
 

 

 

IMPACTS OF CONNECTED AND AUTONOMOUS VEHICLES ON DEEP 

REINFORCEMENT LEARNING CONTROLLED INTERSECTION SYSTEMS 

 

 

 

by 

 

Li Song 

 

 

 

 

A dissertation submitted to the faculty of 

The University of North Carolina at Charlotte 

in partial fulfillment of the requirements 

for the degree of Doctor of Philosophy in 

Infrastructure and Environmental Systems 

 

Charlotte 

 

2022 

 

 

 

 

 

       Approved by: 

______________________________ 

Dr. Wei Fan 

______________________________ 

Dr. Martin Kane 

______________________________ 

Dr. David Weggel  

______________________________ 

Dr. Jay Wu 

______________________________ 

Dr. John Diemer 



ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

©2022 

Li Song 

ALL RIGHTS RESERVED 



iii 

 

 

ABSTRACT 

 

 

LI SONG. Impacts of connected and autonomous vehicles on deep reinforcement learning 

controlled intersection systems. (Under the direction of DR. WEI FAN) 

 

 

Connected and autonomous vehicle (CAV) technologies could significantly change the 

car-following behaviors and affect the performance of the intersection systems. As it is expected 

to have a long transition time during which human driven vehicles (HDVs) and CAVs will 

coexist, it is important to investigate the impacts of CAVs on the intersection systems under 

different market penetration rates (MPRs). Also, the currently used Highway Capacity Manual 

does not consider the impacts of CAVs when calculating the intersection capacity. Though 

highly needed, a new guideline for estimating the intersection capacity under different MPRs of 

CAVs is becoming a critical issue for transportation planners and engineers. Furthermore, 

combining the intersection traffic signal control (TSC) systems with deep reinforcement learning 

(DRL) provides a new potential solution to improve the efficiency, safety, and sustainability of 

the intersection system. However, the training procedure of the DRL TSC system requires large 

samples and takes a long time to converge. Furthermore, it is common to have several 

intersections along corridors or in networks. A single DRL agent is unable to control several 

intersections as this may result in exponential explosion in the action space. Hence, a 

modification of the DRL TSC framework to improve the training efficiency and a multi-agent 

control framework to control several intersections are needed. 

To better prepare and guide both intersection planning and operations under different 

MPRs of CAVs and traffic demands, this dissertation provides an intensive evaluation of the 
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impacts of CAVs in several signal intersection systems, as well as an in-depth analysis on 

intersection capacity adjustments that consider varying MPRs of CAVs. Also, a transfer-based 

DRL TSC framework is proposed and tested at different MPRs of CAVs and traffic demand 

levels. A multi-agent DRL TSC with shared traffic states between downstream and upstream 

intersections is investigated in a corridor. It is concluded that 100% MPR of CAVs can increase 

the saturation flow rate of the through-only lane by 126.8%. Meanwhile, transfer-based models 

could significantly improve training efficiency and model performance. The multi-agent DRL 

TSC also enables coordination between intersections. The insights of this research should be 

helpful and valuable to transportation researchers and traffic engineers in calculating intersection 

capacity, designing intelligent intersections, improving intersection efficiency, and implementing 

DRL-controlled traffic signals under the mixed flow with CAVs.  
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CHAPTER 1:  INTRODUCTION 

1.1. Problem Statement and Motivation 

In the past decades, emerging technologies that could assist or automatically control the 

driving process of traditionally human-driven vehicles have drawn great interest from 

researchers and engineers. With the development of Vehicle to Vehicle (V2V) and Vehicle to 

Infrastructure (V2I) communication technologies, connected and autonomous vehicles (CAVs) 

could make driving-informed decisions based on multi-source data, such as the speed/location of 

the surrounding vehicles and the signal timing schemes of surrounding intersections. The 

requirement of the time gap for successive vehicles could also be sharply decreased, and this 

could significantly change the car-following behaviors and affect the performance of the 

transportation systems. However, it is expected to have a long transition period during which 

human driven vehicles (HDVs) and intelligent vehicles will coexist (Sharon & Stone, 2017). 

Hence, research on the impacts of CAV technologies and the mixed flow of HDVs and CAVs is 

needed.  

CAVs will have a profound influence on the performance of the currently used 

transportation system, especially for the intersection that has complex traffic conditions. Several 

proposed intersection control systems require a modification of the existing intersections, 

particularly for high market penetration rates (MPRs) of Autonomous Vehicles (AVs) or 

Connected Vehicles (CVs) (Algomaiah & Li, 2019; Dresner & Stone, 2008). Reconstruction of 

those intersections or installing the V2I equipment would take a long time. For example, the 

autonomous interaction management (AIM) system replaces signals with a reservation-based 

central control system. For this purpose, the AIM requires more than a 90% MPR of the CAVs 

(Dresner & Stone, 2008). However, there is still a long way to go for intelligent vehicles to be 
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fully applicable in currently used traffic environments. Meanwhile, currently used Highway 

Capacity Manual (HCM) methods do not consider the impacts of CAVs on the transportation 

system. Evaluating the capacity of intersections under the impacts of CAVs is becoming a 

critical issue to be resolved for transportation planners and engineers. Consequently, new 

guidelines for estimating the capacity of intersections, including the consideration of CAV 

involvement in mixed traffic conditions, need to be established. Moreover, research needs to 

analyze the impacts of the CAV MPRs on the intersection capacity and modify the intersection 

capacity adjustments factors for engineer applications. 

For intersection TSC, pre-timed or actuated signal schemes have been widely utilized in 

real-world intersections. With the rapid development of learning-based artificial intelligence 

technologies, combining the management of transportation systems with deep reinforcement 

learning (DRL) technologies provides a new potential solution to improve the efficiency, safety, 

and sustainability of intelligent transportation systems. Several studies designed an intelligent 

signal control system that assumed 100% MPR of CAVs so that the signal controller could 

obtain the full information on the vehicles and set the signal phase according to the environment 

information (Guo et al., 2019). Also, it is noted that most research studies indicated a generally 

positive effect of intelligent vehicles, while some others found that the intelligent vehicles could 

improve the system performance only after certain MPRs (Algomaiah & Li, 2019; Jiang et al., 

2017; Lee et al., 2013). Since there is still a long way to achieve high MPRs of CAVs, it is 

practical and important to investigate the impacts of mixed flow and determine the MPRs of 

CAVs that are sufficient to train a relatively good DRL-controlled TSC system.  

Moreover, the DRL training procedure of the DRL-controlled TSC system requires a lot 

of samples and takes a long time to converge (Xu et al., 2019). With the variations in the traffic 
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flow at the intersection across time and space, it is extremely hard to train a model that could 

accommodate several traffic scenarios for real-world applications. Currently, transfer learning 

enables the reuse of previously trained action policy developed from a similar task to initialize 

the learning of a target task, and it is expected to improve the training efficiency, sample 

efficiency, and training performance (Kiran et al., 2021; Xu et al., 2019).  Hence, a modification 

of the currently used DRL framework and reusing pre-trained models under similar traffic 

scenarios provided by transfer learning may provide a feasible solution to improve the training 

procedure of the DRL.   

Furthermore, it is common to have several intersections on the roadways or networks. 

However, a single DRL agent is unable to control several intersections as this may result in 

exponential explosion in the action space. Hence, a multi-agent control framework for several 

intersections is needed. Additionally, the upstream and downstream intersections could impact 

each other, and the signal coordination could further improve the traffic performance in corridor 

or network intersection systems. With the infrastructure to infrastructure (I2I) communication 

technology, the intersections can also share traffic states with one another. In this way, it is 

important to investigate the performance of multi-agent DRL-controlled intersection signals and 

cooperate signals by sharing the state information with each other. 

The results of this study could provide a theoretical basis for researchers to investigate 

the impact of CAVs on currently used intersections and DRL-controlled signalized intersections. 

The calibration methods and results of intersection capacity adjustment factors for different CAV 

penetration rates could provide a guideline for transportation engineers/planners to modify 

intersection capacity considering the impacts of CAVs. Also, the proposed frameworks could 

provide a foundation for better intelligent vehicle operations and intersection signal controls. 
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Moreover, the results could give a solid reference to researchers and engineers for better 

designing, planning, and operating future intelligent intersection systems under a variety of 

mixed traffic environments.  

 

1.2. Study Objectives 

The main goals of this research project include an investigation of the impacts of CAV 

penetration rates and deep reinforcement learning controlled signal schemes on the intersection 

systems. The proposed work in this research is intended to complete the following objectives: 

1. To conduct a comprehensive review of the state-of-the-art and state-of-the-practice on 

CAV technologies, DRL-controlled signal schemes, and their impacts on the intersection 

efficiency; 

2. To identify potential scenarios of the traffic environments for the intersection case studies;  

3. To use a simulation method to measure the intersection capacity and performance at 

different MPRs of CAVs;  

4. To modify the DRL framework by transfer learning and analyze the performance of the 

transfer-based DRL-controlled signal system at different traffic volumes and MPRs of 

CAVs; and 

5. To investigate the performance of the multi-agent DRL-controlled intersection system 

with shared traffic states between downstream and upstream intersections in a corridor. 
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1.3. Expected Contributions 

This research aims to evaluate the influence of different MPRs of CAVs on a typical pre-

timed intersection and a DRL-controlled signalized intersection. The outcomes from this 

research are expected as follows: 

1. Review of CAV technologies, DRL-controlled traffic signal system, and intersection 

mobility analysis considering different MPRs of CAVs; 

2. Identification of potential intersections and simulation scenarios under different traffic 

demands and MPRs of CAVs; 

3. Microscopic simulation settings for CAVs and specific parameters for car-following 

models and DRL-controlled traffic signal models; 

4. Guidelines on the intersection capacity adjustments under different MPRs of CAVs for 

engineer applications;  

5. Frameworks of transfer-based DRL-controlled signal intersection and multiagent DRL-

controlled signal intersections with shared states; 

6. Guidelines on the impacts of CAV penetration rates on the performance of transfer-based 

DRL-controlled signal intersection. 

 

1.4. Dissertation Overview 

The dissertation is structured as shown in Figure 1.1. In this chapter, the motivation of the 

research has been explained, followed by the study objectives and expected outcomes. 

Chapter 2 summarizes a comprehensive review of the current state-of-the-art and state-

of-the-practice on CAVs technologies and the impacts of different MPRs of CAVs on the 

intersection system. The traffic flow control methods for CAVs, intersection capacity analysis 
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methods, and intersection modeling scenarios are summarized. Moreover, traffic signal control 

methods based on deep reinforcement learning technologies are also introduced. A variety of 

suitable evaluation criteria for measuring intersection system performance and assessing possible 

impacts of the mixed traffic are examined and presented. These works could give a clear picture 

of the CAV technology and intelligent traffic signal control methods in the existing intersection 

capacity and performance studies considering the impacts of different MPRs of CAVs. 

Chapter 3 presents the basic information for the identification of intersection and 

simulation scenarios. The basic settings for the intersection layouts, traffic signal schemes, and 

traffic demands are all introduced. Empirical methods are implemented to provide an initial 

traffic signal scheme and theoretical intersection capacity as a reference value. Scenarios with 

different traffic demands and MPRs of CAVs are also designed for further simulation. 

Chapter 4 introduces the methodologies and parameter settings of the microscopic traffic 

simulation models used in this research. The car-following behaviors and settings of HDVs and 

CAVs are described in detail. Meanwhile, the potential scenarios for the isolated intersection are 

introduced. 

Chapter 5 discusses the simulation results of the impact of CAVs on the intersection 

capacity under different scenarios. The intersection capacity is first analyzed by calculating 

adjustment factors for saturation headway and saturation traffic flow rate for each lane under 

different MPRs of CAVs. Then, the fitted curves and functions for the maximum throughput of 

the whole intersection under different MPRs of CAVs are calibrated and investigated. Also, this 

research investigates the effects of different control models of AVs and CAVs on the 

intersections with different signal control methods under different market penetration rates and 

traffic demands.  
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Chapter 6 proposes a transfer-based DRL traffic signal control (TSC) system framework. 

Then, different model settings will be modified and tested. The simulation results will explore 

the training efficiency and model performances of the transfer learning on the DRL TSC system. 

The impacts of CAVs on the traffic performance of the proposed DRL-based TSC system will be 

examined under different traffic demands and MPRs of CAVs.  

Chapter 7 presents the basic settings for the proposed multi-agent DRL TSC system in a 

corridor with seven intersections. Considering the coordination between upstream and 

downstream intersections, the traffic performances of the basic multi-agent reinforcement 

learning (MARL) model and the MARL model with shared states will be investigated.  

Chapter 8 concludes the dissertation by summarizing the proposed models and research 

results. Suggestions for future research directions are also provided. 
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Figure 1.1 Dissertation Structure 
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CHAPTER 2: LITERATURE REVIEW 

2.1. Introduction 

This chapter provides a comprehensive review of the current state-of-the-art and state-of-

the-practice on CAV technologies and their impacts on intersection systems. This should give a 

clear picture of CAV technologies and intersection control strategies. The rest of this chapter is 

organized as follows. Section 2.2 presents concepts and taxonomy of CV, AV, and CAV 

technologies, followed by the descriptions of current technologies in use and benefits of CAVs. 

Section 2.3 shows existing deployments and market penetration rate prediction of CAVs. Section 

2.4 introduces traffic flow control strategies for AVs and CAVs. Section 2.5 presents empirical 

and simulation-based intersection capacity analysis methods. A variety of suitable evaluation 

criteria for measuring intersection system performance and assessing possible impacts of the 

mixed flow of HDVs with CAVs are evaluated and presented. Section 2.6 presents recent studies 

that implemented deep reinforcement learning technologies in traffic signal controls. Section 2.7 

describes several intersection modeling scenarios developed and specific parameters used when 

modeling CAVs. Finally, section 2.8 concludes this chapter with a summary. 

 

2.2. Connected and Autonomous Vehicles Concepts and Potential Benefits 

The term ‘intelligent vehicles’ refers to vehicles that are equipped with communication 

and/or autonomous driving technologies. This section gives the concepts, taxonomy, and 

potential benefits of the CV, AV, and CAV.  

 

2.2.1. Connected Vehicles  

2.2.1.1. Concepts of the Connected Vehicles 
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CVs are vehicles that are implemented with wireless communication technologies to 

facilitate vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), and vehicle-to-pedestrian 

(V2P) communication. Specifically, CV denotes the manual or autonomous vehicle which is 

capable of communicating with other vehicles/infrastructures/people to collect or transmit 

information on the driving environment to guide driver’s maneuvers (Hendrickson et al., 2014). 

The V2V communication can transfer the state of the subject CV (e.g. speed, acceleration, and 

location) to surrounding CVs to implement applications such as hazard alerts, lane changing 

assistance, and rear-end/head-on collision avoidance. V2I communication can enable vehicles to 

obtain information from the infrastructure including signal stage, speed, volume, travel time, 

queue length, and stops. V2P communication allows vehicles to communicate with pedestrians’ 

smartphones and provides warnings to avoid vehicle-to-pedestrian collisions especially for 

pedestrians in blind spots. 

2.2.1.2. Potential Benefits of the Connected Vehicles 

According to the National Highway Traffic Safety Administration (NHTSA), CV 

technologies have the potential to decrease about 80% of non-injury vehicle crashes (USDOT, 

2020). By applying connected vehicle technologies, drivers can be notified in advance of the 

traffic information (such as vehicle’s speed, location, gap to the front vehicle, and an accident 

occurred ahead), and possible collision with pedestrians or other vehicles. Such information aims 

to assist drivers to reduce travel time and avoid potential crashes that cannot be 

observed/predicted by the driver. Meanwhile, information for speed coordination and route re-

planning enables CVs to improve mobility, safety, efficiency, and reduce air pollution. 

As improving safety issues are the main objective of CVs, Table 2.1 summarizes the 

potential safety benefits and the maturity of CV technologies. Through V2V communication, 
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drivers could be alerted to potential causes of crash such as merging vehicles, vehicles in the 

driver’s blind spot, and sudden brake of the front vehicle. Through V2I communication, drivers 

could be alerted of red lights, working/school/no-passing zones, and speed limit violations. 

 

Table 2.1 Safety Benefits and Maturity of Connected Vehicle Technologies  

Type Technology Safety Benefits Safety 

Improvement 

Maturity 

V2I Red light warning Warning for red light High High 

V2I Stop gap assist Warning for minimum stop 

gap 

Medium High 

V2I Reduce speed warning  Warning for speeding Medium High 

V2I Traffic Signal 

Coordination 

More benefit for 

intersection capacity  

Low Medium 

V2V Lane Change Warning Lane change information 

from CVs 

High High 

V2V Forward Collision 

Warning 

Avoid Rear-End crashing  High High 

V2V Electronic Emergency 

Brake Light 

Avoid Rear-End crashing High High 

V2V Left Turn Assist Opposite direction High Medium 

V2V/V2I Do Not Pass Warning Opposite direction High High 

V2V/V2I Intersection Movement 

Assist 

Junction crossing High Medium 

V2V/V2I Blind Spot Warning Avoid traffic collision due 

to the blind spot 

High Medium 

V2V/V2I Emergency Vehicle 

Priority 

Give priority to the 

emergency vehicle 

High High 

V2X Pedestrian Crossing 

Warning 

Notification of pedestrian 

crossing the street 

High Low 

 

2.2.2. Autonomous Vehicles 

2.2.2.1. Taxonomy of Autonomous Vehicles 

The basic concept of the AV refers to using intelligent technology to replace some or all 

of the human operations on driving electronic or mechanical vehicles (Shladover, 2018). 

Regarding the concept of automation, different taxonomies of the autonomous vehicle were 
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proposed. In 2013, the NHTSA proposed a 4-level category for the automation degree/level of 

the vehicle. Then, a 5-level automation degree category was introduced by the Society of 

Automotive Engineers International (SAE) in 2014 (SAE, 2016). In 2016, NHTSA adopted 

SAE’s taxonomy for the automation levels of the autonomous vehicle, and now the 2016 SAE’s 

taxonomy for the automation level of the autonomous vehicle has become commonly used as an 

industry standard (NHTSA, 2016).  

Regarding the 2016 SAE’s autonomous vehicle taxonomy, the increase of the automation 

level would correspondingly decrease the engagement of human labor required to monitor the 

driving environment and control the vehicle. From Level 0 to Level 5, the allocation of vehicle 

control function between the vehicle and the driver increases along the gradient: full driver 

control (Level 0), the vehicle assists/augments primary driver control (Level 1), the vehicle 

having at least one automated driver assistance system (Level 2), both the vehicle and driver 

control safety-critical functions (Level 3), fully-autonomous in certain driving scenarios (Level 

4), and fully-autonomous in all driving scenarios (Level 5). Table 2.2 provides an outline of the 

five automation levels (including Level 0 which indicates no automation) (Kockelman and 

Boyles, 2018; NHTSA, 2016). According to the Federal Automated Vehicles Policy of the U.S. 

Department of Transportation, a vehicle is denoted as AV if it has levels 3-5 automated systems 

(NHTSA, 2016). Also, according to (Shladover, 2018), “autonomous” is not strictly limited to a 

specific level of autonomy and any level of autonomy could be defined as an autonomous 

vehicle, and this definition for the AV is adopted in this research. 
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Table 2.2 Outline of Five Automation Levels (NHTSA, 2016) 

Level Vehicle Controls Environment Monitoring 

L0 No automation. Drivers are solely responsible 

and control all vehicle functions (braking, 

steering, throttle, and motive power). 

Drivers take sole responsibility for 

monitoring the roadway environment and 

traffic; some systems may provide 

information or warnings to the driver 

(such as traffic sign/signal information and 

collision warnings). 

L1 Driver assistance. Drivers are solely 

responsible, but drivers are assisted with 

primary vehicle controls (either steering or 

acceleration /deceleration). Also, only one of 

the primary control systems is in work at any 

one time. 

Drivers take the solely responsible for 

monitoring the environment. Also, the 

system provides information and 

warnings as with L0. 

L2 Partial automation. Drivers share the 

authority of primary controls with the 

system and may be physically disengaged from 

operating the vehicles. The system may 

undertake steering and 

acceleration/deceleration function. Drivers can 

cede active primary control in certain 

situations and are expected to take control on 

short notice. 

Drivers are responsible for monitoring the 

environment and are expected to be 

available for control at all times. The 

system could obtain driving information 

from the environment. Information and 

Warnings may still be provided to the 

driver. 

L3 Conditional automation. Drivers can cede the 

system control of safety-critical functions and 

are expected to take control under certain 

conditions with sufficient transition time. 

The system could obtain driving 

information from the environment. When 

ceding control and transiting back to driver 

control, drivers can rely heavily on the 

system to monitor environments. 

L4 High automation. The system undertakes all 

safety-critical driving functions and monitors 

the driving environment in certain locations or 

scenarios. Drivers only need to provide 

destination or navigation input but are not 

expected to take control at any time during 

the trip. 

The system will perform all the monitoring 

in certain driving scenarios.  

L5 Full automation. The system undertakes all 

safety-critical driving functions and monitors 

the environment in all scenarios. Vehicles are 

not restricted by the locations and conditions 

they can travel to. Drivers only need to provide 

destination or navigation input but are not 

expected to take control at any time during 

the trip. 

System could take the whole responsibility 

for the monitoring in all driving scenarios.  
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2.2.2.2. Potential Benefits of Autonomous Vehicles  

Driving includes several functions, including perception, control, planning, localization, 

and management. Even with an automation level less than L3, the driving assistance system 

notices drivers with some traffic information that is critical for safety or some information that 

could not be obtained by the drivers themselves. The information from the sensor could help the 

drivers to adjust their driving strategies and avoid possible collisions or congestions.  

Table 2.3 summarizes a total of 20 intelligent automation technologies on different 

automation levels and the corresponding safety benefits, safety improvements, and maturity of 

these technologies (Kockelman and Boyles, 2018). Presently, the technologies at Levels 1 and 2 

are commercially available, while some of Levels 3 technologies are still being tested for 

commercial applications and are under development.  

 

Table 2.3 Benefits and Maturity of Autonomous Vehicle Technologies  

Automation 

Level 

Technology Safety Benefits Safety 

Improvement 

Maturity 

Level 0 Adaptive headlights  Improve light condition and 

visibility of environment  

Intermediate  High 

 
Forward collision 

warning  

Prevent rear-end collision  High  High 

 Blind spot monitoring  Reduce crash risk caused by blind 

spots (such as merging and 

weaving areas)  

High  High 

 Traffic sign recognition  Inform and alert the driver  Intermediate  Medium 

 Lane departure warning  Prevent lane departure crashes  High  Medium 

 Left-turn assist  Prevent potential conflict  High  Medium 

 Pedestrian collision 

warning  

Prevent pedestrian collision  High  Medium 

 
Rear cross traffic alert  Prevent backing collision  High  Medium 

Level 1 Electronic stability 

control  

Prevent rollover  High  High 

 Adaptive cruise control  Prevent rear-end collision  High  High 

 Cooperative adaptive 

cruise control  

Prevent rear-end collision  Low  Medium 

 
Parental control  Prevent speeding  Intermediate  Medium  
Automatic emergency Prevent rear-end collision  High  Medium 
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braking   
Lane keeping  Prevent lane departure crashes  High  Medium 

Level 2 Traffic jam ass Driving assist  Low  Medium  
High speed automation  Driving assist  High  Medium  
Automated assistance in 

roadwork and 

congestion  

Driving assist  High  Medium 

Level 3 On-highway platooning  Driving assist, prevent rear-end 

crashes  

Intermediate  Medium 

 
Automated operation for 

military applications  

Prevent human fatalities  Unknown  Low 

Level 4/5 Self-driving vehicle  Replace human drivers  High  Low  
Emergency stopping 

assistant  

Response when lose control 

human drivers  

High  Low 

 

2.2.3. Connected and Autonomous Vehicles 

2.2.3.1. Concepts of the Connected and Autonomous Vehicle 

If any AV has V2V, V2I, or V2X functions to collect and transmit information, it is 

defined as a connected and autonomous vehicle (Shladover, 2018). CV communication 

technologies permit widely, timely, standardized, and secure communication with unities 

equipped with communications equipment. The additional information collected could help 

CAVs to utilize the Cooperative Adaptive Cruise Control (CACC) system. For CAVs with the 

CACC system, they could follow their predecessors with a higher accuracy, shorter response 

time, and shorter headway compared to AVs with Adaptive Cruise Control (ACC) systems 

(Shladover et al., 2012). Therefore, CAV could be treated as the combination of the CV 

technologies and AV technologies, and CV technologies could supply, enhance, or have 

synergistic effects on AV technologies to some extent (Shladover, 2018), though connectivity is 

not a mandatory characteristic of AVs (Hendrickson et al., 2014). 

2.2.3.2. Potential Benefits of Connected and Autonomous Vehicles 
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As the CAVs are the vehicles that are incorporated with both automation systems and 

communication systems, the potential benefits of CAVs combine the benefits of AVs and CVs. 

In summary, CAVs could bring several potential benefits including improvement of safety, 

efficiency, roadway/intersection capacity, mobility, and reduction in travel time and emissions.  

As mentioned by Li and Kockelman (2016), CAVs may significantly reduce the number 

of crashes and decrease current crash costs in the U.S. by at least $126 billion per year. CAVs 

can also increase mobility by providing opportunities to people who cannot afford a vehicle, 

people who prefer not to drive, people with disabilities, and elderly people who cannot drive 

safely (Duncan et al., 2015). The communication and automation technologies also enable CAVs 

to drive more smoothly than human drivers, with smaller following gaps and harmonized speeds, 

and these will also reduce vehicle emissions by reducing the stop-and-go frequency. Also, with 

the help of the smart parking system, CAVs could get the information on nearby parking lots and 

park themselves automatically after arriving at the destination. This technology could save a 

significant amount of time for the passengers. Additionally, CAVs could save/rationalize land 

use and improve the infrastructure design by narrowing the width of the lanes and removing 

median barriers and even traffic lights in the future. 

 

2.3. Deployment of and Market Forecast for AVs 

With the rapid development of vehicle automation and communication technologies, 

Level 1 and Level 2 automation systems have already been commercially implemented in 

intelligent vehicles for many years. Meanwhile, Level 3 conditional automation systems are still 

under development and are being tested in different experimental fields. Moreover, Level 4 AVs 
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(conditional automation vehicles) can reduce driver stress and increase productivity, and Level 5 

AVs (fully automated vehicles) are expected to significantly improve the system performance. 

2.3.1. Deployment of the Autonomous Vehicles  

The vision of vehicle automation was initiated as early as 1918 (Pendleton et al., 2017). 

In 1939, General Motors exhibited the concept of AV, and the autonomous technology was 

mainly concentrated on controlling speed, break, lane change control, and other basic cruise 

control functions (Shladover et al., 2012). Even though there have been a lot of uncertainties as 

to the release date of the fully autonomous vehicle for the public, the Digital and 4th Industrial 

Revolutions gave a tremendous boost to rapid technological development in this field. All these 

intelligent technologies further promote several on-roads and experiment field tests for AVs with 

different autonomous technologies (Christie et al., 2016). 

As early as the 1950s, General Motors and Radio Corporation of America Sarnoff 

Laboratory jointly initialized the early phase of research and development (R&D) of AV 

technologies (Shladover, 2018). From 1964 to 2003, several other AV programs were deployed 

and tested in different countries/areas, including the United States of America, European Union, 

Canada, United Kingdom, China, Japan, Australia, United Arab Emirates, Singapore, Korea, etc. 

(Bloomberg, 2017). Under the cooperation of government institutes, universities, and companies, 

several CAV related research projects were established, including the pilot of automated 

commercial taxi/bus, vehicle platooning, technologies of driving environment recognition, smart 

parking, and V2X communication (Shladover, 2018). In 2004, the US government accelerated 

the research and development of AV technology by the Defense Advanced Research Projects 

Agency’s (DARPA) Grand Challenges Program. This program challenged AVs to traverse a 

desert area in 2005 and 2007. Researchers also managed to test the performance of AVs on open 
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urban roadways through the DARPA’s Urban Challenge Program (Pendleton et al., 2017; 

Shladover, 2018). Since then, research and development have continued to rapidly evolve in both 

academia and industrial fields. Other projects are also under field trials concerning mixed traffic 

flow of AVs and HDVs, including Safe Road Trains for the Environment (SARTRE) and 

Europe’s KONVOI system.  

The automation technologies developed by institutes and universities have also been 

rapidly transferring into the commercial fields. Several commercial companies planned or started 

to investigate the technologies of AVs. Volvo announced the development of the autonomous 

vehicle technology in 2006 and tested its AV program, “Drive Me Pilot”, in 2017. Volvo also 

planned to bring its unsupervised AV to the market around 2021. Tech giant Google also started 

to develop AVs in 2009. By 2017, Google’s AV fleet, “WAYMO”, completed three million 

miles of test driving in the U.S. In 2014, TESLA announced that its AV technology would be 

capable of self-driving about 90% of the travel time. At present, TESLA vehicles are equipped 

with a self-driving assistance system. By 2020, many other vehicle companies, including Audi, 

BMW, Mercedes-Benz, Ford, GM, Toyota, Volkswagen, and Nissan, developed their own 

commercial AVs (Faisal et al., 2019). Meanwhile, Level 2 AVs and some CV technologies are 

now available to the public. Many commercial intelligent vehicles have already been equipped 

with adaptive cruise control (ACC), collision avoidance and alert, parking assist systems, and 

lane departure warning systems (Fagnant and Kockelman, 2015). 

As summarized in Bloomberg (2017), 36 cities around the world announced to host field 

tests for AVs, or planned to start piloting experiments in the near future. Meanwhile, 18 other 

cities are making long-range surveys of the planning, regulatory, law, and governance issues 

associated with the application of AVs. These piloting cities were undertaking a variety of AV 
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application tests. The testbed locations are generally isolated places or low population density 

areas of the city, such as isolated test sites, racing tracks, parks, campuses, renewal districts, 

highways, and former international mega-event sites. Hence, as mentioned in Bloomberg (2017), 

even though several trials were being undertaken, there still needs to be more tests to guide fully 

self-driving AVs in complex environments of the urban areas.  

2.3.2. Market Forecast for Autonomous Vehicles  

With the help of intelligent technologies from virtual identity and machine learning 

algorithms, some of Level 3 conditional automation technologies (such as platooning and traffic 

congestion assistance) have been implemented in field experiments and are under test for market 

implementation in the near future. According the report of (PTOLEMUS, 2017), it was indicated 

that Level 2 vehicles will comprise the largest portion of new sales during the next decade (2020 

– 2030). Sales for Conditional automation Level 3 and High automation Level 4 vehicles were 

all expected to increase steadily in the next decade. And Level 4 vehicles with highly automated 

systems were expected to be available for the market around 2025.  

However, since Level 3 AVs are still under testing for fully commercial application and 

the technology of full automation Level 5 is still under development phase, many researchers 

expect that the mixed flow of human driven vehicles (HDVs) and AVs will co-exist for a long 

period. Several previous studies also gave a prediction of the market penetration rate for 

autonomous vehicles in the next decades. Navigant Research (2016) estimated that 75% of all 

light-duty vehicles around the world (almost 100 million sales annually) will be equipped with 

automation assistance systems by 2035. In accordance with this timeline, Litman (2020) 

provided a prediction that AVs’ beneficial impacts on safety and congestion are likely to appear 

between 2050 and 2080. Litman (2020) also expected that human driving may be restricted after 
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2060 as the randomness of human driving behaviors might result in disruptive effects on the 

automation systems. Moreover, as autonomous vehicles are relatively costly and rare in the early 

stage, benefits, such as reducing driver stress/operations and independent mobility, are more 

likely to be available for affluent users in the early stage. Hence, the AV sharing might be more 

applicable in the early stage when AVs are available for commercial adoption. Likewise, only 

when the price of AVs becomes affordable for common users, benefits of the affordable taxi, 

micro-transit services, and independent mobility could be available for moderate-income users. 

Litman (2020) gave predictions of the sales, travel, and fleet projections of the AVs from 

2030 to 2080. By 2050, with optimistic predictions, AVs are supposed to comprise 50% of all 

vehicle sales, 40% of all vehicle travel, and 30% of all vehicles. Meanwhile, the market 

penetration rates (MPRs) of the AVs are expected to be around 50% in 2060. TransAID, (2019) 

predicted the fleet penetration rates of different vehicle types (i.e., HDV, CV, AV, and CAV) 

from 2025 to 2060. In this report, the Level 4 technology is supposed to be feasible in 2035 and 

HDVs still will have 15% MPRs in 2060. 

 

2.4. Traffic Flow Controls of CAVs 

CAVs are automatically or partially controlled by the designed systems. These 

automation systems with fixed rule/logic make the movement behaviors of the CAVs different 

from manually controlled vehicles. The heterogeneous driving behaviors among different drivers 

would result in significant randomness in longitudinal movements (travel speed and 

acceleration/deceleration) of the vehicles. Also, the CAV controlled system would give a more 

rapid response to emergency circumstances (such as sudden braking of the front vehicle and 

dashing out of a pedestrian) than human drivers. The differences between CAVs and HDVs 

require specific models to describe the traveling behaviors of such intelligent vehicles. In the 
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simulation, the traveling behaviors of the CAVs could be divided into two parts, i.e., a car-

following control model for longitudinal movements and a lane-changing control model for 

lateral movements. 

2.4.1. Longitudinal Movement Control of CAVs 

The main difference between HDVs and CAVs is the controller for the longitudinal 

movements (which mainly controls the travel speed), acceleration/deceleration, and car 

following gaps between vehicles. Also, the longitudinal movements of AVs significantly 

improve the efficiency of the roadway/intersection systems. Hence, this section mainly focuses 

on reviewing studies on the longitudinal movements of the CAVs.  

The Lidar sensor technology allows AVs to obtain the surrounding environment 

information, especially on the distance and speed of front and current vehicles. In this case, AVs 

could adjust their speeds according to the down-stream traffic situations. Furthermore, with the 

communication technology (V2V, V2I, or V2X), the CAVs could communicate with one another 

to share their locations, speeds, and accelerations. Meanwhile, CAVs would change their travel 

behaviors according to the information received, such as a crash ahead and the status of 

intersection signals. The communication technology helps CAVs to connect and potentially form 

a platoon, and this cooperative traveling behavior could significantly improve the efficiency of 

the transportation system. All these traveling behaviors of CAVs are beyond the capability of the 

human drivers and make the car-following behaviors of intelligent vehicles (AVs and CAVs) 

different from the traditional car-following behaviors of normal HDVs. 

The Intelligent Driver Model (IDM) and MICroscopic Model for Simulation of 

Intelligent Cruise Control (MIXIC) models are the two most often used benchmark car-following 

control models for AVs, and they have been implemented in many studies, which are shown in 
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Table 2.4. Several studies also modified these models to describe the longitudinal movements of 

intelligent vehicles. Meanwhile, the ACC System has been widely implemented in AVs. Thus, 

an ACC control model has been proposed and adopted in the simulation of AVs in several 

studies. Moreover, the CACC System has been widely utilized for CAVs. Hence, a specific 

CACC control model is proposed to describe the longitudinal movements of CAVs. The 

following section gives a more specific introduction of these four longitudinal movement control 

models for AVs and CAVS. 

 

Table 2.4 Longitudinal Movement Control Model for AVs and CAVs 

Methodology Vehicles Reference paper 

Intelligent Driver Model 

(IDM) 

AV, HDV, CV Kesting et al., 2007, 2008; Milanés and 

Shladover, 2014; Talebpour and Mahmassani, 

2016; Treiber et al., 2000 

IDM with constant-

acceleration heuristic 

AV, HDV Kesting et al., 2010 

Cooperative IDM AV, CV, HDV Zhou et al., 2017 

MICroscopic Model for 

Simulation of Intelligent 

Cruise Control (MIXIC) 

CV, CAV Deng, 2016; Talebpour and Mahmassani, 2016; 

van Arem et al., 1997; Van Arem et al., 2006 

Adaptive Cruise Control 

(ACC) 

AV Milanés and Shladover, 2014; Porfyri et al., 

2018; Treiber et al., 2000 

Cooperative Adaptive 

Cruise Control (CACC) 

CAV Shladover et al., 2012 

 

2.4.1.1. Cruise Control Modes 

2.4.1.1.1 Intelligent Driver Model 

IDM was first proposed by Treiber, Hennecke, and Helbing (2000), and it was commonly 

used in the simulations to control the acceleration and deceleration of HDVs and AVs based on 

the condition of the front vehicle in a single-lane situation (Treiber and Kesting, 2013). The IDM 

has a simple model structure and accident-free logic that can be used to describe the longitudinal 
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movement characteristics of the AVs with the ACC system. Also, the IDM does not include an 

explicit reaction time of the driver and it has a continuously differentiable 

acceleration/deceleration function (Treiber and Kesting, 2013). By modifying specific 

parameters according to specific cases, the IDM can be used for an AV with the ACC system or 

in a HDV situation.  

2.4.1.1.2 Improved Intelligent Driver Model 

In most situations, the IDM can provide plausible acceleration and deceleration rates. 

However, when the distance gap to the front vehicle is significantly lower than the desired 

distance gap, the IDM would result in an unrealistically high deceleration rate for the current 

vehicle to stop (Do et al., 2019). For HDVs, drivers would not suddenly brake/decelerate when 

the front vehicle is not suddenly decelerating to stop even if the distance gap is very small.  

To mitigate this issue, Kesting et al. (2010) further combined the IDM with the Constant 

Acceleration Heuristics (CAH) to determine different acceleration/deceleration rates in different 

scenarios. The basic assumption of the CAH was that the front vehicle will not 

accelerate/decelerate suddenly in the following few seconds (Kesting et al., 2010). If the IDM 

produces an unrealistically high deceleration and the CAH deceleration is in a comfortable 

deceleration range, the AV with the ACC system would decelerate at a rate of the CAH 

deceleration minus the comfortable deceleration. In this way, the IDM controlled vehicle could 

avoid the unrealistic deceleration situation. Results showed that the road capacity is essentially 

improved, even with only a 50% MPR of IDM-CAH-controlled vehicles. 

Additionally, several other modified IDMs were applied to simulate CAVs in different 

situations. To improve safety in non-stationary traffic situations, Derbel et al. (2012) modified 

the desired minimum gap between vehicles in the IDM. Zhou et al. (2017) developed a 

cooperative intelligent demand model (CIDM) using the IDM as the benchmark model and 
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examined the system performance of CAVs. The results showed that the increasing percentage of 

CAVs will reduce the total travel time and smooth traffic oscillations caused by the freeway 

merging or lane drop sections. 

2.4.1.2. Cruise Control Systems  

2.4.1.2.1 Microscopic Model for Simulation of Intelligent Cruise Control 

The communication function helps the CAV with the CACC system to obtain the 

information on the surrounding vehicles and infrastructures. A car-following model specific to 

the CAV with the CACC system is needed. A stochastic simulation model, the MICroscopic 

Model for Simulation of Intelligent Cruise Control (MIXIC), was developed by Van Arem et al. 

(1997), and it has been widely used for cooperative CAV simulations. The MIXIC model is 

capable of characterizing the V2V communication process and can share speed, acceleration, and 

deceleration between the front and current CAVs. Moreover, in contrast to the IDM that only 

models a single lane, the MIXIC is capable to model two-, three-, and four-lane situations. This 

makes the adjusted traffic flow model controlled by the MIXIC more reliable and closer to the 

reality of CAVs with the CACC system. 

The basic acceleration controller in the MIXIC model can be divided into two main parts: 

one is the acceleration controller part, which calculates the reference acceleration values, and 

another part is a vehicle model which transforms the reference acceleration values into actually 

realized acceleration values (Bart Van Arem et al., 2006). Therefore, the reference acceleration 

rate was determined by a controller and then transformed into a vehicle model for real actions. 

Van Arem et al. (2006) utilized the MIXIC to study the impact of CAVs with the CACC system 

in the highway-merging scenario from four to three lanes (lane drop scenario). The results 

showed that a low CACC system penetration rate (< 40%) would decrease the average speed, 
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increase speed variances, and result in more shock waves before and after the merging area. Only 

when the CACC system penetration rate was over 60% would the CACC-equipped CAVs 

improve the stability and efficiency of the traffic flow in the merging area. Talebpour and 

Mahmassani (2016) employed the IDM and MIXIC to investigate the effects of CVs and CAVs 

on traffic flow stability and throughput. The results indicated that the increase of the market 

penetration rate of CAVs can improve the traffic flow stability and the throughput of roadways.  

2.4.1.2.2 Adaptive Cruise Control System  

With the development of the intelligent driving assistance system (IDAS), the intelligent 

vehicle could control or assist drivers with several driving tasks. An early stage of the IDAS is a 

cruise control (CC) system. The primary function of the CC-equipped vehicle is to maintain the 

desired speed set by a driver. After that, the CC system evolves towards ACC and CACC 

systems. These systems mainly control the acceleration/deceleration of AVs for longitudinal 

movements. The ACC system controls brake and throttle systems to change the travel speed and 

maintains a safe following gap based on a predefined speed and gap distance between preceding 

and current vehicles.  

Numerous cruise control systems have been proposed for intelligent vehicles in previous 

studies. The IDM, ACC, and CACC are the three most commonly used cruise control models 

that control the longitudinal movements of intelligent vehicles (Milanés and Shladover, 2014; 

Porfyri et al., 2018; Treiber et al., 2000). The ACC system was proposed and dynamically 

controlled by four modes: cruising control, gap control, gap-closing control, and collision 

avoidance mode (Milanés and Shladover, 2014; Mintsis, 2018; Xiao et al., 2017).  

Ioannou and Stefanovic (2005) found that the smoothly controlled speed of AVs with the 

ACC system would be beneficial to the environment. However, several studies also pointed out 

that the use of the ACC system was unlikely to change lane capacity significantly or even 
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decrease the performance of the transportation systems because of the unstable interaction 

between HDVs and AVs (Virdi et al., 2019; Yang et al., 2017). The disturbances among the 

traffic of AVs with the ACC system and HDVs were mainly caused by the high-acceleration 

maneuver, lane cutting-in, lane exiting, and sudden braking. Also, when a vehicle with the ACC 

system is following a HDV, it still needs a transfer time for the driver to take control of the 

vehicle for emergency circumstances. Hence, the safety distance gap between HDV and ACC 

vehicle is equal to or even larger than the gap between two HDVs. 

2.4.1.2.3 Cooperative Adaptive Cruise Control System  

The CACC system is a functional extension of the ACC system, and it enables 

cooperative platoon driving by sharing the acceleration, deceleration, and vehicle positions by 

V2V, V2I, or V2X communications. The additional information collected could help CAVs with 

a CACC system follow the front vehicle with a higher accuracy, shorter response time, and 

shorter distance gap compared to ACC vehicles (Shladover et al., 2012). The communication 

allows the CACC-system-equipped CAVs to have a significantly shorter time headway (i.e., 0.5 

seconds) compared to the ACC (i.e., 1.4 seconds). The acceleration/deceleration of the subject 

CACC vehicle is controlled based on the gap distance and speed difference with respect to the 

preceding vehicle. In the simulation, the parameters that determine the longitudinal movements 

of CAVs with the CACC system are shared among the CACC-platooned vehicles. Also, CACC-

platooned CAVs do not need to guarantee the minimum safety distance theoretically, but there 

still has to be a minimum safety distance and a collision-free function for CACC-platooned 

CAVs to protect cybersecurity and communication delay scenarios in the simulation.  

Several studies investigated the impacts of the ACC/CACC system by using the 

microscopic traffic simulators. Arnaout and Arnaout (2014) found that the ACC-equipped 

vehicles would only have a slight impact on capacity. Delis et al. (2015) indicated that the CACC 
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system performs better than the ACC system with respect to both traffic stability and capacity. 

Amoozadeh et al. (2015) tested the impact of message falsification disturbances and radio 

jamming attacks on the acceleration and following distance of CACC vehicles. Results indicated 

that security attacks could reduce traffic safety and result in traffic flow instability and rear-end 

collisions. 

Several studies also pointed out that a significant improvement in the system performance 

requires a certain market penetration rate (MPR) of the CACC-equipped vehicles. Arnaout and 

Arnaout (2014) utilized simulations to investigate the effects of the CACC on the traffic flow on 

a multilane highway. Results showed that low MPRs of CACC vehicles would have a slight 

impact on the traffic flow. Shladover et al. (2012) indicated that a 40% market penetration rate 

(MPR) of CACC-equipped vehicles is a critical threshold to achieve a 10% improvement of the 

capacity. Also, 100% MPR of CACC-equipped vehicles could double the capacity compared to 

the scenario with 100% MPR of HDVs.  

Several studies also conducted field tests for the performance of the CACC system. 

Shladover et al. (2012) tested the performance of the ACC and CACC vehicles by collecting and 

analyzing the field experiments data. Results showed that increasing the market penetration rate 

(MPR) of ACC vehicles would slightly increase the roadway capacity. However, increasing 

CACC vehicles could significantly increase the roadway capacity. Milanes et al. (2014) 

conducted a field trial of four vehicles equipped with the CACC system to exchange information. 

The result indicated that the CACC system needs a lower response time to the speed change of 

the leading vehicle. Hence, the CACC system could improve traffic/string stability with 

cooperative speed adjustment and less following gaps. Another field trial of the CACC vehicles 

in the Connect and Drive project also suggested that vehicles with the CACC system could form 
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a platoon of vehicles with a 0.7 second headway. This could significantly improve the string 

stability of the traffic flow (Ploeg et al., 2011).  

2.4.2. Latitudinal Movement Control of CAVs 

A safe, smooth, and efficient lane changing behavior is essential to fulfil latitudinal 

movements of an AV. Several studies have also proposed a specific lane changing control model 

for AVs/CAVs. Nilsson et al. (2015) proposed a pragmatic model to determine a safe following 

gap and time interval to perform the lane changing maneuver. Field test results of the proposed 

model on a VOLVO V60 vehicle indicated a good performance of real-time ability, safety, and 

efficiency. Shi et al. (2019) proposed a hierarchical reinforcement learning approach for 

modeling the automated lane changing control process. The proposed approach could output the 

lane changing decision and maneuver with the consideration of safety. Results indicated that the 

AV could smoothly and safely change to the target lane. Wang et al. (2019) adopted a deep 

deterministic policy gradient reinforcement learning to control continuous lane changing 

behavior in dynamic driving situations. Simulation results showed the reinforcement learning 

agent vehicle could smoothly and stably change to the target lane under diverse driving 

environments.  

 

2.5. Intersection Capacity Analysis Methods 

2.5.1. Empirical Methods 

Compared to the freeway system, traffic conditions in the intersection system are more 

complex as there have been many more conflict points and different types of transportation users 

(e.g., vehicles, cyclists, and pedestrians). To analyze the impact of CAVs at intersections, the 

capacity (or maximum throughput) of the intersection has been frequently utilized as a 



29 

 

performance indicator in many previous studies. In summary, there are two main ways to 

improve the throughput of the intersection: (1) Increasing the number of vehicles that crossed the 

intersection during a time unit; (2) Decreasing the average travel time for the vehicle to cross the 

intersection. 

2.5.1.1. HCM’s research work 

Highway Capacity Manual (HCM, 2010) provided several empirically calibrated 

equations to calculate the capacity of conventional intersections considering different roadway, 

geometric, traffic, and control conditions. The capacity of the intersection could be modified by 

several adjustment factors. Also, the volume capacity ratio was implemented as a performance 

indicator for the intersection.  

2.5.1.2. Brilon and Wu’s research work 

Brilon and Wu (2001) developed a conflict-based technique to calculate the capacity of 

the unsignalized intersection. The proposed method simplified the theoretical structure of the 

conventional gap acceptance method. Based on the calibrated parameters, the proposed method 

could measure traffic performance such as capacity, average delay, and queue length. 

2.5.1.3. Dahl and Lee’s research work 

Dahl and Lee (2012) modified the gap acceptance method to estimate roundabout 

capacity by calibrating gap acceptance parameters for trucks and passenger vehicles separately. 

Results indicated that increasing the percentage of the trucks would decrease the capacity of the 

intersection, and the modified model could calculate the capacity more accurately than the 

unmodified model.  

2.5.1.4. Abhishek et al.’s research work 
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Abhishek et al. (2019) improved the gap acceptance model to calculate unsignalized 

intersection capacity by incorporating driver impatience behaviors with merging behaviors. Also, 

the modified approach allowed different gap acceptance behaviors for different drivers or 

vehicles. Moreover, the modified model implemented a novel queueing model to calculate the 

mean service time, and hence, facilitating the calculation of minor road capacity for an 

unsignalized intersection.  

In summary, the capacity/throughput has been measured and served as a key performance 

indicator for the intersections. Table 2.5 exhibits several empirical methods that were proposed 

to measure the capacity of intersections.  

 

Table 2.5 Summaries of Empirical Methods on Intersection Capacity Analysis 

No. Reference Intersection Type Method  Capability of the Method 

1 HCM, 

2010 

Signal/unsignalized 

Intersection, 

Roundabout 

Empirical 

calibrated 

equations 

• Considering different roadway, 

geometric, traffic, and control 

conditions 

2 Brilon and 

Wu, 2001 

Unsignalized 

Intersection 

Conflict-

based 

technique 

• Simplifying the theoretical 

structure compared to gap 

acceptance method 

3 Dahl and 

Lee, 2012 

Roundabout Modified gap 

acceptance 

method 

• Calculating the capacity more 

accuracy than unmodified model 

4 Abhishek 

et al., 2019 

Unsignalized 

Intersection 

Modified gap 

acceptance 

model 

• Incorporating driver impatience 

behavior with merging behavior; 

• Allowing different gap acceptance 

behaviors; 

• Facilitating the calculation of 

minor road capacity for an 

unsignalized intersection 

 

2.5.2. Simulation Based Methods 

2.5.2.1. Impacts of CAVs under 100% Market Penetrate Rates 
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2.6.2.1.1 Li et al.’s research work 

Li et al. (2014) jointly optimized signal timing and trajectories of the CAVs at an isolated 

intersection. Compared with a traditional actuated signal control scheme, the simulation results 

showed that the proposed control method could increase intersection throughput by 2.7–20.2% 

and reduce the average delay by 16.2–36.9% based on different traffic demands.  

2.6.2.1.2 Abdelhameed et al.’s research work 

Abdelhameed et al. (2015) utilized a hybrid fuzzy-genetic controller to minimize the 

travel time of CAVs while avoiding possible collisions at the intersection. Results indicated a 

91% increase in throughput and about 62–72% decrease in delay compared to the pre-timed 

traffic light controller and the un-optimized fuzzy logic controller.  

2.6.2.1.3 Chen and Kang’s research work 

Chen and Kang (2016) proposed a win-fit reservation management scheme for CAVs to 

cross an intersection without possible collisions. Results showed a reduction in trip delay by 31–

95% compared with first-come-first-service and signal control schemes.  

2.6.2.1.4 Liu et al.’s research work 

Liu et al. (2018) developed a trajectory planning approach for autonomous intersection 

management (TP-AIM). The proposed system assigned priority and collision-free trajectories to 

CAVs. Results indicated a 20% increase in the throughput of the intersection. Moreover, a 10% 

reduction in delay could be observed compared to a traffic light controller.  

2.6.2.1.5 He et al.’s research work 

He et al. (2018) introduced a conflict-avoidance-based approach to coordinate CAVs at 

an unsignalized intersection with all-direction turn lanes. The simulation results indicated that 

the proposed approach outperformed traditional signal control by increasing 50% of the 

throughput and decreasing 60% of the travel time.  
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2.6.2.1.6 Wei et al.’s research work 

Wei et al. (2018) proposed a game theory method to maximize throughput and minimize 

the accidents and congestion of the CAVs at the intersection. A platoon formation model and a 

strategic game theory model were proposed to control CAV movements at the intersection. 

Results showed that the proposed control method could increase the throughput by 140% and 

43% in light and heavy traffic demand conditions, respectively. 

2.6.2.1.7 Sun et al.’s research work 

Sun et al. (2018) developed a MCross scheme to maximize intersection capacity with 

CAVs. Several simulation examples indicated that the proposed scheme could almost double the 

intersection capacity (i.e., by 99.51%) compared to a signal control scheme. 

In summary, several studies designed an intersection control system that assumed 100% 

market penetration rate (MPR) of CAVs so that vehicles could obtain full information and be 

controlled by the system controller (Guo et al., 2019). Table 2.6 exhibits a summary of the 

studies on simulation-based intersection capacity analysis with 100% MPR of CAVs. 

 

Table 2.6 Capacity Analysis Studies of CAVs under 100% Market Penetrate Rate  

No. Reference Aim and method  Criteria Main result 

1 Li et al., 2014 Optimize signal timing and 

trajectories  

Throughput, 

Delay 

Increase intersection 

throughput by 2.7–20.2% 

compared with actuated 

signal control 

2 Abdelhameed et 

al., 2015 

Minimize the travel time of 

CAVs while avoiding 

possible collisions 

Throughput, 

Delay 

Increase throughput by 

91% compared to the pre-

timed traffic light 

controller and the un-

optimized fuzzy logic 

controller 

3 Chen and Kang, 

2016 

Conflict-avoidance-based 

approach to coordinate 

CAVs  

Delay Reduce trip delay by 

31%-95% compared with 

FCFS and signal control 

schemes 
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4 Liu et al., 2018 Assign priority and 

collision-free trajectories to 

CAVs 

Throughput, 

Delay 

Increase throughput by 

20% compared to signal 

control scheme. 

5 He et al., 2018 Conflict-avoidance-based 

approach to coordinate 

CAVs 

Throughput, 

Travel time 

Increase throughput by 

50% compared to signal 

control scheme 

6 Wei et al., 2018 Game theoretic framework 

to maximize throughput 

and minimize the accidents 

and congestion of the 

CAVs 

Throughput Increase the throughput 

by 140% and 43% in light 

and heavy traffic demand 

conditions, respectively 

7 Sun et al., 2018 MCross scheme to 

maximize intersection 

capacity  

Throughput Almost double the 

intersection capacity by 

99.51% compared to 

signal control scheme 

 

2.5.2.2. Impacts of CAVs under Mixed Traffic Environment 

Several proposed intersection control systems required a modification of the existing 

intersection systems, and several of them required high market penetration rates (MPRs) of AVs 

or CVs (Algomaiah and Li, 2019; Dresner and Stone, 2008). However, reconstruction of those 

intersections or installing the V2I equipment would take a long time. Hence, it is reasonable to 

expect for a longer time for AVs to achieve high MPRs or be fully applicable in those 

intersection systems. 

Additionally, several studies pointed out that a significant improvement in the system 

performance requires a certain MPR of the CAVs. Arnaout and Arnaout (2014) utilized 

simulations to investigate the effects of the CACC-equipped CAVs on the traffic flow on a 

multilane highway. Results showed that low MPRs of CACC-equipped CAVs would have a 

slight impact on the traffic flow.  

2.6.2.2.1 Shladover et al.’s research work 

Shladover et al. (2012) indicated that a 40% market penetration rate (MPR) of CACC-

equipped vehicles is a critical threshold to achieve a 10% improvement of the roadway capacity. 
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Also, 100% MPR of CACC-equipped vehicles could double the capacity compared to the 

scenario of 100% MPR of HDVs.  

2.6.2.2.2 Lee and Park’ s research work 

Lee and Park (2012) proposed a cooperative vehicle intersection control system to 

remove signals while guaranteeing the safety of CVs. Simulation on a four-way single-lane 

approach intersection with the proposed system indicated that the throughput and total travel 

time were improved by 8% and 33% compared to an actuated signal control system.  

2.6.2.2.3 Jiang et al.’ s research work 

Jiang et al., (2017) utilized an optimization method to control the speed of CAVs at an 

isolated intersection. Results indicated that benefits grow with the MPRs of CAVs until they 

level off at about a 40% MPR. Also, with a 60% MPR of CAVs, the throughput of the 

intersection would be improved by 7.06% and 10.80% under saturated flow rate (v/c = 1) and 

oversaturated flow rate (v/c = 1.2) conditions, respectively. 

2.6.2.2.4 Sharon and Stone’s research work 

Sharon and Stone (2017) proposed a hybrid autonomous intersection management (H-

AIM) system to accommodate mixed traffic conditions. H-AIM could identify approaching 

HDVs by sensor technologies. Compared to the basic AIM system, the H-AIM can improve the 

throughput and delay with only a 10% market penetration rate of CAVs. With a 50% MPR of 

CAVs, the H-AIM can increase the throughput of a four-way intersection and a three-way 

intersection by 10% and 6%, respectively. 

2.6.2.2.5 Algomaiah and Li’ s research work 

Algomaiah and Li (2019) proposed a first-come-first-serve reservation-based system at 

the intersection with different MPRs of CAVs. Simulation results indicated that the proposed 

control system outperforms traffic signals after a 75% MPR of CAVs. Additionally, the proposed 
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system would increase the throughput by 50% with a 100% MPR of CAVs compared to a signal 

control system. 

In summary, simulation-based models were frequently utilized to evaluate the impacts of 

AV/CAV technologies on the intersection capacity/throughput. Table 2.7 summarizes previous 

capacity analysis studies on intelligent vehicles at intersections considering different MPRs. 

Additionally, Table 2.8 summarizes previous studies which utilized other performance criteria to 

evaluate impacts of intelligent vehicles at intersections considering different MPRs. The 

evaluation criteria for the performance of CAVs at the intersection mainly included efficiency 

(delay, travel time, speed, throughput, density, queuing length), safety (collision avoidance, 

resolving conflict), and ecology (energy/fuel consumption, emission). 

Microscopic simulation software has been widely used in previous studies, such as 

VISSIM, SUMO, AIMSUN, which can be generally integrated with MATLAB and JAVA. It is 

noted that most studies indicated a positive effect of intelligent vehicles, while some others 

found that the intelligent vehicles could improve the system performance only after certain 

MPRs (Algomaiah and Li, 2019; Jiang et al., 2017; Lee et al., 2013). Moreover, several studies 

found that the interaction between intelligent vehicles with HDVs would result in a negative 

impact on system performance (Du et al., 2017). This is in line with the phenomenon that low 

MPRs of intelligent vehicles would decrease system performance (Virdi et al., 2019; Yang et al., 

2017).  

 

Table 2.7 Capacity Analysis Studies of CAVs under Mixed Traffic Environment 

No. Reference Veh. Object and 

method  

Software Criteria Main result 

1 Shladover 

et al. 2012 

HDV, 

CV, 

AV, 

CAV 

Simulation 

ACC and 

CACC based on 

field 

AIMSUN  Capacity • 40% market penetration 

rate (MPR) of CACC-

equipped vehicles is a 

critical threshold to 
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experiment data 

(for time gap 

settings) to 

estimate the 

effect on 

roadway 

capacity 

achieve a 10% 

improvement of the 

capacity. 

• 100% MPR of CACC-

equipped vehicles could 

double the capacity 

2 Lee and 

Park, 2012 

CV Cooperative 

Vehicle 

Intersection 

Control 

VISSIM Through-

put, 

Delay, 

Emission 

• The throughput and total 

travel time were 

improved by 8% and 

33% compared to 

actuated signal control 

system 

3 Jiang et al., 

2017 

CAV Optimizing 

speed of CAVs 

VISSIM, 

Matlab 

Fuel, 

CO2,  

Through-

put 

• Benefits grow with the 

MPRs of CAVs until 

they level off at about 

40% MPR. 

4 Sharon and 

Stone, 2017 

CAV Hybrid 

autonomous 

intersection 

management  

SUMO Queue 

length, 

Through-

put 

• H-AIM can decrease 

delays for AVs even at a 

1% MPR. 

• With 50% MPR of 

CAVs, increase the 

throughput for four-way 

intersection and three-

way intersection by 10% 

and 6%, respectively. 

5 Algomaiah 

and Li, 

2019 

CAV A first-come-

first-serve 

reservation at 

intersection 

VISSIM Through-

put, delay 
• The proposed control 

system outperforms 

traffic signals after a 

75% MPR of CAVs.  

 

Table 2.8 Performance Measures of CAVs under Mixed Traffic Environment  

No. Reference Veh. Object and 

method  

Software Criteria Main result 

1 Lee et al., 

2013 

CV Cumulative 

travel-time 

responsive 

(CTR) real-

time 

intersection 

control  

VISSIM, 

Matlab 

Delay, 

speed 

• The CTR algorithm improves 

the system performance after 

a 30% MPR of CVs. 

• CTR algorithm outperformed 

the actuated controls after a 

70% MPR of CVs. 

2 Guler et al., 

2014 

CV Optimizing the 

departure 

sequences 

Matlab Delay • CVs with MPRS from 0% up 

to 60% can significantly 

reduce the average delay. 

• The average delay could be 

significantly reduced even 

with low MPRs (20–40%). 

3 Yang et al., CV, Optimization Java Stops, • This algorithm performs 
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2016 AV of departure 

sequence and 

trajectory by 

maximize the 

speed entering 

the intersection 

Delay  better than the actuated signal 

control after a 50% MPR of 

CVs. 

• Even a 50% information level 

for CVs could significantly 

decrease the delay and stops. 

4 Yang et al., 

2017 

CAV Eco-CACC 

system that 

computes the 

fuel-optimum 

vehicle 

trajectory 

Integration Fuel • Eco-CACC system produces 

vehicle fuel savings up to 

40% at a 100% MPR of 

CAVs.  

• Lower MPRs of CAVs 

increase fuel consumption on 

multi-lane roads, and the 

system decreases the fuel 

consumption only after a 30% 

MPR of CAVs. 

5 Du et al., 

2017 

CV Coordinate 

CVs at 

adjacent 

signalized 

intersections. 

– Fuel  • Increase the MPRs of CVs 

would decrease fuel 

consumption. 

• Fuel consumption will 

increase if the CV is 

following an HDV. 

6 Pourmehrab 

et al., 2018 

AV Headway 

minimization  

Matlab Travel 

Time 

• The average travel time 

decreases with higher MPRs 

of AVs. 

7 Zhao et al., 

2018 

AV Minimize the 

fuel 

consumption 

for platoons 

Matlab Fuel, 

Travel 

time 

• Both fuel consumption and 

travel time decrease with the 

increasing MPRs of AVs. 

• The benefits of cooperation 

between AVs and HDVs are 

most evident for lower MPRs, 

and a platoon size of 5 can 

reduce 22% fuel consumption 

under a 60% MPR of AVs. 

8 Liang et al., 

2019 

CV, 

AV, 

SGV 

Jointly 

optimizing the 

signal phase 

and timing 

plan along 

with speed 

guidance 

Java  Delay, 

stops 
• The average delay and 

number of stops decrease with 

higher MPRs of CV, AVs, 

and SGVs (HDV with speed 

guidance-enabled vehicles). 

• The marginal benefits 

decrease rapidly when MPRs 

of the CVs exceed 40%. 

9 Virdi et al., 

2019 

CAV Safety 

assessment of 

mixed flow  

VISSIM Conflict • CAVs at low penetration rates 

increase conflicts at 

signalized intersections while 

decrease conflicts at priority-

controlled intersections. 
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2.6. Reinforcement Learning for Intersection Signal Control 

Optimizing traffic signal control with a reinforcement learning method has received great 

attention in previous studies (Haydari & Yilmaz, 2020; X. Liang et al., 2019; Vidali, 2018). The 

TSC agent is trained to learn an optimal policy for developing the signal phase and timing plan 

based on the information gathered from the traffic environment. With regards to the number of 

RL agents, these studies could be classified into centralized TSC with a single agent RL (for an 

isolated intersection or the entire intersection network) or decentralized TSC with multi-agent 

RL (for a network of intersections). The state of vehicles (numbers, locations, speeds, or other 

traffic performance criteria) is usually presented by image-like representation format (i.e., 

discrete traffic state encoding) or feature-based state vectors (Haydari & Yilmaz, 2020). The 

actions are commonly defined as binary action sets (whether or not to prolong the green time) or 

multi-phase sets (usually four or eight green phases). Due to the large scale of the state and 

action representation, many recent TSC studies employed deep learning (neural networks) to 

approximate Q-values, which are returns for taking an action A at a state S (Zhang et al., 2021). 

Based on the target estimated by the deep learning, the deep reinforcement learning (DRL) could 

be classified into value-based (estimating Q value), policy-based (estimating action policy 

probability), and state-value-based method (estimating both Q value and action policy 

probability, such as actor-critic (A2C) framework).  

Table 2.9 summarizes several deep reinforcement learning studies for traffic signal 

control systems. One of the earliest neural-network-based RL models for TSC was proposed in 

(Arel et al., 2010). However, it was different from the typical deep Q network (DQN) algorithm 

as it did not include experience replay method and the target network. After that, Genders and 

Razavi (2016) implemented a convolutional neural network (CNN) to approximate the Q values 
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for a single intersection with four green phases. The simulation in SUMO showed a better result 

compared to that using a single-layer neural network Q-learning approach. Wei et al. (2018) 

introduced a DQN-based TSC, called IntelliLight, and utilized CNN to extract traffic features 

from the real-world camera data collected in China. The IntelliLight was also selected as a 

benchmark in another research work (Xu et al., 2019). This research introduced a transfer 

learning framework with source task selection and batch learning. Results based on the real-

world data from China indicated a quicker model convergence and better traffic performance 

compared to non-transfer models. Shi and Chen (2018) also utilized transfer learning to speed up 

the training procedure of multi-agent DRL TSC with long short-term memory (LSTM) layers (a 

type of recurrent neural network, RNN) for Q-value approximation. The results on 2-by-2 grids 

of intersections indicated a lower average delay compared to Q-learning and pre-timed signal 

under both low and high traffic demands. Moreover, Zhang et al. (2021) trained a DQN for TSC 

with a partial detection of vehicles. Results indicated that the DQN-controlled TSC could 

efficiently reduce the average waiting time even with a low detection rate. 

 

Table 2.9 Summary of Deep Reinforcement Learning Studies on Traffic Signal Control 

Paper Scenario Approach Simulator Result comparison 

(S. Shi & 

Chen, 2018) 

 

2 by 2 grid of 

intersections 

Transfer DQN-RNN, 

multi-agent, 

USTCMTS Fixed-timed signal, 

Q-learning 

(Xu et al., 

2019) 

Single 

intersection, real 

data  

Targeted Transfer 

DQN, CNN and 

LSTM, single-agent 

SUMO  IntelliLight 

(Zhang et al., 

2021) 

Single 

intersection 

DQN, single-agent SUMO Fixed-time signal 

(X. Liang et 

al., 2019) 

Single 

intersection 

Double dueling DQN-

CNN, single-agent 

SUMO Fixed-time signal, 

actuated signal, 

DQN 

(Genders & 

Razavi, 

Single 

intersection 

DQN-CNN, single-

agent 

SUMO Q-learning with a 

shallow neural 
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Paper Scenario Approach Simulator Result comparison 

2016) network 

(Hua Wei et 

al., 2018) 

Single 

intersection, real 

data 

DQN-CNN 

(IntelliLight), single-

agent 

SUMO  Fixed-time signal, 

Self-organizing 

TSC, DQN 

(Wan & 

Hwang, 

2018) 

Single 

intersection 

Modified DQN, 

single-agent 

VISSIM Fixed-time signal, 

standard DQN 

(Genders & 

Razavi, 

2019) 

Single 

intersection 

Asynchronous n-step 

Q-learning, single-

agent 

SUMO actuated signal, 

random control 

(Chu et al., 

2020) 

5 by 5 grid of 

Monaco city 

map 

A2C-RNN, Multi-

agent 

SUMO Q-learning, DQN, 

A2C 

 

2.7. Intersection Modeling Scenarios and Parameters 

Jiang et al. (2017) utilized an optimization method to control the speed of CAVs at an 

isolated single-lane intersection. With a 60% MPR of the CAVs, simulation results indicated that 

the intersection throughput would be improved by 7.06% and 10.80% under saturated flow (v/c = 

1) and oversaturated flow (v/c = 1.2) conditions, respectively. 

Sharon and Stone (2017) proposed a hybrid autonomous intersection management (H-

AIM) system. The performance of the system was tested by the simulations at a four-way 

intersection and a three-way intersection. Compared to the basic AIM system, the H-AIM can 

improve throughput and delay with only a 10% MPR of CAVs. With 50% MPR of CAVs, the H-

AIM can increase the throughput for four-way intersection and three-way intersection by 10% 

and 6%, respectively. 

Yang et al. (2017) proposed an eco-CACC system to compute optimal fuel consumption 

trajectories for CACC-equipped CAVs. When vehicles were traveling at signalized single-lane 

and multi-lane intersections, the increase of MPRs of CACC vehicles would decrease fuel 

consumption and air pollution correspondingly. The proposed system could save about 40% of 
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the fuel consumption with a 100% market penetration rate of eco-CACC vehicles. Moreover, 

when vehicles were traveling at a multi-lane intersection, the proposed system would increase 

fuel consumption if the MPRs of eco-CACC vehicles are over 30%. 

Sun et al. (2018) developed an intelligent intersection system with continuous flow 

design and tandem control to maximize the intersection capacity with CAVs. Numerical 

examples for unbalanced flow, heavy left-turn traffic, heavy conflicting movements, and all 

demands flow cases were tested. Simulation results indicated that the proposed scheme could 

almost double the intersection capacity compared to a signal control scheme. 

He et al. (2018) introduced a conflict-avoidance-based approach to coordinate CAVs at 

an unsignalized intersection with all-direction turn lanes. The traffic demands per lane were 

increased from 100 to 1000 veh/hr. The simulation results indicated that the proposed approach 

outperformed traditional traffic lights by increasing 50% of the throughput and decreasing 60% 

of the travel time.  

Algomaiah and Li, (2019) proposed a first-come-first-served reservation-based system at 

the intersection considering different MPRs of CAVs. The geometrical designs of the 

intersection included different combinations of dedicated and shared lanes. Traffic demands from 

400 to 1000 vehicles/hour/lane and three communication ranges (600, 800, 1000 ft) were tested 

in simulations. Throughput and delay results indicated that the proposed control system 

outperformed a traffic signal scheme after a 75% MPR of CAVs.  

In summary, Table 2.10 exhibits several intersection modeling scenarios using simulation 

methods to analyze the impacts of CAVs. Note that the following parameters were used in the 

simulation models for CAVs with the CACC system (Milanés & Shladover, 2014; Mintsis, 2018; 

Xiao et al., 2017). 
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• Minimum gap when the vehicle is stopped (m) 

• Maximum acceleration (m/s2) 

• Maximum deceleration (m/s2) 

• The maximum deceleration in case of emergency (m/s2) 

• Desired headway (s), Speed control factor, and Reaction time (s) 

• The driver imperfection [0, 1] 

• The control gain determining the rate of speed deviation (for Speed control mode) 

• The control gain determining the rate of positioning deviation (for Gap closing control 

mode, Gap control mode, and Collision avoidance mode, respectively) 

• The control gain determining the rate of the positioning deviation derivative (for Gap 

closing control mode, Gap control mode, and Collision avoidance mode, respectively) 

 

Table 2.10 Summary of Intersection Modeling Scenarios with CAVs 

No. Reference Intersection Type Scenarios Findings 

1 Jiang et al., 

2017 

Single lane signalized 

intersection 

Mixed flow; 

Traffic demands: non-

saturated (v/c = 0.5), 

saturated (v/c = 1), 

oversaturated (v/c = 1.2) 

• Increase the throughput by 

7.06% and 10.80% with 

60% MPR of CAVs under 

saturated (v/c = 1) and 

oversaturated (v/c = 1.2) 

conditions, respectively  

2 Sharon and 

Stone, 2017 

A four-way 

intersection and a 

three-way intersection 

Mixed flow; 

Traffic demands from 

low to high (150 - 750 

vehicles/hour/lane) 

• With 50% MPR of CAVs, 

the H-AIM can increase the 

throughput for four-way 

intersection and three-way 

intersection by 10% and 

6%, respectively. 

3 Yang et al., 

2017 

Single lane and 

multilane signalized 

intersections 

Mixed flow • Increase the fuel 

consumption if the MPR of 

eco-CACC vehicles are 

over 30% 

4 Sun et al., 2018 An intersection with 

continuous flow 

design and tandem 

control  

Unbalanced flow, heavy 

left-turn traffic, heavy 

conflicting movements, 

all demands flow cases 

• Increase intersection 

capacity by 99.51% 

compared to signal control 

5 He et al., 2018 Unsignalized 

intersection with all-

direction turn lanes 

Increase traffic demands 

from 100 – 1000 

(vehicles/hour/lane) 

• Increase 50% of the 

throughput compared to 

signal control scheme 
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6 Algomaiah and 

Li, 2019 

Next-generation 

interchange with 

different 

combinations of 

dedicated and shared 

lanes  

Mixed flow;  

Communication range 

(600, 800, 1000 ft); 

Traffic demands from 

400 to 1000 

vehicles/hour/lane 

• Increase about 50% of the 

throughput with 100% 

MPR of CAVs compared to 

signal control scheme; 

• 800 ft communication 

range shows a relatively 

lower delay 

 

2.8. Summary 

This chapter provides a comprehensive review of the current state-of-the-art and state-of-

the-practice on studies related to the connected vehicles, automated vehicles, and connected and 

autonomous vehicles. Deployment and market penetration rate prediction, traffic flow control 

strategy for CAVs, intersection capacity analysis methods (empirical-based and simulation-based 

methods), deep reinforcement learning controlled signal system, and intersection modeling 

scenarios and parameters of CAVs are all introduced and reviewed. This chapter is intended to 

provide a fundamental and solid reference to develop control strategies for CAVs at the 

intersection, and conduct effective simulations and impact analyses in future tasks. 
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CHAPTER 3: IDENTIFICATION OF INTERSECTIONS AND SCENARIOS  

3.1. Introduction 

This chapter will identify potential intersection scenarios and collect necessary data 

related to selected intersections. Based on the literature review part, a hypothetical isolated four-

way intersection will be developed, used and tested as a basic scenario. The intersection layout, 

pre-timed signal schemes, and potential traffic demands are determined. An empirical method for 

intersection capacity calculation is introduced and implemented. Specific scenarios considering 

different traffic demands and MPRs of CAVs are given. The following sections are organized as 

follows. Section 3.2 presents the information on a hypothetical isolated four-way intersection. 

Section 3.3 introduces empirical methods for intersection capacity calculation. Section 3.4 

calculates an initial pre-timed signal scheme and capacity for the intersection. Finally, section 3.5 

concludes this chapter with a summary. 

 

3.2. Typical Isolated Intersection Scenario 

In this chapter, a hypothetical isolated four-way intersection (cross-intersection) is 

proposed and used to set up a basic scenario for the simulation. This intersection will also be 

tested with different market penetration rates (MPRs) of CAVs. The results of these scenarios 

will be further tested in real-world intersections. This isolated intersection is introduced in this 

section. 

3.2.1. Intersection Layout 

As shown in Figure 3.1, the isolated intersection has four two-way approaches. The angle 

of the intersection is vertical. Also, the entrance and exit of each approach have four lanes. Each 



45 

 

entrance (or inlet) has one lane for left-turn-only traffic, one lane for through-only traffic, and 

one lane for though and right-turn traffic.  

 

Figure 3.1 Layout of the Hypothetical Isolated Four-Way Intersection 

 

3.2.2. Pre-timed Signal Schemes 

Pre-timed signal control is a type of control where the signal cycle length, phase 

durations, and phase sequences are predetermined and fixed. A pre-timed signal scheme is 

utilized in the hypothetical isolated intersection. The capacity of the intersection could be 

calculated based on the Highway Capacity Manual (HCM, 2010). The maximum throughput 

could also be determined by the simulation method. As shown in Figure 3.2, eight potential 

signal phases are usually selected to accommodate different traffic volume scenarios.  
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Figure 3.2 Potential Signal Phase of the Intersection 

 

3.2.3. Potential Traffic Demands 

For hypothetical isolated four-way intersection scenarios, different traffic demands for 

each direction will be considered. Under a specific pre-timed signal scheme, the capacity of the 

intersection is calculated based on the empirical method introduced by the Highway Capacity 

Manual (HCM, 2010). Then the maximum throughput is calculated with 100% HDVs based on 

the simulation method. Moreover, to investigate the impact of CAVs on the traffic flow, different 

MPRs of CAVs will be considered during the simulation (increase from 0% to 100% by 25% per 

step). Then the maximum throughput under different MPRs of CAVs will be recalculated by the 

simulation method. Following are the steps to determine potential traffic demands for the 

hypothetical isolated intersection. 

• Calculate the capacity with a pre-timed signal scheme by the empirical method. 

• Calculate the maximum throughput of the intersection by the simulation method. 

• Determine the traffic demands based on the maximum throughput. 

• Determine the volume of the CAVs based on the market penetration rate of the CAVs.  
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3.3. Empirical Method for Intersection Capacity Analysis 

3.3.1. Quick-Estimation Method 

The empirical method for intersection capacity calculation is based on the first five-step 

of the Quick-Estimation Method (QEM) that was introduced in the 2010 Highway Capacity 

Manual (HCM). The HCM defines capacity as the maximum number of vehicles that can pass 

through the intersection under certain traffic, roadway, and signalization conditions during a 15-

min period. The QEM determines the critical movements based on the signal phases and 

calculates the critical phase volumes. Then the intersection capacity is calculated based on the 

maximum traffic volume that the intersection could accommodate in an hour. In general, Figure 

3.3 provides the first five-step of the QEM. 

• Step 1: Identify intersection traffic movements, number of lanes, and calculate hourly 

traffic volumes per lane. Usually, the hourly traffic volumes are modified to represent the 

peak 15-minute period. 

• Step 2: Design a signal phasing plan and determine the traffic movements in each phase. 

Each phase usually accommodates two nonconflicting movements. The treatment 

(protected, permitted, etc.) of each left-turn movement is determined mainly based on the 

left-turn volume and the opposing through traffic volume. 

• Step 3: Determine the critical volume per lane group that must be accommodated for each 

phase. The lane group is divided by the traffic movements in each phase. For example, 

the exclusive left-turn lane with a protected left-turn phase is usually designated as a 

specific lane group. The critical movement volume determines the amount of green time 

that should be assigned to the phase in one signal cycle. 

• Step 4: Sum the critical phase volumes per phase to determine the overall critical volume 

that the intersection needs to accommodate. 

• Step 5: Calculate the overall intersection capacity by determining the maximum critical 

volume that the intersection can accommodate per cycle. The maximum critical volume 

is determined by the saturated traffic flow. For signal lane cross-intersection, the HCM 

QEM recommended 1,710 vph for most purposes. 
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Figure 3.3 Illustration of the Quick Estimation Method Framework for Capacity Estimation 

 

3.3.2. Intersection Capacity Calculation 

To determine the capacity of the intersection, the saturation flow of the lane group in 

each phase should be firstly calculated. The saturation flow 𝑠𝑜 of a lane is the maximum traffic 

that the lane could accommodate per hour,  

𝑠𝑜 =
3600

ℎ
                                                                   (3.1) 

where, ℎ denotes the average headway of the traffic, s.  
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HCM 2010 usually recommended a base saturation flow rate, i.e., 1,900 passenger cars 

per hour per lane (pc/hr/ln). The saturation flow rate of the lane group capacity is usually 

adjusted for a variety of conditions, 

𝑠 = 𝑠𝑜𝑁𝑓𝑤𝑓𝐻𝑉𝑓𝑔𝑓𝑝𝑓𝑏𝑏𝑓𝑎𝑓𝐿𝑈𝑓𝐿𝑇𝑓𝑅𝑇𝑓𝐿𝑝𝑏𝑓𝑅𝑝𝑏                                  (3.2) 

where 𝑠 is the saturation flow rate (or Capacity) of the lane group, veh/hr. 𝑠𝑜 indicates the base 

saturation flow rate per lane, pc/h/ln. N denotes the number of lanes in the lane group.  

For each lane group at a signal intersection, the lane group capacity is computed as the 

product of adjusted saturation flow rate and effective green time per cycle ratio. Then the signal 

intersection capacity is expressed as an hourly rate, with units of vehicles per hour. The capacity 

of the signal intersection is the sum of the lane group capacity, 

c = ∑ 𝑠𝑖
𝑔𝑖

𝐶𝑖                                                           (3.3) 

where c indicates the capacity of the signal intersection. 𝑠𝑖 expressed the saturation flow rate for 

all lanes in lane group i. 𝑔𝑖/c is the effective green time per cycle ratio for lane group i. 

The intersection signal phase must be timed to accommodate the most intense traffic 

movements. An initial pre-timed signal plan could be calculated as follows. 

• Step1 Develop a basic phase plan. 

• Step 2: Convert all traffic volumes to through vehicle equivalents. 

• Step 3 Determine critical lane volumes. 

• Step 4 Determine Yellow and All-Red Intervals. 

• Step 5 Determine lost time. 

• Step 7 Allocate effective green time to each phase. 

First, the maximum sum of critical lane volumes 𝑉𝐶 is given as, 
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𝑉𝐶 =
1

ℎ
[3,600 − 𝑁𝑡𝐿 (

3,600

𝐶
)]                                           (3.4) 

where N indicates the number of phases. 𝑡𝐿 is the total time loss in one phase. C is the cycle 

length. 

For the total lost time per phase, 

𝑡𝐿 = 𝑙1 + 𝑙2                                                                 (3.5) 

where 𝑙1 denotes the start-up lost time, i.e., additional time for each initial headway. 𝑙2 indicates 

the clearance lost time, i.e., the time between the front wheel of the last pass vehicle that crosses 

the stop line and the start of green for the next phase. The recommended value for 𝑡𝐿  is 4 s. 

Meanwhile, the effective green time 𝑔𝑖, i.e., the amount of time that vehicles can move in 

one phase, is given as, 

𝑔𝑖 = 𝐺𝑖 + 𝑌𝑖 − 𝑡𝐿𝑖                                                            (3.6) 

where 𝐺𝑖 denotes the actual green time for movements i. 𝑌𝑖 is the sum of yellow and all red time 

for movements i,  𝑌𝑖 = 𝑦𝑖 + 𝑎𝑟, 𝑦𝑖 is yellow time, 𝑎𝑟 is all-red time. 𝑡𝐿𝑖 indicates the total lost 

time for movements i. 

The allocation of the effective green time 𝐺𝑖 to each phase is based on the critical volume 

to the maximum sum of critical volume ratios, 

𝐺𝑖 = (C − N𝑡𝐿)
𝐶𝑉𝑖

𝑉𝐶
                                                           (3.7) 

where C is the cycle length. N is the total number of the phase. 𝑡𝐿 is the total time loss per phase. 

𝐶𝑉𝑖 is the critical volume for phase i. 𝑉𝐶 is the sum of critical volume in one signal cycle. 

 

3.4. Intersections Identification 

A hypothetical isolated four-way intersection is selected as a basic scenario. An initial 

pre-timed signal scheme is calculated for this typical intersection. Meanwhile, this typical 
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intersection is tested with different traffic demands and market penetration rates (MPRs) of 

CAVs. Later, two types of real-world intersections in North Carolina, including one isolated 

intersection and two adjacent intersections, will also be tested to analyze the impacts of CAVs on 

the intersection system performance.  

3.4.1. Scenarios for Typical Isolated Intersection 

3.4.1.1. Pre-timed Signal Schemes and Capacity for the Intersection  

According to the methods introduced in the Empirical Method section, an initial signal 

scheme and the corresponding intersection capacity could be determined. The following basic 

settings for the hypothetical isolated intersection are made as follows:  

1. The intersection has four approaches, and each approach (or inlet) has one lane for left-

turn-only traffic, one lane for through-only traffic, and one lane for though and right-turn traffic.  

2. The pre-timed signal scheme is implemented. The cycle length is 100 s.  

3. The traffic demands for left-turn and right-turn movements are both set as 15% of the 

direct traffic demands. The traffic demands are the same in each approach. 

Step1. Develop a phase plan: 

For this intersection, a protected left-turn phase will be used for all left-turn movements. 

The four phases signal scheme is set as: North-South direct movements, North-South left-turn 

movements, East-West direct movements, and East-West left-turn movements.  

Step 2. Convert volumes to through vehicle equivalents (TVU): 

The saturation flow ratio is unknown for this hypothetical intersection. According to 

assumption 3, the hourly through traffic demand is assumed as X. Then the left- and right-turn 

traffic demands are both 0.15X. The equivalent movement factor for left- and right-turn traffic is 
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1.05 and 1.32. Table 3.1 shows the detailed through vehicle equivalents in the East Boundary 

approach. 

Table 3.1 Assumed Through Vehicle Equivalents in the East Boundary 

Approach Movement Volume 

(Veh/h) 

Equivalent Volume 

(TVU/h) 

Lane group 

volume 

(TVU/h) 

# of 

lanes 

Volume/lane 

(TVU/h/ln) 

EB L 0.15X 1.05 0.1575X 0.1575X 1 0.1575X 

 T X 1 X 1.198X 2 1.198X/2= 

0.599 X 

 R 0.15X 1.32 0.198X    

 

Step 3. Determine critical lane volumes: 

According to the step 1, a typical four phase scheme is given. The critical volumes for 

each phase are presented in Table 3.2. The maximum sum of critical lane volumes 𝑉𝐶 is obtained 

as: 

𝑉𝑐 =  (0.1575 + 0.599) ∙ 2𝑋 = 1.513𝑋 

Table 3.2 Critical Lane Volume in Each Phase  

Phase stage Ring 1  Ring 2  Critical volumes 

Phase A1 EB-T&R  0.599X WB-T&R   0.599X 0.599X 

Phase A2 EB-L   0.1575X WB-L   0.1575X 0.1575X 

Phase B1 SB-T&R  0.599X NB-T&R   0.599X 0.599X 

Phase B2 SB-L   0.1575X NB-L   0.1575X 0.1575X 

 

Step 4. Determine Yellow and All-Red Intervals and lost time: 

The default timing of yellow (change) and all red (clearance) interval for each phase: 

𝑦𝐸𝑊 = 3𝑠 

𝑎𝑟𝐸𝑊 = 1𝑠 

Because 𝑙1 = 𝑒 = 2, the lost time per phase is given as: 

𝑡𝐿 = 𝑙1 + (𝑦 + 𝑎𝑟 − 𝑒) = 𝑦 + 𝑎𝑟 = 𝑌 = 4 𝑠 
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Step 5. Obtain the traffic demands: 

With the loss time and given phase schemes, the maximum sum of critical lane volumes 

𝑉𝐶 could be calculated as: 

𝑉𝐶 =
1

ℎ
[3,600 − 𝑁𝑡𝐿 (

3,600

𝐶
)] =

1

1.9
[3,600 − 4 × 4 (

3,600

100
)] =1592 veh/hr 

Hence, the traffic demand for direct movements X is:  

𝑋 = 1592/1.513 = 1052 

The detailed traffic demand for each direction is shown in Table 3.3. The sum of traffic 

demand in each approach is given as: 

𝑆𝑢𝑚 𝑜𝑓 𝑡𝑟𝑎𝑓𝑓𝑖𝑐 𝑑𝑒𝑚𝑎𝑛𝑑 =   (158 + 1052 + 158) × 4 = 5472 veh/hr 

Table 3.3 Calculated Through Vehicle Equivalents in the East Boundary 

Approach Movement Volume 

(Veh/h) 

Equivalent Volume 

(TVU/h) 

Lane group 

volume 

(TVU/h) 

# of 

lanes 

Volume/lane 

(TVU/h/ln) 

EB L 158 1.05 166 166 1 166 

 T 1052 1 1052 1260 2 630 

 R 158 1.32 208    

 

Step 6. Allocate effective green time to each phase: 

Based on the through vehicle equivalents for each lane group, the total effective green 

time 𝑔𝑖 and specific green time for each phase are given as: 

𝑔𝑖 = 𝐺𝑖 + 𝑌𝑖 − 𝑡𝐿𝑖 = 100 − 4 ∗ 4 = 84 𝑠 

𝐺𝑝𝐴1 = 𝐺𝑝𝐵1 = (C − N𝑡𝐿)
𝐶𝑉𝑖

𝑉𝐶
= 84 ∗

630

1592
= 33 𝑠 

𝐺𝑝𝐴2 = 𝐺𝑝𝐵2 = (C − N𝑡𝐿)
𝐶𝑉𝑖

𝑉𝐶
= 84 ∗

166

1592
= 9𝑠 

3.4.1.2. Intersection Capacity Based on Empirical Method  
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The intersection capacity could be calculated by summing the capacity of all lane groups. 

To obtain the lane group capacity, the basic lane capacity is calculated. For the HDVs, the 

headway is set as 1.9 s. the basic saturation flow rate per lane: 

𝑠0 =
3600

1.9
= 1895   𝑣𝑒ℎ/ℎ𝑟/𝑙𝑎𝑛𝑒 

This basic saturation flow rate is adjusted for different conditions. The adjustment factors 

for left-turn movements with exclusive lane is  fLT = 0.95. Meanwhile, the right-turn movement 

with shared lane is given as fRT = 1.0 − (0.15)PRT = 1 − 0.15 × 0.15 = 0.9775.  

The exclusive left-turn lane capacity:  

c𝑙𝑒𝑓𝑡 = 𝑠𝑖
𝑔𝑖

𝐶
= 1895 × 0.95 × 9/100 =  1625 pcu/hr 

The direct traffic only lane capacity: 

c𝑑𝑖𝑟𝑒𝑐𝑡 = 𝑠𝑖
𝑔𝑖

𝐶
= 1895 × 33/100 =  625 pcu/hr 

The direct and right traffic (i.e., shared right) lane capacity: 

c𝑠ℎ𝑎𝑟𝑒𝑑𝑅𝑖𝑔ℎ𝑡 = 𝑠𝑖
𝑔𝑖

𝐶
= 1895 × 0.9775 × 33/100 = 611 pcu/hr 

The total capacity of the intersection is given by adding of all lane groups in 4 approaches: 

Capacity =  4 × (162 + 625 + 611) =  4 × 1398 =  5592 pcu/hr 

The capacity calculated by the empirical method is nearly to the sum of saturated traffic 

demands (5,472 pcu/hr) calculated in the previous section. This value would be compared with 

the capacity (i.e., maximum through) obtained by the simulation methods.  

 

3.5. Summary 

In this chapter, a hypothetical isolated four-way intersection is proposed to set up a basic 

scenario for the simulation. The layout, pre-timed signal schemes, and potential traffic demands 
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of the intersection are all introduced. An initial pre-timed signal scheme and capacity are 

calculated based on the empirical capacity analysis method. Specific simulation scenarios to 

investigate the impacts of CAVs under different traffic demands and MPRs are also identified. 

This is the basic preparation for simulating intersection capacity with CAVs and investigating 

the potential impacts of CAV technologies on the intersection system in future tasks. 
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CHAPTER 4: MICROSCOPIC SIMULATION METHODOLOGIES 

4.1. Introduction 

As discussed in the potential intersections conducted in Chapter 3, this chapter specifies 

microscopic simulation models for different types of vehicles and the transfer-based deep 

reinforcement learning framework for the traffic signal control. A hypothetical isolated four-way 

intersection is selected as a basic scenario. The following sections are organized as follows. 

Section 4.2 describes the microscopic simulation models for HDVs and CAVs. The basic 

parameters for specific traffic simulation models of HDVs and CAVs are also discussed. Section 

4.3 presents the potential simulation scenarios for the isolated intersection. Finally, section 4.4 

concludes this chapter with a summary.  

 

4.2. Microscopic Simulation Model for Vehicles 

The microscopic simulation method is implemented in this research to investigate the 

impacts of CAVs on the intersection capacity. The main difference in microscopic simulation 

models of the HDVs and CAVs is the control mode of longitudinal movements (which mainly 

controls the travel speed), acceleration/deceleration, and car following gaps between vehicles. In 

this research, The IDM is implemented for modeling HDVs. The ACC system is utilized to 

model CAVs when the CAV is following a HDV. The CACC system is implemented to model 

CAVs when the CAV is following a CAV. The longitudinal movements controls of the CAVs 

are expected to significantly improve the efficiency of the roadway/intersection systems. 

4.2.1. Traffic Simulation Model for Human Driving Vehicles 

4.2.1.1. Intelligent Driving Model  
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The IDM is implemented for modeling HDVs according to Treiber et al. (2000). The 

IDM calculates the acceleration rates of the subject vehicle by balancing the ratio of the current 

velocity versus the desired speed minus the ratio of the desired gap versus the current gap with 

respect to the preceding vehicle (Treiber, Hennecke, and Helbing 2000).  

𝑎𝑖,𝑘 = 𝑎𝑚𝑎𝑥[1 − (
𝑣𝑖,𝑘

𝑣𝑑
)𝛿 − (

𝑠∗(𝑣,𝛥𝑣)

𝑠𝑖,𝑘
)2]                                       (4.1) 

𝑠∗(𝑣𝑖,𝑘, 𝛥𝑣) = 𝑠0 + 𝑚𝑎𝑥 [0, (𝑣𝑖,𝑘𝑡𝑑 +
𝑣,𝛥𝑣

2√𝑎𝑚𝑎𝑥𝑑𝑐
)]                                 (4.2) 

where 𝑎𝑖,𝑘 denotes the acceleration of the subject vehicle i in time step k. 𝑎𝑚𝑎𝑥 represents the 

maximum acceleration allowed; 𝑣𝑖,𝑘 is the current speed of the subject vehicle. 𝑣𝑑 is the desired 

speed. 𝛿 represents the acceleration exponent. 𝑠∗(𝑣, 𝛥𝑣) denotes the desired minimum gap. 𝛥𝑣 

represents the speed difference between the subject vehicle and the preceding vehicle. 𝑠𝑖,𝑘 is the 

current distance to the preceding vehicle. 𝑠0 represents the linear jam distance. 𝑠1 denotes the 

non-linear jam distance. 𝑡𝑑 denotes the desired time gap. 𝑑𝑐 is the comfortable deceleration. 

4.2.2.  Traffic Simulation Models for Connected and Autonomous Vehicles 

The ACC system and CACC system are utilized for CAV simulation according to 

previous works (Liu et al., 2018; Xiao et al., 2017). When the CAV is following a HDV, then the 

car-following system is changed into the ACC mode. When the CAV is following a CAV, then 

the car-following system is switched into the CACC mode for a closer car-following behavior. 

4.2.2.1. Adaptive Cruise Control 

The ACC system, which is a variant of the IDM, is proposed and dynamically controlled 

by four modes, i.e., cruising control, gap control, gap-closing control, and collision avoidance 

mode (Milanés and Shladover 2014; Xiao, Wang, and Van Arem 2017; Mintsis 2018).  
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4.2.2.1.1 Cruising Control Mode   

This controller aims to keep the ACC vehicle traveling at a desired speed. 

𝑎𝑖,𝑘+1 = 𝑘1(𝑣𝑑 − 𝑣𝑖,𝑘)                                                (4.3) 

where 𝑎𝑖,𝑘+1 represents the acceleration recommended for the 𝑖-th subject vehicle at the time step 

𝑘 + 1; 𝑣𝑑 denotes the desired speed; 𝑣𝑖,𝑘 indicates the speed of the subject vehicle i at the current 

time step 𝑘, and 𝑘1 denotes the control gain parameter determining the acceleration by the speed 

deviation. Typical values for 𝑘1 range between 0.3 to 0.4 𝑠−1 in (Xiao et al., 2017), and this 

study selects 0.4 𝑠−1 for 𝑘1. 

4.2.2.1.2 Gap Control Mode 

The gap control mode of the ACC system is triggered when the gap and speed deviation 

with respect to the preceding vehicle are less than 0.2 𝑚 and 0.1 𝑚/s, respectively (Xiao et al., 

2017). The acceleration of the subject vehicle i at the next time step 𝑘 + 1 is calculated based on 

the gap and speed deviations. 

𝑎𝑖,𝑘+1 = 𝑘2𝑠𝑖,𝑘 + 𝑘3(𝑣𝑖−1,𝑘 − 𝑣𝑖,𝑘)                                    (4.4) 

where 𝑠𝑖,𝑘  denotes the gap deviation of the subject vehicle 𝑖 at the current time step 𝑘. 𝑣𝑖−1,𝑘 

represents the current speed of the preceding vehicle (index in 𝑖 - 1); 𝑘2  and 𝑘3  denotes the 

control gains on the gap and speed deviations, respectively. Typical values for the optimal gains 

are 𝑘2 = 0.23 𝑠−2
 and 𝑘3 = 0.07 𝑠−1 (Xiao et al., 2017).  

The gap deviation of the subject vehicle is defined according to (Milanés & Shladover, 

2014). 

𝑠𝑖,𝑘 = 𝑥𝑖−1,𝑘 − 𝑥𝑖,𝑘 − 𝑑0 − 𝑡𝑑𝑣𝑖,𝑘                                          (4.5) 
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where 𝑥𝑖−1,𝑘  and 𝑥𝑖,𝑘 represent the current positions of the preceding vehicle and the subject 

vehicle, respectively. 𝑣𝑖,𝑘 is the current speed of the subject vehicle. 𝑡𝑑 indicates the desired time 

gap for the ACC vehicle.  

4.2.2.1.3 Gap-closing Control Mode 

The gap-closing control mode was proposed in (Milanés & Shladover, 2016) and is 

activated when the gap to the preceding vehicle is smaller than 100 𝑚. When the gap is between 

100 𝑚 and 120 𝑚, the subject vehicle retains the previous control mode to provide hysteresis in 

the control process and perform a smooth transfer between two modes (Liu et al., 2018; Xiao et 

al., 2017). The formula of the gap-closing control mode is calculated by recalibrating the 

parameters of control gains in Equation (4.4), and this study utilizes 𝑘2 = 0.04 𝑠−2 and 𝑘3 = 0.8 

𝑠−1 according to (Xiao et al., 2017).  

4.2.2.1.4 Collision Avoidance Mode 

The collision avoidance mode aims to avoid imminent rear-end collisions, and it is 

activated when the gap to the preceding vehicle is smaller than 100 m, and the gap and speed 

deviations are less than 0 and 0.1 𝑚/s, respectively (Mintsis, 2018). If the gap is between 100 m 

and 120 m, the subject vehicle retains the previous control mode to provide hysteresis in the 

control process and performs a smooth transfer between the two modes (Liu et al., 2018; Xiao et 

al., 2017). The collision avoidance control mode was also derived by calibrating the parameters 

of gap control gains in Equation (4.4), and this study sets 𝑘2 = 0.8 𝑠−2  and 𝑘3 = 0.23 𝑠−1 

according to (Mintsis, 2018). 

4.2.2.2. Cooperative Adaptive Cruise Control 

The CACC system, which could collect information from V2V and/or V2I 

communications, is a functional extension of the ACC system. It is noted that, when a CAV is 
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following a CAV, the car-following system is changed into CACC mode. The additional 

information collected could help CAVs with the CACC system follow their predecessors with 

higher accuracy, shorter response time, and shorter headway compared to ACC vehicles 

(Shladover et al., 2012). 

4.2.2.2.1 Cruising Control Mode 

The speed controller for the CACC system is the same as that for the ACC system. The 

cruising control mode is triggered when the time-gap with respect to the preceding vehicle is 

larger than 2 𝑠, and the gain 𝑘1 in Equation (4.3) is set as 0.4 𝑠−1 according to (Liu et al., 2018; 

Xiao et al., 2017). 

4.2.2.2.2 Gap Control Mode 

The gap control mode for the CACC system is activated when the gap and speed 

deviations are smaller than 0.2 𝑚 and 0.1 𝑚/𝑠, respectively (Xiao et al., 2017). Compared to the 

gap control mode of the ACC vehicle, the speed of the subject CACC vehicle at the next time 

step 𝑘 + 1 is calculated by: 

𝑣𝑖,𝑘+1 = 𝑣𝑖,𝑘 + 𝑘4𝑒𝑖,𝑘 + 𝑘5𝑒𝑖,𝑘̇                                           (4.6) 

𝑒𝑖,𝑘̇ = 𝑣𝑖−1,𝑘 − 𝑣𝑖,𝑘 − 𝑡𝑑𝑎𝑖,𝑘                                          (4.7) 

where 𝑒𝑖,𝑘̇  is the first-order derivative of the gap deviation 𝑒𝑖,𝑘. The values of the control gains 𝑘4 

and 𝑘5 in Equation (4.6) are calibrated as 0.45 𝑠−2 and 0.25 𝑠−1, respectively (Xiao et al., 2017). 

4.2.2.2.3 Gap-closing Control Mode 

The gap-closing control mode in CACC is activated when the time-gap is less than 1.5 𝑠. 

If the time-gap is between 1.5 𝑠 and 2 𝑠, the subject vehicle would retain the previous control 

mode as a transition process (Liu et al., 2018; Xiao et al., 2017). The Gap-closing control 
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function is also calculated by calibrating the optimal gains in Equation (4.6), and they are set as 

𝑘4 = 0.01 𝑠−2 and 𝑘5 =0.05 𝑠−1 according to (Xiao et al., 2017).  

4.2.2.2.4 Collision Avoidance Mode 

The collision avoidance mode helps the CACC vehicle to change the velocity more 

smoothly and carefully when the time-gap to the preceding vehicle is less than 1.5 s and the gap 

deviation is negative (Mintsis, 2018). The collision avoidance controller is also derived by 

calibrating the parameters of the gap control gains in Equation (4.6), and this study sets 𝑘4= 0.45 

𝑠−2 and 𝑘5 = 0.05 𝑠−1 according to (Mintsis, 2018).  

 

4.2.3. Basic Parameters for Specific Traffic Simulation Models 

The default lane change model “LC2013” in SUMO is employed for all vehicles. Table 

4.1 indicates the basic parameters of the car-following behaviors of the HDVs and CAVs. 

According to the HCM (2016), the base saturation flow rate for HDV is 1900 passenger cars per 

hour per lane. In this case, the desired headway for HDVs is set as 1.9 s. The recommend 

headways for CAVs are adopted according to (Milanés & Shladover, 2014; Mintsis, 2018). 

When a CAV is following a CAV, the desired headway is 0.6 s. When a CAV is following a 

HDV, the car-following behavior will shifted into ACC mode and the desired headway is 1.1 s. 

To model heterogeneous driving behaviors of the human drivers, the maximum speed for the 

HDV follows a normal distribution N(1, 0.2) with respect to the speed limits. Also, the reaction 

time for HDV is 0.7 s, while the reaction time for the CAV is always 0.1 s. Moreover, Table 4.2 

shows other specific parameters for ACC/CACC-controlled CAVs which are set according to 

previous research and projects (Liu et al., 2018; Mintsis, 2018; Porfyri et al., 2018) 

 

  



62 

 

Table 4.1 Basic Parameters in Car-following Models 

Vehicle 

Type 

Control 

Mode 

Acceleration 

(m/s2) 

Deceleration 

(m/s2) 

Desired time 

gap (s) 

Speed 

Deviation 

Reaction 

time (s) 

HDV IDM 3 6.5 1.9 0.2 0.7 

CAV-HDV ACC 3.5 7.5 1.1 0 0.1 

CAV-CAV CACC 3.5 7.5 0.6 0 0.1 

 

Table 4.2 Specific Factors for Traffic Simulation Models 

Factors Default Description Models 

minGap 2.5 Minimum Gap when standing (m) all models 

maxDecel 9 The maximum deceleration ability of vehicles of this type 

in case of emergency (in m/s^2) 

all models 

delta 4 acceleration exponent IDM 

stepping 0.25 the internal step length (in s) when computing follow 

speed 

IDM 

speedControlGain -0.4 The control gain determining the rate of speed deviation 

(Speed control mode) 

ACC 

gapClosingControlGainSpeed 0.8 The control gain determining the rate of speed deviation 

(Gap closing control mode) 

ACC 

gapClosingControlGainSpace 0.04 The control gain determining the rate of positioning 

deviation (Gap closing control mode) 

ACC 

gapControlGainSpeed 0.07 The control gain determining the rate of speed deviation 

(Gap control mode) 

ACC 

gapControlGainSpace 0.23 The control gain determining the rate of positioning 

deviation (Gap control mode) 

ACC 

collisionAvoidanceGainSpace 0.8 The control gain determining the rate of positioning 

deviation (Collision avoidance mode) 

ACC 

collisionAvoidanceGainSpeed 0.23 The control gain determining the rate of speed deviation 

(Collision avoidance mode) 

ACC 

speedControlGainCACC -0.4 The control gain determining the rate of speed deviation 

(Speed control mode) 

CACC 

gapClosingControlGainGap 0.005 The control gain determining the rate of positioning 

deviation (Gap closing control mode) 

CACC 

gapClosingControlGainGapDot 0.05 The control gain determining the rate of the positioning 

deviation derivative (Gap closing control mode) 

CACC 

gapControlGainGap 0.45 The control gain determining the rate of positioning 

deviation (Gap control mode) 

CACC 

gapControlGainGapDot 0.0125 The control gain determining the rate of the positioning 

deviation derivative (Gap control mode) 

CACC 

collisionAvoidanceGainGap 0.45 The control gain determining the rate of positioning 

deviation (Collision avoidance mode) 

CACC 

collisionAvoidanceGainGapDot 0.05 The control gain determining the rate of the positioning 

deviation derivative (Collision avoidance mode) 

CACC 

Source: SUMO User Documentation. https://sumo.dlr.de/docs 

https://sumo.dlr.de/docs
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In this research, the total waiting time, CO2 emission, and fuel consumption are utilized 

to investigate the traffic performance of the intersection system. All these three criteria are 

retrieved from the SUMO software. The waiting time of a vehicle/lane is calculated by 

accumulating the time when the vehicle speed decreases to a value below 0.1m/s. Also, the 

waiting time would be reset to 0 after the vehicle moves. The emission and fuel consumption 

models of the gasoline-powered passenger car (Euro norm 4) are developed and calculated by the 

HBEFA3 (version 3.1). The details of the calculation procedure and emission/fuel consumption 

factors could be referred to the HBEFA3 (Hausberger S., Rexeis M., Zallinger M., 2009). 

 

4.3. Potential Intersection Simulation Scenarios 

This section identifies potential intersections and collects necessary data related to the 

intersection simulation. A hypothetical isolated four-way intersection is selected as a basic 

scenario. An initial pre-timed signal scheme is calculated for this typical intersection.  

4.3.1. Scenarios for Typical Isolated Intersection 

All simulation scenarios are processed in the Simulation of Urban MObility (SUMO) by 

the TraCI-Python interface. Each training episode of the simulation is 3600-s with a 0.1-s time 

step. A ten-minutes (600 s) warm-up period is added at the beginning of each simulation. This 

warm-up period aims to eliminate the impacts of insufficiency of traffic generation at the first ten 

minutes of the simulation. The pre-timed signal scheme has a 100 s cycle length and the phases 

are set as North-South direct movements (33 s), North-South left-turn movements (9 s), East-

West direct movements (33 s), East-West left-turn movements (9 s). The yellow and all-red time 

is 4 s per phase.  
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In the microscopic simulation scenarios, saturated traffic throughput (or maximum 

throughput) is utilized to estimate the capacity of the intersection. The traffic generation follows 

the uniform distribution to maintain the peak-hour traffic demands all the time. The maximum 

throughput is obtained by increasing the traffic demands of the intersection and obtain a stable 

throughput value. Then, traffic demands with different MPRs of CAVs are also tested to obtain 

the maximum throughput. The detailed simulation scenarios are given as follows. 

1). For scenarios with only HDVs, increasing the traffic demands from 500 to 8000 

veh/hr, each simulation would get the throughputs with different traffic demands and the traffic 

performance in the scenario with maximum throughput. 

2). For scenarios with the CAVs, the MPRs of CAVs would increase from 0 to 100 % 

with 10% per step. Then, each simulation would obtain the throughputs with different traffic 

demands and the traffic performance in the scenario with maximum throughput. 

 

4.4. Summary 

In this chapter, microscopic simulation models for different types of vehicles are 

introduced. After that, basic parameters for specific traffic simulation models are also specified 

for different types of vehicles. Specific scenarios for this typical intersection are designed 

considering different traffic demands and MPRs of CAVs. These are basic preparations for 

simulating intersection capacity with CAVs in the next tasks. The impacts of different traffic 

demands and MPRs of CAVs will be further investigated on an isolated intersection and DRL 

traffic signal control system.   
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CHAPTER 5: IMPACT OF CAVS ON INTERSECTION CAPACITY 

5.1. Introduction 

This chapter presents the impacts of CAVs on the designed intersection scenarios under 

different MPRs of CAVs. The following sections are mainly organized into two parts. In the first 

part, a hypothetical isolated four-way intersection is utilized as a basic scenario for the lane-level 

and intersection-level capacity analyses. The intersection capacity is first analyzed by calculating 

the adjustment factors of the saturation headway and saturation traffic flow rate for each lane 

under different MPRs of CAVs. Then, the fitted curves and functions for the maximum 

throughput of the whole intersection under different MPRs of CAVs are calibrated and 

investigated. In the second part, this research aims to investigate the effects of different control 

models of AVs and CAVs (i.e., IDM controlled AVs, ACC controlled AVs, and CACC 

controlled CAVs) on the intersections with different signal control methods (i.e., pre-timed 

signal, gap-based actuated signal, and delay-based actuated signalized intersections). Meanwhile, 

the impacts of AV/CAV market penetration rates on the intersection with different traffic 

demands are also investigated. Finally, this chapter concludes with a summary.  

 

5.2. Intersection Capacity Analysis Methods 

5.2.1. Intersection Capacity Analysis with the Lane Level 

As defined in HCM (2016), saturation headway is the average headway between the fifth 

and fifteen vehicles in a standing queue when the intersection signal light changes from red to 

green. The first four headways are not included due to the impacts of start-up loss time. The 

headway is calculated by the time gap when two successive vehicles (front bumper) are passing 

over the stop line. In this research, the base saturation headway rate 𝑠0 is obtained by dividing 
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3600 s by the saturation headway of the human driven vehicles ℎ𝐻𝐷𝑉. Considering the impacts of 

CAVs, the saturation flow rate 𝑠∗ could be adjusted by the headway adjustment factor 𝑓ℎ , 

according to equation (5.1) or the saturation flow rate (SFR) adjustment factor 𝑓𝑠, according to 

equation (5.3). 

𝑓h (CAV rate= 𝛼) =
ℎ𝑒𝑎𝑑𝑤𝑎𝑦CAV rate= 𝛼 

ℎ𝑒𝑎𝑑𝑤𝑎𝑦 𝐻𝐷𝑉
                                 (5.1) 

𝑠∗ =
3600

𝑓ℎ×ℎ𝐻𝐷𝑉
                                                             (5.2) 

𝑓s (CAV rate= 𝛼) =
1 

𝑓h (CAV rate= 𝛼)
                                          (5.3) 

𝑠∗ = 𝑓𝑠 × 𝑠0 = 𝑓𝑠
3600

ℎ𝐻𝐷𝑉
                                               (5.4) 

 

5.2.2. Intersection Capacity Analysis with the Intersection Level 

In the simulation, the maximum throughput of the isolated intersection is obtained with 

the increase in traffic demands. The capacity (simulated maximum throughput) of the isolated 

intersection is obtained under different MPRs of CAVs conditions. After that, the traffic 

performances are investigated under maximum throughput scenarios. The fitted curves and 

adjustment factors for the intersection capacity under different MPRs of CAVs are analyzed. 

 

5.3. Intersection Capacity Analysis Results 

5.3.1. Lane Level Results 

With the increase of the traffic demand for each lane, the lane level throughput reaches a 

maximum value, which represents the saturated traffic demand. In this study, lanes in each 

approach of the hypothetical four-way intersection include one exclusive through traffic lane, 

one exclusive left-turn traffic lane, and one shared-right-and-through traffic lane. In each 
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simulation, the first 600s of the 3600s simulation is set as the warm-up time. The traffic is 

generated with a uniform distribution. The average values of all headways for the fifth to the 

fifteenth vehicle crossing the stop line when the light changed from red to yellow are obtained. 

Table 5.1 presents the saturation headway for each lane of the isolated intersection under 

saturated traffic demand scenarios. With the increase of MPRs of CAVs, the saturation headways 

for each lane also present different degrees of reduction. In the simulation, the desired time gap 

value for HDV, ACC-mode-controlled CAV, and CACC-mode-controlled CAV is 1.9 s, 1.1 s, 

and 0.6 s, respectively. It is noted that the time gap is only part of the headway, which also 

includes the travel time used for the length of the front vehicle. The saturation headway for the 

exclusive through traffic lane is 2.117 for only-HDV conditions. Also, the saturation headways 

for the exclusive left-turn and shared-right lane are slightly larger than the exclusive through lane 

due to the impacts of turning vehicles. With 100% CAVs, the saturation headways for the 

exclusive through traffic lane, exclusive left-turn traffic lane, and shared-right-and-through 

traffic lane decrease by 55.8%, 48.9%, and 42.4%, respectively.  

 

Table 5.1 Saturation Headway for Each Lane under Different MPRs of CAVs 

  Headway (s)     

CAV rate Exclusive through Exclusive Left Shared right 

0 2.117 2.298 2.317 

0.1 2.083 2.252 2.24 

0.2 2.029 2.203 2.263 

0.3 1.871 1.996 2.174 

0.4 1.742 1.957 2.045 

0.5 1.738 1.945 1.934 

0.6 1.566 1.718 1.888 

0.7 1.367 1.604 1.722 

0.8 1.311 1.369 1.604 

0.9 1.068 1.26 1.518 

1 0.934 1.174 1.335 
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According to the saturation headway results shown in Table 5.1, the adjustment factors 

for the saturation headway and saturation flow rate under different MPRs of CAVs are 

summarized in Table 5.2. The adjustment factors are used to modify the condition with only 

HDVs. Under 100% MPRs of CAVs, the saturation headways of through-only, left-turn-only, 

and shared-right-and-through traffic lanes are about 0.441, 0.511, and 0.576, respectively, with 

regard to the condition with only HDVs. Meanwhile, with 100% MPRs of CAVs, the saturation 

flow rates for the through-only, left-turn-only, and shared-right-and-through traffic lanes could 

increase about 126.8%, 95.7%, and 73.6%, respectively, compared to the only HDVs condition.  

Figure 5.1 and Figure 5.2 also indicate the tendency of the saturation headway and 

saturation flow rate adjustment factors under different MPRs of CAVs. Contrary tendency results 

are observed in saturation flow rate adjustment factors as they are the reciprocal (or inverse) of 

the saturation headway adjustment factors. It is noted that the saturation headway adjustment 

factors for the exclusive through lane are smaller than the exclusive left-turn lane after 40% 

MPRs of CAVs. Also, saturation headway adjustment factors of the exclusive through lane and 

exclusive left-turn lane are always smaller than the shared-right-and-through traffic lane. The 

exclusive through traffic lane shows the largest deduction as it is not affected by the turning 

vehicles. The shared-right-and-through traffic lane has the minimum deduction in the headway 

as it both includes turning and straight vehicles. The heterogeneous traffic movements (mixed 

turning and straight movements) could have negative impacts on the deduction of headways. 

 

Table 5.2 Adjustment Factors for Saturation Headway and Saturation Flow Rate for Each Lane 

under Different MPRs of CAVs 

  Saturation headway adjustment factors Saturation flow rate adjustment factors  

CAV Exclusive Exclusive Shared Exclusive Exclusive Shared 
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rate through left right through left right 

0 
      

0.1 0.984 0.98 0.967 1.016 1.02 1.034 

0.2 0.958 0.959 0.977 1.044 1.043 1.024 

0.3 0.884 0.869 0.938 1.131 1.151 1.066 

0.4 0.823 0.852 0.883 1.215 1.174 1.133 

0.5 0.821 0.847 0.835 1.218 1.181 1.198 

0.6 0.74 0.748 0.815 1.351 1.337 1.227 

0.7 0.645 0.698 0.743 1.55 1.433 1.346 

0.8 0.632 0.638 0.716 1.582 1.567 1.397 

0.9 0.505 0.548 0.655 1.98 1.825 1.527 

1 0.441 0.511 0.576 2.268 1.957 1.736 

 

 

Figure 5.1 Headway Adjustment Factors under Different MPRs of CAVs 
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Figure 5.2 Saturation Flow Rate Adjustment Factors under Different MPRs of CAVs 

 

5.3.2. Intersection-level Results 

In the simulation, the maximum throughput of the isolated intersection is obtained with 

the increase in traffic demands. The capacity (simulated maximum throughput) of the isolated 

intersection is obtained under different MPRs of CAVs conditions. After that, the traffic 

performances are investigated under maximum throughput scenarios. The fitted curves and 

adjustment factors for the intersection capacity under different MPRs of CAVs are analyzed. 

At first, all simulated vehicles are set as all human driven vehicles. During the simulation, 

the traffic demand for the whole intersection increases from 500 to 8000 veh/hr. As shown in 

Figure 5.3, the throughput reaches a maximum value of 4938 veh/hr with the increase in traffic 

demands. This maximum throughput value for the only-HDVs condition is set as a basic value 

for scenarios with different MPRs of CAVs. 
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Figure 5.3 Traffic Throughput with All Human Driven Vehicles 

 

Additionally, scenarios with different MPRs of CAVs are simulated with different traffic 

demands. When a CAV is following a HDV, the car-following system is changed into the ACC 

mode. When a CAV is following a CAV, the car-following system is switched into the CACC 

mode for a closer car-following behavior. As shown in Figure 5.4, the maximum throughputs 

(points marked with red color) of the whole intersection are obtained with the increase in traffic 

demands under different MPRs of CAVs (MPR increases from 10% to 100% by 10% per step). 

The specific traffic performances (including the total waiting time, total CO2 emission, and total 

fuel consumption) under different traffic demands are also given in Table 5.3. With the increase 

of MPRs of CAVs, the maximum throughput of the intersection also increases accordingly. With 

100% MPRs of CAVs, the maximum throughput reaches 8413 veh/hour.  
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                      (1) 10% MPRs of CAVs                                     (2) 20% MPRs of CAVs 

 
                      (3) 30% MPRs of CAVs                                     (4) 40% MPRs of CAVs 

 
                      (5) 50% MPRs of CAVs                                     (6) 60% MPRs of CAVs 
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                      (7) 70% MPRs of CAVs                                     (8) 80% MPRs of CAVs 

 
            (9) 90% MPRs of CAVs                            (10) 100% MPRs of CAVs 

Figure 5.4 Traffic Throughput under Different MPRs of CAVs 

 

All traffic performances under the saturated traffic flow with different MPRs of CAVs 

are summarized in Table 5.3. The maximum throughput increases with the increase of CAV 

penetration rates. Also, the change rates of the maximum throughput are summarized in the last 

column of Table 5.3. It is noted that, with 100% MPRs of CAVs, the maximum throughput of 

this isolated intersection could increase about 70.4% compared to the scenario with no CAVs.  

 

Table 5.3 Traffic Performance under Saturated Traffic Flow with Different MPRs of CAVs 

MPR Traffic 

demand 

Total 

waiting 

time (s) 

Average 

waiting 

time (s) 

Total CO2 

(kg) 

Avg. 

CO2 

(kg) 

Total Fuel 

(L) 

Avg. 

Fuel 

(L) 

Maximum 

Throughput 

Change 

rate 

0 5400 658796.4 122 2180.461 0.404 937.329 0.174 4938 
 

0.1 5600 697819 124.61 2385.617 0.426 1025.52 0.183 5047 1.022 

0.2 5600 695985.4 124.28 2282.991 0.408 981.403 0.175 5155 1.044 

0.3 6100 860257.7 141.03 2922.059 0.479 1256.132 0.206 5339 1.081 

0.4 6200 848790.4 136.9 2854.666 0.46 1227.158 0.198 5565 1.127 

0.5 6500 906076.3 139.4 3001.592 0.462 1290.318 0.199 5844 1.183 

0.6 6500 787004.7 121.08 2662.238 0.41 1144.432 0.176 6085 1.232 

0.7 6800 734282.3 107.98 2636.286 0.388 1133.273 0.167 6494 1.315 

0.8 7400 955250 129.09 3204.906 0.433 1377.712 0.186 6973 1.412 

0.9 8000 1008473.3 126.06 3539.99 0.442 1521.757 0.19 7568 1.533 

1 8900 1157348.1 130.04 4323.411 0.486 1858.534 0.209 8413 1.704 
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With the maximum throughput (veh/hour) summarized in Table 5.3, the fitting curve of 

the maximum throughput (y) is obtained with regard to the MPRs of CAVs (x). The fitting curve 

is presented in Figure 5.5, and the fitting formula is shown in equation (5.5). The maximum 

throughput increases steadily under 60% MPRs of CAVs and increases rapidly after 70% MPRs 

of CAVs. 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 = 2969𝑀𝑃𝑅3 − 1010𝑀𝑃𝑅2 + 1505𝑀𝑃𝑅 + 4914               (5.5) 

 

 
Figure 5.5 Maximum Throughput under Different MPRs of CAVs 

 

5.4. Intersection Performance Under Different MPRs of CAVs 

This research also aims to investigate the impacts of MPRs of CAVs on intersections 

(Song et al., 2021). Three different traffic demand scenarios for the intersection are calculated by 

the critical volume-to-capacity (v/c) ratio, i.e., v/c = 0.4 for low-demand (512 vph), v/c = 0.8 for 

medium-demand (1024 vph), and v/c = 1 for high-demand (1280 vph). The proportions of 

straight, left-turn, and right-turn rates are set as 65%, 15%, and 20%, respectively. CAVs 

controlled with the CACC mode, AVs controlled with the ACC mode, and AVs controlled with 

IDM mode are analyzed separately in the mixed traffic with HDVs. The MPR of the AV/CAV 
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increases from 0% to 100% by 20% per step. To study the effects of AV/CAV at the hypothetical 

intersections, each traffic demand scenario encompasses three widely used signal control 

schemes, i.e., pre-timed signal (or fixed signal) control, gap-based actuated control, and delay-

based actuated control schemes. The pre-timed signal scheme with four phases is optimized by 

the performance index approach in Synchro. Two actuated signal schemes are controlled based 

on the pre-timed signal scheme while setting 5 s for the minimum duration and 20 s for the 

maximum extension of the green phase. For the gap-based actuated control, the green-time phase 

is prolonged when the maximum time gap between two successive vehicles is less than 3 s. For 

the delay-based actuated control scheme, a prolongation of the green-time phase would be 

activated when the delay (i.e., cumulative time loss) of a vehicle is larger than 1 s within the 

detector/communication range of 300 m. 

All scenarios are simulated in the Simulation of Urban MObility (SUMO) platform by 

the TraCI-Python interface. The simulation time for each scenario is 3600 s with a 0.1 s time 

step. The speed limit of the roadway is 50 km/h. To avoid identical driving behaviors, the initial 

speed and depart lane of the vehicle are all generated randomly. Also, to avoid homogeneous 

speeds, the desired speed for each vehicle is calculated by the product of the speed factor and 

speed limit. The speed factor in this research obeys a normal distribution of N(1.2, 0.1). 

Meanwhile, the driver’s capability in holding the desired speed (between 0 and 1) is determined 

by the speed control factor according to (Mintsis, 2018). The default lane-changing model 

(LC2013) in SUMO is used for all vehicles (Erdmann, 2015). Specific parameters for the car-

following models are shown in Table 5.4 according to (Mintsis, 2018; Porfyri et al., 2018; Xiao 

et al., 2017).  
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Table 5.4  Basic Factors in Car-following Models 

Vehicle 

Type 

Control 

Mode 

Acceleration 

(m/s2) 

Deceleration 

(m/s2) 

Desired time 

gap (s) 

Speed control 

factor 

Reaction 

time (s) 

HDV Krauss 1.25 3 1.64 0.5 0.7 

AV IDM 2 4 1.4 0.1 0.1 

AV ACC 2 4 1.1 0.1 0.1 

CAV CACC 2 4 0.6 0.1 0.1 

 

5.4.1. Effects of the AVs with the IDM System 

The average delay of all vehicles, which is calculated by the average travel time minus 

the desired travel time of the trip, is used to measure the performance of the intersection system 

under pre-timed, gap-based actuated, and delay-based actuated signal scenarios. The results of 

the average delay for AVs with the IDM system under three traffic demands with different MPRs 

are shown in Figure 5.6. Table 5.5 also presents the change rate of the average delay compared to 

the result of the 100% HDVs scenario. For the scenario with low traffic demand and 100% IDM 

controlled AVs, the average delay decreases by 28%, 45%, and 36% for pre-timed, gap-based, 

and delay-based signalized intersection, respectively.  

 

 

Figure 5.6 Average Delay under Different MPRs of AVs with the IDM System 
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Table 5.5 Average Delay and the Change Rate of the Average Delay (In Brackets) for AVs with 

IDM System Compared to 100% HDVs Scenario (unit: s) 

IDM Low volume Medium volume High volume 

MPRs Fix Gap Delay Fix Gap Delay Fix Gap Delay 

0 27.1 32.6 24 330 176.7 134.9 365.6 478 457.7 

0.2 26.1 

(0.04) 

30.9 

(0.05) 

22.9 

(0.05) 

253.2 

(0.23) 

149.5 

(0.15) 

123.1 

(0.09) 

334.7 

(0.08) 

470.6 

(0.02) 

443.6 

(0.03) 

0.4 24.8 

(0.09) 

28 

(0.14) 

21.2 

(0.12) 

187.8 

(0.43) 

137.1 

(0.22) 

98.3 

(0.27) 

299.6 

(0.18) 

449.4 

(0.06) 

428 

(0.06) 

0.6 23.4 

(0.14) 

24.5 

(0.25) 

18.8 

(0.22) 

145.4 

(0.56) 

68.5 

(0.61) 

57 

(0.58) 

265.8 

(0.27) 

386.1 

(0.19) 

375.8 

(0.18) 

0.8 22.1 

(0.18) 

22.7 

(0.3) 

17.8 

(0.26) 

112.9 

(0.66) 

54.8 

(0.69) 

47.8 

(0.65) 

204.6 

(0.44) 

402 

(0.16) 

321.1 

(0.3) 

1 19.6 

(0.28) 

18 

(0.45) 

15.4 

(0.36) 

67.2 

(0.8) 

38 

(0.79) 

24.1 

(0.82) 

68 

(0.81) 

178.3 

(0.63) 

91.7 

(0.8) 

 

For the medium traffic demand scenarios, the average delay decreases significantly in all 

three signalized intersections as the MPR of IDM controlled AVs increases. When the MPRs of 

the IDM controlled AVs exceed 60%, both actuated signalized intersections reduce about 50% of 

the average delay compared to the pre-timed signal scenario. With a 100% MPR of IDM 

controlled AVs, about 79% and 82% decrease of the average delay could be observed at gap-

based and delay-based actuated signalized intersections, respectively.  

When the traffic is high enough and reaches the saturated flow, significant drops of the 

average delay could be observed after an 80% MPR of the IDM controlled AVs. With 100% 

MPRs of IDM controlled AVs, the pre-timed signal scheme outperforms two actuated signal 

schemes and decreases about 81% of the average delay. Hence, the actuated signal scheme may 

not be suitable for peak hours or other high traffic demand circumstances when using IDM 

controlled AVs. Also, in the scenario of high traffic demand, there is an increase in the average 

delay when the MPR of the IDM controlled AVs increases from 60% to 80% at gap-based 
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signalized intersection. This indicates the unstable delay at the intersection in the mixed flow of 

HDVs and IDM controlled AVs. 

 

5.4.2. Effects of the AVs with the ACC System 

The results of the average delay and the corresponding change rate of the average vehicle 

delay for ACC controlled AVs under different scenarios are shown in Figure 5.7 and Table 5.6. 

The results of ACC controlled AVs are similar to the results of the IDM controlled AVs in low 

and medium traffic demand scenarios. With a 100% MPR of ACC controlled AVs, the average 

delay decreases by 85% at the delay-based signalized intersection under medium traffic demand. 

Also, a slight increase in the average delay is observed when the MPR of the ACC controlled 

AVs increases from 60% to 80% at the pre-timed signalized intersection under medium traffic 

demand. This further proves the instability interaction between HDVs and ACC controlled AVs. 

For the high traffic demand scenarios, the average delay decreases more quickly when the MPRs 

of the ACC controlled AVs exceed 60% compared to IDM controlled AVs. Different from the 

IDM scenario, the average delay for two actuated signal-controlled intersections under high 

traffic demand with a 100% MPR of ACC controlled AVs is less than that for the pre-timed 

signal scenario. The average delay is decreased by 93% at the delay-based signalized intersection 

with a 100% MPR of ACC controlled AVs, while the pre-timed signal scenario only decreases 

85% of the average delay. These results indicate that ACC controlled AVs outperform the IDM 

controlled AVs. Also, the implementation of ACC controlled AVs could better cooperate with 

gap-based and delay-based actuated signal schemes under high traffic demand scenario.  
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Figure 5.7 Average Delay under Different MPRs of AVs with the ACC System 

 

Table 5.6 Average Delay and the Change Rate of the Average Delay (In Brackets) for AVs with 

ACC system Compared to 100% HDVs Scenario (unit: s) 

ACC Low volume Mid volume High volume 

MPR Fix Gap Delay Fix Gap Delay Fix Gap Delay 

0 27.1 32.6 24 330 176.7 134.9 365.6 478 457.7 

0.2 25.7 

(0.05) 

31.3 

(0.04) 

22.9 

(0.05) 

220.6 

(0.33) 

104.4 

(0.41) 

87.6 

(0.35) 

314.5 

(0.14) 

424.1 

(0.11) 

414.7 

(0.09) 

0.4 24.5 

(0.1) 

26.5 

(0.19) 

21.4 

(0.11) 

151.6 

(0.54) 

85.1 

(0.52) 

56 

(0.59) 

253.3 

(0.31) 

384.1 

(0.2) 

379.1 

(0.17) 

0.6 22.9 

(0.16) 

24.2 

(0.26) 

19.1 

(0.21) 

105 

(0.68) 

47.8 

(0.73) 

43.6 

(0.68) 

155.1 

(0.58) 

322.1 

(0.33) 

268.8 

(0.41) 

0.8 21.1 

(0.22) 

22.7 

(0.31) 

17.5 

(0.27) 

122.9 

(0.63) 

45.6 

(0.74) 

41.1 

(0.7) 

120.1 

(0.67) 

164.5 

(0.66) 

117.8 

(0.74) 

1 19.4 

(0.28) 

17.5 

(0.46) 

15.1 

(0.37) 

64.9 

(0.8) 

32.1 

(0.82) 

19.6 

(0.85) 

53.4 

(0.85) 

43.8 

(0.91) 

32.1 

(0.93) 

 

5.4.3. Effects of the CAVs with the CACC System 

Figure 5.8 and Table 5.7 present the average delay and the corresponding change rate of 

the average delay for CACC controlled CAVs under different scenarios. The average delay 

decreases with the increase of MPRs of CACC controlled CAVs. Also, the results of CACC 

controlled CAVs outperform IDM and ACC controlled AVs in all scenarios. For medium traffic 

demand scenarios, the average delay drops significantly after 20% MPRs of CACC controlled 
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CAVs for all signal schemes. The average delay drops by 94% at the pre-timed signal scheme 

with 100% MPRs of CACC controlled CAVs. The results of two actuated signalized 

intersections indicate that actuated signal schemes are more suitable under medium traffic 

demand compared to the pre-timed signal scheme. For high demand scenarios, the average delay 

drops significantly with the increase of MPRs of CACC controlled CAVs. About 87% and 96% 

drops in the average delay at the delay-based intersection are observed when the MPRs of CACC 

controlled CAVs reach 60% and 100%, respectively. All these indicate the superiority of the 

CACC system since the communication function of the CAVs could further decrease the 

headway and help vehicles to react cooperatively.  

 

 

Figure 5.8 Average Delay under Different MPRs of CAVs with the CACC System 

 

Table 5.7 Average Delay and the Change Rate of the Average Delay (In Brackets) for CAVs 

with CACC system Compared to 100% HDVs Scenario (unit: s) 

CACC Low volume Mid volume High volume 

MPR Fix Gap Delay Fix Gap Delay Fix Gap Delay 

0 27.1 32.6 24 330 176.7 134.9 365.6 478 457.7 

0.2 25.7 

(0.05) 

31.1 

(0.05) 

22.3 

(0.07) 

175.5 

(0.47) 

62 

(0.65) 

58.2 

(0.57) 

265.8 

(0.27) 

407 

(0.15) 

365.5 

(0.2) 

0.4 24.2 

(0.11) 

25.2 

(0.23) 

20( 

0.17) 

92.2 

(0.72) 

47.9 

(0.73) 

43.5 

(0.68) 

151.9 

(0.58) 

273.9 

(0.43) 

246.1 

(0.46) 
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0.6 22.5 

(0.17) 

22.1 

(0.32) 

18.6 

(0.23) 

77.3 

(0.77) 

41.4 

(0.77) 

32.7 

(0.76) 

92.9 

(0.75) 

92.7 

(0.81) 

61.2 

(0.87) 

0.8 20.8 

(0.23) 

20 

(0.39) 

16.8 

(0.3) 

41.1 

(0.88) 

32.7 

(0.82) 

23.6 

(0.82) 

58.5 

(0.84) 

47.3 

(0.9) 

35.4 

(0.92) 

1 19 

(0.3) 

16.5 

(0.49) 

13.9 

(0.42) 

20.2 

(0.94) 

24 

(0.86) 

17.2 

(0.87) 

37.1 

(0.9) 

35.2 

(0.93) 

19.4 

(0.96) 

 

5.5. Summary 

In this section, the lane level and intersection level capacity are both calibrated and 

analyzed. In the lane level capacity investigation, adjustment factors for saturation headway and 

saturation traffic flow rate for each lane under different MPRs of CAVs are calculated. In the 

intersection level capacity investigation, the maximum throughputs of the intersection under 

different MPRs of CAVs are calculated. The traffic performances of the total waiting time, CO2 

emission, and fuel consumption under maximum throughputs are also documented. Meanwhile, 

the fitting curve and fitting function of the maximum throughput under different MPRs of CAVs 

are calibrated. With 100% CAVs, the saturation headways for the exclusive through traffic lane, 

exclusive left-turn traffic lane, and shared-right-and-through traffic lane decrease by 55.8%, 

48.9%, and 42.4%, respectively. Traffic engineers and planners are expected to directly use the 

adjustment factors to calculate the intersection capacity under different MPRs of CAVs. 

Moreover, this chapter investigates the impacts of different control modes of AVs and 

CAVs (i.e., IDM-controlled AVs, ACC-controlled AVs, and CACC-controlled CAVs) on the 

intersections with different signal control methods (i.e., pre-timed signal, gap-based actuated 

signal, and delay-based actuated signalized intersections) and traffic demands. Results indicate 

that CACC-controlled CAVs outperform IDM/ACC-controlled AVs. A 96% drop in the average 

delay is observed at the delay-based signalized intersection under high traffic demand with a 

100% MPR of CACC-controlled CAVs. Furthermore, CACC-controlled CAVs could 
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significantly decrease the average delay under medium and high demand scenarios after the 

MPRs exceed 20% and 40%, respectively.  
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CHAPTER 6: IMPACTS OF CAVS ON DEEP REINFORCEMENT LEARNING 

CONTROLLED INTERSECTIONS 

6.1. Introduction 

Chapter 6 presents the basic settings for the proposed transfer-based DRL traffic signal 

control (TSC) system. The transfer-based DRL-controlled signal intersection framework is 

proposed in Section 6.2. The transfer-based DQN models are utilized in scenarios with different 

traffic demands and MPRs of CAVs as introduced in Section 6.3. In Section 6.4, different model 

settings, including reward parameters, exploration rates, and action step lengths, are tested. In 

Section 6.5, the training efficiency and model performances of the transferred model are 

compared to direct training models. Moreover, the validity of the transfer-based DQN method is 

tested in scenarios with different MPRs of CAVs. This could determine the basic requirement of 

the information level of vehicles. Finally, this chapter concludes with a summary. 

 

6.2. Methodologies 

In this section, a transfer-based DRL TSC method is proposed (Song & Fan, 2021). The 

traffic signal controller of the intersection is controlled by a single DRL agent that communicates 

with the traffic environment. With the V2I communication, the DRL agent could choose an 

action 𝑎𝑡  based on the inputs of state 𝑠𝑡  and reward 𝑟𝑡  in timestep t. A benchmark DRL 

framework, i.e., Deep Q Network (DQN), is utilized in this study to train the traffic signal 

controller. The action set 𝐴𝑡 includes eight green-time phases for traffic movements. When the 

current action 𝑎𝑡 is different from the last time step action 𝑎𝑡−1, a 3 s yellow and 1 s all-red time 

phase is added. Also, if the DRL agent selects the same action and this green phase exceeds the 

maximum cumulative green time (60 s in this paper), then the agent will switch into the next 
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green phase accordingly. The state 𝑠𝑡 is a matrix combined with the traffic volume in each inlet 

segment of the intersection. The detailed definitions for the action and state are given in the 

empirical settings part. The framework of the transfer-based DRL traffic signal control system is 

presented in Figure 6.1. 

 

 

Figure. 6.1 Framework of the Transfer-Based Deep Q Learning Method 

 

The reward 𝑟𝑡  denotes the feedback after the DRL agent chosen an action 𝑎𝑡 . Several 

traffic performance criteria could be used to calculate the reward in TSC systems, such as the 

throughput, queue length, and total waiting time (Haydari & Yilmaz, 2020; Vidali, 2018). The 

total waiting time is the sum of the time for vehicles when the vehicle speed is less than 0.1 m/s. 

Different from the throughput and queue length, the total waiting time could consider both traffic 

volume and stopping time. Hence, the research employs the total waiting time to calculate the 

reward. Also, according to Vidali (2018), a hyperparameter is added to the reward function to 

improve the training efficiency. The revised reward function is defined as: 

𝑟𝑡 = 𝛿 × 𝑡𝑤𝑡𝑡−1 − 𝑡𝑤𝑡𝑡                                             (6.1) 
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where 𝑡𝑤𝑡𝑡 denotes the total waiting time at the time step t. The hyperparameter 𝛿 ≤ 1. 𝛿 could 

increase the magnitude of the reward value and is supposed to improve the training efficiency. 

When 𝛿 = 1, the reward function changes to a normal reward function. The positive reward 

value 𝑟𝑡 denotes a better performance as the current action decreases the 𝑡𝑤𝑡𝑡. 

Q learning is a benchmark model-free and value-based RL technology (Haydari & 

Yilmaz, 2020). The Q value denotes all rewards that the agent could obtain when taking an 

action 𝑎𝑡 in state 𝑠𝑡, and it could be approximated by selecting the action 𝑎𝑡+1 that obtains the 

maximum Q value 𝑄′:  

𝑄(𝑠𝑡, 𝑎𝑡) = 𝑟𝑡+1 + 𝛾 ⋅ 𝑟𝑡+2 + ⋯ + 𝛾𝑦−1 ⋅ 𝑟𝑡+𝑦 ≈ 𝑟𝑡+1 + 𝛾 ⋅ 𝑚𝑎𝑥
𝐴

 𝑄′(𝑠𝑡+1, 𝑎𝑡+1)    (6.2) 

where 𝑄′(𝑠𝑡+1, 𝑎𝑡+1) is the Q value for taking an action 𝑎𝑡+1 in the state 𝑠𝑡+1. 𝛾 is the discount 

rate that adds a penalization of the future reward compared to the immediate reward 𝑟𝑡+1. 𝛾 is set 

as 0.25 according to the test results in Vidali (2018).  

With the development of deep learning technology, neural networks are implemented to 

estimate the Q value. Experience replay is also utilized to store and extract a batch of samples 

from the reply memory database. The random selection of the samples could mitigate 

correlations in samples and improve the utilization rate of the samples. As presented in Figure 

6.1, the DQN framework contains two neural networks to improve the stability of the training 

result. A training neural network predicts the future 𝑄′  value base on the input samples. 

Meanwhile, the target neural network copies/updates its neuron weights from the training neural 

network after a certain simulation step. The training neural network is trained based on the 

simple square error between the predicted Q values from the training network and the target 

network.  

𝐿(𝑤) = 𝐸 [(𝑟 + 𝛾𝑚𝑎𝑥
𝑎′

 𝑄𝑡(𝑠′, 𝑎′, 𝑤) − 𝑄𝑡(𝑠, 𝑎, 𝑤))
2

]              (6.3) 
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To minimize the loss function 𝐿(𝑤), the stochastic gradient descent method (i.e., Adam 

in this research) is used. The neuron weights 𝑤 are updated with the learning rate 𝛼 as follows, 

∂𝐿(𝑤)

∂𝑤
= 𝐸 [(𝑟 + 𝛾𝑚𝑎𝑥

𝑎′
 𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎))

∂𝑄(𝑠,𝑎,𝑤)

∂𝑤
]                       (6.4) 

𝑤𝑡+1 = 𝑤𝑡 − 𝛼
∂𝐿𝑡

∂𝑤𝑡
                                                          (6.5) 

Moreover, the epsilon-greedy method is implemented to explore possible actions in the 

early training steps. The agent would choose an action randomly with a probability of 𝜖ℎ . 

Otherwise, the agent chooses the action 𝑎𝑡+1 that obtains the maximum 𝑄′ value predicted from 

the training network, 

𝜖ℎ = 1 −
ℎ

𝐻
                                                         (6.6) 

where h is the current episode number. H is the total number of simulation episodes. 

Transfer learning enables the reuse of a previously trained model between similar 

scenarios. For TSC scenarios with similar traffic conditions, the trained policy, which determines 

actions, in one model is also supposed to be useful and could be treated as an initial policy to 

train another model (Kiran et al., 2021; Xu et al., 2019). As the training procedure of the DRL is 

time-consuming and cumbersome, the implementation of transfer learning is also expected to 

improve the training efficiency and performance (when transferring models with higher MPRs of 

CAVs which could provide more information of the vehicles to the signal controller). In this 

research, the network weights 𝑤  in a trained model are transferred into a target model in 

scenarios with similar traffic demands or traffic information levels (determined by the MPRs of 

CAVs). The detailed algorithms of the DQN with the transfer learning procedure are shown in 

Table 6.1. 
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Table 6.1 Algorithms of Deep Q Network with the Experience Replay and Transferred 

Procedure 

Initialize experience replay memory D 

Initialize the agent to interact with the environment 

Get the current episode number h and the total number of simulation episodes H 

If transferred from previous model 

Synchronize base and target neural network weights 𝑤 and 𝑤′ from previous model 

Else 

Randomly initialize base and target neural network weights 𝑤 and 𝑤′ 

End if 

While cumulative reward value not converged do 

/*Sample phase 

Choose an action from states using policy 𝜖ℎ-greedy(Q) 

If probability 𝜖ℎ ≤ 1 −
ℎ

𝐻
  

Select a random action 𝑎𝑡 

Else 

Select a 𝑎𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑎′

 𝑄𝑡(𝑠𝑡, a, 𝑤) 

End If 

Agent takes action 𝑎𝑡, observe reward 𝑟𝑡, and next state 𝑠𝑡+1 

Store sample (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) in the experience replay memory D 

If enough experiences in D then 

/*Learn phase 

Sample a random batch of N samples from D 

For every sample (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) in N do 

Set �̂�𝑡 = {
𝑟𝑡    If episode terminated at time step t

𝑟𝑡+1 + 𝛾 ⋅ 𝑚𝑎𝑥
𝐴

 𝑄′(𝑠𝑡+1, 𝑎𝑡+1) Otherwise 

Calculate the loss function value 𝐿(𝑤) 

Update weight 𝑤 using the SGD algorithm by minimizing 𝐿(𝑤) 

Every C steps, copy weights from base network to target network 

End For 
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End If 

End While 

Backup the trained NN weights 𝑤 and 𝑤′ 

Test the performance of the TSC system 

 

The research uses the total waiting time, CO2 emission, and fuel consumption to 

investigate the traffic performance of the intersection. These three criteria are all directly 

obtained from the SUMO. The waiting time of a vehicle/lane is calculated by accumulating the 

time when the vehicle speed decreases to a value below 0.1m/s. Also, after the vehicle moves, 

the total waiting time would be reset to 0. In SUMO, the emission and fuel consumption models 

of the gasoline-driven passenger car (Euro norm 4) are calculated according to the HBEFA3 

(version 3.1). The details of the calculation procedure and emission/fuel consumption factors can 

be found in HBEFA3 (Hausberger S., Rexeis M., Zallinger M., 2009). 

 

6.3. Simulation Scenarios 

As shown in Figure 6.2, a four-way intersection with four lanes per approach is selected 

for the case study. The vehicle-based state of the traffic environment (an array composed of the 

number of vehicles in each segment/grid) is determined by the discrete traffic state encoding 

(DSTE) method and is the input for the DRL model. Eight green phases are set as possible 

actions for the TSC agent. If the signal changes its phase, a 4 s yellow and all red-time is added. 

For urban roadways, the speed limit is set at 15.6 m/s (i.e., 35 mph). The peak-hour traffic is 

generated according to a Weibull distribution with a shape equal to 2. Meanwhile, the random 

seed, which equals the episode value, is implemented to generate heterogeneous traffic for 

different training episodes. The traffic demands of the intersection are determined by the 

simulated maximum throughput of a basic pre-timed signal scheme with a 100-s cycle length. As 
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shown in Figure 6.3, with the increase of the traffic demand in the simulation, the maximum 

throughput of the intersection increases to 4800 vehicles/hour, and this saturated traffic is set as 

the high traffic demand scenario. The low, medium, and medium-high traffic demands are set at 

20%, 40%, and 60% of the high traffic demand, respectively. The detailed traffic demand for 

each traffic movement is presented in Table 6.2. 

 
 

Figure 6.2 Discrete Traffic State Encoding of the Vehicle-Based State Array and Available 

Traffic Signal Actions of the Intersection 

 

 
Figure 6.3 Traffic Generated Per Simulation Step and Throughputs under Different Traffic 

Demands 
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Table 6.2 Different Traffic Demand Scenarios  

Traffic demand (veh/hr) Low Medium Medium-High High 

Left traffic per approach 72 108 144 180 

Through traffic per approach 336 504 672 840 

Right traffic per approach 72 108 144 180 

Total traffic per approach 480 720 960 1200 

Total Throughput 1920 2880 3840 4800 

 

All scenarios are simulated in the SUMO by TraCI-Python interface. Each simulation 

episode is 3600 s with a 0.1 s per time step. The IDM is used for HDVs according to (Martin 

Treiber et al., 2000). The CACC system is implemented for CAV simulation according to (Liu et 

al., 2018; Xiao et al., 2017). The default lane change model “LC2013” in SUMO is utilized for 

all vehicles. Both HDVs and CAVs have the same ability for acceleration (2 m/s2) and 

deceleration (-4 m/s2). The desired time gaps for HDVs and CAVs are 1.6 s and 0.7 s, 

respectively. Considering heterogeneous driving behaviors of the human drivers, the maximum 

speed for the HDV follows a normal distribution N(1.2, 0.1) with respect to the speed limits. 

Other parameters for CACC controlled CAVs are set according to previous research (Mintsis, 

2018; Porfyri et al., 2018; Xiao et al., 2017). 

In this research, all vehicles are set as CAVs at first. A direct training procedure with 800 

simulation episodes is employed under the low traffic demand scenario. Then, the trained model 

is transferred to the next scenario with a higher traffic demand (from low to medium, medium to 

medium-high, and medium-high to high). After that, this study tests the validity of the transfer-

based DQN TSC system by considering different MPRs of CAVs (i.e., information levels of the 

vehicles). For scenarios with the same traffic demand, the MPR of CAVs decreases from 100% 

to 20% by 20% per step. The trained model with higher MPRs of CAVs will be transferred into 

the scenario with lower MPRs of CAVs.  



91 

 

6.4. Model Settings 

A medium-size neural network with 4 fully connected layers (400 neurons per layer) is 

utilized as the same as the one determined by (Vidali, 2018). The discount factor of the reward 

equation is 0.25. At the end of each episode, the training iterations of the neuron weights will 

execute 800 times with a 0.01 learning rate, and each iteration will retrieve 100 samples 

according to the memory replay (Vidali, 2018). The following parts test the reward function 

parameter, the exploration rate, and the action step length. 

 

6.4.1.  Reward Function Parameter Test 

The revision of the parameter ( 𝛾  =0.9) in the reward function could increase the 

magnitude of the reward value and improve the training efficiency (Vidali, 2018). As presented 

in Figure 6.4, this study compares the results between the general reward parameter (𝛾 =1) and 

the revised reward parameter (𝛾 =0.9) for the transfer-based DQN procedure under a medium 

traffic scenario with 100% MPR of CAVs. The reward curves indicate that the proposed reward 

parameter (𝛾 =0.9) could not always improve the training efficiency and could result in more 

variations in action selections. Hence, 𝛾 =1 is utilized is used in this research. 

 

Figure. 6.4 Reward Curves for Different Reward Function Parameters 



92 

 

 

6.4.2.  Tradeoff Between Exploration and Exploitation 

In general, the DQN training procedure is expected to explore more possible actions at 

the beginning of the training. Then, it is expected to exploit more when the action policy is well 

trained. The 𝜀-greedy exploration is utilized to strike a balance between the exploration and 

exploitation of the actions. As the transfer-based learning procedure could obtain prior action 

policy from a previous trained model, the training procedure might obtain a converged value 

without exploring all possible actions. To confirm this assumption, different 𝜀 -greedy 

exploration rates are tested, and the results are exhibited in Figure 6.5. It is found that the 

transfer-based models could also obtain a similar stable reward without full exploration (𝜀 

changes from 1 to 0), which indicates the validity of transferring models from similar scenarios. 

 

Figure 6.5 Reward Curves under Different 𝜀-greedy Exploration Rate Boundary 

 

6.4.3.  Action Step Length Test 

As shown in Table 6.3, under a low traffic demand scenario, the model performances 

with different action step lengths (green time durations) are documented. A significant increase 

in the total waiting time, CO2 emission, and fuel consumption are observed after 10 s of the 
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green time. Also, the frequent change of the green phase could result in more green time loss. 

Hence, this study selects 10 s green time for each action and 60 s for the maximum green time 

duration. 

 

Table 6.3 Green Time Duration Per Action for the DQN Signal Controller  

Green time (s) Total waiting time (s) Total CO2 (kg) Total fuel (L) 

5 23191.3 318.8 137 

10 24942.2 323.7 139.2 

15 32772.6 344.9 148.3 

20 39815.3 363.2 156 

 

6.5. Results for Single Intersection 

6.5.1. Comparison Between Direct and Transfer-Based Learning  

To test the efficiency of the transfer-based DQN model, this research compares the direct 

training and transfer-based training with full exploration (𝜀-greedy decreases from 1 to 0) under 

a medium traffic scenario with 100% MPR of CAVs. The cumulative negative reward curves in 

Figure 6.6 illustrate that the transfer-based method could get stable values with fewer training 

episodes compared to the direct training procedure. As the direct training procedure for an 

intersection with different traffic demands is very time-consuming, this result further proves that 

reusing the prior trained action policy (neural network weights) in target models with fewer 

adjustments under similar traffic scenarios could improve the training. For example, in Figure 

6.6, the direct training and the transfer-based training take about 54.2 hours and 20.1 hours, 

respectively, in a computer with GTX-1050 GPU and i5-7300 2.5GHz CPU. The significant 

decrease in the training time provides possible engineering applications of the transfer-based 

DQN TSC at intersections with similar traffic demands. 
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Figure 6.6 Comparison Between the Reward Curves of Direct and Transfer-Based Leaning 

Approaches 

 

6.5.2. Impacts Under Different Traffic Demands and MPRs of CAVs 

With the V2I communication technology, the TSC agent could obtain traffic state (i.e., 

speed, traffic volume, waiting time, etc.) from the CAVs approaching the intersection. However, 

it is expected to have a long transition time during which HDVs and AVs/CAVs will coexist 

(Sharon & Stone, 2017). This study also investigates the impacts of information levels of the 

mixed traffic flow on transfer-based DQN TSC systems.  

Figure 6.7 presents cumulative reward curves for scenarios with different traffic demands 

and MPRs of CAVs. The prior action policy of the trained DQN model is first transferred to 

scenarios with higher traffic demands (from low to medium, medium to medium-high, and 

medium-high to high) under 100% MPRs of CAVs. After that, this research investigates the 

impacts of information levels of the vehicles on the DQN TSC system by transferring models 

with high MPRs of CAVs into models with low MPRs of CAVs (decrease from 100% to 20% by 

20% per step). For instance, the trained model with a 100% MPR of CAVs is transferred to a 

model with an 80% MPR of CAVs. It is also noted that direct training procedures are utilized in 
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some low MPRs scenarios to obtain more stable reward values at the end of the training. An 

interesting finding is that the reward values of the transfer-based model overlap with the reward 

values in models with higher MPRs of CAVs (i.e., higher information level). This overlapping is 

not observed in direct training models as these models are trained based on partial traffic 

information. The TSC agent could not select a better choice if the agent only gets limited 

information on the states and rewards. Moreover, the transfer-based models could obtain higher 

reward values than direct training models with higher information levels. With the pre-trained 

action policy provided by a prior model with a higher information level, the transfer-based DQN 

method could obtain better actions compared to the direct-training-only model.  

 

     (a) Rewards under low traffic demand      (b) Rewards under medium traffic demand 

 

 (c) Rewards under medium-high traffic demand     (d) Rewards under high traffic demand 

Figure 6.7 Training Rewards for Scenarios with Different Traffic Demands and MPRs of CAVs 
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Table 6.4 to Table 6.6 document the test performance (total waiting time, CO2 emission, 

and fuel consumption) of the proposed DQN TSC under different traffic demands and MPRs of 

the CAVs. To better investigate the impacts of different MPRs of CAVs on transfer-based DQN 

TSC systems, Figure 6.8 shows the total waiting time and CO2 emission under different traffic 

demands. Compared to pre-timed signal schemes, the proposed DQN TSC decreases the total 

waiting time, CO2 emission, and fuel consumption in scenarios with more than a 40% MPR of 

CAVs. Meanwhile, a decrease in indicator values (i.e., better system performance) could also be 

observed with the increase in MPRs of CAVs. Also, the DQN TSC system gets worse traffic 

performances with a 20% MPR of CAVs under low-, medium-, and high-traffic scenarios. When 

the MPRs of the CAVs increase from 20% to 40%, the performance indicator values all decrease 

significantly. These results demonstrate that the proposed transfer-based DQN TSC controller 

requires a certain information level for the vehicles, and the critical value of the information 

level is between 20% to 40% under different traffic demands. Moreover, in medium traffic 

scenarios with 100% MPRs of CAVs, the DQN TSC system decreases total waiting time by 

58%, which is the best performance in the total waiting time. For high traffic scenarios, pre-

timed signal schemes result in significant congestion as all performance values almost doubled 

compared to medium-high traffic scenarios. However, with a 100% MPR of CAVs, DQN TSC 

decreases the total waiting time, CO2 emission, and fuel consumption by about 38%, 34%, and 

34%, respectively. 

 

Table 6.4 Total Waiting Time for Scenarios with Different MPRs of CAVs and Traffic Demands 

Total waiting time (s) Traffic demand  
 

Low Medium Medium-high High 

Pre-timed signal 48009.7 129770.2 424350.3 816397.9 
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20% MPR 57641 (-

0.201) 

165163.1 (-

0.273) 

388409.3 (0.085) 882875 (-

0.081) 

40% MPR 35624 

(0.258) 

93565 

(0.279) 

341656.4 (0.195) 729716.3 

(0.106) 

60% MPR 29635.2 

(0.383) 

83949.1 

(0.353) 

317232.5 (0.252) 670957.4 

(0.178) 

80% MPR 29912.3 

(0.377) 

67767.1 

(0.478) 

251353.4 (0.408) 604543.4 

(0.259) 

100% MPR 24942.2 

(0.48) 

54472.9 

(0.58) 

218563.7 (0.485) 508737.1 

(0.377) 

*note: numbers in parentheses denote the change rate compare to pre-timed signal schemes 

 

Table 6.5 Total CO2 Emission for Scenarios with Different MPRs of CAVs and Traffic 

Demands 

Total CO2 (kg) Traffic demand 

  Low Medium Medium-high High 

Pre-timed signal 363.1 684.2 1647.7 3086.1 

20% MPR 369.3 (-0.017) 744.9 (-0.089) 1615.4 (0.02) 3089.3 (-0.001) 

40% MPR 324.9 (0.105) 582.6 (0.148) 1419.2 (0.139) 2650.1 (0.141) 

60% MPR 318.9 (0.122) 573.7 (0.162) 1311.3 (0.204) 2519.5 (0.184) 

80% MPR 328.2 (0.096) 554.1 (0.19) 1152.2 (0.301) 2206.9 (0.285) 

100% MPR 323.7 (0.109) 537.2 (0.215) 1105.2 (0.329) 2023.8 (0.344) 

*note: numbers in parentheses denote the change rate compare to pre-timed signal schemes 

 

Table 6.6 Total Fuel Consumption for Scenarios with Different MPRs of CAVs and Traffic 

Demands  

Total fuel (L) Traffic demand 

  Low Medium Medium-high High 

Pre-timed signal 156.1 294.1 708.3 1326.6 

20% MPR 158.8 (-0.017) 320.2 (-0.089) 694.4 (0.02) 1328 (-0.001) 

40% MPR 139.6 (0.106) 250.4 (0.149) 610.1 (0.139) 1139.2 (0.141) 

60% MPR 137.1 (0.122) 246.6 (0.162) 563.7 (0.204) 1083.1 (0.184) 

80% MPR 141.1 (0.096) 238.2 (0.19) 495.3 (0.301) 948.7 (0.285) 

100% MPR 139.2 (0.108) 230.9 (0.215) 475.1 (0.329) 870 (0.344) 

*note: numbers in parentheses denote the change rate compare to pre-timed signal schemes 
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                        (a) Total waiting time (s)                    (b) Total CO2 emission (kg) 

Figure. 6.8 Impacts of Different MPRs of CAVs under Different Traffic Demand Scenarios 

 

6.6. Summary 

Chapter 6 proposes a transfer-based DRL-controlled signal intersection framework and 

analyzes the performance of the DRL-controlled TSC under different traffic demands and MPRs 

of CAVs. Different parameter settings are also tested. The results indicate that transfer-based 

models could improve training efficiency and performance. With a 100% MPR of CAVs, the 

transfer-based DQN approach could significantly improve the system performance compared to 

pre-timed signal schemes. In high traffic demand scenarios, the total waiting time, CO2 emission, 

and fuel consumption decrease by about 38%, 34%, and 34%, respectively. Moreover, the 

transfer-based TSC system performs better than pre-timed signal schemes after 20% to 40% 

MPRs of CAVs under different traffic demands. In conclusion, the good performances in 

efficiency, validity, and transferability of the transfer-based DQN-TSC models indicate a 

possible engineering application in intersections with similar traffic scenarios. Meanwhile, the 

basic requirement of the MPRs of CAVs (between 20% and 40%) for the transfer-based DQN 

TSC system is expected to be met in the near future. These findings should be valuable to 
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transportation researchers, decision-makers, and traffic engineers to improve intersection 

efficiency by implementing transfer-based DQN-controlled traffic signals. 
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CHAPTER 7: MULTI-AGENT DEEP REINFORCEMENT LEARNING CONTROLLED 

TRAFFIC SIGNAL SYSTEMS 

7.1. Introduction 

Chapter 7 presents the basic settings for the proposed multi-agent DRL TSC system. The 

multi-agent DQN models are implemented in a corridor with seven intersections. All 

intersections are decentrally controlled by the DQN controller. With the V2I communication 

technology, the intersections can obtain the traffic states from vehicles in each approach. 

Meanwhile, with the infrastructure to infrastructure (I2I) communication technology, the 

intersections can share the state value with one another. Hence, the multi-agent reinforcement 

learning (MARL) with the state of total waiting time and the MARL with shared total waiting 

time are both analyzed. The traffic performances including the total waiting time, average queue 

length, and total CO2 emission of each intersection are investigated. Finally, this chapter 

concludes with a summary.  

 

7.2. Methodologies 

In this chapter, all intersections in the corridor are decentrally controlled by independent 

DRL agents. The Deep Q Network (DQN) framework as introduced in Chapter 6 is used in this 

section for the DRL control. Also, as shown in Figure 7.1, several revisions are made to the 

research work conducted by (Ault & Sharon, 2021). With the V2I technology, the intersection 

could obtain the state of traffic in each lane of the approach. In this case, the state of the 

intersection is a matrix composed of the green-time-phase indicator 𝑃𝑖𝑗  (𝑃𝑖𝑗 =1 if green-time 

phase and 0 otherwise) and the total waiting time 𝑇𝑊𝑇𝑖𝑗 for each inlet lane j of the intersection i. 

Meanwhile, with the I2I communication technology, the intersections can also share the state 
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value with one another. In this case, the shared state is a matrix composed of the states of the 

target intersection i, upstream intersection i-1, and downstream intersection i+1. The reward of 

the intersection is the negative total waiting time of vehicles. The communication range is set as 

200 m. Considering the large size of the state matrix, the input layer of the DQN is firstly set as a 

convolution layer with a 2×2 convolution kernel. After the flatten layer, 3 full connection layers 

with 64 neurons are implemented. Rectified Linear Unit (ReLU) is set as the activation function 

for the neural network. Adam method is set as the optimizer for the neural network. The final 

layer outputs are the discrete values for the action space.  

 

 

Figure. 7.1 Framework of the Multi-agent Deep Q Learning Method 

 

The framework of the independent DQN is shown in Figure 7.2. Each DQN agent also 

includes the experience replay and epsilon-greedy functions. The batch size is 32 and the 

experience replay buffer is 10000. The update interval of the target network weight is 500. The 

DQN TSC agent could choose an action 𝑎𝑡  based on the state 𝑠𝑡  and reward 𝑟𝑡  from the 
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simulation environment in the timestep t. The action set 𝐴𝑡  includes green phases for traffic 

movements at the intersection. When the current action 𝑎𝑡 is different from the previous action 

𝑎𝑡−1, a phase that includes 3-s yellow is added.  

 

 

Figure. 7.2 Framework of the Deep Q Learning Method 

 

7.3. Simulation Settings 

A corridor with 7 intersections in Ingolstadt, Germany, is selected as a case study in this 

research. The Ingolstadt Traffic Scenario (InTAS) for SUMO is obtained by the previous 

research (Lobo et al., 2020). Ingolstadt traffic has been modeled and validated using real traffic 

information from 24 measurement points. As shown in Figure 7.3, a corridor with seven 

intersections is selected as a case study for the simulation. The detailed layout of each 

intersection is shown in Figure 7.4. Green-time phases (10 s) are set as possible actions for each 

intersection. A 3-s yellow time is added if the traffic light changes its phase. The speed limit is 

set at 35 mph (i.e., 15.6 m/s). The detailed traffic demands for each movement at the intersection 
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are also presented in Table 7.1. All simulations are implemented in the Simulation of Urban 

MObility (SUMO) by the TraCI-Python interface. Each training episode of the simulation is 

3600 s with the first 600 s being the warm-up time. The default car-following model and lane 

change model documented in InTAS are utilized for all vehicles.  

 

 

Figure 7.3 InTAS Roadway Topology and Selected Corridor Scenario settings 

 

 

Figure 7.4 Layouts of Seven Intersections in the Corridor 
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Table 7.1 Traffic Demand of Each Inlet of The Intersection During 14:00 to 15:00 

Int. SB 

_W 

SB 

_S 

SB 

_E 

WB 

_N 

WB 

_W 

WB 

_S 

NB 

_E 

NB 

_N 

NB 

_W 

EB 

_S 

EB 

_E 

EB 

_N 

All 

1 218 473 0 0 0 0 0 50 0 78 0 78 897 

2 222 707 286 281 92 32 141 552 257 0 0 0 2570 

3 333 457 0 338 0 0 0 457 0 334 0 174 2093 

4 0 145 74 0 0 0 0 220 238 217 0 147 1041 

5 278 317 0 0 0 0 0 304 211 50 0 112 1272 

6 199 239 0 0 0 0 0 232 80 306 0 258 1314 

7 0 215 19 12 0 267 250 217 0 0 0 0 980 

 

During the training of the MARL, three traffic control cases are analyzed: 1) pre-timed 

signal control, 2) MARL, and 3) MARL with shared states. It is noted that in the MARL model, 

the state matrix is composed of the green-time-phase indicator 𝑃𝑖𝑗 (𝑃𝑖𝑗 =1 if green-time phase 

and 0 otherwise) and the total waiting time 𝑇𝑊𝑇𝑖𝑗 for each inlet lane j of the intersection i. Also, 

in the MARL with shared states, the target intersection could obtain the states of its nearest 

neighbors (upstream and downstream intersections). Hence, the shared state is a matrix 

composed of the states of the target intersection i, upstream intersection i-1, and downstream 

intersection i+1. During the training of the MARL models, each training includes 5 trials and 

each trial includes 200 simulation episodes. Meanwhile, each simulation episode runs 3600s with 

the first 600s being the warm-up time. Three main traffic performances are calculated including 

the total waiting time, average queue length, and the total CO2 emission. The performance result 

is the average value of test results from 5 episodes in 5 trials. 

 

7.4. Results for Multi-agent Corridor Intersections 

After 200 simulation episodes, the average values of the total waiting time in 5 trials for 

each intersection (presented in dash line) are presented in Figure 7.5. The red dash line shows the 

result of the pre-timed signal controller. The blue color indicates the results for the MARL 
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controller and the purple line shows the results for the MARL with the shared states. Also, the 

color boundary indicates the maximum and minimum values in 5 trials. The negative total 

waiting time is set as the training reward for each independent DQN agent. Hence, these curves 

also exhibit negative rewards. All curves in Figure 7.5 indicate that the training procedures reach 

a converged value after 200 training episodes. It is also noted that the trained models are all 

better than traditional pre-timed signal controllers with regard to the performance of the total 

waiting time. It is noted that both MARL and MARL with shared states could decrease the total 

waiting time from 72% (in intersection 3) to 93% (in intersection 1) compared to pre-timed 

signal controllers. 

 

 
          (a) Total waiting time for Int. 1                                (b) Total waiting time for Int. 2 

 
          (c) Total waiting time for Int. 3                                (d) Total waiting time for Int. 4 
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          (e) Total waiting time for Int. 5                                (f) Total waiting time for Int. 6 

 
          (g) Total waiting time for Int. 7 

Figure 7.5 Total Waiting Time for Each Intersection 

 

From Figure 7.6 to Figure 7.8, the total waiting time, average queue length, and total 

CO2 emission for all intersections are presented. It is noted that MARL and MARL with shared 

states could all have a better performance compared to the pre-timed signal controller. Tables 7.2 

to 7.4 also exhibit the detailed results for three performance indicators. The values in parentheses 

are change rates with regard to pre-timed signal results. The values in brackets are change rates 

with regard to MARL results. Compared to the pre-timed controller, the MARL controller could 

decrease the total waiting time, average queue length, and total CO2 emission of all intersections 

by 81%, 75%, and 75%, respectively. Meanwhile, the MARL with shared states shows a further 

improvement in three performance indicators compared to the MARL controller. Compared to 

the MARL controller, the MARL with shared states could further decrease the total waiting time, 
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average queue length, and total CO2 emission of all intersections by 6%, 3%, and 3%, 

respectively.  

 

 
Figure 7.6 Total Waiting Time for All Intersections 

 

Table 7.2 Total Waiting Time at Each Intersection  

Waiting 

time (s) 

Int. 1 Int. 2 Int. 3 Int. 4 Int. 5 Int. 6 Int. 7 All 

Pre-timed 

signal 

5765 19336 23091 13986 4261 5779 6910 79128 

MARL 412.96 

(0.93) 

1733.32 

(0.91) 

6413.92 

(0.72) 

2787.08 

(0.8) 

1072.72 

(0.75) 

1232.36 

(0.79) 

1110.8 

(0.84) 

14763.16 

(0.81) 

MARL-

Shared 

State 

371 

[0.1] 

1715.72 

[0.01] 

5764.44 

[0.1] 

2706.76 

[0.03] 

1057.6 

[0.01] 

1197.16 

[0.03] 

1111 

[0] 

13923.68 

[0.06] 

*note: the values in parentheses are change rates with regard to pre-timed signal results. The 

values in brackets are change rates with regard to MARL results. 
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Figure 7.7 Average Queue Length for All Intersections 

 

Table 7.3 Average Queue Length at Each Intersection  

Queue Length Int. 1 Int. 2 Int. 3 Int. 4 Int. 5 Int. 6 Int. 7 All 

Pre-timed 

signal 

2.08 6.99 8.02 4.92 1.61 2.25 2.67 28.55 

MARL 0.31 

(0.85) 

1.28 

(0.82) 

1.86 

(0.77) 

1.51 

(0.69) 

0.57 

(0.65) 

0.91 

(0.6) 

0.78 

(0.71) 

7.21 

(0.75) 

MARL-Shared 

State 

0.27 

[0.11] 

1.24 

[0.03] 

1.71 

[0.08] 

1.5 [0] 0.56 

[0.02] 

0.91 

[0.01] 

0.78 

[0] 

6.96 

[0.03] 

*note: the values in parentheses are change rates with regard to pre-timed signal results. The 

values in brackets are change rates with regard to MARL results. 

 

 
Figure 7.8 Total CO2 Emission for All Intersections 
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Table 7.4 Total CO2 Emission at Each Intersection  

CO2 (g) Int. 1 Int. 2 Int. 3 Int. 4 Int. 5 Int. 6 Int. 7 All  

Pre-timed 

signal 

1012.89 3422.05 3777.67 2073.87 702.09 842.57 1010.8 12841.94 

MARL 228.95 

(0.77) 

883.14 

(0.74) 

1018.36 

(0.73) 

457.15 

(0.78) 

200.53 

(0.71) 

249.21 

(0.7) 

195.63 

(0.81) 

3232.96 

(0.75) 

MARL-

Shared 

State 

224.31 

[0.02] 

864.22 

[0.02] 

953.15 

[0.06] 

450.97 

[0.01] 

196.87 

[0.02] 

245.46 

[0.02] 

197.08 

[-0.01] 

3132.06 

[0.03] 

*note: the values in parentheses are change rates with regard to pre-timed signal results. The 

values in brackets are change rates with regard to MARL results. 

 

7.5. Summary 

In this chapter, the framework and basic settings for the multi-agent DRL TSC system are 

introduced. A corridor with seven intersections in Ingolstadt, Germany, is selected as a case 

study in this research. All intersections are decentrally controlled by independent DQN agents. 

Considering the I2I communication technology, the MARL controlled intersections are further 

improved by sharing the state value with upstream and downstream intersections. The training 

results indicate that both MARL and MARL with shared states could both have significant 

improvements in traffic performance at all intersections. Compared to the pre-timed controller, 

the MARL controller could decrease the total waiting time, average queue length, and total CO2 

emission at all intersections by 81%, 75%, and 75%, respectively. Compared to the MARL 

controller, the MARL with shared states could further decrease the total waiting time, average 

queue length, and total CO2 emission of all intersections by 6%, 3%, and 3%, respectively.  
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CHAPTER 8: SUMMARY AND CONCLUSIONS 

8.1. Introduction 

CAV technologies could make intelligent driving decisions based on multi-source data 

and significantly affect the performance of the intersection systems. The requirement of the time 

gap for CAVs could also be drastically decreased with the help of V2V communication 

technology, and this could significantly change the car-following behaviors and impact the 

capacity of the intersection. However, it is expected to have a long transition time to achieve 

high MPRs of  CAVs (Sharon & Stone, 2017). Hence, there is an urgent need to investigate the 

impacts of CAVs on the intersection systems under different MPRs of CAVs. Meanwhile, the 

intersection capacity calculation is essential to intersection design and traffic performance 

evaluation. The calibration of the intersection capacity adjustment factors under different CAV 

penetration rates could provide a useful guideline for transportation engineers and planners to 

calculate intersection capacity and retrofit/design future intersection systems. 

Also, the rapid developments of DRL technologies provide an innovative solution to 

improve the efficiency, safety, and sustainability of the intersection systems. However, the high 

performance of the DRL-controlled TSC system requires high-quality inputs of the traffic 

information from the environment. Since there is still a long way to achieve high MPRs of 

CAVs, training a DRL TSC model under 100% MPRs of CAVs (which assumes that the signal 

controller could obtain information about all vehicles on the roadways) is not currently feasible 

for engineering applications. Moreover, the training procedure of the DRL methods requires a lot 

of samples and takes a long time to converge (Xu et al., 2019). It is not applicable to train a 

specific DRL model for each intersection on the roadways for real-world applications. Thus, 

transfer learning, which enables the reuse of previously trained action policy developed from a 
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similar task to initialize the learning of a target task, provides a possible solution to improve the 

training efficiency of the DRL model. A modification of the currently used DRL framework and 

reusing pre-trained model under similar traffic scenarios based on the transfer learning could 

provide a feasible solution to improve the training procedure of the DRL.   

Furthermore, it is common to have several intersections on corridors or networks. 

However, a single DRL agent is unable to control several intersections because this could result 

in exponential explosion in the action space. As the coordination between intersections could 

further improve the system performance, a multi-agent DRL control framework considering the 

cooperation between intersections (by sharing the state information) is investigated in this 

dissertation to provide possible new insights for future intelligent intersection systems control 

and design. 

The major goal of this research is to provide an intensive evaluation of the impacts of 

CAVs on signal intersection systems, as well as an in-depth analysis of intersection capacity 

adjustment factors considering varying MPRs of CAVs. Also, a transfer-based DRL TSC 

framework is developed and tested under different MPRs of CAVs and traffic demand levels. A 

multi-agent DRL TSC with shared traffic states between downstream and upstream intersections 

is investigated in a corridor. The framework developed in this research could provide a 

theoretical reference for transportation researchers and traffic engineers in calculating 

intersection capacity, designing intelligent intersections, improving intersection efficiency, and 

implementing DRL-controlled traffic signals under mixed traffic environments with CAVs. The 

main research results and discussions will be summarized in Section 8.2. Suggestions for future 

research will be also provided in Section 8.3. 
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8.2. Summary and Conclusions 

This study develops specific case studies to evaluate the impacts of CAVs on 

intersections under different MPRs of CAVs. Micro-simulation methods and specific control 

models for CAVs (ACC model and CACC model) are introduced. Both the lane-level and 

intersection-level capacity analyses are conducted in this research. On the lane-level capacity 

investigation, adjustment factors for saturation headway and saturation traffic flow rate for each 

lane of the intersection under different MPRs of CAVs are calculated. With 100% CAVs, the 

saturation headways for the exclusive through traffic lane, exclusive left-turn traffic lane, and 

shared-right-and-through traffic lane decrease by 55.8%, 48.9%, and 42.4%, respectively. On the 

intersection-level capacity investigation, the fitting curve of the maximum throughput of the 

intersection under different MPRs of CAVs is calibrated. Meanwhile, the traffic performances of 

the total waiting time, CO2 emission, and fuel consumption under maximum throughputs are also 

documented. The results are expected to help traffic engineers and planners to develop a useful 

systematic framework summarizing the rationale and techniques used during the process of 

simulation modeling, scenario identification, and intersection capacity analysis under different 

MPRs of CAVs. 

Additionally, this research investigates the effects of different control models of AVs and 

CAVs (i.e., IDM-controlled AVs, ACC-controlled AVs, and CACC-controlled CAVs) on the 

intersections with different signal control methods (i.e., pre-timed signal, gap-based actuated 

signal, and delay-based actuated signal) under different MPRs of CAVs and traffic demands. 

Results indicate that CACC-controlled CAVs outperform IDM/ACC-controlled AVs. The delay-

based signalized intersection shows a 96% decrease in the average delay under high traffic 

demand with a 100% MPR of CACC-controlled CAVs. Also, CACC-controlled CAVs could 
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significantly decrease the average delay under medium and high demand scenarios after the 

MPRs exceed 20% and 40%, respectively. The results could provide a foundation for researchers 

to investigate the impact of CAVs on different signal-controlled intersections and give a 

reference for better signal control and intelligent vehicle operations. 

This study also proposes a transfer-based DRL-controlled signal intersection framework 

to improve the training efficiency of the DRL procedure. The validity and performance of the 

DRL-controlled TSC are investigated under different traffic demands and MPRs of CAVs. The 

result comparison between the transfer-based model and direct-trained model indicates that the 

training efficiency is improved when the prior action policy of the DQN TSC model is utilized in 

a model under similar scenarios. The traffic performance is also improved with the increase of 

MPRs of CAVs. In high traffic scenarios, the total waiting time, CO2 emission, and fuel 

consumption decrease by about 38%, 34%, and 34%, respectively. Compared with pre-time 

signal schemes, the transfer-based DQN TSC systems perform better when the MPRs of CAVs 

are more than 20% under the medium-high traffic scenario and more than 40% under low, 

medium, and high traffic scenarios. In summary, the good performance in efficiency, validity, 

and transferability of the transfer-based DQN TSC indicates a possible engineering application in 

intersections under similar traffic conditions. Meanwhile, the basic MPR requirement of the 

CAVs (between 20% and 40%) for this transfer-based DQN TSC system is expected to be met in 

the near future.  

Furthermore, this research introduces a multi-agent DRL TSC system framework and 

provides basic settings for a corridor with seven intersections in Ingolstadt, Germany. All 

intersections are decentrally controlled by independent DQN agents. The multi-agent 

reinforcement learning (MARL) enables cooperation between intersections by sharing the state 
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value with upstream and downstream intersections. The results indicate that both MARL and 

MARL with shared states could significantly improve the traffic performance of all intersections. 

Compared to the pre-timed signal controller, the MARL controller could decrease the total 

waiting time, average queue length, and total CO2 emission of all intersections by 81%, 75%, 

and 75%, respectively. In addition, compared to the MARL controller, the MARL with shared 

states could further decrease the total waiting time, average queue length, and total CO2 emission 

of all intersections by 6%, 3%, and 3%, respectively. These findings should be valuable to 

transportation researchers, decision-makers, and engineers in improving the intersection 

efficiency, designing future intersections, and implementing DRL-controlled traffic signals. 

 

8.3. Future Research Directions 

This research documents the adjustment factors for saturation headway and saturation 

traffic flow rate for each lane of the intersection under different MPRs of CAVs. The results 

provide useful guidance for traffic engineers and planners to modify and calculate the 

intersection capacity. To model the CAV behavior, when a CAV is following a HDV, the car-

following system is changed into the ACC mode. When a CAV is following a CAV, the car-

following system is switched into the CACC mode to achieve a closer car-following gap. 

However, with the development of CAV technologies, the CAV control strategy and headway 

acceptance for different vehicles are still largely not determined. A more fundamental 

investigation of the CAV technologies, especially for car-following models and platooning 

system, is important to improve the results. Meanwhile, considering the unstable results found in 

the mixed flow of HDVs with CAVs, a further study on the interactions between CAVs and 
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HDVs is needed. A specific control mode between HDVs and CAVs is required to ensure safety 

in the mixed traffic flow. 

Additionally, the DRL framework proposed in this study focuses mainly on traffic 

mobility improvement. Future studies should pay more attention to the safety issues of vehicles. 

Moreover, the reasonability of the actions determined by the DRL agent still needs more 

explanations, and the model-based DRL framework may be beneficial to the model 

interpretation. Furthermore, the reliability of the DRL models could also be improved by multi-

source data fusion and reconstruction. Improving the prediction accuracy of the traffic states at 

limited MPRs of CAVs could greatly promote the use of DRL models in real-world applications. 
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