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ABSTRACT

JIE CHANG. Asymptotic Normality of Higher Order Turing Formulae. (Under the
direction of DR. MICHAEL GRABCHAK)

Higher order Turing formulae, denoted as Tr for r ∈ Z+, are a powerful result

allowing one to estimate the total probability associated with words from a random

piece of writing, which have been observed exactly r times in a random sample. In

particular T0 estimates the probability of seeing words not appearing in the sample.

To perform statistical inference, e.g., constructing the asymptotic confidence intervals,

the asymptotic properties of the higher Turing formulae need to be studied.

In this thesis we extend the validity of the asymptotic normality beyond the previ-

ously proven cases by establishing a sufficient and necessary condition for the asymp-

totic normality of higher order Turing formulae when the underlying distribution is

both fixed and changing. We then conduct simulation studies with the complete works

of William Shakespeare and data generated from different underlying distributions to

check the finite sample performance of the derived asymptotic confidence interval.

Based on our theoretical results we also develop two methodologies for authorship

detection with real twitter data analysis.
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CHAPTER 1: INTRODUCTION

“Those who can imagine anything, can create the impossible.” – Alan

Turing

Given a random piece of an author’s work, how can we estimate the probability of

the author using a word that has not been used before or the probability of using a

word that has been used exactly r times in the sample piece? This problem can be

generalized to many other practical situations where data has no natural ordering and

is categorical in nature, for example, in ecology the words may represent the species

in an ecosystem, in biomedical applications they may represent different types of

cancer cells in a tumor. Statistical properties of the probability when r = 0, which

corresponds to the probability of seeing something that has not been seen before

and is called the missing mass, have been studied in e.g. [1, 2, 3, 4]. Applications

of estimating these probabilities arise in many fields including: ecology [5] [6] [7],

genomics [8], natural language processing [9] [10], authorship attribution [11] [12]

[13], and computer networks [14].

It has been long recognized that the usual maximum likelihood estimator does

not work well for estimating such probabilities. However, Alan Turing developed an

alternate approach by giving a mind-bending nonparametric estimator when he was

working to decode the Enigma cipher during World War II. It was first introduced

by his assistant I.J. Good in [15], and has come to be called Turing’s formula or the

Good-Turing formula. Turing’s intuitive explanation of this formula was claimed to

be given to Good, but has been lost, see [15]. Nevertheless, use of the estimator is

justified by its many statistical properties.

One of the earliest studies of the statistical properties of Turing’s formula is [16],
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where it is shown that the estimator is not unbiased, but that it would be if we had

an additional observation. Detailed formulas for the bias can be found in [17] and

[13]. Conditions for consistency are given in [18] and a simulation study focused on

the rate of convergence is given in [19]. The problem of asymptotic normality has

primarily been studied in the case when r = 0. In this case, sufficient conditions are

given in [20], [21], and [22] and a necessary and sufficient condition is given in [23].

When r > 0, sufficient conditions are given in [24] and [25]. These results, along

with a wealth of additional information, are summarized in the recent monograph on

Turing’s formula [26].

In this thesis we extend the validity of the asymptotic normality beyond the pre-

viously proven cases by giving necessary and sufficient conditions for the asymptotic

normality of Turing’s formula for any r ≥ 0 when the underlying distribution is both

fixed and changing.

The rest of this thesis is organized as follows. In Chapter 2 we present our theoret-

ical results. First we introduce our mathematical framework, next we prove the case

where the number of observations follows a Poisson distribution, then we extend our

results to a general deterministic case by approximation and introduce a formula to

construct the asymptotic confidence interval only with knowledge of the sample, and

last we give two examples of distributions where our conditions are satisfied. In Chap-

ter 3 we conduct simulation studies with the complete works of William Shakespeare

and data generated from different underlying distributions to check the finite sample

performance of the derived asymptotic confidence interval. In Chapter 4 we use our

theoretical results to develop two methodologies for authorship detection. We further

apply them to analyze real twitter data and present the results. In Chapter 5 we

first briefly revisit our main results by pointing out their importance and significance,

and then discuss our future work for the improvement of the data application. We

postpone proofs to Chapter 6, where details of proofs for the results in Chapter 2 can
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be found along with several lemmas that may be of independent interest.

Before proceeding we introduce some notation. For two sequences of real numbers

{an} and {bn}, we write an ∼ bn if an/bn → 1. We write b·c and d·e to denote the

floor and ceiling functions, respectively. We write N(0, 1) to denote the standard

normal distribution and Pois(λ) to denote a Poisson distribution with mean λ. We

write 1[··· ] to denote the indicator function on event [· · · ].



CHAPTER 2: NECESSARY AND SUFFICIENT CONDITIONS FOR

ASYMPTOTIC NORMALITY OF HIGHER ORDER TURING FORMULAE

2.1 Introduction

Turing formulae are estimators of the total probability/mass of letters observed

exactly r times in a random sample. It is not a conventional estimator as it estimates

a quantity that depends not only on the population, but on the random sample as well.

Though Turing’s intuitive explanation for the Good-Turing formula has been lost, see

Good [15], attempts to justify its use has never stopped and many applications have

been inspired in different fields. In this chapter we study the asymptotic behavior of

one modification of Turing formulae for any order and give the necessary and sufficient

conditions for it to enrich the literature. Our results allow for many situations that

were not covered by previously available sufficient conditions.

We begin by introducing our mathematical framework. Then the main theoretical

results are presented for the Poisson case and the Deterministic case, respectively,

and their definitions and schemes will be discussed in the following subsections. Two

theoretical distribution examples are given in the last subsection to demonstrate how

our asymptotic normality conditions can be satisfied.

The Poisson case is studied first as a foundation for proving the deterministic case,

nevertheless, it contains results of independent interest. Then, the Deterministic case

is approximated by the Poisson case.

2.2 Mathematical Framework

Now we formulate our mathematical scheme in an alphabet context for a simple

fixed case.
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Let the alphabet A = {a1, a2, a3, ...} be a finite or countably infinite alphabet with

associated probability measure Pm = {pa,m : a ∈ A} for m = 1, 2, 3, . . . . If there

is a distribution P with Pm = P for every m, we say that the distribution is fixed.

Otherwise, we say that it is changing. In particular applications the letters of A may

correspond to species in an ecosystem, words in the English language, types of cancer

cells in a tumor, or another quantity of interest.

LetX1, X2, ..., Xn be a random sample on alphabet A with distribution P . For each

a ∈ A, let y′a =
∑n

i=1 1[Xi=a] be the sample count of letter a and let p̂a =
∑n
i=1 1[Xi=a]

n
=

y′a
n

be the sample proportion of letter a. For r = 0, 1, 2, . . . , n, let

N ′r =
∑
a∈A

1[y′a=r]

be the number of letters observed exactly r times in the sample, and let

π′r =
∑
a∈A

pa1[y′a=r]

be the total mass of all letters observed exactly r times in the sample. Define further,

for r = 0, 1, 2, ..., (n− 1),

T ′r =
N ′r+1

n
(r + 1) .

We call T ′r the rth order Turing formula. It is an estimator of π′r. We notice that

there are slightly different versions for Turing’s formula used in [24] and [25] for r ≥ 1.

Specifically, they use T ∗r =
N ′r+1

n−r (r + 1). Asymptotically there is no difference and we

use T ′r for convenience. We note that T ′r is the form that was originally introduced in

[15].

Our ultimate goal is to find conditions for asymptotic normality, specifically when
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there exists a function g such that

g(n)(T ′r − π′r)
d−→ N(0, 1).

2.3 Poisson Case

In this section we discuss two cases where the sample size is random and follows

a Poisson distribution. One case is when there is one Poisson distribution P on the

alphabet A, which we say that the distribution is fixed. The other case is when there

is a sequence of Poisson distributions Pn on the alphabet A, which we say that the

distribution is changing.

2.3.1 Poisson Case with Fixed Distribution

We begin with the Poisson case with a fixed distribution, where the sample size

N ∼ Pois(λ) and λ → ∞. Let ya(λ) be the number of times that we saw letter a

in the sample. By Poisson thinning, these are independent Poisson random variables

with

E[ya (λ)] = λpa.

For r = 0, 1, 2, . . . , n, let

Nr = Nr (λ) =
∑
a∈A

1[ya(λ)=r]

be the number of letters observed exactly r times in the sample, and let

πr = πr (λ) =
∑
a∈A

pa1[ya(λ)=r]

be the total mass of all letters observed exactly r times in the sample. Define further,
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for r = 0, 1, 2,...,(n− 1),

Tr = Tr (λ) =
Nr+1

λ
(r + 1) .

We call Tr the rth order Turing formula. It is an estimator of πr.

Our goal is to find conditions for asymptotic normality.

Note that

E [Nr] =
∑
a∈A

e−λpa
λ (pa)

r

r!

and

E [λπr] =
∑
a∈A

e−λpa
(λpa)

r+1

r!
.

Now set

λ (Tr (λ)− πr (λ)) =
∑
a∈A

Ya

where

Ya = (r + 1) 1[ya(λ)=r+1] − λpa1[ya(λ)=r].

Y ′as are independent random variables, because Ya is a function only of ya and they

are independent random variables. Since [ya (λ) = r] ∩ [ya (λ) = r + 1] = ∅, we have

Y 2
a = (r + 1)2 1[ya(λ)=r+1] + λ2p2

a1[ya(λ)=r].
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It follows that

E [Ya] = e−λpa
(λpa)

r+1

r!
− λpae−λpa

(λpa)
r

r!
= 0

and

σ2
a,λ = Var (Ya)

= E
[
Y 2
a

]
= (r + 1) e−λpa

(λpa)
r+1

r!
+ λpae

−λpa (λpa)
r+1

r!

= (r + 1 + λpa) e
−λpa (λpa)

r+1

r!
.

Let

s2
λ =

∑
a∈A

σ2
a,λ =

∑
a∈A

(r + 1 + λpa) e
−λpa (λpa)

r+1

r!
,

and note that

s2
λ = (r + 1)2 E [Nr+1] + (r + 2) (r + 1) E [Nr+2] .

Now we give main results for this case.

Theorem 1. Assume that sλ →∞ as λ→∞. We have

lim
λ→∞

s−2
λ

∑
a∈A

e−λpa(λpa)
(r+2)1[λpa≥εsλ] = 0 ∀ε > 0 (2.1)

if and only if

λ

sλ
(Tr(λ)− πr(λ))

d−−−→
λ→∞

N(0, 1).
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Corollary 1. If the conditions in Theorem 1 and (2.1) hold, then

P

(∣∣∣∣Tr(λ)

πr(λ)
− 1

∣∣∣∣ > ε

)
→ 0 ∀ε > 0,

(i.e., Tr(λ)
πr(λ)

p−→ 1).

Corollary 2. Let

(ŝλ)
2 = (r + 1)2Nr+1 + (r + 2)(r + 1)Nr+2.

If the conditions in Theorem 1 hold, then (ŝλ)
2 is a consistent estimator of s2

λ, i.e.,

as λ→∞, for all ε > 0

P

(∣∣∣∣(ŝλ)2

s2
λ

− 1

∣∣∣∣ > ε

)
→ 0.

2.3.2 Poisson Case with Changing Distribution

Now we come to the Poisson case with a changing distribution. Consider a sequence

of positive real numbers {λn} such that λn → ∞. We assume the sample size Nn ∼

Pois(λn), and the corresponding underlying distribution Pn = {pa,n : a ∈ A} where

A = {a1, a2, a3, ...} is a countably infinite alphabet. We are given a random sample

of size Nn on alphabet A with distribution Pn.

Let ya,n (λn) be the number of times that we see letter a in the sample. These are

independent Poisson random variables with

E[ya,n (λn)] = λnpa,n.

For r= 0, 1, 2,..., let

Nr,n = Nr,n(λn) =
∑
a∈A

1[ya,n(λn)=r]
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be the number of letters observed exactly r times in the sample, and let

πr,n = πr,n (λn) =
∑
a∈A

pa,n1[ya,n(λn)=r]

be the total mass of all letters observed exactly r times in the sample. Define further,

for r = 0, 1, 2,...,(n-1),

Tr,n = Tr,n (λn) =
Nr+1,n

λn
(r + 1) .

We call Tr,n the rth order Turing formula. It is an estimator of πr,n. Our goal is to

find conditions for asymptotic normality.

Note that

E [Nr,n] =
∑
a∈A

e−λnpa,n
(λnpa,n)r

r!

and

E [λnπr,n] =
∑
a∈A

e−λnpa,n
(λnpa,n)r+1

r!
.

Now set

λn (Tr,n (λn)− πr,n (λn)) =
∑
a∈A

Ya,n

where

Ya,n = (r + 1) 1[ya,n(λn)=r+1] − λnpa,n1[ya,n(λn)=r]

are independent random variables. Since [ya,n (λn) = r] ∩ [ya,n (λn) = r + 1] = ∅, we
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have

Y 2
a,n = (r + 1)2 1[ya,n(λn)=r+1] + λ2

np
2
a,n1[ya,n(λn)=r].

It follows that

E [Ya,n] = e−λnpa,n
(λnpa,n)r+1

r!
− λnpa,ne−λnpa,n

(λnpa,n)r

r!
= 0

and

σ2
a,λn = Var (Ya,n)

= E
[
Y 2
a,n

]
= (r + 1) e−λnpa,n

(λnpa,n)r+1

r!
+ λnpa,ne

−λnpa,n (λnpa,n)r+1

r!

= (r + 1 + λnpa,n) e−λnpa,n
(λnpa,n)r+1

r!
.

Let

s2
λn =

∑
a∈A

σ2
a,λn =

∑
a∈A

(r + 1 + λnpa,n) e−λnpa,n
(λnpa,n)r+1

r!
,

and note that

s2
λn = (r + 1)2 E [Nr+1,n] + (r + 2) (r + 1) E [Nr+2,n] .

Note further that, in this case, Turing’s formula is unbiased and we have

E [Tr,n(λn)] =
1

λn

∑
a∈A

e−λnpa,n
(λnpa,n)r+1

r!
= E [πr,n(λn)] . (2.2)

The main results for this case are given as follows.
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Theorem 2. Assume that sλn →∞ as λn →∞ and λn →∞ as n→∞. We have

lim
n→∞

s−2
λn

∑
a∈A

e−λnpa,n(λnpa,n)(r+2)1[λnpa,n≥εsλn ] = 0 ∀ε > 0 (2.3)

if and only if

λn
sλn

(Tr,n(λn)− πr,n(λn))
d−−−→

n→∞
N(0, 1).

Corollary 3. If the conditions in Theorem 2 and (2.3) hold, then

P

(∣∣∣∣Tr,n(λn)

πr,n(λn)
− 1

∣∣∣∣ > ε

)
→ 0 ∀ε > 0,

(i.e., Tr,n(λn)

πr,n(λn)

p−→ 1).

Corollary 4. Let

(ŝλn)2 = (r + 1)2Nr+1 + (r + 2)(r + 1)Nr+2.

If the conditions in Theorem 2 hold, then (ŝλn)2 is a consistent estimator of s2
λn
, i.e.,

as λn →∞, for all ε > 0

P

(∣∣∣∣(ŝλn)2

s2
λn

− 1

∣∣∣∣ > ε

)
→ 0.

Proof. Since (r + 1)2 > 0 and (r + 2)(r + 1) > 0, the result is an application of

Lemma 7.

When sλn does not approach infinity we do not get asymptotic normality. Instead,

we get a Poisson distribution in the limit. We now give conditions for the Poisson

approximation in this case.
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Theorem 3. Fix r ∈ {0, 1, 2, ...}. Assume that sλn,n → c ∈ (0,∞) and set c∗ =

c2/(r + 1)2. If (2.3) holds, then E[Nr+1,n]→ c∗, E[Nr+2,n]→ 0,

E

(
λn
r + 1

πr,n(λn)− c∗
)2

→ 0,
λn
r + 1

πr,n(λn)
p→ c∗, (2.4)

and
λn
r + 1

Tr,n(λn)
d→ Pois(c∗).

2.4 Deterministic Case

In this section we move to the case where the sample size is deterministic, hereafter

called the Deterministic case. We consider situations when the underlying distribution

is both fixed and changing. Here when we say that the distribution is fixed, it means

that there is one Pm for all m = 1, 2, 3, . . . . Otherwise, we say that the distribution

is changing.

2.4.1 Deterministic Case with Fixed Distribution

First we introduce the deterministic case when the underlying distribution is fixed.

Now consider the case of a deterministic sample size n. Without loss of generality

let C = {Cλ : λ ≥ 0}, which is a Poisson process with rate 1, thus E[Cλ] = λ. Let

y′a(n) be the counts in the first n observations and let ya(λ) be the counts in the first

Cλ observations. For r = 0, 1, 2, ..., let

N ′r(n) =
∑
a∈A

1[y′a(n)=r]

π′r(n) =
∑
a∈A

pa1[y′a(n)=r].
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For r = 0, 1, 2, ..., (n− 1), let

T ′r(n) =
N ′r+1(n)

n
(r + 1).

It is readily checked that

E[π′r] =

(
n

r

)∑
a∈A

pr+1
a (1− pa)n−r and E[N ′r] =

(
n

r

)∑
a∈A

pra(1− pa)n−r.

Its bias is given by

E [T ′r − π′r] =

(
n

r

)∑
a∈A

pr+1
a (1− pa)n−r−1

(
pa −

r

n

)
.

We now give our main results for this case.

Theorem 4. Fix r ∈ {0, 1, 2, ...}. Assume that sn →∞ as n→∞ and

sn√
n
→ 0.

In this case

lim
n→∞

s−2
n

∑
a∈A

e−npa(npa)
(r+2)1[npa≥εsn] = 0 ∀ε > 0 (2.5)

if and only if

n

sn
(T ′r(n)− π′r(n))

d−→ N(0, 1).

Corollary 5. In the Poissonized case

s2
n = (r + 1)2 E [Nr+1] + (r + 2) (r + 1) E [Nr+2] ,
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and in the deterministic case

(s′n)2 = (r + 1)2 E
[
N ′r+1

]
+ (r + 2) (r + 1) E

[
N ′r+2

]
.

Fix r ∈ {0, 1, 2, ...}. If sn →∞ as n→∞, then (s′n)2 ∼ s2
n, i.e.

(s′n)2

s2
n

p−→ 1.

Corollary 6. If the conditions in Theorem 4 hold, then (2.5) holds if and only if

n

s′n
(T ′r(n)− π′r(n))

d−→ N(0, 1). (2.6)

Corollary 7. If the conditions in Theorem 4 and (2.6) hold, then

P

(∣∣∣∣T ′r(n)

π′r(n)
− 1

∣∣∣∣ > ε

)
→ 0 ∀ε > 0,

(i.e., T ′r(n)
π′r(n)

p−→ 1).

Corollary 8. For the deterministic case let

s2
n = (r + 1)2E[N ′r+1] + (r + 2)(r + 1)E[N ′r+2]

(ŝn)2 = (r + 1)2N ′r+1 + (r + 2)(r + 1)N ′r+2.

If the conditions in Theorem 4 hold, (ŝn)2 is a consistent estimator of s2
n, i.e., as

n→∞, for all ε > 0

P

(∣∣∣∣(ŝn)2

s2
n

− 1

∣∣∣∣ > ε

)
→ 0.



16

2.4.2 Deterministic Case with Changing Distribution

In this subsection we show results for Deterministic case when the underlying dis-

tribution is changing.

Consider the deterministic case of a fixed sample of size n. C = {Cλ : λ ≥ 0} is a

Poisson Process with rate 1, where En[Cλ] = λ. Let y′a,n(n) be the counts in the first

n observations and let ya,n(λ) be the counts in the first Cλ observations.

For r = 0, 1, 2, ..., let

N ′r,n(n) =
∑
a∈A

1[y′a,n(n)=r]

π′r,n(n) =
∑
a∈A

pa,n1[y′a,n(n)=r].

For r = 0, 1, 2, ..., (n− 1), let

T ′r,n(n) =
N ′r+1,n(n)

n
(r + 1).

It is readily checked that

E[π′r,n] =

(
n

r

)∑
a∈A

pr+1
a,n (1− pa,n)n−r and E[N ′r,n] =

(
n

r

)∑
a∈A

pra,n(1− pa,n)n−r.

Its bias is given by

E
[
T ′r,n − π′r,n

]
=

(
n

r

)∑
a∈A

pr+1
a,n (1− pa,n)n−r−1

(
pa,n −

r

n

)
. (2.7)

We now give our main results for asymptotic normality in the Deterministic case

with a changing distribution.
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Theorem 5. Fix r ∈ {0, 1, 2, ...}. Assume that sn,n →∞ as n→∞ and

sn,n√
n
→ 0.

In this case

lim
n→∞

s−2
n,n

∑
a∈A

e−npa,n(npa,n)(r+2)1[npa,n≥εsn,n] = 0 ∀ε > 0 (2.8)

if and only if

n

sn,n
(T ′r,n(n)− π′r,n(n))

d−→ N(0, 1). (2.9)

Corollary 9. In the Poissonized case

s2
n,n = (r + 1)2 E [Nr+1,n] + (r + 2) (r + 1) E [Nr+2,n] ,

and in the deterministic case

(s′n,n)2 = (r + 1)2 E
[
N ′r+1,n

]
+ (r + 2) (r + 1) E

[
N ′r+2,n

]
.

If the conditions in Theorem 5 hold, then (s′n,n)2 ∼ s2
n,n, i.e.

(s′n,n)2

s2
n,n

p−→ 1.

Corollary 10. If the conditions in Theorem 5 hold, then (2.8) holds if and only if

n
(
T ′r,n(n)− π′r,n(n)

)
s′n,n

d−→ N(0, 1). (2.10)
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Corollary 11. If the conditions in Theorem 5 hold, then (2.10) holds if and only if

P

(∣∣∣∣T ′r,n(n)

π′r,n(n)
− 1

∣∣∣∣ > ε

)
→ 0 ∀ε > 0,

(i.e., T ′r,n(n)

π′r,n(n)

p−→ 1).

Corollary 12. For the deterministic case let

(s′n,n)2 = (r + 1)2E[N ′r+1,n] + (r + 2)(r + 1)E[N ′r+2,n]

(ŝ′n,n)2 = (r + 1)2N ′r+1,n + (r + 2)(r + 1)N ′r+2,n.

If the conditions in Theorem 5 hold, then (ŝ′n,n)2 is a consistent estimator of (s′n,n)2,

i.e., as n→∞, for all ε > 0

P

(∣∣∣∣(ŝ′n,n)2

(s′n,n)2
− 1

∣∣∣∣ > ε

)
→ 0.

In practical applications it is most useful to take ŝ′r,n in (2.9) as this can be done

without any knowledge of Pn. This leads to the following asymptotic confidence in-

terval

(
T ′r,n − zα/2

ŝ′r,n
n
, T ′r,n + zα/2

ŝ′r,n
n

)
, (2.11)

where zα/2 is a number such that P (Z > zα/2) = α/2 with Z ∼ N(0, 1). We conduct

simulation studies in Chapter 3 mainly based on this result.

Theorem 6. Fix r ∈ {0, 1, 2, ...}. Assume that sr,n → c ∈ (0,∞) and set c∗ =

c2/(r + 1)2. If (2.8) holds, then E[N ′r+1,n]→ c∗, E[N ′r+2,n]→ 0,

E

(
n− r
r + 1

π′r,n − c∗
)2

→ 0,
n

r + 1
π′r,n

p→ c∗, and
n

r + 1
T ′r,n

d→ Pois(c∗).
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For r = 0 this is Theorem 2 in [23]. See also [27] for related results in this case.

Note that the assumptions of Theorem 6 never hold for fixed distributions. This is

because, for such distributions, sr,n → c ∈ (0,∞) implies that (2.8) does not hold.

2.5 Example Distributions

In this section we give two examples to show how conditions of our main theorems

can be satisfied when the distribution is both fixed and changing, respectively.

2.5.1 Fixed Discrete Pareto Distributions

Consider that f(x) = β
(x+1)α+1 where β > 0, α > 0 and x > 0. Let pk = f(k), where

k = 0, 1, 2, ...

First we show that sλ →∞.

Proof. Note that s2
λ = (r + 1)2E[Nr+1] + (r + 2)(r + 1)E[Nr+2], so the result can be

shown if E[Nr+1] or E[Nr+2] goes to ∞.

Since

E[Nr+1] =
∑
a∈A

e−λpa
(λpa)

(r+1)

(r + 1)!

=
∞∑
k=0

e−λpk
(λpk)

(r+1)

(r + 1)!
.

Let gλ(x) = e−xxr+1 for x > 0. Since g′λ(x) = xre−(r+1)(r + 1− x), it follows that

max
x>0

gλ(x) = gλ(r + 1),

and gλ(x) is increasing on (0, r+1] and decreasing on (r+1,∞). Then the summands

in E[Nr+1] can be expressed by 1
(r+1)!

gλ(λf(k)). Since

(gλ(λf(x)))′ =(
λβ

(x+ 1)α+1

)r
exp

(
− λβ

(x+ 1)α+1

)(
r + 1− λβ

(x+ 1)α+1

)
(−α− 1)

λβ

(x+ 1)α+1
,
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and

max
x>0

gλ(λf(x)) = gλ(λf(x∗)),

where x∗ =
(
λβ
r+1

) 1
α+1 − 1 for large enough λ. Thus for x > 0, gλ(λf(x)) is increasing

on (0, x∗) and decreasing on [x∗,∞).

Therefore, by a version of Euler-Maclaurin Lemma, see Lemma 1.6 in [26],

lim
λ→∞

∞∑
k=0

e−λpk
(λpk)

(r+1)

(r + 1)!

= lim
λ→∞

∫ ∞
0

e−λf(x) (λf(x))(r+1)

(r + 1)!
dx

= lim
λ→∞

∫ ∞
0

exp

(
− λβ

(x+ 1)α+1

)(
λβ

(x+ 1)α+1

)r+1
λ(r+1)

(r + 1)!
.

Changing variable t = λf(x) = λβ
(x+1)α+1 gives

∫ ∞
0

e−λf(x) (λf(x))(r+1)

(r + 1)!
dx =

1

(r + 1)!

∫ ∞
0

e−λf(x)(λf(x))(r+1) dx

= −(λβ)
1

α+1

(r + 1)!

∫ 0

λβ

e−tt(r+1) d(t−
1

α+1 )

=
(λβ)

1
α+1

(r + 1)!

∫ λβ

0

e−tt(r+1) d(t−
1

α+1 )

=
(λβ)

1
α+1

(r + 1)!(α + 1)

∫ λβ

0

e−tt(r−
1

α+1
) dt.

Since α > 0, r ≥ 0, we have r > 1
α+1
− 1, i.e. r − 1

α+1
+ 1 > 0. It follows that

lim
λ→∞

∫ λβ

0

e−tt(r−
1

α+1
) dt =

∫ ∞
0

e−tt(r−
1

α+1
) dt = Γ(r − 1

α + 1
+ 1),

which is well defined. Hence,

lim
λ→∞

∫ ∞
0

e−λf(x) (λf(x))(r+1)

(r + 1)!
dx = lim

λ→∞

(λβ)
1

α+1

(r + 1)!(α + 1)

∫ λβ

0

e−tt(r−
1

α+1
) dt
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= lim
λ→∞

(λβ)
1

α+1

(r + 1)!(α + 1)
Γ(r − 1

α + 1
+ 1),

and

lim
λ→∞

E[Nr+1] ∝ lim
λ→∞

λ
1

α+1 =∞. (2.12)

Similarly,

E[Nr+2] =
∑
a∈A

e−λpa
(λpa)

(r+2)

(r + 2)!

=
∞∑
k=0

e−λpk
(λpk)

(r+2)

(r + 2)!
,

and since r − 1
α+1

+ 2 > 0,

lim
λ→∞

∞∑
k=0

e−λpk
(λpk)

(r+2)

(r + 2)!

= lim
λ→∞

∫ ∞
0

e−λf(x) (λf(x))(r+2)

(r + 2)!
dx

= lim
λ→∞

(λβ)
1

α+1

(r + 2)!(α + 1)
Γ(r − 1

α + 1
+ 2),

and thus,

lim
λ→∞

E[Nr+2] ∝ lim
λ→∞

λ
1

α+1 =∞. (2.13)

Therefore,

s2
λ

λ→∞−−−→∞,
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and

sλ →∞.

Then we show that sλ√
λ
→ 0.

Proof. Since

s2
λ

λ
=

(r + 1)2E[Nr+1]

λ
+

(r + 2)(r + 1)E[Nr+2]

λ
,

it follows from (2.12) and (2.13) that

lim
λ→∞

s2
λ

λ
= lim

λ→∞

(r + 1)2E[Nr+1]

λ
+ lim

λ→∞

(r + 2)(r + 1)E[Nr+2]

λ

∝ lim
λ→∞

λ
1

α+1
−1 + lim

λ→∞
λ

1
α+1
−1,

where 1
α+1
− 1 < 0, so that

lim
λ→∞

s2
λ

λ
= 0,

and therefore

sλ√
λ
→ 0.

By (2.12) and (2.13) we can let

sn = c

√
(r + 1)2n

1
α+1 + (r + 2)(r + 1)n

1
α+1 ,



23

where c is a constant. Then

sn ≥ c

√
(r + 1)2n

1
α+1 ,

and

sn
lnn
≥ c

√
(r + 1)2n

1
α+1

lnn
,

where by L’Hospital’s rule and 1
2(α+1)

> 0

lim
n→∞

c

√
(r + 1)2n

1
α+1

lnn
= lim

n→∞
c(r + 1)n

1
2(α+1) =∞,

thus,

sn
lnn
→∞.

Last, we show that when λ = n, if sn/ lnn→∞, then

lim
n→∞

s−2
n

∑
a∈A

e−npa(npa)
(r+2)1[npa≥εsn] = 0 ∀ε > 0.

Proof.

∑
a∈A

e−npa(npa)
(r+2)1[npa≥εsn]

=
∞∑
k=0

e−npk(npk)
(r+2)1[npk≥εsn]

=
∞∑
k=0

e−npk(npk)
(r+2)1[npk≥M ] (M = εsn)

≤
∞∑
k=0

e−npk(npk)
(r+2)

∞∑
j=0

1[2jM≤npk<2j+1M ]
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≤
∞∑
j=0

e−2jM(2j+1M)(r+1)

∞∑
k=0

npk1[2jM≤npk<2j+1M ]

≤
∞∑
j=0

e−2jM(2j+1M)(r+1)n

=nM r+1

∞∑
j=0

e−2jM(2j+1)(r+1)

=nM r+1

∞∑
j=0

e−2jM+M−M(2j+1)(r+1)

=nM r+1e−M
∞∑
j=0

e−(2j−1)M(2j+1)(r+1)

≤nM r+1e−M
∞∑
j=0

e−(2j−1)(2j+1)(r+1)

=nM r+1e−M
∞∑
j=0

e2r+1e−2j(2j)(r+1)

≤nM r+1e−M
∞∑
j=0

e2r+1e−(r+1)(r + 1)(r+1),

where the last equality holds because for x > 0, e−xxr+1 takes the maximal at x =

r + 1. Then, let C =
∑∞

j=0 e2
r+1e−(r+1)(r + 1)(r+1),

s−2
n

∑
a∈A

e−npa(npa)
(r+2)1[npa≥εsn]

≤s−2
n ne−MM (r+1)C

=Cε2ne−M/2e−M/2M (r−1),

where

ne−M/2 = ne−εsn/2 = elnn−εsn/2 = elnn(1− εsn
2 lnn

) → 0,
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if sn
lnn
→∞; and

e−M/2M (r−1) → 0,

because M = εsn →∞.

Therefore,

lim
n→∞

s−2
n

∑
a∈A

e−npa(npa)
(r+2)1[npa≥εsn] = 0 ∀ε > 0.

2.5.2 Changing Geometric Distributions

Now we consider a sequence of positive real numbers an such that an → ∞ and

an/n→ 0. Let fn(x) = (e1/an−1)e−x/an for x > 0 and pk,n = fn(k) = (e1/an−1)e−k/an

where k = 1, 2....

First we show that sr,n →∞.

Proof. Note that sr,n =
√

(r + 1)2E[Nr+1,n] + (r + 2)(r + 1)E[Nr+2,n], so the result

can be shown if E[Nr+1,n] or E[Nr+2,n] goes to ∞. Since

E[Nr+1,n] =
∑
a∈A

e−npa,n
(npa,n)(r+1)

(r + 1)!

=
∞∑
k=1

e−npk,n
(npk,n)(r+1)

(r + 1)!
.

Let g(x) = e−xxr+1 for x > 1. Since g′(x) = xre−(r+1)(r + 1 − x), it follows that

maxx>1 g(x) = g(r+1), and g(x) is increasing on (1, r+1] and decreasing on (r+1,∞).

Then the summands in E[Nr+1,n] can be expressed by 1
(r+1)!

g(nfn(k)).

Since fn(x) is monotone decreasing, maxx>1 g(nfn(x)) = g(nfn(x∗n)), where x∗n =

−an[ln(r + 1)− n ln(e1/an − 1)] by solving r + 1 = n(e1/an − 1)e−x/an = nfn(x). And
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x∗n →∞. Then

lim
n→∞

E[Nr+1,n] = lim
n→∞

∞∑
k=1

e−npk,n
(npk,n)(r+1)

(r + 1)!

≥ lim
n→∞

k∗n−1∑
k=1

e−npk,n
(npk,n)(r+1)

(r + 1)!
with k∗n = bx∗nc

≥ lim
n→∞

∫ k∗n

1

e−nfn(x) (nfn(x))(r+1)

(r + 1)!
dx

= lim
n→∞

nr+1

(r + 1)!

∫ k∗n

1

e−nfn(x)(fn(x))r+1 dx

= lim
n→∞

an
(r + 1)!

∫ n(e1/an−1)e−1/an

n(e1/an−1)e−k
∗
n/an

tre−t dt with t = nfn(x)

= lim
n→∞

an
(r + 1)!

lim
n→∞

∫ n(e1/an−1)e−1/an

nfn(k∗n)

tre−t dt

> lim
n→∞

an
(r + 1)!

∫ n(e1/an−1)e−1/an

e1/an (r+1)

tre−t dt (2.14)

= lim
n→∞

an
(r + 1)!

lim
n→∞

∫ n(e1/an−1)e−1/an

e1/an (r+1)

tre−t dt

= lim
n→∞

an
(r + 1)!

∫ ∞
r+1

tre−t dt

= lim
n→∞

an
(r + 1)!

Γ(r + 1, r + 1)

= lim
n→∞

anc1 (2.15)

=∞,

where (2.14) holds because n(e1/an − 1)e−1/an = n(1− e−1/an) → ∞ with n/an → 0;

and with nfn(x∗n) = r + 1 and 0 ≤ Rn < 1,

nfn(x∗n) ≤ nfn(k∗n) = nfn(x∗n −Rn)

= n(e1/an − 1)(e−x
∗
n/aneRn/an)

= eRn/an(nfn(x∗n))

< e1/an(nfn(x∗n))
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= e1/an(r + 1).

Similarly,

lim
n→∞

E[Nr+2,n] ≥ lim
n→∞

an
(r + 2)!

Γ(r + 2, r + 2) = lim
n→∞

anc2 =∞. (2.16)

Therefore, s2
r,n →∞ and sr,n →∞.

Then we show that sr,n/
√
n→ 0.

Proof. Since limn→∞
s2r,n
n

= limn→∞
(r+1)2E[Nr+1,n]

n
+ limn→∞

(r+2)(r+1)E[Nr+2,n]

n
, we can

show each limit piece goes to 0. First, let h(k) = e−npk,n
(npk,n)

(r+1)

(r+1)!
, then

lim
n→∞

E[Nr+1,n]

n
= lim

n→∞

∑∞
k=1 e

−npk,n (npk,n)
(r+1)

(r+1)!

n

= lim
n→∞

∑∞
k=1 h(k)

n

≤ lim
n→∞

∑bx∗n−1c
k=1 h(k) +

∑∞
k=dx∗n+1e h(k) + h(bx∗nc) + h(dx∗ne)

n

≤ lim
n→∞

∫ bx∗nc
1

h(x) dx+
∫∞
dx∗ne

h(x) dx+ 2h(x∗n)

n

≤ lim
n→∞

∫∞
1
h(x) dx+ 2h(x∗n)

n

= lim
n→∞

∫∞
1
e−nfn(x) (nfn(x))(r+1)

(r+1)!
dx

n
+ lim

n→∞

2e−nfn(x∗n)

(
nfn(x∗n)

)(r+1)

(r+1)!

n

= lim
n→∞

an
n(r + 1)!

∫ n(e1/an−1)e−1/an

0

tre−t dt

+ lim
n→∞

(r + 1)(r+1)

(r + 1)!

2e−n(r+1)

n
with t = nfn(x) and nfn(x∗n) = r + 1

=0.
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Now we show how the last line holds. By the assumption that an/n→ 0,

lim
n→∞

an
n(r + 1)!

∫ n(e1/an−1)e−1/an

0

tre−t dt

=
1

(r + 1)!
lim
n→∞

an
n

lim
n→∞

∫ n(e1/an−1)e−1/an

0

tre−t dt

=
1

(r + 1)!
lim
n→∞

an
n

∫ ∞
0

tre−t dt

=
Γ(r + 1)

(r + 1)!
lim
n→∞

an
n

=0,

and

lim
n→∞

(r + 1)(r + 1)

(r + 1)!

2e−n(r+1)

n
= 0.

Similarly, we can obtain that limn→∞
E[Nr+2,n]

n
= 0.

Therefore, sr,n/
√
n→ 0.

Last we show that

lim
n→∞

s−2
r,n

∞∑
k=1

e−npk,n(npk,n)(r+2)1[npk,n≥εsr,n] = 0 ∀ε > 0, (2.17)

if and only if the sequence an satisfies the following conditions: 0 < an < n/(r + 1),

an →∞ and an/n→ 0.

Proof. For all ε > 0 and x > 1 let h(x) = e−xxr+21[x≥εsr,n]. Since maxx>1 h(x) =

h(r + 2), and h(x) is increasing on (1, r + 2] and decreasing on (r + 2,∞). Then the

summands in (2.17) can be expressed by h(nfn(k)).

Since fn(x) is monotone decreasing, maxx>1 h(nfn(x)) = h(nfn(x′n)), where x′n =

−an ln ((r + 2)an/n) with 0 < an < n/(r + 2) by solving r + 2 = n(a−1
n e−x/an) =
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nfn(x). As limn→∞ nfn(x) = limn→∞
n
an
e−x/an =∞ for fixed x, we have

lim
n→∞

h(nfn(x)) = lim
n→∞

e−nfn(x)(nfn(x))(r+2)1[nfn(x)≥εsr,n] = 0.

Meanwhile, with nfn(x′n) = r + 2 and sr,n →∞, limn→∞ 1[r+2≥εsr,n] = 0, thus,

lim
n→∞

h(nfn(x′n)) = lim
n→∞

e−(r+2)(r + 2)(r+2)1[r+2≥εsr,n] = 0.

Then by Euler-Maclaurin lemma, see Lemma 1.6 in [26], ∀ε > 0

lim
n→∞

s−2
r,n

∞∑
k=1

e−npk,n(npk,n)(r+2)1[npk,n≥εsr,n]

= lim
n→∞

s−2
r,n

∫ ∞
1

e−nfn(x) (nfn(x))(r+1) 1[nfn(x)≥εsr,n] dx

= lim
n→∞

ans
−2
r,n

∫ n(e1/an−1)e−1/an

0

e−tt(r+1)1[t≥εsr,n] dt with t = nfn(x). (2.18)

Here we need to consider two cases as follows. If n(e1/an − 1)e−1/an < εsr,n, (2.18) =0

with 1[t≥εsr,n] = 0. If n(e1/an − 1)e−1/an ≥ εsr,n, (2.18) is equivalent to

lim
n→∞

an
s2
r,n

∫ n(e1/an−1)e−1/an

εsr,n

e−tt(r+1) dt.

As in (2.15) and (2.16) we have

lim
n→∞

s2
r,n

an
= lim

n→∞

(r + 1)2E[Nr+1,n] + (r + 2)(r + 1)E[Nr+2,n]

an

≥ lim
n→∞

(r + 1)2anc1

an
+ lim

n→∞

(r + 2)(r + 1)anc2

an

= (r + 1)2c1 + (r + 2)(r + 1)c2 = c3,
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i.e., limn→∞
an
s2r,n
≤ 1

c3
. Now

lim
n→∞

an
s2
r,n

∫ n(e1/an−1)e−1/an

εsr,n

e−tt(r+1) dt

≤ lim
n→∞

1

c3

∫ ∞
εsr,n

e−tt(r+1) dt = 0, (2.19)

where (2.19) holds by the following lemma.

(Note: Euler-Maclaurin Lemma: Let cn be a sequence of positive real numbers

and cn →∞. If f(x) is an integrable function, then

lim
cn→∞

∫ ∞
cn

f(x) dx = 0.

Proof. Since
∫∞
cn
f(x) dx =

∫
R f(x)1[cn,∞)(x) dx, let fn(x) = f(x)1[cn,∞)(x), where

cn > 0 and cn →∞. Also we have fn(x) ≤ |f(x)| for all x and f(x) is integrable, so

does |f(x)|. Now by Lebesgue’s dominated convergence theorem for

lim
n→∞

∫
R
fn(x) dx =

∫
R

lim
n→∞

fn(x) dx =

∫
R

lim
n→∞

f(x)1[cn,∞)(x) dx = 0,

where the last equality holds because 1[∞,∞)(x) = 0 for large enough n and any fixed

x.)



CHAPTER 3: SIMULATION STUDY

In this section we perform two simulation studies to check the finite sample per-

formance of the confidence intervals in (2.11), one with data generated from the

theoretical distributions and another with the real data as the theoretical population.

3.1 Theoretical Data Simulation Methodology and Results

To better understand how asymptotic normality for Turing formulae works, we

perform simulation studies under a variety of distributions and for a variety of sample

sizes. Three different types of distribution are considered: the Poisson distribution,

the geometric distribution and the discrete Pareto distribution. For each distribution

and each choice of the parameters, we simulate samples of size n from 1 to 1000

with increments of 20. After 2000 iterations we calculate the accuracy ratio for the

estimator falling inside the 95% confidence interval with results given in Figure 3.1.

The accuracy ratio should be close to 0.95 if the asymptotic normality works well.

The results are shown in Figure 3.1. Plots of the accuracy ratio of the higher order

Turing Formulae at r = 0, 3, 5 are presented. The x-axis is the sample size and the

y-axis is the accuracy ratio calculated. The top line is the distribution name and the

legends give values of different parameter assigned. The horizontal line at 0.95 is for

comparison.

In those three distributions considered, we first consider the Poisson distribution.

The probability mass function of a discrete Poisson random variable X is P (X =

k) = λke−λ

k!
for k = 0, 1, 2, . . . with parameter λ > 0. The Poisson distribution

has the lightest tail among those three distributions because the moment generating

function of any Poisson random variables is finite for all t > 0. We choose parameter
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λ = 1, 5, 10. By the fact that λ = E[X] = Var[X], the larger λ is, the heavier the

tails are.

Next is the geometric distribution. The probability mass function of a geometrically

distributed discrete random variable X is P (X = k) = (1 − p)kp for k = 0, 1, 2, . . .

with parameter 0 < p ≤ 1. By the fact that the moment generating function of the

geometric distribution is finite for t < − ln(1−p) and infinite otherwise, the geometric

distribution has intermediate exponential tails. We choose p = 0.1, 0.25, 0.5, 0.75, 0.9,

and smaller parameter p indicates heavier tails.

Last, we consider the discrete Pareto distribution of the random variable X = bY c,

where Y has the Pareto probability density function f(y) = α
yα+1 for y > 1 and

with parameter α > 0. The discrete Pareto distribution with finite number of finite

moments has polynomial heavy tails, which is heavier than the exponential tails. We

choose α = 0.5, 1.5, 2, and smaller values of α imply heavier tails.

The plots show that the simulation performs better for discrete Pareto distributions,

which suggests that the asymptotic normality seems to work better for heavy-tailed

distributions.
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Figure 3.1: Plots of simulation study for data generated from theoretical distributions.

3.2 Literature Work Simulation Methodology and Results

The data for this simulation study is downloaded from http://shakespeare.mit.edu.

We took all of the words in the complete works of William Shakespeare as our popu-

lation. We include the titles of the works, since we believe that the titles also contain

the word usage information for the population. In total there are 930,593 words.

Ignoring repetition, it has 28,857 unique words, where we consider that words with

and without contractions are two different words.

Our alphabet A is comprised of each of these unique words. For a word a ∈ A, the

probability pa is the number of times that it appears in the population divided by

the size of the population. The most frequent word is “the”, which has a probability
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of 0.031812. There are 12667 words that appear only once. They have a probability

of 1/930593 ≈ 10−6. For a given order r and sample size n, we sampled N = 1000

samples of size n. All sampling was done with replacement. For each sample, we

calculated the confidence interval in (2.11) at level α = 0.05 and the true value of

π′r,n. We then found the proportion of the samples for which the true value is contained

in the confidence interval.

Plots of these proportions for several choices of n and r are given in Figure 3.2a

and Figure 3.2b. In the plots the x-axis represents the sample size, where sample size

increases from 100 to 1000 with increments of 100, and sample size increases from

1000 to 3000 with increments of 250. Plot (a) shows results for r = 0, 1 and 2, and

plot (b) shows results for r = 4, 5 and 6. These plots should be close to the horizontal

line at 0.95. We can see that they are generally close to this value. However, for

larger values of r, we typically need larger sample sizes.
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Figure 3.2: Plots of simulation study with data from the complete works of William
Shakespeare.



CHAPTER 4: DATA APPLICATIONS

One of the main applications of our results is authorship attribution, i.e., whether

we can detect the difference between writing samples from two different authors. We

propose two methodologies based on our theoretical results, and illustrate them with

tweet data from [28]. This dataset contains tweets of the top 20 popular twitter users

with the most followers in 2017. We randomly select and analyze tweets from two

users to show preliminary results and then analyze tweets from the top 5 users.

4.1 Data Application Methodology

In the first methodology we begin by constructing 95% asymptotic confidence in-

tervals for π′r,n for a fixed n and different choices of r with tweet samples from two

authors separately, and for all results we let r = 1, 2, 3, ..., 7. Then we check the

overlaps of two plotted asymptotic confidence intervals: a lot of overlap suggests that

the datasets are from the same author, while little overlap suggests that the datasets

are from different authors.

In the second methodology we perform a statistical test to check if two tweet

samples come from the same author. The first dataset is treated as the ’corpus set’

to construct an asymptotic confidence interval, and the second dataset is treated as

the ’testing set’ to calculate detecting values, denoted by Dr, for different choices of

r, where for r = 0, 1, 2, ..., (n− 1),

Dr =
sample count of words that are observed r times in corpus set

sample size of testing set
,

and repetition in the sample count is included. When r = 0, the numerator in D0

is just the number of new words that are not observed in the corpus set. Then the
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detecting values are compared with the asymptotic confidence interval bounds. If

most of the test points fall inside the confidence interval, it suggests that the datasets

are from the same author; while if most of the test points fall outside the confidence

interval, it suggests that the datasets are from different authors.

4.2 Data Application Results

First, we analyze tweets from Ariana Grande and Jimmy Fallon. For both datasets

we put tweets together from each author ignoring punctuation, capitalization and

URLs. In total, the dataset for Ariana Grande contains 52647 words and the dataset

for Jimmy Fallon contains 36365 words.

We begin by randomly dividing each dataset into two parts and comparing the

asymptotic confidence intervals constructed from the two random parts from the

same author. The results are shown in Figure 4.1. A and B are comparisons of

the asymptotic confidence intervals constructed from two random parts of tweets of

Ariana Grande and Jimmy Fallon respectively; C is a comparison of the asymptotic

confidence intervals constructed from full tweet datasets of Ariana Grande and Jimmy

Fallon. A and B with a lot of overlap for the asymptotic confidence intervals. Then

we compare the asymptotic confidence interval from the full datasets from those two

different authors in 4.1 C with only little overlap.

Figure 4.1: Plots of interval comparison between two twitter users

Then we use one of the random parts from each author as the corpus dataset to
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construct the asymptotic confidence intervals and the other as the testing dataset

to draw the detecting points. Then we use the full dataset from each author as the

corpus dataset to construct the asymptotic confidence intervals and the full dataset

from the other author as the testing dataset to draw the detecting points. From the

first and fourth plot in Figure 4.2 we can see that most of the detecting points fall

inside or on the boundary of the asymptotic confidence interval, which indicates the

testing dataset is from the same author; while some or most of the detecting points fall

outside of the asymptotic confidence interval in the second and third plot in Figure

4.2, which indicates the testing dataset is from a different author. We also notice

that at r = 0 all detecting points are outside of the asymptotic confidence interval,

which does not give enough information to tell the author of the dataset, however,

authorship can be attributed if we consider r with higher values.

We would also like to have more datasets to see how our methodology performs,

so we analyze tweets from the top 5 twitter account users by then, including Katy

Perry, Justin Bieber, Rihanna, Barack Obama and Taylor Swift.

First, we randomly divide dataset from each author into two parts with the same

number of words. We treat one random part from one author as the corpus to

construct the asymptotic confidence intervals for r valued from 0 to 7, shown as the

blue solid lines in Figure 4.3 and as the black dashed lines in Figure 4.4.

Then we use the other random part from the same author to construct another

asymptotic confidence intervals for different values of r, shown in Figure 4.3 as the

green dashed line in the diagonal plots. And we use the full datasets from other

authors to construct asymptotic confidence intervals shown in Figure 4.3 as the green

dashed line in the off diagonal plots. From the plots we can see compared with the

diagonal plots, a majority of the off diagonal plots have less overlaps, indicating data

for the diagonal plots are from the same author and the off diagonal ones are not.

Next we use the other random part from the same author and the full datasets
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Figure 4.2: Plots of statistical test for two twitter users.

from other authors to calculate the detecting points, shown in Figure 4.4. Similarly,

in the diagonal plots most of the detecting points are inside the asymptotic confidence

intervals, indicating the data are from the same author; while in the off diagonal plots

there are more detecting points outside the asymptotic confidence intervals, indicating

the data are from different authors. Again we notice that at r = 0 all detecting points

are not shown in the plots due to range deduction of y-axis but they are all outside

of the asymptotic confidence intervals, which does not give enough information to

tell the author of the dataset, however, authorship can be attributed if we consider r



39

with higher values.

Figure 4.3: Plots of interval comparison between top 5 twitter users.

4.3 Discussion

The data application results suggest that we can distinguish when two datasets are

from the same author or different authors by the area of the overlaps of the asymptotic

confidence intervals and the number of detecting points falling inside of the corpus

asymptotic confidence intervals. We also notice that, for all datasets we considered,

the detecting points at r = 0 do not fall inside the corpus asymptotic confidence

intervals, which can not provide enough information for authorship attribution for

our data application. However, considering the detecting points at higher values of r

enables us to distinguish the difference between the number of detecting points falling

inside and outside the corpus asymptotic confidence intervals, so that we can conduct
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Figure 4.4: Plots of statistical test for top 5 twitter users.

authorship attribution. So far we can only have a intuitive way to explain the plots

and we have not yet developed a cutoff point or a threshold for the overlapping area

and the number of detecting points falling inside the asymptotic confidence intervals.

We will consider this as future work.



CHAPTER 5: CONCLUSIONS

Necessary and sufficient conditions for the asymptotic normality of Turing’s formu-

lae have been given for any r ≥ 0 and under both fixed and changing distributions.

These lead to easy to calculate asymptotic confidence intervals. Our results allow

for many situations that are not covered by previously available sufficient conditions.

Further, in the case where r = 0, we correct an error in the conditions given in [23].

We have also studied the case where the sample size is random and follows a Poisson

distribution. This case may be of independent interest, and is important for proving

our main results. A general version of the Lindeberg-Feller central limit theorem and

a number of lemmas are given in the proof. We give several explicit examples where

our conditions hold. These include both cases when the underlying distributions are

fixed and when they are changing. It should be noted that Turing formula for r = 0 is

not consistent or asymptotic normal for some fixed Geometric distributions as shown

in [18]. However, our conditions are proved to be applicable for the example with

changing Geometric distributions in Section 2.5.2.

For the finite performance of the derived asymptotic confidence intervals, the theo-

retical simulation study indicates that these intervals seem to work better for heavy-

tailed distributions; and the simulations creating synthetic poems based on the works

of Shakespeare have shown that they can accurately capture the true value of π′r,n at

least for r ≤ 6. Larger sample sizes are needed for further study of larger values of r.

In the Data Application example comparing the authorship of different Twit-

ter datasets, preliminary results indicate that we can distinguish whether the au-

thor/authors of two datasets are the same or different. These methods are currently

based on plots. We leave the question of how to best quantify this for future work.



CHAPTER 6: PROOFS

In this chapter we give our proofs. These require several lemmas, which give

interesting results about the limit theorems for infinite sums, the Turing formulae

and related quantities in the alphabet scheme. These lemmas may be of independent

interest.

6.1 Limit Theorems for Infinite Sums

We begin with an extension of the classical Lindeberg-Feller central limit theorem

to the case of infinite triangular arrays.

Proposition 1. Suppose that for each n ∈ N, Xn1, Xn2, Xn3, ... is a sequence of

independent random variables each having a finite variance and satisfying

E [Xni] = 0, Var [Xni] = σ2
ni <∞, s2

n =
∞∑
i=1

σ2
ni <∞,

with lim inf sn > 0. We have

lim
n→∞

s−2
n

∞∑
i=1

∫
|Xni|≥εsn

X2
nidP = 0 ∀ε > 0

if and only if both

∑∞
i=1Xni

sn

d−→ N(0, 1) and sup
i

σ2
ni

s2
n

n→∞−−−→ 0.

Proof. Since s2
n <∞, there exists a rn such that

∑∞
i=rn

σ2
ni <

1
n
. Let (s∗n)2 =

∑rn
i=1 σ

2
ni.

Note that (s∗n)2 ≤ s2
n ≤ (s∗n)2 + 1/n and thus lim inf sn > 0.

By the usual Lindeberg-Feller Central Limit Theorem (see Theorem 27.2 and the
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discussions on page 361 in [29]),

lim
n→∞

(s∗n)−2

rn∑
i=1

∫
|Xni|≥εs∗n

X2
nidP = 0 ∀ε > 0 (6.1)

if and only if

∑rn
i=1Xni

s∗n

d−→ N(0, 1) (6.2)

and

max
i≤rn

σ2
ni

s2
n

n→∞−−−→ 0. (6.3)

First we claim that (6.3) holds if and only if

sup
i

σ2
ni

s2
n

n→∞−−−→ 0. (6.4)

It is clear that (6.3) follows from (6.4). Now assume that (6.3) holds. Since

sup
i

σ2
ni

s2
n

= max{max
i≤rn

σ2
ni

s2
n

, sup
i>rn

σ2
ni

s2
n

}

≤ max{max
i≤rn

σ2
ni

s2
n

, sup
i>rn

1
n

s2
n

},

and

lim
n→∞

sup
i>rn

1

ns2
n

= lim
n→∞

1

ns2
n

= 0,

then by the assumption that sn →∞ as n→∞, it follows that

lim
n→∞

sup
i

σ2
ni

s2
n

= 0.
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By Chebyshev’s inequality

P

(∣∣∣∣∑∞i=rn+1 Xni

s∗n

∣∣∣∣ > ε

)
≤

Var(
∑∞

i=rn+1Xni)

ε2(s∗n)2
≤

1
n

ε2(s∗n)2
.

Since

s2
n =

rn∑
i=1

σ2
ni +

∞∑
i=rn

σ2
ni ≤ (s∗n)2 +

1

n
,

then

(s∗n)2 ≥ s2
n −

1

n
.

Since as n→∞, s2
n →∞ and 1

n
→ 0, it follows that (s∗n)2 n→∞−−−→∞, and

1
n

ε2(s∗n)2

n→∞−−−→ 0.

Thus ∑∞
i=rn+1Xni

s∗n

p−→ 0.

Since ∑∞
i=1 Xni

s∗n
=

∑rn
i=1Xni

s∗n
+

∑∞
i=rn+1Xni

s∗n
,

by Slutsky’s Theorem, (6.2) holds if and only if

∑∞
i=1 Xni

s∗n

d−→ N(0, 1). (6.5)

Since

s2
n

(s∗n)2
=

(s∗n)2

(s∗n)2
+

∑∞
i=rn+1 σ

2
ni

(s∗n)2
≤ 1 +

1
n

(s∗n)2

n→∞−−−→ 1,
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and
s2
n

(s∗n)2
≥ 1,

we have
s2
n

(s∗n)2

n→∞−−−→ 1,

and
sn
s∗n

n→∞−−−→ 1.

Again by Slutsky’s theorem, (6.5) is equivalent to

∑∞
i=1 Xni

sn

d−→ N(0, 1).

Similarly, (6.1) holds if and only if

lim
n→∞

s−2
n

rn∑
i=1

∫
|Xni|≥εs∗n

X2
nidP = 0 ∀ε > 0. (6.6)

Next we claim that for any ε > 0 and large enough n, |Xni| ≥ εs∗n if and only if there

exists an ε′ such that |Xni| ≥ ε′sn. Since s2
n ≥ (s∗n)2, if |Xni| ≥ εsn, then |Xni| ≥ ε′s∗n,

where ε′ = ε. On the other hand, if |Xni| ≥ εs∗n, let s2
n − (s∗n)2 = dn, then for a large

enough n

|Xni| ≥ ε
√
s2
n − dn ≥ ε

√
s2
n −

1

n
≥ ε

√
s2
n −

s2
n

2
=

√
1

2
εsn.

The third inequality holds because we assume s2
n

n→∞−−−→∞, which means that 1
n
< s2n

2

for a large enough n. So we can choose an ε′ =
√

1
2
ε. Hence, (6.6) is equivalent to

lim
n→∞

s−2
n

rn∑
i=1

∫
|Xni|≥εsn

X2
nidP = 0 ∀ε > 0. (6.7)



46

Further, (6.7) is also equivalent to

lim
n→∞

s−2
n

∞∑
i=1

∫
|Xni|≥εsn

X2
nidP = 0 ∀ε > 0,

because

lim
n→∞

s−2
n

∞∑
i=1

∫
|Xni|≥εsn

X2
nidP

= lim
n→∞

(
s−2
n

rn∑
i=1

∫
|Xni|≥εsn

X2
nidP + s−2

n

∞∑
i=rn+1

∫
|Xni|≥εsn

X2
nidP

)

≤ lim
n→∞

(
s−2
n

rn∑
i=1

∫
|Xni|≥εsn

X2
nidP + s−2

n

∞∑
i=rn+1

σ2
ni

)

≤ lim
n→∞

(
s−2
n

rn∑
i=1

∫
|Xni|≥εsn

X2
nidP + s−2

n

1

n

)

= lim
n→∞

(
s−2
n

rn∑
i=1

∫
|Xni|≥εsn

X2
nidP + lim

n→∞
(s−2
n

1

n
)

)

= lim
n→∞

(
s−2
n

rn∑
i=1

∫
|Xni|≥εsn

X2
nidP

)
+ 0

= lim
n→∞

(
s−2
n

rn∑
i=1

∫
|Xni|≥εsn

X2
nidP

)
.

This completes the proof.

We will also need a Poisson approximation for sums of infinitely many independent

Bernoulli random variables.

Proposition 2. Suppose that for each n ∈ N, Xn1, Xn2, Xn3, ... is a sequence of

independent random variables such that P (Xnk = 1) = 1 − P (Xnk = 1) = pnk. If

supk pnk → 0 and
∑∞

k=1 pnk → λ ∈ (0,∞), then

Sn =
∞∑
k=1

Xnk
d→ Pois(λ).
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Proof. First, note that for large enough n, the infinite sum converges almost surely by

Theorem 22.6 in [29].Next, note that the moment generating function of Sn is given

by

Mn(t) = exp

{
∞∑
k=1

log
(
1 + (et − 1)pnk

)}
.

For fixed t and large enough n, (et − 1) supk pnk < 1, thus by the Taylor expansion

of the logarithm (see e.g. 4.1.24 in [30]) and the remainder theorem for alternating

series, it follows that

Mn(t) ≤ exp

{
(et − 1)

∞∑
k=1

pnk

}
→ exp{λ(et − 1)}.

Similarly

Mn(t) ≥ exp

{
(et − 1)

∞∑
k=1

pnk − .5(et − 1)2

∞∑
k=1

p2
nk

}

≥ exp

{
(et − 1)

∞∑
k=1

pnk − .5(et − 1)2 sup
k

(pnk)
∞∑
k=1

pnk

}
→ exp{λ(et − 1)},

and the result follows.

6.2 Proofs for Section 2.3

6.2.1 Proofs for Section 2.3.1

Lemma 1. Let Xn and Yn be two sequences of random variables. If XnYn converges

to a distribution and Xn
p−→∞, then Yn

p−→ 0.

Proof. By continuous mapping theorem Xn
p−→ ∞ implies 1

Xn

p−→ 0.Now noting that

Yn = 1
Xn
XnYn and applying Slutsky’s theorem gives Yn

p−→ 0.
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Lemma 2. Assume that sλ →∞ as λ→∞. If

λ

sλ
(Tr(λ)− πr(λ))

d−−−→
λ→∞

N(0, 1), (6.8)

then

E[Nr+1]

sλ
→∞.

Proof. Since

E[Nr+2] =
∑
a∈A

E
[
1[ya(λ)=r+2]

]
=
∑
a∈A

P (ya(λ) = r + 2)

=
∑
a∈A

e−λpa
(λpa)

r+2

(r + 2)!
,

plugging E[Nr+2] into s2
λ gives that

s2
λ = (r + 1)2 E [Nr+1] + (r + 2) (r + 1) E [Nr+2]

= (r + 1)2 E [Nr+1] + (r + 2) (r + 1)
∑
a∈A

e−λpa
(λpa)

r+2

(r + 2)!
.

Then for all ε > 0,

s2
λ = (r + 1)2E [Nr+1] + (r + 1)

∑
a∈A

e−λpa
(λpa)

r+2

(r + 1)!
1[λpa<εsλ]

+ (r + 1)
∑
a∈A

e−λpa
(λpa)

r+2

(r + 1)!
1[λpa≥εsλ]

≤ (r + 1)2 E[Nr+1] + (r + 1)εsλE[Nr+1] +
∑
a∈A

e−λpa
(λpa)

r+2

(r + 1)!
1[λpa≥εsλ],
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and dividing s2
λ on both sides gives that

1 ≤ s−2
λ (r + 1)2 E [Nr+1] + s−1

λ (r + 1)εE [Nr+1] + s−2
λ

∑
a∈A

e−λpa
(λpa)

r+2

(r + 1)!
1[λpa≥εsλ]

= (r + 1)
E[Nr+1]

sλ

(
r + 1

sλ
+ ε

)
+ s−2

λ

∑
a∈A

e−λpa
(λpa)

r+2

(r + 1)!
1[λpa≥εsλ].

Assume that sλ →∞ as n→∞. If (6.8) holds, it follows by Theorem 1 that for all

ε > 0

lim
λ→∞

[
(r + 1)

E[Nr+1]

sλ

(
r + 1

sλ
+ ε

)
+ s−2

λ

∑
a∈A

e−λpa
(λpa)

r+2

(r + 1)!
1[λpa≥εsλ]

]

= lim
λ→∞

(r + 1)
E[Nr+1]

sλ

(
r + 1

sλ
+ ε

)
≥ 1.

Since r+1 ∈ (0,∞), r+1
sλ
→ 0. So we argue by contradiction to show that E[Nr+1]

sλ
→∞.

Suppose that

lim inf
λ

E[Nr+1]

sλ
= c ∈ [0,∞).

Then for all ε > 0 and some c ∈ [0,∞),

lim inf
λ

(r + 1)
E[Nr+1]

sλ

(
r + 1

sλ
+ ε

)
= (r + 1)εc.

Taking 0 < ε < 1
c(r+1)

gives that (r + 1)εc < 1. This is a contradiction. Thus, this

completes the proof of the lemma.

Lemma 3. For t = 0, 1, 2, ...

Var[Nt] ≤ E[Nt].
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Proof. Since for t = 0, 1, 2, ...

Nt =
∑
a∈A

1[ya(λ)=t],

and the indicator function is only of independent random variables ya(λ)’s, it follows

that

Var[Nt] = Var

[∑
a∈A

1[ya(λ)=t]

]

=
∑
a∈A

Var
[
1[ya(λ)=t]

]
≤
∑
a∈A

E
[
12

[ya(λ)=t]

]
=
∑
a∈A

E
[
1[ya(λ)=t]

]
= E

[∑
a∈A

1[ya(λ)=t]

]

= E[Nt],

and this completes the proof of this lemma.

Lemma 4. For c, d ≥ 0 and c+ d > 0. Let

V = cE[Nr+1] + dE[Nr+2]

V̂ = cNr+1 + dNr+2.

We have

Var[V̂ ] ≤ 2(c+ d)E[V̂ ].
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Further, if V →∞ as λ→∞, V̂ is a consistent estimator of V , i.e.,

V̂

V

p→ 1.

Proof. Set κ = 2(c+ d). By plugging in V̂ and V in the left hand side and the right

hand side we get

Var[V̂ ] = Var[cNr+1 + dNr+2]

=c2Var[Nr+1] + d2Var[Nr+2] + 2cdCov[Nr+1, Nr+2]

≤2c2Var[Nr+1] + 2d2Var[Nr+2] + 2cdCov[Nr+1, Nr+2]

≤2c2Var[Nr+1] + 2d2Var[Nr+2] + 2cd(Var[Nr+1] + Var[Nr+2])

=2(c+ d)cVar[Nr+1] + 2(c+ d)dVar[Nr+2]

=κcVar[Nr+1] + κdVar[Nr+2]

≤κcE[Nr+1] + κdE[Nr+2]

=κE[V̂ ],

where the last inequality follows by Lemma 3 and the fourth line holds by the fact

that

Cov(X, Y ) ≤ Var(X) + Var(Y ),

because

Var(X − Y ) = Var(X) + Var(Y )− 2Cov(X, Y ) ≥ 0.
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Now by Chebyshev’s inequality, for all ε > 0

P

(∣∣∣∣∣ V̂V − 1

∣∣∣∣∣ > ε

)
≤

Var
[
V̂
V

]
ε2

=
Var[V̂ ]

ε2V 2

≤ κE[V̂ ]

ε2V 2

≤ κ

ε2V 2
→ 0,

where the last inequality holds because c, d,Nr+1, Nr+2 ≥ 0.

The proof of this lemma is completed.

Proof of Theorem 1. For any k > 0, let f(x) = xke−x for x > 0. Since

f
′
(x) = (kx−1 − 1)xke−x,

it follows that

max
x≥0

f(x) = f(k) = kke−k.

Hence,

0 < σ2
a,λ = (r + 1 + λpa)e

−λpa (λpa)
r+1

r!

≤ (r + 1 + λpa)
r+2e−(r+1+λpa)er+1

≤ (r + 2)r+2e−(r+2)er+1

= (r + 2)r+2e−1.

It follows that since

lim
λ→∞

sλ =∞,
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we have

lim
λ→∞

sup
a∈A

σ2
a,λ

s2
λ

= 0.

From here Proposition 1 implies that asymptotic normality is equivalent to

lim
λ→∞

s−2
λ

∑
a∈A

E
[
Y 2
a 1[|Ya|≥εsλ]

]
= 0 ∀ε > 0.

We now show that this is equivalent to our condition (2.1). Since sλ →∞, we can

take λ large enough that εsλ > (r + 1). Recall that

Ya =


−λpa if ya(λ) = r

r + 1 if ya(λ) = r + 1

0 otherwise

Thus, for such λ, if |Ya| ≥ εsλ, then Ya = −λpa, ya(λ) = r, and Y 2
a = λ2p2

a. We have

[|Ya| ≥ εsλ] = [Ya = −λpa] ∩ [λpa ≥ εsλ] = [ya(λ) = r] ∩ [λpa ≥ εsλ].

It follows that

E
[
Y 2
a 1[|Ya|≥εsλ]

]
= λ2p2

a1[λpa≥εsλ]P (ya = r) = e−λpa
(λpa)

r+2

r!
1[λpa≥εsλ].

Proof of Corollary 1. Note that

Nr = Nr (λ) =
∑
a∈A

1[ya(λ)=r]

πr = πr (λ) =
∑
a∈A

pa1[ya(λ)=r]
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Tr = Tr (λ) =
Nr+1

λ
(r + 1)

s2
λ = (r + 1)2 E[Nr+1] + (r + 2) (r + 1) E[Nr+2].

Since we assume that sλ
λ→∞−−−→∞ and by Lemma 2,

E[Nr+1]→∞. (6.9)

Now for all ε > 0

P

(∣∣∣∣ Nr+1

E[Nr+1]
− 1

∣∣∣∣ > ε

)
= P

(∣∣∣∣ Nr+1

E[Nr+1]
− E

[
Nr+1

E[Nr+1]

]∣∣∣∣ > ε

)
,

and by Chebyshev’s inequality

P

(∣∣∣∣ Nr+1

E[Nr+1]
− E

[
Nr+1

E[Nr+1]

]∣∣∣∣ > ε

)
≤

Var
[

Nr+1

E[Nr+1]

]
ε2

=
Var[Nr+1]

ε2 (E[Nr+1])2 . (6.10)

It follows from (6.10) and Lemma 3 that for all ε > 0

P

(∣∣∣∣ Nr+1

E[Nr+1]
− 1

∣∣∣∣ > ε

)
≤ E[Nr+1]

ε2 (E[Nr+1])2 =
1

ε2E[Nr+1]
,

and together with E [Nr+1]→∞,

lim
λ→∞

P

(∣∣∣∣ Nr+1

E[Nr+1]
− 1

∣∣∣∣ > ε

)
= 0,

i.e.,

Nr+1

E[Nr+1]

p−→ 1. (6.11)
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Since

Nr+1

sλ
=

E[Nr+1]

sλ

Nr+1

E[Nr+1]
,

by continuous mapping theorem Lemma 2 and (6.11) implies that

Nr+1

sλ

p−→∞.

Since r + 1 ∈ (0,∞),

Nr+1(r + 1)

sλ

p−→∞.

Now plugging in

Tr (λ) =
Nr+1

λ
(r + 1) ,

λTr(λ)

sλ
=
Nr+1(r + 1)

sλ

p−→∞.

By the symmetry of Normal distribution (6.8) implies that

λ

sλ
(πr(λ)− Tr(λ))

d−−−→
λ→∞

N(0, 1),

and so

λTr(λ)

sλ

(
πr(λ)

Tr(λ)
− 1

)
d−−−→

λ→∞
N(0, 1).
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Since

λTr(λ)

sλ

p−→∞,

it follows from Lemma 1 that

πr(λ)

Tr(λ)
− 1

p−→ 0.

Therefore,

Tr(λ)

πr(λ)
− 1

p−→ 0.

Proof of Corollary 2. Since (r + 1)2 > 0 and (r + 2)(r + 1) > 0, the result is an

application of Lemma 4.

6.2.2 Proofs for Section 2.3.2

Lemma 5. Assume that sλ →∞ as λ→∞. If

λn
sλn

(Tr,n(λn)− πr,n(λn))
d−−−−→

λn→∞
N(0, 1), (6.12)

then

E[Nr+1,n]

sλn
→∞.

Proof. Since

E[Nr+2,n] =
∑
a∈A

E
[
1[ya,n(λn)=r+2]

]
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=
∑
a∈A

P (ya,n(λn) = r + 2)

=
∑
a∈A

e−λnpa,n
(λnpa,n)r+2

(r + 2)!
,

plugging E[Nr+2,n] into s2
λn

gives that

s2
λn = (r + 1)2 E [Nr+1,n] + (r + 2) (r + 1) E [Nr+2,n]

= (r + 1)2 E [Nr+1,n] + (r + 2) (r + 1)
∑
a∈A

e−λnpa,n
(λnpa,n)r+2

(r + 2)!
.

Then for all ε > 0

s2
λn = (r + 1)2 E [Nr+1,n] + (r + 1)

∑
a∈A

e−λnpa,n
(λnpa,n)r+2

(r + 1)!
1[λnpa,n<εsλn ]

+ (r + 1)
∑
a∈A

e−λnpa,n
(λnpa,n)r+2

(r + 1)!
1[λnpa,n≥εsλn ]

≤ (r + 1)2 E[Nr+1,n] + (r + 1)εsλnE[Nr+1,n] +
∑
a∈A

e−λnpa,n
(λnpa,n)r+2

(r + 1)!
1[λnpa,n≥εsλn ],

and dividing s2
λn

on both sides gives that

1 ≤s−2
λn

(r + 1)2 E [Nr+1,n] + s−1
λn

(r + 1)εE [Nr+1,n]

+ s−2
λn

∑
a∈A

e−λnpa,n
(λnpa,n)r+2

(r + 1)!
1[λnpa,n≥εsλn ]

=(r + 1)
E[Nr+1,n]

sλn

(
r + 1

sλn
+ ε

)
+ s−2

λn

∑
a∈A

e−λnpa,n
(λnpa,n)r+2

(r + 1)!
1[λnpa,n≥εsλn ].

Assume that sλn → ∞ as n → ∞. If (6.12) holds, it follows by Theorem 2 that for

all ε > 0

lim
λn→∞

[
(r + 1)

E[Nr+1,n]

sλn

(
r + 1

sλn
+ ε

)
+ s−2

λn

∑
a∈A

e−λnpa,n
(λnpa,n)r+2

(r + 1)!
1[λnpa,n≥εsλn ]

]

= lim
λn→∞

(r + 1)
E[Nr+1,n]

sλn

(
r + 1

sλn
+ ε

)
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≥ 1.

Since r + 1 ∈ (0,∞), r+1
sλn
→ 0, and so we argue by contradiction to show that

E[Nr+1,n]

sλn
→∞. Suppose that

lim inf
λn

E[Nr+1,n]

sλn
= c ∈ [0,∞).

Then for all ε > 0 and some c ∈ [0,∞)

lim inf
λn

(r + 1)
E[Nr+1,n]

sλn

(
r + 1

sλn
+ ε

)
= (r + 1)εc.

Taking 0 < ε < 1
c(r+1)

gives that (r + 1)εc < 1. This is a contradiction. Thus, this

completes the proof.

Lemma 6. For t = 0, 1, 2, ...

Var[Nt,n] ≤ E[Nt,n].

Proof. Since for t = 0, 1, 2, ...

Nt,n =
∑
a∈A

1[ya,n(λn)=t],

and the indicator function is only of independent random variables ya,n(λn)’s, it fol-

lows that

Var[Nt,n] = Var

[∑
a∈A

1[ya,n(λn)=t]

]

=
∑
a∈A

Var
[
1[ya,n(λn)=t]

]
≤
∑
a∈A

E
[
12

[ya,n(λn)=t]

]
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=
∑
a∈A

E
[
1[ya(λn)=t]

]
= E

[∑
a∈A

1[ya,n(λn)=t]

]

= E[Nt,n],

and this completes the proof of the lemma.

Lemma 7. For c, d ≥ 0 and c+ d > 0. Let

Mn = cE[Nr+1,n] + dE[Nr+2,n]

M̂n = cNr+1,n + dNr+2,n.

We have

Var[M̂n] ≤ 2(c+ d)E[M̂n].

Further, if Mn →∞ as λn →∞, M̂n is a consistent estimator of Mn, i.e.,

M̂n

Mn

p→ 1.

Proof. Set κ = 2(c + d). By plugging M̂n in the left hand side and the right hand

side, we have

Var[M̂n] =Var[cNr+1,n + dNr+2,n]

=c2Var[Nr+1,n] + d2Var[Nr+2,n] + 2cdCov[Nr+1,n, Nr+2,n]

≤2c2Var[Nr+1,n] + 2d2Var[Nr+2,n] + 2cdCov[Nr+1,n, Nr+2,n]

≤2c2Var[Nr+1,n] + 2d2Var[Nr+2,n] + 2cd(Var[Nr+1,n] + Var[Nr+2,n])

=2(c+ d)cVar[Nr+1,n] + 2(c+ d)dVar[Nr+2,n]
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=κcVar[Nr+1,n] + κdVar[Nr+2,n]

≤κcE[Nr+1,n] + κdE[Nr+2,n]

=κE[M̂n],

where the last inequality follows by Lemma 6 and the fourth line holds by the fact

that

Cov(X, Y ) ≤ Var(X) + Var(Y ),

because

Var(X − Y ) = Var(X) + Var(Y )− 2Cov(X, Y ) ≥ 0.

Now by Chebyshev’s inequality, for all ε > 0

P

(∣∣∣∣∣M̂n

Mn

− 1

∣∣∣∣∣ > ε

)
≤

Var
[
M̂n

Mn

]
ε2

=
Var[M̂n]

ε2M2
n

≤ κE[M̂n]

ε2M2
n

≤ κ

ε2M2
n

→ 0,

where the last inequality holds because c, d,Nr+1,n, Nr+2,n ≥ 0.

This completes the proof.

Proof of Theorem 2. For any k > 0, let f(x) = xke−x for x > 0. Since

f
′
(x) = (kx−1 − 1)xke−x,
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it follows that

max
x≥0

f(x) = f(k) = kke−k.

Hence,

0 < σ2
a,λn = (r + 1 + λn)e−λnpa,n

(λnpa,n)r+1

r!

≤ (r + 1 + λnpa,n)r+2e−(r+1+λnpa,n)er+1

≤ (r + 2)r+2e−(r+2)er+1

= (r + 2)r+2e−1.

It follows that since

lim
n→∞

sλn =∞,

we have

lim
n→∞

sup
a∈A

σ2
a,λn

s2
λn

= 0.

From here Proposition 1 implies that asymptotic normality is equivalent to

lim
n→∞

s−2
λn

∑
a∈A

E
[
Y 2
a,n1[|Ya,n|≥εsλn ]

]
= 0 ∀ε > 0.

We now show that this is equivalent to (2.3). Since sλn →∞, we can take λn large

enough that εsλn > (r + 1). Recall that

Ya,n =


−λnpa,n if ya,n(λn) = r

r + 1 if ya,n(λn) = r + 1

0 otherwise
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Thus, for such λn, if |Ya| ≥ εsλn , then Ya,n = −λnpa,n, ya,n(λn) = r, and Y 2
a,n = λ2

np
2
a,n.

We have

[|Ya,n| ≥ εsλn ] = [Ya,n = −λnpa,n] ∩ [λnpa,n ≥ εsλn ] = [ya,n(λn) = r] ∩ [λnpa,n ≥ εsλn ].

It follows that

E
[
Y 2
a,n1[|Ya,n|≥εsλn ]

]
= λ2

np
2
a,n1[λnpa,n≥εsλn ]P (ya,n = r)

= e−λnpa,n
(λnpa,n)r+2

r!
1[λnpa,n≥εsλn ].

Proof of Corollary 3. Note that

Nr,n =
∑
a∈A

1[ya,n(λn)=r]

πr,n =
∑
a∈A

pa,n1[ya,n(λn)=r]

Tr,n =
Nr+1,n

λn
(r + 1)

s2
λn = (r + 1)2 E [Nr+1,n] + (r + 2) (r + 1) E [Nr+2,n] .

Since we assume that sλn
λn→∞−−−−→∞ and by Lemma 5,

E [Nr+1,n]→∞. (6.13)

Now for all ε > 0

P

(∣∣∣∣ Nr+1,n

E[Nr+1,n]
− 1

∣∣∣∣ > ε

)
= P

(∣∣∣∣ Nr+1,n

E[Nr+1,n]
− E

[
Nr+1,n

E[Nr+1,n]

]∣∣∣∣ > ε

)
,



63

and by Chebyshev’s inequality

P

(∣∣∣∣ Nr+1,n

E[Nr+1,n]
− E

[
Nr+1,n

E[Nr+1,n]

]∣∣∣∣ > ε

)
≤

Var
[

Nr+1,n

E[Nr+1,n]

]
ε2

=
Var[Nr+1,n]

ε2 (E[Nr+1,n])2 . (6.14)

It follows from (6.14) and Lemma 6 that for all ε > 0

P

(∣∣∣∣ Nr+1,n

E[Nr+1,n]
− 1

∣∣∣∣ > ε

)
≤ E[Nr+1,n]

ε2 (E[Nr+1,n])2 =
1

ε2E[Nr+1,n]
,

and together with E [Nr+1,n]→∞,

lim
λn→∞

P

(∣∣∣∣ Nr+1,n

E[Nr+1,n]
− 1

∣∣∣∣ > ε

)
= 0,

i.e.,

Nr+1,n

E[Nr+1,n]

p−→ 1 (6.15)

Since

Nr+1,n

sλn
=

E[Nr+1,n]

sλn

Nr+1,n

E[Nr+1,n]
,

by continuous mapping theorem Lemma 5 and (6.15) imply that

Nr+1,n

sλn

p−→∞.

Since r + 1 ∈ (0,∞),

Nr+1,n(r + 1)

sλn

p−→∞.
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Now plugging in

Tr,n (λn) =
Nr+1,n

λn
(r + 1) ,

λnTr,n(λn)

sλn
=
Nr+1,n(r + 1)

sλn

p−→∞.

By the symmetry of Normal distribution (6.12) implies that

λn
sλn

(πr,n(λn)− Tr,n(λn))
d−−−−→

λn→∞
N(0, 1),

and so

λnTr,n(λn)

sλn

(
πr,n(λn)

Tr,n(λn)
− 1

)
d−−−−→

λn→∞
N(0, 1).

Since

λTr,n(λn)

sλn

p−→∞,

it follows from Lemma 1 that

πr,n(λn)

Tr,n(λn)
− 1

p−→ 0.

Therefore,

Tr,n(λn)

πr,n(λn)
− 1

p−→ 0.
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Proof of Theorem 3. First, for any ε > 0, the fact that (2.3) holds gives

E[Nr+2,n] =
∑
a∈A

(λnpa,n)r+2 e
−λnpa,n

(r + 2)!
1[λnpa,n≤εsr,λn,n]

+
∑
a∈A

(λnpa,n)r+2 e
−λnpa,n

(r + 2)!
1[λnpa,n>εsr,λn,n]

≤ sr,λn,nεE[Nr+1,n] +
∑
a∈A

(λnpa,n)r+2e−λnpa,n1[λnpa,n>εsr,λn,n]

≤ s2
r,λn,nε+

∑
a∈A

(λnpa,n)r+2e−λnpa,n1[λnpa,n>εsr,λn,n] → c2ε,

which implies that E[Nr+2,n]→ 0 and hence that E[Nr+1,n]→ c∗.

Next, note that λn
r+1

E[πr,n]→ c∗ by (2.2) and that

Var

(
λn
r + 1

πr,n(λn)

)
=

1

(r + 1)2

∑
a∈A

(λnpa,n)2Var
(
1[ya,n(λn)=r]

)
≤ 1

(r + 1)2

∑
a∈A

(λnpa,n)2P (ya,n (λn) = r)

=
r + 2

r + 1
E[Nr+2,n]→ 0.

From here the first convergence in (2.4) follows by the well known presentation of

mean square error as the sum of the variance and the square of the bias. The second

convergence follows from the first and Markov’s inequality.

Finally, note that

λn
r + 1

Tr,n(λn) = Nr+1,n(λn) =
∑
a∈A

1[ya,n(λn)=r+1]

is the sum of independent Bernoulli random variables. We just need to check that

the Poisson approximation to the binomial holds. By Proposition 2 this holds so long

as supa∈A P (ya,n (λn) = r + 1)→ 0. Note that

P (ya,n (λn) = r + 1) = e−pa,nλn
(pa,nλn)r+1

(r + 1)!
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=
1

(r + 1)!

(
e−pa,nλn(r+2)/(r+1)(pa,nλn)r+2

)(r+1)/(r+2)

≤ 1

(r + 1)!

(∑
a∈A

e−pa,nλn(pa,nλn)r+2

)(r+1)/(r+2)

=
((r + 2)!)(r+1)/(r+2)

(r + 1)!
(E[Nr+2,n])(r+1)/(r+2) → 0,

and the result follows.

6.3 Proofs for Section 2.4

The proof of main results in Section 2.4.2 is based on approximating the distribution

in the Deterministic case with the distribution in the Poisson case, and we call this

process “depoissonization”. Toward this end, we introduce a model that contains both

of these with both the fixed and changing distributions. Details of the model are given

in the following sections of proofs.

6.3.1 Proofs for Section 2.4.1

First, we explain our model. Assume that we are sampling observations following

a Poisson Process with rate 1, denoted as C = {Cλ : λ ≥ 0}.

For n = 1, 2, 3, . . . , let tn = min{λ ≥ 0 : Cλ = n} be the arrival time on the

nth observation. If we stop sampling at time tn, then the sample is of size n and we

have the deterministic model studied in Section 2.4.1. Whereas, if we consider the

sample taken at time λ, then the sample size is Cλ and we have the Poisson model

studied in Section 2.3.1 with λ = n. Observe that E[Cn] = n = Ctn . Thus, we expect

to have the same sample sizes in those two sampling schemes. When the sample

size is the deterministic n at a random sampling time tn, we use notations defined

in Section 2.4.1; while, when the sample size is a random Cλ at the deterministic

sampling time λ, we use notations defined in Section 2.3.1. Further, let

ξn = n(T ′r(n)− π′r(n))
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be the Deterministic version, and

ζλ = λ(Tr(λ)− πr(λ))

be the Poissonized version. Observe that y′a(n) = ya(tn), and tn follows a gamma

distribution with both mean and variance n. Note that for ξn we have a deterministic

sample size n at a random time tn, whereas for ζλ we have a random sample size N

at a fixed time λ. Also note that

ζtn =
tn
n
ξn.

To find a necessary and sufficient condition for asymptotic normality of ξn, we use

the asymptotic normality of ζλ and show that ξn − ζλ
p−→ 0, specifically when λ = n.

Before giving the proof of Theorem 4 for the Deterministic case with fixed distri-

bution, we prepare several lemmas.

Lemma 8. For any λ > 0 and ∆ ∈ (0, λ), we have

E

[
sup

λ<t<λ+∆
|ζt − ζλ|

]
≤ H(λ,∆)

and

E

[
sup

λ−∆
2
<t<λ+ ∆

2

|ζt − ζλ|

]
≤ 2H(λ− ∆

2
,∆),

where for some constant C > 0,

H(λ,∆) = C
∆

λ
s2
λ.
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Proof. Recall that for any λ > 0 we have

ζλ = λ (Tr(λ)− πr(λ)) =
∑
a∈A

Ya(λ),

and

Ya = (r + 1) 1[ya(λ)=r+1] − λpa1[ya(λ)=r].

Fix t > λ and note that ya(t) ≥ ya(λ) because greater arrival time yields more or

equal arrivals in a Poisson process and

Ya(t)− Ya(λ) =1[ya(λ)<r]Ya(t) + 1[ya(λ)]≥r]Ya(t)

− Ya(λ)1[ya(t)>ya(λ)] − Ya(λ)1[ya(t)=ya(λ)]

=− Ya(λ)1[ya(t)>ya(λ)] + 1[ya(λ)<r]Ya(t)

− Ya(λ)1[ya(t)=ya(λ)] + 1[ya(λ)]≥r]Ya(t).

Since

− Ya(λ)1[ya(t)=ya(λ)] + 1[ya(λ)]≥r]Ya(t)

=− (r + 1)1[ya(λ)=r+1]1[ya(t)=ya(λ)] + λpa1[ya(λ)=r]1[ya(t)=ya(λ)]

+ (r + 1)1[ya(t)=r+1]1[ya(λ)≥r] − tpa1[ya(t)=r]1[ya(λ)≥r]

=− (r + 1)1[ya(λ)=r+1]1[ya(t)=r+1] + λpa1[ya(λ)=r]1[ya(t)=r]

+ (r + 1)1[ya(t)=r+1]1[ya(λ)=r+1] + (r + 1)1[ya(t)=r+1]1[ya(λ)=r] − tpa1[ya(t)=r]1[ya(λ)=r]

=(r + 1)1[ya(t)=r+1]1[ya(λ)=r] − (t− λ)pa1[ya(t)=r]1[ya(λ)=r]

=1[ya(λ)=r]((r + 1)1[ya(t)=r+1] − (t− λ)pa1[ya(t)=r]),
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then

Ya(t)− Ya(λ) =− Ya(λ)1[ya(t)>ya(λ)] + 1[ya(λ)<r]Ya(t)

+ 1[ya(λ)=r]((r + 1)1[ya(t)=r+1] − (t− λ)pa1[ya(t)=r]).

Now note that

|
∑
a∈A

(Ya(t)− Ya(λ))|

≤|
∑
a∈A

Ya(λ)1[ya(t)>ya(λ)]|+ |
∑
a∈A

1[ya(λ)<r]Ya(t)|

+ |
∑
a∈A

1[ya(λ)=r]((r + 1)1[ya(t)=r+1] − (t− λ)pa1[ya(t)=r])|

≤(r + 1)
∑
a∈A

1[ya(λ)=r+1]1[ya(t)>ya(λ)] + λ
∑
a∈A

pa1[ya(λ)=r]1[ya(t)>ya(λ)]

+ (r + 1)
∑
a∈A

1[ya(t)=r+1]1[ya(λ)<r] + t
∑
a∈A

pa1[ya(t)=r]1[ya(λ)<r]

+ (r + 1)
∑
a∈A

1[ya(λ)=r]1[ya(t)=r+1] +
∑
a∈A

|t− λ|pa1[ya(λ)=r]1[ya(t)=r].

Now set

A1
t =

∑
a∈A

1[ya(λ)=r+1]1[ya(t)>ya(λ)]

A2
t = λ

∑
a∈A

pa1[ya(λ)=r]1[ya(t)>ya(λ)]

B1
t =

∑
a∈A

1[ya(t)=r+1]1[ya(λ)<r]

B2
t = t

∑
a∈A

pa1[ya(t)=r]1[ya(λ)<r]

Ct =
∑
a∈A

1[ya(λ)=r]1[ya(t)=r+1]

Dt =
∑
a∈A

|t− λ|pa1[ya(λ)=r]1[ya(t)=r],
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then

|ζt − ζλ| = |
∑
a∈A

(Ya(t)− Ya(λ))|

≤ (r + 1)A1
t + A2

t + (r + 1)B1
t +B2

t + (r + 1)Ct +Dt.

We are going to find the bounds for each element.

Bounds for Ct and Dt:

Ct =
∑
a∈A

1[ya(λ)=r]1[ya(t)=r+1]

Dt =
∑
a∈A

|t− λ|pa1[ya(λ)=r]1[ya(t)=r]

By Fubini’s Theorem and the fact that Poisson processes have independent incre-

ments,

E

[
sup

λ<t<λ+∆
Ct

]
≤

[
E sup
λ<t<λ+∆

∑
a∈A

1[ya(λ)=r]1[ya(t)>ya(λ)]

]

≤ E

[∑
a∈A

1[ya(λ)=r]1[ya(λ+∆)>ya(λ)]

]
(Note : t < λ+ ∆)

=
∑
a∈A

P (ya(λ) = r)P (ya(λ+ ∆) > ya(λ))

=
∑
a∈A

λr

r!
e−λpapra(1− e−∆pa)

=
λr

r!

∑
a∈A

e−λpapra(1− e−∆pa)

≤ λr
∑
a∈A

e−λpapra(1− e−∆pa)

≤ λr
∑
a∈A

e−λpapra∆pa

= ∆λr
∑
a∈A

e−λpapr+1
a ,
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where the last inequality follows by the fact that 1− e−x ≤ x for x > 0.

By similar arguments,

E

[
sup

λ<t<λ+∆
Dt

]
≤ E

[∑
a∈A

∆pa1[ya(λ) = r]

]
(Note : ∆ > t− λ > 0)

= ∆
∑
a∈A

paP (ya(λ) = r)

= ∆
λr

r!

∑
a∈A

e−λpapr+1
a

≤ ∆λr
∑
a∈A

e−λpapr+1
a .

Bound for B1
t and B2

t :

B1
t =

∑
a∈A

1[ya(t)=r+1]1[ya(λ)<r]

B2
t = t

∑
a∈A

pa1[ya(t)=r]1[ya(λ)<r]

Clearly, if r = 0, then

E

[
sup

λ<t<λ+∆
B1
t

]
= E

[
sup

λ<t<λ+∆
B2
t

]
= 0.

Now, assume that r ≥ 1. Note that by independent and stationary increments

E

[
sup

λ<t<λ+∆
B1
t

]
≤ E

[
sup

λ<t<λ+∆

∑
a∈A

r−1∑
i=0

1[ya(t)>r]1[ya(λ)=i]

]

= E

[
sup

λ<t<λ+∆

∑
a∈A

r−1∑
i=0

1[ya(t)−ya(λ)>r−i]1[ya(λ)=i]

]

≤
∑
a∈A

r−1∑
i=0

E
[
1[ya(λ+∆)−ya(λ)>r−i]1[ya(λ)=i]

]
=
∑
a∈A

r−1∑
i=0

P (ya(∆) > r − i)P (ya(λ) = i)



72

≤
∑
a∈A

r−1∑
i=0

(∆pa)
r−i+1

(r − i+ 1)!
e−λpa

(paλ)i

i!

≤ ∆λr
∑
a∈A

r−1∑
i=0

pr+1
a e−λpa = r∆λr

∑
a∈A

pr+1
a e−λpa ,

where we use the fact that for any integer k ≥ 0

P (ya(∆) > k) = 1−
k∑
j=0

e−∆pa
(∆pa)

j

j!
≤ (∆pa)

k+1

(k + 1)!
,

which follows since for any x > 0 we have 1− e−x
∑k

i=0 x
j/j! ≤ xk+1/(k+ 1)!, see e.g.

Lemma 1 in [31]. Similarly, for B2
t we have

E

[
sup

λ<t<λ+∆
B2
t

]
≤ E

[
sup

λ<t<λ+∆
t
∑
a∈A

r−1∑
i=0

pa1[ya(t)>r−1]1[ya(λ)=i]

]

≤ (λ+ ∆)
∑
a∈A

r−1∑
i=0

paE
[
1[ya(λ+∆)−ya(λ)>r−1−i]1[ya(λ)=i]

]
= (λ+ ∆)

∑
a∈A

r−1∑
i=0

paP (ya(∆) > r − 1− i)P (ya(λ) = i)

≤ 2λ
∑
a∈A

r−1∑
i=0

pa(∆pa)
r−ie−λpa(λpa)

i

≤ 2r∆λr
∑
a∈A

pr+1
a e−λpa .

Bound for A1
t and A2

t :

A1
t =

∑
a∈A

1[ya(λ)=r+1]1[ya(t)>ya(λ)]

A2
t = λ

∑
a∈A

pa1[ya(λ)=r]1[ya(t)>ya(λ)]
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The proof for A1
t is similar to the proof for Ct. Here

E

[
sup

λ<t<λ+∆
A1
t

]
≤ E

[∑
a∈A

1[ya(λ)=r+1]1[ya(λ+∆)>ya(λ)]

]

=
∑
a∈A

P (ya(λ) = r + 1)P ((ya(λ+ ∆)− ya(λ)) > 0)

=
λr+1

(r + 1)!

∑
a∈A

pr+1
a e−λpa(1− e−∆pa)

≤ λr+1

(r + 1)
∆
∑
a∈A

pr+2
a e−λpa .

Next, by Fubini’s theorem and independent increments we have

E

[
sup

λ<t<λ+∆
A2
t

]
≤ E

[
λ
∑
a∈A

pa1[ya(λ)=r]1[ya(λ+∆)>ya(λ)]

]

= λ
∑
a∈A

paP (ya(λ) = r)P (ya(λ+ ∆) > ya(λ))

=
λr+1

r!

∑
a∈A

pr+1
a e−λpa(1− e−∆pa)

≤ λr+1

r!
∆
∑
a∈A

pr+2
a e−λpa

≤ λr+1∆
∑
a∈A

pr+2
a e−λpa ,

which completes the proof of this part. Now putting everything together gives the

first bound:

E

[
sup

λ<t<λ+∆
|ζt − ζλ|

]
=E

[
sup

λ<t<λ+∆

(
(r + 1)A1

t + A2
t + (r + 1)B1

t +B2
t + (r + 1)Ct +Dt

)]
≤(r + 1)

λr+1

(r + 1)
∆
∑
a∈A

pr+2
a e−λpa + λr+1∆

∑
a∈A

pr+2
a e−λpa

+ (r + 1)r∆λr
∑
a∈A

pr+1
a e−λpa + 2r∆λr

∑
a∈A

pr+1
a e−λpa
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+ (r + 1)∆λr
∑
a∈A

e−λpapr+1
a

+ ∆λr
∑
a∈A

e−λpapr+1
a

=2∆
λr+1

r!

∑
a∈A

e−λpapr+2
a + (r2 + 4r + 2)∆λr

∑
a∈A

e−λpapr+1
a

=
∆

λ

(
(r2 + 4r + 2)λr+1

∑
a∈A

e−λpapr+1
a +

2λr+2

r!

∑
a∈A

e−λpapr+2
a

)

=H(λ,∆)

=C
∆

λ
s2
λ,

which can be the upper bounded as required. From here applying the first bound

twice gives

E

[
sup

λ−∆
2
<t<λ+ ∆

2

|ζt,n − ζλ,n|

]
≤ E

[
sup

λ−∆
2
<t<λ+ ∆

2

|ζt,n − ζλ−∆/2,n|

]

+ E
[
|ζλ−∆/2,n − ζλ,n|

]
≤ 2H

(
λ− ∆

2
,∆

)
.

Lemma 9. Let 0 < λ′ < λ <∞. For any ε > 0,

(
λ′

λ
)r+2s2

λ ≤ (sλ′)
2 ≤ eεs2

λ + (r + 1 + λ)λr+1e−
λ′ε
λ−λ′ . (6.16)

Further, let λn and λ′n be two sequences of numbers. If 0 < λ′n < λn < ∞, λn ∼ λ′n,

lim supn(λn
λ′n
− 1)λδn <∞ for some δ > 0, and lim infn sλn > 0, then

sλn ∼ sλ′n .
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Proof. Let 0 < λ′ < λ <∞, then

(
λ′

λ
)r+2s2

λ = (
λ′

λ
)r+2

∑
a∈A

(
(r + 1 + λpa)e

−λpa (λpa)
r+1

r!

)
=

(λ′)r+2

λ

∑
a∈A

(
(r + 1 + λpa)e

−λpa p
r+1
a

r!

)
=
λ′

λ

∑
a∈A

(
(r + 1 + λpa)e

−λpa (λ′pa)
r+1

r!

)
=
∑
a∈A

(
λ′

λ
(r + 1)e−λpa

(λ′pa)
r+1

r!
+ λ′pae

−λpa (λ′pa)
r+1

r!

)
≤
∑
a∈A

(
(r + 1)e−λ

′pa
(λ′pa)

r+1

r!
+ λ′pae

−λpa (λ′pa)
r+1

r!

)
=
∑
a∈A

(
(r + 1 + λ′pa)e

−λ′pa (λ′pa)
r+1)

r!

)
= (sλ′)

2,

and for any ε > 0

(sλ′)
2 ≤

∑
a∈A

(
(r + 1 + λpa)e

−λ′pa (λpa)
r+1

r!

)
=
∑
a∈A

(
(r + 1 + λpa)e

−λ′pa (λpa)
r+1

r!
1[(λ−λ′)pa≤ε]

)
+
∑
a∈A

(
(r + 1 + λpa)e

−λ′pa (λpa)
r+1

r!
1[(λ−λ′)pa>ε]

)
=
∑
a∈A

(
(r + 1 + λpa)e

−λ′pa(e(λ′−λ)pae−(λ′−λ)pa)
(λpa)

r+1

r!
1[(λ−λ′)pa≤ε]

)
+
∑
a∈A

(
(r + 1 + λpa)e

−λ′pa (λpa)
r+1

r!
1[(λ−λ′)pa>ε]

)
=
∑
a∈A

(
(r + 1 + λpa)e

−λpae(λ−λ′)pa (λpa)
r+1

r!
1[(λ−λ′)pa≤ε]

)
+
∑
a∈A

(
(r + 1 + λpa)e

−λ′pa (λpa)
r+1

r!
1[(λ−λ′)pa>ε]

)
≤
∑
a∈A

(
(r + 1 + λpa)e

−λpaeε
(λpa)

r+1

r!
1[(λ−λ′)pa≤ε]

)
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+
∑
a∈A

(
(r + 1 + λpa)e

−λ′pa (λpa)
r+1

r!
1[(λ−λ′)pa>ε]

)
≤eε

∑
a∈A

(
(r + 1 + λpa)e

−λpa (λpa)
r+1

r!

)
+
∑
a∈A

(
(r + 1 + λpa)e

−λ′pa (λpa)
r+1

r!
1[(λ−λ′)pa>ε]

)
=eεs2

λ +
∑
a∈A

(
(r + 1 + λpa)e

−λ′pa (λpa)
r+1

r!
1[(λ−λ′)pa>ε]

)
≤eεs2

λ +
∑
a∈A

(
(r + 1 + λpa)e

− ε
λ−λ′ λ

′
(λpa)

r+11[(λ−λ′)pa>ε]

)
(Note: pa > ε

λ−λ′ )

≤eεs2
λ +

∑
a∈A

(
(r + 1 + λ)e−

λ′ε
λ−λ′ (λpa)

r+11[(λ−λ′)pa>ε]

)
=eεs2

λ + (r + 1 + λ)λr+1e−
λ′ε
λ−λ′

∑
a∈A

(
(pa)

r+11[(λ−λ′)pa>ε]
)

≤eεs2
λ + (r + 1 + λ)λr+1e−

λ′ε
λ−λ′

∑
a∈A

(pa)
r+1

≤eεs2
λ + (r + 1 + λ)λr+1e−

λ′ε
λ−λ′

∑
a∈A

pa

=eεs2
λ + (r + 1 + λ)λr+1e−

λ′ε
λ−λ′ .

This gives (6.16).

By (6.16), we have

(
λ′n
λn

)r+2s2
λn ≤ s2

λ′n
≤ eεs2

λn + (r + 1 + λn)λr+1
n e

− λ′nε
λn−λ′n . (6.17)

Since lim infn sλn > 0, dividing s2
λn

from each side of (6.17) gives

(
λ′n
λn

)r+2 ≤
s2
λ′n

s2
λn

≤ eε +
1

s2
λn

(r + 1 + λn)λr+1
n e

− ε
λn
λ′n
−1 ∀ε > 0. (6.18)

By assuming that λn ∼ λ′n, the first half of (6.18) gets

lim
n→∞

s2
λ′n

s2
λn

≥ 1. (6.19)
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Now we turn to the second half of (6.18).

Fix ε′ > 0, we can choose an ε > 0 such that

eε ≤ 1 +
ε′

2
. (6.20)

By assuming that lim supn(λn
λ′n
− 1)λδn <∞ for some δ > 0, there exists an L > 0 such

that for large enough n,

e
− ελδn

(λn
λ′n
−1)λδn ≤ e−

ελδn
2L .

So we have

1

s2
λn

(r + 1 + λn)λr+1
n e

− ε
λn
λ′n
−1

≤ 1

s2
λn

(r + 1 + λn)λr+1
n e−

ελδn
2L .

Since we assume that lim infn sλn > 0,

lim sup
n

1

s2
λn

<∞.

Then for such ε and δ,

lim
n→∞

1

s2
λn

(r + 1 + λn)λr+1
n e−

ελδn
2L = 0. (6.21)

Since (6.21) holds, there exists an Nε,ε′ > 0 such that if n ≥ Nε,ε′ ,

1

s2
λn

(r + 1 + λn)λr+1
n e−

ελδn
2L ≤ ε′

2
. (6.22)
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Combining (6.20) and (6.22) gives

lim
n→∞

(
eε +

1

s2
λn

(r + 1 + λn)λr+1
n e

− ε
λn
λ′n
−1

)
= lim

n→∞
eε + lim

n→∞

(
1

s2
λn

(r + 1 + λn)λr+1
n e

− ε
λn
λ′n
−1

)
≤(1 +

ε′

2
) +

ε′

2

≤1 + ε′.

Since ε′ is arbitrary, we get

lim
n→∞

s2
λ′n

s2
λn

≤ 1 ∀ε′ > 0. (6.23)

Combining (6.19) and (6.23) gets

lim
n→∞

s2
λ′n

s2
λn

= 1 (i.e.,s2
λ′n
∼ s2

λn),

then

sλ′n ∼ sλn ,

which completes the proof.

Lemma 10. If sn →∞ and

sn√
n
→ 0,

then

|ξn − ζn|
sn

p−→ 0.
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Proof. Fix ε, δ > 0.We must show that there exists a K > 0 such that, if n ≥ K then

P (|ξn − ζn| > snε) < δ.

Fix ∆n =
√

8n
δ
. Let tn be the nth arrival time of the Poisson process N . Thus

Ntn = n. Note that y′a(n) = ya(tn). It follows that

ξn − ζtn

=
∑
a∈A

((
(r + 1)1[y′a(n)=r+1] − npa1[y′a(n)=r]

)
−
(
(r + 1)1[y′a(n)=r+1] − tnpa1[y′a(n)=r]

))
= (tn − n)

∑
a∈A

pa1[y′a(n)=r].

Further, on the event [|tn − n| ≤ ∆n

2
],

|ξn − ζn| ≤ |ξn − ζtn|+ |ζtn − ζn|

= |tn − n|
∑
a∈A

pa1[y′a(n)=r] + |ζtn − ζn|

≤ (0.5)∆n

∑
a∈A

pa1[y′a(n)=r] + sup
n−∆n

2
≤t≤n+ ∆n

2

|ζt − ζn|.

We have

P (|ξn − ζn| > snε)

=P

(
|ξn − ζn| > snε, |tn − n| >

∆n

2

)
+ P

(
|ξn − ζn| > snε, |tn − n| ≤

∆n

2

)
≤P

(
|tn − n| >

∆n

2

)
+ P

((
(0.5)∆n

∑
a∈A

pa1[y′a(n)=r] + sup
n−∆n

2
≤t≤n+ ∆n

2

|ζt − ζn|

)
> snε

)
.
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Since tn has a gamma distribution with both mean and variance n, it follows that,

by Chebyshev’s inequality,

P (|tn − n| > .5∆n) ≤ 4
n

∆2
n

=
δ

2
.

By Markov’s inequality,

P

((
(0.5)∆n

∑
a∈A

pa1[y′a(n)=r] + sup
n−∆n

2
≤t≤n+ ∆n

2

|ζt − ζn|

)
> snε

)

≤ ε−1s−1
n E

[
sup

n−∆n
2
≤t≤n+ ∆n

2

|ζt − ζn|+ (0.5)∆n

∑
a∈A

pa1[y′a(n)=r]

]

= ε−1s−1
n E

[
sup

n−∆n
2
≤t≤n+ ∆n

2

|ζt − ζn|

]
+ ε−1s−1

n E

[
(0.5)∆n

∑
a∈A

pa1[y′a(n)=r]

]
.

Since for large enough n, we have ∆ ∈ (0, n). It follows from Lemma 8 that

s−1
n E

[
sup

n−∆n
2
≤tn≤n+ ∆n

2

|ζtn,n − ζn,n|

]

≤ s−1
n 2H(λ− ∆n

2
,∆n)

= 2Cs−1
n

∆n

n−∆n/2
s2
n−∆n/2,n

∼ 2C
√

8/δ
1√
n
sn → 0,

where sn−∆n/2,n ∼ sn by Lemma 9. We just need to verify that the assumptions of

that lemma hold.

Let λ′n = n− ∆n

2
, then

H(n− ∆n

2
,∆n) = H(λ′n,∆n),
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and

λ′n
n

=
n− ∆n

2

n
= 1−

∆n

2

n
.

Since ∆n =
√

8n
δ
,

lim
n→∞

∆n

2

n
= lim

n→∞

√
8/δ

n
= 0.

Then

lim
n→∞

λ′n
n

= 1− lim
n→∞

∆n

2

n
= 1,

(i.e. λ′n ∼ n). Since

(
n

λ′n
− 1)nδ

′
=

nδ
′
∆n

2n−∆n

=
nδ
′
k
√
n

n− k
√
n

(Note: let k =
√

2/δ)

=
k

2n1/2−δ′ − kn−δ′
,

if we fix δ′ ∈ (0, 1/2),

lim
n→∞

(
n

λ′n
− 1)nδ

′
= 0.

Thus, there exists an δ′ > 0 such that lim supn( n
λ′n
− 1)nδ

′
<∞.

Now 0 < λ′n < n <∞, λ′n ∼ n and lim supn( n
λ′n
−1)nδ

′
<∞ for δ′ ∈ (0, 1/2) satisfy

the conditions of Lemma 9.

Since

lim
n→∞

sλ′n√
n

= lim
n→∞

(
sn
sn

sλ′n√
n

)
= lim

n→∞

sλ′n
sn

lim
n→∞

sn√
n
,
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by Lemma 9 (sλ′n ∼ sn) and the assumption sn√
n
→ 0 we have

sλ′n√
n
→ 0.

Now, note that

s−1
n E

[
(0.5)∆n

∑
a∈A

pa1[y′a(n)=r]

]

= (0.5)s−1
n ∆n

∑
a∈A

(
n

r

)
pr+1
a (1− pa)n−r

∼ (0.5)s−1
n ∆n

nr

r!

∑
a∈A

pr+1
a (1− pa)n−r

≤ (0.5)s−1
n ∆n

nr

r!

∑
a∈A

pr+1
a e−(n−r)pa

= (0.5)s−1
n

∆n

n

∑
a∈A

npa
(npa)

r

r!
e−npaerpa

≤ (0.5)s−1
n

∆n

n

∑
a∈A

npa
(npa)

r

r!
e−npaer

≤ (0.5)er
∆n

n
s−1
n

∑
a∈A

(r + 1 + npa)e
−npa (npa)

r+1

r!

= (0.5)er
∆n

n
s−1
n s2

n

= (0.5)er
∆n

n
sn → 0,

where the third line follows by

(
n
r

)
nr

r!

=
n!

(n− r)!nr
=
n(n− 1)...(n− r + 1)

nr
→ 1

(i.e.,
(
n
r

)
∼ nr

r!
), the fourth line follows by the fact that (1 − x) ≤ e−x, and the last

line follows by ∆n ∼M1

√
n and

∆n

n
sn =

M1

√
n

M1

√
n

∆n

n
sn =

∆n

M1

√
n

M1√
n
sn → 0.
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Proof of Theorem 4. Recall that

s2
n =

∑
a∈A

(r + 1 + npa) e
−npa (npa)

r+1

r!
= (r + 1)2E [Nr+1] + (r + 2) (r + 1)E [Nr+2]

T ′r(n) =
N ′r+1(n)

n
(r + 1)

π′r(n) =
∑
a∈A

pa1[y′a(n)=r]

N ′r = N ′r(n) =
∑
a∈A

1[y′a(n)=r]( the deterministic case)

Nr = Nr(n) =
∑
a∈A

1[ya(n)=r]( the Poissonized case).

Note that

ξn
sn

=
ξn − ζn
sn

+
ζn
sn
,

where

ζn = n(Tr(n)− πr(n))

Tr(λ) =
Nr+1(λ)

λ
(r + 1)

Nr(λ) =
∑
a∈A

1[ya(λ)=r](the Poissonized case)

πr(λ) =
∑
a∈A

pa1[ya(λ)=r].

By Theorem 1, (2.5) holds if and only if

ζn
sn

=
λ(Tr(n)− πr(n))

sn

d−−−→
n→∞

N(0, 1). (6.24)
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Since sn →∞ as n→∞ and

sn√
n
→ 0,

Lemma 10 implies that

ξn − ζn
sn

p−→ 0.

Therefore, by Slutsky’s theorem, (2.5) if and only if

ξn
sn

d−→ N(0, 1).

Lemma 11. For c, d ≥ 0, let

S = cE[Nr+1] + dE[Nr+2] (6.25)

and

T = cE[N ′r+1] + dE[N ′r+2]. (6.26)

1. For any ε ∈ (0, 1/2),

An(S −Bn) ≤ T ≤ Seε(r+1) + nr+2(c+ d)e−ε(n−r−2),

where 0 ≤ An → 1 and 0 ≤ Bn → 0 as n→∞ may depend on ε.

2. We have T →∞ if and only if S →∞.

3. If S →∞, then T/S → 1.

Proof. Parts 2 and 3 follow immediately from Part 1. We now prove Part 1. Recall
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that for the Poissonized case

E [Nr] = E

[∑
a∈A

1[ya(n)=r]

]

=
∑
a∈A

E
[
1[ya(n)=r]

]
=
∑
a∈A

P (ya(n) = r)

=
∑
a∈A

e−npa
(npa)

r

r!
,

and for the deterministic case

E [N ′r] = E

[∑
a∈A

1[y′a(n)=r]

]

=
∑
a∈A

E
[
1[y′a(n)=r]

]
=
∑
a∈A

P (y′a(n) = r)

=
∑
a∈A

(
n

r

)
pra(1− pa)n−r.

Now we have

S = c
∑
a∈A

e−npa
(npa)

r+1

(r + 1)!
+ d

∑
a∈A

e−npa
(npa)

r+2

(r + 2)!

=
∑
a∈A

(npa)
r+1

(r + 1)!
e−npa

(
c+ d

npa
r + 2

)
,

and

T =
∑
a∈A

(
c

(
n

r + 1

)
pr+1
a (1− pa)n−r−1 + d

(
n

r + 2

)
pr+2
a (1− pa)n−r−2

)
=
∑
a∈A

(
n

r + 1

)
pr+1
a (1− pa)n−r−2

(
c(1− pa) + d

n− r − 1

r + 2
pa

)
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≤
∑
a∈A

(npa)
r+1

(r + 1)!
e−npa

(
c+ d

npa
r + 2

)
epa(r+2)

≤
∑

a∈A,pa≤ε

(npa)
r+1

(r + 1)!
e−npa

(
c+ d

npa
r + 2

)
eε(r+2)

+ nr+2
∑

a∈A,pa>ε

pa(c+ d)e−ε(n−r−2)

≤Seε(r+2) + nr+2(c+ d)e−ε(n−r−2),

where we use the facts that
(
n
r

)
≤ nr

r!
and (1 − x) ≤ e−x. Next, fix δ ∈ (1

2
, 1). Using

the facts that (1− x) ≥ e−x/(1−x) for x > 0,
(
n
r+2

)
=
(
n
r+1

)
n−r−1
r+2

and
(
n
r+1

)
∼ nr+1

(r+1)!
we

get

T =
∑
a∈A

(
c

(
n

r + 1

)
pr+1
a (1− pa)n−r−1 + d

(
n

r + 2

)
pr+2
a (1− pa)n−r−2

)
=

(
n

r + 1

)∑
a∈A

pr+1
a (1− pa)n−r−2

(
c(1− pa) + d

n− r − 1

r + 2
pa

)
≥
(

n

r + 1

) ∑
a∈A,pa≤ε/nδ

pr+1
a e−npae−

pa
1−pa

(pan−r−2)

(
c+ d

n− r − 1

r + 2
pa

)
(1− pa)

≥(1− ε/nδ)
(

n

r + 1

)
e
− ε

nδ−ε
(εn1−δ−r−2)

∑
a∈A,pa≤ε/nδ

pr+1
a e−npa

(
c+ d

n− r − 1

r + 2
pa

)

=(1− ε/nδ)
(

n

r + 1

)
e
− ε

nδ−ε
(εn1−δ−r−2) (r + 1)!

nr+1

(
c

∑
a∈A,pa≤ε/nδ

(npa)
r+1

(r + 1)!
e−npa

+ d
(n− r − 1)

n

∑
a∈A,pa≤ε/nδ

(npa)
r+2

(r + 2)!
e−npa

)

=An(S −Bn).

An = e
− ε

nδ−ε
(εn1−δ−r−2)

(1− ε/nδ)
(

n

r + 1

)
(r + 1)!

nr+1
→ 1,
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and

Bn =d
r + 1

n

∑
a∈A,pa≤ε/nδ

(npa)
r+2

(r + 2)!
e−npa + c

∑
a∈A,pa>ε/nδ

(npa)
r+1

(r + 1)!
e−npa

+ d
∑

a∈A,pa>ε/nδ

(npa)
r+2

(r + 2)!
e−npa

=B(1)
n +B(2)

n +B(3)
n .

We will show that Bn → 0. First, let M > 0 be a constant with xr+1e−x ≤ M for

x ≥ 0, then by Dominated Convergence Theorem

B(1)
n ≤ dM

∑
a∈A,pa≤ε/nδ

pa → 0.

Next

B(2)
n ≤ ce−εn

1−δ
nr+1

∑
a∈A

pa → 0,

and similarly B(3)
n → 0.

Proof of Corollary 5. Since (r+ 1)2 > 0 and (r+ 2)(r+ 1) > 0, if sn →∞ as n→∞,

applying part 3 of Lemma 11 completes the proof.

Proof of Corollary 6. Since we have Theorem 4 and Corollary 5, the proof can be

completed by applying the Slutsky’s theorem.

Proof of Corollary 7. In the proof of Corollary 1 (6.9) we showed that E[Nr+1]→∞.

Now let c = 1 and d = 0 in (6.25) and (6.26) of Lemma 11, then applying part 2 of

Lemma 11 gives

E[N ′r+1]→∞, (6.27)
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and applying part 3 of Lemma 11 gives

E[N ′r+1] ∼ E[Nr+1]. (6.28)

In Lemma 2 we also showed that

E[Nr+1]

sλ
→∞,

here we set λ = n and get

E[Nr+1]

sn
→∞. (6.29)

By Corollary 5 (s′n)2 ∼ s2
n, thus together with (6.29) and (6.28) we have

E[N ′r+1]

s′n

p−→∞. (6.30)

Since (6.27) holds, applying part 2 of Lemma 12 gives

N ′r+1

E[N ′r+1]

p−→ 1. (6.31)

Since

N ′r+1

s′n
=

E[N ′r+1]

s′n

N ′r+1

E[N ′r+1]
,

by continuous mapping theorem (6.30) and (6.31) implies that

N ′r+1

s′n

p−→∞.
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Since r + 1 ∈ (0,∞),

N ′r+1(r + 1)

s′n

p−→∞.

Now plugging in

T ′r (n) =
N ′r+1

n
(r + 1) ,

nT ′r(n)

s′n
=
N ′r+1(r + 1)

s′n

p−→∞.

By the symmetry of Normal distribution, (2.6) implies that

n

s′n
(π′r(n)− T ′r(n))

d−−−→
n→∞

N(0, 1),

and so

nT ′r(n)

s′n

(
π′r(n)

T ′r(n)
− 1

)
d−−−→

n→∞
N(0, 1).

Since

nT ′r(n)

s′n

p−→∞,

it follows from Lemma 1 that

π′r(n)

T ′r(n)
− 1

p−→ 0.
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Therefore,

T ′r(n)

π′r(n)
− 1

p−→ 0.

Lemma 12. 1. For any k ≤ n/2, we have

Var(N ′k) ≤ Ak,nE[N ′k],

where Ak,n =
(
4kk+1

(
n−k
k

)
(n− 2k)−k + 1

)
→ 4kk

(k−1)!
+ 1.

2. If E[N ′k]→∞, then

Var[N ′k]

(E[N ′k])
2

p−→ 0,

and

N ′k
E[N ′k]

p−→ 1.

To show this, we use ideas from the proof of Theorem 3.3 in [24]. Part 2 can also

be found without proof in Section 4 of [32].

Proof. First note that, for any 1 ≤ k ≤ n/2,

(N ′k)
2 =

∑
a∈A

∑
b∈A,a6=b

1[y′a=k]1[y′b=k] +N ′k,

and

E[(N ′k)
2] =

(
n

k, k, n− 2k

)∑
a∈A

∑
b∈A,a 6=b

pkap
k
b (1− pa − pb)n−2k + E[N ′k].
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Next, let Bk,n =
(

n
k,k,n−2k

)
/
(
n
k

)2
=
(
n−k
k

)
/
(
n
k

)
≤ 1 and note that Bk,n → 1. We have

Var(N ′k) = E[(N ′k)
2]− E[N ′k]−Bk,n(E[N ′k])

2 + (Bk,n − 1)(E[N ′k])
2 + E[N ′k]

≤ E[(N ′k)
2]− E[N ′k]−Bk(E[N ′k])

2 + E[N ′k].

We can upper bound E[(N ′k)
2]− E[N ′k]−Bk(E[N ′k])

2 by

(
n

k, k, n− 2k

)∑
a∈A

∑
b∈A

pkap
k
b

(
(1− pa − pb)n−2k − (1− pa)n−k(1− pb)n−k

)
≤
(

n

k, k, n− 2k

)∑
a∈A

∑
b∈A

pkap
k
b

(
(1− pa)n−2k(1− pb)n−2k − (1− pa)n−k(1− pb)n−k

)
≤ k

(
n

k, k, n− 2k

)∑
a∈A

∑
b∈A

pkap
k
b (1− pa)n−2k(1− pb)n−2k(pa + pb)

≤ 2k

(
n

k, k, n− 2k

)∑
a∈A

∑
b∈A,pa≤pb

pkap
k+1
b (1− pa)n−k(1− pb)n−3k

+ 2k

(
n

k, k, n− 2k

)∑
a∈A

∑
b∈A,pa>pb

pk+1
a pkb (1− pa)n−3k(1− pb)n−k

≤ 4k

(
n

k, k, n− 2k

)∑
a∈A

pka(1− pa)n−k
∑
b∈A

pk+1
b (1− pb)n−3k

= 4k

(
n− k
k

)
E[N ′k]

∑
b∈A

pk+1
b (1− pb)n−3k ≤ 4kk+1

(
n− k
k

)
E[N ′k](n− 2k)−k.

Here the third line uses the facts that 1−pa−pb ≤ 1−pa−pb+papb = (1−pa)(1−pb),

that 1−(1−pa)k(1−pb)k ≤ 1−(1−pa−pb)k, and that 1−(1−x)k ≤ kx for x ∈ [0, 1],

which is easily checked by induction on k. The last inequality follows by the fact that

xk(1 − x)n−3k ≤ kk(n − 2k)−k for x ∈ [0, 1], which can be shown using standard

calculus arguments.

For the second part, by Chebyshev’s inequality, it suffices to show that Var(N ′k)

(E[N ′k])2 → 0.

The first part implies that

Var(N ′k)

(E[N ′k])
2
≤ Ak,n

1

E[N ′k]
→ 0.
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This holds since Ak,n → 4kk

(k−1)!
+ 1, which follows by the fact that

(
n
k

)
∼ nk

k!
.

Lemma 13. Assume that at least one of E[N ′r+1] → ∞ or E[N ′r+2] → ∞ holds. In

the deterministic case for c, d > 0 let

T = cE[N ′r+1] + dE[N ′r+2]

T̂ = cN ′r+1 + dN ′r+2.

T̂ is a consistent estimator of T , i.e., as n→∞, for all ε > 0

P

(∣∣∣∣∣ T̂T − 1

∣∣∣∣∣ > ε

)
→ 0.

Proof. Note that E[T̂ ] = T . Chebyshev’s inequality implies that for all ε > 0

P

(∣∣∣∣∣ T̂T − 1

∣∣∣∣∣ > ε

)
≤

Var
[
T̂
T

]
ε2

=
Var[T̂ ]

ε2T 2

=
Var[T̂ ]

ε2(E[T̂ ])2
.

By plugging in T̂ and T , we obtain

Var[T̂ ]

ε2(E[T̂ ])2
=

Var[cN ′r+1 + dN ′r+2]

ε2(cE[N ′r+1] + dE[N ′r+2])2

=
c2Var[N ′r+1] + d2Var[N ′r+2] + 2cdCov[N ′r+1, N

′
r+2]

ε2(cE[N ′r+1] + dE[N ′r+2])2

≤
c2Var[N ′r+1] + d2Var[N ′r+2] + 2cd(Var[N ′r+1] + Var[N ′r+2])

ε2(cE[N ′r+1] + dE[N ′r+2])2

=
(c2 + 2cd)Var[N ′r+1] + (d2 + 2cd)Var[N ′r+2]

ε2(cE[N ′r+1] + dE[N ′r+2])2
, (6.32)
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where the third line follows by the fact that

Cov(X, Y ) ≤ Var(X) + Var(Y ).

Now we consider three cases.

Firstly, if both E[N ′r+1]→∞ and E[N ′r+2]→∞, then (6.32) can be expressed by

1

ε2

(
c(c+ 2d)Var[N ′r+1] + d(d+ 2c)Var[N ′r+2]

(cE[N ′r+1] + dE[N ′r+2])2

)
=

1

ε2

(
c(c+ 2d)Var[N ′r+1]

(cE[N ′r+1] + dE[N ′r+2])2
+

d(d+ 2c)Var[N ′r+2]

(cE[N ′r+1] + dE[N ′r+2])2

)
≤ 1

ε2

(
(c+ 2d)Var[N ′r+1]

(cE[N ′r+1])2
+

(d+ 2c)Var[N ′r+2]

(dE[N ′r+2])2

)
→ 0,

where c, d,E[N ′r+1],E[N ′r+2] > 0 gives the inequality and the convergence follows from

Part 2 of Lemma 12.

Secondly, assume that E[N ′r+1] → ∞, but that lim inf E[N ′r+2] < ∞. Here, along

any subsequence where we have convergence to infinity we can use the above result

and along any subsequence were we have convergence to a finite number we have

lim Var[N ′r+2] <∞ by Part 1 of Lemma 12. In this case we can use the bound

P

(∣∣∣∣∣ T̂T − 1

∣∣∣∣∣ > ε

)
≤ 1

ε2

(
(c+ 2d)Var[N ′r+1]

(cE[N ′r+1])2
+
d(d+ 2c)Var[N ′r+2]

(dE[N ′r+2])2

)
→ 0.

The remaining case is similar.

Proof of Corollary 8. Since (r + 1)2 > 0 and (r + 2)(r + 1) > 0, the result is an

application of Lemma 13.

6.3.2 Proofs for Section 2.4.2

First, we explain our model containing both the Deterministic case and the Poisson

case with changing distribution.
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Assume that we have a countably infinite number of populations indexed by the

natural numbers. Let C = {Cλ : λ ≥ 0} be a Poisson process with rate 1. Every time

that this process jumps, we sample an observation from each population, where the

observation from population m follows distribution Pm.

For n = 1, 2, . . . , let tn = min{λ ≥ 0 : Cλ = n} be the time of the nth jump. If we

consider the sequence of samples from population n taken at times tn, then the size

of the nth sample is n and we have the deterministic model studied in Section 2.4.2.

On the other hand, if we consider the sequence of samples taken from population n

at time n, then the size of the nth sample is Cn and we have the model studied in

Section 2.3.2 with λn = n. Note that

Ctn = n = E[Cn].

Thus, in the two sampling schemes, we expect to have the same sample sizes, although

the actual sizes may be different. When dealing with the sampling scheme with

deterministic sample sizes (random sampling times) refered as the Deterministic case

we use the notation from Section 2.4.2; and when dealing with the sampling scheme

with random sample sizes (deterministic sampling times) refered as the Poissonized

case we use the notation from Section 2.3.2. Further, we define

ξn,n = n(T ′r,n(n)− π′r,n(n))

be the Deterministic version, where n letters are observed, and for λ > 0

ζλ,n = λ(Tr,n(λ)− πr,n(λ))

be the Poissonized version. Let tn be the arrival time on the nth observation. Note

that y′a,n(n) = ya,n(tn), and tn follows a gamma distribution with both mean and vari-
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ance n. We are going to study our estimator at time n and time tn, and approximate

its behavior at time tn by that at time n. Observe that

ζtn,n =
tn
n
ξn,n.

The idea of the proof is to transfer the asymptotic properties of ζλ,n to ξn,n by

showing that ξn,n − ζλ,n
p−→ 0, specifically when λ = n.

Before giving the proof of Theorem 5 for the Deterministic case with changing

distribution, we prepare several lemmas.

Lemma 14. Fix n and only consider the nth population. For any λ > 0 and ∆ ∈

(0, λ), we have

E

[
sup

λ<t<λ+∆
|ζt,n − ζλ,n|

]
≤ H(λ,∆)

and

E

[
sup

λ−∆
2
<t<λ+ ∆

2

|ζt,n − ζλ,n|

]
≤ 2H(λ− ∆

2
,∆),

where for some constant C > 0,

H(λ,∆) = C
∆

λ
s2
λ,n.

Proof. Recall that for any λ > 0 we have

ζλ,n = λ (Tr,n(λ)− πr,n(λ)) =
∑
a∈A

Ya,n(λ),

and

Ya,n = (r + 1) 1[ya,n(λ)=r+1] − λpa,n1[ya,n(λ)=r].



96

Fix t > λ and note that ya,n(t) ≥ ya,n(λ) because greater arrival time yields more

or equal arrivals in a Poisson process and

Ya,n(t)− Ya,n(λ) =1[ya,n(λ)<r]Ya,n(t) + 1[ya,n(λ)]≥r]Ya,n(t)

− Ya,n(λ)1[ya,n(t)>ya,n(λ)] − Ya,n(λ)1[ya,n(t)=ya,n(λ)]

=− Ya,n(λ)1[ya,n(t)>ya,n(λ)] + 1[ya,n(λ)<r]Ya,n(t)

− Ya,n(λ)1[ya,n(t)=ya,n(λ)] + 1[ya,n(λ)]≥r]Ya,n(t).

Since

− Ya,n(λ)1[ya,n(t)=ya,n(λ)] + 1[ya,n(λ)]≥r]Ya,n(t)

=− (r + 1)1[ya,n(λ)=r+1]1[ya,n(t)=ya,n(λ)] + λpa,n1[ya,n(λ)=r]1[ya,n(t)=ya,n(λ)]

+ (r + 1)1[ya,n(t)=r+1]1[ya,n(λ)≥r] − tpa,n1[ya,n(t)=r]1[ya,n(λ)≥r]

=− (r + 1)1[ya,n(λ)=r+1]1[ya,n(t)=r+1] + λpa,n1[ya,n(λ)=r]1[ya,n(t)=r]

+ (r + 1)1[ya,n(t)=r+1]1[ya,n(λ)=r+1]

+ (r + 1)1[ya,n(t)=r+1]1[ya,n(λ)=r] − tpa,n1[ya,n(t)=r]1[ya,n(λ)=r]

=(r + 1)1[ya,n(t)=r+1]1[ya,n(λ)=r] − (t− λ)pa,n1[ya,n(t)=r]1[ya,n(λ)=r]

=1[ya,n(λ)=r]((r + 1)1[ya,n(t)=r+1] − (t− λ)pa,n1[ya,n(t)=r]),

then

Ya,n(t)− Ya,n(λ)

=− Ya,n(λ)1[ya,n(t)>ya,n(λ)] + 1[ya,n(λ)<r]Ya,n(t)

+ 1[ya,n(λ)=r]((r + 1)1[ya,n(t)=r+1] − (t− λ)pa,n1[ya,n(t)=r]).
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Note that

|
∑
a∈A

(Ya,n(t)− Ya,n(λ))|

≤|
∑
a∈A

Ya,n(λ)1[ya,n(t)>ya,n(λ)]|+ |
∑
a∈A

1[ya,n(λ)<r]Ya,n(t)|

+ |
∑
a∈A

1[ya,n(λ)=r]((r + 1)1[ya,n(t)=r+1] − (t− λ)pa,n1[ya,n(t)=r])|

≤(r + 1)
∑
a∈A

1[ya,n(λ)=r+1]1[ya,n(t)>ya,n(λ)]

+ λ
∑
a∈A

pa,n1[ya,n(λ)=r]1[ya,n(t)>ya,n(λ)]

+ (r + 1)
∑
a∈A

1[ya,n(t)=r+1]1[ya,n(λ)<r]

+ t
∑
a∈A

pa,n1[ya,n(t)=r]1[ya,n(λ)<r]

+ (r + 1)
∑
a∈A

1[ya,n(λ)=r]1[ya,n(t)=r+1]

+
∑
a∈A

|t− λ|pa,n1[ya,n(λ)=r]1[ya,n(t)=r].

Now set

A1
t =

∑
a∈A

1[ya,n(λ)=r+1]1[ya,n(t)>ya,n(λ)]

A2
t = λ

∑
a∈A

pa,n1[ya,n(λ)=r]1[ya,n(t)>ya,n(λ)]

B1
t =

∑
a∈A

1[ya,n(t)=r+1]1[ya,n(λ)<r]

B2
t = t

∑
a∈A

pa,n1[ya,n(t)=r]1[ya,n(λ)<r]

Ct =
∑
a∈A

1[ya,n(λ)=r]1[ya,n(t)=r+1]

Dt =
∑
a∈A

|t− λ|pa,n1[ya,n(λ)=r]1[ya,n(t)=r],
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then

|ζt,n − ζλ,n| = |
∑
a∈A

(Ya,n(t)− Ya,n(λ))|

≤ (r + 1)A1
t + A2

t + (r + 1)B1
t +B2

t + (r + 1)Ct +Dt.

We are going to find the bounds for each element.

Bounds for Ct and Dt:

Ct =
∑
a∈A

1[ya,n(λ)=r]1[ya,n(t)=r+1]

Dt =
∑
a∈A

|t− λ|pa,n1[ya,n(λ)=r]1[ya,n(t)=r]

By Fubini’s Theorem and the fact that Poisson processes have independent incre-

ments,

E

[
sup

λ<t<λ+∆
Ct

]
≤

[
E sup
λ<t<λ+∆

∑
a∈A

1[ya,n(λ)=r]1[ya,n(t)>ya,n(λ)]

]

≤ E

[∑
a∈A

1[ya,n(λ)=r]1[ya,n(λ+∆)>ya,n(λ)]

]
(Note : t < λ+ ∆)

=
∑
a∈A

P (ya,n(λ) = r)P (ya,n(λ+ ∆) > ya,n(λ))

=
∑
a∈A

λr

r!
e−λpa,npra,n(1− e−∆pa,n)

=
λr

r!

∑
a∈A

e−λpa,npra,n(1− e−∆pa,n)

≤ λr
∑
a∈A

e−λpa,npra,n(1− e−∆pa,n)

≤ λr
∑
a∈A

e−λpa,npra,n∆pa,n

= ∆λr
∑
a∈A

e−λpa,npr+1
a,n ,
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where the last inequality follows by the fact that 1− e−x ≤ x for x > 0.

By similar arguments,

E

[
sup

λ<t<λ+∆
Dt

]
≤ E

[∑
a∈A

∆pa,n1[ya,n(λ) = r]

]
(Note : ∆ > t− λ > 0)

= ∆
∑
a∈A

pa,nP (ya,n(λ) = r)

= ∆
λr

r!

∑
a∈A

e−λpa,npr+1
a,n

≤ ∆λr
∑
a∈A

e−λpa,npr+1
a,n .

Bound for B1
t and B2

t :

B1
t =

∑
a∈A

1[ya,n(t)=r+1]1[ya,n(λ)<r]

B2
t = t

∑
a∈A

pa,n1[ya,n(t)=r]1[ya,n(λ)<r]

Clearly, if r = 0, then

E

[
sup

λ<t<λ+∆
B1
t

]
= E

[
sup

λ<t<λ+∆
B2
t

]
= 0.

Now, assume that r ≥ 1. Note that by independent and stationary increments

E

[
sup

λ<t<λ+∆
B1
t

]
≤ E

[
sup

λ<t<λ+∆

∑
a∈A

r−1∑
i=0

1[ya,n(t)>r]1[ya,n(λ)=i]

]

= E

[
sup

λ<t<λ+∆

∑
a∈A

r−1∑
i=0

1[ya,n(t)−ya,n(λ)>r−i]1[ya,n(λ)=i]

]

≤
∑
a∈A

r−1∑
i=0

E
[
1[ya,n(λ+∆)−ya,n(λ)>r−i]1[ya,n(λ)=i]

]
=
∑
a∈A

r−1∑
i=0

P (ya,n(∆) > r − i)P (ya,n(λ) = i)
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≤
∑
a∈A

r−1∑
i=0

(∆pa,n)r−i+1

(r − i+ 1)!
e−λpa,n

(pa,nλ)i

i!

≤ ∆λr
∑
a∈A

r−1∑
i=0

pr+1
a,n e

−λpa,n = r∆λr
∑
a∈A

pr+1
a,n e

−λpa,n ,

where we use the fact that for any integer k ≥ 0

P (ya,n(∆) > k) = 1−
k∑
j=0

e−∆pa,n
(∆pa,n)j

j!
≤ (∆pa,n)k+1

(k + 1)!
,

which follows since for any x > 0 we have 1− e−x
∑k

i=0 x
j/j! ≤ xk+1/(k+ 1)!, see e.g.

Lemma 1 in [31]. Similarly, for B2
t we have

E

[
sup

λ<t<λ+∆
B2
t

]
≤ E

[
sup

λ<t<λ+∆
t
∑
a∈A

r−1∑
i=0

pa,n1[ya,n(t)>r−1]1[ya,n(λ)=i]

]

≤ (λ+ ∆)
∑
a∈A

r−1∑
i=0

pa,nE
[
1[ya,n(λ+∆)−ya,n(λ)>r−1−i]1[ya,n(λ)=i]

]
= (λ+ ∆)

∑
a∈A

r−1∑
i=0

pa,nP (ya,n(∆) > r − 1− i)P (ya,n(λ) = i)

≤ 2λ
∑
a∈A

r−1∑
i=0

pa,n(∆pa,n)r−ie−λpa,n(λpa,n)i

≤ 2r∆λr
∑
a∈A

pr+1
a,n e

−λpa,n .

Bound for A1
t and A2

t :

A1
t =

∑
a∈A

1[ya,n(λ)=r+1]1[ya,n(t)>ya,n(λ)]

A2
t = λ

∑
a∈A

pa,n1[ya,n(λ)=r]1[ya,n(t)>ya,n(λ)]
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The proof for A1
t is similar to the proof for Ct. Here

E

[
sup

λ<t<λ+∆
A1
t

]
≤ E

[∑
a∈A

1[ya,n(λ)=r+1]1[ya,n(λ+∆)>ya,n(λ)]

]

=
∑
a∈A

P (ya,n(λ) = r + 1)P ((ya,n(λ+ ∆)− ya,n(λ)) > 0)

=
λr+1

(r + 1)!

∑
a∈A

pr+1
a,n e

−λpa,n(1− e−∆pa,n)

≤ λr+1

(r + 1)
∆
∑
a∈A

pr+2
a,n e

−λpa,n .

Next, by Fubini’s theorem and independent increments we have

E

[
sup

λ<t<λ+∆
A2
t

]
≤ E

[
λ
∑
a∈A

pa,n1[ya,n(λ)=r]1[ya,n(λ+∆)>ya,n(λ)]

]

= λ
∑
a∈A

pa,nP (ya,n(λ) = r)P (ya,n(λ+ ∆) > ya,n(λ))

=
λr+1

r!

∑
a∈A

pr+1
a,n e

−λpa,n(1− e−∆pa,n)

≤ λr+1

r!
∆
∑
a∈A

pr+2
a,n e

−λpa,n

≤ λr+1∆
∑
a∈A

pr+2
a,n e

−λpa,n ,

which completes the proof of this part. Now putting everything together gives the

first bound:

E

[
sup

λ<t<λ+∆
|ζt,n − ζλ,n|

]
=E

[
sup

λ<t<λ+∆

(
(r + 1)A1

t + A2
t + (r + 1)B1

t +B2
t + (r + 1)Ct +Dt

)]
≤(r + 1)

λr+1

(r + 1)
∆
∑
a∈A

pr+2
a,n e

−λpa,n + λr+1∆
∑
a∈A

pr+2
a,n e

−λpa,n

+ (r + 1)r∆λr
∑
a∈A

pr+1
a,n e

−λpa,n + 2r∆λr
∑
a∈A

pr+1
a,n e

−λpa,n
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+ (r + 1)∆λr
∑
a∈A

e−λpa,npr+1
a,n

+ ∆λr
∑
a∈A

e−λpa,npr+1
a,n

=2∆
λr+1

r!

∑
a∈A

e−λpa,npr+2
a,n + (r2 + 4r + 2)∆λr

∑
a∈A

e−λpa,npr+1
a,n

=
∆

λ

(
(r2 + 4r + 2)λr+1

∑
a∈A

e−λpa,npr+1
a,n +

2λr+2

r!

∑
a∈A

e−λpa,npr+2
a,n

)

=H(λ,∆)

=C
∆

λ
s2
λ,n,

which can be upper bounded as required. From here applying the first bound twice

gives

E

[
sup

λ−∆
2
<t<λ+ ∆

2

|ζt,n − ζλ,n|

]
≤ E

[
sup

λ−∆
2
<t<λ+ ∆

2

|ζt,n − ζλ−∆/2,n|

]
+

E
[
|ζλ−∆/2,n − ζλ,n|

]
≤ 2H

(
λ− ∆

2
,∆

)
,

which completes the proof.

Recall that for the Poissonized case

s2
λn,n = (r + 1)2E[Nr+1,n] + (r + 2)(r + 1)E[Nr+2,n]

= (r + 1)2
∑
a∈A

e−λnpa,n
(λnpa,n)r+1

(r + 1)!
+ (r + 2)(r + 1)

∑
a∈A

e−λnpa,n
(λnpa,n)r+2

(r + 2)!
.

Lemma 15. Let 0 < λ′ < λ <∞. For any ε > 0,

(
λ′

λ
)r+2s2

λ,n ≤ s2
λ′,n ≤ eεs2

λ,n + (r + 1 + λ)λr+1e−
λ′ε
λ−λ′ . (6.33)

Further, let λn and λ′n be two sequences of numbers. If 0 < λ′n < λn < ∞, λn ∼ λ′n,
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lim supn(λn
λ′n
− 1)λδn <∞ for some δ > 0, and lim infn sλn,n > 0, then

sλn,n ∼ sλ′n,n.

Proof. Here we also fix n and only consider the nth population, where the distribution

is fixed.

Let 0 < λ′ < λ <∞, then

(
λ′

λ
)r+2s2

λ,n = (
λ′

λ
)r+2

∑
a∈A

(
(r + 1 + λpa,n)e−λpa,n

(λpa,n)r+1

r!

)
=

(λ′)r+2

λ

∑
a∈A

(
(r + 1 + λpa,n)e−λpa,n

pr+1
a,n

r!

)
=
λ′

λ

∑
a∈A

(
(r + 1 + λpa,n)e−λpa,n

(λ′pa,n)r+1

r!

)
=
∑
a∈A

(
λ′

λ
(r + 1)e−λpa,n

(λ′pa,n)r+1

r!
+ λ′pa,ne

−λpa,n (λ′pa,n)r+1

r!

)
≤
∑
a∈A

(
(r + 1)e−λ

′pa,n
(λ′pa,n)r+1

r!
+ λ′pa,ne

−λpa,n (λ′pa,n)r+1

r!

)
=
∑
a∈A

(
(r + 1 + λ′pa,n)e−λ

′pa,n
(λ′pa,n)r+1)

r!

)
= s2

λ′,n,

and for any ε > 0

s2
λ′,n ≤

∑
a∈A

(
(r + 1 + λpa,n)e−λ

′pa,n
(λpa,n)r+1

r!

)
=
∑
a∈A

(
(r + 1 + λpa,n)e−λ

′pa,n
(λpa,n)r+1

r!
1[(λ−λ′)pa,n≤ε]

)
+
∑
a∈A

(
(r + 1 + λpa,n)e−λ

′pa,n
(λpa,n)r+1

r!
1[(λ−λ′)pa,n>ε]

)
=
∑
a∈A

(
(r + 1 + λpa,n)e−λ

′pa,n(e(λ′−λ)pa,ne−(λ′−λ)pa,n)
(λpa,n)r+1

r!
1[(λ−λ′)pa,n≤ε]

)
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+
∑
a∈A

(
(r + 1 + λpa,n)e−λ

′pa,n
(λpa,n)r+1

r!
1[(λ−λ′)pa,n>ε]

)
=
∑
a∈A

(
(r + 1 + λpa,n)e−λpa,ne(λ−λ′)pa,n (λpa,n)r+1

r!
1[(λ−λ′)pa,n≤ε]

)
+
∑
a∈A

(
(r + 1 + λpa,n)e−λ

′pa,n
(λpa,n)r+1

r!
1[(λ−λ′)pa,n>ε]

)
≤
∑
a∈A

(
(r + 1 + λpa,n)e−λpa,neε

(λpa,n)r+1

r!
1[(λ−λ′)pa,n≤ε]

)
+
∑
a∈A

(
(r + 1 + λpa,n)e−λ

′pa,n
(λpa,n)r+1

r!
1[(λ−λ′)pa,n>ε]

)
≤eε

∑
a∈A

(
(r + 1 + λpa,n)e−λpv

(λpa,n)r+1

r!

)
+
∑
a∈A

(
(r + 1 + λpa,n)e−λ

′pa,n
(λpa,n)r+1

r!
1[(λ−λ′)pa,n>ε]

)
=eεs2

λ,n +
∑
a∈A

(
(r + 1 + λpa,n)e−λ

′pa,n
(λpa,n)r+1

r!
1[(λ−λ′)pa,n>ε]

)
≤eεs2

λ,n +
∑
a∈A

(
(r + 1 + λpa,n)e−

ε
λ−λ′ λ

′
(λpa,n)r+11[(λ−λ′)pa,n>ε]

)
≤eεs2

λ,n +
∑
a∈A

(
(r + 1 + λ)e−

λ′ε
λ−λ′ (λpa,n)r+11[(λ−λ′)pa,n>ε]

)
=eεs2

λ,n + (r + 1 + λ)λr+1e−
λ′ε
λ−λ′

∑
a∈A

(
(pa,n)r+11[(λ−λ′)pa,n>ε]

)
≤eεs2

λ,n + (r + 1 + λ)λr+1e−
λ′ε
λ−λ′

∑
a∈A

(pa,n)r+1

≤eεs2
λ,n + (r + 1 + λ)λr+1e−

λ′ε
λ−λ′

∑
a∈A

pa,n

=eεs2
λ,n + (r + 1 + λ)λr+1e−

λ′ε
λ−λ′ .

This gives (6.33).

By (6.33), we have

(
λ′n
λn

)r+2s2
λn,n ≤ s2

λ′n,n
≤ eεs2

λn,n + (r + 1 + λn)λr+1
n e

− ελ′n
λn−λ′n . (6.34)
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Since lim infn sλn,n > 0, by dividing s2
λn,n

from each side of (6.34) we get

(
λ′n
λn

)r+2 ≤
s2
λ′n,n

s2
λn,n

≤ eε +
1

s2
λn,n

(r + 1 + λn)λr+1
n e

− ε
λn
λ′n
−1 ∀ε > 0. (6.35)

By assuming that λn ∼ λ′n, the first half of (6.35) gets

lim inf
n

s2
λ′n,n

s2
λn,n

≥ 1. (6.36)

Now we turn to the second half of (6.35).

Fix ε′ > 0, we can choose an ε > 0 such that

eε ≤ 1 +
ε′

2
. (6.37)

By assuming that lim supn(λn
λ′n
− 1)λδn < ∞ for some δ > 0, there exists an L > 0

such that for large enough n,

e
− ελδn

(λn
λ′n
−1)λδn ≤ e−

ελδn
2L .

So we have

1

s2
λn,n

(r + 1 + λn)λr+1
n e

− ε
λn
λ′n
−1

≤ 1

s2
λn,n

(r + 1 + λn)λr+1
n e−

ελδn
2L .

Since we assume that lim infn sλn,n > 0,

lim sup
n

1

s2
λn,n

<∞.
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Then for such ε and δ,

lim
n→∞

1

s2
λn,n

(r + 1 + λn)λr+1
n e−

ελδn
2L = 0. (6.38)

Since (6.38) holds, there exists an Nε,ε′ > 0 such that if n ≥ Nε,ε′ ,

1

s2
λn,n

(r + 1 + λn)λr+1
n e−

ελδn
2L ≤ ε′

2
. (6.39)

By combining (6.37) and (6.39) we get

lim
n→∞

(
eε +

1

s2
λn,n

(r + 1 + λn)λr+1
n e

− ε
λn
λ′n
−1

)

= lim
n→∞

eε + lim
n→∞

(
1

s2
λn,n

(r + 1 + λn)λr+1
n e

− ε
λn
λ′n
−1

)

≤(1 +
ε′

2
) +

ε′

2

≤1 + ε′.

Since ε′ is arbitrary, we get

lim
n→∞

s2
λ′n,n

s2
λn,n

≤ 1 ∀ε′ > 0. (6.40)

Combining (6.36) and (6.40) gets

lim
n→∞

s2
λ′n,n

s2
λn,n

= 1 (i.e.,s2
λ′n,n
∼ s2

λn,n),

then

sλ′n,n ∼ sλn,n,

which completes the proof.
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Lemma 16. Let the waiting time λ be the same as the number of observations, i.e.,

λ = n. If sλ,n →∞, lim inf sλ,n > 0 and

sλ,n√
n
→ 0,

then

|ξn,n − ζλ,n|
sλ,n

p−→ 0.

Proof. Let λ = n and then ζλ,n = ζn,n. Fix ε, δ > 0. We must show that there exists

a K > 0 such that, if n ≥ K then

P (|ξn,n − ζn,n| > sλ,nε) < δ

Fix ∆n =
√

8n
δ
. Let tn be the nth arrival time of the Poisson process N . Thus

Ntn = n. Note that y′a,n(n) = ya,n(tn). It follows that

ξn,n − ζtn,n =
∑
a∈A

(
(r + 1)1[y′a,n(n)=r+1] − npa,n1[y′a,n(n)=r]

)
−
∑
a∈A

(
(r + 1)1[y′a,n(n)=r+1] − tnpa,n1[y′a,n(n)=r]

)
=(tn − n)

∑
a∈A

pa,n1[y′a,n(n)=r].

Further, on the event [|tn − n| ≤ ∆n

2
],

|ξn,n − ζn,n| ≤ |ξn,n − ζtn,n|+ |ζtn,n − ζn,n|

= |tn − n|
∑
a∈A

pa,n1[y′a,n(n)=r] + |ζtn,n − ζn,n|

≤ (0.5)∆n

∑
a∈A

pa,n1[y′a,n(n)=r] + sup
n−∆n

2
≤t≤n+ ∆n

2

|ζt,n − ζn,n|.
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We have

P (|ξn,n − ζn,n| > sλ,nε)

=P

(
|ξn,n − ζn,n| > sλ,nε, |tn − n| >

∆n

2

)
+ P

(
|ξn,n − ζn,n| > sλ,nε, |tn − n| ≤

∆n

2

)
≤P

(
|tn − n| >

∆n

2

)
+ P

((
(0.5)∆n

∑
a∈A

pa,n1[y′a,n(n)=r] + sup
n−∆n

2
≤t≤n+ ∆n

2

|ζt,n − ζn,n|

)
> sλ,nε

)
.

Since tn has a gamma distribution with both mean and variance n, it follows that,

by Chebyshev’s inequality,

P (|tn − n| > .5∆n) ≤ 4
n

∆2
n

=
δ

2
.

By Markov’s inequality,

P

((
(0.5)∆n

∑
a∈A

pa,n1[y′a,n(n)=r] + sup
n−∆n

2
≤t≤n+ ∆n

2

|ζt,n − ζn,n|

)
> sλ,nε

)

≤ ε−1s−1
λ,nE

[
sup

n−∆n
2
≤t≤n+ ∆n

2

|ζt,n − ζn,n|+ (0.5)∆n

∑
a∈A

pa,n1[y′a,n(n)=r]

]

= ε−1s−1
λ,nE

[
sup

n−∆n
2
≤t≤n+ ∆n

2

|ζt,n − ζn,n|

]
+ ε−1s−1

λ,nE

[
(0.5)∆n

∑
a∈A

pa,n1[y′a,n(n)=r]

]
.

Here we have a population with fixed n. Since for large enough n we have ∆ ∈ (0, n),

from Lemma 14 it follows that

s−1
λ,nE

[
sup

n−∆n
2
≤tn≤n+ ∆n

2

|ζtn,n − ζn,n|

]

≤ s−1
λ,n2H(λ− ∆n

2
,∆n)
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= 2Cs−1
n

∆n

n−∆n/2
s2
n−∆n/2,n

∼ 2C
√

8/δ
1√
n
sn → 0,

where sn−∆n/2,n ∼ sn by Lemma 15. We just need to verify that the assumptions of

that lemma hold.

Let λ′n = λ− ∆n

2
, then

H(λ− ∆n

2
,∆n) = H(λ′n,∆n)

and

λ′n
λ

=
λ− ∆n

2

λ
= 1−

∆n

2

λ
.

Since ∆n =
√

8n
δ

and λ = n,

lim
n→∞

∆n

2

λ
= lim

n→∞

√
8/δ

n
= 0.

Then

lim
n→∞

λ′n
λ

= 1− lim
n→∞

∆n

2

λ
= 1, (6.41)

(i.e. λ′n ∼ n = λ). Since

(
λ

λ′n
− 1)λδ

′
=

λδ
′
∆n

2λ−∆n

=
nδ
′
∆n

2λ−∆n

=
nδ
′
k
√
n

n− k
√
n

(Note: let k =
√

2/δ)

=
k

2n1/2−δ′ − kn−δ′
,
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if we fix δ′ ∈ (0, 1/2),

lim
n→∞

(
λ

λ′n
− 1)λδ

′
= 0.

Thus, there exists an δ′ > 0 such that lim supn( λ
λ′n
− 1)λδ

′
<∞.

Now 0 < λ′n < λ < ∞, (6.41) and lim sup( λ
λ′n
− 1)λδ

′
< ∞ for δ′ ∈ (0, 1/2) satisfy

the conditions of Lemma 15.

Since

lim
n→∞

sλ′n,n√
n

= lim
n→∞

(
sλ,n
sλ,n

sλ′n,n√
n

)
= lim

n→∞

sλ′n,n
sλ,n

lim
n→∞

sλ,n√
n
,

by Lemma 15 for the changing distribution (sλ′n,n ∼ sλ,n) and the assumption sλ,n√
n
→ 0

we have

sλ′n,n√
n
→ 0.

Now, note that

s−1
λ,nE

[
(0.5)∆n

∑
a∈A

pa,n1[y′a,n(n)=r]

]

=(0.5)s−1
λ,n∆n

∑
a∈A

(
n

r

)
pr+1
a,n (1− pa,n)n−r

∼(0.5)s−1
λ,n∆n

nr

r!

∑
a∈A

pr+1
a,n (1− pa,n)n−r

≤(0.5)s−1
λ,n∆n

nr

r!

∑
a∈A

pr+1
a,n e

−(n−r)pa,n

=(0.5)s−1
λ,n

∆n

n

∑
a∈A

npa,n
(npa,n)r

r!
e−npa,nerpa,n

≤(0.5)s−1
λ,n

∆n

n

∑
a∈A

npa,n
(npa,n)r

r!
e−npa,ner

≤(0.5)er
∆n

n
s−1
λ,n

∑
a∈A

(r + 1 + npa,n)e−npa,n
(npa,n)r+1

r!
(Note: λ = n)
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=(0.5)er
∆n

n
s−1
λ,ns

2
λ,n

=(0.5)er
∆n

n
sλ,n → 0,

where the third line follows by

(
n
r

)
nr

r!

=
n!

(n− r)!nr
=
n(n− 1)...(n− r + 1)

nr
→ 1

(i.e.,
(
n
r

)
∼ nr

r!
), the fourth line follows by the fact that (1 − x) ≤ e−x, and the last

line follows by ∆n ∼M1

√
n and

∆n

n
sλ,n =

M1

√
n

M1

√
n

∆n

n
sλ,n =

∆n

M1

√
n

M1√
n
sλ,n → 0.

Proof of Theorem 5. Note that

ξn,n
sn,n

=
ξn,n − ζn,n

sn,n
+
ζn,n
sn,n

,

where

ζn,n = λ(Tr,n(n)− πr,n(n))

Tr,n(n) =
Nr+1,n(n)

n
(r + 1)

Nr,n(n) =
∑
a∈A

1[ya,n(n)=r]

πr,n(n) =
∑
a∈A

pa,n1[ya,n(n)=r].

By Theorem 2, (2.8) holds if and only if

ζn,n
sn,n

=
λ(Tr,n(n)− πr,n(n))

sn,n

d−−−→
n→∞

N(0, 1). (6.42)
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Since sn,n →∞ as n→∞ and

sn,n√
n
→ 0,

Lemma 16 implies that

ξn,n − ζn,n
sn,n

p−→ 0.

Therefore, by Slutsky’s theorem, (2.8) if and only if

ξn,n
sn,n

d−→ N(0, 1).

Lemma 17. For c, d ≥ 0, let

Sn = cE[Nr+1,n] + dE[Nr+2,n] (6.43)

and

Tn = cE[N ′r+1,n] + dE[N ′r+2,n]. (6.44)

1. For any ε ∈ (0, 1
2
) and n ≥ r + 2

An(S −Bn) ≤ Tn ≤ Sne
ε(r+1) + nr+2(c+ d)e−ε(n−r−2),

for some 0 ≤ An → 1 and 0 ≤ Bn → 0 as n→∞, which may depend on ε.

2. We have Tn → ∞ if and only if Sn → ∞. And we have and lim inf Sn = 0 if and

only if lim inf Tn = 0.

3. If Sn →∞, then Tn/Sn → 1.
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Proof. Parts 2 and 3 follow immediately from Part 1. We now prove Part 1. Recall

that for the Poissonized case

E [Nr,n] = E

[∑
a∈A

1[ya,n(n)=r]

]

=
∑
a∈A

E
[
1[ya,n(n)=r]

]
=
∑
a∈A

P (ya,n(n) = r)

=
∑
a∈A

e−npa,n
(npa,n)r

r!
,

and for the deterministic case

E
[
N ′r,n

]
= E

[∑
a∈A

1[y′a,n(n)=r]

]

=
∑
a∈A

E
[
1[y′a,n(n)=r]

]
=
∑
a∈A

P
(
y′a,n(n) = r

)
=
∑
a∈A

(
n

r

)
pra,n(1− pa,n)n−r.

For n ≥ r + 2

Sn = c
∑
a∈A

e−npa,n
(npa,n)r+1

(r + 1)!
+ d

∑
a∈A

e−npa,n
(npa,n)r+2

(r + 2)!

=
∑
a∈A

(npa,n)r+1

(r + 1)!
e−npa,n

(
c+ d

npa,n
r + 2

)
,

and using the fact that
(
n
r+2

)
=
(
n
r+1

)
n−r−1
r+2

Tn =
∑
a∈A

(
c

(
n

r + 1

)
pr+1
a,n (1− pa,n)n−r−1 + d

(
n

r + 2

)
pr+2
a,n (1− pa,n)n−r−2

)
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=
∑
a∈A

(
n

r + 1

)
pr+1
a,n (1− pa,n)n−r−2

(
c(1− pa,n) + d

n− r − 1

r + 2
pa,n

)
≤
∑
a∈A

(npa,n)r+1

(r + 1)!
e−npa,n

(
c+ d

npa,n
r + 2

)
epa,n(r+2)

≤
∑

a∈A,pa,n≤ε

(npa,n)r+1

(r + 1)!
e−npa,n

(
c+ d

npa,n
r + 2

)
eε(r+2)

+ nr+2
∑

a∈A,pa,n>ε

pa,n(c+ d)e−ε(n−r−2)

≤Sneε(r+2) + nr+2(c+ d)e−ε(n−r−2),

where we use the facts that
(
n
r

)
≤ nr

r!
and (1 − x) ≤ e−x. Next, fix δ ∈ (1

2
, 1). Using

the facts that (1− x) ≥ e−x/(1−2x2) for x ∈ (0, 1/2), see Lemma 2.6 in [24], we get

Tn =
∑
a∈A

(
c

(
n

r + 1

)
pr+1
a,n (1− pa,n)n−r−1 + d

(
n

r + 2

)
pr+2
a,n (1− pa,n)n−r−2

)
=

(
n

r + 1

)∑
a∈A

pr+1
a,n (1− pa,n)n−r−2

(
c(1− pa,n) + d

n− r − 1

r + 2
pa,n

)
≥
(

n

r + 1

)
×

∑
a∈A,pa,n≤ε/nδ

pr+1
a,n e

−npa,ne
− pa,n

1−pa,n
(pa,nn−r−2)

(
c+ d

n− r − 1

r + 2
pa,n

)
(1− pa,n)

≥(1− ε/nδ)
(

n

r + 1

)
e
− ε

nδ−ε
(εn1−δ−r−2)

×
∑

a∈A,pa,n≤ε/nδ
pr+1
a,n e

−npa,n
(
c+ d

n− r − 1

r + 2
pa,n

)

=(1− ε/nδ)
(

n

r + 1

)
e
− ε

nδ−ε
(εn1−δ−r−2) (r + 1)!

nr+1

(
c

∑
a∈A,pa,n≤ε/nδ

(npa,n)r+1

(r + 1)!
e−npa,n

+ d
(n− r − 1)

n

∑
a∈A,pa,n≤ε/nδ

(npa,n)r+2

(r + 2)!
e−npa,n

)

=An(S −Bn),
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where we use the fact that
(
n
r+1

)
∼ nr+1

(r+1)!
.

An = e
− ε

nδ−ε
(εn1−δ−r−2)

(1− ε/nδ)
(

n

r + 1

)
(r + 1)!

nr+1
→ 1,

and

Bn =d
r + 1

n

∑
a∈A,pa,n≤ε/nδ

(npa,n)r+2

(r + 2)!
e−npa,n + c

∑
a∈A,pa,n>ε/nδ

(npa,n)r+1

(r + 1)!
e−npa,n

+ d
∑

a∈A,pa,n>ε/nδ

(npa,n)r+2

(r + 2)!
e−npa,n

=B(1)
n +B(2)

n +B(3)
n .

We will show that Bn → 0. First, let M > 0 be a constant with xr+1e−x ≤ M for

x ≥ 0, then by Dominated convergence Theorem

B(1)
n ≤ d(r + 1)M

∑
a∈A,pa,n≤ε/nδ

pa,n → 0.

Next

B(2)
n ≤ ce−εn

1−δ
nr+1

∑
a∈A

pa,n → 0,

and similarly B(3)
n → 0.

Lemma 18. 1. For any 1 ≤ k ≤ n/2, we have

Var(N ′k,n) ≤ Ak,nE[N ′k,n],

where Ak,n =
(
4kk+1

(
n−k
k

)
(n− 2k)−k + 1

)
→ 4kk

(k−1)!
+ 1.
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2. If E[N ′k,n]→∞, then

Var(N ′k,n)

(E[N ′k,n])2
→ 0 and

N ′k,n
E[N ′k,n]

p−→ 1.

To show this, we use ideas from the proof of Theorem 3.3 in [24]. Part 2 can also

be found without proof in Section 4 of [32].

Proof. First note that, for any 1 ≤ k ≤ n/2,

(N ′k,n)2 =
∑
a∈A

∑
b∈A,a6=b

1[y′a,n=k]1[y′b,n=k] +N ′k,n

and

E[(N ′k,n)2] =

(
n

k, k, n− 2k

)∑
a∈A

∑
b∈A,a6=b

pka,np
k
b,n(1− pa,n − pb,n)n−2k + E[N ′k,n].

Next, let and Bk,n =
(

n
k,k,n−2k

)
/
(
n
k

)2
=
(
n−k
k

)
/
(
n
k

)
≤ 1 and note that Bk,n → 1. We

have

Var(N ′k,n) = E[(N ′k,n)2]− E[N ′k,n]−Bk,n(E[N ′k,n])2

+(Bk,n − 1)(E[N ′k,n])2 + E[N ′k,n]

≤ E[(N ′k,n)2]− E[N ′k,n]−Bk,n(E[N ′k,n])2 + E[N ′k,n].

We can upper bound E[(N ′k,n)2]− E[N ′k,n]−Bk,n(E[N ′k,n])2 by

(
n

k, k, n− 2k

)∑
a∈A

∑
b∈A

pka,np
k
b,n

(
(1− pa,n − pb,n)n−2k − (1− pa,n)n−k(1− pb,n)n−k

)
≤ k

(
n

k, k, n− 2k

)∑
a∈A

∑
b∈A

pka,np
k
b,n(1− pa,n)n−2k(1− pb,n)n−2k(pa,n + pb,n)

≤ 2k

(
n

k, k, n− 2k

)∑
a∈A

∑
b∈A,pa,n≤pb,n

pka,np
k+1
b,n (1− pa,n)n−k(1− pb,n)n−3k
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+ 2k

(
n

k, k, n− 2k

)∑
a∈A

∑
b∈A,pa,n>pb,n

pk+1
a,n p

k
b,n(1− pa,n)n−3k(1− pb,n)n−k

≤ 4k

(
n

k, k, n− 2k

)∑
a∈A

pka,n(1− pa,n)n−k
∑
b∈A

pk+1
b,n (1− pb,n)n−3k

= 4k

(
n− k
k

)
E[N ′k,n]

∑
b∈A

pk+1
b,n (1− pb,n)n−3k ≤ 4kk+1

(
n− k
k

)
E[N ′k,n](n− 2k)−k.

Here the second line uses the facts that 1 − pa,n − pb,n ≤ 1 − pa,n − pb,n + pa,npb,n =

(1 − pa,n)(1 − pb,n), that 1 − (1 − pa,n)k(1 − pb,n)k ≤ 1 − (1 − pa,n − pb,n)k, and that

1 − (1 − x)k ≤ kx for x ∈ [0, 1], which is easily checked by induction on k. The last

inequality follows by the fact that xk(1− x)n−3k ≤ kk(n− 2k)−k for x ∈ [0, 1], which

can be shown using standard calculus arguments.

For the second part, by Chebyshev’s inequality, it suffices to show that Var(N ′k)

(E[N ′k])2 → 0.

The first part implies that

Var(N ′k)

(E[N ′k])
2
≤ Ak,n

1

E[N ′k]
→ 0.

This holds since Ak,n → 4kk

(k−1)!
+ 1, which follows by the fact that

(
n
k

)
∼ nk

k!
.

Proof of Corollary 9. Since (r+ 1)2 > 0 and (r+ 2)(r+ 1) > 0, if sn →∞ as n→∞,

applying part 3 of Lemma 17 completes the proof.

Proof of Corollary 10. Since we have Theorem 5 and Corollary 9, the proof can be

completed by applying the Slutsky’s theorem.

Proof of Corollary 11. In the proof of Corollary 3 (6.13) we showed that E[Nr+1,n]→

∞. Now let c = 1 and d = 0 in (6.43) and (6.44) of Lemma 17, then using part 2 of

Lemma 17 gives

E[N ′r+1,n]→∞, (6.45)
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and using part 3 of Lemma 17 gives

E[N ′r+1,n] ∼ E[Nr+1,n]. (6.46)

We also showed in Lemma 5 that

E[Nr+1,n]

sλ
→∞,

and here we set λ = n and get

E[Nr+1,n]

sλ
→∞. (6.47)

Corollary 9 gives (s′n,n)2 ∼ s2
n,n; thus together with (6.47) and (6.46) we have

E[N ′r+1,n]

s′n,n

p−→∞. (6.48)

Since (6.45) holds, using part 2 of Lemma 12 gives

N ′r+1,n

E[N ′r+1,n]

p−→ 1. (6.49)

Since

N ′r+1,n

s′n,n
=

E[N ′r+1,n]

s′n,n

N ′r+1,n

E[N ′r+1,n]
,

by continuous mapping theorem (6.48) and (6.49) implies that

N ′r+1,n

s′n,n

p−→∞.
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Since r + 1 ∈ (0,∞),

N ′r+1,n(r + 1)

s′n,n

p−→∞.

Now plugging in

T ′r,n (n) =
N ′r+1,n

n
(r + 1) ,

nT ′r,n(n)

s′n,n
=
N ′r+1,n(r + 1)

s′n,n

p−→∞.

By the symmetry of Normal distribution (2.10) implies that

n

s′n,n

(
π′r,n(n)− T ′r,n(n)

) d−−−→
n→∞

N(0, 1),

and so

nT ′r,n(n)

s′n,n

(
π′r,n(n)

T ′r,n(n)
− 1

)
d−−−→

n→∞
N(0, 1).

Since

nT ′r,n(n)

s′n,n

p−→∞,

it follows from Lemma 1 that

π′r,n(n)

T ′r,n(n)
− 1

p−→ 0.
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Therefore,

T ′r,n(n)

π′r,n(n)
− 1

p−→ 0.

Lemma 19. For the deterministic case let

Tn = cE[N ′r+1,n] + dE[N ′r+2]

T̂n = cN ′r+1,n + dN ′r+2,n.

T̂ is a consistent estimator of T , i.e., as n→∞, for all ε > 0

P

(∣∣∣∣∣ T̂nTn − 1

∣∣∣∣∣ > ε

)
→ 0.

Proof. Here we use similar arguments from the proof of Lemma 13, because Lemma 12

still holds when the distribution is changing.

Proof of Corollary 12. Since (r + 1)2 > 0 and (r + 2)(r + 1) > 0, the result is an

application of Lemma 19.

Lemma 20. For any 0 ≤ k ≤ n/2, we have

0 ≤ E

[
N ′k+1,n −

n− k
k + 1

π′k,n

]
≤ ek+1

n
E[Nk+2,n]

and

Var(π′k,n) ≤ n−2ekE[Nk+2,n] + 2ke4kn−3E[Nk+1,n]E[Nk+2,n].
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Proof. First note that, for any 0 ≤ k ≤ n/2,

(π′k,n)2 =
∑
a∈A

∑
b∈A,a 6=b

pa,npb,n1[y′a,n=k]1[y′b,n=k] +
∑
a∈A

p2
a,n1[y′a,n=k]

and

E[(π′k,n)2] =

(
n

k, k, n− 2k

)∑
a∈A

∑
b∈A,a6=b

pk+1
a,n p

k+1
b,n (1− pa,n − pb,n)n−2k

+

(
n

k

)∑
a∈A

pk+2
a,n (1− pa,n)n−k =: H1 +H2.

We have

0 ≤ E

[
N ′k+1,n −

n− k
k + 1

π′k,n

]
=

(
n

k + 1

)∑
a∈A

pk+2
a,n (1− pa,n)n−k−1

≤ nk+1
∑
a∈A

pk+2
a,n e

−pa,n(n−k−1)

≤ ek+1

n

∑
a∈A

(npa,n)k+2e−pa,nn =
ek+1

n
E[Nk+2,n],

where we use the facts that
(
n
k+1

)
= n−k

k+1

(
n
k

)
, that

(
n
k

)
≤ nk, and that 1− x ≤ e−x for

x > 0. In a similar way we can upper bound H2 by

H2 ≤ nk
∑
a∈A

pk+2
a,n (1− pa,n)n−k ≤ n−2

∑
a∈A

(npa,n)k+2e−pa,n(n−k)

≤ n−2ek
∑
a∈A

(npa,n)k+2e−npa,n = n−2ekE[Nk+2,n].

Now, let Bk,n =
(

n
k,k,n−2k

)
/
(
n
k

)2
=
(
n−k
k

)
/
(
n
k

)
and note that Bk,n ≤ 1. We can upper

bound H1 −Bk,n(E[π′k,n])2 by

(
n

k, k, n− 2k

)∑
a∈A

∑
b∈A

pk+1
a,n p

k+1
b,n

(
(1− pa,n − pb,n)n−2k − (1− pa,n)n−k(1− pb,n)n−k

)
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≤ kn2k
∑
a∈A

∑
b∈A

pk+1
a,n p

k+1
b,n (1− pa,n)n−2k(1− pb,n)n−2k(pa,n + pb,n)

= 2kn2k
∑
a∈A

pk+1
a,n (1− pa,n)n−2k

∑
b∈A

pk+2
b,n (1− pb,n)n−2k

≤ 2kn−3
∑
a∈A

(npa,n)k+1e−pa,nn+2kpa,n
∑
b∈A

(npb,n)k+2e−pb,nn+2kpa,n

≤ 2ke4kn−3E[Nk+1,n]E[Nk+2,n],

where the second line follows by arguments similar to those in the proof of Lemma 18

and the third by symmetry. From here the result follows.

Proof of Theorem 6. Theorem 3 and Lemma 17 imply that E[N ′r+1,n] → c∗ and

E[N ′r+2,n]→ 0. Then Lemma 20 implies that E[n−r
r+1

πr,n]→ c∗ and that Var(n−r
r+1

π′r,n)→

0. Now, the first convergence follows by the well-known representation of the mean

square error as the sum of the variance and the square of the bias. From here,

Markov’s inequality combined with Slutsky’s Theorem gives the second convergence.

The last convergence follows from Theorem 3, Lemma 16, and Slutsky’s Theorem.
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