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ABSTRACT 

YIKE LI. Short Term Ex-ante Load Forecasting.  

(Under the direction of DR. TAO HONG)  

Short-term load forecasting (STLF) is a conventional process at power companies 

to serve for better decision-making in their daily operations. Weather factors play a key 

role in STLF. In practice, an online STLF system typically requires the use of weather 

forecasts as input when projecting the future load, with associated weather forecast errors. 

This type of forecasting is known as ex-ante forecasting. Nevertheless, most existing 

academic literature developed load forecasting techniques under the ex-post forecasting 

settings, where the actual weather information is used in the forecast period. Meanwhile, 

the robustness of STLF models to real weather forecast errors has rarely been studied in 

the literature. The gap between the practice and the research study is often due to the 

shortage of historical weather forecasts. In this research, we aim to close this gap by 

proposing two new frameworks to select better models in short-term ex-ante load 

forecasting. Compared to the conventional research which focuses on ex-post load forecast 

accuracy in the model development, both frameworks consider the impact of real 

temperature forecast errors and are better fitted to field practices.  

The effectiveness of the proposed frameworks is confirmed using an empirical case 

study at a medium-sized US utility with load data from multiple supply areas and real 

temperature forecasts. Compared to a state-of-the-art benchmark that uses the historical ex-

post load forecast accuracy for model selection, the first framework leads to 2.4% improved 

accuracy on average. A further study among the weather sensitive hours (i.e., the hours 

when a smaller error in the temperature forecast may lead to a greater inaccuracy in the 
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load forecast) suggests that the first framework outperforms the benchmark by 3.1% on 

average. The second framework based on temperature forecast error prediction improves 

the accuracy of the first framework by 7.4% for the hours with worse predicted temperature 

forecast accuracy. Overall, the second framework leads to an average of 0.8% improvement 

over the first framework and 3.9% improvement over the benchmark among the weather 

sensitive hours.  
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CHAPTER 1: INTRODUCTION 

1.1. Electric Load Forecasting 

Electric load forecasting has been a conventional procedure used by power 

companies to forecast future energy consumption. For decades, power utilities have been 

upgrading their load forecasting modules to support better decision-making in operations, 

planning, and maintenances. In recent years, the enormous amount of penetration from 

renewable energy resources and unprecedented public events such as the spread of the 

COVID-19 pandemic impose a significant challenge to maintain the equilibrium of supply 

and demand. Obtaining accurate load forecast nowadays has become increasingly 

challenging and critical in the era of big data to maintain the stability and reliability of the 

power grid. In addition, these load forecasts serve as a vital input to other business entities 

such as regulatory commissions, banks, trading firms, insurance companies, and big 

commercial companies (Hong & Fan, 2016). 

Classification of the load forecasting procedure often depends on the use of the 

forecast. The industrial and research community often group the load forecasting procedure 

into categories based on how far the load is projected into the future. While there has not 

been a universal agreement, (Hong & Fan, 2016) grouped the load forecasting procedure 

into four categories: very short-term load forecasting (VSTLF), short-term load forecasting 

(STLF), medium-term load forecasting (MTLF), and long-term load forecasting (LTLF). 

The cut-off horizons for the four categories are one day, two weeks, and three years, 

respectively.  
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The fundamental objective of VSTLF and STLF is to facilitate a real-time 

balancing between power generation and demand to deliver safe and stable power to the 

end-users in a financially effective manner. VSTLF and STLF typically provide hourly or 

more granular level load forecasts and are the cornerstones for smooth day-to-day 

operations. These load forecasts serve as an essential input for the hour- and day-ahead 

scheduling, unit commitment, day-ahead energy trading, demand-side management (DSM), 

and so forth. For instance, a more accurate day-ahead hourly load forecast results in more 

optimized decisions made in generation unit commitment, economic dispatching, day-

ahead energy purchasing, load shedding, and demand side load control. This leads to 

reduced operational costs while committing to the stability and reliability of the power 

system.  

MTLF and LTLF are vital for longer-term planning and decision-making. These 

forecasts can typically provide the weekly and monthly peak and valley load information 

as well as the demand growth in the long run. More accurate medium- and long-term load 

forecasts are particularly useful for more optimal decisions made in long-term energy 

purchasing, transmission & distribution network maintenance and expansion, DSM 

program planning, medium- and long-term revenue projections, and so forth.  

The load usage is known to be time-dependent and often displays seasonal patterns. 

This is impacted by multiple factors. First, the load is largely driven by human activities. 

Thus, the load pattern varies from each hour of the day, and each day of the week. Besides, 

the load often displays seasonality in the annual resolution. On the one hand, the load is 

known to be climate-driven and the climate itself has an annual seasonality due to the 

Earth’s revolution around the Sun. On the other hand, human routines at different months 
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of the year also play a role in the annual seasonality of load. Hence, calendar variables such 

as the hours of a day, days of a week, and months of a year are frequently used in load 

forecasting models.  

Weather and climate events can have influential impacts on load usage. Weather is 

linked to a state of the atmosphere, which often refers to the day-to-day temperature, 

humidity, wind speed, rainfall, and other atmospheric conditions over a short period of 

time (e.g., up to one to two weeks). Hence, weather can have a key impact on load usage 

within a short term. On the other hand, climate refers to a long-term pattern of weather, 

which could be an average of the aforementioned atmospheric conditions and variations 

over a longer period of time (e.g., 30 years) within a geographic region. In this case, the 

long-term variations in climate can affect load usage in the long run.  

Weather variables such as ambient temperature, relative humidity, wind speed, 

solar irradiance, and cloud cover have been widely studied in STLF literature. Compared 

to the rest, temperature has been the most widely used weather variable due to two reasons. 

First, compared to other weather variables such as relative humidity and wind speed, 

empirical case studies have shown that temperature has a stronger correlation to the load 

(refer to (Xie et al., 2018) and (Xie & Hong, 2017), respectively). Second, the short-term 

temperature forecasts nowadays are pretty accurate. In contrast, other weather variables 

such as relative humidity, wind speed, and cloud cover are not as predictable. 

The salient correlation between temperature and load is largely due to the heating 

and cooling needs, which is especially the case for regions with high electrification rates 

and prevalent installations of electric air conditioners and heaters. During summer, people 

turn on air conditioning while during winter, people turn on heaters that can be partially or 
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fully powered by electricity. The rest weather variables such as relative humidity, wind 

speed, solar irradiance, and cloud cover, can have diverse impacts on load usage. Relative 

humidity along with the ambient temperature is tied directly to human comfort. Wind speed 

fastens the water evaporation that cools down the surface of buildings and the human body. 

Besides, the increased penetration of wind power resources, whose output is largely driven 

by wind speed, has a direct impact on the regional load. Similarly, solar irradiance and 

cloud cover have a joint impact on heating the body of premises, as well as the PV power 

generation. Compared to temperature, these weather variables are not as predictable. Hence, 

their usage is limited to a relatively short forecast horizon.  

Compared to weather factors which trigger more instant disturbances on load usage, 

economic development and urban expansion may affect the long-term growth trend of the 

load. Better economic health stimulates economic activities, while urban development and 

expansion are tied to population growth and the variation in electricity consumption. Hence, 

macroeconomic indicators such as Gross State Product (GSP), employment rate, and land-

use information are often used in medium- and long-term load forecasting. 

 Depending on what is assumed to be known when generating a forecast, electric 

load forecasting can be grouped into ex-ante forecasting and ex-post forecasting. Ex-ante 

is a Latin phrase meaning “before the event”. Ex-ante forecasts are made by solely using 

the available predictors' information preceding the forecast origin. For instance, to generate 

the day-ahead ex-ante load forecast using temperature as a predictor, the day-ahead 

temperature forecast is assumed to be known (and often it is, with forecast errors) and used 

as input to generate the load forecast. The opposite of ex-ante is ex-post, meaning “after 

the event”. Ex-post forecasts assume the actual predictors' information is known beyond 
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the forecast origin. Referring to the day-ahead load forecast example, generating an ex-

post forecast assumes perfect knowledge of day-ahead temperature information through 

the forecast horizon (which is surreal). In this case, the actual temperature readings will be 

used to generate the ex-post forecasts.  

 In practice, people use ex-ante forecasts to make decisions. For instance, when 

generating short-term load forecasts using weather information, power utilities follow a 

typical procedure as shown in FIGURE 1. The load and weather history are first used for 

the model training process. After a fitted model is in place, the weather forecast through 

the forecast horizon will be used for model inferencing and producing the final forecast. 

By evaluating the forecast output under the ex-ante forecasting settings, we get to 

understand a model’s true forecast performance in practice. Nonetheless, it is worth noting 

that the ex-post forecasts are still useful as they are conventionally evaluated to explore the 

properties of forecasting models. By comparing the ex-ante and ex-post forecast 

performance, forecasters get to know whether the forecast inaccuracy is mainly caused by 

the poor modeling structure or the forecast errors in the predictors. 

 

FIGURE 1: A typical STLF procedure using weather information 

The quality of weather history is crucial when developing a load forecasting model. 

The electricity consumption of interest is often an aggregation across multiple geographic 
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regions, where the weather measurements from multiple weather stations are often 

available. Due to errors or equipment outages, measurements at certain weather stations 

may raise data quality concerns for power companies. In addition, measurements at a single 

weather station can only reveal the weather conditions within a limited geographic region, 

which may not suffice to describe the load condition of a larger service territory. To address 

this issue, weather station selection (WSS) methods have been introduced in recent years 

to select the most relevant weather stations for load forecasting needs.  

In real operations, the quality of a weather forecast ties directly to the quality of a 

load forecast. This is because the load forecasting models typically learn the relationship 

between the historical weather information and load (as shown in FIGURE 1). When 

predicting future load using weather forecast as input, the associated weather forecast 

errors, either positive or negative, can add another layer of uncertainty to the load forecast 

output and eventually degrade the load forecast accuracy. Despite the steady improvement 

in weather forecast accuracy, weather forecast errors can never be wiped out due to the 

unforeseeable nature of weather. As the ultimate goal is to have better load forecasting 

models under the operational (ex-ante) forecasting settings, the impact of weather forecast 

errors needs to be considered when building and testing the load forecasting models.  

Although weather information plays a key role in ex-ante load forecasting, the load 

forecasts may be generated without using any weather variables. For very short-term load 

forecasting, such as from minutes to a few hours ahead, the load within an imminent future 

may be inferred directly from its latest history, where the weather impact on the load is 

assumed to be consistent. On the other hand, a longer-term load forecasting from hours to 

days ahead typically requires a weather forecast as input to more precisely capture the 
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weather impact on the load. As the weather forecast often becomes inaccurate beyond 10 

days, simulated weather scenarios based on weather history can be used instead to infer 

future load scenarios for medium- and long-term load forecasting (e.g., (Hong, Wilson, et 

al., 2014)). 

 In this research, we use operational day-ahead temperature forecast data to 

investigate the ex-ante forecast accuracy, which will be detailed in Chapter 4. In Chapter 

5, we propose a new model selection framework aiming to select more robust load 

forecasting models in the ex-ante forecasting settings and demonstrate the contribution of 

temperature forecast error to the ex-ante load forecast error. As the load forecasting 

performance can be impacted by the levels of temperature forecast accuracy (refer to 

(Methaprayoon et al., 2007), (Segarra et al., 2019), and (Chitalia et al., 2020) reviewed in 

Section 2.2), we predict the quality of day-ahead temperature forecasts in Chapter 6. 

Thereafter, we leverage the temperature forecast quality prediction and propose another 

model selection framework that further improves the load forecast accuracy in Chapter 7. 

1.2. Weather Forecasting 

Weather forecasting refers to the prediction of the state of the atmosphere for a 

given location and altitude. Ancient weather forecasting activities can be traced back to 

over 2000 years ago. Back then, the ways of producing weather forecasts were limited to 

linking the patterns between sky observations and future weather. It was not until the 

1860s that the synoptic weather reports were released in the U.S. and Western Europe, 

which was largely attributable to the birth of the electric telegraph that enabled rapid 

dissemination of weather observations to construct a synoptic weather map. With the 

advent of computer and computer simulations, the first moderately successful numerical 
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weather prediction (NWP) was released in the 1950s, based on a simple barotropic model 

(Charney et al., 1950).  

Over decades, the accuracy of weather forecasts receives steady improvement. 

Promoted by the more powerful computers, more complex and realistic atmospheric 

models were applied to capture the precise state of the atmosphere and oceans. 

Meanwhile, affordable computing resources enable these models to run at higher 

resolutions, both horizontally and vertically, for a more accurate representation of the 

atmospheric physical processes. Along with more observational data from the satellites, 

weather radars, instruments carried on aircraft and ships, and so forth, as well as more 

advanced data assimilation techniques, weather forecasting models nowadays have a 

better grasp of the current state of the atmosphere when depicting the future. 

Nevertheless, the atmosphere is a highly chaotic system. Recent studies showed that the 

improvement in weather forecast accuracy slowed down lately as it is approaching the 

practical predictability of the atmosphere (e.g.,  (Hoffman et al., 2018) and (Zhang et al., 

2019)). Results suggested that the recent NWP forecasts for mid-latitude weather can 

remain skillful for up to 10 days (Zhang et al., 2019). 

There are three main approaches to generating a weather forecast, namely the 

empirical approach, the dynamical approach, and the statistical approach. The empirical 

approach infers the future weather condition based on similar weather situations in the 

past, i.e., the occurrences of analogues. This approach may work well when we have a 

sufficiently large pool of recorded analogues. The dynamical approach, or so-called 

numerical weather prediction, is the most widely used approach which generates weather 

forecasts by solving a set of partial differential equations. First, the equations are 
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initialized by weather measurements processed via data assimilation techniques, which 

accommodate the initial conditions to resemble the reality of the atmosphere and 

minimize the initialization error. Next, the equations are solved iteratively using 

numerical methods, and the solution is used to determine the next state of the atmosphere. 

The abovementioned steps can be executed recursively to generate forecasts for a longer 

lead time (the predicted state of the atmosphere can be used to initialize the model, and 

the solution of which is then used to determine a further future state of the atmosphere), 

while the forecast performance may degrade progressively due to the error accumulation 

at each forecast time step. The NWP systems nowadays usually use a combination of the 

first two approaches. Due to the data volume involved and the computational intensity of 

modeling large-scale weather conditions, forecasts from NWP systems cannot be 

refreshed more frequently. In fact, the time cost of running the models and disseminating 

the forecast may lead to an already stale forecast when reaching the end-users. In recent 

decades, statistical approaches have shown effectiveness in performing short-term 

weather forecasting. Based on recent observations, common approaches such as time 

series methods and neural networks can generate short-term weather forecasts that are 

more useful to end-users for near real-time operational needs.  

 Weather forecast output can be in the form of a deterministic forecast or an 

ensemble forecast. Traditionally, the deterministic weather forecast is generated using the 

most likely initial conditions, and the forecast conveys the most likely weather condition 

in the future. However, due to the uncertainty of the initial conditions or weather 

forecasting model assumptions, or both, the future weather can have an infinite number 

of possibilities. Under the ensemble weather forecasting setting, a weather forecast model 
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will run simulations up to 100 times, each with perturbed initial conditions or model 

assumptions. If most simulation outputs are very close and form a narrow spread, the 

weather situation is considered to be highly predictable and the confidence in this 

prediction is high. Conversely, if these simulation outputs are very different (forming a 

wider spread), the weather situation is considered to be less predictable, with less 

confidence that this prediction is accurate. Such an approach to generating the ensemble 

forecast and inferring the uncertainty of a weather forecast has been accepted and widely 

used since the 1980s by the meteorological community. Although generating ensemble 

forecasts can be very computationally costly even with supercomputers, the projection of 

future weather uncertainties can be particularly useful when the forecast accuracy gets 

worse at a longer lead time. 

Weather forecasting plays a vital role in influencing human daily activities and 

decision-making. Most industries are weather-sensitive, such as utilities (Teisberg et al., 

2005), agriculture (Hansen, 2002), and transportation (Thornes & Stephenson, 2001). 

Utility companies rely on accurate weather forecasts to project future electricity and gas 

demand for generation planning and energy trading. Agricultural facilities need weather 

forecasts for crop management such as irrigation planning, pest control, and 

consolidating fertilizer requirements. Weather forecasts are also a fundamental input to 

transportation systems to estimate the adverse weather impact on road conditions, railway 

operations, airplane routes, and ship operations. For these industries, better weather 

forecasts are critical to ensure safety, efficient operations, and cost savings. Weather 

forecast evaluation, or more commonly referred to as weather forecast verification in the 

meteorological field, is an indispensable part of the weather forecasting systems 
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development. The evaluation process monitors the weather forecast skill over time, 

verifies the data assimilation pipeline, and facilitates a comparison of the forecast quality 

between the weather forecasting systems. By demonstrating the skill improvement and 

the incremental economic value, the evaluation result helps to build credibility and 

confidence among its end-users. 

1.3. Dissertation Organization 

 The organization of this dissertation is shown in FIGURE 2. Chapter 2 presents a 

literature review of electric load forecasting, ex-ante load forecasting, and weather forecast 

evaluation approaches. Chapter 3 presents a background of the statistical models, the model 

evaluation techniques, and the weather station selection process. Chapter 4 introduces the 

data used in this research and provides some exploratory data analysis. Chapter 5 proposes 

a new model selection framework based on ex-ante forecast accuracy and discusses the 

results. Chapter 6 introduces the steps to model the quality of temperature forecasts. 

Chapter 7 proposes a comprehensive model selection framework based on results in 

Chapter 6 and compares the load forecast accuracy to the model selection frameworks 

discussed in Chapter 5. This research concludes in Chapter 8. 
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FIGURE 2: Organization of dissertation 
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CHAPTER 2: LITERATURE REVIEW 

2.1. Electric Load Forecasting Overview 

Electric load forecasting has received increasing attention from both academia and 

the utility industry. During the past 40 years, thousands of papers have been published in 

this field. FIGURE 3 shows the number of journal articles published in the electric load 

forecasting field since 1985. The numbers are scraped from Web of Science based on the 

query: TS=(load forecasting OR electricity consumption forecasting OR electric load 

forecasting OR energy forecasting). Likely due to the new technologies being adopted and 

the availability of big data, a sharp increase in the number of publications can be observed 

during the most recent decade. In this section, we review some notable load forecasting 

literature based on the following three aspects: 1) the length of the forecast horizon, 2) the 

load forecasting techniques being explored, and 3) the common variables being used in the 

load forecasting applications. In the end, we touch on several trending topics in this field.  

 

FIGURE 3: Number of journal articles in electric load forecasting based on Web of 

Science query (1985 – 2021) 
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As mentioned in Section 1.1, load forecasting can be grouped into four categories: 

VSTLF, STLF, MTLF, and LTLF. VSTLF can be viewed as a sub-problem of STLF as 

both processes can take weather forecasts as input in the forecasting period (Luo, Hong, & 

Yue, 2018). Nevertheless, the weather information can be optional in VSTLF since the 

load in a near future can be directly inferred from the load in the past (Taylor & McSharry, 

2007)(Hong, 2010). 

For VSTLF, (Taylor, 2008) evaluated 10 to 30 minutes ahead forecasts of British 

electricity demand among a few univariate methods plus a multivariate method that used 

weather forecast as input. Empirical results suggested that the forecast performance 

deteriorated with a longer lead time for all methods. Compared to the univariate methods, 

the weather-based multivariate method was not competitive for very short-term prediction, 

whereas it led to superior performance for lead times longer than four hours. (Mandal et 

al., 2006) generated one to six hours ahead load forecasts based on load data from Okinawa 

Electric Power Company in Japan. The proposed algorithm first located similar days by 

comparing the load and temperature forecast to the past. Then, the average load of similar 

days from the past served as input to an ANN model to produce the final forecast. 

(Methaprayoon et al., 2007) applied an ANN model to generate hour-ahead and day-ahead 

forecasts for Western Farmers Electric Cooperative. To improve the quality of the input 

temperature forecast, the authors trained another ANN model which used source 

temperature forecasts as input and tried to minimize the difference between the model 

output and actual temperature. The results showed that this extra step improved the load 

forecast accuracy upon the usage of any individual temperature forecast. When forecasting 

the heating and cooling load of an office building, (Zhao & Liu, 2018) observed a better 
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weather forecast accuracy within 1-hour, 2-hour, and 3-hour ahead compared to the 24-

hour ahead weather forecast. Such a fact contributed to a lower load forecasting error 

within a shorter lead time. As the preceding hours' load variable was commonly used in 

online VSTLF systems, (Luo, Hong, & Yue, 2018) proposed a model-based anomaly 

detection method to detect and cleanse corrupted load data.  

There is rich literature in STLF. (Hong, 2010) presented a comprehensive review 

of this field for the recent half century until 2010. In this dissertation, the author set the 

foundation for a modern load forecasting module using multiple linear regression (MLR) 

models for week-ahead hourly load forecasting. A base model was constructed by 

exploring the relationship between load, temperature, and calendar variables. The proposed 

base model can easily be extended for VSTLF by including the preceding hour load, and 

for MTLF/LTLF by including econometric variables. Besides, a few customizations to the 

model, such as including the recency effect, weekend effect, and holiday effect enhanced 

the predicting power significantly on top of the original model. The base model is known 

as Tao’s Vanilla Benchmark model and has been extensively studied in recent STLF 

literature, such as (Hong, Wilson, et al., 2014), (P. Wang et al., 2016), (Xie & Hong, 2017), 

and (Xie et al., 2018). Given its accuracy and computational efficiency, the base model has 

been used as a benchmark model in recent load forecasting competitions including 

GEFCom2012 (Hong, Pinson, et al., 2014), 2014 (Hong et al., 2016), and 2017 (Hong et 

al., 2019).  

Regarding the number of research papers getting published, MTLF and LTLF are 

much less popular topics compared to STLF. Nevertheless, MTLF and LTLF are equally 

important as STLF. (Khuntia et al., 2016) presents a comprehensive review on defining 
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and classifying various load forecasting techniques for MTLF and LTLF. Compared to 

STLF, which emphasizes model fitting on existing datasets without the need of 

understanding the way a power system works, the authors pointed out that MTLF/LTLF 

relied more on a forecaster’s experience with the power system itself, as well as the 

understanding of how the economy and technological changes may affect the electricity 

market and the load usage. As the temperature cannot be predicted accurately in the long 

run, (Hong, Wilson, et al., 2014) incorporated economic scenarios and created weather 

scenarios from past weather history for the LTLF of a US utility. The model outputted a 

probabilistic load forecast which represented diverse scenarios of the future load.  

An extensive variety of techniques have been explored in the load forecasting 

literature. The mainstream techniques can roughly be grouped into two categories: 

statistical methods such as time series analysis and regression analysis, and artificial 

intelligence (AI) methods such as artificial neural networks (ANN) and gradient boosting 

machines (GBM). TABLE 1 presents some notable methods and the related literature.  

TABLE 1: Notable methods and literature in the electric load forecasting field 

Method Papers 

ARIMA (Amjady, 2001)(Weron, 2006) 

Exponential smoothing (Hyndman et al., 2008)(Taylor, 2008) 

MLR (Papalexopoulos & Hesterberg, 1990)(Hong, 2010)(P. Wang et al., 2016) 

Semi-parametric (Fan & Hyndman, 2012)(Goude et al., 2014) 

ANN (Hippert et al., 2001) 

Support vector machine (B. J. Chen et al., 2004) 

GBM (Taieb & Hyndman, 2014) 

Deep learning (K. Chen et al., 2019)  

 

Statistical methods such as univariate models have been popular approaches in the 

2000s literature. The family of time series methods such as ARMA models (Weron, 2006) 
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and exponential smoothing methods (Taylor & McSharry, 2007)(Taylor, 2008) was widely 

studied and compared. These univariate methods commonly learn from the past load 

history without the knowledge of exogenous variables such as weather. Therefore, they 

have lower data requirements than the other widely used techniques such as MLR and ANN 

(Hong & Fan, 2016). Nevertheless, empirical results in (Taylor & McSharry, 2007) and 

(Taylor, 2008) showed that these univariate methods only led to promising forecasting 

performance for VSTLF with the lead times up to about four to six hours. At a longer lead 

time, their forecasting performances dropped significantly with the forecast error 

accumulation at each forecast time step and were eventually surpassed by other 

multivariate methods. 

On the other hand, MLR models are frequently used in the literature for both STLF 

and LTLF. These models require statistical knowledge to establish a functional form 

between the input variables (e.g., weather and calendar variables), and the output variable 

(e.g., load or some transformation of the load). Compared to the “black-box” models such 

as ANN, the parameters of MLR models are much easier to interpret. (Papalexopoulos & 

Hesterberg, 1990) set a solid ground in employing MLR analysis for STLF. The proposed 

approach modeled temperature by using heating and cooling degree functions, holiday 

effect by using binary variables, and estimated parameters using weighted least squares. 

Using Pacific Gas and Electric Company’s (PG&E) data, the proposed method 

outperformed the existing approach at PG&E for 24-h ahead peak and hourly load forecasts. 

(Hong, 2010) proposed a series of MLR models for week-ahead hourly load forecasting. 

The proposed approaches emphasized the cross effects between weather and calendar 

variables and addressed special effects in the load forecasting models such as the weekend 
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effect, holiday effect, and recency effect. (Hong, Wilson, et al., 2014) introduced a 

macroeconomic variable to the STLF model in (Hong, 2010) and incorporated economic 

scenarios and weather scenarios for long term probabilistic load forecast. (P. Wang et al., 

2016) extended the base model in (Hong, 2010) and formally investigated the best number 

of recency effect terms (lagged hourly temperatures and lagged moving average 

temperatures) using high-performance computing.  

AI methods such as ANN and GBM became increasingly popular in recent decades. 

These techniques typically do not specify an exact functional form between the input and 

output variables. Instead, the relationship between the two is automatically learned by 

minimizing a cost function. Despite the ease of effort in the feature engineering stage, the 

cost of tuning the model’s architecture and hyperparameters is nontrivial. Besides, the 

learned parameters can be difficult to interpret and used to explain the relationship between 

the input and output variables (so-called the “black-box” models). (Hippert et al., 2001) 

presented a comprehensive review of the usage of ANN in STLF. (Taieb & Hyndman, 

2014) employed a gradient boosting framework to solve the hierarchical load forecasting 

problem in GEFCom2012, where the univariate penalized regression splines were used as 

the base learner.  

Apart from the abovementioned techniques, other methods were also considered 

when building load forecasting models, which included but were not limited to fuzzy 

regression models (Hong & Wang, 2014), support vector machines (B. J. Chen et al., 2004), 

semi-parametric models (Fan & Hyndman, 2012)(Goude et al., 2014), and the most 

trending deep learning models (K. Chen et al., 2019). 
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Various variables have been explored in the load forecasting literature. These 

variables are used to extract useful information in explaining load variations. The most 

common variables are weather and calendar variables.  

Temperature is the most widely used weather variable due to two aspects. First, it 

has a strong correlation with weather-sensitive load, as shown in FIGURE 7. Second, 

temperature forecasts are usually pretty accurate within four or five days ahead. As weather 

forecast is required when inferencing the future load, temperature, which is more 

predictable than the other weather variables, becomes a more reliable input to load 

forecasting models. The non-linear relationship between the measured temperature and 

electricity usage has been modeled in various forms. (Shu Fan et al., 2009) used a piecewise 

linear function to estimate the correlations between load and temperature for cold and hot 

days. The separation point was located by maximizing the absolute values of the two 

correlation coefficients on both segments. Similarly, (Ziel & Liu, 2016) manually chose 

two separating points, 50 °F and 60 °F, when fitting a piecewise linear function. (Hong, 

2010) explored a 3rd order polynomial function to model the nonlinear relationship between 

temperature and load. The author further introduced cross effects between temperature and 

calendar variables to capture the varying correlations between temperature and load at 

diverse temporal levels (different hours of a day and months of a year). Since the 

temperatures of the preceding hours can impact the current hour’s load, (P. Wang et al., 

2016) explored the best number of lagged hourly temperatures and lagged moving average 

temperatures to be included in a regression-based model. Besides, (Chapagain & 

Kittipiyakul, 2018) converted hourly temperature data to heating degree days (HDD) and 
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cooling degree days (CDD), and included their 3rd order polynomials as well as their cross 

effect with the calendar month variable in their STLF model.  

Other weather variables have also been explored, such as relative humidity, wind 

speed, solar irradiation, and rainfall. (Xie et al., 2018) experimented with relative humidity 

variables in a form of the heat index, a 2nd order polynomial of relative humidity, and some 

cross effects with temperature, season, and hour of the day. A case study based on a North 

Carolina utility showed that relative humidity had a stronger correlation with the load 

during the summer months (June to September). (Xie & Hong, 2017) explored wind speed 

variables in a form of the wind chill Index, and some cross effects among the wind speed, 

temperature, and season. A case study based on ISO New England data suggested that wind 

speed had a stronger correlation with the load from June to August. (Zhou et al., 2008) 

generated solar irradiance forecast based on existing weather forecast information and the 

solar irradiance output was used for building load forecasting. (Senjyu et al., 2005) 

introduced rainfall as a binary variable (-1: rain; 1: no rain) to forecast the next day’s load 

of a utility company in Japan.   

As weather inputs are crucial to load forecasting models, the quality of weather 

variables can largely affect the accuracy and robustness of a load forecasting model. 

Besides, the data measured at a single weather station may solely reflect the weather 

conditions within a limited geographic region (Sobhani et al., 2019). When data from 

multiple weather stations are available, one way to enhance the quality of weather input is 

through a weather station selection process. (Hong et al., 2015) was the first paper 

published on this subject. In this paper, the authors proposed a heuristic method based on 

a greedy algorithm to select a subset of weather stations that was suitable for load 
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forecasting models. The method produces relatively accurate results and is fast to compute. 

Due to its simplicity and reproducibility, this method has been cited and compared in many 

recent literature (e.g., (Xie & Hong, 2016), (Sobhani et al., 2019), and (Neto & Hippert, 

2020)) and is currently used by many power companies (Y. Wang et al., 2019). (Moreno-

Carbonell et al., 2019) is another notable paper in this field, in which the authors employed 

a GA (genetic algorithm) based method that resulted in superior accuracy with more 

computational costs. 

The load consumption is known to be time-dependent, and calendar variables can 

be used to capture the load levels at different time slots. The Gregorian calendar is 

frequently referred to when building load forecasting models. (Hong, 2010) introduced the 

hour of the day, day of the week, and month of the year as categorical variables to model 

the load levels at different temporal categories. The author also explored groupings of 

similar weekdays and modeled the load around holidays by assigning different days of the 

week categories to these days. Other papers investigated groupings of consecutive months 

to model the seasonal variation of the load, such as summer and winter periods (Charlton 

& Singleton, 2014), four seasons (Hagan & Behr, 1987), or two seasons with a transition 

period (Lusis et al., 2017). (Sangamwar, 2019) employed heuristic algorithms to explore 

an optimal grouping of the calendar variables, including the hour of the day, day of the 

week, and month of the year. Apart from the Gregorian calendar, some works reported 

using the solar terms (Xie & Hong, 2018) or seasons based on the lunar calendar (K. Chen 

et al., 2019) in the load forecasting models. Besides the usage of categorical variables, 

other literature implemented smooth cyclic functions such as cyclic cubic regression 
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splines (Nedellec et al., 2014)(Gaillard et al., 2016) and Fourier approximation (Taieb & 

Hyndman, 2014)(Haben et al., 2019) to estimate the calendar-related cyclic pattern of load.  

The traditional load forecasting procedure outputs a point forecast, which measures 

the expected load value at each future time step. In recent years, probabilistic load 

forecasting (PLF) has received increasing attention. This is due to the fact that PLF can 

capture future load uncertainty, which is critical for the decision-making of grid operations 

and maintenances with the integration of renewable energy resources. (Hong & Fan, 2016) 

provided the first comprehensive review on PLF across all forecast horizons, including the 

techniques being used, the common PLF applications, and forecast evaluation methods. 

The two recent energy forecasting competitions, GEFCom2014 and 2017, invited 

contestants around the world to address the PLF problems. (Hong et al., 2016) and (Hong 

et al., 2019) summarized the PLF techniques being used in each competition, such as 

quantile regression (Haben & Giasemidis, 2016)(Liu et al., 2017), temperature scenario 

simulation (Gaillard et al., 2016), and residual simulation (Xie et al., 2017). 

Due to massive installations of metering devices in the power distribution network 

since the early 2000s, highly granular data become available at diverse power system levels, 

providing insights into energy usage from a single residential property to a major utility 

service territory. The massive data spawns a new subject of hierarchical load forecasting 

(HLF) which aims to provide comprehensive load forecasts at diverse power system 

hierarchies to support operations and marketing strategies. The HLF literature presents a 

growing trend in the recent decade. (Shu Fan et al., 2009) developed a day-ahead multi-

region load forecasting system for a Midwest power utility in the US. The proposed method 

explored the optimal region partition under diverse weather and load conditions to achieve 
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more accurate aggregated load forecasts. To improve load forecast accuracy based on the 

ISO New England data, (Lai & Hong, 2013) investigated regional grouping using 

geographical hierarchies and an average of temperature stations. The hierarchical load 

forecasting track in GEFCom2012 presented contestants with a 2-level HLF problem: to 

backcast and forecast hourly load for a US utility at both the zonal level (20 zonal series) 

and the system level (sum of 20 zonal series). (Hong, Pinson, et al., 2014) summarized the 

challenges of the problem and the techniques being used by the top winning entries, such 

as multiple linear regression (Charlton & Singleton, 2014), semi-parametric models 

(Nedellec et al., 2014), and gradient boosting machines (Lloyd, 2014)(Taieb & Hyndman, 

2014). The GEFCom2017 escalated the HLF problem to a 3-level (qualifying match, based 

on zonal and total loads of ISO New England) and 4-level (final match, based on the load 

of hundreds of delivery point meters for a US utility) PLF problem. (Hong et al., 2019) 

summarized the techniques being used and found a modest usage of the hierarchy 

information by the top winning entries.   

Load forecast accuracy relies heavily on the quality of load history. As 

cybersecurity brings a growing concern to diverse business enterprises, data integrity 

attacks have become an emerging issue in modern load forecasting systems. (Luo, Hong, 

& Fang, 2018a) investigated four representative load forecasting models under various 

simulated data integrity attacks. Using the GEFCom2012 data, the authors found that the 

support vector regression (SVR) model was the most robust model compared to the MLR, 

ANN, and fuzzy interaction regression (FIR) models. In (Luo, Hong, & Fang, 2018b), the 

authors demonstrated that the L1 regression model showed much stronger robustness than 

the other two iteratively re-weighted least squares models. (Luo, Hong, & Yue, 2018) 
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proposed a real-time anomaly detection method to prevent malicious data attacks on the 

data acquisition system.  

Since early 2020, the spread of the COVID-19 pandemic brought an unprecedented 

impact on human society. Due to lockdown measures, the electricity demand in Spain 

decreased by over 13% in a month (Santiago et al., 2021). After state-wise curfew orders, 

New York and California independent system operators reported a 10% and 12% reduction, 

respectively, in electricity demand (Alasali et al., 2021). Besides, the morning and evening 

peaks of homes, hospitals, and the total electricity demand were modified due to changes 

in customer behaviors. All these changes brought extra uncertainty to the reliable operation 

of the grid. At this moment, notable papers considering the COVID impact on electric load 

forecasting are still scarce. (Alasali et al., 2021) analyzed the COVID impact on energy 

demand trends of three supply areas in Jordan by applying time series decomposition. The 

authors applied a rolling origin ARIMAX model with a Monte Carlo sampling method to 

generate PLF. (Tudose et al., 2021) proposed a convolutional neural network based model 

for the day-ahead forecast of aggregated load in Romanian. The authors modeled the 

pandemic effects to load consumption by using categorical variables that indicated whether 

any restrictions were applied during the forecast day. The restrictions were known based 

on publicly announced governmental decisions, namely a national lockdown, a period of 

gradual relaxation, or a partial lockdown. 

2.2. Ex-ante Load Forecasting 

 In the load forecasting field, it has been a conventional practice to build and test 

models in the ex-post forecasting settings, in which the actual weather readings in the 

forecast period are used. In short-term load forecasting, the temperature can be fairly 
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predictable, and we may assume that the models selected by the ex-post forecasting can 

represent the performances in the operational forecasting. For long-term load forecasting, 

ex-post forecasting can also be used to explore the modeling strategies (Hong, Wilson, et 

al., 2014). This leads to the fact that the ex-post forecasting performance is typically 

reported, which enables comparisons with other research (Hong, Wilson, et al., 2014).  

 The underlying assumption of studying load forecasting models in the ex-post 

forecasting settings is that, a more accurate model measured based on the ex-post 

forecasting performance would lead to more accurate ex-ante forecasts in the operational 

context. Nevertheless, recent literature have shown that this assumption may hold in some 

case studies (e.g., (Dahl et al., 2018)), but not necessarily in the other ones (e.g., (Sandels 

et al., 2015) and (Z. Wang et al., 2020)). This is because weather forecast errors can lead 

to diverse levels of performance degradation in different load forecasting models. Such 

effects are completely overlooked in the ex-post forecasting settings. 

 As the ultimate goal is to improve the ex-ante forecast accuracy, historical weather 

forecasts can be used for forecast evaluation in the model building stage. However, the ex-

ante forecasting performance was rarely reported in the literature, which is often due to the 

lack of historical weather forecast data for the training period (Fay & Ringwood, 2010). It 

was not until recently that the historical numerical weather prediction (NWP) was made 

publicly available by the European Centre for Medium-Range Weather Forecasts 

(ECMWF) (Yang et al., 2022). This dataset contains four years of historical weather 

forecast history, 14 weather forecast variables, and covers most of the Europe and North 

America regions. We anticipate seeing more literature being published on investigating the 
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ex-ante forecast accuracy of load forecasting models using the real weather forecast from 

this dataset. 

 As weather forecast often becomes inaccurate beyond 10 days, existing literature 

using weather forecast variables typically focuses on forecasting the load within a short 

horizon. In this review, we focus on discussing the short-term ex-ante load forecasting 

literature as it is directly tied to our research topic. We review these literature based on the 

following three aspects: 1) the ways ex-ante load forecasts were generated; 2)  the existing 

analyses on the contribution of weather forecast errors to the ex-ante load forecast errors, 

and 3) the efforts in identifying more robust load forecasting models considering the 

weather forecast errors. 

 In the literature, ex-ante load forecasts were most commonly generated using a real 

weather forecast. Such a forecast could be a point forecast provided by a single (De Felice 

et al., 2013)(Zhao et al., 2018)(C. Fan et al., 2020) or multiple weather forecast providers 

(Methaprayoon et al., 2007)(S. Fan et al., 2008), or an ensemble weather forecast from a 

single provider which consists of multiple future weather scenarios (Taylor & Buizza, 

2002).  

 In (De Felice et al., 2013), the authors used the operational weather forecast from 

ECMWF (European Centre for Medium-range Weather Forecasts) to produce the ex-ante 

forecast of regional load in Italy. A performance gap was observed between the ex-ante 

forecast and the ex-post forecast, which was due to the weather forecast errors within the 

operational forecast. (Zhao et al., 2018) retrieved weather forecast data from a weather 

website and forecasted the cooling load of an office building. Instead of using the weather 

forecast directly, the authors first conducted Monte Carlo (MC) simulations to sample the 
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errors from the historical weather forecast error distribution. Next, they applied the 

sampled errors to revise the future weather forecasts. The case study showed that the 

revised weather forecasts improved load forecast accuracy. Compared to (Zhao et al., 2018), 

(C. Fan et al., 2020) argued that the probability distribution of the weather forecast errors 

should be determined based on the changing characteristics of the errors. The authors 

proposed a similar MC framework to sample weather forecast errors from a two-period 

probability distribution: one formed by the weather forecast errors from 6:00 AM to 4:00 

PM when the outdoor temperature was typically rising, and the other one formed by the 

errors from 4:00 PM to 6:00 AM when the outdoor temperature was typically dropping. 

The sampled errors were likewise used to calibrate future weather forecasts.  

The temperature forecasts in (Methaprayoon et al., 2007) and (S. Fan et al., 2008) 

were both retrieved from multiple weather sources. To make better use of the data, different 

approaches were applied to pre-process these source temperature forecasts. In 

(Methaprayoon et al., 2007), the authors trained an ANN model which took different 

temperature forecasts as input and tried to minimize the difference between the output and 

actual temperature. The proposed module was intended to output a more effective 

temperature forecast to be used as input for ex-ante load forecasting. The results showed 

that this extra step led to a better load forecast accuracy than the usage of any individual 

temperature forecast. Based on another case study in (S. Fan et al., 2008), the authors found 

that the temperature forecasts generated by the ANN module in (Methaprayoon et al., 2007) 

sometimes were not satisfactory in practical application. When the performance of the 

source temperature forecasts varied over time, which is common in the real-time 

application, the temperature forecast generated by the ANN module can lead to worse load 
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forecast accuracy than using the source temperature forecast directly. Instead, the authors 

proposed a more stable solution by combining these source temperature forecasts using 

adaptive weights. The weight of each source temperature forecast was determined by two 

factors: one is its average performance in the history compared to the real temperature 

readings; the other one is its latest performance through an exponential term. The case 

study showed that the combined temperature forecasts led to better load forecast accuracy 

as well as lower standard deviation of the load forecast errors. When multiple weather 

stations are available within or near a service territory, (Hong et al., 2015) demonstrated a 

heuristic framework to select the most suitable weather stations for load forecasting models. 

Although the steps of proposed framework used ex-post forecasting performance as the 

selection criteria, historical weather forecasts can instead be used to select the stations 

based on the ex-ante forecasting performance.  

(Taylor & Buizza, 2002) forecasted the mid-day daily load of England and Wales 

from one to ten days ahead. They used a weather ensemble prediction generated by 

ECMWF, which consisted of 51 future weather scenarios for each weather variable, i.e., 

temperature, wind speed, and cloud cover. The authors applied each weather scenario as 

input to produce ex-ante load forecasts. Results showed that the average of 51 load 

forecasts outperformed the forecast produced by traditional point weather forecasts for all 

the lead times. Besides, the distribution of the load forecasts can provide uncertainty in the 

future load. 

 When real weather forecast was unavailable or incomplete for a load forecasting 

model, the research community mostly generated weather forecasts following one of two 

ways: 1) build weather forecasting models from past weather history (Charlton & Singleton, 
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2014)(Lloyd, 2014)(Nedellec et al., 2014)(Kulkarni et al., 2013) or other weather forecast 

variables (Zhou et al., 2008), or 2) create synthetic weather forecast based on actual 

weather readings (S. T. Chen et al., 1992)(Park et al., 1993)(Fay & Ringwood, 2010).  

 In GEFCom2012, weather information during the forecast period was unprovided. 

Therefore, the contestants need to develop their own weather forecasts if they decided to 

include weather information in their models. (Charlton & Singleton, 2014) generated 

temperature forecasts by simply averaging the past time-of-the-year temperatures within a 

fixed window of 25 days. (Lloyd, 2014) predicted temperature by modeling a smooth trend 

and daily periodicity of past temperature. The smooth trend was estimated using a local 

linear regression with a bandwidth of one day, while the daily periodicity portion was 

modeled using a Gaussian process with a periodic kernel. (Nedellec et al., 2014) explored 

five different approaches to forecast temperature based on historical temperature, including 

SARIMA models, semi-parametric models, and a kernel wavelet functional forecast. The 

authors proceeded with semi-parametric models with SARIMA errors as the temperature 

forecast led to the lowest load forecast error. Besides the winning entries in GEFCom2012, 

(Kulkarni et al., 2013) built a spiking neural network based on past weather history to 

forecast the day-ahead hourly temperature. The weather forecast output was then used to 

generate the ex-ante load forecast. (Zhou et al., 2008) proposed a grey-box model to 

forecast the building cooling load, where the raw weather forecast information was 

retrieved from a local observatory website. However, some critical weather variables such 

as hourly temperature, relative humidity, and global solar radiation were unavailable from 

the local source. Therefore, the authors utilized grey models and linear estimators to 

forecast these weather variables based on existing weather forecast information.  
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 Rather than using real weather forecasts for ex-ante load forecasting, (S. T. Chen 

et al., 1992) and (Park et al., 1993) created synthetic temperature forecasts by adding 

Gaussian noises to the actual temperatures. A more recent empirical case study presented 

in (Zhao et al., 2018) also showed that the real weather forecast errors followed a 

distribution that was close to normal. On the other hand, (Fay & Ringwood, 2010) 

examined the error distribution of weather forecasts from the meteorological office of 

Ireland. The authors found that the weather forecast error displays a serial correlation, 

meaning that a more complicated structure was necessary to model the pattern of such 

errors. To create the synthetic temperature forecast for the entire training period, they 

modeled the temperature forecast error by introducing turning points, a level error, a shape 

error, and a random error. The model output showed that this method well captured the 

auto-correlation within the historical temperature forecast errors. Nevertheless, the usage 

of real weather forecasts is still highly recommended to validate a load forecasting 

technique. This is because using the synthetic weather forecast may result in a simplified 

and more predictable problem (Agüera-Pérez et al., 2018), which is non-identical to the 

problems in practical operations.  

 The ex-ante load forecast output typically consists of two uncertainties: one is 

stemmed from the forecasting model itself, while the other one is from the weather forecast 

erors. Several notable literature investigated the contribution of weather forecast error to 

the ex-ante load forecast error. (Douglas et al., 1998) compared the ex-ante and ex-post 

forecasting performance and claimed that a sizable portion of the load forecast error is due 

to a lack of accuracy in the temperature forecast. (Segarra et al., 2019) noticed a strong 

positive correlation between the temperature forecast error and the load forecast error. Both 
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errors generally increased together when reaching a longer forecast horizon. 

(Methaprayoon et al., 2007) observed significant load forecast errors when temperature 

forecast errors were high, implying that the performance of their load forecasting model 

was sensitive to the accuracy of the temperature forecast. The authors subsequently 

conducted a sensitivity analysis of temperature forecast error to ex-ante load forecast error. 

The load forecasting performance was simulated by applying a level shift error to the 

temperature variable from -5 to 5 °F. The simulation results showed that the load forecast 

accuracy dropped with a larger deviation of the (simulated) temperature forecast from the 

actual. (Chitalia et al., 2020) conducted a similar sensitivity analysis using Gaussian 

distribution with the mean of the actual temperature and three standard deviations of 5%, 

10%, and 15%. The study showed that different candidate models received different levels 

of degradation in performance under various levels of temperature forecast errors. The 

abovementioned case studies provide evidence that the ex-ante load forecast accuracy can 

be impacted by the levels of temperature forecast accuracy.  

 Two other literature touched on identifying more robust load forecasting models to 

weather forecast errors. Possibly due to the lack of weather forecast data, both papers added 

Gaussian noises to actual weather to simulate ex-ante forecast. (Z. Wang et al., 2020) 

compared the building load forecasting performance between XGBoost and LSTM. 

Results showed that LSTM, which was slightly worse than XGBoost under ex-post 

forecasting, was more robust to synthetic weather forecast errors (temperature and relative 

humidity). To increase the robustness of a model to the weather forecast errors, the authors 

tried on using synthetic weather forecasts instead of real weather readings for model 

training. Both models showed improvement when trained with synthetic weather forecasts. 
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(Chitalia et al., 2020) compared nine different hybrids of RNNs, where the synthetic 

temperature forecast was created by adding Gaussian noise with the mean of the actual 

temperature, and three standard deviations of 5%, 10%, and 15%. Sensitivity analysis was 

carried out among these models and the LSTM model with the attention mechanism 

performed the best under all three standard deviations of the Gaussian noise. Besides, the 

performance ranking across different models changed drastically under different levels of 

temperature forecast error. Although the above two studies discussed the robustness of load 

forecasting models using simulated ex-ante forecasts, our case study (introduced in Chapter 

4, FIGURE 9) showed that the real temperature forecast was not alike random noises 

injected into the actual temperature. Hence, further investigations are necessary to 

determine the better load forecasting models in field operations. 

 The reviewed literature revealed two following directions on improving ex-ante 

load forecast accuracy: 1) improving the accuracy of weather forecast input to load 

forecasting models, and 2) improving the robustness of load forecasting models to the 

weather forecast errors. Some abovementioned literature shed some light on the first 

direction, while the literature suffers more from a lack of comprehensive study on the 

second direction, which is to choose more robust load forecasting models under real 

weather forecasts. In this research, we offer an extensive investigation of the better load 

forecasting models using real temperature forecasts purchased by a US power utility. 

2.3. Weather Forecast Evaluation 

There are numerous ways to evaluate the goodness of a weather forecast. From 

the forecaster’s perspective, the goodness of a weather forecast mainly refers to the extent 

of correspondence between the forecast and observations. On the other hand, the end-user 
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is more interested in the incremental beneficial outcomes from their decision-making 

supported by the weather forecast. In the meteorological field, (Murphy, 1993) suggested 

three types of goodness that jointly define the goodness of a weather forecast: 

consistency, quality, and value. Consistency relates to the correspondence between the 

forecast and the forecaster’s best judgment, which encourages proper scoring rules being 

used during forecasting. Quality refers to the correspondence between the forecast and 

observations. The closer a forecast is to the observations, the better quality it has. Value 

refers to the incremental economic benefits of the forecasts to the end-user. For instance, 

(Teisberg et al., 2005) concluded that a 1°F improvement in temperature forecast 

accuracy was worth about $37 million per year to cut down the operational cost of 

electricity generation in the U.S. North, South, or West.  

In this section, we first review the common approaches to evaluating weather 

forecast quality. We limit our discussion to the quality of deterministic weather forecasts 

on continuous variables (e.g., temperature, precipitation amount, solar irradiance, etc.). 

Evaluation methods related to other forms of the weather forecast, such as categorical 

variables (e.g., binary events such as tornado vs. no tornado), word descriptive forecast, 

and ensemble (probabilistic) forecast are not within our scope. Going beyond the weather 

forecast evaluation, we review a handful of literature that attempted to predict the 

forecast quality of NWP systems in the end.  

Data used for weather forecast evaluation can be divided into reanalysis and 

operational forecast. Reanalysis data, also known as the “hindcast”, is produced by a 

modern dynamic weather model with fixed initial conditions, physical schemes, and 

parameterization. It provides a complete picture of possible past weather and climate for 
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multiple decades at once. In contrast, operational forecast nowadays is generally 

produced by multiple dynamic weather models with a myriad of ensemble members 

within each model. The forecast is generated through the forecast horizon (usually within 

15 days) for a designated region and disseminated to the end-user iteratively when a 

newer forecast becomes available. As the sample size (both temporal and spatial) of 

historical operational forecasts is often limited, the reanalysis data with a larger size is 

often used to derive the long-term skill trend of an NWP system. Since reanalysis is not 

equivalent to operational forecasts, several caveats, detailed in (Jolliffe & Stephenson, 

2012), remain when using reanalysis data to estimate the skill of an NWP system in the 

operational context.  

In the meteorological community, evaluation methods of the forecast quality can 

be divided into the measure-oriented approach and the distribution-oriented approach 

(Murphy, 1993). The measure-oriented approach, such as the mean absolute error (MAE) 

or the root mean square error (RMSE), measures the overall aspects of the forecast 

quality. These “one-number summary” error metrics, providing different facets of the 

forecast skill, are simple to calculate and are particularly useful when a forecaster needs 

to convey the forecast performance to non-technique personnel, such as the general 

public (Yang et al., 2020). Despite their popularity, these error metrics are often chosen 

subjectively and the information that each conveys is limited. The distribution-oriented 

approach, on the other hand, involves analyzing the joint, marginal, and conditional 

distributions between forecast and observations. It is ideal for forecast analysis as it 

reveals multifaceted aspects of the forecast quality and can better assist in decision-

making when choosing between different modeling schemes or performing cross-
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scenario comparisons. The downside of the distribution-oriented approach is the analysis 

outcome may be too cumbersome to be digested by non-technique personnel. In the next 

few paragraphs, we discuss the common methods used in each approach in further detail.  

When evaluating deterministic forecasts of continuous weather variables, the 

measure-oriented approach can be further divided into four different categories as shown 

in TABLE 2, with common measures within each category. Distance metrics, usually the 

smaller the better, summarize the deviation from the forecast to the observations. The key 

difference between the two popular measures, MAE and RMSE, is that the latter is highly 

biased for large errors while the former applies the same weight across the errors. The 

mean bias error (MBE) is the average forecast error representing the systematic error of a 

model. The MBE, although frequently reported in the meteorological literature, may not 

be treated as an essential measure. This is because operational forecasts nowadays 

typically go through a bias correction process before being disseminated to the end-user, 

and a small MBE is more of a baseline requirement (Yang et al., 2020).  

TABLE 2: Classification of measure-oriented approach with common measures within 

each category 

Measure-oriented approach Common Measures 

Distance metrics 

• Mean absolute error (MAE) 

• Root mean square error (RMSE) 

• Mean bias error (MBE) 

Normalized distance metrics 
• Normalized mean absolute error (nMAE) 

• Normalized root mean square error (nRMSE) 

Skill scores • Mean square error skill score (MSESS) 

Correlation metrics 
• Pearson correlation coefficient (PCC) 

• Anomaly correlation coefficient (ACC) 

 

Distance metrics are often scale-dependent. Some form of rescaling (or 

normalization) can be applied, usually by dividing the distance metric by the mean (i.e., 
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the mean normalization, see (Wernli et al., 2009)) or the range (i.e., the min-max 

normalization, see (Hoffman et al., 2018)) of that metric. Nevertheless, none of these 

normalized metrics (e.g., nMAE and nRMSE) shall be used to compare forecast skills at 

different locations within different periods. This is because the scaling factor (i.e., the 

denominator) of such metrics is related to neither the variability nor the uncertainty of the 

forecasted weather variable, which jointly define the predictability at a given location 

during a specific period (Yang et al., 2020). In this case, a skill score is recommended for 

cross-scenario comparison. The skill score is computed by comparing a distance metric 

(usually the RMSE) of the original forecast to a reference forecast (baseline). The 

reference forecast could be based on a persistence naïve model, an average of the 

climatology (typically with a length of 30 years) (Jolliffe & Stephenson, 2012), or a 

combination of both (Yang et al., 2020). Besides, correlation metrics such as the Pearson 

correlation coefficient (PCC) are often used to explore the association between the 

forecast and observations. PCC is mathematically linked to the mean square error skill 

score (MSESS) (see details in (Murphy, 1988)) and the former is an increasing function 

of the latter. As weather forecasting has an intrinsic spatial nature, it is necessary to 

evaluate the forecast skill over a spatial region as a whole. One of the most widely used 

measures to evaluate spatial forecasts is the anomaly correlation coefficient (ACC). It 

measures how well the forecast anomalies (i.e., the forecast value less the climatology at 

a given location) represent the observed anomalies (i.e., the observations less the 

climatology at the same location). The ACC varies between -1 and 1. In practice, a 60% 

ACC is usually set as a threshold when determining the skillfulness of synoptic-scale 

weather forecasts (Zhang et al., 2019). TABLE 3 provides some representative studies of 
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weather forecast quality evaluation with a subset of analyzed weather variables and the 

classical evaluation measures, sorted in chronological order. Among the headers, 

“Temp.”, “Precip.”, “Solar”, “Wind”, “Press.”, and “Dist.-oriented” stands for 

temperature, precipitation, solar irradiance, wind speed, air pressure, and papers utilizing 

distribution-oriented approach, respectively. Under the measure-oriented approach, the 

RMSE is the most popular distance metric. Most use cases of the MAE are for evaluating 

the temperature forecast. Since the majority of these studies are evaluating spatial 

forecasts, ACC is also prevalently used.  

TABLE 3: Representative weather forecast quality evaluation studies with analyzed 

weather variables and classical evaluation measures, sorted in chronological order 

Papers 
Weather variables Measure-oriented Dist. 

-oriented Temp. Precip. Solar Wind Press. MAE RMSE MBE nMAE nRMSE MSESS PCC ACC 

(Kalnay & 

Dalcher, 1987) 
    🗸        🗸  

(Murphy, 1988) 🗸 🗸     🗸    🗸 🗸   

(Cheng & 

Steenburgh, 

2005) 
🗸   🗸  🗸  🗸       

(Wernli et al., 

2009) 
 🗸     🗸 🗸  🗸     

(Novak et al., 

2014) 
🗸 🗸    🗸       🗸  

(Stern & 

Davidson, 2015) 
🗸 🗸           🗸  

(Vallance et al., 

2017) 
  🗸   🗸 🗸 🗸       

(Hoffman et al., 

2017) 
🗸   🗸   🗸   🗸   🗸 🗸 

(Hoffman et al., 

2018) 
      🗸 🗸  🗸 🗸  🗸 🗸 

(Zhang et al., 

2019) 
🗸   🗸 🗸        🗸  

(Rasp et al., 

2020) 
🗸     🗸 🗸      🗸  

(Yang et al., 

2020) 
  🗸    🗸   🗸 🗸   🗸 

 

The measure-oriented approach reduces the information about the forecast quality 

to a summary measure. In practice, the usage of a single summary measure may not 

distinguish between forecasts with different behaviors. For instance, Fig. 1 of (Vallance 
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et al., 2017) shows that when evaluating the performance of solar irradiance forecasts, the 

RMSE of the two forecasts were the same although they showed very different behaviors. 

One possible solution to this is to use summary assessment metrics, which are calculated 

by a weighted sum of multiple normalized measures to avoid shortcomings of individual 

measures (Hoffman et al., 2018).  

On the other hand, the distribution-oriented approach, which provides complete 

information about the forecast quality, is not limited to certain summary measures. In 

(Murphy & Winkler, 1987), the joint distribution of the forecast and observations is 

factored into conditional and marginal distributions in two different ways as follows:  

𝑝(𝑓, 𝑥) = 𝑝( 𝑥 ∣∣ 𝑓 )𝑝(𝑓) 
(1) – Calibration-refinement factorization  

𝑝(𝑓, 𝑥) = 𝑝( 𝑓 ∣∣ 𝑥 )𝑝(𝑥) 
(2) – Likelihood-base rate factorization  

where 𝑓 and 𝑥 denote the forecast and observations, respectively. 𝑝(𝑓, 𝑥) denotes the 

joint distribution of 𝑓 and 𝑥. The first factorization called calibration-refinement 

factorization, involves the conditional distribution of the observations given the forecast, 

𝑝( 𝑥 ∣∣ 𝑓 ), and the marginal distribution of the forecast, 𝑝(𝑓). 𝑝( 𝑥 ∣∣ 𝑓 ) defines the 

reliability of a forecast: if the observations given the forecast are conditionally unbiased, 

then the forecast is considered completely reliable. 𝑝(𝑓) defines the sharpness (or 

variability) of a forecast: if a forecaster always produces the same forecast, then the 

forecast is said to be not sharp. The second factorization called likelihood-base rate 

factorization, involves the conditional distribution of the forecast given the observations, 

𝑝( 𝑓 ∣∣ 𝑥 ), and the marginal distribution of the observations, 𝑝(𝑥). 𝑝( 𝑓 ∣∣ 𝑥 ) defines the 

likelihood of a forecast, while 𝑝(𝑥) defines the uncertainty or base rate. For a perfect 
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forecast, the 𝑝(𝑓) must match the 𝑝(𝑥). In-depth details of these terminologies can be 

found in Chapter 2 of (Jolliffe & Stephenson, 2012) and are summarized in Table 2 of 

(Murphy, 1993). Common quantification measures of these terminologies are 

summarized in Table 3 of (Yang et al., 2020). Technical details regarding the link 

between the measure-oriented approach and the distribution-oriented approach are 

elucidated in (Murphy, 1993) and (Yang et al., 2020). 

 The abovementioned distributions can subsequently be visualized using graphical 

methods for forecast analysis. Histograms, boxplots, and empirical cumulative 

distribution functions (ECDF) plots can be used to compare the properties of the two 

marginal distributions (𝑝(𝑓) and 𝑝(𝑥)). An observation-forecast scatter plot can be used 

to demonstrate the joint distribution between the observations and forecast. To estimate 

the two conditional distributions, the kernel conditional density estimation (KCDE) can 

be used (Yang et al., 2020). Visualization examples of these distributions can be found in 

Fig 3 - 5 of (Yang et al., 2020). 

 To summarize, different error measures have their own merits, while they all have 

some cons. There has been no consensus in the meteorological community on which 

approach or measure is the best to go with. It is worth noting that the measure-oriented 

and distribution-oriented approaches are complementary as each has its own use case 

(Yang et al., 2020). In this research, we use the MAE and observation-forecast scatterplot 

to investigate the quality of the temperature forecast in Section 4.2, and the prediction 

performance of the temperature forecast quality in Section 6.3.  

Due to the varying predictability of the atmosphere, the weather forecast quality 

may vary from day to day and region to region. Notable literature predicting the weather 
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forecast quality is still scarce. (Grönås, 1985) offered one of the first attempts to predict 

the forecast quality of an ECMWF model. The daily forecast quality (up to 8 days ahead) 

of surface pressure and 500 hPa geopotential height under T10 resolution was analyzed. 

Three binary predictors derived from atmospheric flow regimes were tested, while the 

relationship between these predictors and the forecast quality was found not strong 

enough. (Kalnay & Dalcher, 1987) predicted the daily forecast quality of 500 mb height 

and sea level pressure based on the dispersion of the members of an ensemble forecast. 

Two predictands were tested out, namely, the time when the forecast became unskillful, 

i.e., when the average ACC dropped below 60%, and the time when the forecast became 

very good, i.e., when the average ACC reached 80% or above. The proposed method 

showed promising performance when verified against 14 forecasts over 4 regions. 

(Palmer & Tibaldi, 1988) uncovered four types of predictors to predict the daily skill of 

10 days ahead ECMWF forecasts. The first predictor was related to the consistency of 

spread between adjacent forecasts, which was influenced by the work in (Kalnay & 

Dalcher, 1987). The second predictor was based on large-scale atmospheric flow patterns 

associated with either skillful or unskillful forecasts, which was derived from a regression 

analysis. The third predictor was the RMSE skill of earlier forecasts, and the last one was 

the RMSE difference between the forecast predictand (the 500 mb height) and the 

predictand at the initialization time. (Molteni & Palmer, 1991) tested several variations of 

the methods and predictors proposed in (Palmer & Tibaldi, 1988) in an operational 

context. Apart from the abovementioned seminal works, a few more later developments 

in this area were reviewed in (Kalnay, 2019).  
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 All reviewed works regarding weather forecast quality prediction belong to the field 

of spatial forecasting. These works leveraged atmospheric state and ensemble weather 

forecast spread to predict the spatial forecast quality. Most end-users only have access to 

the deterministic forecasts for a location of interest, while the forecasting spread from 

ensemble weather forecasts and the atmospheric state data are not accessible. Besides, the 

temperature forecast we want to utilize is at the surface level, which is more relevant to 

human activities and their electricity consumption. Hence in this research, we are to build 

our own wheels to link the quality of deterministic temperature forecasts at multiple 

weather stations (predictand) with a list of variables that could be related to the 

predictability of temperature. The variables we have explored are detailed in Section 6.2.3. 

The prediction outcomes are presented in Section 6.3. 
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CHAPTER 3: THEORETICAL BACKGROUND 

3.1. Multiple Linear Regression 

Multiple linear regression (MLR) is a classical statistical technique that models a 

linear relationship between each independent variable (also known as the predictor or 

regressor) and the response variable. Compared to the black box approaches such as neural 

networks and gradient boosting models, MLR is significantly easier to interpret while 

remaining competitive in providing accurate forecasting results. The model can have the 

following form: 

 𝑌𝑖 = 𝛽0 + 𝛽1𝑋1,𝑖 + 𝛽2𝑋2,𝑖 +⋯+ 𝛽𝑘𝑋𝑘,𝑖 + 𝜀𝑖  
(3) – Linear regression model  

where 𝑌  is the response variable. 𝑋1, … , 𝑋𝑘  are the predictors, and 𝛽1, … , 𝛽𝑘  are the 

associated coefficients. 𝛽0  is the intercept term. 𝜀𝑖  are the error terms. The response 

function is in the following form: 

 𝐸[𝑌] = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 +⋯+ 𝛽𝑘𝑋𝑘 
(4) – Response function of linear regression model  

To construct the confidence intervals and perform statistical inferencing such as 

the usual F test or Student’s t-test, the model needs to stick with the following 

assumptions: 

• The underlying relationship between the dependent variables and the independent 

variables is linear. Here the dependent variables are assumed numeric values.  

• The data is a random sample drawn from the population. The assumption of random 

sampling implies that (𝑥𝑖, 𝑦𝑖) and (𝑥𝑗, 𝑦𝑗) are statistically independent when 𝑖 ≠ 𝑗. 
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• The independent variables should not be highly correlated with each other. In other 

words, the effect of changes in one of the independent variables on the dependent 

variable does not depend on the values of other independent variables. 

• The error terms 𝜀𝑖 are independently and identically normally distributed (IID) with 

constant variance (homoscedasticity of errors). 

The model coefficients can be estimated by minimizing a cost function as follows, 

which is the sum of squared errors: 

 

(𝛽̂0, 𝛽̂1, … , 𝛽̂𝑘) = 𝑎𝑟𝑔𝑚𝑖𝑛
(𝛽0,𝛽1,…,𝛽𝑘)

∑(𝑦𝑖 − 𝛽0 − 𝛽1𝑋1,𝑖 −⋯− 𝛽𝑘𝑋𝑘,𝑖)
2

𝑁

𝑖=1

 

(5) – Cost function to estimate parameters of linear regression model 
 

where 𝑁 is the number of observations. This equation has a closed-form solution in matrix 

form: 

 𝛽̂ = (𝑋𝑇𝑋)−1𝑋𝑇𝑦 
(6) – Parameter estimation in matrix form  

 However, solving this equation requires an inverse of 𝑋𝑇𝑋, which is nontrivial and 

can be computationally costly. Methods like Singular Value Decomposition (SVD) or QR 

Decomposition can be used to calculate the inverse of 𝑋𝑇𝑋 (called pseudo-inverse) without 

actually needing to find an inverse. The model coefficients can also be estimated by 

gradient descent approaches, which is particularly useful when dealing with a large dataset 

and the statistical inference is not the primary focus.  

There are two types of independent variables: quantitative and qualitative. 

Quantitative variables are numerical and can be introduced to the model directly. 

Qualitative variables are sometimes referred to as categorical variables. One way to 

incorporate categorical variables into regression models is using one-hot encoding. For 
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instance, in a load forecasting model, the temperature is a quantitative variable, while the 

hours of a day is a qualitative variable. After applying the one-hot encoding, the 

coefficients of the hours of a day variable (23 in total) will represent diverse load levels at 

different hours: 

 

{
  
 

  
 
𝑋1 = 1, if current hour is 0 AM
𝑋1 = 0, otherwise
𝑋2 = 1, if current hour is 1 AM
𝑋2 = 0, otherwise

…
𝑋23 = 1, if current hour is 11 PM
𝑋23 = 0, otherwise

 

(7) – One-hot coding of the hours of a day variable 

 

Interaction effects can be introduced in a regression model when the impact of a 

predictor on the response variable depends on the values of some other predictors (Hong 

et al., 2011). In a load forecasting model, the temperature can have an interaction effect 

with the hours of a day variable. This is because the effect of coincident hour temperature 

on the load is not independent of different hours within a day. 

3.2. Base Model 

MLR is one of the earliest and most widely applied techniques in the field of load 

forecasting (Papalexopoulos & Hesterberg, 1990)(Hong, 2010)(Hong & Fan, 2016). One 

of the frequently cited MLR models is Tao’s Vanilla Benchmark model (hereafter, 

Vanilla model) (P. Wang et al., 2016)(Hong et al., 2015). Given its accuracy and 

computational efficiency, it has been used as a benchmark model in recent load 

forecasting competitions (Hong, Pinson, et al., 2014)(Hong et al., 2016)(Hong et al., 

2019). The specification of this model is provided as follows: 
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𝐿𝑜𝑎𝑑𝑡̂ = 𝛽0 + 𝛽1𝑇𝑟𝑒𝑛𝑑𝑡 + 𝛽2𝐻𝑡 + 𝛽3𝑊𝑡 + 𝛽4𝑀𝑡 + 𝛽5𝐻𝑡𝑊𝑡 + 𝛽6𝑇𝑡 + 𝛽7𝑇𝑡
2

+ 𝛽8𝑇𝑡
3 + 𝛽9𝑇𝑡𝐻𝑡 + 𝛽10𝑇𝑡

2𝐻𝑡 + 𝛽11𝑇𝑡
3𝐻𝑡 + 𝛽12𝑇𝑡𝑀𝑡 + 𝛽13𝑇𝑡

2𝑀𝑡
+ 𝛽14𝑇𝑡

3𝑀𝑡  
(8) – Tao’s Vanilla benchmark model 

 

where 𝐿𝑜𝑎𝑑𝑡̂  is the coincident response variable forecasted by the predictor variables on 

the right-hand side of the equation. Among the predictors, 𝑇𝑟𝑒𝑛𝑑 is an increasing natural 

number to model the linear trend of the load within the data history. 𝐻𝑡 is a class variable 

with 24 levels, representing the level shifts of load at 24 hours of a day. 𝑊𝑡 is a class 

variable with 7 levels, representing the level shifts of load at seven days of a week. 𝑀𝑡 is 

a calendar month class variable with 12 levels, representing the level shifts of load at 12 

months of a year. 𝑇𝑡 is the numerical temperature corresponding to time 𝑡. The 3rd order 

temperature polynomial is used to model the non-linear relationship between the 

temperature and load. The temperature terms interact with the hours of a day (𝐻𝑡) and the 

months of a year (𝑀𝑡). The hours of a day (𝐻𝑡) interacts with the days of a week (𝑊𝑡). 

Further details about this benchmark model can be found in (Hong et al., 2011). 

To achieve better accuracy for a very short forecast horizon, e.g., the day-ahead 

forecast, we augment the abovementioned model by introducing a lagged load variable. 

In this research, our forecast horizon is 42 h and we can thus leverage the actual load 

information 48 hours before the forecast hours. Given the added lagged dependent 

variable (𝐿𝑜𝑎𝑑𝑡−48), the MLR model turns into a dynamic regression model (DRM). 

Compared to the Vanilla model, the augmented form leads to one more coefficient to be 

estimated. This DRM will be used as the base model in this research: 
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𝐿𝑜𝑎𝑑𝑡̂ =𝛽0 + 𝛽1𝑇𝑟𝑒𝑛𝑑𝑡 + 𝛽2𝐻𝑡 + 𝛽3𝑊𝑡 + 𝛽4𝑀𝑡 + 𝛽5𝑇𝑡 + 𝛽6𝑇𝑡
2 + 𝛽7𝑇𝑡

3

+ 𝛽8𝐻𝑡𝑊𝑡 + 𝛽9𝑇𝑡𝐻𝑡 + 𝛽10𝑇𝑡
2𝐻𝑡 + 𝛽11𝑇𝑡

3𝐻𝑡 + 𝛽12𝑇𝑡𝑀𝑡
+ 𝛽13𝑇𝑡

2𝑀𝑡 + 𝛽14𝑇𝑡
3𝑀𝑡 + 𝛽15𝐿𝑜𝑎𝑑𝑡−48 

(9) – Base model: a dynamic regression model based on the Vanilla model 
 

3.3. Recency Effect 

 In the context of electric load forecasting, the recency effect refers to the impact 

of the lagged temperatures (i.e., temperatures of the preceding hours) on the current hour 

load (Hong, 2010). The family of recency effect models, first introduced in (Hong, 2010), 

is an extension of the Vanilla model which can dramatically improve the load forecast 

accuracy. In (P. Wang et al., 2016), the authors went through a model selection process 

and investigated the number of lagged hourly temperatures and lagged daily moving 

average temperatures which resulted in the best forecast accuracy. The family of recency 

effect models can be written as follows:  

𝐿𝑜𝑎𝑑𝑡̂ =𝛽0 + 𝛽1𝑇𝑟𝑒𝑛𝑑𝑡 + 𝛽2𝐻𝑡 + 𝛽3𝑊𝑡 + 𝛽4𝑀𝑡 + 𝛽5𝐻𝑡𝑊𝑡 + 𝑓(𝑇𝑡)

+∑𝑓(𝑇̃𝑡,𝑑)

𝑑

+∑𝑓(𝑇𝑡−ℎ)

ℎ⏟                
recency effect terms

 

(10) – Recency effect model based on the Vanilla model 

 

where 𝑇𝑡−ℎ is the lagged hourly temperature at the preceding ℎ𝑡ℎ hour (ℎ = 0, 1, 2, …). 

𝑇̃𝑡,𝑑 is the daily moving average temperature of the preceding 𝑑𝑡ℎ day: 

𝑇̃𝑡,𝑑 =
1

24
∑ 𝑇𝑡−ℎ

24𝑑

ℎ=24𝑑−23

,   𝑑 = 0, 1, 2, … 

(11) – Lagged moving average temperature 
 

and 𝑓(𝑇𝑡) denotes the regression terms associated with 𝑇𝑡 with interaction effects 

included: 
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𝑓(𝑇𝑡) = 𝛽6𝑇𝑡 + 𝛽7𝑇𝑡
2 + 𝛽8𝑇𝑡

3 + 𝛽9𝑇𝑡𝐻𝑡 + 𝛽10𝑇𝑡
2𝐻𝑡 + 𝛽11𝑇𝑡

3𝐻𝑡 + 𝛽12𝑇𝑡𝑀𝑡
+ 𝛽13𝑇𝑡

2𝑀𝑡 + 𝛽14𝑇𝑡
3𝑀𝑡 

(12) – Regression terms related to temperature  

Following (P. Wang et al., 2016), this framework can be used to investigate the 

forecasting performance of models with diverse levels of complexity. In this research, the 

values of ℎ and 𝑑 are enumerated from 0 to 24, and 0 to 3, respectively. In other words, 

we are exploring 25 * 4 = 100 individual models with different levels of complexity.  

It is important to understand that this framework follows an incremental manner 

when introducing the preceding hour temperatures (notice the two summation signs in 

equation (10)). For instance, letting ℎ = 2 will add the regression terms associated with 

𝑇𝑡−2 as well as 𝑇𝑡−1 to the equation. This is rational as the current hour load should be 

more relevant to the temperature information of the current hour and the more recent 

preceding hours. When adding the temperatures that are further in the past, the more 

recent hour temperatures should be kept within the model. Nevertheless, in the ex-ante 

forecasting settings, such a design lacks the flexibility to drop the recent hour 

temperatures with significant forecast errors while keeping the ones with better quality in 

the further past hours. We will discuss this limitation further in Chapter 7 along with our 

case study and suggest future research directions in Chapter 8. 

3.4. Sliding Simulation 

Day-ahead load forecasting is an essential element in power system planning, 

operations, energy trading, and so forth. Normally, the forecast will be provided by the 

load forecasters in the morning, e.g., 7am, for the 24 hours of the next day (from 1am to 

12am). To evaluate the out-of-sample performance of the models, we use a sliding 

simulation technique that imitates the day-ahead load forecasting procedure. 
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For the 9 years (2010-2018) data history (further introduced in Section 4.1), the 

most recent four years of the load data (2015-2018) is held out for the out-of-sample test. 

FIGURE 4 shows the sliding simulation technique used to generate day-ahead hourly 

load forecasts in the test period. The training data is with a fixed length of around 2 years 

(2 * 365 – 1 days plus 6 hours). It consists of load and actual temperature being used for 

parameter estimation. The forecast origin (i.e., the last data point in the training data) is at 

6am on the current day. The forecast horizon (i.e., the length of forecast into the future) is 

42 hours, which is from 7am of the current day to the last hour of the next day (ending at 

12am). For day-ahead load forecasting, we only evaluate the hourly forecast of the next 

day (from 1am to 12am). After generating the forecast for a day, we advance the forecast 

origin by 24 hours to forecast the next 42 hours in the forecast horizon. We repeat this 

process until we generate the forecasts for all four years from 2015 to 2018. 

 

FIGURE 4: Sliding simulation for day-ahead load forecasting 
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3.5. Forecast Evaluation 

Ex-post and ex-ante forecasts are both evaluated in this research. In the forecast 

period, ex-post forecasts are generated using the hourly actual temperature as input. As 

the state-of-the-art literature mostly uses ex-post forecast for model selection, we include 

it as a benchmark method in this research and discuss it further in Chapter 5. On the other 

hand, the ex-ante forecasts are generated using the hourly day-ahead temperature 

forecast. It is worth mentioning that we don’t use temperature forecast for model fitting, 

as doing so may result in biased parameter estimation due to noise in the temperature 

forecast. 

An error measure should be chosen when evaluating the performance of a 

forecasting model. Different types of error measures are mentioned in the load 

forecasting literature, each with its own applications. The mean absolute percentage error 

(MAPE) is one of the most widely used error measures in the load forecasting field, due 

to its scale-independency and interpretability. However, a major drawback of using 

MAPE is the error can be infinite or undefined for zero or close-to-zero actual values. In 

this research, since no loads are close to zero, we use MAPE as the error measure: 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑

|𝑦𝑖 − 𝑦𝑖̂|

𝑦𝑖

𝑁

𝑖=1

 

(13) – Error measure: MAPE 
 

where 𝑦𝑖 and 𝑦𝑖̂ are the actual values and predicted values, and 𝑁 is the number of 

observations in the forecast period. 
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3.6. Weather Station Selection 

The quality of temperature input to a load forecasting model is of critical 

importance for better load forecast accuracy. As we have temperature information from 

18 weather stations, weather station selection (WSS) is necessary to refine the 

temperature input to the load forecasting model.  

In this research, we follow the algorithm proposed in (Hong et al., 2015) for WSS 

during the test years. The reason why we follow this approach is twofold. First, (Hong et 

al., 2015) was the first paper published on solving the WSS problem specifically. Second, 

the efficiency of the algorithm is trackable: it has frequently been adopted in the load 

forecasting literature (e.g., (Xie & Hong, 2016), (Sobhani et al., 2019), and (Neto & 

Hippert, 2020)) and due to its transparency and simplicity, the method is currently used 

by many power companies (Y. Wang et al., 2019). 

In our case study, we use the Vanilla model introduced in Section 3.2 as the load 

forecasting model for WSS in the recent six years (2013-2018). Following (Hong et al., 

2015), the training data is comprised of historical load and temperature data. We first use 

a window of three years (2010-2012) historical data to determine the weather station 

selection for 2013. We then advance the window by one year and use the data from 2011 

to 2013 to determine the weather station selection for 2014. This process is repeated until 

we have the selected weather stations for all six years. Thereafter, a composite 

temperature series is obtained by a simple averaging of the selected stations at each year.  
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CHAPTER 4: DATA 

4.1. Load and Weather Data 

Our case study is based on data from a medium-sized power utility on the east 

coast of the US. The load time series consists of 9 years (2010-2018) of hourly load data 

from three supply areas within the utility’s service territory. The three supply areas are 

adjacent to each other and named SA1, SA2, and SA3, respectively.  

Weather data collected at 18 weather stations were purchased by the power utility 

from a commercial source. The stations are located within or near its service territory. 

The weather data consists of 9 years (2010-2018) of historical hourly temperature data 

and 6 years (2013-2018) of day-ahead hourly temperature forecast data. The temperature 

forecast data are released at 7am each day and forecast the hours throughout the next day. 

In this research, we only use the temperature forecast during the next day (24 h, from 

1am to 12am) to generate the ex-ante load forecast. 

4.2. Exploratory Data Analysis 

The composite historical and forecasted temperature series are both obtained by 

averaging the stations selected in Section 3.6. FIGURE 5 shows six years (2013-2018) of 

load and composite historical temperature time series under SA1. Strong seasonality can 

be observed in both series. FIGURE 6 shows the load series under SA2. The load of 3 

days in 2016 (October 8th - 10th) and 5 days in 2018 (September 13th - 17th) are 

extraordinarily lower than usual. These could be caused by circuit-level outages. Hence, 

we excluded the 8 days from our error analysis. TABLE 1 provides the statistics of load 

data under each supply area. Based on the average load, SA2 is a larger supply area, 

while SA1 is the smallest. 
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FIGURE 5: Load and historical temperature time series under SA1 (2013 – 2018) 

 

FIGURE 6: Load time series under SA2 (2013 – 2018) 

TABLE 4: Statistics of Load Data (in MW) 

Supply Area 
Days Excluded 

in Error Analysis 
Mean Std. Min. Max. 

SA1 0 149.3 48.3 16.1 394.5 

SA2 8 1042.9 350.2 240.1 3027.8 

SA3 0 230.1 81.9 99.8 553.1 

 

FIGURE 7 shows the load vs. historical temperature plot under SA1. We observe 

a strong nonlinear correlation (the typical “hockey stick” shape) between the two 
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variables. On the left arm, when the temperature drops below 60 °F and keeps decreasing, 

the load demand rises due to the incremental heating demand during winter. On the right 

arm, the load rises as the temperature climbs up, due to the incremental cooling needs 

during summer. 

 

FIGURE 7: Load - historical temperature scatterplot, SA1 (2013 – 2018) 

TABLE 5 gives the statistics of historical temperature readings at each weather 

station. Both the average temperature and the standard deviations vary at each station.  

FIGURE 8 demonstrates the variance of the actual hourly temperature during a 

winter day in 2015. The recorded temperatures among the weather stations are having 

greater variations during midnight and early morning.  
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TABLE 5: Statistics of actual temperature reported at each weather station 

Station 
Temperature (°F) 

Mean Std. 

1 61.5 17.6 

2 59.1 17.2 

3 56.6 16.6 

4 62.0 16.8 

5 63.5 16.0 

6 62.1 16.6 

7 63.2 16.3 

8 63.3 16.4 

9 52.8 16.2 

10 62.7 16.9 

11 59.9 17.2 

12 59.7 16.9 

13 58.7 17.0 

14 64.3 14.6 

15 60.5 17.2 

16 64.2 15.9 

17 59.1 17.5 

18 64.2 15.1 

Range 52.8 - 64.3 14.6 - 17.6 

 

 

FIGURE 8: Line plot (up) and boxplots (down) of historical temperature reported at 

each weather station, 1/25/2015 
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Based on weather station selection, the composite day-ahead temperature forecast 

is used for ex-ante load forecasting. There are a few (less than 1%) missing values in the 

day-ahead temperature forecast data. The 2 days ahead temperature forecast is used to fill 

in these missing values. When the 2 days ahead forecast is not available, the actual 

temperature is used. FIGURE 9 visualizes the historical (actual) and forecasted 

temperature during the week of 1/25/2015. Overall, the forecast well captures the major 

trend of the actual temperature. Nevertheless, the timing and magnitude of daily peaks 

(such as 1/27/2015) and troughs (such as 1/29/2015) were not captured precisely. 

Meanwhile, the forecasted temperature can either be above or below the historical 

temperature for prolonged periods, rather than showing as a random noise around the 

historical temperature.  

 

FIGURE 9: Historical (black dots) and forecasted (red) temperature under SA1 

(1/25/2015-1/31/2015) 

FIGURE 10 shows the joint and marginal distribution of the day-ahead 

temperature forecast and actual temperature. Overall, the forecasted temperature is well 
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aligned with the actual temperature with a few salient over forecasts when the actual 

temperature is around 45 °F and a few salient under forecasts when the actual 

temperature is within 60 to 80 °F. Taking a closer look at the density contours, the 

forecasted temperature drifts slightly below the identity line when the actual temperature 

is below 80 °F, and slightly above the identity line when the actual temperature is above 

80 °F. FIGURE 11 shows a histogram of temperature forecast errors for SA1. The errors 

are calculated by using historical temperatures minus the forecast. The distribution is 

close to normal with a slight skew to the left. Some extreme negative values are observed 

(due to over forecast). FIGURE 12 shows a time series plot of the absolute temperature 

forecast errors. Due to the lack of either the day-ahead or 2 days ahead temperature 

forecast data, the errors from June 18, 2014, to June 28, 2014, are shown as 0. Some 

extreme errors are observed during 2014 and 2015 and were kept within our analysis. 

TABLE 6 shows a heatmap of statistics on the absolute errors of composite temperature 

forecasts. The greener color indicates the years with better accuracy on average, lower 

maximum error, and a smaller standard deviation of the absolute errors. All three 

statistics show a drastic improvement beyond 2015, with a minimized error and error 

standard deviation during 2018. Besides, the mean absolute error shows a sustained 

improvement ever since 2013 at most times. Similar findings were observed under the 

composite temperature forecasts of SA2 and SA3. To avoid verbose representation, we 

did not show them in this section. 
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FIGURE 10: Joint and marginal distribution of day-ahead temperature forecast and 

observations under SA1 (2013-2018) with contour lines in blue showing the kernel 

densities 

 

FIGURE 11: Histogram of temperature forecast error, composite temperature forecasts 

under SA1 (2013-2018) 
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FIGURE 12: Time series plot of absolute temperature forecast error, composite 

temperature forecasts under SA1 

TABLE 6: Heatmap of mean absolute errors, maximum absolute errors, and standard 

deviation of absolute errors for each year, composite temperature forecasts under SA1 

Year Mean AE (°F) Max AE (°F) STD. of AE (°F) 

2013 2.48 15.6 1.94 

2014 2.44 19.1 1.99 

2015 2.42 30.0 2.25 

2016 2.09 12.5 1.65 

2017 2.17 11.5 1.72 

2018 1.90 13.0 1.58 
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CHAPTER 5: MODEL SELECTION BASED ON EX-ANTE FORECAST 

Load forecasting models were commonly developed based on the historical ex-

post forecast accuracy. In this research, we denote the approach of load forecasting model 

selection based on ex-post forecast accuracy as the benchmark framework “M0”. In this 

chapter, we propose using the ex-ante forecast accuracy to select load forecasting models 

(denoted framework “M1”). In the following sections, we introduce the workflow of our 

methodology, the forecasting models, and compare the out-of-sample forecasting 

performance between M1 and M0. 

5.1. Methodology 

5.1.1 Overall Procedure 

FIGURE 13 shows a high-level workflow of the overall methodology. The raw data 

(load and temperature) will first go through the data cleansing and weather station selection 

process. Next, the available data history will be partitioned into training data (years 2013 

and 2014), validation data (years 2015 and 2016), and out-of-sample test data (years 2017 

and 2018). The training data is used for model fitting and parameter estimation of each 

candidate model. The validation data is used for model performance evaluation and 

selection by each framework (M1 or M0). In the end, the selected model by either method 

will refit the validation data and produce the forecast in the test period.  
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FIGURE 13: High-level workflow of model selection based on ex-ante or ex-post forecast 

accuracy 

5.1.2 Forecasting Models 

The candidate models are from a family of recency effect models, as introduced in 

Section 3.3. Following (P. Wang et al., 2016), we model the recency effect using a trial-

and-error method, by varying the value of 𝑑 (defining the number of lagged moving 

average temperatures) from 0 to 3, and the value of ℎ (defining the number of lagged 

hourly temperatures) from 0 to 24. We explore a total of 100 (𝑑, ℎ) pairs. 

5.2. Results and Discussion 

5.2.1 Model Selection Step 

We first examine the load forecasting performance on the validation data (years 

2015 and 2016). TABLE 7 shows a heatmap of the ex-post forecasting MAPE values. A 

greener color indicates a lower MAPE value, while a redder color indicates a higher one. 

The bold values indicate the best (𝑑, ℎ) pairs for each supply area. The best model is 

identified as (1, 6), (1, 10), and (1, 11) for SA1, SA2, and SA3, respectively. TABLE 8 

shows a heatmap of the ex-ante forecasting MAPE values. The best model is identified as 

(1, 1), (1, 3), and (1, 1) for SA1, SA2, and SA3, respectively.  
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TABLE 7: Heatmap of the ex-post forecasting MAPE values (in %) for recency effect 

modeling on the validation data (years 2015 and 2016) 
SA1  SA2  SA3 

ℎ \ 𝑑 0 1 2 3  ℎ \ 𝑑 0 1 2 3  ℎ \ 𝑑 0 1 2 3 

0 5.124 4.414 4.477 4.576  0 4.681 3.771 3.791 3.873  0 5.053 4.205 4.234 4.315 

1 4.678 4.248 4.339 4.430  1 4.132 3.512 3.553 3.635  1 4.596 3.985 4.024 4.110 

2 4.463 4.164 4.268 4.358  2 3.867 3.395 3.444 3.522  2 4.352 3.887 3.932 4.017 

3 4.340 4.126 4.235 4.326  3 3.729 3.343 3.393 3.471  3 4.227 3.839 3.889 3.971 

4 4.271 4.106 4.219 4.307  4 3.640 3.317 3.367 3.443  4 4.148 3.809 3.864 3.946 

5 4.234 4.097 4.214 4.299  5 3.578 3.308 3.355 3.429  5 4.086 3.793 3.846 3.925 

6 4.207 4.095 4.215 4.295  6 3.528 3.301 3.346 3.420  6 4.036 3.786 3.839 3.915 

7 4.192 4.099 4.221 4.298  7 3.498 3.303 3.345 3.416  7 3.994 3.783 3.836 3.910 

8 4.180 4.105 4.225 4.302  8 3.472 3.297 3.344 3.414  8 3.957 3.776 3.826 3.900 

9 4.175 4.108 4.226 4.302  9 3.450 3.296 3.346 3.415  9 3.922 3.763 3.811 3.883 

10 4.171 4.113 4.230 4.305  10 3.428 3.294 3.346 3.412  10 3.902 3.755 3.800 3.874 

11 4.164 4.114 4.228 4.304  11 3.413 3.295 3.347 3.413  11 3.887 3.752 3.797 3.875 

12 4.158 4.116 4.230 4.306  12 3.405 3.301 3.353 3.418  12 3.877 3.753 3.798 3.879 

13 4.157 4.123 4.238 4.312  13 3.398 3.307 3.359 3.425  13 3.867 3.756 3.801 3.880 

14 4.163 4.132 4.246 4.322  14 3.395 3.311 3.365 3.431  14 3.868 3.762 3.807 3.884 

15 4.168 4.139 4.253 4.332  15 3.388 3.311 3.367 3.435  15 3.872 3.773 3.823 3.897 

16 4.176 4.147 4.260 4.342  16 3.385 3.316 3.372 3.439  16 3.872 3.781 3.834 3.907 

17 4.188 4.154 4.269 4.355  17 3.388 3.317 3.374 3.443  17 3.873 3.789 3.845 3.919 

18 4.202 4.163 4.276 4.365  18 3.397 3.321 3.379 3.452  18 3.878 3.798 3.859 3.931 

19 4.217 4.176 4.285 4.377  19 3.407 3.326 3.385 3.462  19 3.885 3.806 3.873 3.947 

20 4.233 4.187 4.294 4.389  20 3.419 3.332 3.394 3.472  20 3.900 3.822 3.889 3.963 

21 4.250 4.203 4.308 4.403  21 3.432 3.343 3.408 3.487  21 3.914 3.837 3.906 3.980 

22 4.274 4.221 4.324 4.418  22 3.445 3.355 3.423 3.504  22 3.930 3.850 3.917 3.996 

23 4.295 4.235 4.336 4.434  23 3.457 3.366 3.438 3.520  23 3.944 3.865 3.930 4.015 

24 4.309 4.245 4.346 4.444  24 3.468 3.375 3.451 3.535  24 3.960 3.873 3.939 4.026 

TABLE 8: Heatmap of the ex-ante forecasting MAPE values (in %) for recency effect 

modeling on the validation data (years 2015 and 2016) 
SA1  SA2  SA3 

ℎ \ 𝑑 0 1 2 3  ℎ \ 𝑑 0 1 2 3  ℎ \ 𝑑 0 1 2 3 

0 7.170 6.081 6.104 6.165  0 7.021 5.813 5.818 5.887  0 7.127 5.965 5.982 6.036 

1 6.852 5.983 6.034 6.085  1 6.679 5.738 5.768 5.837  1 6.876 5.909 5.932 5.988 

2 6.678 5.995 6.056 6.105  2 6.473 5.745 5.790 5.855  2 6.720 5.936 5.963 6.017 

3 6.534 6.010 6.078 6.120  3 6.291 5.737 5.790 5.852  3 6.553 5.939 5.971 6.023 

4 6.445 6.043 6.115 6.151  4 6.184 5.751 5.808 5.864  4 6.425 5.941 5.970 6.018 

5 6.403 6.094 6.168 6.202  5 6.156 5.795 5.853 5.898  5 6.344 5.949 5.980 6.021 

6 6.380 6.147 6.232 6.262  6 6.145 5.839 5.900 5.936  6 6.289 5.968 6.004 6.036 

7 6.375 6.218 6.311 6.337  7 6.122 5.883 5.947 5.973  7 6.239 5.997 6.037 6.061 

8 6.379 6.293 6.396 6.417  8 6.098 5.931 5.995 6.012  8 6.182 6.026 6.071 6.086 

9 6.383 6.363 6.474 6.489  9 6.077 5.970 6.038 6.044  9 6.128 6.043 6.088 6.096 

10 6.398 6.438 6.552 6.558  10 6.063 6.003 6.076 6.072  10 6.096 6.072 6.115 6.115 

11 6.413 6.500 6.623 6.618  11 6.034 6.012 6.088 6.072  11 6.074 6.083 6.125 6.119 

12 6.430 6.550 6.677 6.660  12 6.010 6.013 6.094 6.069  12 6.072 6.078 6.120 6.111 

13 6.457 6.591 6.716 6.690  13 6.006 6.034 6.112 6.077  13 6.072 6.077 6.121 6.110 

14 6.494 6.639 6.762 6.731  14 5.985 6.056 6.125 6.089  14 6.072 6.100 6.139 6.131 

15 6.509 6.672 6.794 6.761  15 5.958 6.069 6.134 6.096  15 6.063 6.127 6.166 6.163 

16 6.523 6.688 6.808 6.777  16 5.944 6.073 6.135 6.097  16 6.061 6.148 6.186 6.190 

17 6.542 6.690 6.809 6.777  17 5.945 6.072 6.128 6.092  17 6.068 6.159 6.201 6.210 

18 6.566 6.689 6.798 6.770  18 5.955 6.083 6.132 6.097  18 6.080 6.168 6.217 6.226 

19 6.586 6.689 6.793 6.768  19 5.974 6.094 6.139 6.112  19 6.100 6.174 6.226 6.238 

20 6.600 6.690 6.798 6.781  20 6.005 6.115 6.150 6.133  20 6.125 6.186 6.240 6.256 

21 6.610 6.697 6.809 6.795  21 6.038 6.142 6.175 6.160  21 6.154 6.215 6.272 6.289 

22 6.636 6.716 6.828 6.813  22 6.081 6.178 6.208 6.197  22 6.189 6.259 6.319 6.334 

23 6.668 6.750 6.861 6.848  23 6.124 6.224 6.247 6.235  23 6.219 6.293 6.354 6.364 

24 6.715 6.785 6.895 6.881  24 6.163 6.255 6.277 6.264  24 6.251 6.311 6.381 6.392 
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The only difference between the two types of forecast is whether the actual or 

forecasted temperature is used. Comparing the two aforementioned tables, our findings 

are threefold. First, the ex-ante forecasts have higher MAPEs than the ex-post 

counterparts. This is because when generating the ex-ante load forecast using temperature 

forecast, the associated temperature forecast errors introduce additional errors on top of 

the existing ex-post load forecast errors. The contribution of temperature forecast error to 

the ex-ante load forecast error can be quantified by comparing the MAPE values of the 

two tables under the same recency effect model. Second, the accuracy of both ex-post and 

ex-ante forecasts starts to degrade when introducing more recency effect terms after a 

certain point. Third, compared to M0 (model selection based on the ex-post forecast), the 

M1 framework (model selection based on the ex-ante forecast) picks the models with the 

same value of 𝑑 = 1, but significantly smaller values of ℎ (more parsimonious models 

with fewer lagged hourly temperatures). 

For instance, under SA1, the lowest MAPE based on the ex-post and ex-ante 

forecast is achieved at (1, 6) and (1, 1), respectively. When 𝑑 = 1, the ex-post forecast 

accuracy keeps improving when varying ℎ from 0 to 6. This is because the additional 

lagged hourly temperatures provide extra signals to assist model the load variations. The 

ex-post forecast accuracy starts to degrade when additional lagged hourly temperatures 

(i.e., a larger ℎ value) were introduced on top of the model (1, 6). This is due to 

overparameterization. On the other hand, the ex-ante forecast accuracy only improves 

when increasing ℎ from 0 to 1. The accuracy starts to degrade when additional lagged 

hourly temperatures were included. This can be explained by the fact that, in the ex-ante 

forecasting settings, the additional lagged temperatures also bring in temperature forecast 
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errors from the past hours. In other words, the ex-ante forecast accuracy degrades when 

the extra signal provided by the lagged temperatures is too marginal to overcompensate 

the detrimental impact of temperature forecast errors. We denote this finding as the 

“signal-error trade-off”. 

5.2.2 Out-of-sample Test 

Based on the performance of validation data, TABLE 9 shows the MAPE values 

on the test data (years 2017 and 2018). A table cell with red borders indicates the model 

selected based on the ex-post forecast (M0, referring to TABLE 7). A table cell with blue 

borders indicates the model selected based on the ex-ante forecast (M1, referring to 

TABLE 8). The bold values indicate the ground truth of the best model on the test data.  

Compared to the ex-post forecasting MAPE values shown in TABLE 7, the MAPE 

values in TABLE 8 provide a closer estimate of the MAPE values on the test data (TABLE 

9). This provides evidence that the ex-ante forecast on the validation data better reflects 

the genuine performance of a load forecasting model on the unseen test set. Besides, for 

SA1, the model selected by M1 (the ex-ante forecast) outperforms the M0 counterpart by 

around 1.8% (from 5.766% to 5.660%). For SA2, the ex-ante forecast selects the exact 

best model on the test data. Compared to the M0 counterpart, the relative MAPE 

reduction by using the M1 framework is around 6.3% (from 5.844% to 5.476%). For 

SA3, the model selected by M1 results in a minor increase in MAPE (from 5.735% to 

5.781%) compared to M0. This can be explained by the fact that the model selected by 

M1 may underperform when the temperature forecast quality gets worse in the test period 

(detailed in Section 7.2.2, TABLE 19). In sum, the model selected by the ex-ante forecast 

leads to superior accuracy in most cases, with an average improvement of 2.4%, without 
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introducing additional computational costs. This provides evidence that the ex-ante 

forecast performance should be focused on in the model selection stage. 

TABLE 9: Heatmap of the ex-ante forecasting MAPE values (in %) for recency effect 

modeling on the test data (years 2017 and 2018) 
SA1  SA2  SA3 

ℎ \ 𝑑 0 1 2 3  ℎ \ 𝑑 0 1 2 3  ℎ \ 𝑑 0 1 2 3 

0 7.065 5.850 5.843 5.939  0 6.914 5.650 5.772 5.882  0 7.167 5.915 5.984 6.072 

1 6.650 5.660 5.675 5.770  1 6.508 5.509 5.641 5.752  1 6.830 5.781 5.858 5.962 

2 6.380 5.612 5.636 5.729  2 6.220 5.486 5.621 5.726  2 6.593 5.760 5.834 5.938 

3 6.191 5.604 5.639 5.729  3 6.019 5.476 5.617 5.713  3 6.408 5.746 5.822 5.920 

4 6.104 5.643 5.685 5.771  4 5.918 5.490 5.633 5.725  4 6.265 5.736 5.816 5.909 

5 6.073 5.705 5.755 5.835  5 5.882 5.539 5.685 5.772  5 6.160 5.726 5.811 5.900 

6 6.056 5.766 5.826 5.902  6 5.871 5.586 5.734 5.815  6 6.084 5.722 5.813 5.896 

7 6.041 5.819 5.887 5.963  7 5.859 5.643 5.793 5.867  7 6.016 5.725 5.816 5.895 

8 6.025 5.867 5.945 6.021  8 5.848 5.696 5.846 5.915  8 5.945 5.728 5.819 5.893 

9 6.024 5.921 6.000 6.079  9 5.844 5.764 5.919 5.985  9 5.886 5.733 5.825 5.898 

10 6.045 5.982 6.066 6.145  10 5.864 5.844 6.006 6.070  10 5.848 5.735 5.835 5.910 

11 6.086 6.048 6.134 6.206  11 5.877 5.884 6.053 6.115  11 5.821 5.735 5.838 5.915 

12 6.134 6.098 6.182 6.252  12 5.924 5.931 6.107 6.162  12 5.806 5.728 5.836 5.915 

13 6.165 6.139 6.224 6.286  13 5.950 5.979 6.154 6.201  13 5.783 5.717 5.825 5.908 

14 6.183 6.174 6.263 6.320  14 5.942 5.999 6.175 6.214  14 5.746 5.705 5.814 5.902 

15 6.211 6.224 6.315 6.372  15 5.938 6.021 6.190 6.227  15 5.706 5.692 5.799 5.892 

16 6.255 6.276 6.376 6.432  16 5.949 6.041 6.201 6.236  16 5.690 5.680 5.788 5.886 

17 6.316 6.327 6.432 6.493  17 5.966 6.042 6.201 6.235  17 5.685 5.667 5.777 5.880 

18 6.372 6.381 6.483 6.549  18 5.992 6.057 6.218 6.249  18 5.680 5.655 5.768 5.874 

19 6.429 6.427 6.531 6.602  19 6.027 6.079 6.234 6.268  19 5.685 5.666 5.776 5.883 

20 6.478 6.471 6.582 6.659  20 6.049 6.096 6.243 6.280  20 5.701 5.693 5.797 5.904 

21 6.521 6.507 6.626 6.709  21 6.066 6.098 6.243 6.283  21 5.719 5.719 5.820 5.924 

22 6.568 6.541 6.671 6.755  22 6.081 6.110 6.263 6.305  22 5.741 5.744 5.844 5.945 

23 6.611 6.575 6.712 6.792  23 6.100 6.136 6.296 6.337  23 5.762 5.767 5.871 5.969 

24 6.645 6.602 6.744 6.818  24 6.110 6.151 6.318 6.359  24 5.783 5.774 5.881 5.977 
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CHAPTER 6: TEMPERATURE FORECAST QUALITY PREDICTION 

 Empirical case studies reviewed in Section 2.2 (e.g., (Segarra et al., 2019), 

(Methaprayoon et al., 2007), and (Chitalia et al., 2020)) have shown that the ex-ante load 

forecast accuracy can be impacted by the levels of weather forecast accuracy. One way to 

make better model selection decisions is to understand the quality of future weather 

forecasts and select different load forecasting models at diverse levels of weather forecast 

accuracy. This requires predicting the accuracy of future weather forecasts given the 

historical weather forecast information. Since temperature is our forecasted weather 

variable in day-ahead load forecasting, we experiment with several approaches, including 

a few baseline models, to predict the quality of the day-ahead temperature forecasts in 

this chapter.  

In the following sections, we first introduce some background information about 

the forecasting problem. Since the prediction of day-ahead temperature forecast accuracy 

will eventually be used for load forecasting, we focus on modeling the accuracy of 

composite temperature forecast for a subset of hours to create a more impactful analysis. 

Thereafter, we demonstrate our methodology to tackle this forecasting problem and 

present the experiment results at the end.  

6.1. Background 

6.1.1 The Forecasting Problem 

In the load forecasting problem, the temperature variable is based on a combination 

of weather stations (refer to Section 3.6). Hence, it is required to predict the quality of the 

composite temperature forecasts. There are two ways to approach this problem. One is to 

predict the quality of the temperature forecasts at each weather station and combine these 
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predictions based on the results of weather station selection. The other one is to predict the 

quality of the composite temperature forecast directly.  

We followed the first approach at the beginning while noticing several major 

challenges. First, the stochastic nature of weather can lead to diverse forecasting biases at 

different weather station locations. In this case, it is extremely challenging to design a 

single method that can generate robust predictions at all locations. Second, the temperature 

forecasts at the individual station level are prone to data quality issues (e.g., data errors, 

missing values, etc.). This makes the historical training data even noisier and eventually 

leads to failures of most machine learning algorithms. Third, our goal is to understand the 

quality of the composite temperature forecasts for load forecasting. Even though we had a 

reliable prediction of absolute temperature forecast errors at each station level (refer to 

Section 6.2.1, our prediction does not provide the signs of errors, i.e., positive or negative), 

the task of combining the non-negative predicted errors is nontrivial due to the 

compensation of positive and negative predicted errors. 

On the other hand, by averaging temperatures from multiple weather stations, the 

second approach helps to alleviate the forecasting biases and data errors at individual 

weather stations. This creates an easier task for the machine learning algorithms to learn 

from historical data. Besides, the output of the second approach can directly be leveraged 

by the load forecasting procedure. Hence, we proceed with the second approach in this 

chapter, which is to model the quality of composite temperature forecasts.  
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6.1.2 Weather Sensitive Hours (WSHs) 

To facilitate generation planning and decision-making in the day-ahead and/or real-

time energy market, accurate load forecast during peak times is particularly favored by the 

utilities for meeting peak demands and the implementation of peak shaving. As part of the 

load is used to maintain the ambient temperature and fulfill human comfort needs, the 

weekly/monthly/seasonal peak load is more likely to happen when the weather is either 

getting too warm or too cold.  

FIGURE 14 shows a scatterplot of the load-temperature relationship for SA1 in the 

years 2013 and 2014. A black curve is fitted to observations. The red dashed lines 

highlighted the zone when the temperature is between 55°F and 70°F. The graph suggests 

that the load is generally at its lowest level when the temperature is within the 55~70°F 

region. In other words, the monthly/seasonal peak load is less likely to happen within this 

region. On the other hand, the load is generally higher outside of the 55~70°F region, 

suggesting a greater chance of reaching the peak. Besides, the forecasted load value (the 

black curve) is more sensitive to the deviations in the temperature input when the latter is 

outside of the 55~70°F region. This means that a smaller error in the temperature forecast 

may lead to a greater variation in the load forecast among the possible peak hours (which 

may create a more significant load forecast error as well). As our data is in hourly resolution, 

we denote the observations with a temperature forecast outside of the 55~70°F region as 

weather sensitive hours (WSHs). FIGURE 15 shows the percentage ratio of WSHs within 

each month. The ratio of WSHs is higher during summer (July, August) and winter 

(December through February), and lower during the shoulder months. 
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 To create a more meaningful and impactful analysis, we focus on predicting the 

temperature forecast quality among the WSHs and improving the load forecast accuracy 

for the future WSHs (i.e., hours having temperature forecast outside of the 55~70°F region). 

Concretely, we subset our data and keep only the WSHs when training and predicting the 

quality of the next day’s temperature forecast.  

 

FIGURE 14: Load vs. temperature scatterplot with a fitted curve in black and red dashed 

lines showing temperature regions between 55°F and 70°F (SA1, years 2013 and 2014) 

 

FIGURE 15: Percentage ratio of weather sensitive hours at each month (SA1, 2013 - 

2018) 
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6.2. Methodology 

6.2.1 Target Variable 

In this study, our target variable is the absolute error of the day-ahead hourly 

composite temperature forecast. In other words, our forecast tells the quality (or 

accuracy) of a temperature forecast by providing its absolute error. We did not choose to 

forecast the error (which can be positive or negative) as we observe an inconsistent 

relationship between the error and the features we have chosen. The chosen features are 

detailed in Section 6.2.3. As our eventual goal is to leverage the prediction of this target 

variable for load forecasting, we assume that the under-forecast and over-forecast of the 

temperature have a similar impact on load forecast errors. 

6.2.2 Error Metrics 

We choose the mean absolute error (MAE) to measure the forecast accuracy of 

the target variable. This metric has been frequently used in the literature for temperature 

forecast evaluation (refer to Section 2.3). The MAE is defined as follows:  

𝑀𝐴𝐸 =
1

𝑁
∑|𝑦𝑖 − 𝑦𝑖̂|

𝑁

𝑖=1

 

(14) – Error Measure: MAE 
 

where 𝑁 is the number of observations in the test period, 𝑦𝑖 and 𝑦𝑖̂ are the actual and 

predicted values, respectively.  

6.2.3 Features 

An abrupt and steep variation in the temperature forecast (𝑇𝐹) may suggest 

changes in the weather condition. Such changes could be caused by sunrise/sunset, 

seasonal changes, or some extreme weather events such as hurricanes and winter storms. 
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Depending on the speed and scale of the variations in the temperature forecast, the 

weather condition can be more challenging to predict in nature and thus results in a larger 

temperature forecast error.  

FIGURE 16, FIGURE 17, and FIGURE 18 show the scatter plots of the absolute 

error of temperature forecast (i.e., our target variable) with respect to the variations of 𝑇𝐹 

(within 1 to 9 hours), the daily average variation of 𝑇𝐹 (within 1 to 9 hours), and diurnal 

(day-to-night) variation of 𝑇𝐹, respectively. The variations of 𝑇𝐹 are all in absolute 

values. For instance, the variations of 𝑇𝐹 within 2 hours at 9am is the absolute difference 

of the forecasted temperatures at 7am and 9am. The daily average variation of 𝑇𝐹 within 

2 hours is the daily (24-h) average of the variations of 𝑇𝐹 within 2 hours. The diurnal 

(day-to-night) variation of 𝑇𝐹 is the absolute difference between the maximum 

temperature and the minimum temperature of a calendar day (24 hours). A straight line is 

fitted to each subplot to denote the linear relationship between the two variables. The “m” 

values indicate the slope of the fitted lines. The denser color suggests that more 

observations are clustered within a region. In FIGURE 16, we observe that the target 

variable has a salient positive relationship with the variation of 𝑇𝐹 within 1, 2, 3 and 4 

hours. Besides, the positive relationship decays when the variation of 𝑇𝐹 spans across 

longer hours (suggesting a slower change in 𝑇𝐹). Such a finding is due to the fact that the 

more abrupt variations in temperature are increasingly difficult to be precisely captured 

by the weather forecasting model. Similarly, in FIGURE 17, the target variable is 

positively related to the average temperature variation during that day, with a decaying 

positive relationship when the variation of 𝑇𝐹 spans across longer hours. This implies that 

the days with more abrupt temperature variations are more likely to suffer from larger 
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forecasting errors. In FIGURE 18, we observe that the target variable is positively related 

to the diurnal variation of the temperature forecast. This implies that the day-to-night 

temperature variation can be another feature related to the target variable.  

 

FIGURE 16: Scatterplots of day-ahead absolute temperature forecast error vs. 

temperature forecast variation (absolute) within 1 to 9 hours based on the training data 

(years 2013 and 2014) 
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FIGURE 17: Scatterplots of day-ahead absolute temperature forecast error vs. daily 

(calendar) average temperature forecast variation (absolute) within 1 to 9 hours based 

on the training data (years 2013 and 2014) 

 

FIGURE 18: Scatterplot of day-ahead absolute temperature forecast error vs. diurnal 

(day-to-night for a calendar day) variation of temperature forecast (absolute) based on 

the training data (years 2013 and 2014) 

FIGURE 19 shows a boxplot of the target variable at each hour of the day. 

Noticeably, the errors are higher (at the median level, with a greater span) after sunrise 

(hours 7 to 11) and during sunset (hours 17 to 20). This is because the ambient 
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temperature gains a sharp increase after sunrise as the solar radiation heats the ground, 

and a sharp drop during the sunset. These fluctuations in temperature are natively 

challenging to capture. The plot also shows that the target variable has greater variations 

during the daytime (hours 7 to 20). During the night, the errors are generally lower, more 

consistent, and with fewer extreme errors (e.g., errors greater than 10°F). To forecast the 

target variable, we create categorical features for the hours during the day and group the 

hours into the same category during the nighttime.  

 

FIGURE 19: Boxplot of day-ahead absolute forecast error vs. hours-of-the-day based on 

the training data (years 2013 and 2014) 

FIGURE 20 shows an ACF plot of the target variable time series. the target 

variable is strongly correlated to the first few lags. Besides, a correlation to the values 24 

hours before the current hour can be observed. As we are forecasting the target variable 

up to 42 h into the future (our last available point in the historical data, i.e., the forecast 

origin, is 6am of the current day, and we are to forecast the target variable 24 h of the 

next day), we include a lagged dependent variable 𝑦𝑡−48 in our model. We don’t include 
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the 𝑦𝑡−24 variable since the actual value of the target variable 24 h before some forecast 

hours is unknown. 

 

FIGURE 20: ACF plot of absolute temperature forecast errors on training data (years 

2013 and 2014) 

To sum up, the variables to be included in the modeling stage are listed as 

follows:  

• Absolute variation of 𝑇𝐹 within 1, 2, 3, and 4 hours 

• Daily average absolute variation of 𝑇𝐹 within 1, 2, 3, and 4 hours 

• Diurnal (day-to-night) variation of 𝑇𝐹 

• Hours-of-a-day categories (15 categories in total): 

a) Nighttime hours 0 - 6 and 21 - 23 are grouped into a single category 

b) The remaining hours are in their own categories (14 categories) 

• A lagged dependent variable 48 hours before the forecast hours 

6.2.4 Forecasting Models 

This section provides descriptions of the forecasting models. We include three 

baseline models in this study: 
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• Persistence Naïve. The actual value at 6am of the current day is used to forecast 

the 24 hours of the next day. 

• Seasonal Naïve. The forecast value equals its actual value 48 hours before that 

hour. In other words, the seasonal period equals 48 hours. 

• Mean Naïve. The mean of historical values within the most recent 365 days is 

used to forecast the 24 hours of the next day. 

These models are also known as the “naïve” models. By comparing their 

performances with the more advanced machine learning algorithms, we get to understand 

how the more complex model structure can benefit the forecasting performance. 

The machine learning algorithms are listed as follows. For models ended with “by 

hour category”, the data is sliced into 15 pieces based on the definition of the hours-of-a-

day categories in Section 6.2.3, and the model training and validation are conducted 

separately within each hours-of-a-day subset. The remaining models introduce the hours-

of-a-day categories as dummy variables.  

• Multiple Linear Regression (MLR) 

• LASSO 

• ANN 

• ANN (by hour category) 

• Random Forest (RF) 

• Random Forest (by hour category) 

• XGBoost 

• XGBoost (by hour category) 



 
76 

 

For models that require hyperparameter tuning (i.e., LASSO, ANN, Random 

Forest, and XGBoost), we refresh (re-tune) the hyperparameters once a year. Concretely, 

the hyperparameters used to forecast the validation year 2015 are tuned by using the year 

2013 to fit the model and forecast onto the year 2014. Following a sliding simulation 

fashion as shown in FIGURE 4, The chosen set of hyperparameters (which minimizes the 

MAE in the year 2014) will be used to re-fit the model and generate day-ahead forecasts 

of the target variable in 2015. Thereafter, we repeat the same procedure to tune the 

hyperparameters used to forecast the rest years (2016, 2017, and 2018) and generate the 

day-ahead forecasts within each. FIGURE 21 visualizes this procedure. For MLR and the 

baseline models that do not need hyperparameter tuning, we directly follow the sliding 

simulation procedure in FIGURE 4 to generate the day-ahead forecasts for the years 2015 

to 2018.  

 

FIGURE 21: Hyperparameter tuning procedure for selected models 

TABLE 10 summarizes the APIs being used and the search space of 

hyperparameters for the machine learning algorithms. For the hyperparameters that are 

not mentioned in the table, we go with the default values. Notably, we train the ANN 

models 10 times, each with a random weight initialization, and calculate the mean of the 

error metrics across the trials. More explanations on the hyperparameters can be found in 
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the official documentation of statsmodels 0.13 (Seabold & Perktold, 2010), TensorFlow 

2.3.1 (Abadi et al., 2016), scikit-learn 1.0.2 (Pedregosa et al., 2011), and XGBoost 1.4 (T. 

Chen & Guestrin, 2016). 

TABLE 10: API and hyperparameters of the machine learning algorithms 
Method API Hyper-parameter Search Space 

MLR statsmodels.api.OLS - - 

LASSO statsmodels.api.OLS alpha 1e-5, 1e-4, 1e-3, 0.01, 0.1, 1 

ANN tensorflow.keras 

activation SELU 

batch_size 32 

No. of hidden layers 2 

No. of neurons in each layer 64 

Training Epochs 300 with Early Stopping 

Random 

Forest 

sklearn.ensemble. 

RandomForestRegressor 

n_estimators 80 to 400 with a step of 20 

max_depth 8 to 30 with a step of 2 

min_samples_split 2 to 50 with a step of 5 

min_samples_leaf 1 to 50 with a step of 5 

max_features 0.2 to 0.9 with a step of 0.08 

XGBoost xgboost.XGBRegressor 

n_estimators 50 to 300 with a step of 10 

max_depth 3 to 11 with a step of 2 

min_child_weight 1, 3, 5 

gamma 0, 1, 2, 3, 4 

subsample 0.6, 0.7, 0.8, 0.9 

colsample_bytree 0.6, 0.7, 0.8, 0.9 

reg_alpha 0, 0.001, 0.005, 0.01 

learning_rate 0.05, 0.1, 0.2 

 

6.3. Results and Discussion 

TABLE 11 shows a heatmap of the out-of-sample MAEs on the validation years 

for the prediction of temperature forecast errors under SA1. A greener color indicates a 

lower MAE value, while a redder color indicates a higher one. The bold values indicate 

the lowest errors of each year. Overall, no methods dominate in both validation years. 

Among the baseline models, the mean naïve method leads to the lowest MAEs in both 

validation years. Besides, all machine learning algorithms outperform the baseline 

models by a significant margin. The two ANN alternatives result in fairly similar 

performance. For SA1, the ANN produces good accuracy on both validation years and 
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results in the lowest MAE on average. Between the mean naïve method and ANN, the 

relative MAE reduction is 12% on average (i.e., from 1.407 to 1.234). Hence, we proceed 

with using ANN to generate the forecast for the test years (2017 and 2018). Similar 

findings were observed under SA2 (TABLE 12) and SA3 (TABLE 13), where the ANN 

(by hour category) and ANN were chosen for the two supply areas, respectively, to 

generate the forecasts for the test years.  

TABLE 11: Heatmap of MAE values for temperature forecast error prediction based on 

the validation data (years 2015 and 2016), SA1 
 Method MAE (2015) MAE (2016) Overall MAE 

Baseline 

models 

Persistent Naïve 1.896 1.621 1.754 

Seasonal Naïve 1.940 1.565 1.746 

Mean Naïve 1.546 1.276 1.407 

Machine 

Learning 

models 

MLR 1.423 1.158 1.286 

LASSO 1.422 1.164 1.289 

ANN 1.378 1.099 1.234 

ANN (by hour category) 1.383 1.097 1.235 

RF 1.419 1.164 1.287 

RF by (by hour category) 1.434 1.167 1.296 

XGBoost 1.400 1.148 1.270 

XGBoost (by hour category) 1.423 1.150 1.282 

TABLE 12: Heatmap of MAE values for temperature forecast error prediction based on 

the validation data (years 2015 and 2016), SA2 
 Method MAE (2015) MAE (2016) Overall MAE 

Baseline 

models 

Persistent Naïve 1.943 1.712 1.824 

Seasonal Naïve 1.955 1.616 1.780 

Mean Naïve 1.579 1.372 1.472 

Machine 

Learning 

models 

MLR 1.443 1.231 1.333 

LASSO 1.442 1.269 1.353 

ANN 1.382 1.160 1.2677 

ANN (by hour category) 1.381 1.161 1.2676 

RF 1.426 1.258 1.340 

RF by (by hour category) 1.433 1.231 1.329 

XGBoost 1.411 1.228 1.317 

XGBoost (by hour category) 1.425 1.224 1.321 
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TABLE 13: Heatmap of MAE values for temperature forecast error prediction based on 

the validation data (years 2015 and 2016), SA3 
 Method MAE (2015) MAE (2016) Overall MAE 

Baseline 

models 

Persistent Naïve 2.001 1.968 1.984 

Seasonal Naïve 2.013 1.868 1.937 

Mean Naïve 1.641 1.507 1.571 

Machine 

Learning 

models 

MLR 1.513 1.402 1.455 

LASSO 1.517 1.432 1.472 

ANN 1.418 1.340 1.377 

ANN (by hour category) 1.425 1.336 1.378 

RF 1.512 1.408 1.457 

RF by (by hour category) 1.510 1.391 1.448 

XGBoost 1.473 1.397 1.433 

XGBoost (by hour category) 1.500 1.376 1.435 

 

FIGURE 22 shows the joint and marginal distribution of the temperature forecast 

error prediction against the actual during the test years (2017 and 2018). A black straight 

line is fitted to the scatter plot to denote the linear relationship between the prediction and 

the actual values. The “m” value indicates the slope of the fitted line. Overall, the 

prediction presents a salient positive relationship with the actual values, with a Pearson 

correlation coefficient of 0.477. This suggests that when the predicted temperature 

forecast error is higher, the actual temperature forecast error is generally higher. Taking a 

closer look at the density contours, most (absolute) temperature forecast errors are below 

2 °F. Within this range, the prediction drifts slightly above the identity line, suggesting a 

tendency for over-forecasting. When the actual temperature error is above around 3 °F, 

the prediction generally drifts below the identity line, suggesting a tendency for under-

forecasting. 
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FIGURE 22: Joint and marginal distribution of temperature forecast error prediction 

against the actual under SA1 (2017-2018) with contour lines showing the kernel densities 

FIGURE 23 shows some sample forecast output for SA1 using ANN among 20 

random hours during the test years. When the actual temperature forecast error is lower 

(10 random hours, the upper plot), the model generally outputs lower predictions, with 

more prevalent over-forecasting. When the actual temperature forecast error is higher (10 

random hours, the lower plot), the model generally outputs higher predictions, with 

prevalent under-forecasting. These findings align with the findings related to FIGURE 

22, which provides further evidence that the forecasting model can capture the general 

trend of the temperature forecast quality. Similar findings were observed under the other 

two supply areas. To avoid verbose representation, we did not show them in this section. 
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FIGURE 23: Bar charts of actual absolute temperature forecast error vs. predicted 

values for 20 random WSHs in the test years (2017 and 2018), when the actual values are 

lower (10 random WSHs, upper) and higher (10 random WSHs, lower), SA1 
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CHAPTER 7: MODEL SELECTION BASED ON TEMPERATURE FORECAST 

QUALITY PREDICTION 

In this chapter, we propose a novel model selection methodology based on the 

predicted quality of temperature forecast as discussed in Chapter 6. We aim to improve 

the load forecast accuracy of the weather sensitive hours (WSHs) at diverse levels of 

temperature forecast accuracy. In the following sections, we start by introducing the 

overall procedure, our idea, and the forecasting models. Thereafter, we dive into the 

experiment results. 

7.1. Methodology 

7.1.1 Overall Procedure 

FIGURE 24 shows a high-level workflow of the load forecasting procedure 

including a new model selection framework which will be detailed in this chapter. The 

raw data will first go through the steps of data cleansing and weather station selection. 

Thereafter, the data will be sliced into two portions. The WSHs will go through the 

module of temperature forecast quality prediction as introduced in Chapter 6. The output 

(i.e., “Temperature Forecast Error Prediction”) will be used in the model selection step 

based on the ex-ante forecast accuracy of the validation data. We denote this new 

framework as M2. Two other frameworks discussed in Chapter 5 (i.e., M0 and M1) are 

used for comparison. The non-WSHs will follow the regular forecasting procedure by 

either using the ex-post (M0) or ex-ante (M1) forecast accuracy to select models and 

generate the forecast. The final product is a complete day-ahead load forecast. To form a 
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more impactful analysis, we focus on discussing the forecasting performance of the 

WSHs. The data partitioning rules in Chapter 5 are extended to this chapter.  

 

FIGURE 24: High-level workflow of the load forecasting procedure including model 

training, selection, and forecasting 

7.1.2 General Idea 

FIGURE 25 shows a histogram of the predicted temperature forecast error under 

SA1 in the years 2015 and 2016. The entire range of predicted values is divided into 

intervals with an equal size of 0.25 (for SA2 and SA3, we use an equal size of 0.35 due to 

a greater range of predicted values. To avoid verbose discussion, we did not visualize 

their distributions in this section). Our idea is straightforward – which is to select the load 

forecasting models within each predicted error interval based on the ex-ante load forecast 

accuracy. The intuition behind this is that the best-suited models can be different at each 

level (or interval) of the temperature forecast accuracy. Hence, a model selection process 

is required within each error interval. For the adjacent intervals that have too few WSHs 
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within, we group them into a single interval. For instance, in FIGURE 25, the error 

intervals less than 1°F are grouped. So are the ones above 5°F.  

 

FIGURE 25: Histogram of the predicted temperature forecast error, SA1, validation 

years (2015 and 2016) 

There are infinite ways to create intervals within a range of predicted temperature 

forecast errors. This can be an extra hyper-parameter to tune in practice. A rule of thumb 

is that an error interval should not be too wide (i.e., containing too many WSHs) or too 

narrow (i.e., containing too few WSHs). On one hand, if an interval is too wide, we may 

not fully leverage the power of this methodology. Think about an extreme case when 

placing all WSHs into the same interval – we did not get to leverage the temperature 

forecast quality information, and the proposed method would be equivalent to M1, which 

uses ex-ante load forecast accuracy for model selection. On the other hand, if an interval 

is too narrow, there is a potential overfitting issue. Think about an interval that contains 

only one or two WSHs on the validation data. There is a chance that tens or even 

hundreds of WSHs during the test period will be within the same interval. In this case, the 

model is selected by merely one or two WSHs, which may end up generalizing poorly on 

the test data. In this study, we ensure that each interval contains at least 15 WSHs. We 
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have not tried to break down the intervals with many WSHs within – we leave it as one of 

the future research directions.  

7.1.3 Forecasting Models 

In Chapter 5, a huge family of recency effect models has been presented based on 

the selection of (𝑑, ℎ) pairs. Due to the signal-error trade-off in the ex-ante forecasting 

settings (as discussed in Section 5.2.1), a better underlying model tends to have fewer 

lagged hourly temperatures (i.e., a smaller ℎ) than the ones selected by the ex-post 

forecast accuracy. Hence, to avoid verbose presentation in this chapter, we only present a 

subset of recency effect models to demonstrate the proposed methodology. The candidate 

models are with 𝑑 = 1 and have equal or fewer lagged hourly temperatures included than 

the ones selected by the ex-post forecast accuracy in Chapter 5.  

For example, for SA1, the best recency effect model under the ex-post forecasting 

settings is (𝑑, ℎ) = (1, 6) based on the validation data (refer to TABLE 7). In this chapter, 

we fix the value of 𝑑 = 1 and discuss the models with decreasing ℎ from 6 to 1. In 

practice, the search space of the (𝑑, ℎ) pairs can be adjusted based on the availability of 

the computational resources.  

7.2. Results and Discussion 

7.2.1 Model Selection Step 

The day-ahead ex-ante load forecast is first generated on the validation years 

(2015 and 2016) using the candidate recency effect models. TABLE 14 shows a heatmap 

of the results under SA1. A greener color indicates a lower ex-ante forecast MAPE value, 

while a redder color indicates a higher one. The “Intervals” column indicates the intervals 

of temperature forecast error prediction. The “No. of WSHs” column indicates the 
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number of WSHs within each error interval. The MAPE values (in %) are presented for 

each subset of WSHs. The bold values indicate the lowest MAPE values within each 

error interval. The corresponding recency effect model will be chosen to forecast the 

WSHs within the same error interval in the test period. At the bottom, the ex-ante and ex-

post forecast MAPE values for all WSHs are provided. The ex-post forecast MAPE 

values are not color-coded since they are incomparable to the ex-ante forecast ones. 

Model (1, 1) is selected by the ex-ante forecast accuracy (the M1 framework), while 

model (1, 6) is selected by the ex-post forecast accuracy (the M0 framework).  

TABLE 14: Heatmap of MAPE values (in %) based on temperature forecast error 

prediction, validation data (years 2015 and 2016), SA1 

Intervals No. of WSHs 
Candidate Models (𝑑, ℎ) 

(1, 6) (1, 5) (1, 4) (1, 3) (1, 2) (1, 1) 

[0, 1) 150 4.648 4.654 4.781 4.730 4.881 4.903 

[1, 1.25) 967 5.739 5.750 5.707 5.729 5.682 5.720 

[1.25, 1.5) 2428 6.155 6.098 6.061 6.010 5.954 5.914 

[1.5, 1.75) 2037 6.427 6.350 6.260 6.208 6.179 6.149 

[1.75, 2) 1517 7.014 6.957 6.883 6.803 6.796 6.730 

[2, 2.25) 1171 7.432 7.339 7.288 7.125 7.108 7.091 

[2.25, 2.5) 1134 7.516 7.464 7.372 7.307 7.242 7.244 

[2.5, 2.75) 871 7.787 7.667 7.570 7.479 7.357 7.235 

[2.75, 3) 650 7.451 7.389 7.327 7.381 7.321 7.237 

[3, 3.25) 414 7.932 7.806 7.727 7.838 7.754 7.775 

[3.25, 3.5) 265 7.171 7.138 7.073 7.028 7.157 7.356 

[3.5, 3.75) 200 7.060 7.005 6.908 7.099 7.230 7.402 

[3.75, 4) 121 6.871 6.790 6.708 6.951 7.128 7.096 

[4, 4.25) 72 6.746 6.774 6.735 6.447 6.968 7.111 

[4.25, 4.5) 77 6.167 6.110 5.943 5.993 6.429 6.981 

[4.5, 4.75) 58 6.829 6.761 6.585 6.361 7.215 7.434 

[4.75, 5) 34 7.747 7.580 7.368 7.324 7.863 8.459 

[5, inf) 69 7.661 7.656 7.342 6.746 7.429 9.265         
Ex-ante 12235 6.813 6.749 6.681 6.631 6.611 6.604 

Ex-post 12235 4.145 4.158 4.176 4.202 4.241 4.314 

 

TABLE 15 and TABLE 16 show the results on the validation years under SA2 and 

SA3, respectively, following the same format as TABLE 14. At the bottom of each table, 

it shows that the model (1, 3) and (1, 10) are selected by the ex-ante (M1) and ex-post 
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(M0) forecast accuracy under SA2, respectively. Model (1, 1) and (1, 10) are selected by 

the ex-ante and ex-post forecast accuracy under SA3, respectively.  

TABLE 15: Heatmap of MAPE values (in %) based on temperature forecast error 

prediction, validation data (years 2015 and 2016), SA2 

Intervals 
No. of 

WSHs 

Candidate Models (𝑑, ℎ) 
(1, 10) (1, 9) (1, 8) (1, 7) (1, 6) (1, 5) (1, 4) (1, 3) (1, 2) (1, 1) 

[0, 1) 282 6.700 6.593 6.481 6.304 6.105 5.948 5.861 5.778 5.735 5.634 

[1, 1.35) 1849 5.778 5.806 5.788 5.715 5.676 5.653 5.601 5.547 5.512 5.476 

[1.35, 1.7) 3086 6.070 6.056 6.026 5.994 5.955 5.907 5.864 5.828 5.778 5.740 

[1.7, 2.05) 1882 6.739 6.781 6.686 6.576 6.519 6.484 6.433 6.393 6.408 6.380 

[2.05, 2.4) 1491 6.784 6.805 6.724 6.664 6.582 6.566 6.536 6.509 6.496 6.442 

[2.4, 2.75) 1259 7.357 7.314 7.236 7.228 7.203 7.170 7.186 7.104 7.065 6.925 

[2.75, 3.1) 886 7.496 7.404 7.422 7.410 7.492 7.385 7.317 7.365 7.464 7.459 

[3.1, 3.45) 610 7.579 7.463 7.531 7.573 7.513 7.402 7.273 7.340 7.392 7.559 

[3.45, 3.8) 370 7.702 7.604 7.714 7.784 7.765 7.741 7.611 7.737 7.929 8.164 

[3.8, 4.15) 201 7.970 7.737 7.708 7.720 7.574 7.454 7.217 7.287 7.435 7.526 

[4.15, 4.5) 118 8.575 8.166 8.224 8.337 8.243 8.058 7.807 8.121 8.452 8.997 

[4.5, 4.85) 71 9.124 8.205 8.105 8.102 7.911 7.581 7.586 7.628 7.967 8.344 

[4.85, 5.2) 48 10.017 9.515 9.400 9.377 9.154 8.785 8.360 8.348 9.154 9.220 

[5.2, 5.55) 30 9.804 9.188 9.662 9.637 9.220 8.801 8.372 8.172 8.457 9.650 

[5.55, 5.9) 22 6.736 6.277 6.481 6.470 6.442 6.268 6.280 5.765 6.061 7.140 

[5.9, inf) 46 8.718 8.696 8.934 8.895 8.665 8.499 8.104 7.636 8.358 11.436             
Ex-ante 12251 6.699 6.669 6.633 6.589 6.543 6.489 6.433 6.408 6.416 6.414 

Ex-post 12251 3.324 3.329 3.332 3.335 3.332 3.340 3.353 3.385 3.444 3.553 

TABLE 16: Heatmap of MAPE values (in %) based on temperature forecast error 

prediction, validation data (years 2015 and 2016), SA3 

Intervals 
No. of 

WSHs 

Candidate Models (𝑑, ℎ) 
(1, 11) (1, 10) (1, 9) (1, 8) (1, 7) (1, 6) (1, 5) (1, 4) (1, 3) (1, 2) (1, 1) 

[0, 1) 41 6.238 6.120 6.235 6.359 6.418 6.173 6.105 5.968 6.092 6.451 6.503 

[1, 1.35) 485 5.875 5.858 5.797 5.742 5.729 5.748 5.689 5.641 5.649 5.563 5.572 

[1.35, 1.7) 2341 5.820 5.830 5.850 5.842 5.834 5.807 5.786 5.754 5.689 5.688 5.649 

[1.7, 2.05) 2948 6.320 6.317 6.311 6.303 6.283 6.289 6.263 6.212 6.142 6.094 6.027 

[2.05, 2.4) 2059 6.561 6.566 6.547 6.549 6.517 6.522 6.578 6.550 6.475 6.476 6.401 

[2.4, 2.75) 1456 7.434 7.454 7.424 7.381 7.354 7.361 7.376 7.419 7.372 7.310 7.177 

[2.75, 3.1) 1104 7.040 7.017 6.930 6.865 6.839 6.797 6.782 6.931 7.053 6.960 6.935 

[3.1, 3.45) 725 7.649 7.608 7.527 7.466 7.348 7.327 7.277 7.283 7.653 7.702 7.705 

[3.45, 3.8) 405 7.428 7.348 7.259 7.228 7.167 7.058 6.931 6.969 7.288 7.513 7.691 

[3.8, 4.15) 262 8.164 8.016 7.798 7.851 7.891 7.685 7.668 7.587 7.817 8.018 8.327 

[4.15, 4.5) 144 8.120 7.714 7.461 7.644 7.680 7.443 7.342 7.409 7.748 8.001 8.312 

[4.5, 4.85) 84 7.845 7.734 7.523 7.671 7.620 7.396 7.383 7.493 7.505 7.865 8.194 

[4.85, 5.2) 42 6.492 6.192 6.239 6.399 6.385 6.197 6.082 5.914 5.977 6.049 7.218 

[5.2, 5.55) 21 6.046 5.790 5.974 5.869 5.693 5.740 5.574 5.784 5.436 5.528 7.282 

[5.55, 5.9) 15 6.890 6.951 7.108 7.091 7.052 6.976 6.957 6.829 6.557 7.361 8.847 

[5.9, inf) 28 7.404 6.959 7.182 7.335 7.411 7.302 7.401 7.509 7.354 7.754 8.763              
Ex-ante 12160 6.636 6.621 6.591 6.576 6.549 6.529 6.517 6.511 6.516 6.508 6.484 

Ex-post 12160 3.780 3.777 3.779 3.786 3.792 3.798 3.813 3.838 3.878 3.932 4.023 
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7.2.2 Out-of-sample Test 

The models selected based on the validation data are used to generate the forecast 

for the test years (2017 and 2018). TABLE 17 shows a heatmap of the test years’ 

performance under SA1. The “M0: (1, 6)”, “M1: (1, 1)”, and “M2” columns provide the 

MAPE values (in %) based on the model(s) selected by each method. A green and bold 

cell indicates the lowest MAPE value of a specific error interval among the three 

methods. A yellow cell highlights the 2nd lowest MAPE value, while a red cell highlights 

the highest one. When two methods select the same model within an error interval, their 

MAPE values will be identical and end up having the same color.  

TABLE 17: Heatmap of MAPE values (in %) based on temperature forecast error 

prediction, test data (years 2017 and 2018), SA1 
Intervals No. of WSHs M0: (1, 6) M1: (1, 1) M2 

[0, 1) 635 5.574 5.487 5.574 

[1, 1.25) 2280 4.993 4.852 4.848 

[1.25, 1.5) 2575 5.461 5.344 5.344 

[1.5, 1.75) 2089 6.011 5.689 5.689 

[1.75, 2) 1550 6.754 6.389 6.389 

[2, 2.25) 1061 7.078 6.788 6.788 

[2.25, 2.5) 705 6.951 6.725 6.639 

[2.5, 2.75) 496 6.968 6.797 6.797 

[2.75, 3) 386 7.105 7.322 7.322 

[3, 3.25) 321 7.994 7.873 7.768 

[3.25, 3.5) 224 8.462 8.053 8.271 

[3.5, 3.75) 156 7.231 6.900 7.120 

[3.75, 4) 107 8.023 7.782 7.563 

[4, 4.25) 78 8.415 8.227 7.819 

[4.25, 4.5) 39 8.608 8.571 8.268 

[4.5, 4.75) 40 9.223 9.290 8.047 

[4.75, 5) 36 9.541 9.553 8.146 

[5, inf) 76 9.358 10.275 8.459      
All WSHs 12854 6.183 5.986 5.965 

WSHs in [0, 3.75) 12478 6.107 5.902 5.905 

WSHs in [3.75, inf) 376 8.708 8.790 7.978 

 

Between the M0 and M1 alternatives, M1 mostly leads to superior accuracy when 

the temperature forecast error prediction is below 4.5 °F. Nevertheless, it results in higher 
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MAPEs when the temperature forecast error prediction is above 4.5 °F. On the other 

hand, the M2 framework leads to the best forecast accuracy among the three alternatives 

for the vast majority of the error intervals. This is because the M2 framework grants the 

flexibility to choose different models at diverse levels of temperature forecast accuracy. 

The MAPE values for all WSHs, the WSHs within a lower error range (i.e., error 

intervals < 3.75 °F), and a higher error range (i.e., error intervals ≥ 3.75 °F) are provided 

at the bottom of TABLE 17, respectively. For all WSHs, the M1 framework outperforms 

the M0 counterpart with a relative MAPE reduction of 3.2% (from 6.183% to 5.986%). 

The M2 framework improves further on top of the M1 counterpart. For the WSHs within 

the error interval of [0, 3.75), M2 leads to similar performance as M1, while both 

outperform M0 significantly. For the 376 WSHs within the error interval of [3.75, inf), 

the M2 framework leads to significant MAPE improvement: compared to the M0 and M1 

counterparts, the relative MAPE reduction by using the M2 framework is 8.4% (from 

8.708% to 7.978%) and 9.2% (from 8.790% to 7.978%), respectively.  

TABLE 18 and TABLE 19 provide the test years’ performance for SA2 and SA3, 

respectively. Similar findings can be observed other than a few exceptions. For SA2, the 

M1 framework already provides promising improvement over the M0 counterpart within 

almost all error intervals, while the M2 framework extends the improvement and leads to 

even better overall performance. For SA3, between the M0 and M1 alternatives, the M1 

framework leads to promising accuracy when the predicted temperature forecast error is 

below 2.4 °F. However, the overall improvement among all WSHs is marginal due to 

M1’s underperformance at the higher error intervals. On the other hand, the M2 

framework leads to superior accuracy than the M1 counterpart at the vast majority of the 
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error intervals. Compared to the M0 and M1 counterparts, the relative MAPE reduction 

overall by using the M2 framework is 1.9% (from 6.222% to 6.104%) and 1.7% (from 

6.212% to 6.104%), respectively. 

To summarize the overall performance of all three supply areas, the M1 

framework consistently outperforms the M0 counterpart among all WSHs, with an 

average improvement in accuracy of 3.1%, whereas the M1 framework may lead to poor 

performance at higher error intervals. On the other hand, the M2 framework introduces 

extensive flexibility in choosing suitable models at diverse levels of temperature forecast 

accuracy. At lower error intervals, the performance of M2 is similar to or better than M1. 

At higher error intervals, the M2 framework makes up for the underperformance of M1 

by a 7.4% improvement on average. Among the three model selection frameworks, our 

case study shows that the M2 framework leads to the best accuracy overall across all 

three supply areas. Among all weather sensitive hours, the M2 framework leads to an 

average of 0.8% improvement over the M1 framework and 3.9% improvement over the 

M0 benchmark.  
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TABLE 18: Heatmap of MAPE values (in %) based on temperature forecast error 

prediction, test data (years 2017 and 2018), SA2 
Intervals No. of WSHs M0: (1, 10) M1: (1, 3) M2 

[0, 1) 850 6.106 5.484 5.432 

[1, 1.35) 3391 5.309 4.981 4.880 

[1.35, 1.7) 2734 6.178 5.712 5.705 

[1.7, 2.05) 1826 6.354 5.877 5.938 

[2.05, 2.4) 1269 6.995 6.576 6.715 

[2.4, 2.75) 759 6.949 6.542 6.810 

[2.75, 3.1) 559 7.209 6.985 6.862 

[3.1, 3.45) 483 7.865 7.823 7.691 

[3.45, 3.8) 290 7.874 7.803 7.503 

[3.8, 4.15) 163 7.436 7.452 7.461 

[4.15, 4.5) 90 8.357 8.669 8.355 

[4.5, 4.85) 52 7.502 7.285 7.653 

[4.85, 5.2) 37 8.000 7.674 7.674 

[5.2, 5.55) 35 8.576 8.598 8.598 

[5.55, 5.9) 17 11.566 11.383 11.383 

[5.9, inf) 35 11.370 10.867 10.867      
All WSHs 12590 6.314 5.932 5.921 

WSHs in [0, 3.8) 12161 6.245 5.851 5.840 

WSHs in [3.8, inf) 429 8.264 8.234 8.216 

 

TABLE 19: Heatmap of MAPE values (in %) based on temperature forecast error 

prediction, test data (years 2017 and 2018), SA3 
Intervals No. of WSHs M0: (1, 10) M1: (1, 3) M2 

[0, 1) 131 6.881 6.785 6.841 

[1, 1.35) 1058 5.645 5.159 5.268 

[1.35, 1.7) 3372 5.644 5.380 5.380 

[1.7, 2.05) 2813 5.825 5.663 5.663 

[2.05, 2.4) 1565 6.383 6.307 6.307 

[2.4, 2.75) 1021 6.936 6.988 6.988 

[2.75, 3.1) 753 7.302 7.588 7.441 

[3.1, 3.45) 605 7.172 7.752 7.341 

[3.45, 3.8) 474 7.203 7.855 7.312 

[3.8, 4.15) 317 7.199 8.015 7.339 

[4.15, 4.5) 183 7.098 7.851 7.090 

[4.5, 4.85) 124 6.562 7.480 6.514 

[4.85, 5.2) 68 7.344 9.482 7.488 

[5.2, 5.55) 61 7.612 9.375 8.034 

[5.55, 5.9) 52 6.722 8.926 6.714 

[5.9, inf) 26 8.165 10.791 8.165      
All WSHs 12623 6.222 6.212 6.104 

WSHs in [0, 3.8) 11792 6.158 6.068 6.026 

WSHs in [3.8, inf) 831 7.124 8.263 7.211 
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CHAPTER 8: CONCLUSION 

Electric load forecasting is an integral part of the modern power system. The field 

of STLF has been extensively studied by industry and research groups as power utilities 

need accurate short-term load forecasts for better decision-making in their daily operations. 

Most existing literature build and test load forecasting models under the ex-post forecasting 

settings, where the actual weather information is used in the forecast period. Nevertheless, 

the robustness of these models under the operational (ex-ante) forecasting settings has 

rarely been studied, where the impact of imperfect weather information on the model has 

to be considered. This status quo is often due to the shortage of historical weather forecasts 

in the model development stage.  

This dissertation aims to close this gap by presenting two new model selection 

frameworks for selecting better models in STLF. The first framework (M1) selects models 

based on the historical ex-ante load forecast accuracy. Existing literature suggests that the 

ex-ante load forecast accuracy can be impacted by the levels of temperature forecast 

accuracy. Therefore, as an extension to the M1 framework, the second framework (M2) is 

proposed to select models based on the historical ex-ante load forecast accuracy at diverse 

levels of temperature forecast accuracy. Since the temperature forecast accuracy is 

unknown ahead of time, we propose a novel solution to predict the day-ahead temperature 

forecast errors and compared the prediction accuracy among multiple baselines and 

machine learning methods. The prediction output shows promising performance in 

capturing the overall trend of temperature forecast accuracy. The temperature forecast error 

prediction then serves as an input to the model selection step of the M2 framework to enable 

model selection within each level of the temperature forecast error prediction. The two 



 
93 

 

proposed frameworks have been compared to a benchmark framework (M0), which 

follows the conventional practice in the literature by using historical ex-post load forecast 

accuracy for model selection. 

The proposed solutions offer practical values in field operations. To create a more 

impactful analysis, the performances of the three model selection frameworks are 

compared among the weather sensitive hours, when the load is more likely to reach the 

monthly or seasonal peak, and a smaller error in the temperature forecast may lead to a 

greater inaccuracy in the load forecast. Through an empirical case study at a medium-sized 

US utility, results show that the day-ahead load forecast accuracy can be significantly 

improved by the two proposed frameworks in comparison to the benchmark framework. 

Besides, the M2 framework consistently achieves the best overall accuracy across all three 

supply areas. The superiority of the M2 framework suggests that diversified models built 

for different scenarios may be favored to achieve better load forecast accuracy. 

Computational-wise, the M1 framework leads to the same computational cost as the M0 

framework. The M2 framework unlocks further improvement in forecast accuracy with 

additional computational cost in temperature forecast error prediction.  

This research also sparks a few future research directions. First, the candidate 

models in this research are based on the recency effect modeling framework investigated 

in (P. Wang et al., 2016). As discussed in Section 3.3, this framework follows an 

incremental manner of introducing the preceding hourly temperatures, which lacks the 

flexibility to drop certain temperatures when the predicted quality of these temperatures 

gets worse (i.e., with higher errors). Therefore, additional model structures can be tested to 

selectively pick the recent temperatures that are believed to have better quality. Second, as 
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discussed in Section 7.1.2, there are infinite ways to define the error intervals based on the 

temperature forecast error prediction and select suitable models within each. Future 

research may explore additional ways to leverage temperature forecast error prediction for 

model selection. Third, the weather variable in this research is limited to temperatures. As 

other weather variables such as relative humidity and wind speed may further improve the 

load forecast accuracy (refer to (Xie et al., 2018) and (Xie & Hong, 2017), respectively), 

additional research may investigate the efficacy of the proposed frameworks with 

additional weather variables involved. The quality of these weather variables may be 

predicted following the thought process as presented in Section 6.2. Fourth, the case study 

in this research focuses on day-ahead forecasting. Future research may extend the proposed 

frameworks to additional lead times.  

 

 

 

  



 
95 

 

REFERENCES 

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., 

Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D. 

G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., … Zheng, X. (2016). 

TensorFlow: A system for large-scale machine learning. Proceedings of the 12th 

USENIX Symposium on Operating Systems Design and Implementation, OSDI 2016, 

265–283. https://www.usenix.org/conference/osdi16/technical-

sessions/presentation/abadi 

Agüera-Pérez, A., Palomares-Salas, J. C., González de la Rosa, J. J., & Florencias-

Oliveros, O. (2018). Weather forecasts for microgrid energy management: Review, 

discussion and recommendations. Applied Energy, 228, 265–278. 

https://doi.org/10.1016/j.apenergy.2018.06.087 

Alasali, F., Nusair, K., Alhmoud, L., & Zarour, E. (2021). Impact of the COVID-19 

Pandemic on Electricity Demand and Load Forecasting. Sustainability, 13(3), 1435. 

https://doi.org/10.3390/su13031435 

Amjady, N. (2001). Short-term hourly load forecasting using time-series modeling with 

peak load estimation capability. IEEE Transactions on Power Systems, 16(3), 498–

505. https://doi.org/10.1109/59.932287 

Chapagain, K., & Kittipiyakul, S. (2018). Performance Analysis of Short-Term 

Electricity Demand with Atmospheric Variables. Energies, 11(4), 818. 

https://doi.org/10.3390/en11040818 

Charlton, N., & Singleton, C. (2014). A refined parametric model for short term load 

forecasting. International Journal of Forecasting, 30(2), 364–368. 

https://doi.org/10.1016/j.ijforecast.2013.07.003 

Charney, J. G., FjÖrtoft, R., & Neumann, J. Von. (1950). Numerical Integration of the 

Barotropic Vorticity Equation. Tellus, 2(4), 237–254. 

https://doi.org/10.3402/tellusa.v2i4.8607 

Chen, B. J., Chang, M. W., & Lin, C. J. (2004). Load forecasting using support vector 

machines: A study on EUNITE Competition 2001. IEEE Transactions on Power 

Systems, 19(4), 1821–1830. https://doi.org/10.1109/TPWRS.2004.835679 

Chen, K., Chen, K., Wang, Q., He, Z., Hu, J., & He, J. (2019). Short-Term Load 

Forecasting with Deep Residual Networks. IEEE Transactions on Smart Grid, 

10(4), 3943–3952. https://doi.org/10.1109/TSG.2018.2844307 

Chen, S. T., Yu, D. C., & Moghaddamjo, A. R. (1992). Weather Sensitive Short-Term 

Load Forecasting Using Nonfully Connected Artificial Neural Network. IEEE 



 
96 

 

Transactions on Power Systems, 7(3), 1098–1105. 

https://doi.org/10.1109/59.207323 

Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. Proceedings 

of the ACM SIGKDD International Conference on Knowledge Discovery and Data 

Mining. https://doi.org/10.1145/2939672.2939785 

Cheng, W. Y. Y., & Steenburgh, W. J. (2005). Evaluation of surface sensible weather 

forecasts by the WRF and the Eta Models over the western United States. Weather 

and Forecasting, 20(5), 812–821. https://doi.org/10.1175/WAF885.1 

Chitalia, G., Pipattanasomporn, M., Garg, V., & Rahman, S. (2020). Robust short-term 

electrical load forecasting framework for commercial buildings using deep recurrent 

neural networks. Applied Energy, 278, 115410. 

https://doi.org/10.1016/J.APENERGY.2020.115410 

Dahl, M., Brun, A., Kirsebom, O. S., & Andresen, G. B. (2018). Improving Short-Term 

Heat Load Forecasts with Calendar and Holiday Data. Energies 2018, Vol. 11, Page 

1678, 11(7), 1678. https://doi.org/10.3390/EN11071678 

De Felice, M., Alessandri, A., & Ruti, P. M. (2013). Electricity demand forecasting over 

Italy: Potential benefits using numerical weather prediction models. Electric Power 

Systems Research, 104, 71–79. https://doi.org/10.1016/J.EPSR.2013.06.004 

Douglas, A. P., Breipohl, A. M., Lee, F. N., & Adapa, R. (1998). The impacts of 

temperature forecast uncertainty on bayesian load forecasting. IEEE Transactions on 

Power Systems, 13(4), 1507–1513. https://doi.org/10.1109/59.736298 

Fan, C., Liao, Y., Zhou, G., Zhou, X., & Ding, Y. (2020). Improving cooling load 

prediction reliability for HVAC system using Monte-Carlo simulation to deal with 

uncertainties in input variables. Energy and Buildings, 226, 110372. 

https://doi.org/10.1016/J.ENBUILD.2020.110372 

Fan, S., Chen, L., & Lee, W. J. (2008). Short-term load forecasting using comprehensive 

combination based on multi- meteorological information. Conference Record - 

Industrial and Commercial Power Systems Technical Conference. 

https://doi.org/10.1109/ICPS.2008.4606288 

Fan, Shu, & Hyndman, R. J. (2012). Short-term load forecasting based on a semi-

parametric additive model. IEEE Transactions on Power Systems, 27(1), 134–141. 

https://doi.org/10.1109/TPWRS.2011.2162082 

Fan, Shu, Methaprayoon, K., & Lee, W. J. (2009). Multiregion load forecasting for 

system with large geographical area. IEEE Transactions on Industry Applications, 

45(4), 1452–1459. https://doi.org/10.1109/TIA.2009.2023569 

Fay, D., & Ringwood, J. V. (2010). On the influence of weather forecast errors in short-

term load forecasting models. IEEE Transactions on Power Systems, 25(3), 1751–



 
97 

 

1758. https://doi.org/10.1109/TPWRS.2009.2038704 

Gaillard, P., Goude, Y., & Nedellec, R. (2016). Additive models and robust aggregation 

for GEFCom2014 probabilistic electric load and electricity price forecasting. 

International Journal of Forecasting, 32(3), 1038–1050. 

https://doi.org/10.1016/j.ijforecast.2015.12.001 

Goude, Y., Nedellec, R., & Kong, N. (2014). Local short and middle term electricity load 

forecasting with semi-parametric additive models. IEEE Transactions on Smart 

Grid, 5(1), 440–446. https://doi.org/10.1109/TSG.2013.2278425 

Grönås, S. (1985). A pilot study on the prediction of medium range forecast quality. 119, 

22. https://doi.org/10.21957/ostzejo17 

Haben, S., & Giasemidis, G. (2016). A hybrid model of kernel density estimation and 

quantile regression for GEFCom2014 probabilistic load forecasting. International 

Journal of Forecasting, 32(3), 1017–1022. 

https://doi.org/10.1016/j.ijforecast.2015.11.004 

Haben, S., Giasemidis, G., Ziel, F., & Arora, S. (2019). Short term load forecasting and 

the effect of temperature at the low voltage level. International Journal of 

Forecasting, 35(4), 1469–1484. https://doi.org/10.1016/j.ijforecast.2018.10.007 

Hagan, M. T., & Behr, S. M. (1987). The Time Series Approach to Short Term Load 

Forecasting. IEEE Transactions on Power Systems, 2(3), 785–791. 

https://doi.org/10.1109/TPWRS.1987.4335210 

Hansen, J. W. (2002). Realizing the potential benefits of climate prediction to agriculture: 

Issues, approaches, challenges. Agricultural Systems. https://doi.org/10.1016/S0308-

521X(02)00043-4 

Hippert, H. S., Pedreira, C. E., & Souza, R. C. (2001). Neural networks for short-term 

load forecasting: A review and evaluation. IEEE Transactions on Power Systems, 

16(1), 44–55. https://doi.org/10.1109/59.910780 

Hoffman, R. N., Boukabara, S. A., Kumar, V. K., Garrett, K., Casey, S. P. F., & Atlas, R. 

(2017). An Empirical cumulative density function approach to defining summary 

NWP forecast assessment metrics. Monthly Weather Review, 145(4), 1427–1435. 

https://doi.org/10.1175/MWR-D-16-0271.1 

Hoffman, R. N., Kumar, V. K., Boukabara, S. A., Ide, K., Yang, F., & Atlas, R. (2018). 

Progress in forecast skill at three leading global operational NWP centers during 

2015-17 as seen in summary assessment metrics (SAMs). Weather and Forecasting, 

33(6), 1661–1679. https://doi.org/10.1175/WAF-D-18-0117.1 

Hong, T. (2010). Short Term Electric Load Forecasting. 3442639, 175. 

https://doi.org/10.1017/CBO9781107415324.004 



 
98 

 

Hong, T., & Fan, S. (2016). Probabilistic electric load forecasting: A tutorial review. 

International Journal of Forecasting, 32(3), 914–938. 

https://doi.org/10.1016/j.ijforecast.2015.11.011 

Hong, T., Pinson, P., & Fan, S. (2014). Global energy forecasting competition 2012. 

International Journal of Forecasting, 30(2), 357–363. 

https://doi.org/10.1016/j.ijforecast.2013.07.001 

Hong, T., Pinson, P., Fan, S., Zareipour, H., Troccoli, A., & Hyndman, R. J. (2016). 

Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and 

beyond. International Journal of Forecasting, 32(3), 896–913. 

https://doi.org/10.1016/j.ijforecast.2016.02.001 

Hong, T., & Wang, P. (2014). Fuzzy interaction regression for short term load 

forecasting. Fuzzy Optimization and Decision Making, 13(1), 91–103. 

https://doi.org/10.1007/s10700-013-9166-9 

Hong, T., Wang, P., & White, L. (2015). Weather station selection for electric load 

forecasting. International Journal of Forecasting, 31(2), 286–295. 

https://doi.org/10.1016/j.ijforecast.2014.07.001 

Hong, T., Wang, P., & Willis, H. L. (2011). A naïve multiple linear regression 

benchmark for short term load forecasting. IEEE Power and Energy Society General 

Meeting, 1–6. https://doi.org/10.1109/PES.2011.6038881 

Hong, T., Wilson, J., & Xie, J. (2014). Long term probabilistic load forecasting and 

normalization with hourly information. IEEE Transactions on Smart Grid, 5(1), 

456–462. https://doi.org/10.1109/TSG.2013.2274373 

Hong, T., Xie, J., & Black, J. (2019). Global energy forecasting competition 2017: 

Hierarchical probabilistic load forecasting. International Journal of Forecasting, 

35(4), 1389–1399. https://doi.org/10.1016/j.ijforecast.2019.02.006 

Hyndman, R., Koehler, A., Ord, K., & Snyder, R. (2008). Forecasting with Exponential 

Smoothing: The State Space Approach. Springer Berlin Heidelberg. 

https://doi.org/10.1007/978-3-540-71918-2 

Jolliffe, I. T., & Stephenson, D. B. (2012). Forecast Verification: A Practioner’s Guide 

in Atmospheric Science (2nd ed.). John Wiley & Sons. 

https://doi.org/10.1002/9781119960003 

Kalnay, E. (2019). Historical perspective: earlier ensembles and forecasting forecast skill. 

Quarterly Journal of the Royal Meteorological Society, 145(S1), 25–34. 

https://doi.org/10.1002/qj.3595 

Kalnay, E., & Dalcher, A. (1987). Forecasting forecast skill. Monthly Weather Review, 

115(2), 349–356. https://doi.org/10.1175/1520-0493(1987)115<0349:FFS>2.0.CO;2 



 
99 

 

Khuntia, S. R., Rueda, J. L., & van der Meijden, M. A. M. M. (2016). Forecasting the 

load of electrical power systems in mid- and long-term horizons: A review. IET 

Generation, Transmission and Distribution, 10(16), 3971–3977. 

https://doi.org/10.1049/iet-gtd.2016.0340 

Kulkarni, S., Simon, S. P., & Sundareswaran, K. (2013). A spiking neural network (SNN) 

forecast engine for short-term electrical load forecasting. Applied Soft Computing 

Journal, 13(8), 3628–3635. https://doi.org/10.1016/j.asoc.2013.04.007 

Lai, S., & Hong, T. (2013). When one size no longer fits all - electric load forecasting 

with a geographic hierarchy. SAS, 1–14. 

http://assets.fiercemarkets.net/public/sites/energy/reports/electricloadforecasting.pdf 

Liu, B., Nowotarski, J., Hong, T., & Weron, R. (2017). Probabilistic Load Forecasting 

via Quantile Regression Averaging on Sister Forecasts. IEEE Transactions on Smart 

Grid, 8(2), 730–737. https://doi.org/10.1109/TSG.2015.2437877 

Lloyd, J. R. (2014). GEFCom2012 hierarchical load forecasting: Gradient boosting 

machines and Gaussian processes. International Journal of Forecasting, 30(2), 369–

374. https://doi.org/10.1016/j.ijforecast.2013.07.002 

Luo, J., Hong, T., & Fang, S. C. (2018a). Benchmarking robustness of load forecasting 

models under data integrity attacks. International Journal of Forecasting, 34(1). 

https://doi.org/10.1016/j.ijforecast.2017.08.004 

Luo, J., Hong, T., & Fang, S. C. (2018b). Robust Regression Models for Load 

Forecasting. IEEE Transactions on Smart Grid, 10(5), 5397–5404. 

https://doi.org/10.1109/TSG.2018.2881562 

Luo, J., Hong, T., & Yue, M. (2018). Real-time anomaly detection for very short-term 

load forecasting. Journal of Modern Power Systems and Clean Energy, 6(2), 235–

243. https://doi.org/10.1007/s40565-017-0351-7 

Lusis, P., Khalilpour, K. R., Andrew, L., & Liebman, A. (2017). Short-term residential 

load forecasting: Impact of calendar effects and forecast granularity. Applied 

Energy, 205, 654–669. https://doi.org/10.1016/j.apenergy.2017.07.114 

Mandal, P., Senjyu, T., Urasaki, N., & Funabashi, T. (2006). A neural network based 

several-hour-ahead electric load forecasting using similar days approach. 

International Journal of Electrical Power & Energy Systems, 28(6), 367–373. 

https://doi.org/10.1016/J.IJEPES.2005.12.007 

Methaprayoon, K., Lee, W. J., Rasmiddatta, S., Liao, J. R., & Ross, R. J. (2007). 

Multistage artificial neural network short-term load forecasting engine with front-

end weather forecast. IEEE Transactions on Industry Applications, 43(6), 1410–

1416. https://doi.org/10.1109/TIA.2007.908190 

Molteni, F., & Palmer, T. N. (1991). A real-time scheme for the prediction of forecast 



 
100 

 

skill. Monthly Weather Review, 119(4), 1088–1097. https://doi.org/10.1175/1520-

0493(1991)119<1088:ARTSFT>2.0.CO;2 

Moreno-Carbonell, S., Sánchez-Úbeda, E. F., & Muñoz, A. (2019). Rethinking weather 

station selection for electric load forecasting using genetic algorithms. International 

Journal of Forecasting, 36(2), 695–712. 

https://doi.org/10.1016/j.ijforecast.2019.08.008 

Murphy, A. H. (1988). Skill scores based on the mean square error and their relationships 

to the correlation coefficient. Monthly Weather Review, 116(12), 2417–2424. 

https://doi.org/10.1175/1520-0493(1988)116<2417:SSBOTM>2.0.CO;2 

Murphy, A. H. (1993). What is a good forecast? An essay on the nature of goodness in 

weather forecasting. Weather & Forecasting, 8(2), 281–293. 

https://doi.org/10.1175/1520-0434(1993)008<0281:WIAGFA>2.0.CO;2 

Murphy, A. H., & Winkler, R. L. (1987). A general framework for forecast verification. 

Monthly Weather Review, 115(7), 1330–1338. https://doi.org/10.1175/1520-

0493(1987)115<1330:AGFFFV>2.0.CO;2 

Nedellec, R., Cugliari, J., & Goude, Y. (2014). GEFCom2012: Electric load forecasting 

and backcasting with semi-parametric models. International Journal of Forecasting, 

30(2), 375–381. https://doi.org/10.1016/j.ijforecast.2013.07.004 

Neto, G. G., & Hippert, H. S. (2020). Short-term Load Forecasting using Combined Data 

from Several Weather Stations. International Journal of Advanced Engineering 

Research and Science, 7(9), 318–328. https://doi.org/10.22161/ijaers.79.38 

Novak, D. R., Bailey, C., Brill, K. F., Burke, P., Hogsett, W. A., Rausch, R., & Schichtel, 

M. (2014). Precipitation and temperature forecast performance at the weather 

prediction center. Weather and Forecasting, 29(3), 489–504. 

https://doi.org/10.1175/WAF-D-13-00066.1 

Palmer, T. N., & Tibaldi, S. (1988). On the prediction of forecast skill. Monthly Weather 

Review, 116(12), 2453–2480. https://doi.org/10.1175/1520-

0493(1988)116<2453:OTPOFS>2.0.CO;2 

Papalexopoulos, A. D., & Hesterberg, T. C. (1990). A regression-based approach to 

short-term system load forecasting. IEEE Transactions on Power Systems, 5(4), 

1535–1547. https://doi.org/10.1109/59.99410 

Park, D., Mohammed, O., Azeem, A., Merchant, R., Dinh, T., Tong, C., Farah, J., & 

Drake, C. (1993). Load curve shaping using neural networks. Proceedings of the 2nd 

International Forum on Applications of Neural Networks to Power Systems, ANNPS 

1993, 290–295. https://doi.org/10.1109/ANN.1993.264332 

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, 

M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., 



 
101 

 

Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, É. (2011). Scikit-learn: 

Machine learning in Python. Journal of Machine Learning Research. 

https://doi.org/10.48550/arXiv.1201.0490 

Rasp, S., Dueben, P. D., Scher, S., Weyn, J. A., Mouatadid, S., & Thuerey, N. (2020). 

WeatherBench: A Benchmark Data Set for Data‐Driven Weather Forecasting. 

Journal of Advances in Modeling Earth Systems, 12(11). 

https://doi.org/10.1029/2020MS002203 

Sandels, C., Widén, J., Nordström, L., & Andersson, E. (2015). Day-ahead predictions of 

electricity consumption in a Swedish office building from weather, occupancy, and 

temporal data. Energy and Buildings, 108, 279–290. 

https://doi.org/10.1016/j.enbuild.2015.08.052 

Sangamwar, S. (2019). Grouping Calendar Variables for Electric Load Forecasting [The 

University of North Carolina at Charlotte]. In ProQuest Dissertations and Theses. 

https://librarylink.uncc.edu/login?url=https://www.proquest.com/docview/22101400

03?accountid=14605 

Santiago, I., Moreno-Munoz, A., Quintero-Jiménez, P., Garcia-Torres, F., & Gonzalez-

Redondo, M. J. (2021). Electricity demand during pandemic times: The case of the 

COVID-19 in Spain. Energy Policy, 148, A. 

https://doi.org/10.1016/j.enpol.2020.111964 

Seabold, S., & Perktold, J. (2010). Statsmodels: Econometric and Statistical Modeling 

with Python. Proceedings of the 9th Python in Science Conference. 

http://statsmodels.sourceforge.net/ 

Segarra, E. L., Du, H., Ruiz, G. R., & Bandera, C. F. (2019). Methodology for the 

Quantification of the Impact of Weather Forecasts in Predictive Simulation Models. 

Energies, 12(7), 1309. https://doi.org/10.3390/EN12071309 

Senjyu, T., Mandal, P., Uezato, K., & Funabashi, T. (2005). Next day load curve 

forecasting using hybrid correction method. IEEE Transactions on Power Systems, 

20(1), 102–109. https://doi.org/10.1109/TPWRS.2004.831256 

Sobhani, M., Campbell, A., Sangamwar, S., Li, C., & Hong, T. (2019). Combining 

weather stations for electric load forecasting. Energies, 12(8), 1510. 

https://doi.org/10.3390/en12081510 

Stern, H., & Davidson, N. E. (2015). Trends in the skill of weather prediction at lead 

times of 1-14 days. Quarterly Journal of the Royal Meteorological Society, 

141(692), 2726–2736. https://doi.org/10.1002/qj.2559 

Taieb, S. Ben, & Hyndman, R. J. (2014). A gradient boosting approach to the Kaggle 

load forecasting competition. International Journal of Forecasting, 30(2), 382–394. 

https://doi.org/10.1016/j.ijforecast.2013.07.005 



 
102 

 

Taylor, J. W. (2008). An evaluation of methods for very short-term load forecasting using 

minute-by-minute British data. International Journal of Forecasting, 24(4), 645–

658. https://doi.org/10.1016/j.ijforecast.2008.07.007 

Taylor, J. W., & Buizza, R. (2002). Neural network load forecasting with weather 

ensemble predictions. IEEE Transactions on Power Systems, 17(3), 626–632. 

https://doi.org/10.1109/TPWRS.2002.800906 

Taylor, J. W., & McSharry, P. E. (2007). Short-term load forecasting methods: An 

evaluation based on European data. IEEE Transactions on Power Systems, 22(4), 

2213–2219. https://doi.org/10.1109/TPWRS.2007.907583 

Teisberg, T. J., Weiher, R. F., & Khotanzad, A. (2005). The economic value of 

temperature forecasts in electricity generation. Bulletin of the American 

Meteorological Society, 86(12), 1765–1772. https://doi.org/10.1175/BAMS-86-12-

1765 

Thornes, J. E., & Stephenson, D. B. (2001). How to judge the quality and value of 

weather forecast products. Meteorological Applications, 8(3), 307–314. 

https://doi.org/10.1017/S1350482701003061 

Tudose, A. M., Picioroaga, I. I., Sidea, D. O., Bulac, C., & Boicea, V. A. (2021). Short-

Term Load Forecasting Using Convolutional Neural Networks in COVID-19 

Context: The Romanian Case Study. Energies, 14(13), 4046. 

https://doi.org/10.3390/en14134046 

Vallance, L., Charbonnier, B., Paul, N., Dubost, S., & Blanc, P. (2017). Towards a 

standardized procedure to assess solar forecast accuracy: A new ramp and time 

alignment metric. Solar Energy, 150, 408–422. 

https://doi.org/10.1016/j.solener.2017.04.064 

Wang, P., Liu, B., & Hong, T. (2016). Electric load forecasting with recency effect: A big 

data approach. International Journal of Forecasting, 32(3), 585–597. 

https://doi.org/10.1016/j.ijforecast.2015.09.006 

Wang, Y., Chen, Q., Hong, T., & Kang, C. (2019). Review of Smart Meter Data 

Analytics: Applications, Methodologies, and Challenges. IEEE Transactions on 

Smart Grid, 10(3), 3125–3148. https://doi.org/10.1109/TSG.2018.2818167 

Wang, Z., Hong, T., & Piette, M. A. (2020). Building thermal load prediction through 

shallow machine learning and deep learning. Applied Energy, 263, 114683. 

https://doi.org/10.1016/J.APENERGY.2020.114683 

Wernli, H., Hofmann, C., & Zimmer, M. (2009). Spatial forecast verification methods 

intercomparison project: Application of the SAL technique. Weather and 

Forecasting, 24(6), 1472–1484. https://doi.org/10.1175/2009WAF2222271.1 

Weron, R. (2006). Modeling and forecasting electricity loads and prices: A statistical 



 
103 

 

approach. John Wiley & Sons. https://doi.org/10.1002/9781118673362 

Xie, J., Chen, Y., Hong, T., & Laing, T. D. (2018). Relative humidity for load forecasting 

models. IEEE Transactions on Smart Grid, 9(1), 191–198. 

https://doi.org/10.1109/TSG.2016.2547964 

Xie, J., & Hong, T. (2016). GEFCom2014 probabilistic electric load forecasting: An 

integrated solution with forecast combination and residual simulation. International 

Journal of Forecasting, 32(3), 1012–1016. 

https://doi.org/10.1016/j.ijforecast.2015.11.005 

Xie, J., & Hong, T. (2017). Wind speed for load forecasting models. Sustainability, 9(5), 

795. https://doi.org/10.3390/su9050795 

Xie, J., & Hong, T. (2018). Load forecasting using 24 solar terms. Journal of Modern 

Power Systems and Clean Energy, 6(2), 208–214. https://doi.org/10.1007/s40565-

017-0374-0 

Xie, J., Hong, T., Laing, T., & Kang, C. (2017). On Normality Assumption in Residual 

Simulation for Probabilistic Load Forecasting. IEEE Transactions on Smart Grid, 

8(3), 1046–1053. https://doi.org/10.1109/TSG.2015.2447007 

Yang, D., Alessandrini, S., Antonanzas, J., Antonanzas-Torres, F., Badescu, V., Beyer, 

H. G., Blaga, R., Boland, J., Bright, J. M., Coimbra, C. F. M., David, M., Frimane, 

Â., Gueymard, C. A., Hong, T., Kay, M. J., Killinger, S., Kleissl, J., Lauret, P., 

Lorenz, E., … Zhang, J. (2020). Verification of deterministic solar forecasts. Solar 

Energy, 210, 20–37. https://doi.org/10.1016/j.solener.2020.04.019 

Yang, D., Wang, W., & Hong, T. (2022). A historical weather forecast dataset from the 

European Centre for Medium-Range Weather Forecasts (ECMWF) for energy 

forecasting. Solar Energy, 232, 263–274. 

https://doi.org/10.1016/J.SOLENER.2021.12.011 

Zhang, F., Qiang Sun, Y., Magnusson, L., Buizza, R., Lin, S. J., Chen, J. H., & Emanuel, 

K. (2019). What is the predictability limit of midlatitude weather? Journal of the 

Atmospheric Sciences, 76(4), 1077–1091. https://doi.org/10.1175/JAS-D-18-0269.1 

Zhao, J., Duan, Y., & Liu, X. (2018). Uncertainty Analysis of Weather Forecast Data for 

Cooling Load Forecasting Based on the Monte Carlo Method. Energies, 11(7), 

1900. https://doi.org/10.3390/EN11071900 

Zhao, J., & Liu, X. (2018). A hybrid method of dynamic cooling and heating load 

forecasting for office buildings based on artificial intelligence and regression 

analysis. Energy and Buildings, 174, 293–308. 

https://doi.org/10.1016/J.ENBUILD.2018.06.050 

Zhou, Q., Wang, S., Xu, X., & Xiao, F. (2008). A grey-box model of next-day building 

thermal load prediction for energy-efficient control. International Journal of Energy 



 
104 

 

Research, 32(15), 1418–1431. https://doi.org/10.1002/ER.1458 

Ziel, F., & Liu, B. (2016). Lasso estimation for GEFCom2014 probabilistic electric load 

forecasting. International Journal of Forecasting, 32(3), 1029–1037. 

https://doi.org/10.1016/j.ijforecast.2016.01.001 

 


