 : Graphical representation of alr and clr transforms of a single sample.  

The raw data (B) holds 8 taxa. The grey point at 63 was chosen for the value of xD for the alr 

transform and its formula is shown below the plot. The alr transform has one less point than 

the raw data as the xD point is used only in the denominator (A). The clr transformed data 

(C) has the same number of points as the raw data. The geometric mean is the denominator 

for the clr (D). It should be noted that the relative distance between the points is not 

preserved in either of these transforms. 

Though these transforms are commonly used, they have some shortcomings when working with 

microbiome sequencing. The alr transformation is simply the log of each ratio over an arbitrary 

point (𝑥𝐷) from the set. In the case of metagenomic data, this would be choosing a reference 

taxon (such as Firmicutes) and dividing each datapoint for each sample by the value of 

Firmicutes of that sample. Choosing 𝑥𝐷, the denominator, can be arbitrary and depends on the 

taxa that are available in the dataset. 
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In microbial ecology the most often used solution is to choose a ubiquitous taxon as 𝑥𝐷. 

However, due to the stochastic nature of sampling in sequencing data, even technical replicants 

may have very different abundances of taxa in different samples. The chosen taxa must not have 

zero counts any of the samples, as dividing by zero is undefined, though this can be remedied by 

adding a small number to all counts, so that there are no zeros in the dataset. This addition, called 

a pseudo count, can create bias if it treats all the zeros the same, because not all zeros in a 

metagenomic dataset are the same. Some zeros represent true biological absence of a species and 

some represent sampling or technical errors (Silverman et al. 2020). 

Comparing across datasets may also be problematic, especially for diverse datasets, as the value 

of 𝑥𝐷can change the distance between the transformed values and may cause arbitrary 

differences in interpreting experimental results (Egozcue et al., 2003). 

The drawbacks of the clr relate to the fact that it transforms the simplex data into a subspace of 

real space, such that there are still limitations on the shape of the sample space. The sum of clr 

transformed data is zero, which leads to a single covariate matrix. This leads to problems in 

certain types of downstream analysis and a sensitivity to outliers (Gloor et al. 2017).  In addition, 

the clr and alr make the biological significances of the results difficult to interpret. 

The isometric log ratio improves on the clr 

The isometric log ratio (ilr) builds upon the clr, as is evident by the similarity of their formulas 

(Table 1). The ilr creates a contrast between subsets of the compositional parts. The resulting 

transformed data are isometric - meaning that the angles and scalers of the untransformed data 

are preserved after the data transformation (Egozcue et al., 2003). Like the alr and clr, the 

https://www.zotero.org/google-docs/?EBJT5A
https://www.zotero.org/google-docs/?EBJT5A
https://www.zotero.org/google-docs/?EBJT5A
https://www.zotero.org/google-docs/?6HV1zl
https://www.zotero.org/google-docs/?6HV1zl
https://www.zotero.org/google-docs/?6HV1zl
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biological significance of the ilr transformation is difficult, but not impossible, to interpret. 

However, when transforming data to log ratios, this is inevitable. 

Another shortcoming of the ilr is that it is not a point-for-point transformation, but rather a 

transformation of ratios of subsets of the original data. For example, the number of possible 

ratios or balances, as they are called in some literature, increases exponentially with the number 

of features in the dataset (Table 1). The number of balances possible balances in a sample with 

5, 20, or 53 features is 21, 4.100e+20, and 5.34e+80, respectively, with the latter being close to 

the number of atoms in the known universe. In one of the datasets that we will examine (the 

Jones dataset, Table 2) for example, there are 28,026 Amplicon Sequence Variants (ASVs) after 

preprocessing or 303 genus level taxa. Using all the possible ilr balances at either the ASVs or 

the genus level is computationally impossible, thus we need to find a way to use only selective 

ratios.  

Fortunately, multiple groups (Morton et al., 2017; Silverman et al., 2017) realized that microbial 

sequencing data can be used to build bifurcating trees with nodes, edges, and tips that will give a 

natural subsets to the data for use in the ilr (Figure 6).  Nodes of the trees become the subsets, or 

“balances” and the tips become the counts for the geometric means. Thus, we can run statistics 

on the ilr transformed nodes of phylogenetic trees such as those created by the unweighted pair 

group method with arithmetic mean clustering UPGMA method (Morton et al., 2017). The 

resulting data are called sequential binary partitions or balance trees. 

https://www.zotero.org/google-docs/?2uqpJO
https://www.zotero.org/google-docs/?2uqpJO
https://www.zotero.org/google-docs/?2uqpJO
https://www.zotero.org/google-docs/?2uqpJO
https://www.zotero.org/google-docs/?2uqpJO
https://www.zotero.org/google-docs/?12VIwA
https://www.zotero.org/google-docs/?12VIwA
https://www.zotero.org/google-docs/?12VIwA
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Figure 5: Graphical representation of a single node in a balance tree.  

The raw data count data (A) from Figure 4 were used as the tree tips of the phylogenetic tree 

(B). The nodes of the tree are labeled n1 through n7. The balances for each node are 

calculated using the ilr formula and the with the values for node 6 used as an example for the 

usage of the formula (C). The resulting balances (D) are plotted to show which features were 

used to make them. 

Balance trees add arbitrariness to the pipeline 

While bifurcating phylogenetic trees work as a guide for the ilr, there are some seemingly 

arbitrary decisions that must be made. For example, we must determine which clade goes into 

the denominator and which goes into the numerator of the ilr formula. Both the R and the Python 

packages make these decisions arbitrarily. For example, gneiss, a python package, arbitrarily 

puts the left clade in the denominator and the right clade in the numerator, thus relying on the 

tree building algorithm to consistently put the sister clades on the correct side (Morton et al., 

2017).  
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An R package, PhILR uses allows for the user to direct the numerators and denominators with a 

sign matrix of the tree to decide which node does into the numerator (Silverman et al., 2017; 

Plotting a Sequential Binary Partition on a Tree in R · Statistics @ Home, no date). This is a 

technique these authors borrowed from a tree building algorithm named ggtree ((Silverman et 

al., 2017; Plotting a Sequential Binary Partition on a Tree in R · Statistics @ Home, no date)). If 

the sign matrix is not provided by the user, PhILR will arbitrarily pick in a similar way to gneiss. 

Given the arbitrary nature of this choice and no real way to make it circumspect, one might ask 

how important it is. The theory be behind the ilr, from which the balance trees are based, gives 

broad leeway in deciding how to partition the compositions into the ilr formula. Theoretically, an 

ilr with an equal number of random balances as a balance tree are both equally valid (Silverman 

et al. 2017). However, if this is true then this means that balance trees have quite a bit of 

randomness in-built and more rigorous testing seems warranted. 

The Shannon-Weiner diversity index 

When comparing metagenomic datasets, we often want to compare some aspect related to the 

number of classified sequences (taxa) or the sequences themselves between samples of a dataset 

– such a measure is broadly called the diversity index. There are many aspects of diversity that 

one might measure including, but not limited to, richness and evenness. Richness relates to the 

total number of features and evenness relates to the relative abundance of the samples within a 

dataset (Cameron et al. 2021). 

One measure that combines both richness and evenness is the Shannon-Weiner diversity index 

(Shannon index). This equation provides a value that fits with an intuitive understanding of 

diversity (Figure 7). The Shannon index equation originally described entropy in statistical 

https://www.zotero.org/google-docs/?HbV7K3
https://www.zotero.org/google-docs/?HbV7K3
https://www.zotero.org/google-docs/?HbV7K3
https://www.zotero.org/google-docs/?HbV7K3
https://www.zotero.org/google-docs/?HbV7K3
https://www.zotero.org/google-docs/?HbV7K3
https://www.zotero.org/google-docs/?hZQpUR
https://www.zotero.org/google-docs/?hZQpUR
https://www.zotero.org/google-docs/?hZQpUR
https://www.zotero.org/google-docs/?hZQpUR
https://www.zotero.org/google-docs/?hZQpUR
https://www.zotero.org/google-docs/?hZQpUR
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mechanics; however, it was found useful for describing probability to predict a taxa randomly 

pulled from a sample (Table 1). The lowest possible Shannon index is 0 and this arises when a 

sample has only a single taxon and there is zero probability of a wrong prediction. The upper 

limit to the Shannon index depends on the size of the sample, which in the case of a 

metagenomic dataset is the read depth or the number of taxa in a sample (Shannon 1948). 

 

Figure 6: The Shannon-Weiner index gives an intuitive score of diversity.  

An example count table of a dataset containing three samples that illustrate the advantage of the 

intuitive Shannon index (A). For each sample, the Shannon index is calculated, as well as the 

Margalef index which measures richness only. Each sample has the 12 counts; however, Sample 

1 has them spread evenly between the three taxa. In Sample 2, Taxa A has a has ten times as 

many counts as either Taxa B or Taxa C drastically reducing its evenness. Even though its 

richness is the same as Sample 1, Sample 2 (C) has 50% of Sample 1’s Shannon index. Sample 3 

(D) has less taxa and therefore less richness than either other sample yet has a slightly higher 

Shannon index than Sample 2. The Shannon index provides a very intuitive measure for 

determining the diversity of a sample than the measure of richness alone. 

 

 

Counts 
table

Taxa A Taxa B Taxa C Total Margalef
index

Shannon 
index

Sample 1 4 4 4 12 0.8049 1.1

Sample 2 10 1 1 12 0.8049 0.566

Sample 3 6 6 0 12 0.5581 0.693

Sample 1 Sample 2

A

B C Sample 3D
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Because the Shannon index measures richness, and metagenomic samples within the same 

dataset are unlikely to have the same read depth, researchers often seek to control richness 

through the process of rarefication, or rarefying. Rarefication simply means that all samples will 

be subsampled to a specific read depth before further analysis such as measuring the Shannon 

index. This means that some taxa from samples with high read depth will not be used and 

samples below the rarefication threshold will be discarded. Thus, it is likely that much of the 

dataset will be discarded before the analysis has even started, leading some researchers to argue 

that rarefication is “inadmissible” (McMurdie and Holmes 2014). Lately however, the idea of 

rarefication has been revisited and it is argued that repeatedly rarefying samples can ensure that 

more data is used (Cameron et al. 2021).  

Conclusion 

This dissertation will consist of two projects – one that examine the usage of phylogenetic 

balance trees and one that will examine how read depth shapes sequencing data. As we examine 

the usage of the balance trees, we will compare them to other transformations mentioned in this 

chapter. We will be determining if they can improve the accuracy of a random forest machine 

learning model. We will also be examining the role of read depth in metagenomic datasets and 

its effect on data transformations. 
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Chapter 3: Log-normalizing to read depth outperforms compositional data transformations  

Abstract 

Balance trees, also known as sequential binary partitions or CODA dendrograms, are a recent 

evolution in compositional data transforms. This transform combines the relative abundance 

counts with phylogenetics to create transformation which are ratios of subsets of the original 

data. As they are still a nascent technique in the field of microbiome analysis their utility has yet 

to be fully probed.  

In this project, we rigorously examine the consequences for the ilr transform by comparing 

balance trees to well established compositional and non-compositional transformations. We first 

sought to optimize our ilr transformations by comparing different phylogenetic trees for inputs as 

implemented in the PhILR package, a popular R package. To achieve this aim, we compared two 

de novo tree building algorithms, UPGMA (hierarchical clustering) and IQTREE, and use of the 

Silva reference phylogeny to build trees. We also examined two different types of weighting as 

offered by PhILR. Combined, these weighting schemes have 10 possible options and combine to 

yield 24 combinations. We then compared the accuracy of our custom balance trees to the raw 

counts table, an inhouse transformation that normalizes samples to the read depth called 

“lognorm”, and two compositionally aware transformations (the additive log ratio and the 

centered log ration) with the random forest machine learning algorithm. For four publicly 

available datasets, all these different data transformations were used to train random forest 

algorithms and the performance was measured by repeatedly shuffling the datasets with four-fold 

cross validation. We found that the compositional data transformations such as alr, clr, and ilr 

(PhILR) not only generally failed to improve upon raw counts tables, but often performed worse. 
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Our trials show that lognorm outperforms all the compositional transformations by a small but 

statistically significant margin.  

We conclude that while the reasoning behind compositional transformation is compelling, 

sequencing data may have other artifacts whose effect is greater. We recommend the lognorm 

data transformation as preprocessing sequencing data for random forest as it had the highest 

accuracy among the transformations that we tested. 

Introduction 

As reviewed in the first chapter, compositionality is a well know problem in sequence 

experiments. Compositional data is any data where the data are considered to be parts of a whole 

(J Aitchison 1982). As such, independence between values cannot be assumed because if one 

part increases in value, another must decrease due to the constraint of all parts summing to a 

fixed amount. In the case of current DNA sequencing technologies such as Illumina Miseq, the 

fixed amount that sequences sum to is the read depth (Gloor et al. 2017). This is a problem 

because parametric statistics assumes independence and vectors of features that sum to a 

constant are, by definition, not independent. In order to circumvent this problem, many 

transformations to mathematically endow the data with independence have been proposed 

including isometric log ratio (ilr) which, as reviewed above, has the disadvantage that there are 

an astronomical number of possible variations (see Chapter 2).  

A solution to the near infinite number of ilr transformations was independently proposed by two 

groups who utilized phylogenetic data to guide the ilr transformations (Morton et al. 2017; 

Silverman et al. 2017). While being mathematically no better than any other ilr transformation 

with the same number of balances, this approach provides an intuitive way of building balances. 
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In addition to offering a method of creating the balance trees, PhILR offers two weighting 

schemes to address the problem of the over representation of zeros in the counts tables and to 

allow the PhILR algorithm to incorporate the phylogenetic input into the output. However, the 

benefits of these weighting schemes to machine learning, if any exists, remain unclear. 

In this chapter we consider the question of whether compositional corrections, such as those 

mentioned in the previous chapter, can aid in training machine learning methods. It is not 

uncommon to compositionally correct data before analysis with an MLA (Randolph et al. 2018; 

Zeller et al. 2014; Sisk-Hackworth et al. 2021; Lin, Salleb-Aouissi, and Hooven 2022; Maltecca 

et al. 2019). 

On the one hand, one might anticipate that using the phylogenetic data to build balance trees, as 

is done with PhILR, could yield better results as the phylogenetic tree seems to add data to the 

study. On the other hand, some aspects of a dataset are distorted when converted to balances and 

it is unclear if this would impact the accuracy machine learning algorithms. We examine what 

impact that the choice in phylogenetic trees has on the PhILR transform, and the benefits of 

PhILR’s weighting schemes to see if any of these tree-based transformations effect the accuracy 

of random forest machine learning. 

In summary, with this project, we intend to explore the advantages and consequences of using 

balance trees with sequencing data. If balance trees are advantageous, we wish to explore the 

situations for which the various versions of the balance trees are most useful for microbiome 

data. We will show that no weighting scheme or combination of weighting schemes is more 

effective than another. We find, somewhat surprisingly, that raw, unnormalized counts tables and 

lognorm work better than compositional data transformations with the random forest algorithm. 
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Materials and Methods 

We choose publicly available 16S microbiome sequencing datasets for our analysis with enough 

samples for which there were inference categories such as case/control (Table 2). We arbitrarily 

set this threshold at 200 samples. From each dataset, we arbitrarily dropped sample metadata 

features that was sparse (<1/4 total samples) to create some uniformity between the datasets.  

 

Table 2: List of datasets used in chapter 3 

Name Number of 

Samples 

Metadata Categories 

Vangay 

(Vangay 

et al. 

2018)  

634 Recruitment.Location, Researcher, Sub.Study, Birth.Year, Age, 

Highest.Education, Ethnicity, Religion, Birth.Location, 

Type.Birth.Location, Arrival.in.US, Years.in.US, 

Location.before.US, Type.location.before.US, 

Years.lived.in.Location.before.US, Tobacco.Use, Alcohol.Use, 

Height Weight, Waist, BMI, BMI.Class, Breastfed, 

Age.at.Arrival, Sample.Group, Waist.Height.Ratio 

Jones 

(Jones et 

al. 2018) 

233 Age, BMI, Genotype, sex, Treatment, Visit, type 

Zeller 

(Zeller et 

al. 2014) 

226 Age, host_subject_id, 

geographic_location_(country_and/or_sea region) 
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Noguera-

Julian 

(Noguera

-Julian et 

al. 2016) 

700 Host_Age, ETHNICITY, geo_loc_name_country, 

HIV_RiskGroup, HIV_serostatus, host_other_gender, host_sex, 

HIV_Profile, PCR_human_papilloma_virus, host_allergy, 

host_deposition_frequency_per_day, 

host_abdominal_transit_alterations, host_Residency_Area, 

HCV_coinfection, Anal_cytology, host_sexual_orientation, 

Syphilis_serology, HBV_coinfection, 

PCR_Neisseria_gonorrhoeae, PCR_Chlamydia_trachomatis, 

HIV_viral_load, CD4+_Tcell_counts, leukocytes, 

stool_consistency, lymphocytes, host_body_mass_index 

Sequence processing 

For 16S sequencing, we only used the forward reads, as the reverse reads tend to have a higher 

error rate (Schirmer et al., 2015). We filtered, trimmed, removed bimeras, and assigned 

taxonomy to the 16S sequences with version 1.0.3 of the R package DADA2 (Callahan et al., 

2016). The resulting ASVs were aligned using version 2.0.2 of the R package DECIPHER 

(Wright, Yilmaz and Noguera, 2012). 

Tree building 

There were many steps taken to create all the transformations used in this project. We have 

provided a sketch of how each transformation was generated (Figure 8). 

https://www.zotero.org/google-docs/?2otMgK
https://www.zotero.org/google-docs/?2otMgK
https://www.zotero.org/google-docs/?2otMgK
https://www.zotero.org/google-docs/?nKtyKh
https://www.zotero.org/google-docs/?nKtyKh
https://www.zotero.org/google-docs/?nKtyKh
https://www.zotero.org/google-docs/?nKtyKh
https://www.zotero.org/google-docs/?EbceL2
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Figure 7, Schematic representation of workflow for the creation of each one of our data 

transformations. 

This schematic starts with the raw Dada2 counts tables and each step in the workflow (grey 

arrows with white bubbles) lead to trees (grey blocks) or final datasets (blue boxes). Note that 

the datasets with random node shuffles were recreated at least 5 times. 

To determine how the choice of phylogenetic tree impacts the ability of the transformed data to 

train a random forest algorithm, we chose two de novo trees and one reference tree, the Silva’s 

Living Tree Project (Munoz et al. 2011), which tries to create the most accurate phylogeny as 

possible. We also modified the Silva reference tree for each dataset in our study by removing the 

taxa that were not present in that dataset from the Silva tree. For our de novo trees, we utilized 

another type of phylogenetic tree using the unweighted pair group method with arithmetic mean 

clustering (UPGMA). UPGMA is a method that clusters the sequences based on distance 

matrices (Weiß and Göker 2011). Hierarchical clustering is often considered to be an overly 

simple an approach, but we felt that it would be useful as a de novo control. The other de novo 

method is IQTREE, which infers trees by maximum likelihood. A disadvantage of de novo 
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methods, compared to the Silva reference tree, is that it will use all of the sequences available to 

it and will force branches between nodes based on this limited data. Since this method uses all 

the sequences available to it, it will contain more nodes than the trees we made through 

subtraction of the Silva tree. However, though it contains far more information, it will likely be 

less accurate than the Silva tree because the sequences are not carefully curated. 

As a further control in this experiment, we used randomly generated trees that have the same 

number of nodes as other trees. In a randomly generated tree, each node is placed in a random 

position irrespective of true phylogenetic distance. The random trees are meant to test if PhILR 

requires a true tree to function. We also compare each PhILR transformed dataset to raw counts 

tables, alr, clr, and lognorm. 

UPGMA Tree 

To build the UPGMA trees de novo from the sequencing data, we used version 2.9.0 of the 

phangorn R package (Schliep, 2011). Our pipeline for mapping the sequencing data of each of 

our datasets to a reference tree relies on several tools and R packages.  

Silva Living Tree Project 

The reference tree comes from Silva’s Living Tree Project, 16S rRNA-based LTP release 132 

(Munoz et al., 2011). The reference tree lists the GenBank locus at each tip, so we used this 

information to download the sequences from GenBank using the ape package. We then built a 

blast database out of the sequences and blasted the sequences from our study datasets using 

custom BASH scripts. If the resulting matches had e-value greater or equal to 10−10, we culled 

them from the tips of the reference tree using custom R scripts to get a customized reference tree 

(Silva tree). Though the exact value of 10−10 was chosen arbitrarily, we believe that it is a 

https://www.zotero.org/google-docs/?ei9oC4
https://www.zotero.org/google-docs/?h6fT80
https://www.zotero.org/google-docs/?h6fT80
https://www.zotero.org/google-docs/?h6fT80
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conservative threshold. We hypothesized that though the PhILR transformations made from 

Silva trees were smaller, they would perform better due to a filtering effect.  

IQTREE 

The alignment file from the DADA2 sequence processing was processed through the IQ-TREE 

version 2.1.2 for Linux 64-bit. We allowed the modelFinder to run for 48 hours on the Jones 

dataset using 1 core and then selected the highest scoring model for subsequent runs. The highest 

scoring model was “GTR+F+R5”, which is a combination of a general time reversible model 

with unequal rates and unequal base, empirical amino acid frequencies, and the R5 free-rate 

model. 

Images of all non-random trees used in this project can be found in Supplementary A. 

 

The resulting customized reference trees and the de novo trees were then available for building 

phyloseq objects using version 1.16.2 of the phyloseq R package. A phyloseq object consists of a 

single object that holds sequencing data, sequence metadata, a taxonomy, and a tree. The 

phyloseq objects were later used for the philr transform using version 3.15 of the PhILR R 

package. 

Variance and low abundance filtration 

At this point, corresponding pairs of trees and counts tables were low abundance filtered using 

the following criteria: 

sum(x > 3) > (0.2*length(x)) 

And then high variance samples meeting the following criteria were filtered: 

sd(x)/mean(x) > 3.0 
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where x is the sequence in the counts table, sd is standard deviation, and the length is the number 

samples – the sequences were also dropped from the tips of tree corresponding tree (Figure 8). 

The sample counts were then given a pseudo count of 1 to eliminate the zeros that would impede 

PhILR. Finally, the phyloseq objects were processed through PhILR to create the ILR transform 

of our sequencing data tables. Node names were voted based on PhILR’s voting function. 

The PhILR vignette provided a low abundance/high variance filter- without this, the UPGMA 

and IQTREE trees were too large for PhILR, thus we only used the filtered version of each of 

these trees in our experiments. 

Random trees 

For each tree that we created with our workflow, we created 3 corresponding trees that had the 

same number of nodes and tips, but the nodes were randomly shuffled using the rtree function 

from version 5.6-2 of the ape R package (Paradis, Claude, and Strimmer 2004) (Data not shown). 

Non-tree transformations 

The alr and clr transformations of the ASV tables were done using the alr and clr functions, 

respectively, of version 1.1.15 of the R package called “rgr” (Garrett 2013). For the denominator 

of that alr, the taxa that was present in the most samples, was selected. 

The lognorm function as per the formula in Table 1 was written using custom R scripts. 

Statistical tests 

Kendall’s correlations were calculated with R’s inbuilt cor.test function. 

ANOVA was calculated using R's inbuilt anova function. The Wilcoxon test was calculated 

using the wilcoxon function from version 1.9.1 of the Python library SciPy (Virtanen et al. 2020). 
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Machine learning algorithm selection 

From version 1.1.2 of the scikit-learn Python library we selected the following MLAs to 

compare: logistic regression, linear discriminant analysis, k-nearest neighbors, decision tree, 

random forest classifier, Gaussian naive Bayes, and support vector (Pedregosa et al., n.d.). The 

Silva reference tree transformation with each of PhILR’s 24 weighting scheme combination was 

tested with 10-fold cross-validation for each of the selected metadata features of each of the 

datasets. 

Random forest comparisons 

To create training and testing datasets we randomly assigned ¾ of our data to training and ¼ to 

testing. We felt that this was an acceptable split as we had chosen large datasets. It was then 

processed by the random forest algorithms and then the data were shuffled and split and 

processed again. We employed this shuffle/analysis cycle 20 times.  

The random forest models were created using version 1.1.2 of the scikit-learn 

 Python library and the in-built scoring methods were used to record accuracy (Pedregosa et al., 

n.d.). For categorical features, the random forest classifier was used and the recorded accuracy 

score was generated by dividing the correct number of predictions over the total number of 

predictions. For numeric data, the random forest regressor was employed and the recorded 

accuracy score was the coefficient of determination R2, defined as (1−uv), where u is the residual 

sum of squares and v is the total sum of squares. 
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There are 24 possible weighting combinations offered by PhILR 

As mentioned earlier, PhILR offers two weighting schemes – one with four options and one with 

six options. Thus, there are a total of 24 combinations of weights offered. These weighting 

schemes provide a method to transform the count data before it enters the PhILR algorithm.  

PhIlR therefore allows for weighting based on branch length and/or the values of the tree tips. 

Philr offers a variety of options for both the values (part weights) and the branch lengths (ilr 

weights). For the part weights, there are 6 options: no weight, the geometric mean, the Aitchison 

norm, the Euclidean norm (Table 1), and the geometric mean multiplied by either the Aitchison 

norm or the Euclidean norm. The authors of PhILR prefer the geometric mean multiplied by the 

Euclidian norm, as this performed well in their preliminary benchmarks (Silverman et al. 2017).  

Each balance can either be weighted by the sum of its children’s branch lengths, the square root 

of the sum of the children’s branch lengths, or the sum of children’s branch lengths plus the 

mean descendants each child’s mean distance to its descendent tips. These weights enable the 

PhILR transform to differentiate itself from a pure ilr transform (Silverman et al. 2017). 

 

Data sharing: 

All BASH, Python, and R code and dataset metadata used for this project is available in the Git 

repository: https://github.com/amyerke/dissertation_lognorm_vs_CODA. 

https://github.com/amyerke/dissertation_lognorm_vs_CODA
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Results 

Trees accepted by PhILR can have very different properties  

As outlined in the introduction, compositionality can have a profound impact on the analysis of 

microbiome sequencing data. In this chapter, we examine the performance of different 

algorithms correcting for compositional artifacts in machine learning applications. We examine 

many different balance-tree based strategies for producing tables describing metagenomic 

datasets in which PhILR produces a weighted balance for an input binary phylogenetic tree. This 

pipeline has many arbitrary choices for optimization such as the weighting scheme or the 

phylogenetic tree used as input. In order to best explore the consequences of these choices for 

machine learning, we made several different trees to use as input. Our rationale for this was to 

determine if factors such as the weighting schemes take branch length, and the number of node 

descendants would improve the quality of the transform for machine learning. We choose to test 

UPGMA and IQTREE for building trees which use all available sequences as nodes as well as 

the Silva Tree of Life as the basis for a reference-tree based algorithm that does not use all 

sequences in a dataset. After building all the trees, we observed that that for every dataset, the 

Silva trees were an order of magnitude smaller than the UPGMA and IQTEE trees (Table 3). 

This is because the Silva trees were made through a subtractive method where only sequences in 

the intersection between our datasets and the Silva Tree of Life were used, whereas the UPGMA 

and IQTREE algorithms use all of the sequences to build a de-novo tree. 

 

Table 3: Tree descriptions. 

  tree name 
num. 
nodes num. tips 

ave. 
branch 
length 

variance 
branch 
length  ultrametric 
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Jones 

Silva 1132 1133 0.0311 0.0012 FALSE 

Filtered_Silva 75 76 0.0556 0.0032 FALSE 

Filtered_UPGMA 227 228 0.0307 0.0015 TRUE 

UPGMA 28025 28026 0.0384 0.0104 TRUE 

IQTREE 28024 28026 0.1205 0.1798 FALSE 

Filtered_IQTREE 227 228 0.0840 0.0191 FALSE 

Vangay 

Silva 906 907 0.0344 0.0012 FALSE 

Filtered_Silva 35 36 0.1038 0.0130 FALSE 

Filtered_UPGMA 70 71 0.1300 0.0642 FALSE 

UPGMA 6821 6823 0.0521 0.3193 FALSE 

IQTREE 6821 6823 0.0202 0.0299 FALSE 

Filtered_IQTREE 70 71 0.0813 0.0144 FALSE 

Zeller 

Silva 1490 1491 0.0309 0.0009 FALSE 

Filtered_Silva 121 122 0.0606 0.0044 FALSE 

Filtered_UPGMA 207 208 0.0332 0.0012 TRUE 

UPGMA 11077 11078 0.0154 0.0007 TRUE 

IQTREE 11076 11078 0.0298 0.0409 FALSE 

Filtered_IQTREE 207 208 0.0792 0.0136 FALSE 

Noguera-
Julian 

Silva 1233 1234 0.0330 0.0011 FALSE 

Filtered_Silva 52 53 0.0840 0.0089 FALSE 

Filtered_UPGMA 122 123 0.0273 0.0025 TRUE 

UPGMA 20365 20366 0.0509 0.0180 TRUE 

IQTREE 20364 20366 0.1204 0.1501 FALSE 

Filtered_IQTREE 122 123 0.0668 0.0295 FALSE 
 

For each phylogenetic tree that we used for PhILR, we made 5 random shuffles of the nodes and 

included them as controls. The shuffled trees have the same number of nodes, but their nodes do 

not match to the same tips as the true trees and their branch-lengths will be incorrect. This tests 

how important this information is to weighting schemes that use it. 

As we would expect given the very different algorithms used to produce them, despite coming 

from the same sequencing data, the UPGMA, IQTREE, and Silva trees have very different 

phylogenetic structures as can been by visual application (Figure 9).  
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Figure 8: The low abundance/high variance filtered trees are less cluttered than the originals in 

the Jones dataset.  

The original Silva reference tree (A) shows more taxa than the filtered version (B). The UPGMA 

(C) and IQTREE (E) algorithms are both greedy and thus the trees are too dense and were only 

used after low abundance/high variance filtering (D and F, respectively). 

Random forest is the most effective untuned MLA for our data across weighting schemes 

Our next goal was to find the best “out-of-the-box” MLA for our data. We selected seven 

common MLAs that were available in the Sci-Kit learn Python package: logistic regression, 

linear discriminant analysis, k-nearest neighbors, decision tree, random forest classifier, 

Gaussian naive Bayes, and support vector machines. We tested all seven MLAs and each 

weighting scheme on each metadata feature for each dataset. Testing on the Silva tree shows that 

there is a great variation in performance between MLA’s however random forest is one of the 

best performers (Figure 10 for Noguera-Julian’s ETHNICTY) and similar results were seen 

for other trees (Supplementary B for all datasets, features, and trees). 

cln_upgma

orig_iqtree

UPGMA
tree 

Filtered 

UPGMA
tree

Silva tree

Filtered 

Silva tree

14

IQTREE

tree 

cln_iqtree

Filtered 

IQTREE
tree

A

D

C

B

E

F



 

 

 

38 

 

Figure 9: Boxplots of MLA results for Noguera-Julian’s ETHNICITY show random forest (RF), 

K-nearest neighbor (KNN), and support vector machines (SVM) as the best performers. 

We recorded the accuracy of each MLA with 10 shuffles of 10-fold-cross validation. For this 

metadata feature, logistic regression (LR), linear discriminate analysis (LDA), decision tree 

(DTREE), and Gaussian naïve Bayes (GausNB) were the MLAs tested. Red dashed line indicates 

average MLA score for the specific MLA and the green dot-dashed line represents the average 

for the metadata feature ETHNICITY. Shown is the result for the Silva PhILR. Remaining plots 

for the Noguera-Julian dataset and other datasets available in Supplementary B. The y-axis for 

each plot is the accuracy score for categorical meta-data or r-squared values for numerical data 

For each MLA and weighting scheme, we summarized the results of the dataset by taking the 

average of each metadata feature for each MLA. (Figure 11 for the Jones dataset and others are 

in Supplementary C). We found that random forest consistently performed well – it was not 

always the highest performer, but at least always in the top three. When paired with random 
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forest, most weighting schemes (shown on the x-axis in Fig. 10) performed about the same, 

therefore picking the best one was difficult. In order to limit the scope of downstream analysis, 

we chose to use random forest and the combination of square-root of branch length (blw.sqrt) 

and Euclidean norm (enorm) for the PhILR weighting schemes. 

 

Figure 10: The Jones dataset shows random forest consistently performs well, as do all the 

PhILR weighting schemes.  

Here are treatment (A), type (stool vs swab), geneotype (C), and sex (D) of the Jones dataset 

showing the accuracy of each of our selected MLAs and PhILR transformations (Other datasets 

in Supplementary C). Shown are random forest (RF), K-nearest neighbor (KNN), and support 

vector machines (SVM) logistic regression (LR), linear discriminate analysis (LDA), decision 

tree (DTREE), and Gaussian naïve Bayes (GausNB). Each point represents an average of 

accuracy of each MLA with 10 shuffles of 10-fold-cross validation across a metadata feature. 

Log-norm has the highest average accuracy across all metadata categories 

Having selected random forest as our model and blw.sqrt and enorm as our weighting  
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scheme for downstream analysis, we tested each transformation against each metadata feature of 

each dataset. We measured accuracy for 9 binary categories (such as “stool vs. swab” in the 

Jones dataset), 35 categories with multiple levels (such as ethnicity in the Vangay dataset) or 18 

r-squared for quantitative variables (such as BMI in Jones dataset). We created 20 iterations out-

of-bootstrap using 75% of the data for training and 25% for testing. This created 20 accuracy 

scores for each transformation and each metadata feature. As controls to our PhILR 

transformations, we created 5 random shuffles of the nodes of each tree and made PhILR 

transformations with them. This created 62 sets of boxplots, each with 24 transformations (All 62 

random forest boxplots are in Supplementary D). As an example, we consider r-squared for a 

BMI and accuracy from “stool vs swab” from the Jones datasets (Figure 12). We see that 

lognorm in this example (gold bar) has a higher r-squared than most of the other transformations.  

 

Figure 11: Typical box and whiskers plots of random forest accuracy.  
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This plot shows the scores of the random forest regressors on BMI in the Jones dataset (A). Since 

BMI is a numeric feature, the score for this feature approximates R2, but for categorical data 

such as the “stool vs swab” feature of the same dataset (B) , the score will be the accuracy. The 

x-axis shows each transformation. Transformations that end in “blw.sqrt_enorm” are PhILR 

transformations where unshuffled (true) trees are blue and shuffled trees are orange. Lognorm is 

labeled in yellow and counts tables, alr, and clr are white. A similar plot was made for each 

metadata category. The red dashed line shows the mean for all the scores for this feature. 

To summarize performance across all these transformations we averaged each of the 62 metadata 

features feature across each transformation. Examining the average of all of these 62 plots for 

each transformation (Figure 13) shows that log-norm on average yields a small improvement 

when compared to every other transformation and that, surprisingly, unnormalized data also out-

performs nearly every other transformation but does not have an average accuracy as high as log-

norm.  None of the input options for PhILR, such as choice of tree, had much apparent effect on 

machine learning performance, except for alr and clr which, surprisingly, appeared to have 

noticeably worse scores. 

To begin to address the statistical significance of the differences between different 

transformations, we compared specific transformations to each other by creating pairwise 

accuracy vs accuracy plots. To do this, we plotted the average score for each metadata feature for 

a given transformation against the average score of each metadata for another transformation – 

for this, we included both the accuracy and r2 (Supplementary D). In general, transformations 

yielded highly similar performance. For example, among the 276 separate pairwise comparisons, 

most comparisons have extremely high r2 values such as the three pairwise comparisons 

examples shown in Figure 14. In general, across different choices of transformations including 

PhILR with shuffled trees, and the different methods for making phylogenetic trees to feed into 

PhILR, these transformations made little difference to performance and yielded scatter plots of 
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accuracy with high r-squared values (Figure 14; Supplementary D). However, we noticed that 

scatter plots involving the log-normalization transformation showed a small but consistent 

improvement across most of the 62 metadata categories when compared to other transformations 

(Figure 15). 
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Figure 12: Lognorm has the highest accuracy.  

These box and whisker plots show the average of all the points in each metadata feature for each 

transformation (62 points for each transformation). The red bars represent the median for each 

transformation and the green line represents the median of the entire dataset. Transformations 

that end in “blw.sqrt_enorm” are PhILR transformations where unshuffled (true) trees are blue 

and shuffled trees are orange. Lognorm is labeled in yellow and counts tables, alr, and clr are 

white. A similar plot was made for each metadata category 
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Figure 13: PhILR transforms with shuffled trees are as accurate as PhILR transforms made with 

"true" trees.  

The red line represents the sample space where both transformations have the same score. The 

green line is the best fit of the points. Shuffle1 of IQTREE PhILR (A), Shuffle2 of IQTREE PhILR 

(B), Shuffle3 of IQTREE PhILR(C), all show agreement with IQTREE PhILR. This legend (D) is 

the same for these plots and all the following accuracy vs. accuracy plots. 
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Figure 14: Accuracy vs accuracy plots indicate that lognorm provides the most accuracy for the 

random forest.  

Points for each plot represent to scores of random forest classifier (accuracy) and random forest 

regressor (r2). Lognorm performs favorably compared to filtered alr (A), clr(B), raw DADA2(C), 

Filtered IQTREE PhILR (D), filtered Silva DADA2 counts table (E), filtered Silva DADA2 

PhILR (F) filtered UPGMA PhILR (G), Silva DADA2 counts table (H), Silva DADA2 PhILR (I). 

In order to assess patterns of statistical significance, we next calculated pairwise Wilcoxon p-

value for each of these plots comparing each normalization scheme against every other possible 

normalization scheme.  For example, for log-norm (gold boxplot in Fig. 15), we report the results 

of the paired Wilcoxon test against every other normalization scheme. For each transformation 

we plotted the log of the p-value multiplied by the sign of the mean difference in score. This 

gives a visualization for our p-values that can indicate if the transformation is favorable or 
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unfavorable (Figure 16). From this, we can see that lognorm is clearly outperforming every 

other transformation. We can also see that alr is among the worst performance. 

 

Figure 15: Pairwise p-values indicate that lognorm performs significantly better than every 

other transformation.  

The y-axis shows log10 of the p-value and the x axis shows how well each transformation 

performed against all the others. A positive value indicates that the average accuracy of the 

given transformation is higher than others and a negative p-value indicates that the average 

accuracy is lower than the others. The area above the green line represents the sample space 

where the transformation is significantly better and the area below the red line represents the 

area where points are significantly worse. 
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These pairwise comparisons highlight the marked decrease in performance after low 

abundance/high variance filtering, as seen in the Silva DADA2 and filtered Silva DADA2 

datasets. Finally, we can also see that filtering the DADA2 reads through the Silva reference 

database to make the Silva reference trees may have been beneficial. 

Discussion 

We tested 24 transformations 20 times against 62 metadata categories for a total of 29,280 

random forest trials. This allowed us to make inferences on patterns with very small effect sizes. 

With this, we sought to answer a few questions:  

• whether the ILR is an improvement over the simpler and more straightforward alr and clr,  

• whether the arbitrary choices for PhILR input can improve the PhILR transform, 

• and whether the compositionally aware transformations are an improvement over no 

transformation or a non-compositionally aware transformation. 

Our results suggest that compositionally aware transformations may not be appropriate for 

training a random forest with ASV data, but that PhILR may have some advantages over clr and 

alr if you must transform (Figure 12). To be fair, in PhILR’s debut article, Silverman et. al. 

acknowledge that random forest seems robust to the PhILR transform (Silverman et al. 2017).  

We tested all the available weighting schemes in PhILR and found them all to have relatively 

similar performance for most of our selected MLAs. This also allowed us to pick an effective 

weighting scheme and helped to limit the scope of our experiments, as our intention was to focus 

on the performance of transformations rather than optimizing our chosen MLA. We also felt that 

as out-of-the-box MLAs would provide an equal chance to each transformation, rather than one 

that optimized to a particular transformation. 
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We expected that the PhILR made from the IQTREE phylogenetic tree would be more accurate 

than the one that made from the UPGMA phylogenetic tree, as the hierarchical clustering used in 

UPGMA is much less sophisticated, however our results indicate that the choice for de novo tree 

made no difference, also evidenced by the PhILR transforms with randomly shuffled trees 

performing as well as those with true trees. The tree that improved PhILR was mapping our 

sequences to the Silva reference tree. This tree comes from a carefully curated database, so we 

believe that it improved our ASV count tables by filtering them, thus we saw the same improved 

accuracy in both the Silva PhILR and the Silva PhILR counts table. This leads us to believe that 

the quality of the tree used for PhILR is much less important than the quality of the counts table. 

We used high variance/low abundance filters to reduce the tree size but found that this was 

detrimental to accuracy in the case of the Silva reference tree PhILR and the counts tables. For 

future pipelines, alternative filters should be explored. 

There are as many alr transformations as there are taxonomic features or ASV in each dataset, 

thus there were many more alr’s available than the one that we tested. Thus, when we find that 

alr was our worst performing transformation, we also believe that the alr could be tuned better. It 

may be considered a short coming of this study that we did not test every possible version of alr 

for each dataset. However, we felt that we do our best to pick the best version of each 

transformation and limit the scope of this project, just as we did with choosing the MLA and the 

PhILR weighting scheme. We picked the version of the alr that we felt was best. 

Comparing each compositional transformation may be moot, as both no transformation and 

lognorm provided as accurate as, if not more, results than any of the compositionally aware 

transformations (Figure 15). Thus, we believe that though the math behind compositionality is 
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compelling, that compositionality is not the biggest source of noise in sequencing data. In fact, as 

lognorm normalizes to read depth, we suspect that this is a likely source of artifacts and will 

study this further the next chapter. 

Finally, although our trials indicate that lognorm provides better accuracy to the random forest, 

we believe that compositional transformations, especially balance trees, will still be useful for 

other purposes. It is possible that there are situations where compositional transformations can 

provide better classification than either lognorm nor raw counts tables can. 

Conclusions 

Thus far, our results indicate that the PhILR transform is an improvement on the alr and clr, but 

we do not believe that it is consistently better than the counts table or normalizing to read depth 

for use with a random forest classifier. Our results indicate that the quality of trees used for the 

PhILR transform do not matter for either the ilr transformation or the weighting scheme, as no 

“real” tree outperformed the series of random trees. We believe that the best course for obtaining 

accurate results from a random forest classifier is to use the untransformed counts table, the 

lognorm, or filter the counts tables using a curated database. 

Further, we found that branch weighting worked no better for the accurate trees than it did for the 

random tree. No part weighting consistently performed better than any other nor did they 

consistently perform better than non-CODA transformations like the lognorm function or no 

transformation.  

We believe that the Silva counts tables likely performs so well because its sequences have been 

filtered through the Silva database when it was created. This creates a dataset that is likely free of 

chimeras and “primer gunk” that can adulterate DNA sequencing datasets. 
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Additionally, we have come to suspect that the low abundance and high variance filters that we 

used on the “filtered” transformations may be reducing their performance. In fact, since the 

unfiltered transformations seem to be performing better, we believe that alternatives should be 

found and used. 

Attributions 

My role in this project was the conceptualization and experimental design, compilation of 

transformation methods from existing software packages, and evaluation of the algorithms. Dr. 

Fodor oversaw the work and aided in the conceptualization and experimental design. 
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Chapter 4: Reducing read depth artifacts 

Abstract  

It has long been known that read depth artifacts can be a confounding factor in inference. Here 

we examine 4 different publicly available datasets and find many important metadata variables 

that are significantly associated with read depth. We examine the results of 6 different 

normalization schemes on these data sets and evaluate the extent to which these schemes 

eliminate associations between read depth and the first 5 PCA axes. We find dramatic 

differences in the degree to which different normalization schemes produce PCA axes that are 

correlated with read depth. For the first, and presumably most important PCA axis, the lognorm 

transformation nearly eliminates associations with read depths and the r-squared associations 

between PCA1 and read-depth are consistent across different filter thresholds of sample 

exclusion.  However, the results for other PCA axes vary widely with no clear single best 

normalization scheme and different datasets and normalization schemes showing different 

patterns in relationship to filter thresholds. We conclude that for the 1st PCA axis, the log-

normalization scheme is clearly preferable, but investigators might need to consider different 

normalization algorithms in a case-by-case basis before performing inference on different 

datasets. In the near term, we will expand this research by (i) examining different distance 

metrics such as Bray-Curtis, (ii) determining to what extent variation in the first PCA and PCoA 

axes are driven by differences in Shannon diversity, (iii) determine how the commonly used 
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normalization scheme rarefication interacts with read depth artifacts and (iv) considering 

explicitly how different normalization schemes change inference on key metadata variables. 

Introduction 

As outlined in chapter 2, compositionality plays a big role in affecting the “shape” of 

microbiome sequencing data. For 16S sequencing data, the count tables are not true count data. 

This is because for each sample the taxa add up to the read depth. Read depth is the number of 

reads that are found in a DNA sequencing sample (Gloor et al. 2017). All the samples in the 

dataset will have a read depth, but it is unlikely that any read depth will be repeated, except in 

problematic samples where the depth is zero due to sequencing errors. This constraint creates the 

condition for compositionality in the data. Compositional data must be handled with particular 

care, otherwise spurious correlations will result (Pearson 1897). So, clearly the read depth is also 

an important aspect in shaping the data. However, the role that the read depth threshold plays in 

an applied bioinformatics analysis of microbiome data is often overlooked.  

Microbiome datasets are sparse 

Lately, the compositionality of sequencing count data is widely investigated and methods of 

transforming the data to remove compositional artifacts are continuously discovered and 

discussed (Tsilimigras and Fodor 2016; Fernandes et al. 2013; Love, Huber, and Anders 2014; 

Silverman et al. 2017). In addition to its compositionality, Sequencing count data has another 

inherent characteristic that makes analysis difficult - the data are sparse, meaning that the count 

tables are populated mostly by zeros. For example, using the raw Jones et al dataset as a typical 

example, we can see that zeros are the most common count for any given taxa (Figure 17). In 
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human metagenomic datasets, this sparsity is due to the absence of many taxa across samples. 

With this sparsity, the geometric mean of most taxa can be zero or close to zero. If it is zero, a 

transformation such as the clr or ilr that requires division by the geometric mean will be 

undefined. A common solution to this is to add a small number, or pseudo count to each element 

(Tsilimigras and Fodor, 2016). However, compositionality is not the only problem of 

SEQUENCING count data.  

 

Figure 16: Microbiome datasets are sparse. The majority of the counts are zeros or ones in the 

Jones et al dataset.  

This histogram shows the frequency of counts on the y axis and the log of the value of counts on 

the x axis. The zeros are by far the most frequent values. 

Sparcity is related to read depth 

Different samples will have different total amounts of sequences, and this creates a problem for 

differential analysis (such as comparison of treatment to control). Due to the fact SEQUENCING 

data reads suffer from coverage bias, meaning that they do not have a uniform distribution for all 

https://www.zotero.org/google-docs/?43TsZi
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the taxa that might be present in the sample. This is due to the variance in the binding affinity of 

PCR primers to taxa with different levels of GC content or specific motifs during PCR 

amplification (Ross et al., 2013). Thus, different taxa may not amplify as well as others for this 

reason or an unknown reason, biasing the count tables. Further, specific samples may have a 

lower read depth due to the presence of compounds that interfere with PCR or sequencing, a 

lower quality of DNA, damage to the sample at any point before it was sequenced, or biological 

variability. Any of these, or a random chance could reduce the samples read depth.  

Some transformations attempt to correct for sparsity and composition 

Given the problems with sparsity and composition, a transformation may try to elucidate whether 

a given zero was due to its absence in its sample or if it was present in too small amounts for it to 

be sampled and treat each type of zero differently. The ALDEx2 R package creates such 

predictions using Bayesian methods (Fernandes et al. 2013). In our experiments, we use a 

function from this package that does this and then transforms the resulting data with the clr 

transformation.  

Another relatively recent technique is to use the phylogenetic data encoded in the raw sequences 

to inform the ratios in the ilr, such as the one performed by the R package PhILR (Silverman et 

al. 2017) or the python package gniess (Morton et al. 2017).  ILR transformations were the topic 

of the previous dissertation chapter. 

Samples with low read depth are typically removed 

New data transformations constantly evolve to deal with the complex issues of composition and 

sparsity (Fernandes et al. 2013). Often new transformations increase in complexity and 

https://www.zotero.org/google-docs/?uZmX4X
https://www.zotero.org/google-docs/?uZmX4X
https://www.zotero.org/google-docs/?uZmX4X
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computational burden, attempting to shape our data in such a way that it is free of artifacts. Each 

transformation will give the data a different shape. The way these transformations change our 

data has been the focus of considerable attention in the literature (Fernandes et al. 2013; 

Silverman et al. 2017; Egozcue et al. 2003; Knight et al. 2018).   In this chapter we will argue 

that a seemingly minor decision, where to set the thresholds for removing samples, can impact 

the data in surprisingly ways. Since PCR, which is the part of the sequencing process, is known 

to have some chance of failing (Hansen et al., 1998), samples with low read depth are often 

suspected of having damage to the samples or other problems with the sequencing. To deal with 

this, data analysts often remove samples with the least number of raw sequences. But currently 

there is no standard for what read depth to use as a threshold.  

Materials and Methods 

We choose publicly available 16S microbiome SEQUENCING datasets for our analysis as these 

datasets are comparatively small and easily available. We looked for datasets with enough 

samples that outliers would not overly influence the results (Table 4). 

 

Table 4: List of datasets in this project with their sample number, mean read depth, and highest 

read depth (in a single sample). 

Short Name Number  

of Samples 

Mean read depth ± 

standard deviation 

Highest read depth 

Vangay 

(Vangay et al. 

2018)  

634 11,903 ± 15,601 267,454 

https://www.zotero.org/google-docs/?bGYN1Q
https://www.zotero.org/google-docs/?bGYN1Q
https://www.zotero.org/google-docs/?bGYN1Q
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Jones (Jones 

et al. 2018) 

233 103,848 ± 143,025 1,734,468 

Zeller (Zeller 

et al. 2014) 

226 218,538 ± 142,363 752,310 

Noguera-

Julian 

(Noguera-

Julian et al. 

2016) 

700 865,289 ± 105,301 

 

1,360,527 

Sequence processing 

For 16S sequencing, we only used the forward reads. We filtered, trimmed, removed bimeras, 

and assigned taxonomy to the 16S sequences with the R package, DADA2 (Callahan et al., 

2016).  

Data transformations 

Several data transformations were used in this project. All of the transformations are freely 

available as R packages (Table 5). We used the raw output from Dada2 as our starting point for 

transformations. 

Table 5: Data transformations that are compared in chapter 4 

Transformation R packages Version Description 

raw sequences DADA2 (Callahan et al. 

2016) 

1.14.1 raw output of dada2 with no 

transformations 

https://www.zotero.org/google-docs/?Y4Liqi
https://www.zotero.org/google-docs/?Y4Liqi
https://www.zotero.org/google-docs/?Y4Liqi
https://www.zotero.org/google-docs/?Y4Liqi
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Alr rgr (Garrett 2013) 1.1.15 additive log ratio 

Clr rgr (Garrett 2013) 1.1.15 center log ratio (see table 1) 

log normalization None  None (See table 1) 

PhILR transform PhILR (Silverman et al. 

2017) 

1.12.0 Phylogenetic Isometric Log-Ratio 

Transform 

aldex2.clr ALDEx2 (Fernandes et 

al. 2013, 2) 

1.18.0 Generate Monte Carlo samples of 

the Dirichlet distribution for each 

sample. Convert each instance 

using the centered log-ratio 

transform 

 

To build the phylogenetic trees for the PhiLR transformation, the resulting ASVs were aligned 

using version 2.0.2 of the R package DECIPHER (Wright, Yilmaz and Noguera, 2012).  

Our pipeline for mapping the sequencing data of each of our datasets to a reference tree relies on 

several tools and R packages. The reference tree comes from Silva’s Living tree project, 16S 

rRNA-based LTP release 132 (Munoz et al., 2011). The reference tree lists the GenBank locus at 

each tip, so we used this information to download the sequences from GenBank using the ape 

package. We then built a blast database out of the sequences and blasted the sequences from our 

study datasets using custom BASH scripts. If the resulting matches had e-value greater or equal 

to 10−10, we removed them from the tips of the reference tree using custom R scripts to get a 

https://www.zotero.org/google-docs/?0yeQ9F
https://www.zotero.org/google-docs/?BvJwwp
https://www.zotero.org/google-docs/?BvJwwp
https://www.zotero.org/google-docs/?BvJwwp
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customized reference tree. This version of PhILR was used because it had performed well in the 

previous chapter. 

Statistical tests 

Spearman’s correlations were calculated with R’s inbuilt cor.test function. 

P-values were calculated as specified using either an ANOVA R's inbuilt anova function or a 

Student’s t-test using R’s inbuilt t.test function. 

The principal components analysis (PCA) was calculated using R’s built-in prcomp function 

from the stats package. Area under the curve (AUC) was approximated using the trapezoidal 

method with the trapz function from the pracma R library (version 1.9.9). 

All R code and taxonomic tables used for this project are available in the GitHub repository and 

can be found here: https://github.com/palomnyk/read_depth_artifacts. 

Results 

Read depth significantly correlates to sample features 

In the publicly available datasets that we used for this study, we tested for a relationship between 

the dataset features and read depth. To do this we compared categorical features with read depth 

using ANOVA (Table 7) and compared continuous features with read depth using Spearman’s 

correlation (Table 8). We found that in each dataset, the read depth had a strong relationship to 

many of the traits of the samples, such as age, geographic location, ethnicity, and many more. 

Interestingly, features do not necessarily have the same relationship with read depth between 

datasets. For example, in the Jones and Vangay datasets, the correlation between age and read 

depth was -0.1099, and -0.0989, respectively, and only -0.0248 in the Zeller dataset. In the 

https://github.com/palomnyk/read_depth_artifacts
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Vangay dataset, the p-value for ethnicity and read depth was 0.4164, whereas it was 0.0114 in 

the Noguera-Julian dataset. 

Some traits should not have a significant relationship with read depth but do. For example, in the 

Jones dataset, whether the patient was given a treatment or a placebo should be randomized yet it 

has a significant relationship with read depth.  

Table 6: Relationship between dataset categorical features and sample read depth. P-values 

calculated using ANOVA. 

Dataset Feature p-value pval < 0.05 

Jones Genotype 0.1778 FALSE 

Jones Sex 0.1754 FALSE 

Jones Treatment 0.025 TRUE 

Jones Visit 0.2672 FALSE 

Jones Type (Stool vs. Swab) 0.756 FALSE 

Zeller host_subject_id <0.0001 TRUE 

Zeller geographic_location_.country_and.or_sea.region. <0.0001 TRUE 

Vangay Recruitment.Location <0.0001 TRUE 

Vangay Researcher 0.1079 FALSE 

Vangay Sub.Study 0.0056 TRUE 

Vangay Highest.Education 0.036 TRUE 

Vangay Ethnicity 0.4164 FALSE 

Vangay Religion 0.9707 FALSE 

Vangay Birth.Location <0.0001 TRUE 

Vangay Type.Birth.Location 0.348 FALSE 

Vangay Arrival.in.US <0.0001 TRUE 

Vangay Location.before.US <0.0001 TRUE 

Vangay Type.location.before.US 0.1548 FALSE 

Vangay Years.lived.in.Location.before.US 0.9978 FALSE 

Vangay Tobacco.Use 0.3712 FALSE 

Vangay Alcohol.Use 0.1753 FALSE 

Vangay BMI.Class 0.9455 FALSE 

Vangay Breastfed 0.9974 FALSE 
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Vangay Sample.Group 0.027 TRUE 

Noguera-Julian ETHNICITY 0.0114 TRUE 

Noguera-Julian geo_loc_name_country <0.0001 TRUE 

Noguera-Julian HIV_RiskGroup 0.0356 TRUE 

Noguera-Julian HIV_serostatus 0.5242 FALSE 

Noguera-Julian host_other_gender 0.1223 FALSE 

Noguera-Julian host_sex 0.0519 FALSE 

Noguera-Julian HIV_Profile <0.0001 TRUE 

Noguera-Julian PCR_human_papilloma_virus <0.0001 TRUE 

Noguera-Julian host_allergy <0.0001 TRUE 

Noguera-Julian host_abdominal_transit_alterations <0.0001 TRUE 

Noguera-Julian host_Residency_Area <0.0001 TRUE 

Noguera-Julian HCV_coinfection <0.0001 TRUE 

Noguera-Julian Anal_cytology <0.0001 TRUE 

Noguera-Julian host_sexual_orientation <0.0001 TRUE 

Noguera-Julian Syphilis_serology <0.0001 TRUE 

Noguera-Julian HBV_coinfection 2E-04 TRUE 

Noguera-Julian PCR_Neisseria_gonorrhoeae <0.0001 TRUE 

Noguera-Julian PCR_Chlamydia_trachomatis <0.0001 TRUE 

Noguera-Julian HIV_viral_load <0.0001 TRUE 

Noguera-Julian stool_consistency <0.0001 TRUE 

 

Table 7: Relationship between dataset numeric features and sample read depth. P-values 

calculated using Spearman's correlation. 

datatset feature Spearman’s R 

Jones Age -0.1099 

Jones BMI 0.0428 

Zeller Age -0.0248 

Vangay Birth.Year 0.0989 

Vangay Age -0.0989 

Vangay Years.in.US 0.2788 

Vangay Height 0.1548 

Vangay Weight 0.0907 
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Vangay Waist -0.0115 

Vangay BMI 0.0186 

Vangay Age.at.Arrival -0.1599 

Vangay Waist.Height.Ratio -0.0667 

Noguera-Julian Host_Age 0.0053 

Noguera-Julian host_deposition_frequency_per_day -0.0049 

Noguera-Julian CD4._Tcell_counts 0.1834 

Noguera-Julian leukocytes -0.1213 

Noguera-Julian lymphocytes -0.0856 

Noguera-Julian host_body_mass_index -0.0511 

 

Read depth correlates with PCA axes 

Having established that the read depth interacts with the features of the samples, we wanted to 

see how read depth correlated to the first five components of a principal component analysis 

(PCA). A PCA creates single dimensional slices of multidimensional data and is used for 

dimensional reduction. We performed a PCA analysis using the raw DADA2 output. For PCA 

axes 1-5, we calculated the Spearman correlation to read depth. We found that, for each dataset, 

nearly every axis had a strong correlation to read depth and that PCA1 had the strongest 

correlation (Table 8). The first component (PCA1), or slice, accounts for the greatest possible 

variance in the data, thus, a strong correlation to read depth would indicate that read depth was 

having a strong effect on the data. We consider the high correlation between read depth and 

PCA1 to be a “read depth artifact”. 

 

Table 8: Correlation between PCA axes and Read depth of raw DADA2 output. 

dataset PCA1 PCA2 PCA3 PCA4 PCA5 

Jones -0.748 0.660 0.400 -0.357 0.414 
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Vangay -0.751 -0.192 -0.307 -0.447 -0.587 

Noguera-Julian 0.760 -0.522 -0.301 0.668 0.358 

Zeller 0.494 0.441 -0.345 -0.246 0.449 

 

Read depth thresholds and transformations alter correlation between PCA1 and read depth 

Since it appears that read depth is driving variance, we sought to see if we could reduce the read 

depth artifacts though read depth thresholds and common data transformations. 

To do this, we set several thresholds for read depth on our raw data. We selected these thresholds 

as proportions of the dataset’s median read depth because each dataset has a unique read depth. 

We selected proportions median rather than the mean read depth because some of the datasets 

have a very high variance and the median is known to be more robust to outliers than the mean. 

We selected 0.55 of the median as our highest threshold because we felt that it was still low 

enough for the dataset to have practical uses   

We selected several popular transformations (Table 5) to test at various read depths. At each 

threshold, we discarded samples that did not meet that threshold and transformed the remaining 

samples using each of our selected transformations. For each transformation, we performed a 

PCA and plotted the Spearman correlation between PCA1 and the read depth (Figure 18). This 

was repeated for our various datasets.  
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Figure 17: The shape of the data after transformation is dependent on the threshold for read 

depth and choice of transformation. 

 The top row of plots show the Spearman R2 on the Y axis and the read depth thresholds on the 

X axis for the Noguera-Julian (A), Jones (B), Vangay (C), and Zeller (D) datasets. For each 

dataset, the points were selected as 0, 0.00001, 0.0001, 0.001, 0.01, 0.02, 0.05, 0.08, 0.15, 0.25, 

0.45, and 0.55 of the median read depth of each dataset. The bottom row plots the number of 

samples in the dataset at a given read depth threshold for the Noguera-Julian (E), Jones (F), 

Vangay (G), and Zeller (H) datasets. 

For most transformations and datasets, there was a noticeable decrease in the correlation between 

read depth and PCA1 of that transformation as the read depth threshold was increased. A notable 

exception to this rule was the Zeller dataset, for which the threshold removed very few samples 

(Figure 18H). Another exception was the lognorm transform has almost no correlation with 

PCA1 at any read depth in any dataset. We found that raw DADA2 output had the most read 

depth artifacts and alr often had the second most read depth artifacts with PCA1. ALDEx2, clr, 

and PhILR had the intermediate number of read depth artifacts and their order changed based on 

the dataset. 
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PCA2 shows lognorm as having a strong correlation with read depth for all the datasets except 

Jones, where the correlation remains low (Figure 19). On the other hand, at this PCA axis, there 

is no clear best or worse choice for a transformation that reduces read depth artifacts that is not 

overfit for a single dataset. PCA3 seems to show that alr and raw DADA2 have more read depth 

artifacts and compared to the other transformations, which seem to reduce it. 

 

Figure 18: The correlation between PCA2 and PCA3 and read  transformation is dependent on 

the threshold for read depth and the transformation. 

The top row of plots show the Spearman R2 between read depth and PCA2 on the Y axis and the 

read depth thresholds on the X axis for the Noguera-Julian (A), Jones (B), Vangay (C), and 

Zeller (D) datasets. The bottom row of plots show the Spearman R2 between read depth and 

PCA3 on the Y axis and the read depth thresholds on the X axis for the Noguera-Julian (E), 

Jones (F), Vangay (G), and Zeller (H) datasets. For each dataset, the points were selected as 0, 

0.00001, 0.0001, 0.001, 0.01, 0.02, 0.05, 0.08, 0.15, 0.25, 0.45, and 0.55 of the median read 

depth of each dataset.  
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Raw DADA2 consistently has the most or second most read depth artifacts at PCA4 and PCA5 

and for most of the datasets, the other transformations have very few read depth artifacts overall 

(Figure 21).  

 

Figure 19: The correlation between PCA4 and PCA5 and read transformation is dependent on 

the threshold for read depth and the transformation. 

The top row of plots show the Spearman R2 between read depth and PCA4 on the Y axis and the 

read depth thresholds on the X axis for the Noguera-Julian (A), Jones (B), Vangay (C), and 

Zeller (D) datasets. The bottom row of plots show the Spearman R2 between read depth and 

PCA5 on the Y axis and the read depth thresholds on the X axis for the Noguera-Julian (E), 

Jones (F), Vangay (G), and Zeller (H) datasets. For each dataset, the points were selected as 0, 

0.00001, 0.0001, 0.001, 0.01, 0.02, 0.05, 0.08, 0.15, 0.25, 0.45, and 0.55 of the median read 

depth of each dataset.  

To summarize all 5 PCA axes, we calculated the area under the curve (AUC) for each 

transformation at each PCA axis and plotted this for each dataset (Figure 21). The AUC 

describes area under the line segment created by R2 of the given transformation against the read 
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depth thresholds of the datasets. We found that lognorm may have more correlation to read depth 

on other axes than PCA1. Our results show that no transformation is the best or worst for each 

axis on each of our datasets. Thus, we conclude that none of our selected transformations reduce 

read depth artifacts at every PCA axis.  

 

 

Figure 20: Lognorm has the least AUC at most, but not all PCA axes. 

For each plot, the bars represent the area under the curve (AUC) of each transformation at a 

given PCA axis. The AUC describes area under the line created by R2 of the given 

transformation against the read depth thresholds of the datasets. The read depth thresholds were 

0, 0.00001, 0.0001, 0.001, 0.01, 0.02, 0.05, 0.08, 0.15, 0.25, 0.45, and 0.55 of the median read 

depth of each dataset.  
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Discussion 

Read depth threshold greatly impacts the shape of the data 

In the case of some of the traits, such as age, one could argue that during one's life the number 

and composition of bacteria in our gut shifts as we age (Yatsunenko et al. 2012), thus, this is not 

unexpected as read depth can be influenced by change in bacterial composition as primers can be 

biased towards one type of community.  

However, it is also known that there is an arbitrary aspect to read depth (Gloor et al., 2017), thus 

it may be useful to remove it as a driver of variance and a source of noise, as doing so may help 

uncover more subtle relationships.  

Lognorm may reduce read depth artifacts 

In the previous chapter, we found that lognorm outperformed compositionally aware 

transformations on machine learning applications. One of the reasons for this performance may 

be the reduction of read depth artifacts. In this chapter, we show that lognorm reduces read depth 

artifacts in PCA1. As PCA1 explains the most variance, this may lead to less noise in the data. 

The reason that lognorm is likely doing this, is that read depth is a term in lognorm’s formula 

that is simply divided away (Table 1). In addition to being a very simple transformation, 

lognorm is likely reducing a noise that is common for all 16S datasets. 

Though read depth as an artifact is not eliminated from all PCA axes by lognorm, there is still 

merit to in respect to PCA1, as it is the axis that most describes the variance in the dataset. 

Eliminating it here can greatly reduce the noise in the dataset and allow researchers to find 

https://www.zotero.org/google-docs/?aPvVqw
https://www.zotero.org/google-docs/?aPvVqw
https://www.zotero.org/google-docs/?aPvVqw
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relationships in the data that had be previously masked by the noise. To our knowledge, no other 

transformation tries to solve the read depth noise issue. 

Read depth artifact analysis provides a new tool for evaluating new transformations and for 

selecting a threshold to remove low abundance samples 

In this chapter, we have provided a novel tool for visualizing both the effects of 

transformations/normalizations and read depth threshold in microbiome studies. Thus, when 

evaluating tools in the future, it may be helpful to know if they reduce the effects of read depth 

on PCA1. 

Read depth artifact analysis provides a new tool for evaluating thresholding for samples. One 

could use the data from Figure 18 to choose a read depth threshold in such a way that maximizes 

the number of samples used in a study while also reducing low abundance samples. 

An alternative way to reduce read depth artifacts is rarefaction. Rarefication is a technique to 

equalize the number of reads in each sample. To do this, a read depth is selected, often 

arbitrarily, and, for each sample, reads are randomly sampled until that read depth is reached. If a 

sample does not meet the required read depth, it is removed from the dataset. For the price of 

losing some data, and possibly samples, the dataset will have an equal read depth for all samples. 

When rarefaction is done there is an understood bias of samples with higher read depths having 

more taxa (Cameron et al. 2021). This is thought to help in calculating diversity measures such 

as Shannon diversity. Future studies will involve a comparison of our current methods to 

rarefaction. 
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Conclusions 

We find that the read depth filter plays a large role in the microbiome analysis that is not 

currently being discussed. We find that read depth strongly drives the variance in PCA1. The 

lognorm data transformation may help reduce the effect of read depth on PCA1. We recommend 

that analysts of similar data check their data for read depth artifacts to see how their read depth 

threshold and transformation affects their data. 
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