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ABSTRACT 

 

 

RICHARD ARTHUR ALAIMO. MANAGEMENT OF DISTANCING AND 

ADJACENCY SPECIFICATIONS IN FACILITY LAYOUT PROBLEMS. (Under the 

direction of DR. CHURLZU LIM) 

 

 

 Facility layout planning is an intriguing and challenging problem that can be 

addressed from several perspectives, namely from an operational excellence point of 

view or in consideration of the well-being of occupants and their relative experiences 

within the facility. These two stances are known to be conflicting in nature since an 

improvement for one outlook is likely to have a negative impact on the other. At the same 

time, it might be necessary to address certain requirements and conditions when 

designing new or renovating existing facilities that can either have a positive or negative 

effect from an efficiency and/or human factors standpoint, thus revealing the underlying 

complexity of the facility layout problem (FLP). These inherent challenges make it 

difficult to apply exact methods for optimizing the layout of a facility, resulting in 

practitioners to resort to other techniques instead where an optimal design is failed to be 

guaranteed. There are three avenues that drive this dissertation research that are 

influenced by the aforementioned issues, including (1) coping with computational 

complexity and intractability, (2) consideration of infectious diseases in relevance to 

facility layout planning, and (3) increasing the applicability of exact methods for layout 

design practitioners (i.e., architects). 

 For the first research avenue, a special variant of FLP known as the double-row 

layout problem is considered, where departments are placed along two rows that are 

separated by a central corridor. By modifying an already existing formulation in the 
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literature and introducing additional symmetry-breaking constraints, it was found that 

solution times and optimality gaps were reduced for the most occurrences across 100 

randomly generated problem instances of varying size (with respect to the number of 

departments). This is made possible by incorporating the minimum clearance 

requirements between departments in the pairwise distance constraints rather than the 

non-overlapping constraints. Doing so results in the number of binary variables to be 

reduced by 25% to 50%, respectively, compared to the existing model, thus lessening the 

overall computational complexity. These findings are key for the other topics in this 

dissertation. 

 The second research avenue is in the context of layout design problems during 

pandemic-induced circumstances, where social distancing and reduced capacity 

constraints are enforced to reduce the spread of infection. A restaurant layout problem is 

the primary focus for this avenue in the dissertation (although it can easily be extended to 

other facility types) to assist restaurant owners in maximizing the number of seats that 

can be placed inside of the facility when operating under pandemic conditions. Similar to 

the first research avenue, social distancing requirements are embedded in the pairwise 

distance constraints. Note that optimizing the layout solely based on the number of seats 

in the restaurant (aka “naïve approach”) may yield inferior performance in practice for a 

variety of metrics, such as generated revenue, table utilization, rejection rates, etc. (i.e., 

poor table utilization, parties not being seated due to an unsatisfactory table 

arrangement). To circumvent this issue, the naïve model is transformed into a two-stage 

stochastic program with recourse that incorporates scenarios generated from the 

probability distribution of variously sized parties to maximize the expected revenue. The 
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assortment and arrangement of seats are determined during the first stage, and the 

assignment of parties to seats occurs in the second stage. When solving this problem with 

social distancing and reduced capacity constraints enforced, it was found that the 

stochastic program produced more revenue for up to 35.71% additional occurrences 

compared to the naïve approach, as well as improved rejection rates (in 10.5% additional 

occurrences) and table utilization under a simulated restaurant environment. 

 The final research avenue is intended to assist architects in the layout design 

process by generating layout alternatives in consideration of adjacency specifications, the 

flow of occupants within the facility interior, and building code requirements that are set 

forth by relevant governing bodies, such as the International Building Code. Existing 

studies only address a subset of the adjacency specifications, while ignoring proximity 

and separation requirements that can be enforced to specify maximum and minimum 

tolerable separation distances between relevant pairs of departments, respectively. In 

addition, the placement of facility/department accessways have been ignored thus far in 

the literature, which are subject to the building code requirements that architects must 

abide by. As a result of these shortcomings, a two-phase optimization framework is 

proposed for generating block layouts and aisle network configurations for further 

refining the quality of potential layout design alternatives early in the pre-design phase. 

The proposed optimization model has a multi-objective function, which is represented as 

a weighted sum of several objectives. Multiple layouts are generated from various 

combinations of weights, and are evaluated by an architect to estimate their preferences. 

The resulting estimated preference can then be analyzed in an effort to find the optimal 

weights. 
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CHAPTER 1: INTRODUCTION 

 Consider the facility layout problem (FLP) where it is of interest to optimize 

the utilization of available space inside of a facility. To be more precise, FLP can be 

described as the optimal placement of differently- or same-sized departments/objects 

inside of a facility while optimizing one or more objectives. The most popular 

performance measure for FLP is the minimization of material flow cost, which is 

calculated by multiplying the flow cost per unit distance by the total distance between 

departments for each department pair, and then summing all of these terms together. 

The flow cost can be approximated by referencing the process sequence data from the 

operation process charts that are available at the facility (Vollman and Buffa, 1966). 

Other performance measures include robustness, flexibility, space utilization, etc. (Lin 

and Sharp, 1999). Examples of where this problem is frequently encountered include 

offices (Chen et al., 2020), hospitals (Halawa et al., 2020), manufacturing plants 

(Kusiak and Heragu, 1987), etc. 

 The geometry of a facility can be modelled in two ways, namely discrete or 

continuous representations. In the discrete setting, the facility is divided into a set of 

equally- or variously-shaped grids, and departments are assigned to grids within the 

facility, whereas departments can be placed anywhere in the continuous setting. In 

general, FLP is known to be NP-hard due to the fact that it is essentially a two-

dimensional packing problem, which is also NP-hard since it is an extension to the bin 

packing problem (Coffman et al., 1997). Dynamic variants of FLP can be considered 

where each time period in the planning horizon requires a different layout design. 

This is applicable for the case when the facility needs to be rearranged based on 

changing demands for certain products or services to operate more efficiently. 



2 

 

 Research has been ongoing for FLP since the 1950s and continues to attract 

researchers from various disciplines to this day. Koopmans and Beckmann (1957) are 

considered pioneers in the field since they presented one of the first mathematical 

formulations for FLP, namely the quadratic assignment problem (QAP). Montreuil 

(1990) proposed another variant of FLP that allows for departments to be placed 

anywhere within the facility, which is represented as a mixed-integer linear program 

(MILP) model. Graph theory is also used for solving FLP, but it can yield lower-

performing layouts since it is a heuristic approach (Foulds and Robinson, 1978; 

Montreuil and Ratliff, 1989; Hassan and Hogg, 1991). When applying the graph 

theory, departments and adjacencies are typically represented as the vertices and 

edges, respectively, and the associated graph is constructed iteratively by inserting the 

department with the largest benefit (or smallest cost) into the graph. It is common for 

the graph to be initialized by strategically selecting a subset of departments (based on 

some heuristic measure) and creating a planar graph with three departments along its 

boundary and one department placed in between the others. After the final iteration, 

the dual of the planar graph can be constructed, and is then referenced for generating 

the layout design (Foulds and Robinson, 1978). 

 From these works, additional variants of and model enhancements for FLP 

have been proposed to increase its applicability and improve the overall 

computational tractability. Other variants of FLP that stemmed from these initial 

efforts include the single-row layout problem (SRLP), double-row layout problem 

(DRLP), multiple-row layout problem (MRLP), unequal-areas FLP, etc. The work 

done by Meller et al. (1999) and Sherali et al. (2003) are noteworthy examples of 

efforts that have been made to improve the computational tractability of FLP. 
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 Although FLP was created in consideration of manufacturing facilities, it has 

been applied to other problem domains since it can be beneficial for other layout 

problems. Examples include (but not limited to) chemical plants (Park et al., 2011; 

Latifi et al., 2017; Vázquez-Román et al., 2019), architecture (Wu et al., 2018; 

Chaillou, 2019; Hu et al., 2020), and construction site planning (Zouein et al., 2002; 

Kumar and Cheng, 2015; Hammad et al., 2016). The architecture problem domain is 

one of the primary interests for this dissertation. Methods that are used for assisting 

the architects during the layout design process are commonly referred to as automated 

layout generation techniques, which render realistic layouts from conceptual designs. 

 From an efficiency standpoint, it is intuitive to configure the facility layout in 

a way that makes sense to the occupants with respect to facility operations to reduce 

costs and time spent navigating. From a design perspective, this requires the 

balancing of multiple, and conflicting, objectives that can be measured both 

quantitatively and qualitatively. The same objectives are not universally applied to all 

facility types; instead, it ultimately depends on the intended purpose of the facility, as 

well as the key decision makers (DMs) who are involved in the layout design process. 

Bate and Robert (2007) suggest that a good facility design consists of three factors, 

namely the facility performance, engineering, and usability. The facility design is an 

iterative process that requires input from the DMs to help guide the designers to a 

solution that is most desired. 

1.1 Motivation  

 The research outlined in this dissertation stems from a variety of shortcomings 

in the FLP literature. These shortcomings include computational tractability as the 

problem size increases, consideration of the occupant health during the layout 

design/redesign process, as well as the need for more practical automated layout 
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generation for architectural layout design problems. The first shortcoming has been an 

issue since the introduction of QAP by Koopmans and Beckmann (1957) and is 

unfortunately still prevalent to this day. As a result, it is worth investigating 

alternative ways to reduce the computational complexity of FLP by reformulating 

existing models and generating valid inequality constraints that are intended to 

improve the quality of the linear programming (LP) relaxation when applying exact 

methods. The second shortcoming has been ignored for the most part up until the 

realization of the recent global pandemic, namely Coronavirus Disease 2019 

(COVID-19). This situation has required facility designers to rethink how interior 

spaces are arranged to minimize the spread of infection while maximizing the number 

of occupants that can be engaged in the system simultaneously in a safe manner. The 

third shortcoming is an issue in the architectural design community. Since the existing 

automated layout generation tools reflect only limited aspects of the real facilities, it 

is likely to generate suboptimal layout design alternatives incorporating only some 

architectural requirements. Thus, there is a sense of necessity to present an alternative 

method that can increase the applicability of automated layout generation for 

architects. 

 The first research effort to be addressed is in the context of DRLP, which 

seeks to find an optimal arrangement of departments along both sides of a central 

corridor to minimize the total material flow cost or another performance metric of 

interest. In particular, the case where minimum clearance requirements between 

departments are enforced when they are assigned to the same side of the corridor is 

considered. It is observed that the existing models (Chung and Tanchoco, 2010; 

Zhang and Murray, 2012) contain an excess number of binary decision variables, 

which may increase the overall computational effort to solve the problem. To address 
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this issue, two MILP formulations are proposed with the motivation that using fewer 

binary variables compared to existing formulations in the literature helps reduce the 

solution time. This is accomplished by modifying the representation of the 

clearance/separation requirements in the model constraints. Noting the NP-hardness 

of the problem, symmetry-breaking constraints are also introduced to further alleviate 

the computational burden. 

 The second research effort considers the impact of facility layout planning in 

the context of COVID-19. Businesses and corporations across a wide variety of 

industries initially struggled with the impact of COVID-19 during 2020 since they 

had to rearrange their facilities due to various policies that were enforced by state and 

local governments to reduce the risk of infection. Because of these difficulties and the 

lack of prior experiences, as well as applicable studies in the FLP literature that can 

rearrange the facility in consideration of COVID-19, many businesses were forced to 

declare bankruptcy since they could not modify their facilities accordingly. For 

example, in the restaurant industry, 110,000 restaurants were reported to be 

temporarily or permanently closed during 2020 because of the pandemic, which 

resulted in restaurant industry sales to plummet by $240 billion (National Restaurant 

Association, 2021). Furthermore, most restaurant owners had to lay off 80% of their 

staff to reduce operational costs since average facilities were operating at between 

10%-20% of the maximum potential (Dube et al., 2021). This research focuses mainly 

on restaurant layout planning, where it is desired to maximize the number of seats that 

can be occupied inside of the facility when enforcing social distancing and reduced 

capacity constraints. The novelty of this work in the FLP community is two-fold; first, 

social distancing, which is to keep the minimum separation distance that is required 

between individuals or groups of individuals during a pandemic event, is addressed in 
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designing the layout of the facility. In addition, reduced building capacity constraints 

are included where it is necessary for not only the placement of seating areas within a 

given space to be addressed during the optimization, but also which ones should be 

made available for customers to use. Unlike conventional FLP, this problem poses a 

variant of the two-dimensional knapsack problem as not all objects may fit in the 

facility due to the social distancing and reduced capacity constraints. 

 Note that solely maximizing the number of seats inside the restaurant without 

any consideration of customer demand (in the context of party sizes) may result in 

parties to be rejected upon their arrival due to an insufficient number of seating areas, 

or inefficient utilization rates of the available seating areas (i.e., large sized seating 

areas being assigned to smaller sized parties). To address this issue, a two-stage 

stochastic program with recourse is proposed, where the number of variously sized 

seating areas and their respective placement in the restaurant is considered in the first 

stage, and the assignment of parties to seating areas with respect to customer arrival 

rates and party size probabilities is addressed in the second stage. Both problem 

settings are important for restaurant owners for maximizing the revenue, and are 

commonly referred to as table mix and parties mix problems (TMP and PMP, 

respectively). Existing restaurant revenue management related studies typically 

address TMP and PMP separately from one another, so it is of interest to propose a 

modelling framework that solves both problems simultaneously. It is worth 

mentioning that this approach can be generalized for restaurant owners operating 

under normal conditions to optimize their existing layout, as well as for assisting new 

restaurant owners during the layout planning process. 

 The third research effort is intended to assist architects in the layout design 

process by generating layout alternatives in consideration of adjacency specifications 
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in an automated fashion. As noted by Arnolds and Nickel (2015), layout planners 

typically apply manual and rule of thumb approximations for developing and 

recommending layout designs. When developing layout designs, one important factor 

considered is the adjacency of each pair of departments. Adjacency specifications 

consist of three components, namely (1) adjacency, (2) proximity, and (3) separation 

requirements, where each requirement may reflect mechanical restrictions, logical 

constraints, and DM’s preferences. A large portion of the literature in automated 

layout generation only consider the adjacency requirements and ignore the proximity 

and separation requirements. In addition, existing MILP formulations require a large 

number of binary variables for enforcing the adjacency requirements, which 

negatively affects the solution time. To address the shortcomings of the existing 

automated layout generation techniques, an MILP model that simultaneously 

accommodates adjacency, proximity and separation requirements is proposed for 

producing block layouts. The proposed model does not require binary variables for 

representing the adjacency requirements between departments, and hence, the 

increase of computational efforts can be insignificant. 

 As an extension to generating block layouts for the architect, it is also of 

interest to address the flow of occupants inside of the facility after a feasible layout is 

generated. This is accomplished by representing the boundaries of departments as 

potential aisle segments, and the objectives are to (1) select which boundaries to 

convert into aisle segments and (2) where to configure the department/facility 

doorways with respect to multiple criteria, such as the length of the aisle network, 

travel distances between departments and facility accessways, etc. Addressing 

multiple criteria simultaneously in this setting results in a complex multi-objective 
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optimization problem that requires tradeoff and compromise for finding high-quality 

solutions. 

 Some of the existing approaches attempt to accommodate building code 

requirements when generating the aisle network for new facilities (Peng et al., 2016; 

Li and Hua, 2019; Gao et al., 2020). What makes this approach distinct from what is 

in the literature is that the facility entrance and exit locations are represented as 

decision variables, and their configuration along the facility boundary are optimized 

with respect to requirements set forth by International Building Code (2021). These 

requirements include a minimum separation distance between exit points, maximum 

allowable travel distances from the departments to accessways, etc. In addition, an 

aisle configuration is introduced that can potentially improve the facility resilience by 

enforcing unidirectional flows along the aisle segments during pandemic events (such 

as COVID-19). Enforcing unidirectional flows along designated walking paths was 

found to be helpful in reducing the spread of infection between healthcare workers in 

previous studies (Lenaghan and Schwedhelm, 2015; Zimring et al., 2018; Wong, 

2019). The combination of these two models (block layout and aisle generation 

optimization) yields a two-phase framework for further refining the quality of 

potential layout design alternatives early in the pre-design phase for new facilities. 

 The underlying theme of this dissertation is the concept of clearances and how 

they can be applied across different problem settings in consideration of the 

shortcomings in the FLP literature that were discussed earlier. In summary, the 

cumulation of these research efforts contributes to the FLP domain in three ways. 

First, the idea of building compact MILP formulations for DRLP presents a way to 

represent general types of FLPs with clearance requirements as more computationally 

efficient formulations. Second, the generation of socially distanced layouts can lay the 
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foundation for a new set of investigations that seek for measures to cope with a 

pandemic in existing facilities as well as design schemes to make facilities more 

resilient to a similar event in the future. Also, a unified modelling framework that 

optimizes the seating configuration inside of a restaurant with respect to customer 

demand is invaluable to restaurant owners for improving business operations. Third, 

incorporating the refined adjacency requirements can benefit the architecture 

practitioners by providing more realistic layout design options compared to 

conventional approaches with rather abstract representations cannot offer. 

Furthermore, the resulting layouts from the two-phase approach establish the norm for 

functional performance and serve as benchmark designs when architects attempt to 

create their own designs. 

1.2 Organization of the Dissertation 

 The remainder of this dissertation is structured as follows. Chapter 2 provides 

a literature review on general FLP-related problems with emphasis on recent 

development in the literature. Generalized problem formulations are presented for 

FLP under discrete and continuous representations, and model variants to FLP are 

also discussed. Note that more thorough literature reviews will be provided for each 

specific research effort in its own chapter. 

 Chapter 3 addresses DRLP where compact MILP formulations consisting of 

fewer binary decision variables are presented and compared with existing models by 

performing a computational study. Chapter 4 includes the socially distanced variant of 

FLP in the context of restaurant planning in consideration of pandemic events and the 

two-stage stochastic programming model for solving TMP and PMP simultaneously. 

A few instances of restaurant layout problems were found online and used as input for 

the proposed models to demonstrate their respective efficacies. Following this, an 
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experimental design was created for assessing the quality of layout solutions that were 

generated under a simulated restaurant environment. Chapter 5 considers automated 

layout generation in the architectural community, and two MILP models are 

proposed. A case study is presented to show the effectiveness of the two-phase 

method for generating layout designs of new facilities. Finally, Chapter 6 will briefly 

describe the contents of this dissertation and suggest potential avenues for future 

research. 
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CHAPTER 2: LITERATURE REVIEW 

 The conventional FLP is to find an optimal arrangement of non-overlapping 

departments within the interior of a facility. Depending on its intended use, the 

arrangement of departments can be restricted by certain shapes, or flexible as long as 

departments are placed within the facility (as noted in Section 2.1). Earlier FLP 

models considered a finite number of candidate locations when placing departments. 

Such restrictions were later relaxed so that departments can be placed anywhere in the 

facility (Section 2.2). For certain problem instances, it may be required for 

departments to be separated by a minimum distance due to operational constraints. 

The identification of such relationships is critical before finding a solution to FLP 

since it might have a significant impact on the overall efficiency of the facility 

(Section 2.3). 

 Numerous FLP studies have investigated various solution approaches over 

more than six decades under diverse assumptions including exact and heuristic 

methods in conjunction with innovative modelling strategies (Section 2.4). The 

majority of the FLP literature minimizes the material flow cost. However, 

incorporating other quantitative, as well as qualitative, criteria has gained increasing 

traction recently (Section 2.5). New criteria have emerged from the recent global 

pandemic and play an essential role for improving facility resilience and reducing the 

vulnerability of the layout configuration to infectious diseases (Section 2.5.1). The 

FLP has been applied to other research disciplines, but its presence in the architecture 

community has shown to be a promising research direction for this dissertation 

(Section 2.6). 

Before proceeding to the reviews, it would be useful to distinguish FLPs under 

the static and dynamic settings as they are frequently referred to in what follows. The 
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former assumes that the same layout is used regardless of the time-period, whereas 

the latter requires a new layout for each time-period over the scope of the planning-

horizon. Static layout problems are more common in the literature since dynamic 

layout problems become more computationally intractable as the planning horizon 

length increases. In addition, it can be costly to modify the layout design in each 

period if rearrangement costs are included. As a result, researchers have proposed the 

so-called robust layout design where it is intended to minimize the material flow cost 

across all time-periods with respect to a single layout design alternative (Pillai, 

Hunagund, and Krishnan, 2011; Tosun, Dokeroglu, and Cosar, 2013; Peng et al., 

2018). 

2.1 Material handling configurations 

 The performance of the facility depends on how the material handling 

configuration is specified beforehand, and it is likely that certain configurations result 

in better performance than others for a given problem instance. The most common 

material handling configurations in the literature can be categorized as row layouts 

(single, double, or multiple), loop layouts, and open-field layouts. 

2.1.1 Row and loop layouts 

 Row layouts require departments to be arranged in one or more rows, and are 

commonly used in modern flexible manufacturing systems (Tubaileh and Siam, 

2017). Simmons (1969) introduced the SRLP where departments are placed across a 

horizontal line, which is very similar to the well-known linear arrangement problem 

in the literature (Adolphson and Hu, 1973). It is noteworthy that, despite its 

simplicity, SRLP is known to be NP-hard (Garey, Johnson and Stockmeyer, 1976). 

The loop layout was introduced by Afentakis (1989) and considers the placement of 

departments to a set of candidate locations such that materials are transported in a 
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single direction. Kaku and Rachamadugu (1992) modelled the loop layout based on 

the QAP formulation of Koopmans and Beckmann (1957), but other modelling 

techniques and extensions have been applied in more recent research efforts (Asef-

Vaziri, Jahandideh, and  Modarres, 2017; Asef-Vaziri and Kazemi, 2018; Kang, Kim, 

and Chae, 2018; Kim and Chae, 2019, Ahmadi-Javid and Ardestani-Jaafari, 2020). 

 Heragu and Kusiak (1988) introduced the DRLP for placing departments 

along two rows that are separated by a central corridor, which can be used for the 

transportation of materials or the traffic of occupants. Chung and Tanchoco (2010) 

provided the first MILP formulation for DRLP, which was found to be incorrect and 

modified accordingly in the work by Zhang and Murray (2012). Additional 

constraints were introduced by extending the application of DRLP to other problem 

settings, such as requiring no empty space between departments in each row (corridor 

allocation problem (CAP); Amaral, 2012), and assigning departments to either row a 

priori and optimizing their relative placement in the row they belong to (parallel-row 

ordering problem; Amaral, 2013a). Heragu and Kusiak (1988) also introduced the 

MRLP where departments are assigned to three or more rows that are all parallel to 

each other. It is noted by Anjos and Vieira (2017) that the model of Zhang and 

Murray (2012) can easily be extended to multiple rows if desired. 

2.1.2 Open-field layouts 

 Unlike row and loop layout problems, where the placement of departments is 

restricted by the underlying structure, open-field layout problems allow departments 

to be placed anywhere within the boundaries of the facility. This characteristic of 

open-field layouts makes it the most flexible compared to other layout types. 

Montreuil (1990) gave the first MILP formulation of the open-field layout, and 

researchers since then have been addressing this problem from a variety of different 
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perspectives to improve its applicability. One disadvantage of the open-field layout is 

that it can be difficult to address the aisle structure and department placement 

simultaneously when modelling the problem. This has forced researchers to 

approximate the material flow cost by measuring the center-to-center distance 

between departments and multiplying the cost factor to these components. Recent 

efforts have been made to consider the aisle structure for the open-field layout using 

MILP, but the problem size grows very quickly thus making it less applicable for 

larger-sized problem instances (Lausnitzer and Lasch, 2019; Pourvaziri, Pierrerval, 

and Marian, 2021). 

2.2 Problem formulation 

 As mentioned in the previous chapter, Koopmans and Beckmann (1957) and 

Montreuil (1990) were the first ones to formulate FLP using discrete and continuous 

representations of FLP, respectively. The discrete representation of FLP considers the 

assignment of departments to a set of candidate locations, whereas the continuous 

representation considers the placement of rectangular-shaped departments anywhere 

within the facility. Although they are modelled differently, both representations share 

the same objective of minimizing the material flow cost. The generalized problem 

formulations for both representations of FLP are presented in the next two 

subsections. 

2.2.1 Discrete representation of FLP 

 Suppose that there are 𝑛 departments and 𝑚 candidate locations in the facility. 

It is assumed that 𝑛 ≤ 𝑚 to guarantee a feasible assignment of departments to 

locations. Let 𝑁 and 𝑀 denote the set of departments and locations, respectively. For 

simplicity (and without loss of generality), consider the case where 𝑛 = 𝑚. The flow 

cost per unit distance between departments 𝑖 and 𝑘 and the distance between locations 
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𝑗 and 𝑙 are represented as 𝑓𝑖𝑘 and 𝑑𝑗𝑙, respectively. Let 𝑥𝑖𝑗 be a binary decision 

variable equal to 1 if department 𝑖 is assigned to location 𝑗, and 0 otherwise. 

 Constraints for the discrete representation of FLP include: (1) each department 

is assigned to one location, and (2) each location is assigned to one department. From 

this problem description, the following nonlinear programming model (NLP) can be 

formulated for the discrete version of FLP. 

Minimize     ∑ ∑ ∑ ∑ 𝑓𝑖𝑘𝑑𝑗𝑙𝑥𝑖𝑘𝑥𝑗𝑙

𝑛

𝑙=1

𝑛

𝑘=1

𝑛

𝑗=1

𝑛

𝑖=1

 

subject to 

∑ 𝑥𝑖𝑗 = 1      ∀𝑖 ∈ 𝑁

𝑛

𝑗=1

 

∑ 𝑥𝑖𝑗 = 1      ∀𝑗 ∈ 𝑀

𝑛

𝑖=1

 

𝑥𝑖𝑗 ∈ {0,1}       ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑀. 

Note that the nonlinear term in the objective function (which is the product of two 

binary variables) can be linearized by applying a standard linearization technique 

(Glover and Woolsey, 1974). 

2.2.2 Continuous representation of FLP 

 Suppose that there are 𝑛 departments to be placed inside of the facility. Let 𝑐𝑖
𝑠 

and 𝑑𝑖𝑗
𝑠  represent the center point of department 𝑖 along direction 𝑠 and the center-to-

center distance between departments 𝑖 and 𝑗 along direction 𝑠, respectively. Note that 

the continuous representation of FLP can be addressed in one-, two-, or three-

dimensions. In a two-dimensional case, the length of the facility along direction 𝑠 ∈

{𝑥, 𝑦} is denoted by 𝐿𝑠, and the length and the width of department 𝑖 are denoted by a 

pair (𝑙𝑖
𝑥, 𝑙𝑖

𝑦
). Some authors prefer to let 𝑙𝑖

𝑥 and 𝑙𝑖
𝑦

 represent the half-length and the 
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half-width, respectively, resulting in a similar model formulation (Sherali et al., 

2003). It is required for each department with variable dimensions to specify lower- 

and upper-bounds on 𝑙𝑖
𝑥 and 𝑙𝑖

𝑦
 in consideration of the desired aspect ratio, which is 

evaluated for each department by taking the maximum of the length and width 

components and dividing it by the minimum of the same two components. In 

consideration of this, let 𝑙𝑏𝑖
𝑠 and 𝑢𝑏𝑖

𝑠 represent the lower- and upper-bounds of 

department 𝑖 along direction 𝑠, respectively, and let 𝛼𝑖 ≥ 1 represent the desired 

aspect ratio of department 𝑖. For the case where the dimensions of any department are 

known a priori, this results in 𝑙𝑏𝑖
𝑠 = 𝑢𝑏𝑖

𝑠 for 𝑠 ∈ {𝑥, 𝑦}. Using a similar notation for 

the flow cost per unit distance as in the discrete representation of FLP, let 𝑓𝑖𝑗 denote 

this cost between departments 𝑖 and 𝑗. 

 Constraints for the continuous representation of FLP include: (1) departmental 

area constraints (for departments with variable dimensions), (2) overlap prevention 

(with optional department separation conditions), (3) calculation of the pairwise 

distance, (4) placing departments within the boundaries of the facility, and (5) lower- 

and upper-bounds for the department dimensions. From this problem description, the 

following NLP can be formulated for the continuous version of FLP. 

Minimize     ∑ ∑ 𝑓𝑖𝑗(𝑑𝑖𝑗
𝑥 + 𝑑𝑖𝑗

𝑦
)

𝑛

𝑗=𝑖+1

𝑛−1

𝑖=1

 

subject to 

departmental area constraints, 

overlap prevention, 

𝑑𝑖𝑗
𝑠 = |𝑐𝑖

𝑠 − 𝑐𝑗
𝑠|        ∀𝑖, 𝑗 ∈ {1, … , 𝑛}, 𝑠 ∈ {𝑥, 𝑦}, 𝑖 < 𝑗 

𝑙𝑖
𝑠

2
≤ 𝑐𝑖

𝑠 ≤ 𝐿𝑠 −
𝑙𝑖

𝑠

2
    ∀𝑖 ∈ {1, … , 𝑛}, 𝑠 ∈ {𝑥, 𝑦} 

𝑙𝑏𝑖
𝑠 ≤ 𝑙𝑖

𝑠 ≤ 𝑢𝑏𝑖
𝑠        ∀𝑖 ∈ {1, … , 𝑛}, 𝑠 ∈ {𝑥, 𝑦}. 
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It is straightforward to convert the nonlinear pairwise-distance constraints into a series 

of inequalities to represent the model as an MILP instead. Although the model itself is 

not overly complex, it tends to perform poorly from a computational efficiency 

standpoint as the number of departments increases due to the number of binary 

variables and disjunctions that are required for the overlap prevention constraints. 

2.3 Clearance requirements 

 For some instances of FLP, it may be required for certain pairs of departments 

to be separated by a minimum distance because of some operational condition(s) at 

the facility (such as ventilation or vibration effects). This minimum distance is 

commonly referred to as a minimum clearance requirement. Clearance requirements 

are determined by the layout planner before applying the optimization with respect to 

several factors, such as production volume and routing of materials, processing times, 

type of material handling equipment, etc. (Solimanpur et al., 2005). Therefore, 

properly enforcing the clearances during the design phase has a direct impact on the 

facility operations. 

 Typically, clearance requirements are specified for all pairs of departments 

because it is possible that the minimum separation distance may vary for the problem 

instance (i.e., explicit clearances). If it is unnecessary for a pair of departments to be 

separated in a problem instance, then the minimum separation distance is simply set 

to zero. Authors have attempted to simplify the representation of clearances using 

what are known as implicit clearances, where the interaction effect between 

departments regarding a minimum separation is assumed to be negligible (Amaral, 

2013b). The clearance is instead embedded in the department dimensions, and the 

optional separation conditions from the problem formulation in Section 2.2 are 

ignored. Zuo et al.(2016) proposed what are known as additional clearances to 
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consider the situation where extra space is required for activities like maintenance or 

storage. 

2.4 Solution approaches 

 A variety of solution approaches have been applied for solving classic and 

extended variations of FLP. Some of the earliest approaches that were used in practice 

include methods like CRAFT, ALDEP, and Spiral, which were designed by Armour 

and Buffa (1963), Seehof et al. (1966), and Goetschalckx (1992), respectively. 

CRAFT is an improvement-based approach that iteratively improves the performance 

of a layout by rearranging departments throughout the facility. ALDEP selects 

departments for placement during each iteration based on a minimum closeness score 

based on the departments that were placed earlier on during the procedure. Spiral is a 

software package that applies different algorithms in the FLP literature for generating 

graph- or block-based layout designs. 

 For this literature review, research efforts from 2010 to 2021 were 

investigated to assess the state that FLP research is currently in and to obtain a better 

idea as to where it is heading. Metaheuristic algorithms were and still are the most 

prevalent solution approaches for FLP throughout this time frame, but some research 

efforts have been made for finding optimal solutions to FLP via exact methods. 

2.4.1 Exact methods 

 Díaz-Ovalle et al. (2010) propose a technique to optimize the placement of 

new departments in a region where existing departments are already located. The new 

departments have a risk of toxic release associated with them, so it is desired to 

minimize the worst-case scenario of an accident occurring at the facility via the 

convex-hull method in mixed-integer NLP. Meller et al. (2010) present a bottom-up 

approach for FLP that requires the layout planner to specify the arrangement of units 
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within each work cell a priori, and the model will determine the optimal orientation of 

the work cells to minimize the material flow cost. Jankovits et al. (2011) apply 

semidefinite relaxation and convex relaxation techniques for solving FLP. 

 Park et al. (2011) address safety factors in a chemical plant to reduce the 

impact of a physical explosion within the facility. Safety distances are implemented 

using a consequence analysis in which the likelihood of a disastrous event occurring 

for each department is measured. Bernardi and Anjos (2013) propose a two-phase 

procedure for the multi-floor FLP where the first phase assigns departments to each 

floor and the second phase optimizes the layout of each floor independently from the 

others. Bukchin and Tzur (2014) present an MILP that allows rectangular and L/T 

shaped departments to be placed inside of the facility. 

 Neghabi et al. (2014) address facility robustness by incorporating the so-called 

departmental length and width coefficient deviations. This allows for departments 

with uncertain dimensions to be considered for FLP using pre-specified lower and 

upper bounds on the dimensions instead. Ghassemi and Neghabi (2015) propose an 

alternative method for addressing adjacency in FLP. Traditionally, adjacency between 

departments was represented using a binary index, where 0 and 1 values indicate not 

adjacent and adjacent, respectively. The authors define two departments being 

adjacent to one another if they are within a pre-determined distance by using their 

center points as the reference point. They use a continuous variable to measure the 

respective degree of adjacency (bounded between 0 and 1) between a pair of 

departments. 

 Ahmadi and Jokar (2016) present a multi-phase optimization framework that 

addresses single- and multi-floor variants of FLP using a similar approach as Bernardi 

and Anjos (2013), but apply exact methods for finding an optimal solution or near-
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optimal solutions. Anjos and Vieira (2016) propose a two-phase optimization process 

for generating a facility layout design. In the first phase, a barrier penalty method is 

used to determine the relative orientation of departments, which are then used as 

inputs to the second phase. Since the objective function is non-convex, local optimal 

solutions are referenced for determining relative orientation. In the second phase, non-

overlapping constraints are then generated based on the results computed from phase 

one. Chae and Regan (2016) address departments of two types, namely those with 

flexible and inflexible dimensions, and propose constraints to determine the 

orientation of the latter type. 

 Latifi et al. (2017) introduce an approach that takes economic and safety 

aspects into consideration simultaneously for a process plant layout problem. Toxic 

release and occurrence of domino event constraints, which consider blast waves, and 

pool, jet and flash fires, are incorporated into the model and their disastrous impacts 

are approximated using probability functions. Che et al. (2017) consider the multi-

floor FLP where each floor consists of a set of rooms with a given area and the 

objective is to assign departments to one or more rooms while minimizing material 

floor costs and wasted space. The authors linearize the original model and apply an 

epsilon-constraint method to optimize both objectives simultaneously. 

 Ghassemi and Neghabi (2018) extend the work of Ghassemi and Neghabi 

(2015) to classify departments as being adjacent if they share a minimum common 

boundary length along any direction. The benefit of this formulation compared to 

their previous work is that fewer binary variables are required. In Xie et al. (2018), 

the authors were interested in linearizing the Euclidean distance between pairs of 

departments since there are cases where this distance metric is more desired than the 

rectilinear distance that is traditionally used. This linearization allows for a pre-
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determined margin of error specified by the DM to be satisfied in measuring the 

Euclidean distance prior to the optimization. Wu et al. (2018) formulate a mixed-

integer quadratic program (MIQP) that allows for irregularly shaped departments to 

be considered. The building is decomposed into a set of sub-domains consisting of 

multiple rectangles that serve a similar functional purpose. The layouts of the sub-

domains are optimized iteratively to remove irregularities from the layout. 

 Vázquez-Román et al. (2019) propose an NLP model consisting of fewer 

overlapping constraints and binary variables for process layout problems. Lausnitzer 

and Lasch (2019) formulated an MILP that optimizes the placement of departments, 

input and output locations, as well as material flow paths using a network design 

approach. Travel distances are measured along the aisles that are generated in 

between departments to account for the situation where it is not feasible to travel 

directly through the departments. Pourvaziri et al. (2021) address FLP in 

consideration of department placement and aisle generation simultaneously. It is 

assumed that there is one entrance and exit to the facility, and departments are 

assigned to different levels with respect to department input/output points and aisle 

accessibility constraints. 

2.4.2 Genetic algorithm 

 The genetic algorithm (GA) represents the evolution of a species over time 

with respect to the chromosomes that are passed down from parents to their children 

when producing offspring. A series of operations are applied to each child to diversify 

the population of individuals, including selection, evaluation, crossover, and 

mutation. This diversity is important because it allows for a wide variety of 

individuals to be produced, thus allowing for the species to evolve for future 

generations. Each individual belonging to the population is identified as a solution 
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and the objective of the GA is to iteratively evolve the initial population to find the 

best observed solution across all generations. 

Caputo et al. (2015) consider risk assessment as an objective in FLP to 

minimize operational costs and economic loss from accidents that may occur. 

Economic losses include costs associated with damage to equipment and fatalities 

from faulty equipment. The GA is solved using a performance-based approach where 

probabilities associated with accidents are dependent on physical effects between 

departments, as well as their distances apart. Ficko and Palcic (2013) propose a 

procedure that converts the facility layout into a mesh of equilateral triangles where 

nodes represent the departments and edges represent material flow paths. 

Jiang and Nee (2013) developed an FLP system that uses augmented reality 

and an analytical hierarchy process-based GA for improving existing layouts. 

Augmented reality is used to collect data from the existing layout and the departments 

that are placed within it. Paes et al. (2017) apply a greedy approach for placing 

departments within the facility depending on the flexibility of departmental 

requirements. Empty maximal spaces are created within the boundaries of the facility 

and departments are placed as close as possible to the center of the maximal empty 

space it belongs to. Rodrigues et al. (2013) formulate a GA for solving the multi-floor 

FLP. A stochastic hill climbing search is applied to randomly generate solutions 

during each iteration. 

Sadrzadeh (2012) proposes a GA for the multi-line FLP. Initial solutions are 

generated and grouped together based on how strong the inter-departmental 

relationships are, which is measured as the product of material flow, total cost, and 

distance for pairs of departments. Aiello et al. (2012) optimize material flow costs, 

aspect ratio, adjacency, and distance for the unequal-areas FLP by applying a multi-
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objective GA, where the unequal-areas FLP refers to an FLP consisting of 

departments with variable dimensions. The facility is divided into horizontal and 

vertical cuts, forming a series of blocks that are used to represent the departments to 

be placed. Aiello et al. (2013) use elite mechanisms to diversify the offspring to 

further explore the solution space. Recursive mutation guarantees that all individuals 

in the population are unique by changing each chromosome until this condition is 

satisfied. 

Emami and Nookadabi (2013) consider the multi-objective FLP and applied a 

nondominated sorting GA. Chromosomes of the offspring are generated using a single 

point operator between parents along the boundary where two different consecutive 

time periods exist in the encoding. Departments belonging to the same time period are 

then randomly swapped as a mutation operator. Lenin et al. (2013) formulate a GA 

for the multi-objective SRLP. Leno et al. (2013) consider the multi-objective FLP 

such that the inter-cell layout and material handling system are considered 

simultaneously. An elitist strategy is applied for the GA to ensure that the set of best 

solutions are preserved during each generation. 

Gonçalves and Resende (2015) formulate a biased random-key GA and LP 

procedure for the unequal-areas FLP. A hybrid approach is used where the GA 

determines the order in which departments are placed and their respective sizes, 

followed by a placement strategy to place the departments within the facility. 

Kulturel-Konak and Konak (2013) propose a GA and LP procedure for the unequal-

areas FLP. The encoding scheme for each individual is structured as a matrix that 

contains the centroids along the x- and y-axis of each department and its aspect ratio. 

Datta et al. (2011) formulate a GA that converts SRLP to an unconstrained 

optimization problem. Random and rule-based techniques, known as worst-pair 
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together, flow-based permutation, and length-based permutation, are used for 

initializing feasible solutions. Mazinani et al. (2013) formulate a GA for the dynamic 

FLP where integers in the encoding scheme are used to represent which bay the 

department is assigned to and the decimal represents the order in which it is placed for 

each time period. Yang et al. (2011) formulate a GA for the dynamic FLP. Sequences 

of orders, or jobs, are defined that require a particular sequence of departments within 

the facility to reduce material flow costs. 

Izui et al. (2013) consider the facility layout of a robotic cellular 

manufacturing system where the total operation time, layout area, and overall 

feasibility for robotic units to be placed are optimized. A non-dominated sorting GA 

is used for selecting the non-dominated solutions, which are then used for producing 

offspring for the next generation. Khaksar-Haghani et al. (2013) consider the multi-

floor FLP within a cellular manufacturing setting, where it is necessary to optimize 

cell formation, group layout, and scheduling. A parameter ratio representing how far 

the child is from the better parent is used for producing offspring, which is followed 

by random mutation. Kia et al. (2014) formulate the multi-floor FLP as an MILP 

using a cell-based structure and applied a GA to solve it. Krishnan et al. (2012) apply 

a group technology strategy using binary part-machine incidence matrices, which 

represent the relationship between groups of departments and parts for cellular 

manufacturing systems.  

Palomo-Romero et al. (2017) parallelize the GA procedure by randomly 

generating and separating the initial population into smaller sized subpopulations. A 

tournament selection method is used for selecting parents to produce offspring by 

selecting random pairs of individuals and choosing the one that has a better objective 

function value. Tosun et al. (2013) use a master-slave node representation for 
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parallelizing the GA. Peng et. al (2018) propose a GA for stochastic dynamic FLP to 

find a robust layout that minimizes the flow cost across the entire planning horizon. 

2.4.3 Simulated annealing 

 Simulated annealing (SA) resembles the process of annealing a material by 

alternatingly applying hot and cool temperatures. This process is repeated until the 

material reaches a stable state such that it can be used for its intended purpose. A 

temperature parameter is applied to guide the solution process based on changes 

between the objective function values that are recorded during the procedure. When it 

is observed that this difference is small, then it can be assumed that the solution has 

achieved its “ground state,” resembling a solution to the problem. 

Kulturel-Konak and Konak (2015) propose an SA and LP procedure for the 

cyclic FLP. LP is used for generating solutions to the problem, which is followed by 

SA to explore the neighborhood space. The percentage difference between the 

objective function values is used to scale the acceptance probability when determining 

whether to accept a neighborhood solution. Xiao et al. (2013) create an SA algorithm 

using an interconnected zoning algorithm for arranging departments within the 

facility. Wang et al. (2015) use a mixed encoding scheme where the sequence of 

departments and their locations for each period in the planning horizon are included. 

Mathematical programming is used to determine the exact location for all departments 

and find an optimal solution that is better than the one from the SA by fixing the 

sequence of departments along both rows. 

Navidi et al. (2012) apply the game theory to represent the decision-making 

process between facility layout and material handling systems designers as a duopoly 

Bertand competition game. Since these objectives are conflicting, it is obvious that 

the facility layout and material handling system designers have different strategies to 
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optimize their goals. Matai (2015) formulate an SA algorithm for the multi-objective 

FLP. Neighborhood solutions are generated by assigning departments to locations that 

share the same index and evaluating each one in order. 

Matai et al. (2013) normalize the objective function prior to the procedure for 

quantitative and qualitative measures to ensure that no objectives are more dominant 

than the others. Palubeckis (2015) consider a special case of SRLP where the 

departments are all separated by an equal distance. The SA algorithm allows for pairs 

of departments to be swapped or inserted in the encoding scheme. The author designs 

two procedures to reduce the computational complexity of comparing best-known and 

new solutions for the multi-start SA algorithm, as well as for exploring the 

neighborhood space of current solutions. 

Pourvaziri and Pierreval (2017) apply the open queuing network theory for 

representing processing and arrival rates of products during the facility layout design 

process and use SA to solve the multi-objective dynamic FLP. Cloud theory is used 

for handling the multi-objective function by measuring the uncertainties of qualitative 

measures using their level of membership in the fuzzy set. Bozer and Wang (2012) 

transformed the unequal-areas FLP into two graphs and applied the SA algorithm for 

determining the relative orientation and location of departments. 

Pillai et al. (2011) structure their SA algorithm to solve the dynamic FLP 

under two situations. It is assumed in the first situation that rearrangement costs and 

time are low when making changes to the facility layout. In the second situation, it is 

assumed that rearrangement costs and time are extremely high so there is less 

flexibility in making changes to the facility layout. Moslemipour and Lee (2012) 

incorporate the DM’s confidence level into their SA algorithm for the dynamic FLP, 

which represents their level of uncertainty of total demand for each time within the 
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planning horizon. Sahin et al. (2010) incorporate budget constraints into their SA 

algorithm for the dynamic FLP. 

2.4.4 Tabu search 

 Tabu search (TS) is a local neighborhood search procedure for analyzing other 

solutions that might exist nearby a recently found solution. Good solutions that are 

found are stored in memory to avoid encountering the same solution in a future 

iteration. Solutions are constantly compared and added/removed from the memory 

until the best possible solution is found. 

Bozorgi et al. (2015) use data envelopment analysis for analyzing the most 

efficient layout designs for the dynamic FLP and apply TS for exploring the solution 

space. McKendall Jr. and Hakobyan (2016) apply TS to solve the dynamic FLP with 

unequal-areas departments. A boundary search heuristic generates initial layouts for 

the facility and are improved using TS by exchanging department locations to reduce 

material handling costs. McKendall Jr and Liu (2012) present two TS algorithms for 

the dynamic FLP. One of the algorithms incorporates a dynamic tenure length based 

on the percentage difference from the best-known solution found and recently 

obtained solutions, and the other algorithm is known as a probabilistic TS where 

probabilities of assigning departments to locations are computed and ranked. 

Kothari and Ghosh (2013) formulate two TS algorithms for SRLP. Initial 

solutions are generated by sorting the departments in non-decreasing order based on 

their lengths. In the first TS algorithm, solutions are generated by swapping the 

positions of adjacent departments. In the second TS algorithm, solutions are generated 

by placing departments elsewhere in the facility. Palubeckis (2012) formulates a 

branch-and-bound algorithm for SRLP using the Gilmore-Lawler bounding technique, 

which is used for generating lower bounds on the optimal solution for QAP (Gilmore, 
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1962; Lawler, 1963). TS is applied to reduce the size of the solution space and for 

performing a dominance test to compare different layout designs. Samarghandi and 

Eshghi (2010) considered a special case of SRLP where the material flow cost 

between all departments is equal. The authors prove that an optimal solution can be 

found by sorting the departments in non-decreasing order and partitioning them into 

three different sets. 

Kulturel-Konak (2012) proposes a probabilistic TS and LP procedure for the 

unequal-areas FLP. A linear program is used for determining the shape and location 

of departments in the facility. After finding a solution, the probabilistic TS is applied 

using insert and swap operators. Zuo et al. (2014) formulate a procedure that includes 

TS and LP for the multi-objective DRLP. TS is used for generating department 

sequences along each row and LP determines the location of each department. Scholz 

et al. (2010) use slicing trees and structures for placing departments and determining 

the directions of the guillotine cuts for dividing the facility into different areas. A 

slicing tree is a binary tree which shows how departments are partitioned with respect 

to the cuts that are recursively made in the slicing structure. Each internal node in the 

tree represents the way a rectangular cut is reflected in the layout design. Cuts are 

made either vertically or horizontally, and the leaf nodes contain the departmental 

indices to represent which cut partition each department is assigned to (Tam and 

Chan, 1998). 

2.4.5 Ant colony optimization 

 Ant colony optimization (ACO) simulates the behavior of ants when they are 

looking for new food sources. Ants work collaboratively by releasing pheromones to 

inform the other ants about their location and where to continue to search. After some 
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time, the ants will no longer continue searching and gather to the best-found food 

source. 

Komarudin (2010) considers the unequal-areas FLP and uses a slicing tree 

representation for dividing the facility into horizontal and vertical segments. 

Pheromone information from the ants in the system are used to determine the slicing 

sequences and orientation types, which then generate a dummy layout. An adaptive 

penalty function is applied to restrict the search process within the feasible region. 

Chen (2013) proposes a new representation of the encoding scheme for the ACO 

algorithm. Binary encoding is used to convert the sequence of locations for 

departments using the hexadecimal numbering system. Using this approach, at most 

256 departments can be considered. Kulturel-Konak and Konak (2011b) apply ACO 

for the unequal-areas FLP. Solutions are constructed by randomly assigning 

departments to cells based on their level of desirability. 

2.4.6 Particle swarm optimization 

 Particle swarm optimization (PSO) simulates the behavior of birds who are 

flying together to find new sources. When a potential food source is found, the bird 

adjusts its direction and speed so that it can investigate the area of interest. Since the 

birds are working collaboratively, they share information with regard to food sources 

so that the entire swarm can have food to eat. 

Smarghandi et al. (2010) formulate a PSO algorithm for solving SRLP. They 

define a relationship between the factoradic numbering system and the permutation 

property of SRLP. Random initial solutions (or particles) and velocities are generated 

for each particle and are updated throughout the procedure to guide them towards the 

global optimal solution. Adrian et al. (2015) apply a craziness function that generates 

new particles when an existing particle might be stuck at a local optimal solution. 
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Derakhshan and Wong (2017) formulate a PSO algorithm for the dynamic FLP where 

shapes and dimensions of the departments are known a priori and can be placed 

anywhere within the facility. Centroids and orientations for the departments are 

represented as unit intervals during the procedure and are converted to their actual 

values with respect to the facility following each iteration. 

Jolai et al. (2012) formulate a multi-objective PSO to solve the unequal-areas 

dynamic FLP. Particles within the swarm are compared using a dominance score to 

update their best-known solution throughout the procedure. Weights are applied to 

each objective and a roulette wheel technique is used for updating the best-known 

solution of the swarm by evaluating the overall dominance score for the non-

dominated solutions. 

2.4.7 Miscellaneous 

 Abedzadeh et al. (2014) formulate an MILP model with an objective function 

consisting of multiple fuzzy measures. To solve this model, initial solutions are 

generated, and their respective neighborhood spaces are explored using the parallel 

variable neighborhood search. Palubeckis (2017) proposes a variable neighborhood 

search algorithm for SRLP. Interchange- and insertion-based local search algorithms 

are presented and combined using the variable neighborhood search framework for 

efficiently solving large-scale instances. 

Altuntas and Selim (2012) create three association rule-based learning 

approaches for solving the FLP. Departments are assigned to one or more clusters 

during the procedure based on the relationships that were found between them after 

analyzing the data. For the situation where more than one cluster exists at the end of 

the procedure, they are all merged together to produce the facility layout design. Kang 

and Chae (2017) formulate a harmony search algorithm for the unequal-areas FLP. 
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Ulutas and Islier (2015) formulate an artificial immune system algorithm for the 

dynamic FLP. A matrix is used to encode the antibodies where each element in the 

matrix corresponds to the department's location within the facility. Strings of 

departments are randomly created initially and concatenated together to represent the 

antibodies encoding scheme. Ulutas and Kulturel-Konak (2012) consider the unequal-

areas FLP and formulate an artificial immune system-based clonal selection 

algorithm. The authors modify the traditional encoding scheme that is used in the 

literature by adding the number of departments and their respective dimensions to the 

antibodies. 

Kothari and Ghosh (2014) propose a scatter search algorithm for SRLP. To 

ensure that a diverse set of solutions are generated, deviation distances between parent 

permutations are computed by taking the absolute valued sum of differences between 

the set of department indexes from one solution and the element where the department 

is located from the encoding scheme of another solution. Niroomand et al. (2015) 

formulate a migrating birds optimization algorithm for solving the closed loop FLP. 

The first-fit strategy is used for generating initial solutions where departments are 

randomly placed starting at the northwest corner of the facility. To reduce the overall 

amount of empty space, a set of departments are required to be located at the corners 

of the facility. Vitayasak et al. (2017) formulate a backtracking search algorithm for 

the stochastic dynamic FLP. Material flow and rearrangement costs are minimized 

using this algorithm while considering the uncertainty associated with product 

demand during the planning horizon.  

Li et al. (2018) consider FLP in the dynamic setting and optimize the safety, 

sustainability, efficiency, and cost of the facility. Various human and management 

factors are integrated in the model to improve health and well-being of employees in 
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conjunction with achieving organizational goals. An artificial bee colony algorithm is 

applied for finding a solution. Herrán et al. (2021) apply the variable neighborhood 

search metaheuristic for the space-free MRLP. The authors modify the procedure so 

that it can be implemented using parallel-computing, and it is shown that it is 

beneficial for finding a solution more quickly. 

2.4.8 Hybrid algorithms 

 Kulturel-Konak and Konak (2011a) propose a hybrid binary PSO algorithm 

with a local search method for the unequal-areas FLP. A logistic function calculates 

the probability that a department is placed in a given location and is used for 

generating the order of placement. An adjustment method is applied to the locations 

in the facility that are not sufficiently wide enough to contain the departments that are 

assigned to it. Ou-Yang and Utamima (2013) combine estimation of distribution, 

PSO, and TS algorithms for SRLP. Estimation of distribution and PSO are used in an 

alternating fashion for generating offspring during the procedure. The estimation of 

distribution algorithm measures the probability of assigning departments to a given 

location and then randomly placing them in the facility.  

Dokeroglu (2015) proposes a hybrid teaching-learning based TS algorithm for 

the discrete representation of FLP. Hosseini and Khaled (2014) combine the 

imperialist competitive, the variable neighborhood search, and the SA algorithms for 

the dynamic FLP. The imperialist competitive algorithm represents each solution as a 

country where the best solutions are imperialists. The goal is for one empire to 

dominate all other empires. To simulate the occurrence of a revolution in each colony, 

variable neighborhood search is used consisting of three operators to find a better 

solution. Once the best solution is selected using these two algorithms, SA is used to 

navigate the neighborhood space once more to find a better solution. 
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Leno et al. (2016) create a hybrid genetic and SA algorithm. Input and output 

stations are arranged for each department in order to minimize the material flow cost. 

Tayal and Singh (2018) formulate a hybrid firefly and chaotic SA algorithm for the 

multi-objective dynamic FLP. Analytic hierarchy process (AHP) is applied for 

assigning weights to the objectives, which influence the evaluation  of solutions that 

are generated. Ripon et al. (2013) formulate a hybrid genetic and variable 

neighborhood search algorithm for the multi-objective unequal-areas FLP. A slicing 

tree representation is used for the encoding scheme that includes the department 

placement sequence, slicing sequence and orientation, and the number of departments. 

Guan and Lin (2016) combine variable neighborhood search and ACO  algorithms for 

SRLP.  

García-Hernández et al. (2013) formulate a hybrid genetic and fuzzy system 

algorithm for the unequal-areas FLP. Initial solutions are randomly generated and 

grouped together using fuzzy c-means clustering. The best layouts from each cluster 

are displayed to the DM so they can provide a score. Niching techniques are applied 

to select the best solutions from each cluster to produce offspring for the next 

generation. Each solution is clustered again for the next generation, and the same 

evaluation procedure is repeated until the DM selects their favorite layout design. 

Hosseini-Nasab and Emami (2013) propose a hybrid PSO and SA algorithm 

for the dynamic FLP. To efficiently navigate the solution space, the authors map the 

set of solutions that represent the facility layout during the planning horizon into a set 

of factoradic base numbers. Pourvaziri and Naderi (2014) propose a hybrid genetic 

and SA algorithm to solve the dynamic FLP. The first two populations are generated 

by relaxing the integer variables in the nonlinear objective function and then 
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measuring the distribution of chromosomes among these populations depending on 

the placement of departments within the facility. 

Ku et al. (2011) create a hybrid procedure that initially parallelizes the GA 

into subpopulations. After the best individuals from the subpopulations are found, SA 

is applied for exploring their solution spaces to determine if there exist any better 

solutions. Tosun (2015) formulate a hybrid genetic and TS algorithm for the FLP. 

Normal and robust TS procedures are applied to diversify the population using 

adaptive and short-term memory, respectively. This allows for them to avoid already 

explored neighborhood spaces. 

Kulturel-Konak (2017) formulates an MILP for a variant of the dynamic FLP 

where departments are assigned to different zones of the facility. Each zone is created 

from the intersection of vertical and horizontal bands spanning across the facility 

where the number of bands are specified a priori. Similar to the flexible-bay structure 

variant of FLP, an aisle structure is naturally created as a result dividing the facility 

into zones. A metaheuristic was developed that consists of SA, variable neighborhood 

search, and exact methods to find a solution. 

2.5 Layout evaluation and emerging criteria 

 The selection of a layout design is an iterative process that requires input from 

the DM to guide the designers towards a solution that is most desired. Once the 

designer is finished gathering requirements and generating a set of layout alternatives, 

DMs are responsible for evaluating them so that a final layout can be selected. The 

literature is rich with different methodologies for handling the evaluation aspect of 

FLP, particularly when both quantitative and qualitative criteria are involved. These 

techniques include analytic hierarchy process (AHP) (Satty, 1994; Foulds et al., 1998; 

Singh and Singh, 2011; Hadi-Vencheh and Mohamadghasemi, 2013), data 
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envelopment analysis (DEA) (Yang and Kuo, 2003; Ertay et al., 2006; Tayal et. al, 

2020), etc. The output from these and similar approaches is a ranking of each layout 

design alternative based on its calculated score, and it is common for the top ranked 

alternative to be selected as the final solution. 

 Bashiri and Deghan (2010) consider the dynamic FLP and apply AHP and 

DEA for optimizing cost, adjacency, shape ratio, and flexibility over the span of the 

planning horizon. Singh and Singh (2011) apply AHP in a three-phased heuristic for 

performing pairwise comparisons, normalizing the criteria measures, and computing 

the objective weights of the criteria. Mohamadghasemi and Hadi-Vencheh (2011) use 

fuzzy set theory and NLP to maximize the minimum score of a given set of layout 

alternatives during the evaluation stage where the criteria weights are represented as 

decision variables. Hasan et al. (2012) compare the performance of different facility 

configurations with respect to agile manufacturing using analytic network process 

(ANP). Hadi-Vencheh and Mohamadghasemi (2012) develop a framework consisting 

of the AHP and NLP for evaluating layout alternatives. The NLP model maximizes 

the score of each layout by optimizing the weight of the criterion. The layouts are 

considered disjointly during the NLP procedure, thus resulting in different criteria 

weights each time this step is executed. 

 Al-Hawari et al. (2014) apply ANP to account for interdependencies that exist 

between criteria. To demonstrate the efficacy of this approach, the authors perform a 

sensitivity analysis to display how the ranking of layout alternatives changes. Wang et 

al. (2016) combine a simple additive weighting scheme, a technique for order of 

preference by similarity to ideal solution, grey relational analysis, and design of 

experiments to construct a hybrid decision-making methodology for the layout design 

problem. The first three multi-criteria decision-making techniques construct an 
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approximation dataset for the layout evaluation, which are used for constructing a 

regression model in an effort to represent the DM's evaluation process using design of 

experiments. Ferjani et al. (2019) take into account the fatigue of workers within the 

facility during the evaluation process. Contributors to fatigue in their approach 

include noise, posture, heavy loads, vibrations, and task durations. 

 Sagnak et al. (2018) consider 112 criteria measures for the layout design 

problem by applying the fuzzy decision-making trial and evaluation laboratory 

technique. Lin and Wang (2019) apply systematic layout planning for generating 

layout alternatives, and then use the fuzzy variant of AHP. The evaluation addresses 

human reliability from four perspectives, including software, hardware, environment, 

and liveware. Tayal et al. (2020) consider the stochastic dynamic variant of FLP and 

create a hybrid algorithm consisting of DEA, machine learning, and SA to predict the 

efficiency scores of different layout design alternatives. 

 It is worth mentioning that the layout design and evaluation processes are 

typically considered disjointly in the literature. In other words, it is not clear how to 

incorporate feedback from the DMs using the evaluation methods that currently exist 

in the FLP literature to design layouts that are more appealing. This can be of concern 

particularly if the DMs are not satisfied with the layout alternatives that are presented 

to them. Several researchers have created interactive systems that allow for DMs to be 

involved during the generation of layout alternatives to fill the gap between these 

processes. García-Hernández et al. (2015) develop an interactive GA where 

quantitative and qualitative criteria are considered simultaneously for generating 

layout design alternatives. After each generation, a set of high-fitness layout designs 

are presented to the DMs, and they provide feedback for the qualitative criteria. 
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García-Hernandez et al. (2020) present a similar model but instead use the coral reefs 

optimization metaheuristic for generating layout alternatives. 

2.5.1 Socially distanced layouts using FLP 

 Because of the recent global pandemic, additional factors have been 

introduced that influence how new/existing layout configurations should be 

designed/modified to reduce the spread of infection in the facility, as well as for 

evaluating the quality of a layout design under pandemic conditions. Examples of 

such factors include social distancing, where it is required for individuals to be 

separated by a minimum distance, and the traffic flows of occupants within the 

facility. Consideration of these factors simultaneously is currently scarce in the FLP 

literature, and few research efforts have been performed that incorporate social 

distancing in the context of FLP (Bortolete et al., 2021; Fischetti et al., 2021; Ugali et 

al. 2021). One of the goals for this dissertation is to propose a framework that 

accommodates social distancing and occupant flow for improving the resilience of 

facilities that are operating under pandemic conditions. 

 Under the traditional FLP setting, social distancing requirements go together 

with how clearances are applied, where it is assumed that all clearance requirements 

are equal to the minimum separation threshold for satisfying the social distancing 

constraints. Instead of departments being arranged inside of a building envelope, 

perhaps a problem instance of FLP in consideration of social distancing may consist 

of a variety of objects that humans can interact with, such as desks, chairs, tables, etc.  

Based on how these objects are arranged in the facility, occupants will need to be able 

to navigate through the system in a fashion that (1) makes them feel comfortable, and 

(2) reduces the risk of infection. One way to accommodate this is to enforce 

unidirectional flow along designated walking paths, where occupants must walk along 
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a single direction. This approach was shown to be helpful for reducing the spread of 

infection among healthcare workers (Lenaghan and Schwedhelm, 2015; Zimring et 

al., 2018; Wong, 2019). 

2.6 Automated layout generation in architecture 

 As mentioned in the previous chapter, FLP is a robust modelling framework 

that can easily be extended to other settings. Architecture is one example that blends 

together seamlessly with FLP since both problem settings address the arrangement of 

departments inside of facilities. The difference between FLP in the manufacturing and 

architectural settings is the consideration of other facility factors in the latter, such as 

lighting, window placement, doorways, beam placement, etc. (Michalek et al.,  2002; 

Space Planning Basics, 2016). These factors can be addressed in traditional FLP 

problem formulations, but there are other complex factors in architecture that cannot 

easily be expressed, including building material type, building aesthetics, etc. 

Solution approaches that have been applied in this domain are similar to the most 

common ones used for FLP, including mathematical optimization (Glover et al., 

1985; Michalek et al.,  2002; Michalek and Papalambros, 2002; Kamol and Krung, 

2005; Wu et al., 2018), metaheuristics (Verma and Thakur, 2010; Guo and Li, 2017; 

Laignel et al. 2021), and graph theory (Grason, 1971; Ruch, 1978), as well as other 

techniques such as machine learning (Yeh, 2006; Chaillou, 2019; Hu et al., 2020) and 

Bayesian theory (Merrell et al., 2010). 

2.7 Concluding remarks for the literature review 

 This literature review considers research efforts from 2010 to 2021 for FLP. It 

is clear that metaheuristic algorithms are more prevalent in the literature for FLP since 

they are capable of solving the larger-size problem instances compared to when 

applying exact methods. For this reason, research is still necessary for reducing the 
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computational complexity of FLP either by reformulating existing models and 

creating valid inequality constraints. DRLP is the material handling configuration 

system of interest for addressing this concern in the dissertation. 

 Facility resilience is another research direction in FLP that is still developing, 

particularly in the context of pandemic events such as COVID-19. Stochastic variants 

of FLP have been introduced for variable demand over a planning horizon, and 

consideration of disastrous events are common for FLP in the chemical plant domain. 

However, there is still a gap in the literature between FLP and pandemic events. As 

far as the application of FLP is concerned, ideas and concepts from FLP are being 

applied in the architecture community for automating the layout generating process. 

However, there exists some open avenues of research in this domain with respect to 

developing more compact models using mathematical optimization and integrating 

the architect’s needs during the layout design process. These three topics form the 

basis of this dissertation, and more thorough literature reviews for each of them will 

be presented in the subsequent chapters. 
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CHAPTER 3: COMPACT MILP MODELS FOR DRLP 

3.1 Introduction 

 Consider a variant of FLP known as the double row layout problem (DRLP), 

which assigns a given number of departments along two rows that are separated by a 

central corridor. Similar problem variants include the single row layout problem 

(SRLP) (Simmons, 1969; Keller and Buscher, 2015) and multi row layout problem 

(MRLP) (Heragu and Kusiak, 1992; Tubaileh and Siam, 2017), where the former 

considers the placement of departments along a single row, and the latter considers 

the placement of departments in multiple rows such that rows are separated by 

corridors. This type of design is well known and widely used in modern flexible 

manufacturing systems (Tubaileh and Siam, 2017), where automated guided vehicles 

can be used to efficiently transport materials between departments along the corridor 

to increase the flexibility of the system. This chapter considers a variant of DRLP 

where minimum clearances between departments are enforced while the objective is 

to minimize the total material flow cost (this problem is denoted by DRLP-C 

hereafter). 

 DRLP-C was first formulated by Chung and Tanchoco (2010) as a MILP. 

Assuming that the width of the corridor is sufficiently large or the clearance between 

departments in different rows is irrelevant, the minimum clearance requirements are 

applied only when both departments are placed in the same row. As in typical DRLPs 

(Heragu and Kusiak, 1988), the distance between two departments in DRLP-C is 

measured by the length of the corridor between center points of respective 

departments without accounting for the width of the corridor. Without loss of 

generality, it is assumed that the corridor runs horizontally from left to right as 

illustrated in Figure 3.1. 
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Figure 3.1: Illustration of DRLP-C and clearances between departments 

 The model of Chung and Tanchoco contains an error as the clearance is not 

observed for certain situations in the constraints that keep departments from 

overlapping. Zhang and Murray (2012) present a corrected model, where additional 

binary decision variables are introduced to explicitly account for the relative location 

of departments when they are assigned to the same row. Given the fact that DRLP-C 

is strongly NP-hard (Chung and Tanchco, 2010), this chapter proposes two new MILP 

formulations that consist of fewer binary decision variables than the model of Zhang 

and Murray in an effort to alleviate the computational burden to solve the problem. 

The key idea is to embed the clearance requirements into the constraints associated 

with distances, instead of directly incorporating them into the constraints enforcing 

the relative locations of departments. The remainder of this chapter is organized as 

follows. In the next section (Section 3.2), a literature review of relevant studies is 

provided. In Section 3.3, two proposed MILP formulations are presented and 

compared with the model of Zhang and Murray (2012). Also, three sets of symmetry-

breaking constraints (SBCs) are introduced in Section 3.3. In Section 3.4, the results 

of the computational experiments that were performed on problem instances 
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generated in a similar fashion as in Chung and Tanchoco (2010) are reported. Section 

3.5 concludes the chapter with a summary and a remark on the potential extension of 

this study. 

3.2 Literature Review 

 Amaral (2013b) considers DRLP where clearance requirements are embedded 

in the department lengths (implicit clearances) and presents a MILP formulation 

consisting of fewer decision variables in comparison to the model of Chung and 

Tanchoco (2012), where clearance requirements are specified for all pairs of 

departments to indicate the minimum separation distance when they are assigned to 

the same row (explicit clearances). Amaral introduces valid inequalities for the 

convex hull of a set of points that represents a partition of departments into two 

segments using a set of binary variables representing the row membership and the 

relative location. In addition, a symmetry breaking constraint similar to the one by 

Sherali et al. (2003), known as the position 𝑝-𝑞 method is implemented. This 

constraint forces the center point of department 𝑝 to be less than the center point of 

department 𝑞. It is suggested that departments 𝑝 and 𝑞 are selected as the pair of 

departments that have the least material flow. 

 Amaral (2019) presents an alternative formulation with fewer decision 

variables and more constraints in comparison to Amaral (2013b). However, the 

computational experiments do not display statistically significant differences in the 

performance between them. Secchin and Amaral (2019) introduce additional decision 

variables to the model of Amaral (2013b) to reflect relative positions of three 

departments in the same row and replace non-overlapping constraints with tighter 

constraints. They observe that the number of nodes explored by the branch-and-bound 

method is decreased after including additional valid inequalities in their proposed 
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formulation. Chae and Regan (2020) extend the model of Secchin and Amaral by 

introducing binary variables that indicate the row membership of each department and 

adding constraints that enforce the XNOR gate between these variables. 

Computational experiments of Chae and Regan show that their model consumes 

lesser time for a majority of the test problem instances when compared to the models 

of Amaral (2013b) and Secchin and Amaral (2019). Amaral (2020) formulated a 

MILP for DRLP based on a linear extension of a partial order. The formulation has 

the least number of binary variables in the literature for DRLP when implicit 

clearances are enforced. 

 Murray et al. (2012) formulate DRLP-C as a bi-objective MILP model to 

simultaneously minimize the total material flow cost and the area of the facility. They 

consider crossing the corridor as part of the transportation path of material flows, and 

hence, their model results in different layout designs from the solutions of Zhang and 

Murray (2012), even when the problem of Murray et al. is set to minimize only the 

material flow cost. Murray et al. also add constraints to the model of Zhang and 

Murray (2012) to reduce the problem symmetry by randomly selecting a department 

and fixing it to the first row, as well as restricting its respective center points to be 

less than or equal to a given threshold. Zuo et al. (2016) extend the formulation of 

Zhang and Murray (2012) to include so-called additional clearances, which are 

deemed to be necessary for departmental maintenance or storage of excess 

inventory/materials. The authors assume that adjacent departments can share their 

additional clearances by allowing these regions to overlap.  

 Murray et al. (2013) consider DRLP-C with asymmetric material flows, for 

which they propose constructive heuristics and local search methods to solve larger-

sized problem instances. A LP is incorporated into these methods to further improve 
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the overall solution quality. Gülşen et al. (2019) extend DRLP-C of Murray et al. 

(2013) to consider the process flow (or sequence of departments that must be visited) 

of a set of products as part of the design criteria. The problem is formulated as a 

mixed-integer NLP and a two-phase heuristic procedure is proposed. Wang et al. 

(2015) applied a SA metaheuristic along with LP to solve a dynamic variant of 

DRLP-C for the situation where material flows between departments are subject to 

change over time. Under this setting, departments are assumed to be rearranged in 

each period, which makes it a difficult problem to solve using exact methods. Guan et 

al. (2020) applied a decomposition-based algorithm in conjunction with local search 

and PSO methods. The master problem is decomposed into two subproblems, where 

one ignores minimum clearance requirements between adjacent departments to 

optimize the sequences in both rows, and the other applies PSO to enforce the 

clearance requirements with a fixed sequence of departments. 

 Amaral (2012) presents a variant of DRLP known as the corridor allocation 

problem (CAP). CAP assumes that there is no empty space between adjacent 

departments. This restriction is important for certain applications, such as arranging 

rooms in a hospital or an office building to better utilize the available space. DRLP is 

different from CAP since empty spaces are allowed in-between departments. Kalita 

and Datta (2014) formulate a nonlinear bi-objective optimization model for CAP 

where the total material flow cost and the length of the corridor are minimized 

simultaneously. A permutation-based GA is implemented for solving an 

unconstrained representation of the model. Another variant of DRLP, called parallel-

row ordering problem, is first introduced by Amaral (2013a) to consider the situation 

where a subset of departments share some common characteristic(s) and it is required 

for them to be assigned to the same row. Yang et al. (2019) modify some constraints 
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of the model in Amaral (2013a) and present their computational experiments where 

the modified formulation finds optimal solutions in lesser time in their study. 

 As mentioned earlier, DRLP-C considered in this chapter is originally 

formulated by Chung and Tanchoco (2010) and corrected by Zhang and Murray 

(2012). Those MILP formulations embed minimum clearances directly into the 

constraints that determine relative locations of center points of departments. As will 

be seen in the next section, the proposed formulations maintain separate constraints 

that relate the minimum clearance requirements to distances between departments. 

3.3 Proposed models 

3.3.1 Model formulations 

 In this subsection, two MILP models are presented for DRLP-C. In 

comparison to the model of Zhang and Murray (2012), the proposed two models have 

fewer decision variables (both binary and continuous) with the motivation that having 

fewer variables, especially binary variables, may be computationally advantageous in 

finding a solution using an off-the-shelf solver. The following notation of the problem 

parameters is used to present the model: 

𝑛 Number of departments 

 

𝐼 {1,2, … , 𝑛}: index set of departments 

𝐾 {1,2}: index set of rows 

𝑀 ≫ 1: a large constant 

𝑙𝑖 Length of department 𝑖 ∈ 𝐼 

𝑓𝑖𝑗 Material flow cost per unit distance between departments 𝑖 and 𝑗 (𝑖 < 𝑗) 

𝑐𝑖𝑗 Minimum clearance between departments 𝑖 and 𝑗 (𝑖 < 𝑗). 

 

As described in Section 3.1, the minimum clearance between departments is enforced 

only if they are placed in the same row. The distance between a pair of departments is 

measured by the length of the corridor between two center points of respective 
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departments, regardless of rows where those departments are placed. The following 

decision variables are used in the proposed models: 

𝑥𝑖𝑘: center point of department 𝑖 in row 𝑘 if 𝑖 is assigned to 𝑘; 0 if department 𝑖 
is not in row 𝑘 

 

𝑑𝑖𝑗: distance between departments 𝑖 and 𝑗 (𝑖 < 𝑗) 

𝑦𝑖𝑘: 1 if department 𝑖 assigned to row 𝑘; 0 otherwise 

𝑧𝑖𝑗: 1 if the center point of department 𝑖 is to the left of the center point of 

department 𝑗 regardless of their row membership; 0 otherwise (𝑖 < 𝑗) 

𝛿𝑘𝑖𝑗: auxiliary binary variable for disjunctive constraints (𝑖 < 𝑗). 

Using the notation defined above, the first MILP model (M1) can be stated as follows: 

Minimize ∑ ∑ 𝑓𝑖𝑗𝑑𝑖𝑗

𝑛

𝑗=𝑖+1

𝑛−1

𝑖=1

  
 

(3.1) 

subject to 𝑥𝑖𝑘 ≤ 𝑀𝑦𝑖𝑘 ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾 (3.2) 

 ∑ 𝑦𝑖𝑘

𝑘∈𝐾

= 1 ∀𝑖 ∈ 𝐼 (3.3) 

 
𝑥𝑖𝑘 ≥ 𝑥𝑗𝑘 +

𝑙𝑖𝑦𝑖𝑘 + 𝑙𝑗𝑦𝑗𝑘

2
− 𝑀𝛿𝑘𝑖𝑗 ∀𝑖, 𝑗 ∈ 𝐼, 𝑖 < 𝑗, 𝑘 ∈ 𝐾 (3.4) 

 
𝑥𝑗𝑘 ≥ 𝑥𝑖𝑘 +

𝑙𝑖𝑦𝑖𝑘 + 𝑙𝑗𝑦𝑗𝑘

2
− 𝑀(1 − 𝛿𝑘𝑖𝑗) ∀𝑖, 𝑗 ∈ 𝐼, 𝑖 < 𝑗, 𝑘 ∈ 𝐾 (3.5) 

 𝑑𝑖𝑗 ≥ ∑ 𝑥𝑗𝑘

𝑘∈𝐾

− ∑ 𝑥𝑖𝑘

𝑘∈𝐾

 ∀𝑖, 𝑗 ∈ 𝐼, 𝑖 < 𝑗 (3.6) 

 𝑑𝑖𝑗 ≥ ∑ 𝑥𝑖𝑘

𝑘∈𝐾

− ∑ 𝑥𝑗𝑘

𝑘∈𝐾

 ∀𝑖, 𝑗 ∈ 𝐼, 𝑖 < 𝑗 (3.7) 

 𝑑𝑖𝑗 ≤  ∑ 𝑥𝑗𝑘

𝑘∈𝐾

− ∑ 𝑥𝑖𝑘

𝑘∈𝐾

+ 𝑀(1 − 𝑧𝑖𝑗) ∀𝑖, 𝑗 ∈ 𝐼, 𝑖 < 𝑗 (3.8) 

 𝑑𝑖𝑗 ≤  ∑ 𝑥𝑖𝑘

𝑘∈𝐾

− ∑ 𝑥𝑗𝑘

𝑘∈𝐾

+ 𝑀𝑧𝑖𝑗 ∀𝑖, 𝑗 ∈ 𝐼, 𝑖 < 𝑗 (3.9) 

 
𝑑𝑖𝑗 ≥ (𝑐𝑖𝑗 +

𝑙𝑖 + 𝑙𝑗

2
) (𝑦𝑖𝑘 + 𝑦𝑗𝑘 − 1) ∀𝑖, 𝑗 ∈ 𝐼, 𝑖 < 𝑗, 𝑘 ∈ 𝐾 (3.10) 

 𝑥𝑖𝑘 ≥ 0  ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾 (3.11) 

 𝑑𝑖𝑗 ≥ 0 ∀𝑖, 𝑗 ∈ 𝐼, 𝑖 < 𝑗 (3.12) 
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 𝑦𝑖𝑘 ∈ {0,1} ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾 (3.13) 

 𝑧𝑖𝑗 ∈ {0,1} ∀𝑖, 𝑗 ∈ 𝐼 , 𝑖 < 𝑗 (3.14) 

 𝛿𝑘𝑖𝑗 ∈ {0,1} ∀𝑖, 𝑗 ∈ 𝐼, 𝑖 < 𝑗, 𝑘 ∈ 𝐾. (3.15) 

The objective function (3.1) minimizes the total material flow costs of the layout 

design. Constraint (3.2) ensures 𝑥𝑖𝑘 = 0 if department 𝑖 is not assigned to row 𝑘 (i.e., 

𝑦𝑖𝑘 = 0). Constraint (3.3) assigns each department to one of the upper (𝑘 = 1) and 

lower rows (𝑘 = 2). Constraints (3.4)–(3.5) keep departments from overlapping when 

they are placed in the same row. In specific, there are four possible cases of the row 

membership:  (𝑦𝑖𝑘 = 𝑦𝑗𝑘 = 1), (𝑦𝑖𝑘 =  1, 𝑦𝑗𝑘 = 0), (𝑦𝑖𝑘  = 0, 𝑦𝑗𝑘 =  1), and (𝑦𝑖𝑘 = 

𝑦𝑗𝑘 = 0). If 𝑦𝑖𝑘 = 𝑦𝑗𝑘 = 1, 𝛿𝑘𝑖𝑗 can either be 1 or 0 in (3.4) and (3.5). 𝛿𝑘𝑖𝑗 = 1 implies 

that 𝑗 is to the right of 𝑖, and 𝛿𝑘𝑖𝑗 = 0 results in 𝑖 to the right of 𝑗. Next, if 𝑦𝑖𝑘 = 1 and 

𝑦𝑗𝑘 = 0, then only 𝛿𝑘𝑖𝑗 = 0 satisfies (3.4) and (3.5) since 𝑥𝑗𝑘 = 0 from (3.2). In result, 

𝑥𝑖𝑘 ≥ 𝑙𝑖/2 from (3.4). Similarly, if 𝑦𝑖𝑘 = 0 and 𝑦𝑗𝑘 = 1, then 𝛿𝑘𝑖𝑗 = 1, and in turn, 

𝑥𝑗𝑘 ≥ 𝑙𝑗/2 from (3.5). Finally, if 𝑦𝑖𝑘 = 𝑦𝑗𝑘 = 0, then (3.4) and (3.5) are satisfied 

regardless of the value of 𝛿𝑘𝑖𝑗. It is noteworthy that the role of 𝛿𝑘𝑖𝑗 is similar to that of 

𝑧𝑘𝑖𝑗 in the formulation of Chung and Tanchoco (2010). As pointed out by Zhang and 

Murray (2012), (4.10)–(4.11) of Chung and Tanchoco (2010) are incorrectly satisfied 

by solutions that violate the minimum clearance. However, since the clearance is 

indirectly enforced by (3.10) in the proposed formulation, employing 𝛿𝑘𝑖𝑗 in (3.4)–

(3.5) for the sole purpose of having non-overlapping departments is correct and valid. 

 Since ∑ 𝑥𝑖𝑘𝑘∈𝐾  represents the center point of department 𝑖, constraints (3.6)–

(3.9) assign the exact distance between departments 𝑖 and 𝑗. In addition to (3.6)–(3.7) 

that describe the lower bounds on 𝑑𝑖𝑗, (3.8)–(3.9) impose its upper bound. If 

∑ 𝑥𝑖𝑘𝑘∈𝐾 < ∑ 𝑥𝑗𝑘𝑘∈𝐾 , (3.8) and (3.9) warrant 𝑧𝑖𝑗 = 1 since 𝑑𝑖𝑗 ≥ 0. Conversely, if 
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∑ 𝑥𝑖𝑘𝑘∈𝐾 > ∑ 𝑥𝑗𝑘𝑘∈𝐾 , then (3.8) and (3.9) give 𝑧𝑖𝑗 = 0. When ∑ 𝑥𝑖𝑘𝑘∈𝐾  = ∑ 𝑥𝑗𝑘𝑘∈𝐾 , 

𝑑𝑖𝑗 = 0 and either 𝑧𝑖𝑗 = 0 or 1 trivially satisfies (3.8) and (3.9). Constraint (3.10) 

forces the center points of 𝑖 and 𝑗 to be separated by (at least) their minimum 

clearance plus respective half-lengths when both departments are assigned to the same 

row (i.e., 𝑦𝑖𝑘 = 𝑦𝑗𝑘 = 1). If 𝑦𝑖𝑘 or 𝑦𝑗𝑘 equals 0, then (3.10) becomes redundant. In 

𝑀1, there are 3𝑛(𝑛 − 1)/2 + 2𝑛 binary variables, 𝑛(𝑛 − 1)/2 + 2𝑛 continuous 

variables, 5𝑛(𝑛 − 1) + 2𝑛 inequality constraints, and 𝑛 equality constraints. 

 It is still possible to further reduce the number of variables for the same 

problem setting, thus leading us to the second MILP (M2). Suppose that constraints 

(3.4)–(3.5) are replaced by the following constraints. 

𝑥𝑖𝑘 ≥ 𝑥𝑗𝑘 +
𝑙𝑖𝑦𝑖𝑘 + 𝑙𝑗𝑦𝑗𝑘

2
− 𝑀(2 + 𝑧𝑖𝑗 − 𝑦𝑖𝑘 − 𝑦𝑗𝑘) ∀𝑖, 𝑗 ∈ 𝐼, 𝑖 < 𝑗, 𝑘 ∈ 𝐾 (3.16) 

𝑥𝑗𝑘 ≥ 𝑥𝑖𝑘 +
𝑙𝑖𝑦𝑖𝑘 + 𝑙𝑗𝑦𝑗𝑘

2
− 𝑀(2 + (1 − 𝑧𝑖𝑗) − 𝑦𝑖𝑘 − 𝑦𝑗𝑘) ∀𝑖, 𝑗 ∈ 𝐼, 𝑖 < 𝑗, 𝑘 ∈ 𝐾 (3.17) 

∑ 𝑥𝑖𝑘

𝑘∈𝐾

≥
𝑙𝑖

2
 ∀𝑖 ∈ 𝐼. (3.18) 

 Recall that, when 𝑖 and 𝑗 are in different rows (i.e., 𝑦𝑖𝑘 + 𝑦𝑗𝑘 = 1), (3.4) and 

(3.5) hold true, as long as the center points of 𝑖 and 𝑗 are greater than or equal to their 

respective half-lengths, in the respective rows with a suitably selected value of 𝛿𝑘𝑖𝑗 

(as explained above, 𝛿𝑘𝑖𝑗 = 1 if 𝑦𝑖𝑘 = 0 and 𝑦𝑗𝑘 = 1; 𝛿𝑘𝑖𝑗 = 0 if 𝑦𝑖𝑘 = 1 and 𝑦𝑗𝑘 = 0). 

Constraints (3.16) and (3.17) hold true for any positions of 𝑖 and 𝑗 when 𝑦𝑖𝑘 + 𝑦𝑗𝑘 = 1 

since 𝑀 is subtracted in the right-hand-side of both inequalities. To ensure the 

minimum possible value of the position of a department is its half-length, the lower 

bounding constraint (3.18) is explicitly added. Now, consider a case where both 

departments are in row 𝑘 (i.e., 𝑦𝑖𝑘 = 𝑦𝑗𝑘 = 1). If 𝑖 is to the left of 𝑗 (i.e., 𝑧𝑖𝑗 = 1), then 

𝛿𝑘𝑖𝑗 = 1 makes (3.5) intact to keep departments from overlapping. Under the same 
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situation, 𝑧𝑖𝑗 = 1 along with 𝑦𝑖𝑘 + 𝑦𝑗𝑘 = 2 makes (3.17) intact. Using the same 

argument, (3.4) and (3.16) become intact when 𝑖 is to the right of 𝑗. Finally, consider a 

case where both departments are not in row 𝑘 (i.e., 𝑦𝑖𝑘 = 𝑦𝑗𝑘 = 0). In this case, (3.4)–

(3.5) are redundant regardless of the value of 𝛿𝑘𝑖𝑗 since 𝑥𝑖𝑘 = 𝑥𝑗𝑘 = 0. Similarly, 

(3.16)–(3.17) become redundant regardless of the values of 𝑧𝑖𝑗. 

 Replacing (3.4)–(3.5) by (3.16)–(3.18), the number of binary variables in 𝑀2 

is reduced to 𝑛(𝑛 − 1)/2 + 2𝑛. The number of continuous variables is the same as 

that of M1, but the number of inequality constraints is increased by 𝑛 because of 

(3.18). As noted by Chung and Tanchoco (2010), the value of a large number 𝑀 for 

(3.2), (3.4)–(3.5), (3.8)–(3.9), and (3.16)–(3.17) can be set as 

 𝑀 = ∑ {𝑙𝑖 + max
𝑗∈𝐼

(𝑐𝑖𝑗)} 
𝑖∈𝐼 . 

 Before comparing the proposed MILP formulations with that of Zhang and 

Murray (2012), an intuitive property of an optimal solution of DRLP-C is presented to 

show the difference between formulations with respect to the lower bound on the 

location variable. 

Proposition 3.1: Consider a DRLP-C problem with 𝑛 > 1 and 𝑓𝑖𝑗 > 0 for 𝑖, 𝑗 ∈ 𝐼, 

where 𝑖 < 𝑗. Then, any optimal layout has at least one department in each row. 

Proof: Suppose that there exists an optimal layout that has all departments in one row. 

Without loss of generality, let this be row 1. Furthermore, let (𝑖) be the index of the 

department in the 𝑖-th position from the left in the optimal layout. Accordingly, 𝑥(𝑖)𝑘 

and 𝑑(𝑖)(𝑗) denote the location of the center point of department (𝑖) in row 𝑘 and the 

distance between departments (𝑖) and (𝑗) in this optimal layout, respectively. Note that 

the objective function value is ∑ ∑ 𝑓(𝑖)(𝑗)𝑑(𝑖)(𝑗)
𝑛
𝑗=𝑖+1

𝑛−1
𝑖=1 . Let us construct a new layout 

as follows. First, move department (1) to row 2 while keeping the same position. 
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Then, shift the positions of the remaining departments in row 1 by 𝑙(1)/2 to the left 

without altering the order (see Figure 3.2). Let 𝑥̅(𝑖)𝑘 and 𝑑̅(𝑖)(𝑗) denote the position of 

the center point of department (𝑖) in row 𝑘 and the distance between departments (𝑖) 

and (𝑗) in the new layout, respectively. Observe that 𝑥̅(𝑗)1 < 𝑥̅(𝑗+1)1 for 𝑗 = 2, 3, …, 𝑛 

since their order remains the same. Furthermore, since 𝑥(2)1 > 𝑥(1)1 + 𝑙(1)/2 and 

𝑥̅(1)2 = 𝑥(1)(1), we have 𝑥̅(2)1 = 𝑥(2)1 − 𝑙(1)/2 > 𝑥̅(1)2. Therefore, 

𝑑̅(𝑖)(𝑗) = 𝑥̅(𝑗)1 − 𝑥̅(𝑖)1 = (𝑥(𝑗)1 − 𝑙(1)/2) − (𝑥(𝑖)1 − 𝑙(1)/2) = 𝑑(𝑖)(𝑗)  ∀𝑖, 𝑗 ∈ 𝐼 \ {1}, 
𝑖 < 𝑗  

(3.19) 

and 

𝑑̅(1)(𝑗) = 𝑥̅(𝑗)1 − 𝑥̅(1)2 = (𝑥(𝑗)1 − 𝑙(1)/2) − 𝑥̅(1)2  

 

= 𝑑(1)(𝑗) − 𝑙(1)/2 < 𝑑(1)(𝑗)  

∀𝑗 ∈ 𝐼 \ {1}. (3.20) 

 

The objective function value of the new layout is ∑ ∑ 𝑓(𝑖)(𝑗)𝑑̅(𝑖)(𝑗)
𝑛
𝑗=𝑖+1

𝑛−1
𝑖=1  = 

∑ 𝑓(1)(𝑗)𝑑̅(1)(𝑗)
𝑛
𝑗=2  + ∑ ∑ 𝑓(𝑖)(𝑗)𝑑̅(𝑖)(𝑗)

𝑛
𝑗=𝑖+1

𝑛−1
𝑖=2 < ∑ 𝑓(1)(𝑗)𝑑(1)(𝑗)

𝑛
𝑗=2 +

∑ ∑ 𝑓(𝑖)(𝑗)𝑑(𝑖)(𝑗)
𝑛
𝑗=𝑖+1

𝑛−1
𝑖=2 , where the inequality holds from (3.19) and (3.20). This 

contradicts the fact that the first layout is optimal. This completes the proof.   ∎ 

 

Figure 3.2: Graphical representation of Proposition 3.1 

Thus, ∑ 𝑦𝑖𝑘𝑖∈𝐼 ≥ 1 for 𝑘 ∈ {1,2} is deemed valid when 𝑛 > 1 and 𝑓𝑖𝑗 > 0 for 𝑖, 𝑗 ∈ 𝐼. 
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 For the sake of completeness, M0 is presented below, which appeared on 

pages 4221-4222 in Zhang and Murray (2012).  In M0, the pairwise distance decision 

variables are separated into positive and negative components 𝑑𝑖𝑗
+  and 𝑑𝑖𝑗

−  to consider 

the cases where ∑ 𝑥𝑖𝑘 < 
𝑘∈𝐾 ∑ 𝑥𝑗𝑘

 
𝑘∈𝐾  and ∑ 𝑥𝑖𝑘 > 

𝑘∈𝐾 ∑ 𝑥𝑗𝑘
 
𝑘∈𝐾 , respectively, and are 

measured using equality constraints. 

Minimize ∑ ∑ 𝑓𝑖𝑗(𝑑𝑖𝑗
+ + 𝑑𝑖𝑗

− )

𝑛

𝑗=𝑖+1

𝑛−1

𝑖=1

  
 

(3.21) 

subject to 𝑥𝑖𝑘 ≤ 𝑀𝑦𝑖𝑘 ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾 (3.22) 

 ∑ 𝑦𝑖𝑘

𝑘∈𝐾

= 1 ∀𝑖 ∈ 𝐼 (3.23) 

 
𝑥𝑖𝑘 ≥ 𝑥𝑗𝑘 +

𝑙𝑖𝑦𝑖𝑘 + 𝑙𝑗𝑦𝑗𝑘

2
+ 𝑐𝑖𝑗𝑧𝑘𝑗𝑖 − 𝑀(1 − 𝑧𝑘𝑗𝑖) ∀𝑖, 𝑗 ∈ 𝐼, 𝑖 < 𝑗, 

 𝑘 ∈ 𝐾 

(3.24) 

 
𝑥𝑗𝑘 ≥ 𝑥𝑖𝑘 +

𝑙𝑖𝑦𝑖𝑘 + 𝑙𝑗𝑦𝑗𝑘

2
+ 𝑐𝑖𝑗𝑧𝑘𝑖𝑗 − 𝑀(1 − 𝑧𝑘𝑖𝑗) ∀𝑖, 𝑗 ∈ 𝐼, 𝑖 < 𝑗, 

 𝑘 ∈ 𝐾 

(3.25) 

 ∑ 𝑥𝑗𝑘

𝑘∈𝐾

− ∑ 𝑥𝑖𝑘

𝑘∈𝐾

= 𝑑𝑖𝑗
+ − 𝑑𝑖𝑗

−  ∀𝑖, 𝑗 ∈ 𝐼, 𝑖 < 𝑗 (3.26) 

 
𝑧𝑘𝑖𝑗 + 𝑧𝑘𝑗𝑖 ≤

1

2
(𝑦𝑖𝑘 + 𝑦𝑗𝑘) ∀𝑖, 𝑗 ∈ 𝐼, 𝑖 < 𝑗, 

 𝑘 ∈ 𝐾 

(3.27) 

 𝑧𝑘𝑖𝑗 + 𝑧𝑘𝑗𝑖 + 1 ≥ 𝑦𝑖𝑘 + 𝑦𝑗𝑘 ∀𝑖, 𝑗 ∈ 𝐼, 𝑖 < 𝑗, 
 𝑘 ∈ 𝐾 

 

(3.28) 

 𝑥𝑖𝑘 ≥ 0  ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾 (3.29) 

 𝑑𝑖𝑗
+ , 𝑑𝑖𝑗

− ≥ 0 ∀𝑖, 𝑗 ∈ 𝐼, 𝑖 < 𝑗 (3.30) 

 𝑦𝑖𝑘 ∈ {0,1} ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾 (3.31) 

 𝑧𝑘𝑖𝑗 ∈ {0,1} ∀𝑖, 𝑗 ∈ 𝐼 , 𝑖 < 𝑗, 
𝑘 ∈ 𝐾. 

(3.32) 

 There are three major differences between the proposed models and M0. The 

most prominent difference is regarding how the minimum clearance requirements are 

expressed in the constraints. In specific, Zhang and Murray (2012) incorporate the 

minimum clearance into the non-overlapping constraints (3.24)–(3.25), which is same 

as the approach taken by Chung and Tanchoco (2010). Observe that incorporating the 
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minimum clearance is affected by the relative location between departments in order 

to maintain the feasibility in (3.19)–(3.20). In M1 and M2, on the contrary, the 

minimum clearance is enforced directly to the distance between two departments as in 

(3.10), and as a result, fewer binary variables, 𝛿𝑘𝑖𝑗 for 𝑖 < 𝑗, are used to express 

disjunctive constraints (3.4)–(3.5). 

 Next, instead of using the upper bound 𝑑𝑖𝑗
+  and 𝑑𝑖𝑗

−  on the distance between the 

center points of departments as in (3.26) of M0 (equivalent to ∑ 𝑥𝑗𝑘𝑘∈𝐾 − ∑ 𝑥𝑖𝑘𝑘∈𝐾 ≤

𝑑𝑖𝑗
+  and ∑ 𝑥𝑖𝑘𝑘∈𝐾 − ∑ 𝑥𝑗𝑘𝑘∈𝐾 ≤ 𝑑𝑖𝑗

− ), the proposed formulations M1 and M2 assign the 

exact distance to 𝑑𝑖𝑗 by (3.6)–(3.9) using lower and upper bounding constraints. This 

is necessary because the minimum clearance is incorporated by a lower bounding 

constraint (3.10) on the distance instead of non-overlapping constraints (3.4)–(3.5). 

As a result, 𝑑𝑖𝑗 of M1 and M2 is the exact distance between departments 𝑖 and 𝑗 

without the need for the objective function to be minimized. On the other hand, 𝑑𝑖𝑗
+ +

𝑑𝑖𝑗
−  of M0 is an upper bound on the distance, which becomes tight when the objective 

function is minimized. 

 Third, the lower bounding constraints on the center points of departments as in 

(3.18) are missing in the original formulation of Zhang and Murray. Therefore, it is 

possible that the left-most department has its center point at zero. For example, 

consider a situation where department 𝑖∗ is in row 1 while all other departments are in 

row 2. Then, the non-overlapping constraints (3.24)–(3.25) between 𝑖∗ and 𝑗∗ ≠ 𝑖∗ 

become redundant since 𝑧𝑘𝑖∗𝑗 = 𝑧𝑘𝑗𝑖∗ = 0. This results in 𝑥𝑖∗ being restricted only by 

the nonnegativity constraints, and hence, 𝑥𝑖∗ is allowed to be zero. To this end, the 

lower bounding constraints (3.18) are also added to M0 in the computational study 

presented in the next section. As a result, M0 has 𝑛 additional inequality constraints 
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from the original formulation of Zhang and Murray. It should be noted that M1 does 

not need such lower bounding constraints since (3.4)–(3.5) are disjunctive constraints, 

which enable the half-length lower bound to the department in row 𝑘 when 𝑦𝑖𝑘 + 𝑦𝑗𝑘 

= 1. One may argue that the lower bounding constraint is necessary for the case where 

all departments are in one row. That is, if all departments are in one row, (3.4)–(3.5) 

will not enforce the half-length lower bound to the left-most department since 𝑦𝑖𝑘 +

𝑦𝑗𝑘 ≠ 1 for all 𝑖, 𝑗. However, from Proposition 3.1, there exists at least one department 

in each row, which guarantees that the half-length lower bound is enforced to all 

departments. Note that the model of Chung and Tanchoco (2010) did not need the 

half-length lower bounding constraint for the same reason, although their model is 

incorrect. 

Table 3.1: Model size comparison 

 Number of variables Number of constraints 

Model Binary Continuous Inequality Equality 

M0 2𝑛(𝑛 − 1) + 2𝑛 𝑛(𝑛 − 1) + 2𝑛 4𝑛(𝑛 − 1) + 3𝑛 𝑛(𝑛 − 1)/2 + 𝑛 

M1 3𝑛(𝑛 − 1)/2 + 2𝑛 𝑛(𝑛 − 1)/2 + 2𝑛 5𝑛(𝑛 − 1) + 2𝑛 𝑛 

M2 𝑛(𝑛 − 1)/2 + 2𝑛 𝑛(𝑛 − 1)/2 + 2𝑛 5𝑛(𝑛 − 1) + 3𝑛 𝑛 

 

The numbers of decision variables and constraints in M0, M1 and M2 are compared in 

Table 3.1. The numbers of both binary and continuous variables are in the order of 𝑛2 

in all three models. However, when comparing coefficients of 𝑛2, M1 has 25% and 

50% smaller values than M0 for respective variable types. Furthermore, the 

coefficient becomes 1/3 in M2 when compared to that in M1 for the number of binary 

variables. The number of inequality constraints in all three models is in the order of 

𝑛2. The number of equality constraints in M1 and M2 is in the order of 𝑛 whereas M0 

has the order of 𝑛2. 
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3.3.2 Symmetry-breaking constraints 

 As commonly observed in combinatorial optimization problems, DRLP-C 

suffers from a problem symmetry since the permutations of departments between 

rows, as well as between the directions of the corridor, make it possible to produce 

alternative solutions that have the same objective function value (Margot, 2010). In an 

effort to alleviate the burden to unnecessarily explore alternative solutions, two sets of 

symmetry-breaking constraints (SBCs) that can be applied to all three models are 

introduced next. 

 The first SBC is to eliminate the symmetry with respect to the direction of the 

corridor. For this SBC, a pair of departments 𝑝 and 𝑞 are selected, and their relative 

locations are fixed by letting the center point of 𝑝 be less than or equal to the center 

point of 𝑞 as follows. 

∑ 𝑥𝑝𝑘

 

𝑘∈𝐾

≤ ∑ 𝑥𝑞𝑘

 

𝑘∈𝐾

.   (3.33) 

When this SBC is added, the MILP solver avoids exploring the symmetric solutions 

where the direction of the corridor is flipped, and hence, the relative locations of 𝑝 

and 𝑞 are reversed. While any pair of departments can be selected for (3.33), two 

departments having the lowest flow cost between them are chosen in the 

computational implementation in Section 3.4. 

 Another set of SBCs is to break the symmetry between rows by pre-assigning 

some department 𝑖∗ ∈ 𝐼 to one of the two rows. This department can be selected 

randomly or strategically. For example, Murray et al. (2012) select the department 

that has the longest length. Assuming that 𝑖∗ is assigned to the upper row (i.e., row 1), 

the following constraints are added. 

𝑦𝑖∗1 = 1 𝑖∗ ∈ 𝐼 (3.34) 
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𝑥𝑖∗2 = 0 𝑖∗ ∈ 𝐼. (3.35) 

Constraint (3.34) assigns department 𝑖∗ to the upper row and constraint (3.35) forces 

the center point of department 𝑖∗ in the lower row to equal 0. Note that (3.18) is still 

satisfied when enforcing (3.34)-(3.35) for department 𝑖∗ since 𝑥𝑖∗1 ≥
𝑙𝑖

2
 when 𝑦𝑖∗1 = 

1. 

 Note that the above SBCs can be applied to all three models. In addition, 

another SBCs that can be applied to M1 is introduced next. Recall that 𝛿𝑘𝑖𝑗 is an 

auxiliary binary variable for the disjunctive non-overlapping constraints (3.4)–(3.5). 

Suppose that department 𝑖 is in row 𝑘 ∈ 𝐾 and 𝑗 is in row 𝑘̅ ∈ 𝐾 \ {𝑘} (i.e., in the 

opposite row). Since 𝑥𝑖𝑘̅ = 0 and 𝑥𝑗𝑘 = 0 while 𝑥𝑖𝑘 > 0 and 𝑥𝑗𝑘̅ > 0, 𝛿𝑘𝑖𝑗 must be 

zero and 𝛿𝑘̅𝑖𝑗 must be one from (3.4) and (3.5). On the other hand, suppose that 

departments 𝑖 and 𝑗 are placed in the same row 𝑘. Then, regardless of the value of 

𝛿𝑘𝑖𝑗, 𝛿𝑘̅𝑖𝑗 can take on either 0 or 1 since 𝑥𝑖𝑘̅ = 𝑥𝑗𝑘̅ = 0, while the objective function 

value is not affected. To eliminate the symmetry due to this situation, the following 

SBC is valid for M1. 

∑ 𝛿𝑘𝑖𝑗

 

𝑘∈𝐾

= 1 ∀𝑖, 𝑗 ∈ 𝐼,   𝑖 < 𝑗. (3.36) 

Incorporating (3.36) to M1 results in 𝑛(𝑛 − 1)/2 additional equality constraints. In 

the next section, the computational efficacies of three formulations in conjunction 

with aforementioned SBCs are compared via a computational study. 

3.4 Computational experiments 

 Computational experiments conducted to compare the performances of three 

MILP formulations for solving DRLP-C are reported in this section. A total of 60 

problem instances were generated, in a similar fashion as in Chung and Tanchoco 
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(2010), using the testing factors specified in Table 3.2. The problem instances can be 

downloaded from Alaimo and Lim (2020). 

 The number of departments varies from 6 to 16 with increments of 2. For each 

number of departments, 10 instances were created by randomly generating problem 

parameters as displayed in Table 3.2. The MILP models were coded in Python (3.7.3) 

and solved using a commercial optimization solver, Gurobi (8.1.1). All runs were 

executed on a server equipped with four processors of Intel Xeon CPU E7-8890 v3 

(3.60 GHz) and the operating system of Windows Server 2012 R2. A 1-hour time 

limit was imposed to account for the larger-sized problem instances which might not 

be solved to optimality in a reasonable amount of time. Three formulations (M0, M1, 

and M2) were solved by the Gurobi MILP solver while all solver parameters were set 

to their default values, and these results are reported in Section 3.4.1. The SBCs 

described in Section 3.2 were implemented in separate runs to investigate their 

effectiveness, and the results are reported in Section 3,4.2. When the default setting is 

used for the Gurobi solver, its presolver is enabled. This presolver is intended to make 

an MILP model smaller and easier to solve (Gurobi Optimization, Inc. 2018). Note 

that the efficacy of the presolver of Gurobi can be dependent on how the MILP model 

is formulated. In order to ascertain such dependency, additional experiments were 

conducted with the presolver disabled for M0, M1, and M2 along with SBCs that 

displayed the most promising performance when the presolver was enabled. These 

results are reported in Section 3.4.3. 

Table 3.2: Testing factors for generating random test problems 

Test factors Levels 

Number of departments 6–16 (increments of 2) 

Number of replications 10 

Material flow matrix Uniform (0,50) for each pair and rounded to nearest integer 

Clearance matrix Uniform (1,2) for each pair and rounded to one decimal point 
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Department length Uniform (1,20) and rounded to nearest integer 

  

3.4.1 Comparison of M0, M1, and M2 

 Among the 60 problem instances, 41 of them were solved to optimality by at 

least one of M0, M1, and M2 within the 1-hour time limit. All 40 problem instances 

with 6–12 departments were solved to optimality by M1 and M2, whereas M0 reached 

optimality for 39 problem instances (30 with 6–10 departments and 9 with 12 

departments). Also, one problem instance with 14 departments (instance 14_6) was 

solved to optimality by M2. None of the problem instances with 16 departments were 

solved to optimality. Out of those 41 problem instances, M0, M1, and M2 consumed 

the least amount of solution time in 3, 2, and 36 of them, respectively. The instances 

for which M0 outperformed M1 and M2 are relatively smaller-sized problems with 

𝑛 = 8 and 10. Average solution times (in seconds) consumed by M0, M1, and M2 are 

displayed in Table 3.3 for each group with 𝑛 = 6, 8, 10, and 12. In the table, the least 

average solution time is highlighted in boldface.  

Table 3.3: Comparison of average solution times of M0, M1, and M2 

 
Average solution 

time (sec.) 

Percentage 

improvement from 

M0 

𝑛 M0 M1 M2 M1 M2 

6 1.0 0.8 0.6 -20.00% -40.00% 

8 2.4 2.6 2.2 8.11% -8.52% 

10 32.1 18.1 12.5 -43.61% -61.06% 

12† 1466.5 373.7 227.6 -74.52% -84.48% 

† For 𝑛 = 12, the average is taken from nine problem instances that were solved to optimality by all 

three MILPs. 

 

M2 exhibits the least average solution times for 𝑛 = 6, 8, 10 and 12. The percentage 

improvement in average solution time over M0 ranges from 8.52% (10 departments) 

and 84.48% (12 departments). As displayed in Table 3.3, M1 and M2 clearly 

outperformed M0 when 𝑛 = 12 since the average solution time is improved by at least 
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74.52%. To compare the performance of the MILPs for the problem instances with 𝑛 

= 14 and 16, best objective function values (BOFVs) and optimality gaps (OGs) that 

were found after the 1-hour time limit are reported in Table 3.4. The minimum 

BOFVs and OG for each problem instance in the table is highlighted in boldface. 

Out of the 20 instances, M0, M1, and M2 produced the least BOFVs for 2, 6, 

and 16 cases, respectively. The three MILPs produced the same BOFV for 1 instance 

(instance 14_1). In addition, M1 and M2 resulted in the same BOFVs for 2 instances 

(14_6 and 14_10). As far as OGs are concerned, M0, M1, and M2 display the least 

OGs for 6, 5, and 9 test instances, respectively. For 𝑛 = 14, the average OGs are 

31.85% (M0), 28.31% (M1), and 23.28% (M2). For 𝑛 = 16, the average OGs are 

63.09% (M0), 64.81% (M1), and 65.48% (M2). Note that M0 resulted in the least OGs 

for a majority of the instances when 𝑛 = 16 (6 in total), whereas M2 resulted in the 

least OGs for 8 cases when 𝑛 = 14. Overall, M2 displayed the most promising 

performance among M0, M1, and M2. 

Table 3.4: Comparison of OFVs and OGs for 𝑛 = 14 and 16 

  OFV OG 

𝑛 Inst. M0 M1 M2 M0 M1 M2 

14 

14_1  36,412.9   36,412.9   36,412.9  23.84% 20.19% 17.71% 

14_2  37,759  37,759   37,714.1  32.77% 35.13% 25.63% 

14_3  42,044.5   41,913.5   41,613.7  38.42% 18.95% 19.20% 

14_4  45,915.6   46,215.7   45,895  25.04% 27.40% 22.75% 

14_5  41,413.1   41,445.7   41,024  38.20% 33.38% 30.37% 

14_6  46,888.4   46,830.4   46,830.4  21.60% 21.09% 0.00% 

14_7  40,042.5   39,734   39,671.2  49.44% 37.82% 53.80% 

14_8  43,153.3   43,637.9   43,496.4  33.80% 38.46% 31.66% 

14_9  37,481.7   37,537.7   37,321.7  30.24% 28.44% 11.90% 

14_10  46,549.5   46,121.1   46,121.1  25.10% 22.27% 19.81% 

16 

16_1  100,685.3   103,086.9   100,147.4  71.34% 80.19% 78.63% 

16_2  63,427   62,046.1   62,583.3  55.81% 57.33% 58.39% 

16_3  74,054   74,961.6   73,741.8  60.48% 60.03% 53.81% 

16_4  93,035.8   92,149.3   91,174.9  70.00% 78.15% 75.18% 

16_5  92,519.4   91,605.1   90,762.8  64.46% 52.76% 67.71% 

16_6  64,665.8   63,883.6   64,878.6  61.11% 58.92% 61.72% 

16_7  65,488.8   66,392   64,819.9  56.18% 57.60% 59.30% 

16_8  81,914.3   82,687.1   80,989.7  67.05% 76.58% 73.29% 

16_9  86,065.1   85,358.3   86,345.6  66.63% 75.73% 71.29% 
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16_10  57,409.5   57,025.9   56,757.4  57.87% 50.78% 55.44% 

        

3.4.2 Efficacy of symmetry-breaking constraints 

 To analyze the impact of the SBCs presented in Section 3.2, the group of 

problem instances with 𝑛 = 12 was tested and the average solution times were 

compared. First, two sets of SBCs, (3.33) and (3.34)–(3.35), that can be applied to all 

three MILPs, were added individually, as well as combined together. Table 3.5 

displays solution times consumed to achieve optimality, where columns with 

headings, Base, SBC1, SBC2, and SBC3, denote MILPs with no SBCs added, only 

(3.33) added, only (3.34)–(3.35) added, and both (3.33) and (3.34)–(3.35) added, 

respectively. The penultimate row in Table 3.5 represents the average solution time of 

10 instances and the last row represents the average solution time of the first 9 

instances. The latter is to account for only those that were solved to optimality by all 

MILPs. For SBC2, following the same strategy by Murray et al. (2012), the longest 

department was selected as mentioned in Section 3.2. 
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Table 3.5: Individual impact of symmetry-breaking constraints 

 M0 M1 M2 

Inst. Base SBC1 SBC2 SBC3 Base SBC1 SBC2 SBC3 Base SBC1 SBC2 SBC3 

12_1 1070.7 801.2 416.7 439.1 192.9 137.7 246.5 138.9 148.6 105.7 191.7 128.9 

12_2 583.9 422.1 255.2 35.5 84.3 61.8 112.2 57.8 51.4 45.1 64.2 42.9 

12_3 2189.9 1473.7 1860.4 958.3 605.3 350 414.1 282.0 334.6 204.8 294.6 197.2 

12_4 1347.4 2227 1858.9 1888.1 805.5 293.9 558.7 386.0 536 259.2 525.2 340.9 

12_5 715.1 297.3 181.4 240.3 81.4 58.5 85.7 56.7 53.5 38.1 101.8 37.3 

12_6 3154.2 3194.2 777.5 1131.3 978.8 361.0 673.9 260.0 468.4 239.6 329.6 228 

12_7 2386.7 1511.3 1410.1 458.1 360.8 158.5 404.7 325.0 249.7 152.3 295.3 202.8 

12_8 996.7 352.2 457.6 166.2 159.6 103.5 117.3 83.0 132.2 60.7 129.9 55.4 

12_9 753.8 108 330.6 207.2 94.5 93.1 116.4 56.8 73.8 43.4 80.4 54.5 

12_10 * * 1483.6 * 2223 1477.2 1494.6 2942.9 2475.8 1964 1249.3 1308.4 

Avg. 1679.9 1398.7 903.2 912.4 558.6 309.5 422.4 458.9 452.4 311.3 326.2 259.6 

Avg† 1466.5 1154.1 838.7 613.8 373.7 179.8 303.3 182.9 227.6 127.7 223.6 143.1 

† For 𝑛 = 12, the average is taken from nine problem instances that were solved to optimality by all three MILPs. 

* Gurobi solver terminated after 1-hour 
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 When individual SBCs are applied to M0, SBC2 outperformed SBC1 in seven 

cases. This suggests that SBC2 is more effective in reducing the solution time for M0. 

When compared to the combination of these constraints (i.e., SBC3), SBC2 still 

consumed the least solution times in the majority of the instances (5 in total), while SBC3 

outperformed SBC1 and SBC2 in four cases. It is noteworthy that, when M0 is 

implemented, only SBC2 was able to optimally solve instance 12_10. When considering 

nine instances that were solved to optimality by M0, SBC3 resulted in the least average 

solution time (613.8 seconds), which was followed by SBC2 (838.7 seconds). When 

compared to the average solution time of the base M0, these average solutions times are 

improvements of 58.15% and 42.81%, respectively. 

 M1 in conjunction with SBCs solved all instances to optimality as its base model 

did. SBC1 and SBC3 respectively consumed the least solution times among the 

implemented formulations in 4 and 6 instances. However, the impact of SBC2 was not 

significant since it consumed longer time than the base model in five cases, not to 

mention that SBC1 and SBC3 outperformed SBC2 in all cases. When the average 

solution times of 10 instances are compared, SBC1 displays the best average solution 

time of 309.5 seconds, and SBC2 shows the second-best average solution time of 422.4 

seconds, which are improvements of 44.59% and 24.38% over the base model, 

respectively. 

 Based on the observation above, SBC3 was selected as a viable option and 

applied to all three formulations to solve the entire 60 test instances. A ‘+’ is appended to 

the name of each model to represent the addition of SBC3 to its base formulation. As 

their base models did, M1+ and M2+ found optimal solutions for all 40 problem instances 
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with 6–12 departments, while M0+ could do so only for 39 problem instances (all but 

instance 12_10). For 𝑛 = 14, all models along with SBC3 found an optimal solution for 1 

instance (instance 14_6). However, M0+ consumed the entire hour to achieve optimality 

right before the time limit was reached, whereas M1+ and M2+ found an optimal solution 

in 1,556.6 and 1,917.6 seconds, respectively. Recall, from Table 3.4, that the base model 

of M2 was the only one that reached optimality before the time limit and the solution time 

was 3,121.3 seconds. None of the problem instances with 16 departments were solved to 

optimality. Out of the 41 problem instances, M0+, M1+, and M2+ consumed the least 

amount of times in 7, 9, and 25 cases, respectively.  

 M0+ consumed an average solution time of 9.6 seconds for 𝑛 = 10, which is 

slightly less than those of M1+ and M2+ by 1.9 and 2 seconds, respectively (see Table 

3.6). However, M2+ appears the most promising since it resulted in the least solution 

times for a majority of the test instances, as well as consumed the least solution time on 

average when 𝑛 = 6, 8, and 12. M1+ exhibits a similar performance as M2+ when 𝑛 = 6 

and 8, but it is obvious that M2+ outperformed M1+ for 𝑛 = 12. 

Table 3.6: Comparison of average solution times with SBC3 

 
Average solution  

time (sec.) 

Percentage improvement  

from base formulation 

Percentage 

improvement from 

M0+ 

𝑛 M0+ M1+ M2+ M0+ M1+ M2+ M1+ M2+ 

6 0.9 0.9 0.6 -10.00% 12.50% 0.00% 0.00% -33.33% 

8 2.2 1.4 1.4 -8.33% -46.15% -36.36% -36.36% -36.36% 

10 9.6 11.5 11.7 -70.09% -36.46% -6.40% 19.79% 21.88% 

12† 613.8 182.9 143.1 -58.15% -51.06% -37.13% -70.20% -76.69% 

† For 𝑛 = 12, the average is taken from nine problem instances that were solved to optimality by 

all three MILPs. 

 

From columns 5-7 in Table 3.6, observe that the average solution times were significantly 

improved when SBC3 was added in most cases except for 𝑛 = 6, for which the average 
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solution times of all models were less than one second. The most drastic improvement 

was achieved for M0+ when 𝑛 = 10 (70.09%). For the larger-sized instances with 𝑛 = 14 

and 16, the BOFVs and OGs recorded after the 1-hour time limit are compared in Table 

3.7. Out of the 20 larger-sized instances, M0+, M1+, and M2+ produced the least BOFVs 

in 7, 6, and 11 cases, respectively, while there were two 2-way ties and one 3-way tie. It 

is worth mentioning that improved BOFVs were found in 11, 14, and 9 instances when 

SBC3 was added to M0, M1, and M2, respectively. The average OGs when 𝑛 = 14 were 

24.17% (M0+), 19.59% (M1+), and 21.05% (M2+). For 𝑛 = 16, the average OGs are 

54.85% (M0+), 60.96% (M1+), and 62.15% (M2+). Note that the average OGs were 

reduced by 20.1%, 19.9% and 8.1%, on average, as a result of applying SBC3 to M0, M1, 

and M2, respectively. 

Recall that the SBC in (3.36) is applicable only for M1 and M1+. In the rest of 

this subsection, the results from the implementation of (3.36), denoted by SBC4, in 

conjunction with M1 and M1+ to solve all 60 problem instances are reported. Let M1’ 

and M1’+ denote M1 and M1+ formulations with SBC4, respectively. Among the 60 

problem instances, M1’ and M1’+ were able to optimally solve 41 and 42 instances, 

respectively. All instances with 6–12 departments were solved to optimality by both M1’ 

and M1’+. In addition, M1’ was able to solve one instance with 𝑛 = 14, and this is 

comparable to the base model M1 that could not solve any instance with 𝑛 = 14 (see 

Table 3.4). Similarly, M1’+ optimally solved two instances with 𝑛 = 14, and this exhibits 

an improvement from M1+ that could find an optimal solution for only one instance. 

Again, no problem instances with 𝑛 = 16 were solved to optimality. The average solution 

times for M1’, M1’+, M1, and M1+ are displayed in Table 3.8 for each group of the 
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smaller-sized problem instances. Note that, in this table, the average solution time was 

taken over all 10 instances for 𝑛 = 12 unlike that in Table 3.3. 

Table 3.7: Comparison of OFVs and OGs of larger-sized instances with SBC3 

  OFV OG 

𝑛 Inst. M0+ M1+ M2+ M0+ M1+ M2+ 

14 

14_1  36,587.4   36,412.9   36,356.6  16.20% 13.68% 14.60% 

14_2  38,064.5   37,755.2   37,583.2  29.96% 18.47% 18.11% 

14_3  42,127.7   41,613.7   41,613.7  26.65% 16.63% 18.51% 

14_4  45,942.1   45,927.6   45,895 22.76% 18.64% 18.60% 

14_5  41,496.5   41,009.8   41,153.8  36.63% 28.34% 25.99% 

14_6  46,830.4   46,830.4   46,830.4  0.00% 0.00% 0.00% 

14_7  39,734.6   39,886.  39,718.9  36.59% 34.43% 51.77% 

14_8  43,441.6   43,441.6   43,774.2  38.97% 29.17% 37.01% 

14_9  37,344.4   37,321.7   37,321.7  13.95% 18.04% 8.38% 

14_10  46,417.9   46,673.5   46,561.6  20.03% 18.53% 17.56% 

16 

16_1  100,115  100,806.8   100,768.1  65.66% 77.47% 76.23% 

16_2  62,338   63,373.3   62,408.7  54.60% 53.62% 51.08% 

16_3  74,053   73,707.8   73,509.2  46.98% 65.13% 54.78% 

16_4  94,184.4   91,938.6   91,271.4  64.99% 76.35% 70.78% 

16_5  91,400   90,562.5   90,596.6  48.61% 60.88% 57.61% 

16_6  64,872.5   64,850.7   63,905.9  54.51% 52.83% 56.38% 

16_7  64,871.3   65,569.1   65,225  42.78% 50.33% 56.32% 

16_8  82,129.9   81,001.8   80,830.4  61.03% 66.53% 72.70% 

16_9  85,602.7   84,325.8   85,427.7  60.65% 58.08% 71.85% 

16_10  56,828.7   56,484   56,465.8  48.67% 48.39% 53.77% 

 

Table 3.8: Comparison of average solution times for variants of M1 with SBC4 

 Average solution  

time (sec.) 

𝑛 M1’ M1’+ M1 M1+ 

6 0.6 1.2 0.8 0.9 

8 2.5 4.1 2.6 1.4 

10 14.9 18.4 18.1 11.5 

12 233.2 299.7 558.6 458.9 

 

Table 3.9: Comparison of OFVs and OGs for larger-sized instances for variants of M1 

with SBC4 
  OFV OG 

𝑛 Inst. M1’ M1’+ M1’ M1’+ 

14 

14_1  36,426.4   36,356.6  10.51% 6.83% 

14_2  37,583.2   37,567.1  18.52% 11.14% 

14_3  41,888.7   41,613.7  19.29% 12.64% 
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14_4  45,895.0   45,700.1  13.38% 14.35% 

14_5  41,009.8   41,009.8  22.54% 21.96% 

14_6  46,830.4   46,830.4  0.00% 0.00% 

14_7  39,718.9   39,734.6  28.24% 22.54% 

14_8  43,153.3   43,153.3  25.30% 23.47% 

14_9  37,321.7   37,321.7  2.05% 0.00% 

14_10  46,121.1   46,121.1  15.91% 12.89% 

16 

16_1  100,287.5   100,450.2  71.88% 64.36% 

16_2  63,671.9   63,889.5  48.42% 51.26% 

16_3  74,129.8   73,973.6  40.39% 37.10% 

16_4  91,236.4   91,719.4  56.54% 67.95% 

16_5  91,418.5   91,320.6  48.93% 51.24% 

16_6  64,413.2   63,538.2  61.56% 45.65% 

16_7  65,710.6   65,225.0  46.12% 43.48% 

16_8  81,844.1   82,608.3  69.82% 67.24% 

16_9  84,798.0   85,080.3  56.46% 67.78% 

16_10  56,484.0   57,083.8  45.78% 41.39% 

 

Note that M1’ resulted in smaller average solution times for all problem instance 

groups compared to M1’+. When comparing M1 and M1’, the latter outperformed the 

former for all groups by at least 3.85% (𝑛 = 8) and at most 58.25% (𝑛 = 12). On the other 

hand, M1’+ outperformed M1+ only for 𝑛 = 12 with 46.35% improvement in the average 

solution time. The performance of M1’ and M1’+ for the larger-sized instances are 

reported in Table 3.9. Out of the 20 larger-sized instances, M1’ and M1’+ produced the 

least BOFVs in 12 and 13 cases, respectively, with five ties. When compared to M1 and 

M1+, M1’ and M1’+ yielded the same or better solutions for 17 and 14 instances out of 

20, respectively. Also, an optimal solution of instance 14_9 was found by M1’+ whereas 

all other formulations were unable to reach optimality within the time limit. The average 

OGs when 𝑛 = 14 are 15.57% (M1’) and 12.58% (M1’+). For 𝑛 = 16, the average OGs 

are 54.59% (M1’) and 52.57% (M1’+). Observing the percentage improvement in the 

average solution times for the smaller-sized instances and the number of cases of 

improved BOFVs after the 1-hour limit for the larger-sized instances, adding SBC4 
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appears to be promising in reducing the computational burden for solving DRLP-C via 

M1. In particular, M1’+ is recommended for solving relatively larger-sized problems 

based on the observation of the computational results. 

3.4.3 Gurobi presolver disabled with symmetry-breaking constraints  

Next, M0+, M1+, and M2+ formulations of all 60 problem instances were solved 

with the Gurobi presolver disabled. Although disabling the presolver is not advised in 

practice, this test is to observe the performance of different MILP formulations without 

the intervention of the presolver. As mentioned earlier, enabling the presolver may reduce 

the problem size with the intention of eliminating redundancy and the overall complexity 

while maintaining the equivalency between the original formulation and the presolved 

problem. Hence, the effectiveness of the presolver may depend on the structure of the 

original formulation. 

  Among those 60 problem instances, 40 were solved to optimality by at least one 

of the MILPs within the 1-hour time limit. All 40 problem instances with 6–12 

departments were solved to optimality by M1+. On the other hand, M0+ failed to find an 

optimal solution for one instance, 12_10. Table 3.10 compares the performance of three 

formulations with respect to the Gurobi presolver being enabled and disabled. It is 

noteworthy that disabling the presolver did not necessarily result in a worse performance. 

Table 3.10: Comparison of average solution times with respect to the presolver 

 Average solution  

time (sec.) –  

presolver enabled 

Average solution 

time (sec.) –  

presolver disabled 

Percentage difference 

𝑛 M0+ M1+ M2+ M0+ M1+ M2+ M0+ M1+ M2+ 

6 0.9 0.9 0.6 1.1 0.9 0.6 22.22% 0.00% 0.00% 

8 2.2 1.4 1.4 3.5 1.6 1.6 59.09% 14.29% 14.29% 

10 9.6 11.5 11.7 14.9 10.1 8.5 55.21% -12.17% -27.35% 

12† 613.8 182.9 143.1 302.2 155 165.4 -50.77% -15.25% 15.58% 
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The average solution times of M1+ and M2+ did not change after disabling the 

presolver when 𝑛 = 6, while that of M0+ was slightly increased. For problem instances 

with 𝑛 = 8, the average solution times were increased by 59.09% (M0+), 14.29% for 

(M1+), and 14.29% (M2+). When 𝑛 = 10, the average solution time of M0+ was 

increased by 55.21%. However, the average solution time of M1+ and M2+ were 

decreased by 12.17% and 27.53%, respectively. When 𝑛 = 12, only M1+ was able to 

solve all 10 instances to optimality. Interestingly, M0+ experienced the most drastic 

reduction in the average solution time (50.77%) when 𝑛 = 12, which was followed by 

M1+ (15.25%). M1+ and M2+ outperformed M0+ and displayed a similar performance 

for these problem instances with the difference of average solution times between them 

being relatively small (10.4 seconds).  

The BOFVs and OGs for 𝑛 = 14 and 16 in Table 3.11. Out of 20 larger-sized 

problem instances, M0+, M1+, and M2+ produced the least BOFVs for 2, 13, and 10 

instances, respectively. All three formulations produced the same BOFV for one instance 

(14_9).  M0+ and M1+ found an optimal solution for one instance with 14 departments 

(instance 14_6) in 2,718.3 and 2,850.2 seconds, respectively, whereas M2+ failed to do 

so within the 1-hour limit. Besides, M1+ and M2+ resulted in the same BOFV for two 

instances (instances 14_8 and 16_2). Excluding instance 14_6 for which M0+ and M1+ 

achieved optimality, M0+, M1+, and M2+ displayed the least OGs in 6, 9 and 4 

instances, respectively. For 𝑛 = 14, the average OGs are 27.47% (M0+), 24.47% (M1+), 

and 28.62% (M2+). The OGs for M0+, M1+, and M2+ were increased by 13.65%, 

24.91%, and 35.96%, respectively, after disabling the presolver. For 𝑛 = 16, the average 

OGs are 62.70% (M0+), 60.23% (M1+), and 66.00% (M2+). The average OG for M1+ 
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was decreased by 1.20% while it was increased by 14.31% and 6.19% for M0+ and M2+, 

respectively, by disabling the presolver. 

Table 3.11: Comparison of OFVs and OGS of larger-sized instances with presolver 

disabled 
  OFV OG 

𝑛 Inst. M0+ M1+ M2+ M0+ M1+ M2+ 

14 

14_1  36,412.9   36,356.6   36,426.4  12.24% 15.01% 18.51% 

14_2  37,728.2   37,567.1   37,871.8  27.23% 19.71% 31.17% 

14_3  42,176.7   41,848.3   41,888.7  27.97% 26.68% 23.61% 

14_4  46,675.3   46,032.8   45,895.0  26.40% 20.12% 24.97% 

14_5  41,633.6   41,043.3   41,326.2  43.14% 35.48% 46.19% 

14_6  46,830.4   46,830.4   46,843.7  0.00% 0.00% 11.97% 

14_7  40,226.2   40,567.6   40,401.5  61.42% 55.84% 52.13% 

14_8  43,536.6   43,496.4   43,496.4  49.90% 31.73% 36.67% 

14_9  37,321.7   37,321.7   37,321.7  6.93% 20.38% 18.80% 

14_10  46,417.9   46,491.3   46,220.1  19.50% 19.76% 22.20% 

16 

16_1  100,399.7   100,487.7   99,110.2  79.24% 76.62% 76.09% 

16_2  62,671.5   62,231.1   62,231.1  69.46% 55.96% 65.82% 

16_3  74,226.6   74,399.2   73,731.9  42.26% 42.91% 61.92% 

16_4  92,101.2   91,435.5   93,414.9  67.02% 75.76% 72.12% 

16_5  91,980.0   92,154.8   90,508.9  54.17% 72.08% 64.04% 

16_6  64,340.1   63,905.9   64,093.8  56.14% 53.26% 63.09% 

16_7  66,037.3   64,773.9   65,571.0  55.34% 48.32% 56.34% 

16_8  82,822.5   82,375.8   81,692.0  74.98% 63.99% 71.43% 

16_9  85,322.6   85,283.3   85,588.4  74.33% 67.01% 65.86% 

16_10  57,203.2   56,465.8   56,617.1  54.04% 46.42% 63.32% 

 

Table 3.12: Comparison of average solution times for M1’+ with and without the 

presolver 
 Average solution  

time (sec.) –  

presolver enabled 

Average solution 

time (sec.) –  

presolver disabled 

Percentage 

difference 

𝑛 M1’+ M1’+ M1’+ 

6 1.2 0.6 -50.00% 

8 4.1 2.0 -51.22% 

10 18.4 7.9 -57.07% 

12 299.7 247.3 -17.48% 

 

 In addition, M1’+ was tested on the 60 problem instances with the Gurobi 

presolver disabled. Recall that M1’+ solved 42 instances with the presolver enabled. 

When the presolver was disabled, 41 instances were solved to optimality, including all 40 
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instances with 6–12 departments and one with 14 departments. Table 3.12 reports the 

performance of M1’+ with respect to the setting of the Gurobi presolver. Note that 

disabling the presolver further reduced the average solution time of M1’+ for all problem 

instances with 6–10 departments. The OFVs and OGs for 𝑛 = 14 and 16 are reported in 

Table 3.13. 

Table 3.13: Comparison of OFVs and OGs of larger-sized instances for M1’+ with and 

without the presolver 
  Presolver enabled Presolver disabled 

  OFV OG OFV OG 

𝑛 Inst. M1’+ M1’+ M1’+ M1’+ 

14 

14_1  36,356.6  6.83%  36,426.4  14.39% 

14_2  37,567.1  11.14%  37,823.6  19.22% 

14_3  41,613.7  12.64%  41,613.7  25.63% 

14_4  45,700.1  14.35%  45,927.6  19.40% 

14_5  41,009.8  21.96%  41,009.8  24.43% 

14_6  46,830.4  0.00%  46,830.4  0.00% 

14_7  39,734.6  22.54%  39,671.2  51.81% 

14_8  43,153.3  23.47%  43,362.6  30.43% 

14_9  37,321.7  0.00%  37,344.4  9.44% 

14_10  46,121.1  12.89%  46,121.1  18.02% 

16 

16_1  100,450.2  64.36%  102,966.6  75.97% 

16_2  63,889.5  51.26%  63,504.3  55.45% 

16_3  73,973.6  37.10%  75,190.8  41.90% 

16_4  91,719.4  67.95%  93,649.6  64.78% 

16_5  91,320.6  51.24%  90,355.4  44.04% 

16_6  63,538.2  45.65%  63,649.2  47.78% 

16_7  65,225.0  43.48%  64,819.9  43.02% 

16_8  82,608.3  67.24%  81,419.7  69.26% 

16_9  85,080.3  67.78%  83,897.1  51.59% 

16_10  57,083.8  41.39%  56,551.0  42.63% 

 

For most instances with 𝑛 = 14 (9 out of 10), disabling the presolver did not 

improve BOFVs. On the other hand, disabling the presolver helped improve the BOFVs 

in six instances with 𝑛 = 16. All OGs were increased slightly when 𝑛 = 14, while only 

five out of 10 instances with 𝑛 = 16 displayed an increase in OGs. Overall, there was no 

strong evidence that disabling the presolver would improve the computational time. 
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However, the mixed results in the BOFVs of problem instances with 𝑛 = 16 suggest that 

disabling the presolver may be worth trying when an approximated solution is sought for 

larger-sized problems in practice. 

3.5 Conclusion 

 This study considers DRLP-C, which is the problem of assigning a given number 

of departments along two rows that are separated by a central corridor in order to 

minimize the total material flow cost, while enforcing minimum clearances between 

departments. Two new MILP formulations are proposed and thoroughly compared with 

the model of Zhang and Murray (2012). In addition, three SBCs are introduced in an 

effort to improve the computational performance. The results from a series of 

experiments suggest that the proposed MILP formulations along with SBCs are 

promising in alleviating the computational burden of solving DRLP-C when compared to 

the model of Zhang and Murray. Extending the problem to multiple rows as well as to 

two-dimensional layout problems can be addressed as future directions in this line of 

research. 
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CHAPTER 4: RECONFIGURATION OF RECTANGULAR RESTAURANT LAYOUT 

UNDER SOCIAL DISTANCING REQUIREMENTS 
 

4.1 Introduction 

 Many restaurant owners across the United States are recovering from the recent 

global pandemic, namely COVID-19, that forced many facilities to temporarily close or 

operate at a lower scale. In an effort to mitigate the impact of the pandemic, the Centers 

for Disease Control and Prevention (CDC) prepared a list of guidelines to assist 

restaurant owners in making decisions with regard to restaurant operations (CDC, 2020). 

In addition to these guidelines, state and local governments are enforcing policies that 

limit the occupancy of restaurants to practice social distancing, which is found to be one 

of the most effective ways to reduce a risk of infection (Chu et al., 2020). 

 In particular, on May 20th, 2020, Governor Roy Cooper of North Carolina issued 

Executive Order No. 141 that permits restaurants to accommodate customers for on-site 

food and beverage consumption (Cooper, 2020). Similar to the guidelines of CDC, the 

executive order requires restaurants to abide by the following rules with respect to social 

distancing: (1) limit the number of customers in indoor and outdoor seating areas to no 

more than 50% of the stated fire capacities, (2) limit the number of people so that groups 

are at least six feet apart, (3) limit the number of customers at tables so that no more than 

ten people are seated together unless they belong to the same household, (4) employees 

are strongly encouraged to wear facemasks when they are within six feet of another 

person, and (5) mark six feet of spacing in high-traffic areas for customers. In order for 

restaurant owners to comply with these requirements, it will be necessary for them to 

rearrange the layout of the dining area, preferably in a way that optimizes the utilization 

of the available space. A decision is made on the assortment and the arrangement of the 



72 

 

objects of a restaurant (i.e., tables, booths, bar, etc.). The assortment decision is to 

determine which objects are placed in the restaurant, while the arrangement decision is to 

determine where those objects are placed within the restaurant. Note that this problem 

can be considered as a variant of FLP that arranges a set of non-overlapping departments 

within the facility boundaries while optimizing some relevant objectives such as material 

flow costs and adjacency preferences (e.g., Montreuil, 1990; Meller, Narayanan and 

Vance, 1998; Sherali and Fraticelli, 2003; Singh and Sharma, 2005). 

 In this chapter, a mathematical optimization model is presented to help rearrange 

tables in the dining area of a restaurant so that the reduced capacity and social distancing 

constraints are satisfied. The solution to the optimization model will provide the 

restaurant owner a layout design that complies to the distancing requirement while the 

performance measure is maximized. Initially, the number of customers that can be seated 

in the dining area is considered as the performance measure. The concept of the clearance 

requirements between departments in DRLP from the previous chapter is extended to this 

work. Unlike the individual clearance between each pair of departments in DRLP, all of 

the pairwise clearances are equal in the restaurant setting since social distancing remains 

constant regardless of the pair of objects being addressed. In addition, social distancing 

between a pair of objects is enforced only if both objects are placed in the restaurant. This 

is similar to how clearances are represented in DRLP where they are applied only when 

both departments are placed in the same row. 

Noting that the utilization of a table is not necessarily 100% (e.g., a party with 

three customers is seated in a table with four chairs), the concept of revenue is introduced 

as a performance measure toward the end of the chapter. Accordingly, following the 



73 

 

presentation of the initial base model, the formulation is then transformed into a two-

stage stochastic programming problem for optimizing the restaurant layout design under 

static customer demand scenarios (i.e., parties arrive at the restaurant at the same time for 

a given time interval) and dynamic customer demand scenarios (i.e., parties arrive at the 

restaurant sequentially over the time interval). 

 A literature review of relevant restaurant layout studies and efforts that have been 

made thus far for layout planning in consideration of COVID-19 is presented in Section 

4.2. The socially distanced FLP optimization model is described in detail in Section 4.3, 

and examples with various layouts are presented in Section 4.4 to demonstrate how the 

optimization generates an optimal assortment and arrangement of tables. Following this, 

the two-stage stochastic program with recourse model is presented in Section 4.5 in an 

effort to incorporate the probability distribution of party sizes when optimizing the 

assortment of seating areas in the restaurant. Numerical results are presented in Section 

4.6 to assess the quality of layout solutions that are generated under a simulated 

restaurant environment. Lastly, final concluding remarks are discussed in Section 4.7. 

4.2 Literature review 

 The restaurant design problem has received attention from researchers across a 

variety of operational and modeling perspectives. Thompson (2002) considered the mean 

party size of the restaurant and probability distribution of various party sizes to determine 

the ideal number of tables inside of a restaurant, with respect to the stated fire capacity, 

using the Naïve Ideal Table Mix model. Using this model, the author determines the mix 

of dedicated and flexible tables to be allocated within the restaurant to improve the total 

revenue by measuring the revenue per available seat hour. Thompson (2003) extended 
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this work to evaluate the table-mix that yields better profitability by measuring the 

contribution margin per available seat hour. Kimes and Thompson (2005) applied goal 

programming to produce feasible integer solutions to the Naïve Ideal Table Mix model 

(both duration and non-duration based) of Thompson (2002) with respect to restaurant 

capacity and demand constraints. The base model is extended to a dynamic setting where 

a table-mix is determined daily and the total revenue over the planning horizon is 

maximized. 

 Bertsimas and Shioda (2003) formulate an integer programming model to 

determine an optimal table-mix by maximizing the total expected revenue and 

minimizing the waiting time of customers. Fairness constraints are applied to represent a 

first-come first-serve queuing system that seats customers within the same party size in 

the order in which they arrive to the restaurant. Their model is formulated and solved 

each time a customer arrives to determine when (and if) they should be seated. Hwang 

(2008) developed a simulation model to determine where customers should be seated in 

consideration of table placement to reduce the overall waiting time. They did not consider 

the types of tables in their model, which makes it challenging to determine which table 

placement policy is ideal based on the existing table-mix inside of the restaurant. Hwang 

et al. (2010) used a queuing-based optimization model where the restaurant congestion 

and waiting time of customers are represented as a state-dependent quasi birth-and-death 

process. Four competitive strategies, namely operations, marketing, joint, and fixed price, 

are proposed to determine the optimal pricing-capacity policy that balances the customer 

demand and the restaurant capacity. Their computational experiments indicate that the 

joint competitive strategy is ideal from the perspective of profit-maximization. 
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 Urgulu et al. (2015) presented a GA for generating restaurant layouts to maximize 

the total revenue and minimize the investment cost. The location of the kitchen, tables, 

and windows are optimized simultaneously in consideration of staffing and energy costs. 

The authors suggest that it is advantageous to place most tables closer to the windows to 

improve customer satisfaction and reduce the lighting cost. Raman and Roy (2015) 

proposed a queuing theory model for determining the optimal table-mix for restaurants to 

minimize the customer waiting time and under-utilization of tables. A multi-server 

queueing system is used where tables with identical capacities belong to the same server, 

and groups of customers arrive in batches of different sizes. The authors applied a policy 

in their model where tables are assigned to the largest batch of customers that satisfy its 

seating capacity. 

 Bortolete et al. (2021) apply NLP for positioning seats inside of a classroom in 

consideration of social distancing requirements. A quadratic penalty method is applied to 

avoid producing infeasible layouts. The model is formulated in a similar fashion as the 

classic circular-packing problem, where it is of interest to fit a given set of circles with 

different- or similar-radii into a given region. Several model variants are proposed, 

including the fixed-seat problem, free-position arrangement problem, and maximizing the 

number of seats that can be placed using a strategy that is inspired by the work in Birgin 

and Lobato (2010). Fischetti et al. (2021) propose a similar model as Bortolete et al. and 

approximate how a virus may spread inside of a space, which is represented as being 

proportional to distance, modeled as a Gaussian function, and as a steady-state function. 

Metaheuristics are used for finding a solution to the model. Ugali et al. (2021) formulate 

an unconstrained NLP using the circular packing representation and propose a heuristic 
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that initially places seats randomly in the space and iteratively improves the quality of the 

packing in consideration of social distancing constraints. 

 To the authors’ best knowledge, formulating an optimization model in 

consideration of reduced capacity and social distancing within the context of layout 

design and infectious diseases is novel. Furthermore, this work proposes a two-stage 

stochastic programming model to handle queueing scenarios for optimizing the average 

revenues as detailed later in this chapter. 

4.3 Mathematical optimization model 

 In this section, a mathematical optimization model as a MILP is presented. The 

model aims at finding an optimal arrangement of tables that maximizes the total number 

of seats while satisfying the reduced capacity and social distancing constraints. Later in 

Section 4.5, this model will be extended to stochastic optimization models to incorporate 

the revenue of the restaurant under stochastic scenarios. The layout considered in this 

study is assumed to be a rectangular shape, which is commonly adopted in facility 

designs. Let the width and length of a restaurant be 𝑋 and 𝑌, respectively. Furthermore, 

assume that all objects of the restaurant, including dining tables and fixtures, can be 

represented or approximated by rectangular shapes with respective widths and lengths. 

 For mathematical representation of the problem, assume that the restaurant is 

placed on a two-dimensional Cartesian coordinate system, where the bottom-left corner 

point of the restaurant is the origin. Suppose that the dimensions of each table include the 

space of chairs assigned to the table such that the customers can sit comfortably while 

dining at the table. In conventional facility layout problems, the distance between 

rooms/spaces is typically defined as the rectilinear distance between the respective center 
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points when rectangular shape objects are arranged in the facility. However, the 

rectilinear distance is not adequate for enforcing the social distance since using the 

rectilinear distance between two edge points could result in violating the social distance 

requirement. For example, observe two tables 𝑖 and 𝑗 in Figure 4.1, which shows the 

Euclidean distance 𝐴𝐵 ̅̅ ̅̅ ̅ shorter than the rectilinear distance 𝐴𝐶̅̅ ̅̅ + 𝐵𝐶̅̅ ̅̅ . In result, although 

𝐴𝐶̅̅ ̅̅ + 𝐵𝐶̅̅ ̅̅  would be longer than the social distance, the actual distance 𝐴𝐵̅̅ ̅̅  can be smaller 

than the required distance. In this study, therefore, the distance between tables is 

approximated by the Chebyshev distance of two closest points of two objects as defined 

below.  

Definition 4.1 (Chebyshev distance between two rectangles): Let 𝑆1 ⊂ 𝑅2 and 𝑆2 ⊂ 𝑅2 

be disjoint rectangles in 𝑅2. The distance between 𝑆1 and 𝑆2 is defined as 

min { max
𝑠∈{𝑥,𝑦}

|𝑢𝑠 − 𝑣𝑠| : (𝑢𝑥, 𝑢𝑦) ∈ 𝑆1, (𝑣𝑥, 𝑣𝑦) ∈ 𝑆2}. 

 

Figure 4.1: Representation of the layout and distance of tables on the Cartesian 

coordinate system 

 

In Figure 4.1, the Euclidean distance between table 𝑖 and table 𝑗 is the length of 𝐴𝐵̅̅ ̅̅  while 

the Chebyshev distance is the length of  𝐴𝐶̅̅ ̅̅ . Between tables 𝑗 and 𝑘, both Euclidean and 
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Chebyshev distances are the same as the length of  𝐷𝐸̅̅ ̅̅ . Not only is this distance metric 

advantageous for improving the computational tractability, but it also prevents irregular 

walking paths from being generated relative to the Euclidean distance, which might result 

in tables being placed in sequences that are not aligned straight. This can be inconvenient 

for occupants to navigate around, so this is another motivation for not applying the 

Euclidean distance. 

 To set up the problem, consider three types of objects of the restaurant: tables, 

booths, and fixed areas. First, there are 𝑛𝑇 tables that would have been used in the 

restaurant under normal circumstances. Due to the pandemic, only a subset of these tables 

will be selected to be placed in the dining area. While these tables are freely movable, it 

is assumed that they can be rotated by only 90 degrees in the proposed problem. Also, 

suppose that there are 𝑛𝐵 booths that are immovable, and hence, some or all of them may 

not be used for dining to comply with the distancing requirements even if they stay in the 

restaurant. Note that, if a particular booth is not selected to be used, then distancing 

requirements are not applicable from this booth to other tables/booths. In addition, 

assume that there are 𝑛𝐹 fixed areas where tables cannot be placed. Examples of fixed 

areas include the ingress/egress, designated walkways, and immovable fixtures in the 

restaurant such as reception, kitchen appliances, bar area, etc. 

Let 𝐼 = {1,2, … , 𝑛𝑇 , 𝑛𝑇 + 1, 𝑛𝑇 + 2, … , 𝑛𝑇 + 𝑛𝐵 , 𝑛𝑇 + 𝑛𝐵 + 1, 𝑛𝑇 + 𝑛𝐵 +

2, … , 𝑛𝑇 + 𝑛𝐵 + 𝑛𝐹} denote the index set of three types of objects. For the sake of 

convenience in presenting formulations, partition 𝐼 into three subsets: 𝑇 = {1, … , 𝑛𝑇}, 

𝐵 = {𝑛𝑇 + 1, … , 𝑛𝑇 + 𝑛𝐵}, and 𝐹 = {𝑛𝑇 + 𝑛𝐵 + 1, … , 𝑛𝑇 + 𝑛𝐵 + 𝑛𝐹}, which represent 

index sets for tables, booths, and fixed areas, respectively. Each object in 𝐼 may vary in 
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width and length, and each table/booth in 𝑇⋃𝐵 can accommodate a certain number of 

chairs (i.e., customers). Although six feet is the current guideline for social distancing, 

different distances may be implemented if necessary, depending on other factors that 

influence the chance of transmission (Chu et al., 2020). In general, assume that tables are 

required to be separated by at least 𝑑𝑚𝑖𝑛 in this problem. Furthermore, suppose that the 

restaurant has a stated fire capacity of 𝑐, and the capacity of the restaurant during a 

pandemic event is set to be a fraction of 𝑐 (i.e., 𝛼𝑐, where 𝛼 ∈ (0,1]). The parameters and 

decision variables that are used for the MILP formulation are summarized as follows. 

𝐼 Index set of objects (𝐼 = 𝑇⋃𝐵⋃𝐹) 

𝑇 Index set of table objects (𝑇 = {1, … , 𝑛𝑇})  

𝐵 Index set of booth objects (𝐵 = {𝑛𝑇 + 1, … , 𝑛𝑇 + 𝑛𝐵}) 

𝐹 Index set of fixed area objects (𝐹 = {𝑛𝑇 + 𝑛𝐵 + 1, … , 𝑛𝑇 + 𝑛𝐵 + 𝑛𝐹}) 

𝑐 Stated fire capacity of the restaurant 

𝑝𝑖 Number of customers that table/booth 𝑖 ∈ 𝑇 ∪ 𝐵 can accommodate 

𝑤𝑖/𝑙𝑖 Width/length of object 𝑖 ∈ 𝐼 

𝑋/𝑌 Dimensions of the restaurant along the 𝑥-/𝑦-axis 

𝑑𝑚𝑖𝑛 Minimum separation for social distancing requirements 

𝑏𝑖𝑗 A binary parameter equal to 1 if the distance between booths 𝑖 and 𝑗 is 

greater than or equal to 𝑑𝑚𝑖𝑛 for 𝑖, 𝑗 ∈ 𝐵, 𝑖 < 𝑗 

(𝑥𝑖 , 𝑦𝑖) Variables representing the coordinates of the center point of table 𝑖 ∈ 𝑇 

(𝑥𝑖 and 𝑦𝑖 for 𝑖 ∈ 𝐵⋃𝐹 are constants since object 𝑖 is immovable) 

𝑑𝑖𝑗
𝑠  Variable related to enforcing social distancing requirements between table 𝑖 

and table/booth 𝑗 along the s-dimension for 𝑠 ∈ {𝑥, 𝑦}, 𝑖 ∈ 𝑇, 𝑗 ∈ 𝑇⋃𝐵, 𝑖 <

𝑗 

𝑡𝑖 Binary variable equal to 1 if table 𝑖 ∈ 𝑇 is placed in the restaurant; 0 

otherwise 

(𝑡𝑖 = 1 for 𝑖 ∈ 𝐵⋃𝐹 since object 𝑖 is immovable)  

𝑏𝑖 Binary variable equal to 1 if seating in booth 𝑖 ∈ 𝐵 is allowed; 0 otherwise 
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𝑜𝑖 Binary variable equal to 1 if the width face of table 𝑖 ∈ 𝑇 is parallel to the 

𝑥-axis; 0 otherwise 

(𝑜𝑖 = 1 for 𝑖 ∈ 𝐵⋃𝐹 since object 𝑖 is immovable) 

𝑧𝑖𝑗
𝑠  (𝑧𝑗𝑖

𝑠 ) Binary variable equal to 1 if table 𝑖 (object 𝑗) is forced to precede object 𝑗 

(table 𝑖) along the 𝑠-dimension for 𝑠 ∈ {𝑥, 𝑦}, 𝑖 ∈ 𝑇, 𝑗 ∈ 𝐼, 𝑖 < 𝑗; 0 

otherwise. 

 

When table 𝑖 ∈ 𝑇 is not placed in the restaurant, its location and orientation will have 

default values (𝑥𝑖 , 𝑦𝑖) = (0,0) and 𝑜𝑖 = 0. Using the notation introduced above, the 

proposed MILP, namely social distancing layout problem (SDLP) can be written as 

follows. 

SDLP: 
Maximize       ∑ 𝑝𝑖𝑡𝑖

 
𝑖∈𝑇 + ∑ 𝑝𝑖𝑏𝑖

 
𝑖∈𝐵            (4.1) 

subject to   

∑ 𝑝𝑖𝑡𝑖

 

𝑖∈𝑇

+ ∑ 𝑝𝑖𝑏𝑖

 

𝑖∈𝐵

≤ 𝛼𝑐 
 (4.2) 

𝑜𝑖 ≤ 𝑡𝑖 ∀𝑖 ∈ 𝑇 (4.3) 

𝑥𝑖 +
𝑙𝑖

2
𝑡𝑖 + (

𝑤𝑖−𝑙𝑖

2
) 𝑜𝑖 ≤ 𝑥𝑗 −

𝑙𝑗

2
𝑡𝑗 − (

𝑤𝑗−𝑙𝑗

2
) 𝑜𝑗 + 𝑀(1 − 𝑧𝑖𝑗

𝑥 )  ∀𝑖 ∈ 𝑇, 𝑗 ∈ 𝐼 (4.4) 

𝑥𝑗 +
𝑙𝑗

2
𝑡𝑗 + (

𝑤𝑗−𝑙𝑗

2
) 𝑜𝑗 ≤ 𝑥𝑖 −

𝑙𝑖

2
𝑡𝑖 − (

𝑤𝑖−𝑙𝑖

2
) 𝑜𝑖 + 𝑀(1 − 𝑧𝑗𝑖

𝑥)  ∀𝑖 ∈ 𝑇, 𝑗 ∈ 𝐼  (4.5) 

𝑦𝑖 +
𝑤𝑖

2
𝑡𝑖 + (

𝑙𝑖−𝑤𝑖

2
) 𝑜𝑖 ≤ 𝑦𝑗 −

𝑤𝑗

2
𝑡𝑗 − (

𝑙𝑗−𝑤𝑗

2
) 𝑜𝑗 + 𝑀(1 − 𝑧𝑖𝑗

𝑦
)  ∀𝑖 ∈ 𝑇, 𝑗 ∈ 𝐼 (4.6) 

𝑦𝑗 +
𝑤𝑗

2
𝑡𝑗 + (

𝑙𝑗−𝑤𝑗

2
) 𝑜𝑗 ≤ 𝑦𝑖 −

𝑤𝑖

2
𝑡𝑖 − (

𝑙𝑖−𝑤𝑖

2
) 𝑜𝑖 + 𝑀(1 − 𝑧𝑗𝑖

𝑦
)  ∀𝑖 ∈ 𝑇, 𝑗 ∈ 𝐼 (4.7) 

𝑥𝑖 + (
𝑤𝑖−𝑙𝑖

2
) 𝑜𝑖 ≤ (𝑋 −

𝑙𝑖

2
) 𝑡𝑖  

∀𝑖 ∈ 𝑇 (4.8) 

𝑦𝑖 + (
𝑙𝑖−𝑤𝑖

2
) 𝑜𝑖 ≤ (𝑌 −

𝑤𝑖

2
) 𝑡𝑖   ∀𝑖 ∈ 𝑇 (4.9) 

𝑥𝑖 ≥
𝑙𝑖

2
𝑡𝑖 + (

𝑤𝑖−𝑙𝑖

2
) 𝑜𝑖  

∀𝑖 ∈ 𝑇 (4.10) 
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𝑦𝑖 ≥
𝑤𝑖

2
𝑡𝑖 + (

𝑙𝑖−𝑤𝑖

2
) 𝑜𝑖  

∀𝑖 ∈ 𝑇 (4.11) 

𝑑𝑖𝑗
𝑥 ≥ (𝑥𝑗 −

𝑙𝑗

2
𝑡𝑗 − (

𝑤𝑗−𝑙𝑗

2
) 𝑜𝑗) − (𝑥𝑖 +

𝑙𝑖

2
𝑡𝑖 + (

𝑤𝑖−𝑙𝑖

2
) 𝑜𝑖)  𝑖 ∈ 𝑇, 𝑗 ∈ 𝑇⋃𝐵, 

𝑖 < 𝑗 

(4.12) 

𝑑𝑖𝑗
𝑥 ≥ (𝑥𝑖 −

𝑙𝑖

2
𝑡𝑖 − (

𝑤𝑖−𝑙𝑖

2
) 𝑜𝑖) − (𝑥𝑗 +

𝑙𝑗

2
𝑡𝑗 + (

𝑤𝑗−𝑙𝑗

2
) 𝑜𝑗)  𝑖 ∈ 𝑇, 𝑗 ∈ 𝑇⋃𝐵, 

𝑖 < 𝑗 

(4.13) 

𝑑𝑖𝑗
𝑦

≥ (𝑦𝑗 −
𝑤𝑗

2
𝑡𝑗 − (

𝑙𝑗−𝑤𝑗

2
) 𝑜𝑗) − (𝑦𝑖 +

𝑤𝑖

2
𝑡𝑖 + (

𝑙𝑖−𝑤𝑖

2
) 𝑜𝑖)  𝑖 ∈ 𝑇, 𝑗 ∈ 𝑇⋃𝐵, 

𝑖 < 𝑗 

(4.14) 

𝑑𝑖𝑗
𝑦

≥ (𝑦𝑖 −
𝑤𝑖

2
𝑡𝑖 − (

𝑙𝑖−𝑤𝑖

2
) 𝑜𝑖) − (𝑦𝑗 +

𝑤𝑗

2
𝑡𝑗 + (

𝑙𝑗−𝑤𝑗

2
) 𝑜𝑗)  𝑖 ∈ 𝑇, 𝑗 ∈ 𝑇⋃𝐵, 

𝑖 < 𝑗 

(4.15) 

𝑑𝑖𝑗
𝑥 ≤ (𝑥𝑗 −

𝑙𝑗

2
𝑡𝑗 − (

𝑤𝑗−𝑙𝑗

2
) 𝑜𝑗) − (𝑥𝑖 +

𝑙𝑖

2
𝑡𝑖 + (

𝑤𝑖−𝑙𝑖

2
) 𝑜𝑖) +  

   𝑀(1 − 𝑧𝑖𝑗
𝑥 )   

𝑖 ∈ 𝑇, 𝑗 ∈ 𝑇⋃𝐵, 

𝑖 < 𝑗 
(4.16) 

𝑑𝑖𝑗
𝑥 ≤ (𝑥𝑖 −

𝑙𝑖

2
𝑡𝑖 − (

𝑤𝑖−𝑙𝑖

2
) 𝑜𝑖) − (𝑥𝑗 +

𝑙𝑗

2
𝑡𝑗 + (

𝑤𝑗−𝑙𝑗

2
) 𝑜𝑗) +  

   𝑀(1 − 𝑧𝑗𝑖
𝑥)   

𝑖 ∈ 𝑇, 𝑗 ∈ 𝑇⋃𝐵, 

𝑖 < 𝑗 
(4.17) 

𝑑𝑖𝑗
𝑦

≤ (𝑦𝑗 −
𝑤𝑗

2
𝑡𝑗 − (

𝑙𝑗−𝑤𝑗

2
) 𝑜𝑗) − (𝑦𝑖 +

𝑤𝑖

2
𝑡𝑖 + (

𝑙𝑖−𝑤𝑖

2
) 𝑜𝑖) +  

   𝑀(1 − 𝑧𝑖𝑗
𝑦

)  

𝑖 ∈ 𝑇, 𝑗 ∈ 𝑇⋃𝐵, 

𝑖 < 𝑗 
(4.18) 

𝑑𝑖𝑗
𝑦

≤ (𝑦𝑖 −
𝑤𝑖

2
𝑡𝑖 − (

𝑙𝑖−𝑤𝑖

2
) 𝑜𝑖) − (𝑦𝑗 +

𝑤𝑗

2
𝑡𝑗 + (

𝑙𝑗−𝑤𝑗

2
) 𝑜𝑗) +  

   𝑀(1 − 𝑧𝑗𝑖
𝑦

)   

𝑖 ∈ 𝑇, 𝑗 ∈ 𝑇⋃𝐵, 

𝑖 < 𝑗 
(4.19) 

𝑑𝑖𝑗
𝑠 ≥ 𝑑𝑚𝑖𝑛(𝑧𝑖𝑗

𝑠 + 𝑧𝑗𝑖
𝑠 + 𝑡𝑖 + 𝑡𝑗 − 2) ∀𝑖, 𝑗 ∈ 𝑇, 

 𝑖 < 𝑗, 𝑠

∈ {𝑥, 𝑦} 

(4.20) 

𝑑𝑖𝑗
𝑠 ≥ 𝑑𝑚𝑖𝑛(𝑧𝑖𝑗

𝑠 + 𝑧𝑗𝑖
𝑠 + 𝑡𝑖 + 𝑏𝑗 − 2) ∀𝑖 ∈ 𝑇, 𝑗 ∈ 𝐵, 

 𝑠 ∈ {𝑥, 𝑦} 

(4.21) 

𝑏𝑖 + 𝑏𝑗 ≤ 𝑏𝑖𝑗 + 1 ∀𝑖, 𝑗 ∈ 𝐵, (4.22) 
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 𝑖 < 𝑗 

𝑧𝑖𝑗
𝑥 + 𝑧𝑗𝑖

𝑥 + 𝑧𝑖𝑗
𝑦

+ 𝑧𝑗𝑖
𝑦

= 1 ∀𝑖 ∈ 𝑇, 𝑗 ∈ 𝐼, 

 𝑖 < 𝑗 

(4.23) 

𝑥𝑖, 𝑦𝑖 ≥ 0 ∀𝑖 ∈ 𝑇 (4.24) 

𝑑𝑖𝑗
𝑠 ≥ 0 ∀𝑖 ∈ 𝑇, 𝑗

∈ 𝑇 ∪ 𝐵, 

𝑖 < 𝑗, 𝑠 ∈ {𝑥, 𝑦} 

(4.25) 

𝑡𝑖, 𝑜𝑖 ∈ {0,1} ∀𝑖 ∈ 𝑇 (4.26) 

𝑏𝑖 ∈ {0,1} ∀𝑖 ∈ 𝐵 (4.27) 

𝑧𝑖𝑗
𝑠 , 𝑧𝑗𝑖

𝑠 ∈ {0,1} ∀𝑖 ∈ 𝑇, 𝑗 ∈ 𝐼, 

𝑖 < 𝑗, 𝑠

∈ {𝑥, 𝑦}. 

(4.28) 

The objective function (4.1) maximizes the number of seats inside the restaurant, which 

is the weighted sum of the binary variables representing tables and booths being used. 

Constraint (4.2) enforces the reduced seating capacity of the restaurant. Constraint (4.3) 

suppresses binary variables 𝑜𝑖 = 0 when 𝑡𝑖 = 0. By setting to zero, other constraints are 

not affected when table 𝑖 is not placed in the restaurant. Constraints (4.4)-(4.7) describe 

the locational relationship between center points of two objects so that each pair of 

objects can avoid overlapping. Note that 𝑜𝑖 and the corresponding terms that are 

multiplied by it can be excluded from (4.4)-(4.7) if table 𝑖 is square-shaped (i.e., 𝑤𝑖 = 𝑙𝑖). 

Constraints (4.8)-(4.11) warrant that the tables are placed within the boundaries of the 

restaurant. Note that, if 𝑡𝑖 = 0 for some table 𝑖, we have 𝑜𝑖 = 0 from (4.3) and in turn, 

(𝑥𝑖, 𝑦𝑖) = (0,0) from (4.8)-(4.9). This ensures that (4.4)-(4.7) hold true regardless of 

object 𝑗. 
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 Constraints (4.12)-(4.15) set the lower bounds on 𝑑𝑖𝑗
𝑠 , while (4.16)-(4.19) make 

one of 𝑑𝑖𝑗
𝑥  and 𝑑𝑖𝑗

𝑦
 represent the exact distance along that dimension between the pair 𝑖 

and 𝑗. Constraint (4.20) guarantees that social distancing is satisfied by separating tables 

along the 𝑠-dimension if tables 𝑖 and 𝑗 are placed inside the restaurant (i.e., 𝑡𝑖 = 𝑡𝑗 = 1). 

Constraint (4.21) is identical to (4.20) with the exception that social distancing is 

enforced between a table and a booth. Constraint (4.22) prevents booths 𝑖 and 𝑗 from 

being used simultaneously if social distancing is not satisfied. Constraint (4.23) prevents 

tables from overlapping one another, as well as booths and fixed areas. Note that 𝑑𝑖𝑗
𝑠  will 

take on the exact distance between two objects 𝑖 and 𝑗 along a single dimension from 

(4.12)-(4.19) when 𝑧𝑖𝑗
𝑠 = 1 or 𝑧𝑗𝑖

𝑠 = 1 in (4.23) (i.e., 𝑧𝑖𝑗
𝑥 = 1 or  𝑧𝑗𝑖

𝑥 = 1 provides the exact 

distance along the 𝑥-dimension but not along the 𝑦-dimension; this also enforces 

separation along the 𝑥-dimension between this pair of tables/booths). The correctness of 

the proposed formulation is described in what follows. 

Lemma 4.1 (table selection): Consider a feasible solution to SDLP with respect to table 

object 𝑖 ∈ 𝑇. Then, the following holds true: 

1) 𝑡𝑖 = 0 if and only if (𝑥𝑖, 𝑦𝑖) = (0, 0). 

2) If 𝑡𝑖 = 1, then the table object 𝑖 fits in the restaurant.   

Proof. For 1), if 𝑡𝑖 = 0, (𝑥𝑖, 𝑦𝑖) = (0, 0) follows from (4.8)-(4.9) along with (4.3). 

Conversely, if (𝑥𝑖, 𝑦𝑖) = (0, 0), then 𝑡𝑖 = 0 from (4.10)-(4.11) since 𝑙𝑖, 𝑤𝑖 > 0. For 2), 

suppose that 𝑜𝑖 = 1. From (4.8)-(4.11), 
𝑤𝑖

2
≤ 𝑥𝑖 ≤ 𝑋 −

𝑤𝑖

2
 and 

𝑙𝑖

2
≤ 𝑦𝑖 ≤ 𝑌 −

𝑙𝑖

2
. Hence, the 

entire table 𝑖 fits in the restaurant. Similarly, 
𝑙𝑖

2
≤ 𝑥𝑖 ≤ 𝑋 −

𝑙𝑖

2
 and 

𝑤𝑖

2
≤ 𝑦𝑖 ≤ 𝑌 −

𝑤𝑖

2
 when 

𝑜𝑖 = 0. ∎ 
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Lemma 4.2 (social distance between tables): Consider a feasible solution to SDLP with 

respect to two objects 𝑖, 𝑗 ∈ 𝑇 such that 𝑡𝑖 = 𝑡𝑗 = 1 and 𝑖 < 𝑗. Then, table 𝑖 and table 𝑗 

are socially distanced by at least 𝑑𝑚𝑖𝑛. 

Proof. First, consider a case where 𝑧𝑖𝑗
𝑥 = 1 and 𝑧𝑗𝑖

𝑥 = 𝑧𝑖𝑗
𝑦

= 𝑧𝑗𝑖
𝑦

= 0 in (4.23). By (4.12), 

(4.16) and (4.4), we have 𝑑𝑖𝑗
𝑥 = (𝑥𝑗 −

𝑙𝑗

2
𝑡𝑗 − (

𝑤𝑗−𝑙𝑗

2
) 𝑜𝑗) − (𝑥𝑖 +

𝑙𝑖

2
𝑡𝑖 + (

𝑤𝑖−𝑙𝑖

2
) 𝑜𝑖) ≥ 0. 

Note that 𝑑𝑖𝑗
𝑥 ≥ 𝑑𝑚𝑖𝑛 from (4.20) with 𝑠 = 𝑥. In turn, 𝑑𝑖𝑗 ≥ 𝑑𝑖𝑗

𝑥 , where 𝑑𝑖𝑗 denotes the 

distance between tables 𝑖 and 𝑗 as defined in Definition 4.1. Therefore, the distance 

between two tables is at least 𝑑𝑚𝑖𝑛. Similarly, the same argument can be used for other 

cases with 𝑧𝑗𝑖
𝑥 = 1, 𝑧𝑖𝑗

𝑦
= 1, or 𝑧𝑗𝑖

𝑦
= 1 in (4.23). ∎ 

Lemma 4.3 (social distance between table and booth): Consider a feasible solution to 

SDLP with respect to two objects 𝑖 ∈ 𝑇 and 𝑗 ∈ 𝐵 such that 𝑡𝑖 = 𝑏𝑗 = 1. Then, table 𝑖 

and booth 𝑗 are socially distanced by at least 𝑑𝑚𝑖𝑛.  

Proof. The same argument as in the proof of Proposition 4.2 (later on) can be used to 

have 𝑑𝑖𝑗
𝑥 = (𝑥𝑗 −

𝑙𝑗

2
𝑡𝑗 − (

𝑤𝑗−𝑙𝑗

2
) 𝑜𝑗) − (𝑥𝑖 +

𝑙𝑖

2
𝑡𝑖 + (

𝑤𝑖−𝑙𝑖

2
) 𝑜𝑖) ≥ 0 when 𝑧𝑖𝑗

𝑥 = 1. From 

(4.21) with 𝑠 = 𝑥, we have 𝑑𝑖𝑗
𝑥 ≥ 𝑑𝑚𝑖𝑛, and in turn, 𝑑𝑖𝑗 ≥ 𝑑𝑖𝑗

𝑥 , where 𝑑𝑖𝑗 denotes the 

distance between table 𝑖 and booth 𝑗. Therefore, 𝑑𝑖𝑗 ≥ 𝑑𝑖𝑗
𝑥 ≥ 𝑑𝑚𝑖𝑛. The same argument 

can be used for other cases with 𝑧𝑗𝑖
𝑥 = 1, 𝑧𝑖𝑗

𝑦
= 1, or 𝑧𝑗𝑖

𝑦
= 1 in (4.23). ∎ 

Lemma 4.4 (social distance between two selected booths): Consider a feasible solution to 

SDLP with respect to two objects 𝑖, 𝑗 ∈ 𝐵 such that 𝑏𝑖 = 𝑏𝑗 = 1. Then, booths 𝑖 and 𝑗 are 

socially distanced by at least 𝑑𝑚𝑖𝑛.  

Proof. Constraint (4.22) is satisfied only when 𝑏𝑖𝑗 = 1, which implies booths 𝑖 and 𝑗 are 

socially distanced. ∎ 
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Proposition 4.1 (social distance): Objects represented by a feasible solution to SDLP are 

socially distanced by at least 𝑑𝑚𝑖𝑛.  

Proof. It directly follows Lemmas 4.1-4.4. ∎ 

Proposition 4.2: Consider a restaurant layout that complies with the social distancing 

requirement, where the distance is defined by Definition 4.1. Then, there exists a feasible 

solution to SDLP that corresponds to the layout.  

Proof. The proof is done by showing that a feasible solution can be identified from the 

given layout. First, consider the objects placed in the given layout and specific values will 

be assigned to corresponding variables. Denote the set of tables placed in the layout by 

𝑇̅ ⊂ 𝑇, and the set of booths where seating is allowed in the layout by 𝐵̅ ⊂ 𝐵. Then, 

assign the values of 𝑥𝑖, 𝑦𝑖, 𝑡𝑖, 𝑜𝑖, and 𝑏𝑖 for 𝑖 ∈ 𝑇̅⋃𝐵⋃𝐹 according to the definitions of 

the variables. Let a object 𝑖 ∈ 𝑇̅⋃𝐵̅⋃𝐹 be represented as a rectangle 𝑆𝑖 =

{(𝑢𝑥 , 𝑢𝑦): 𝑥𝑖 −
𝑙𝑖

2
𝑡𝑖 − (

𝑤𝑖−𝑙𝑖

2
) 𝑜𝑖 ≤ 𝑢𝑥 ≤ 𝑥𝑖 +

𝑙𝑖

2
𝑡𝑖 + (

𝑤𝑖−𝑙𝑖

2
) 𝑜𝑖, 𝑦

𝑖
−

𝑤𝑖

2
𝑡𝑖 − (

𝑙𝑖−𝑤𝑖

2
) 𝑜𝑖 ≤ 𝑢𝑦 ≤ 𝑦

𝑖
+

𝑤𝑖

2
𝑡𝑖 + (

𝑙𝑖−𝑤𝑖

2
) 𝑜𝑖}. Suppose that the distance between two objects 𝑖, 𝑗 ∈ 𝑇̅⋃𝐵̅⋃𝐹, 𝑖 < 𝑗, in 

the given layout is 𝑑̂𝑖𝑗 which is yielded by 𝑠∗ = argmax
𝑠∈{𝑥,𝑦}

|𝑢𝑠 − 𝑣𝑠| as defined in Definition 

4.1. Then, assign 𝑑𝑖𝑗
𝑥 = 𝑑𝑖𝑗

𝑦
= 𝑑̂𝑖𝑗. Furthermore, if 𝑠𝑖

∗ ≤ 𝑠𝑗
∗, assign 𝑧𝑖𝑗

𝑠∗
= 1, 𝑧𝑗𝑖

𝑠∗
= 0, and 

𝑧𝑖𝑗
𝑠̅ = 𝑧𝑗𝑖

𝑠̅ = 0 where 𝑠̅ ∈ {𝑥, 𝑦} ∖ {𝑠∗}. On the other hand, if 𝑠𝑖
∗ > 𝑠𝑗

∗, assign 𝑧𝑗𝑖
𝑠∗

= 1, 

𝑧𝑖𝑗
𝑠∗

= 0, and 𝑧𝑖𝑗
𝑠̅ = 𝑧𝑗𝑖

𝑠̅ = 0 where 𝑠̅ ∈ {𝑥, 𝑦} ∖ {𝑠∗}. This assignment satisfies Constraint 

(4.23) for 𝑖 ∈ 𝑇̅ and 𝑗 ∈ 𝑇̅⋃𝐵⋃𝐹. 

Since 𝑡𝑖 = 1 for 𝑖 ∈ 𝑇̅ and 𝑜𝑖 is set to represent its orientation, Constraints (4.3), (4.8)-

(4.11) are satisfied. Also, for 𝑖 ∈ 𝑇̅ and 𝑗 ∈ 𝑇̅⋃𝐵, Constraints (4.12)-(4.15) are satisfied 

from 𝑑𝑖𝑗
𝑥 = 𝑑𝑖𝑗

𝑦
= 𝑑̂𝑖𝑗 and Definition 4.1. Now, consider 𝑖 ∈ 𝑇̅ and 𝑗 ∈ 𝑇̅⋃𝐵⋃𝐹. Note that 
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𝑠∗ = 𝑥 and 𝑥𝑖 ≤ 𝑥𝑗  imply 𝑑𝑖𝑗
𝑥 = 𝑑̂𝑖𝑗 = [𝑥𝑗 −

𝑙𝑗

2
− (

𝑤𝑗−𝑙𝑗

2
) 𝑜𝑗] − [𝑥𝑖 +

𝑙𝑖

2
+ (

𝑤𝑖−𝑙𝑖

2
) 𝑜𝑖] and also 

𝑧𝑖𝑗
𝑥 = 1 from above. Hence, Constraints (4.4) is satisfied while Constraints (4.5)-(4.7) are 

redundant. Similarly, 𝑠∗ = 𝑥 and 𝑥𝑖 > 𝑥𝑗  imply 𝑑̂𝑖𝑗 = [𝑥𝑖 −
𝑙𝑖

2
− (

𝑤𝑖−𝑙𝑖

2
)] − [𝑥𝑗 +

𝑙𝑗

2
𝑡𝑗 +

(
𝑤𝑗−𝑙𝑗

2
) 𝑜𝑗], hence Constraint (4.5) is satisfied while Constraints (4.4), (4.6)-(4.7) are 

redundant. The same argument can be applied when 𝑠∗ = 𝑦, and thus, Constraints (4.4)-

(4.7) are satisfied for all 𝑖 ∈ 𝑇̅ and 𝑗 ∈ 𝑇̅⋃𝐵⋃𝐹. Noting that 𝑇̅⋃𝐵 ⊂ 𝑇̅⋃𝐵⋃𝐹, a similar 

argument results in Constraints (4.16)-(4.19) being satisfied for 𝑖 ∈ 𝑇̅ and 𝑗 ∈ 𝑇̅⋃𝐵. 

Constraints (4.20)-(4.21) are trivially satisfied since 𝑑𝑖𝑗
𝑥 = 𝑑𝑖𝑗

𝑦
= 𝑑̂𝑖𝑗 ≥ 𝑑𝑚𝑖𝑛. Finally, 

from the definition of 𝑏𝑖 and 𝑏𝑖𝑗, Constraint (4.22) is satisfied. 

Next, consider table 𝑖 ∈ 𝑇 ∖ 𝑇̅ and assign 𝑥𝑖 = 𝑦𝑖 = 𝑡𝑖 = 𝑜𝑖 = 0. These values trivially 

satisfy Constraints (4.3) and (4.8)-(4.11). For the rest of constraints, consider two cases, 

𝑗 ∈ 𝑇 ∖ 𝑇̅ and 𝑗 ∈ 𝑇̅. Case 1: Assign 𝑧𝑖𝑗
𝑥 = 1 (hence, 𝑧𝑖𝑗

𝑦
= 𝑧𝑗𝑖

𝑥 = 𝑧𝑗𝑖
𝑦

= 0) and 𝑑𝑖𝑗
𝑥 = 𝑑𝑖𝑗

𝑦
=

0. Then, Constraints (4.5)-(4.7) and (4.17)-(4.19) become redundant, while Constraints 

(4.4), (4.12)-(4.15), (4.16), (4.20)-(4.21), and (4.23) are trivially satisfied. Case 2: Assign 

𝑑𝑖𝑗
𝑥 = 𝑥𝑗 −

𝑙𝑗

2
𝑡𝑗 − (

𝑤𝑗−𝑙𝑗

2
) 𝑜𝑗, 𝑑𝑖𝑗

𝑦
= 𝑦𝑗 −

𝑤𝑗

2
𝑡𝑗 − (

𝑙𝑗−𝑤𝑗

2
) 𝑜𝑗 , and 𝑧𝑖𝑗

𝑥 = 1 (hence, 𝑧𝑖𝑗
𝑦

=

𝑧𝑗𝑖
𝑥 = 𝑧𝑗𝑖

𝑦
= 0). Then, (4.5)-(4.7) and (4.17)-(4.19) become redundant. Furthermore, (4.4) 

is satisfied since the right-hand-side is nonnegative. Constraints (4.12), (4.14), and (4.16) 

are also satisfied since 𝑑𝑖𝑗
𝑥 = 𝑥𝑗 −

𝑙𝑗

2
𝑡𝑗 − (

𝑤𝑗−𝑙𝑗

2
) 𝑜𝑗, and 𝑑𝑖𝑗

𝑦
= 𝑦𝑗 −

𝑤𝑗

2
𝑡𝑗 − (

𝑙𝑗−𝑤𝑗

2
) 𝑜𝑗. 

Constraints (4.13), (4.15) and (4.20)-(4.21) hold true as the right-hand-sides are 

nonpositive. In consequence, feasible solutions were identified for all cases, and this 

completes the proof. ∎ 
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 A phenomenon that often appears in combinatorial optimization problems is the 

problem symmetry. The symmetry typically results in longer solution times during the 

solution process since alternative solutions that yield the same objective function value 

can be unnecessarily explored (Margot, 2010). For the proposed MILP, the problem 

symmetry is evident when there are multiple tables with identical dimensions being 

considered for placement within the restaurant. In an effort to alleviate this burden, SBCs 

are introduced. Suppose that there are 𝐾 types of tables, where tables of type 𝑘 ∈

{1, … , 𝐾} have the same seating capacity and dimensions. Letting 𝑛𝑇
𝑘  represent the 

number of tables of type 𝑘, the index set for tables can be written as 𝑇 = ⋃ 𝑇𝑘
𝐾
𝑘=1 , where 

𝑇𝑘 = {∑ 𝑛𝑇
𝑖 + 1𝑘−1

𝑖=1 , ∑ 𝑛𝑇
𝑖 + 2𝑘−1

𝑖=1 , ∑ 𝑛𝑇
𝑖𝑘

𝑖=1 }. Then, the following SBCs can effectively 

reduce the problem symmetry.  

𝑥𝑖 ≤ 𝑥𝑖+1 ∀𝑖 ∈ 𝑇𝑘 ∖ {∑ 𝑛𝑇
𝑖𝑘

𝑖=1 }, 𝑘 ∈ {1, … , 𝐾}  (4.29) 

𝑡𝑖 ≤ 𝑡𝑖+1 ∀𝑖 ∈ 𝑇𝑘 ∖ {∑ 𝑛𝑇
𝑖𝑘

𝑖=1 }, 𝑘 ∈ {1, … , 𝐾}.  (4.30) 

Constraints (4.29)-(4.30) guarantee that identical tables are placed from left to right in 

ascending order of the table index within the restaurant. In addition to (4.29)-(4.30), the 

following SBC can be applied as well. 

𝑧𝑗𝑖
𝑥 ≤ 𝑡𝑖  ∀𝑖, 𝑗 ∈ 𝑇, 𝑖 ≠ 𝑗  (4.31) 

𝑧𝑗𝑖
𝑥 + 𝑧𝑗𝑖

𝑦
≤ 𝑡𝑖 ∀𝑖 ∈ 𝑇, 𝑗 ∈ 𝐵 ∪ 𝐹. (4.32) 

Constraint (4.31) prevents 𝑧𝑗𝑖
𝑥 from being 1 if table 𝑖 is not placed within the restaurant 

(i.e., 𝑡𝑖 = 0). That is, table 𝑗 is not allowed to precede table 𝑖 along the 𝑥-dimension when 

𝑡𝑖 = 0. Constraint (4.32) is similar to (4.31), with the exception that it also applies to the 

𝑦-dimension. Due to (4.32), booth/fixed area 𝑗 is not allowed to precede table 𝑖 in any 

dimension if table 𝑖 is not placed in the restaurant. However, it should be noted that 𝑧𝑗𝑖
𝑦
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may not be added to the left-hand side of (4.31) unlike that of (4.32) because (4.23) is 

violated when 𝑡𝑖 = 𝑡𝑗 = 0. However, since 𝑡𝑖 = 1 for 𝑖 ∈ 𝐵 ∪ 𝐹, the feasibility of (4.23) 

is still maintained. 

4.4 Empirical study 

 In this section, the proposed model is applied to several restaurants with 

difference sizes and layouts to demonstrate how an optimal arrangement of tables can be 

generated. For each case, two values of 𝛼 ∈ {0.5, 1} are considered to illustrate how the 

layout design is impacted with and without the reduced capacity constraint. In addition, 

𝑑𝑚𝑖𝑛 is set equal to 6 feet, which is the social distancing requirement that has been 

enforced by Cooper (2020). The model is built using Python (3.7.3, 2018) and solved by 

a commercial optimization solver, Gurobi (8.1.1, 2018), which is run in a server equipped 

with four processors of Intel Xeon CPU E7-8890 v3 (3.60 GHz) and an OS of Windows 

Server 2012 R2. A 1-hour time limit is imposed in case an optimal solution could not be 

found in a reasonable amount of time.  In each figure of the resulting restaurant layout 

that will be presented below, tables are displayed as yellow rectangles with their 

respective seating capacities in the center and immovable non-seating areas are displayed 

as black rectangles. 

 In the first case, a fictitious dining hall that has a width of 40 feet and a length of 

30 feet is considered. In total, there are 15 tables, which consist of eight tables having a 

seating capacity of 4 people with dimensions of 5.333’ x 4’ (width x length; seating space 

included in the width dimensions), four tables having a seating capacity of 6 people with 

dimensions of 5.333’ x 5’, and three tables having a seating capacity of 8 people with 

dimensions of 5.333’ x 6.5’. No immovable fixtures are considered in this case. 
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According to the 2015 International Fire Code, the occupant load factor for 

unconcentrated assembly without fixed seats is 15 sq. ft. per person (International Fire 

Code, accessed 2020). Using this load factor, a stated fire capacity (𝑐) is prescribed as 80 

(=1200/15). Two layout designs with and without the capacity limit for this case are 

displayed in Figure 4.2. Let 𝑍 represent the number of seats that are placed inside of the 

restaurant after the optimization is executed. 

 
(a) reduced capacity (𝛼 = 0.5) 

𝑍 = 40 

 
(b) original capacity (𝛼 = 1) 

𝑍 = 68 

Figure 4.2: Layout designs for case 1 

Figure 4.2 (a) is an optimal solution when a reduced capacity (𝛼 = 0.5) was enforced. The 

solution was obtained in 2.38 seconds,. Figure 4.2 (b), on the other hand, displays the 

best solution until the one-hour time limit was reached when a full capacity (𝛼 = 1) was 

applied. Observe, from Figure 4.2 (b), that all tables accommodating 6 and 8 people were 

selected, and five (out of eight) tables that accommodate 4 people were selected. Note 

that alternative optimal solutions may exist, especially when enforcing the capacity limit 

(Figure 4.2 (a)) since some of the tables can be moved while keeping the distancing 

requirements. For example, three tables that are closest to the upper wall can be shifted 

upward or the three tables closest to the bottom wall to the right. 
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 The second case is chosen from Fabregas (accessed 2020) and the size of this 

restaurant is 42.467’ x 23.833’ with 𝑐 = 49. There are four immovable fixtures to reserve 

the spaces of the kitchen, reception area, walkway, and bathroom, as shown in Figure 4.3. 

 

Figure 4.3: Dining area of case 2 with four fixed areas 

Note that the restaurant is not in a rectangular shape. In order to accommodate the non-

rectangularly shaped facility along the upper wall, the fixed area of the bathroom is 

extended towards the left wall, which is shown as the long black rectangle in the resulting 

layouts displayed in Figure 4.4. There are a total of 13 tables: one has a seating capacity 

of 1 person with dimensions of 3.458’ x 2.458’, one has a seating capacity of 2 people 

with dimensions of 4.583’ x 2.458’, ten have a seating capacity of 4 people with 

dimensions of 4.333’ x 4.333’, and one has a seating a capacity of 6 people with 

dimensions of 4.333’ x 6’. Two optimal layout designs with and without the capacity 

limit for this case are displayed in Figure 4.4. 
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(a) reduced capacity (𝛼 = 0.5) 

𝑍 = 24 

 
(b) original capacity (𝛼 = 1) 

𝑍 = 29 

Figure 4.4: Restaurant layouts of case 2 

Optimal solutions were found in 0.25 seconds and 3.13 seconds for 𝛼 = 0.5 and 𝛼 = 1, 

respectively. Similar to the first case, it appears that there is some flexibility in the layout 

with 𝛼 = 0.5 as moving the tables around the restaurant is possible while still satisfying 

the social distancing and reduced capacity constraints. This is also the case for Figure 4.4 

(b), but the degree of flexibility is much less in comparison to the layout in Figure 4.4 (a). 

Note that the layout with 𝛼 = 0.5 accommodates exactly 50% of 𝑐, whereas the layout 

without the capacity constraint could only achieve 59.18% of 𝑐 due to social distancing 

requirements. 

 The restaurant in the third case is obtained from WebstaurantStore (accessed 

2020) and has a size of 62.4’ x 58.133’. Using the aforementioned load factor, 𝑐 is set to 

105. Six fixed areas identified to reserve the spaces of the kitchen, reception area, wall, 

bar area, and bathroom (include its passage), as shown in Figure 4.5. 
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Figure 4.5: Dining area of case 3 with six fixed areas 

In this case, it is assumed that customers cannot be seated at the bar area. Unlike the 

previous two cases, the dining area is split into two areas which are separated by a set of 

fixed areas. In total, 18 tables are considered for possible placement in the dining area. 

Three of them have a seating capacity of 3 people with dimensions of 4.458’ x 3.458’, 

twelve have a seating capacity of 6 people with dimensions of 5.333’ x 6’, and three have 

a seating capacity of 8 people with dimensions of 5.5’ x 7’. The layout designs generated 

from the solutions are displayed in Figure 4.6. 
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(a) reduced capacity (𝛼 = 0.5) 

𝑍 = 52 

(b) original capacity (𝛼 = 1) 

𝑍 = 90 

Figure 4.6: Layout designs for case 3 

For 𝛼 = 0.5, an optimal solution was found in 0.34 seconds. When 𝛼 = 1, however, the 

solution process was terminated after the one-hour limit when 𝛼 = 1, and Figure 4.6 (b) is 

the layout from the best solution up to that point. When relaxing the reduced capacity 

constraint in the layout when 𝛼 = 1, the tables are placed in an organized fashion, and the 

capacity achieves 85.71% of 𝑐. Again, the layout for 𝛼 = 0.5 can be modified by shifting 

some of the tables into less-utilized regions of the dining areas. 

 For the fourth case, the layout of a 47.233’ x 29.466’ restaurant obtained from 

DaGue (accessed 2020) is considered. Similar to the way prescribing the fire capacity in 

the previous cases, 𝑐 is set to 52. Five fixed areas are identified to represent the spaces of 

the kitchen, reception area, televisions, and bathroom, as shown in Figure 4.7. 

 

Figure 4.7: Dining area of case 4 with five fixed areas and five immovable booths 

In addition, there are five immovable booths in the dining area. One booth has a seating 

capacity of 3 people with dimensions of 6.716’ x 6.5’, three have a seating capacity of 4 

people with dimensions of 5.2’ x 4.333’, and one has a seating capacity of 7 people with 

dimensions of 7.8’ x 9.1’. Recall that, when a booth is not selected to be used, then social 
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distancing constraints are not applicable from that booth to the other tables and booths. 

Besides those immovable booths, nine movable tables are considered in this case. Four of 

them have a seating capacity of 2 people with dimensions of 2.6’ x 4.333’, four have a 

seating capacity of 4 people with dimensions of 4.333’ x 4.333’, and one has a seating 

capacity of 6 people with dimensions of 9.1’ x 5.633’. Figure 4.8 displays two layout 

designs generated from the solutions for case 4.  

 
(a) reduced capacity (𝛼 = 0.5) 

𝑍 = 26 

 
(b) original capacity (𝛼 = 1) 

𝑍 = 37 

Figure 4.8: Layout designs for case 4 

Optimal solutions were found in 0.57 seconds and 512 seconds for 𝛼 = 0.5 and 𝛼 = 1, 

respectively. Note that the booth at the upper-right corner of the restaurant is not used in 

Figure 4.8 (a), whereas it is in Figure 4.8 (b). This is also the case for the booth located at 

the bottom-left corner. 

 Recall that the proposed MILP is concerned with maximizing the seating capacity 

of the dining area. However, the maximum capacity does not necessarily lead to the 

maximum revenue. In the next section, therefore, alternative optimization models are 

proposed to take into account the expected revenue under stochastic customer demands. 
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4.5 Extension to table mix problem (TMP) 

 Referring to the previous section, observe how in cases 3 and 4 that some of the 

largest sized tables are placed inside of the restaurant. For example, notice in Figure 4.8 

(a) that a table which can accommodate six customers is placed in the middle of the 

restaurant. Indeed, placing this table in the center allows for the restaurant to achieve the 

maximum number of seats when enforcing social distancing and reduced capacity 

constraints. However, it is possible that this table will not be well-utilized since the 

likelihood of parties with six people was not taken into account when optimizing the 

layout. The determination of the best configuration of seating areas in this problem 

setting is known as the table mix problem (TMP). 

 As mentioned earlier in Section 4.2, methods have been proposed to find a 

reasonable configuration of seating areas inside of a restaurant for maximizing the total 

revenue. One of these pioneering efforts is from Thompson (2002) where a Naïve Ideal 

Table Mix model is proposed for incorporating the probability of different sized parties to 

arrive at the restaurant. The model outputs a preferred number of tables of different sizes, 

but the arrangement of tables inside of the restaurant is not part of the output. Guerriro et 

al. (2014) extend the work from Kimes and Thompson (2005) by taking the arrangement 

of tables into consideration using a two-phase approach. In the first phase, a solution to 

TMP is found by discretizing the restaurant into a series of segments (with fixed length 

and width) to determine the optimal number of tables to place in each segment in 

consideration of average demand and sizing constraints. During the second phase, the 

solution from the first phase is referenced for solving the party mixes problem (PMP), 

which considers the assignment of parties to tables to maximize revenue. 
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 To our knowledge, the work from Guerriro et al. is the only approach in the 

literature where the table assortment and (partial) arrangement are accounted for 

simultaneously in TMP. However, it is unclear how to segment the restaurant most 

effectively, as well as how to determine their respective dimensions. Because of this, 

having too few or many segments (or too narrow or wide) are likely to result in solutions 

that are sub-optimal. Also, in their TMP model, it is assumed that parties can be seated at 

any table with a capacity that is greater than or equal to the party size. Doing so places 

the restaurant at risk of under-utilizing the seating areas during operation. Intuitively 

speaking, it makes more sense to assign parties to seating areas that are most similar in 

size for improving the utilization rate. Lastly, TMP and PMP are optimized sequentially 

without a feedback loop from PMP to TMP. Hence, a globally optimal solution is not 

guaranteed. 

 In an effort to resolve these shortcomings, the model from Section 4.3 can be 

transformed into a two-stage stochastic program to improve the table mix inside of the 

restaurant in consideration of a large number of customer demand scenarios (with respect 

to the party sizes) for maximizing the expected revenue of the restaurant. The proposed 

model also addresses the table assortment and arrangement simultaneously, but relaxes 

the condition that seating areas must be placed in user-defined segments (discrete space). 

Hence, tables can be placed in any region where dining is permitted (continuous space). 

An alternative representation of the customer demand compared to Guerriro et al. is used 

for expressing the arrival rate of customers per hour (denoted by 𝜆), and it is of interest to 

find the table mix where the greatest number of parties can be accommodated. It is 

assumed that all parties arrive at the beginning of each hour to consider the extreme case 
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in this setting where all customers arrive at the restaurant simultaneously. It is also 

assumed that tables cannot be combined when assigning parties to tables. Karmarkar and 

Dutta (2011) share these assumptions in their approach for TMP during each time-period 

over a planning horizon. 

 Representing the problem in this fashion allows for TMP and PMP to be 

optimized simultaneously in a unified modelling framework, which has not been 

considered in the literature before. Furthermore, social distancing and reduced capacity 

constraints are incorporated into the layout design problem, which are newly emerging 

factors that restaurant owners need to take into consideration during pandemic events. 

Note that this model can also be applied by practitioners who are either opening a new 

restaurant or are interested in modifying an existing one, regardless of whether a 

pandemic is happening or not. Subsection 4.5.1 includes an overview on stochastic 

programming, and is followed by the two-stage stochastic program for TMP and PMP in 

Section 4.5.2. 

4.5.1 Stochastic programming 

 In a stochastic programming framework, uncertainty in model parameters is 

represented as a set of scenarios to account for various outcomes that might occur within 

the system. The uncertainty is modeled using discrete or continuous probability 

distributions, which are assumed to be known a priori (Sahinidis, 2004). Stochastic 

programming models are typically represented as two- or multi-stage decision making 

problems, where decisions from the previous stages influence the decisions that are made 

in future stages. For a two-stage stochastic programming problem, a top-down decision-

making framework is applied, where stage-one decisions are made at the current moment, 
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and the stage-two decisions are made in response to the observed uncertainty in the 

second stage based on the decisions that were made in the first stage (commonly referred 

to as programming with recourse). 

Discretizing the uncertainty into a set of scenarios and stages allows for a 

deterministic variant of the original problem to be formulated where the expected cost of 

all scenarios is minimized in conjunction with other costs (Louveaux and Birge, 1997). 

However, the tractability of stochastic programming models becomes less attractive as 

the number of stages and scenarios increase since the size of the model grows 

exponentially after converting it into a deterministic form. Hence, the Benders 

Decomposition arose as an effective solution strategy. 

 

 

4.5.1.1 Modeling and solution approaches  

 Benders Decomposition is one of the pioneering efforts for solving stochastic 

programming problems, and is still being used and improved upon to this day. Benders 

Decomposition is an effective algorithm that can solve two-stage stochastic programming 

problems to optimality. It is frequently referred to as the L-shaped method in the 

literature since the constraint matrix exhibits an L-shaped structure when executing the 

algorithm. Typically, the master problem is defined using only the stage-one variables. 

Sub-problems are represented as LP models, where each LP is associated with a different 

scenario and solved to optimality while fixing the values of the stage-one decision 

variables. Valid inequalities are added iteratively to the master problem using the 

solutions from the sub-problems, and the process is repeated until the lower and upper 
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bounds converge. The sub-problems represent an approximation of the expected cost 

associated with the uncertain parameters, so adding the valid inequalities into the master 

problem allow for the expected cost to be considered during the optimization (Benders, 

1962). Since the sub-problems are represented as LPs, it is required for the stage-two 

model to consist of only continuous variables when applying Benders Decomposition. 

This is because the dual representation of the problem with strong duality is essential 

when applying the procedure, which is straightforward to verify when the model is 

formulated as an LP. 

4.5.2 Two-stage stochastic programming model 

 In this section, a two-stage stochastic programming model is presented for finding 

an optimal solution to TMP and PMP simultaneously. During the first stage, the 

assortment and arrangement of seating areas is optimized using constraints from the 

formulation in Section 4.3. After obtaining a solution for the first stage problem, the 

second stage recourse problem then considers the assignment of parties to tables. The 

objective function of the stochastic program is to maximize the expected revenue that is 

generated across 𝑆 equally likely scenarios with varying party sizes. 

 When generating the scenario data, lower and upper limits on the party sizes and 

𝜆 are specified. Furthermore, the probability distribution of party sizes is assumed to be 

known a priori (e.g., Thompson, 2002 and Guerriro et al.). Then, scenarios are generated 

from the multinomial distribution with the number of trials, 𝜆, and party size 

probabilities. For example, when 𝜆 = 6 and the party size is ranged between 1 and 8, a 

sample scenario is an array of six values [2, 4, 1, 4, 7, 3]. Since 𝜆 denotes the expected 

number of parties that arrive to the restaurant per hour, the order of the values can be 
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interpreted as the order in which the parties arrive to the restaurant (i.e., party of 2 arrived 

first, party of 4 arrived second, etc.). Note the objective function from Section 4.3 

(maximize the number of seats) has a much different interpretation than the objective 

function of this stochastic program (i.e., maximize the expected revenue), suggesting that 

these two modelling approaches can result in different layout designs. 

 Recall that 𝑡𝑖 and 𝑏𝑗 represent whether or not table 𝑖/booth 𝑗 are used inside of the 

restaurant (𝑖 ∈ 𝑇, 𝑗 ∈ 𝐵). 𝑡𝑖 and 𝑏𝑗 are binary decision variables in the first stage problem. 

Also, recall that 𝜆 denotes the arrival rate of parties that will arrive to the restaurant 

during a one-hour period. As stated before, it is assumed that all parties arrive 

simultaneously at the beginning of an hour for representing the most extreme case. Let 

𝑃 = {1,2, … , 𝜆} be an index set of the parties for the hour. Depending on the values 

assigned to 𝑡𝑖 and 𝑏𝑗 and the arrival rate 𝜆, three cases can occur: (1) the number of 

seating areas is less than the number of parties (∑ 𝑡𝑖𝑖∈𝑇 + ∑ 𝑏𝑖𝑖∈𝐵 < |𝑃|), (2) the number 

of seating areas is greater than the number of parties (∑ 𝑡𝑖𝑖∈𝑇 + ∑ 𝑏𝑖𝑖∈𝐵 > |𝑃|), and (3) 

the number of seating areas is equal to the number of parties (∑ 𝑡𝑖𝑖∈𝑇 + ∑ 𝑏𝑖𝑖∈𝐵 = |𝑃|). 

Note that cases (1) and (2) result in what is known as an unbalanced assignment problem, 

where a one-to-one mapping of seating areas to parties is impossible since there are too 

few seating areas and parties in cases (1) and (2), respectively. Although the number of 

seating areas and parties are equal in case (3), it is still possible that not all parties can be 

seated due to the mismatch between the party sizes and table capacities, thus resulting in 

another instance of an unbalanced assignment problem. As a result, it is necessary to 

formulate the second stage model as an unbalanced assignment problem. 
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 The proposed two-stage stochastic program is referred to as the static variant 

because the party size information is assumed to be known for the hour. The 

maximization of expected revenue in this static setting will have a preference to greedily 

assign parties to tables that have a higher dollar amount associated to them regardless of 

the order they are in for each scenario. This can be adjusted by introducing what are 

known as seniority constraints (Caron et al., 1999) for assigning parties to tables, 

resulting in what is referred to as the dynamic variant of the proposed two-stage 

stochastic program, where it is of interest to maximize the number of parties that can be 

accommodated based on the order they arrive to the restaurant. The following notation of 

problem parameters and decision variables are used to present the static variant: 

 𝑝𝑦
𝑠 = number of people in party 𝑦 ∈ 𝑃 for scenario 𝑠 ∈ {1, … , 𝑆} 

 𝑅𝑦
 = revenue that is generated from party 𝑦 ∈ 𝑃 

 𝑧𝑖,𝑝𝑦

 : binary parameter equal to 1 if seating area 𝑖 ∈ 𝑇 ∪ 𝐵  can accommodate 

 parties of size 𝑝𝑦
  (𝑦 ∈ 𝑃) 

 𝑥𝑖,𝑦
𝑠 : binary variable equal to 1 if seating area 𝑖 ∈ 𝑇 ∪ 𝐵 is assigned to party 𝑦 ∈ 𝑃 

 in scenario 𝑠 ∈ {1, … , 𝑆}. 

 

Using the notation shown above, the deterministic equivalent of the two-stage stochastic 

programming model is as follows: 

Maximize  
1

𝑆
∑ [∑ 𝑅𝑦 𝑝𝑦

𝑠 ∑ 𝑧𝑖,𝑝𝑦
𝑠 𝑥𝑖,𝑦

𝑠

𝑖∈𝑇∪𝐵𝑦∈𝑃

]

𝑆

𝑠=1

 (4.33) 

subject to   

(4.2)-(4.28)   

∑ 𝑥𝑖,𝑦
𝑠

𝑦∈𝑃

≤ 𝑡𝑖 ∗ max (𝑧𝑖,𝑝1
𝑠 , … , 𝑧𝑖,𝑝𝜆

𝑠 ) ∀𝑖 ∈ 𝑇, 𝑠 ∈ {1, … , 𝑆} 
(4.34) 

∑ 𝑥𝑖,𝑦
𝑠

𝑦∈𝑃

≤ 𝑏𝑖 ∗ max (𝑧𝑖,𝑝1
𝑠 , … , 𝑧𝑖,𝑝𝜆

𝑠 )   ∀𝑖 ∈ 𝐵, 𝑠 ∈ {1, … , 𝑆} 
(4.35) 
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∑ 𝑥𝑖,𝑦
𝑠

𝑖∈𝑇∪𝐵

≤ 1 ∀𝑦 ∈ 𝑃, 𝑠 ∈ {1, … , 𝑆} 
(4.36) 

𝑥𝑖,𝑦
𝑠 ∈ {0,1}     ∀𝑖 ∈ 𝑇 ∪ 𝐵, 𝑦 ∈ 𝑃, 𝑠 ∈ {1, … , 𝑆}. (4.37) 

Objective function (4.33) maximizes the expected revenue across 𝑆 equally likely 

scenarios. (4.2)–(4.28) are included for satisfying the reduced capacity, social distancing, 

nonoverlapping seating areas, and seating area placement constraints. It is assumed that 

the revenue from each party is linearly proportional to the party size. (4.34)-(4.35) restrict 

the tables and booths, respectively, from being assigned to no more than one party, 

whereas (4.36) restricts each party from being assigned to no more than one seating area. 

(4.37) define the binary variables for the second stage problem. 

 Binary parameter 𝑧𝑖,𝑝𝑦

  is referenced in (4.33)-(4.35) for determining if seating 

area 𝑖 is large enough to accommodate party 𝑦. If 𝑡𝑖 = max (𝑧𝑖,𝑝1
𝑠 , … , 𝑧𝑖,𝑝𝜆

𝑠 ) = 1, this 

implies that table 𝑖 can be considered for assignment since the table is being used within 

the restaurant (decision that is made during the first stage) and it can accommodate at 

least one party in scenario 𝑠. On the other hand, if 𝑡𝑖 = 0, then table 𝑖 cannot be assigned 

to any party since the table is not placed in the restaurant. When max (𝑧𝑖,𝑝1
𝑠 , … , 𝑧𝑖,𝑝𝜆

𝑠 ) =

0, then table 𝑖 is also restricted from being assigned to a party regardless of the value 

assigned to 𝑡𝑖 since it cannot accommodate any of the parties in scenario 𝑠. The same 

reasoning applies for the booth seating areas. 

 As mentioned earlier, one of the shortcomings of stochastic programming models 

is that they become more and more computationally complex as the number of scenarios 

𝑆 increases. For most cases, it is desired to generate a large number of scenarios to 

capture the underlying probability distribution. With this in mind, it is of interest to apply 
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Benders Decomposition to improve the tractability rather than directly solving the 

deterministic variant of the proposed model. Note that the only decision variable in the 

recourse problem is 𝑥𝑖,𝑦
𝑠 , and is restricted to binary values in its initial representation. 

However, these binary variables can be relaxed to continuous ones in the formulation 

because the coefficient matrix 𝐴 of the second stage model is totally unimodular (TU) 

(Hoffman and Gale in Hoffman and Kruskal, 1956), and the right-hand side vector 𝑏 is 

restricted to integer values. In particular, after adding slack variables to the inequality 

constraints of the recourse problem, the coefficient matrix is equivalent to the node-arc 

incidence matrix of a bipartite graph, where one set of nodes corresponds to 𝑇 ∪ 𝐵 and 

the other set of nodes corresponds to 𝑃. Hence, the coefficient matrix is totally 

unimodular (Hoffman and Gale in Hoffman and Kruskal, 1956). 

Maximize    (4.33)  

subject to   

(4.2)-(4.28), (4.34)-(4.36)   

0 ≤ 𝑥𝑖,𝑦
𝑠 ≤ 1     ∀𝑖 ∈ 𝑇 ∪ 𝐵, 𝑦 ∈ 𝑃, 𝑠 ∈ {1, … , 𝑆}. (4.38) 

Now that the second stage recourse problem is a linear program, Benders Decomposition 

can be applied for finding an optimal solution to the proposed two-stage stochastic 

programming problem. 

4.5.2.1 Dynamic variant 

 Note that the static variant of the two-stage stochastic program is primarily 

focused on maximizing the expected revenue across all scenarios for a given problem 

instance. Because of this, larger-sized parties are given a higher preference for being 

seated in the recourse problem regardless of the order in which each party arrives. This 
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can result in an unsatisfactory customer experience for the earlier arriving parties who 

blatantly get skipped for the sake of the restaurant to earn more money. To address this 

issue, a dynamic variant of the stochastic program is proposed where it is of interest to 

maximize the number of parties that are seated in the restaurant based on the order in 

which they arrive. The dynamic variant can still be interpreted as a revenue maximization 

problem from this perspective because the restaurant will earn more revenue for each 

additional party (in consecutive order) that gets seated. At the same time, a restaurant 

owner would prefer to assign parties to the smallest sized seating area that can 

accommodate the party to maximize the utilization of the table. The work by Caron et al. 

(1999) where so-called seniority and priority constraints for assignment problems are 

introduced is referenced to incorporate these additional features into the optimization 

process. 

 For the assignment problem (in general), it is of interest to assign 𝑚 persons to 𝑛 

jobs for optimizing a particular objective function. As observed before, there are 

instances of the assignment problem where 𝑚 ≠ 𝑛, resulting in an unbalanced 

assignment problem. The balanced assignment problem is given when 𝑚 = 𝑛. Depending 

on the circumstances, it might be necessary to enforce additional requirements for the 

assignment problem (such as budget, time, etc.), and are typically referred to as side-

constraints. Caron et al. (1999) propose seniority constraints to produce an optimal 

solution that considers the ranking of persons in the problem instance (perhaps based on 

skill level or experience) by granting them a higher preference for being assigned to jobs 

they are capable of doing. This is accomplished by modifying the objective function 
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weights based on the lexicographic order of all individuals (from largest to smallest). The 

same ordering can also apply for the jobs and is referred to as priority constraints. 

 To do so, the authors represent the problem as a bipartite graph 𝐺𝑃∪𝑄 = (𝑃 ∪

𝑄, 𝐸), where 𝑃 and 𝑄 are the index sets of all people and jobs, respectively, and 𝐸 is the 

set of edges that associate which jobs each person can perform. This mapping references 

binary parameter  𝑎𝑖,𝑗, which is equal to 1 if person 𝑖 can perform job 𝑗; otherwise, 0. Let 

𝐴1, 𝐴2, … , 𝐴𝑀 be a partition of {1,2,…,𝑚} representing the seniority classes of each 

person, and assume that 𝐴𝑘 has a higher seniority than 𝐴𝑙, if 𝑘 < 𝑙, for 𝑘, 𝑙 = 1,2,…, 𝑀. 

Similarly, let 𝐵1, 𝐵2, … , 𝐵𝑁 have a similar interpretation, with the only exception being 

that it is for the jobs and instead is a partition of {1,2,…,𝑛}. Given objective function 

coefficient 𝑐𝑖𝑗 (∀𝑖 = {1,2, … , 𝑚}, 𝑗 ∈ {1,2, … 𝑛}), the modified objective coefficient 𝑐̂𝑖𝑗 

can be computed that incorporates seniority and priority levels of each person and job, 

respectively, by using the following equations. 

𝐿 = 1 + 2 min{𝑚, 𝑛}
max

(𝑝𝑖 , 𝑞𝑗) ∈ 𝐸 |𝑐𝑖,𝑗|  
 

(4.39) 

𝑐̂𝑖,𝑗 = {
𝐿(𝑀 + 𝑁 − 𝑘(𝑖) − 𝑙(𝑗) + 1) + 𝑐𝑖𝑗 ,

0
 

𝑖𝑓 𝑎𝑖,𝑗 = 1, 

otherwise. 
(4.40) 

where 𝑘(𝑖) is the class index of person 𝑖 and 𝑙(𝑗) is the class index of job 𝑗. In the context 

of assigning parties to tables, sets 𝐴1, 𝐴2, … , 𝐴𝑀 can be constructed in consideration of 

the order in which the parties arrive. For example, suppose that there are three 4-seat 

tables, four 6-seat tables, and two 8-seat tables (nine tables in total). Also, suppose that 

there are 10 parties with sizes [3, 7, 6, 3, 5, 4, 2, 5, 6, 1]. The first party in the array is of 

size 3, and is mapped to 𝐴1 because it arrives before all other parties. Similarly, the 

second party is of size 7, and is mapped to 𝐴2 since the party arrives after the first one. 
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This process can be repeated for all other parties, yielding 𝐴1, 𝐴2, … , 𝐴10 and 𝑀 = 10. It is 

assumed that there is not a so-called priority ordering for the tables. Because of this, the 

table indices can be stored inside of index set 𝐵1, thus implying that 𝑁 = 1. 

Recall that the static and dynamic problem settings have slightly different 

interpretations from one another. The former variant is focused on maximizing the 

expected revenue regardless of each parties’ position in the queue, whereas the latter 

attempts to accommodate the largest number of parties with respect to the order in which 

they arrive to the restaurant. With that being said, it is undesired to greedily select the 

largest sized parties in the dynamic setting, but instead configure the arrangement of 

seating areas to maximize the number of parties that can be seated with a higher priority 

given to parties that arrive earliest to the restaurant. In addition, it might be preferred to 

assign parties to seating areas that most closely match in size. For example, assigning a 

party of four to a seating area with four seats makes more sense than assigning the same 

party to a seating area with six seats if both seating areas are available. (4.39)-(4.40) can 

be modified to incorporate these features by scaling objective coefficient 𝑐𝑖,𝑦
𝑠  (∀𝑖 ∈ 𝑇 ∪

𝐵, 𝑦 ∈ 𝑃, 𝑠 ∈ {1, … , 𝑆}) based on the position of each party in line, as well as the 

difference between the number of seats at a seating area and the size of the party. 

 All revenue information is excluded entirely in the dynamic variant to avoid 

potentially giving larger sized parties higher weights in the objective function. Let 𝑞𝑖 

denote the number of seats at seating area 𝑖 ∈ 𝑇 ∪ 𝐵. 

𝐿 = 1 + 2 min{|𝑃|, |𝑇 ∪ 𝐵|}   (4.41) 

𝑐̂𝑖,𝑦
𝑠 = {

(𝐿(|𝑃| + 1 − 𝑦) − 𝐿 (1 −
1

(𝑞𝑖 − 𝑝𝑦
𝑠)

2
+ 1

) ,

0

 

𝑖𝑓 𝑧𝑖,𝑝𝑦
𝑠 = 1, 

 

otherwise. 
(4.42) 
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Note from (4.42) that  𝑐̂𝑖,𝑦′
𝑠 > 𝑐̂𝑖,𝑦′′

𝑠  if 𝑦′ < 𝑦′′ in order to give a higher priority to party 𝑦′ 

since they arrive first. Furthermore, 𝑐̂𝑖,𝑦
𝑠 > 𝑐̂𝑗,𝑦

𝑠  if 𝑞𝑖 < 𝑞𝑗 when 𝑧𝑖,𝑝𝑦
𝑠 = 𝑧𝑗,𝑝𝑦

𝑠 = 1. That is, 

if party 𝑦 can be seated in both seating areas 𝑖 and 𝑗 while the number of seats at 𝑖 is 

smaller than that of 𝑗, it is preferred to seat the party at seating area 𝑖. These values can be 

computed a priori when given scenario data, thus allowing for the second stage problem 

to still be represented as an LP. Also, it is guaranteed that the range of the objective 

coefficients for each distinct party will be non-overlapping from all other parties, which 

is intended to enforce the priority of parties that arrive earliest. From (4.41)-(4.42), 

objective function (4.34) can be rewritten to formulate the dynamic variant of the two-

stage stochastic program, which can be solved to optimality by applying Benders 

Decomposition. 

Maximize  
1

𝑆
∑ [ ∑ ∑ 𝑐̂𝑖,𝑦

𝑠 𝑥𝑖,𝑦
𝑠

𝑦∈𝑃𝑖∈𝑇∪𝐵

]

𝑆

𝑠=1

 (4.43) 

subject to   

(4.2)-(4.28), (4.34)-(4.36), (4.38).   

4.6 Numerical results 

The numerical results obtained by implementing the models from Section 4.5.2 and 

Section 4.5.2.1 are reported in this section (referred to as the static approach (S’) and 

dynamic with preference approach (D-P’), respectively). Another instance of the dynamic 

variant was tested where the component in (4.42) that assigns a larger coefficient weight 

to tables with fewer seats is excluded to assess the impact it has on an optimal solution 

(referred to as the dynamic with no preference approach (D-NP’)). All runs were 

executed using the same server environment as reported in Section 4.4. The restaurant 
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schematic of case 3 from Section 4.4 (Figure 4.5) is referenced for this experiment. Like 

Section 4.4, two values of 𝛼 ∈ {0.5, 1} are considered to illustrate how the layout design 

is impacted with and without the reduced capacity constraint. In addition, 𝑑𝑚𝑖𝑛 is set 

equal to 6 feet. 

 In this study (and without loss of generality), it is assumed that the generated 

revenue from an accommodated party is linearly proportional to the party size. Thus, it 

was established that each party member will spend $10 at the restaurant, on average, 

suggesting that a party of 1 will generate $10 in revenue, party of 2 will generate $20, etc. 

Varying values for 𝜆 are applied to represent different hourly arrival rates of customers 

(5, 10, 15, and 20). Table 4.1 contains the party size probabilities that were used for 

generating demand scenarios to illustrate how the layout design changes across five 

different cases (from Thompson, 2002 and Guerriro et al., 2014). For each case, 500 

randomly generated scenarios are drawn from a multinomial distribution to create 𝜆 

parties consisting of one to eight customers. Distinct sets of potential seating areas are 

constructed for each case based on the probability distributions of the party size, (as 

shown in Table 4.2), where each pair of values connected by a colon represents the 

capacity of a seating area and the number of seating areas with that capacity, respectively. 

Although a seating area can be either a table or a booth, it will be referred to as a table in 

what follows for simplicity. The dimensions of the four, six, and eight seat tables are 

4.333’ x 4.333’, 5.333’ x 5’, and 5.5’ x 7’, respectively. 

 For the sake of comparison, the MILP from Section 4.3 is also considered in this 

experimental design to assess its performance when customer demand is excluded 

entirely from the formulation (referred to as the naïve approach (N’)). A 1-hour time limit 
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was imposed for the situation where an optimal solution could not be found for N’ in a 

reasonable amount of time. Tables 4.3 and 4.4 display the table assortments that are 

output from each approach with and without reduced capacity constraints enforced, 

respectively. Similar to Table 4.2, a pair of numbers connected by a colon represents the 

capacity of a table and the number of selected tables with that capacity in the solution, 

respectively. Solution times for all approaches where reduced capacity is enforced and 

not enforced are reported in Tables 4.5 and 4.6, respectively. 

Table 4.1: Party size probabilities for each case 

 Case 

Party 

size 
1 2 3 4 5 

1 0.16 0.05 0.02 0 0 

2 0.51 0.17 0.12 0.5 0.25 

3 0.15 0.34 0.16 0 0 

4 0.1 0.27 0.20 0.3 0.25 

5 0.04 0.08 0.23 0 0 

6 0.02 0.04 0.13 0.1 0.25 

7 0.01 0.03 0.09 0 0 

8 0.01 0.02 0.05 0.1 0.25 

 

Table 4.2: Distribution of potential tables for each case 

Case 
Potential tables considered for placement 

(table capacity: number tables) 

1 {4: 15, 6: 6, 8: 1} 

2 {4: 10, 6: 8, 8: 2} 

3 {4: 6, 6: 8, 8: 4} 

4 {4: 11, 6: 6, 8: 3} 

5 {4: 7, 6: 6, 8: 5} 
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Table 4.3: Table assortments with reduced capacity constraints enforced 

  Case 

 
𝜆 1 2 3 4 5 

S’ 

5 4: 2 / 6: 6 / 8: 1 4: 0 / 6: 6 / 8: 2 4: 0 / 6: 3 / 8: 4 4: 1 / 6: 4 / 8: 3 4: 0 / 6: 2 / 8: 5 

10 4: 6 / 6: 3 / 8: 1 4: 6 / 6: 2 / 8: 2 4: 3 / 6: 4 / 8: 2 4: 6 / 6: 2 / 8: 2 4: 2 / 6: 2 / 8: 4 

15 4: 11 / 6: 0 / 8: 1 4: 8 / 6: 2 / 8: 1 4: 3 / 6: 4 / 8: 2 4: 6 / 6: 2 / 8: 2 4: 2 / 6: 2 / 8: 4 

20 4: 8 / 6: 2 / 8: 1 4: 8 / 6: 2 / 8: 1 4: 3 / 6: 4 / 8: 2 4: 6 / 6: 2 / 8: 2 4: 2 / 6: 2 / 8: 4 

D-P’ 

5 4: 6 / 6: 3 / 8: 1 4: 5 / 6: 2 / 8: 2 4: 4 / 6: 3 / 8: 2 4: 5 / 6: 2 / 8: 2 4: 4 / 6: 2 / 8: 3 

10 4: 8 / 6: 2 / 8: 1 4: 6 / 6: 2 / 8: 2 4: 3 / 6: 4 / 8: 2 4: 6 / 6: 2 / 8: 2 4: 4 / 6: 2 / 8: 3 

15 4: 11 / 6: 0 / 8: 1 4: 8 / 6: 2 / 8: 1 4: 5 / 6: 4 / 8: 1 4: 8 / 6: 2 / 8: 1 4: 4 / 6: 2 / 8: 3 

20 4: 13 / 6: 0 / 8: 0 4: 10 / 6: 2 / 8: 0 4: 5 / 6: 4 / 8: 1 4: 11 / 6: 0 / 8: 1 4: 6 / 6: 2 / 8: 2 

D-NP’ 

5 4: 0 / 6: 5 / 8: 1 4: 1 / 6: 3 / 8: 2 4: 0 / 6: 1 / 8: 4 4: 1 / 6: 2 / 8: 3 4: 1 / 6: 1 / 8: 5 

10 4: 6 / 6: 3 / 8: 1 4: 6 / 6: 2 / 8: 2 4: 3 / 6: 4 / 8: 2 4: 6 / 6: 2 / 8: 2 4: 4 / 6: 2 / 8: 3 

15 4: 11 / 6: 0 / 8: 1 4: 8 / 6: 2 / 8: 1 4: 5 / 6: 4 / 8: 1 4: 8 / 6: 2 / 8: 1 4: 6 / 6: 2 / 8: 2 

20 4: 13 / 6: 0 / 8: 0 4: 10 / 6: 2 / 8: 0 4: 5 / 6: 4 / 8: 1 4: 11 / 6: 0 / 8: 1 4: 6 / 6: 2 / 8: 2 

N’ - 4: 4 / 6: 6 / 8: 0 4: 2 / 6: 6 / 8: 1 4: 1 / 6: 8 / 8: 0 4: 1 / 6: 4 / 8: 3 4: 2 / 6: 2 / 8: 4 
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Table 4.4: Table assortments without reduced capacity constraints enforced 

  Case 

 
𝜆 1 2 3 4 5 

S’ 

5 4: 10 / 6: 5 / 8: 1 4: 6 / 6: 8 / 8: 2 4: 6 / 6: 6 / 8: 4 4: 8 / 6: 5 / 8: 3 4: 6 / 6: 5 / 8: 5 

10 4: 10 / 6: 5 / 8: 1 4: 6 / 6: 8 / 8: 2 4: 6 / 6: 6 / 8: 4 4: 9 / 6: 4 / 8: 3 4: 6 / 6: 5 / 8: 5 

15 4: 10 / 6: 5 / 8: 1 4: 9 / 6: 5 / 8: 2 4: 6 / 6: 6 / 8: 4 4: 9 / 6: 4 / 8: 3 4: 6 / 6: 5 / 8: 5 

20 4: 10 / 6: 5 / 8: 1 4: 9 / 6: 5 / 8: 2 4: 6 / 6: 6 / 8: 4 4: 9 / 6: 4 / 8: 3 4: 6 / 6: 5 / 8: 5 

D-P’ 

5 4: 5 / 6: 2 / 8: 1 4: 5 / 6: 2 / 8: 1 4: 6 / 6: 3 / 8: 1 4: 4 / 6: 5 / 8: 3 4: 5 / 6: 2 / 8: 5 

10 4: 10 / 6: 3 / 8: 1 4: 8 / 6: 6 / 8: 1 4: 6 / 6: 8 / 8: 2 4: 8 / 6: 6 / 8: 1 4: 7 / 6: 4 / 8: 5 

15 4: 12 / 6: 3 / 8: 1 4: 9 / 6: 7 / 8: 0 4: 6 / 6: 8 / 8: 2 4: 11 / 6: 4 / 8: 1 4: 7 / 6: 5 / 8: 4 

20 4: 12 / 6: 3 / 8: 1 4: 9 / 6: 7 / 8: 0 4: 6 / 6: 7 / 8: 3 4: 11 / 6: 2 / 8: 3 4: 6 / 6: 5 / 8: 5 

D-NP’ 

5 4: 2 / 6: 2 / 8: 1 4: 0 / 6: 5 / 8: 1 4: 1 / 6: 3 / 8: 1 4: 1 / 6: 3 / 8: 1 4: 0 / 6: 3 / 8: 4 

10 4: 4 / 6: 5 / 8: 1 4: 2 / 6: 6 / 8: 2 4: 0 / 6: 7 / 8: 4 4: 2 / 6: 5 / 8: 3 4: 1 / 6: 4 / 8: 5 

15 4: 9 / 6: 5 / 8: 1 4: 9 / 6: 4 / 8: 2 4: 5 / 6: 6 / 8: 4 4: 8 / 6: 4 / 8: 3 4: 5 / 6: 5 / 8: 5 

20 4: 10 / 6: 5 / 8: 1 4: 9 / 6: 5 / 8: 2 4: 6 / 6: 6 / 8: 4 4: 9 / 6: 4 / 8: 3 4: 6 / 6: 5 / 8: 5 

N’ - 4: 10 / 6: 5 / 8: 1 4: 2 / 6: 10 / 8: 3 4: 2 / 6: 7 / 8: 6 4: 7 / 6: 6 / 8: 3 4: 2 / 6: 7 / 8: 6 

 

 

 

 

 

 



112 

 

Table 4.5: Solution times (seconds) with reduced capacity constraints enforced 

  Case 

 
𝜆 1 2 3 4 5 

S’ 

5 18.56 15.06 16.2 13.79 11.74 

10 30.03 26.83 34.33 25.13 34.07 

15 44.21 39.34 41.99 39.69 41.17 

20 44.99 42.77 45.26 45.69 37.95 

D-P’ 

5 42.76 41.33 42.22 47.9 40.3 

10 77.8 81.52 66.8 64.86 54.65 

15 107.99 72.99 59.77 86.66 97.12 

20 83.01 50.37 76.66 88.85 87.44 

D-NP’ 

5 22.02 14.68 13.17 14.95 18.27 

10 28.23 26.97 41.45 34.29 34.7 

15 39.85 33.42 30.96 44.42 57.83 

20 35.44 19.79 33.93 38.36 51.36 

N’ - 1.74 1.37 1.11 1.32 1.14 



113 

 

Table 4.6: Solution times (seconds) without reduced capacity constraints enforced 

  Case 

 
𝜆 1 2 3 4 5 

S’ 

5 19.28 40.76 42.29 36.87 1,919.86 

10 18.22 43.85 58.84 38.37 22.93 

15 22.37 19.1 73.05 44.68 44.28 

20 25.12 23.35 95.86 26.89 61.13 

D-P’ 

5 55.39 42.78 76.55 30.25 98.07 

10 91.87 93.72 343.82 94.01 201.38 

15 166.52 107.46 155.1 132.32 282.49 

20 192.78 113.5 537.13 149.86 270.1 

D-NP’ 

5 25.36 39.23 28.63 25.2 37.28 

10 27.11 47.48 39.87 43.41 42.52 

15 51.13 64.39 86.92 53.04 109.39 

20 60.74 56.15 122.12 77.06 84.98 

N’ - 26.22 3,600* 3,600* 70.89 3,600* 

* Gurobi optimizer timed-out after 3600 seconds.
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Observe how the table placement varies with respect to the party size probabilities that 

are used for sampling in Tables 4.3 and 4.4. The arrival rates also influence the output 

from the static and dynamic approaches where a smaller arrival rate tends to place fewer 

tables in the restaurant versus larger arrival rates. For example, when D-NP’ is applied, 

only six tables are placed for 𝜆 = 5 in case 1, while 13 tables are placed for 𝜆 = 20 (table 

4.3). This behavior is still apparent for a few instances even when the margin between 

arrival rates is small (i.e., D-P’ with arrival rates 15 and 20 for case 2 in Table 4.3; D-P’ 

with arrival rates 15 and 20 for case 3 in Table 4.4). 

 More diverse solutions are produced in Table 4.4 versus Table 4.3 since the 

number of seats from potential tables (referring to Table 4.2) is nearly twice as large as 

the maximum occupancy of the restaurant (105 individuals) when reduced capacity (𝛼 = 

0.5) is enforced. Note that the naïve approach N’ produces the same assortment of tables 

regardless of the value assigned to 𝜆. It is also noteworthy that N’ yielded the same 

optimal solution for some of the runs (i.e., S’ with arrival rates 10, 15, 20 for case 5 in 

Table 4.3; S’ with arrival rates 5, 10, 15, 20 for case 1 in Table 4.4). Similar to the 

behavior exhibited in the numerical results of Section 4.4, N’ has a preference to place as 

many of the largest-sized tables into the restaurant as possible before the smaller ones. 

This is particularly evident when enforcing reduced capacity where a majority of the 

placed tables have six or more seats for all cases. There is one exception in Table 4.4 

where 10 of the placed tables have four seats, which is greater than number of six and 

eight seat tables in the layout combined. 

 When reduced capacity constraints are enforced, the best computational 

performance was achieved using N’, while D-P’ consumed the most computational time 
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for finding an optimal solution (Table 4.5). This result is consistent with the empirical 

study in Section 4.4, where N’ was quickly solved to optimality for all of the restaurant 

schematics with reduced capacity constraints enforced. The computational performance 

when enforcing the reduced capacity constraints is similar where D-P’ required more 

computational time than S’ and D-NP’ (Table 4.6). Case 5 shows that S’ required nearly 

2,000 seconds to perform the Benders Decomposition algorithm, which is unusual since 

all other runs were solved to optimality in less than 96 seconds. Note that the Gurobi 

solver timed-out for several runs when optimizing the table configuration for N’ in Table 

4.6. 

 To evaluate the quality of solutions that are produced from each approach, a 

simulation model was written in Python (3.7.3, 2018) to mimic restaurant operations over 

a 5-hour period. Party arrivals are modelled as a Poisson process, where the time between 

two consecutive arrivals follows an exponential distribution with a mean of 1/𝜆. The 

simulation prioritizes assigning parties to the smallest available table in an effort to 

improve table utilization and increase the likelihood that larger-sized tables are available 

for larger-sized parties upon arrival. As before, it is assumed that tables cannot be 

combined together to accommodate a large-sized party. A triangular distribution is used 

to simulate meal durations to each party based on its size using the average values 

populated in Table 4.7 (from Guerriro et al., 2014). Let 𝑚𝑝𝑦
denote the average meal 

duration for a party of size 𝑝𝑦. Then, the parameter values (minimum, mode, maximum) 

of the triangular distribution are set as (𝑚𝑝𝑦
− 5, 𝑚𝑝𝑦

, 𝑚𝑝𝑦
+ 10), respectively. 
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Table 4.7: Average meal duration based on the party size 

Party size  1 2 3 4 5 6 7 8 

Minutes 26.25 30 33.75 37.5 41.25 45 48.75 52.5 

 

 Two ways to handle the case where no tables are readily available for a party are 

tested. First, parties are rejected from the restaurant if there are no available tables (queue 

disabled), and the second allows for parties to wait in line for another available table 

(queue enabled). 200 replications were run to collect relevant performance statistics 

including the average revenue, table utilization, party rejection rates (when the queue is 

disabled), and average waiting times (when the queue is enabled). The average revenue 

and utilization rate provide insight into how well parties are being matched to tables, 

whereas the rejection rate and average waiting time metrics serve as a proxy for 

measuring the customer satisfaction level, where smaller values for both are ideal. 

4.6.1 Simulation output with queue disabled 

 The simulation model with the queue option disabled was applied using the table 

assortments shown in Tables 4.3 and 4.4. Parties are accepted only if there is an available 

table that can accommodate them upon their arrival. Utilization rates are computed by 

taking the ratio between the number of customers currently seated at a given table and the 

table capacity, and gets updated whenever a new party is assigned to it. The utilization 

rates of all tables in a single replicate are aggregated by taking the average of all of them, 

yielding the utilization rate of the restaurant. This process is repeated for all replicates, 

and the average of all utilization rates is the final value that is presented for reporting. 

Rejection rates are calculated by taking the ratio between the number of parties that were 
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rejected and the total number of parties that visited the restaurant. The rejection rates 

across all replications are aggregated in a similar fashion as the utilization rates. 

 Table 4.8 displays the simulation output with reduced capacity constraints 

enforced across all five cases of party size probabilities. The largest revenue values are 

bolded in Table 4.8 for convenience. 

Table 4.8: Output with reduced capacity constraints enforced – queue disabled 

  
𝝀 Revenue 

Utilization 

Rate 

Rejection 

Rate 

Case 1 

S’ 

5 511.6 49.7% 0.2% 

10 965.6 55.0% 1.5% 

15 1,299.7 55.4% 4.9% 

20 1,565.45 52.9% 12.4% 

D-P’ 

5 509.6 62.6% 0.1% 

10 977.45 59.5% 0.9% 

15 1,299.7 55.4% 4.9% 

20 1,474.9 54.9% 10.1% 

D-NP’ 

5 498.3 39.9% 2.4% 

10 965.6 55.0% 1.5% 

15 1,299.7 55.4% 4.9% 

20 1,474.9 54.9% 10.1% 

N’ 

5 489.95 51.8% 2.2% 

10 919.95 48.6% 2.5% 

15 1,261.4 47.3% 8.2% 

20 1,464.95 47.1% 16.3% 

Case 2 

S’ 

5 718.15 58.0% 0.4% 

10 1,327.45 72.7% 4.0% 

15 1,743.35 74.0% 9.9% 

20 1,987.45 72.8% 18.2% 

D-P’ 

5 721 76.6% 0.3% 

10 1,327.45 72.7% 4.0% 

15 1,743.35 74.0% 9.9% 

20 1,987.55 74.7% 15.7% 

D-NP’ 

5 677.6 58.5% 4.3% 

10 1,327.45 72.7% 4.0% 

15 1,743.35 74.0% 9.9% 

20 1,987.55 74.7% 15.7% 

N’ 
5 707.3 64.9% 0.9% 

10 1,282.9 62.5% 6.1% 
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15 1,615 60.8% 17.2% 

20 1,784.65 60.5% 27.7% 

Case 3 

S’ 

5 887.6 64.5% 2.5% 

10 1,530.6 77.9% 10.5% 

15 1,848.45 75.2% 23.0% 

20 2,012.1 74.2% 33.6% 

D-P’ 

5 882.65 82.5% 2.4% 

10 1,530.6 77.9% 10.5% 

15 1,832.7 79.4% 21.4% 

20 2,038.65 78.2% 30.2% 

D-NP’ 

5 805.15 59.7% 11.5% 

10 1,530.6 77.9% 10.5% 

15 1,832.7 79.4% 21.4% 

20 2,038.65 78.2% 30.2% 

N’ 

5 726.9 72.4% 13.2% 

10 1,354.7 71.2% 16.5% 

15 1,711.05 70.5% 24.8% 

20 1,924.7 70.1% 33.9% 

Case 4 

S’ 

5 759.8 64.5% 0.8% 

10 1,341 72.5% 4.3% 

15 1,680.7 68.5% 13.2% 

20 1,866.9 66.1% 23.1% 

D-P’ 

5 742.8 78.5% 0.8% 

10 1,341 72.5% 4.3% 

15 1,666.9 71.6% 11.6% 

20 1,822.6 69.8% 18.3% 

D-NP’ 

5 705.6 57.4% 4.6% 

10 1,341 72.5% 4.3% 

15 1,666.9 71.6% 11.6% 

20 1,822.6 69.8% 18.3% 

N’ 

5 759.8 64.5% 0.8% 

10 1,273.3 58.0% 9.9% 

15 1,515.7 55.7% 23.8% 

20 1,636.3 54.5% 34.1% 

Case 5 

S’ 

5 970.8 70.4% 3.2% 

10 1,579.1 76.8% 14.8% 

15 1,851.8 75.2% 30.0% 

20 1,964.3 72.4% 40.4% 

D-P’ 

5 969.6 87.0% 3.1% 

10 1,586.5 82.8% 13.7% 

15 1,897.5 80.0% 25.9% 

20 2,004.6 80.3% 33.7% 

D-NP’ 5 971 74.2% 3.3% 
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10 1,586.5 82.8% 13.7% 

15 1,815.3 81.3% 25.8% 

20 2,004.6 80.3% 33.7% 

N’ 

5 992.2 83.6% 1.9% 

10 1,579.1 76.8% 14.8% 

15 1,851.8 75.2% 30.0% 

20 1,964.3 72.4% 40.4% 

 

For case 1, it can be noticed that S’ resulted in a majority of the occurrences of the most 

revenue amongst all approaches (three out of four), and is followed by D-P’. Utilization 

rates are highest when 𝜆 = 5, 10, 20 when using D-P’ (tied with D-NP’ when 𝜆 = 20), and 

are equal to the utilization rates from S’ and D-NP’ when 𝜆 = 15. N’ yielded the lowest 

utilization rates for most values of 𝜆, with one exception being where D-NP’ had the 

lowest value when 𝜆 = 5. Regardless, D-NP’ had greater than or equal to utilization rates 

than S’ for three out of four values assigned to 𝜆 (10, 15, and 20). The lowest rejection 

rates are associated with D-P’, whereas N’ had the highest for most runs. It is worth 

mentioning that case 1 consists mainly of parties with one, two, and three guests, thus 

resulting in relatively low utilization rates since tables with four, six, and eight seats are 

strictly used. 

 Looking at case 2, D-P’ yielded the most revenue when 𝜆 = 5, and was tied with 

all other variants of the stochastic program for the remaining hourly arrival rates. 

Utilization rates are initially the lowest from S’ and D-NP’ for 𝜆 = 5, but are gradually 

improved as the hourly arrival rate increases, resulting in N’ to then exhibit the worst 

utilization. In addition, D-P’ also had the lowest rejection rates. S’ had a similar 

utilization rate as D-NP’ when 𝜆 = 5 (58% versus 58.5%), but the rejection rate is much 

larger in the former approach (0.4% versus 4.3%). This difference is ultimately reflected 

in the revenue that is generated from both approaches, where D-NP’ produced the least 
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revenue for 𝜆 = 5. This outcome is likely associated with the number of tables that are 

placed inside the restaurant from each approach, where D-NP’ resulted in only six tables 

while the others placed at least eight. 

 Similar observations can be made for the remaining cases. In summary (with ties 

included), S’ and D-P’ both resulted in the most revenue for 12 occurrences, whereas D-

NP’ and N’ did for nine and two occurrences, respectively. This is reasonable since S’ is 

solely focused on optimizing the expected revenue in its stochastic programming 

representation, while others used metrics that approximate the revenue. D-P’ also 

considers the revenue but from a different perspective where it is preferred to seat parties 

in the order they arrive, which is not the case for S’ since parties can be selectively 

chosen by the owner to increase the revenue. The utilization/rejection rates were 

highest/lowest for D-P’ and D-NP’ (19 and 14 occurrences, respectively; 18 and 14 

occurrences, respectively). This result also makes sense because D-P’ has a preference to 

match parties to tables that are most similar in size. D-NP’ does not enforce this 

preference, but perhaps applying the dynamic seating policy inherently results in parties 

to be assigned to tables more strategically. S’ outperformed N’ with respect to utilization 

and rejection rates in the sense of the number occurrences where the highest/lowest 

values were observed (five versus zero; six versus two). 

 The same instance of the simulation with the queue option disabled was executed 

using the table assortments in Table 4.4 to determine if the observations from the 

previous result are consistent when relaxing the reduced capacity constraints. Larger 

values are to be expected for the generated revenue since more tables can be placed 
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inside of the restaurant (particularly for larger values of 𝜆). It is not clear, however, to 

what degree the other metrics will be impacted.  

 Table 4.9 displays the simulation output without reduced capacity constraints 

enforced. 

Table 4.9: Output without reduced capacity constraints enforced – queue disabled 

  
𝝀 Revenue 

Utilization 

Rate 

Rejection 

Rate 

Case 1 

S’ 

5 511.85 63.8% 0.1% 

10 995 64.0% 0.3% 

15 1,418.35 58.8% 0.5% 

20 1,795.8 55.3% 1.3% 

D-P’ 

5 514.45 60.0% 0.4% 

10 996.2 63.5% 0.3% 

15 1,425.55 61.0% 0.6% 

20 1,799.5 58.0% 1.5% 

D-NP’ 

5 476.45 47.0% 6.4% 

10 967.1 50.5% 1.4% 

15 1424 57.5% 0.6% 

20 1,795.8 55.3% 1.3% 

N’ 

5 511.85 63.8% 0.1% 

10 995 64.0% 0.3% 

15 1,418.35 58.8% 0.5% 

20 1,795.8 55.3% 1.3% 

Case 2 

S’ 

5 734.25 79.0% 0.1% 

10 1,399.3 72.8% 0.3% 

15 2,004.35 75.3% 0.8% 

20 2,464.25 71.9% 3.3% 

D-P’ 

5 696.55 76.9% 1.4% 

10 1370 75.6% 1.5% 

15 1,814.6 73.1% 5.1% 

20 2,276.2 70.8% 6.2% 

D-NP’ 

5 673.55 56.9% 5.1% 

10 1,332.75 62.3% 3.1% 

15 1,963.5 75.1% 1.3% 

20 2,464.25 71.9% 3.3% 

N’ 

5 731.85 67.5% 0.0% 

10 1,407.1 65.0% 0.1% 

15 1,982.95 61.4% 0.8% 

20 2,440.8 59.3% 3.7% 
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Case 3 

S’ 

5 926.45 84.9% 0.0% 

10 1,753.6 84.4% 0.3% 

15 2,461.45 81.8% 2.1% 

20 2,980.5 79.7% 6.1% 

D-P’ 

5 894.85 80.4% 1.3% 

10 1703.5 84.3% 3.0% 

15 2,356.25 82.2% 4.9% 

20 2,932 80.3% 6.8% 

D-NP’ 

5 743.2 73.6% 14.9% 

10 1,723.65 69.6% 2.4% 

15 2,432.1 80.4% 2.7% 

20 2,980.5 79.7% 6.1% 

N’ 

5 927 81.4% 0.0% 

10 1,764.45 78.6% 0.1% 

15 2,495.6 73.4% 1.6% 

20 3,001.35 71.3% 6.2% 

Case 4 

S’ 

5 755.4 83.2% 0.1% 

10 1,412 80.0% 0.3% 

15 2,025.7 75.9% 1.2% 

20 2,503 72.3% 3.7% 

D-P’ 

5 755.4 74.9% 0.1% 

10 1,372.9 78.5% 1.4% 

15 1,824.6 76.3% 5.5% 

20 2,454.6 74.0% 4.0% 

D-NP’ 

5 639.2 60.8% 11.5% 

10 1,376.3 62.5% 3.5% 

15 2,012.7 73.9% 1.6% 

20 2,503 72.3% 3.7% 

N’ 

5 755.4 84.3% 0.1% 

10 1,412 76.3% 0.3% 

15 2,030.1 72.1% 1.1% 

20 2,493.1 69.3% 3.3% 

Case 5 

S’ 

5 1,019.4 89.9% 0.0% 

10 1,919.5 89.8% 1.1% 

15 2,632.8 87.4% 3.9% 

20 3,148.5 84.5% 8.6% 

D-P’ 

5 1,015.8 87.4% 0.2% 

10 1,906.4 88.9% 1.3% 

15 2,514.8 87.3% 6.5% 

20 3,148.5 84.5% 8.6% 

D-NP’ 

5 969 73.6% 3.6% 

10 1,805.8 76.1% 6.0% 

15 2,598.6 85.9% 4.2% 
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20 3,148.5 84.5% 8.6% 

N’ 

5 1,019.4 88.9% 0.0% 

10 1,927.8 84.6% 0.3% 

15 2,679.5 80.9% 2.8% 

20 3,164.6 77.6% 8.8% 

 

The output of case 1 shows that D-P’ yielded the most revenue for all hourly arrival rates, 

while S’ and N’ both exhibited the lowest rejection rates. Utilization rates are highest for 

S’ and N’ when 𝜆 = 5, 10, and for D-P’ when 𝜆 = 15, 20. It can be noticed in case 4 that 

D-P’ generated the least revenue when 𝜆 = 15, which is $205.50 less than the best result 

that was produced from N (the rejection rate was also the highest for D-P’). Interestingly, 

D-P’ had the highest utilization rate in this situation. In cases 3 and 5, N’ generated the 

most revenue, and was also effective in keeping rejection rates relatively low, of which 

are competitive with the other approaches. 

 In summary (with ties included), N’ displayed 12 occurrences of the most 

revenue, while S’, D-P’, and D-NP’ had seven, five, and two occurrences, respectively. 

Utilization rates were the highest in S’ across 12 occurrences, and is followed by D-P’, 

N’, and D-NP’ for eight, three, and two occurrences, respectively. Given the fact the 

utilization rates were not as high for N' compared to S' and D-P’, this aligns with the 

observation in Section 4.4 where large sized tables tend to be dominant in the layout by 

applying N', making it easier to accommodate parties of varying sizes. In other words, 

having more large sized tables makes it more likely for smaller sized parties to be 

assigned to them, thus reducing the overall utilization rate of the restaurant. One 

exception is evident in Table 4.4 for case 1 where most tables in the restaurant have four 

seats. The gradually decreasing utilization rates for N' are likely a result of smaller sized 

parties being assigned to larger tables. Rejection rates were lowest using N’ in 17 
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occurrences, whereas S’, D-NP’, and D-P’ were lowest for 12, four, and three of them, 

respectively. 

 Although the results do not display obvious patterns with respect to the maximum 

number of occupants that be seated, it can be observed that S’ and D-P’ contribute 

towards a majority of the occurrences of the best values for all metrics (after combining 

the with and without reduced capacity constraints counts). Table 4.10 displays the 

number of occurrences where the best values of revenue and utilization/rejection rates 

were observed relative to each approach. 

Table 4.10: Number of occurrences for the best values of each metric – queue disabled 

 

Revenue 
Utilization 

Rate 

Rejection 

Rate 

S’ 19 17 18 

D-P’ 17 27 21 

D-NP’ 11 16 18 

N’ 14 3 19 

 

In consideration of the revenue, S’ and D-P’ generated the most revenue 19 and 17 times, 

respectively, while N’ and D-NP’ did so 14 and 11 times, respectively. Similarly, D-P’, 

S’, and D-NP’ had drastically more occurrences of the largest utilization rates (27, 17, 

and 16, respectively) in comparison to N’ (3). The rejection rates are similar between 

each approach, but D-P’ is responsible for a majority of the occurrences where the 

rejection rates were lowest (21). 

4.6.2 Simulation output with queue enabled 

 This subsection reports the outcomes when parties are placed in a queue if there 

are no available tables inside of the restaurant upon arrival. It is assumed that 30% of 

guests will leave the restaurant if there are any parties in line upon their arrival, while the 
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remaining percentage of guests will wait to be seated. A maximum waiting time of each 

party is generated from a uniform distribution (𝑎 = 20, 𝑏 = 60) to represent how long the 

party is willing to wait before leaving the restaurant (in minutes). When a table becomes 

available, parties in line are checked in the order in which they arrived to see if they can 

be seated. Parties are removed from the queue if they are seated at a table or if their time 

in line exceeds their tolerable wait time. Meal durations for parties are assigned in the 

same way as described in Section 4.6.1. Average waiting times (in minutes) are reported 

in substitute of the rejection rates, and are computed by taking the ratio between the 

cumulative wait time across all parties and the total number of parties that were placed in 

queue. The average waiting time across all replications are aggregated in a similar 

fashion to the metrics in Section 4.6.1. 

 Table 4.11 displays the simulation output with reduced capacity constraints 

enforced across all five cases of party size probabilities. 

Table 4.11: Output with reduced capacity constraints enforced – queue enabled 

  𝝀 Revenue 
Utilization 

Rate 

Waiting 

Time 

Case 1 

S’ 

5 516.85 49.6% 0.60 

10 983.55 55.1% 3.51 

15 1,306.85 56.4% 19.16 

20 1,691.75 53.6% 6.82 

D-P’ 

5 516.8 62.6% 0.59 

10 1,001.05 59.8% 4.18 

15 1,306.85 56.4% 19.16 

20 1,504.3 55.0% 2.15 

D-NP’ 

5 512.6 41.2% 2.54 

10 983.55 55.1% 3.51 

15 1,306.85 56.4% 19.16 

20 1,504.3 55.0% 2.15 

N’ 

5 488 51.8% 0.01 

10 933.8 48.6% 1.11 

15 1,314.9 47.0% 4.28 
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20 1,591.65 47.2% 5.42 

Case 2 

S’ 

5 740.4 58.2% 0.93 

10 1,381.7 72.9% 6.06 

15 1,829.65 75.0% 12.52 

20 2,119.75 73.9% 10.88 

D-P’ 

5 731.75 76.7% 0.78 

10 1,381.7 72.9% 6.06 

15 1,829.65 75.0% 12.52 

20 2,053.9 75.7% 10.57 

D-NP’ 

5 708.9 59.4% 4.51 

10 1,381.7 72.9% 6.06 

15 1,829.65 75.0% 12.52 

20 2,053.9 75.7% 10.57 

N’ 

5 714.65 64.6% 4.26 

10 1,337.3 63.0% 9.43 

15 1,759.5 61.5% 9.68 

20 1,981.9 61.3% 10.54 

Case 3 

S’ 

5 916.5 65.1% 2.90 

10 1,630.95 78.7% 12.04 

15 2,037.5 77.0% 12.54 

20 2,248 76.7% 15.02 

D-P’ 

5 906.55 82.2% 5.04 

10 1,630.95 78.7% 12.04 

15 1,867.2 81.2% 19.08 

20 2,144.25 80.4% 18.22 

D-NP’ 

5 897.3 59.9% 8.34 

10 1,630.95 78.7% 12.04 

15 1,867.2 81.2% 19.08 

20 2,144.25 80.4% 18.22 

N’ 

5 729.9 72.1% 0.03 

10 1,375.45 70.6% 3.26 

15 1,868.1 70.8% 6.57 

20 2,123.2 70.3% 9.09 

Case 4 

S’ 

5 755.6 64.1% 1.27 

10 1,394.4 73.1% 10.28 

15 1,814.5 70.5% 10.81 

20 2,076.5 69.3% 10.67 

D-P’ 

5 754.6 78.1% 2.36 

10 1,394.4 73.1% 10.28 

15 1,682.8 72.7% 19.40 

20 1,643.5 70.4% 29.37 

D-NP’ 
5 734.4 57.9% 4.17 

10 1,394.4 73.1% 10.28 
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15 1,682.8 72.7% 19.40 

20 1,643.5 70.4% 29.37 

N’ 

5 755.6 64.1% 1.27 

10 1,374.7 57.6% 6.82 

15 1,710.9 56.3% 9.71 

20 1,856.3 55.9% 14.50 

Case 5 

S’ 

5 1,004.1 70.6% 3.68 

10 1,766.6 78.4% 10.21 

15 2,094.8 76.7% 13.88 

20 2,234.7 76.6% 18.35 

D-P’ 

5 1,013.3 86.7% 5.82 

10 1,698.7 83.8% 13.89 

15 2,098.6 82.8% 15.98 

20 2,102.2 82.8% 23.67 

D-NP’ 

5 1,017.1 74.3% 3.90 

10 1,698.7 83.8% 13.89 

15 1,855.4 83.3% 22.56 

20 2,102.2 82.8% 23.67 

N’ 

5 1,019.6 83.6% 2.60 

10 1,766.6 78.4% 10.21 

15 2,094.8 76.7% 13.88 

20 2,234.7 76.6% 18.35 

 

To summarize the output in Table 4.9 (with ties included), S’ produced the most revenue 

16 times, whereas  D-P’, N’, D-NP’ did so six, five, and four times, respectively. This 

outcome is consistent with the results from Table 4.6 where S’ resulted in the most 

revenue for a majority of the occurrences (tied with D-P’). The best utilization rates come 

from D-P’ and D-NP’ for a majority of the runs (19 and 14, respectively), followed by S’ 

in five occurrences. It is worth mentioning that N’ was unable to produce the largest 

utilization rates, which is also the case in Table 4.8. The smallest average waiting times 

for parties were experienced in 16 occurrences by N’, followed by S’ for six times. 

 Table 4.12 displays the simulation output without reduced capacity constraints 

enforced across all five cases of party size probabilities. 

Table 4.12: Output without reduced capacity constraints relaxed – queue enabled 
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  𝝀 Revenue 
Utilization 

Rate 

Waiting 

Time 

Case 

1 

S’ 

5 516.55 63.7% 0.62 

10 1,009.1 63.7% 1.87 

15 1,440.95 59.0% 4.37 

20 1,801.1 55.7% 7.06 

D-P’ 

5 514.95 60.2% 0.73 

10 1,004.45 63.2% 1.53 

15 1,426.35 61.2% 4.60 

20 1,818.9 58.5% 8.18 

D-NP’ 

5 500.1 47.4% 5.44 

10 994.7 50.8% 2.94 

15 1,447.1 57.3% 5.16 

20 1,801.1 55.7% 7.06 

N’ 

5 516.55 63.7% 0.62 

10 1,009.1 63.7% 1.87 

15 1,440.95 59.0% 4.37 

20 1,801.1 55.7% 7.06 

Case 

2 

S’ 

5 732 78.8% 0.49 

10 1,398.05 72.7% 2.05 

15 1,995 75.3% 4.87 

20 2,479.5 72.9% 8.65 

D-P’ 

5 713.6 76.8% 4.15 

10 1,364.05 76.2% 11.01 

15 1,810.45 73.1% 0.10 

20 2,304.85 71.0% 2.08 

D-NP’ 

5 702.3 57.2% 5.49 

10 1,381.85 62.7% 5.37 

15 2,006.35 75.1% 5.43 

20 2,479.5 72.9% 8.65 

N’ 

5 731.85 67.5% 0.00 

10 1,407.6 64.9% 0.36 

15 2,004.55 61.6% 1.93 

20 2,508.2 59.6% 4.70 

Case 

3 

S’ 

5 927.05 84.9% 0.04 

10 1,759.3 84.4% 1.11 

15 2,516.9 82.0% 5.28 

20 3,064.5 80.3% 8.57 

D-P’ 

5 917.4 80.2% 2.67 

10 1,709.5 84.5% 11.46 

15 2,306.6 82.6% 17.56 

20 2,976.75 81.2% 11.88 

D-NP’ 5 818.4 74.6% 13.97 
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10 1,745.25 69.9% 3.68 

15 2,469.1 80.7% 5.91 

20 3,064.5 80.3% 8.57 

N’ 

5 927 81.4% 0.00 

10 1,765.75 78.6% 0.19 

15 2,522.45 73.4% 2.67 

20 3,114 71.6% 5.53 

Case 

4 

S’ 

5 757.2 83.2% 0.26 

10 1,429.3 80.3% 1.85 

15 2,066.2 76.0% 4.98 

20 2,542.5 72.7% 9.32 

D-P’ 

5 7,57.2 74.9% 0.26 

10 1,393.2 78.8% 7.54 

15 1,745 76.7% 26.31 

20 2,522.8 74.9% 9.48 

D-NP’ 

5 680.3 61.2% 10.26 

10 1,416.4 62.6% 4.32 

15 2,042 74.2% 5.37 

20 2,542.5 72.7% 9.32 

N’ 

5 757.2 84.3% 0.26 

10 1,429.3 76.5% 1.85 

15 2,058.8 72.1% 5.21 

20 2,566.1 70.1% 8.34 

Case 

5 

S’ 

5 1,019.4 89.9% 0.00 

10 1,934 89.9% 3.10 

15 2,705.2 87.6% 8.64 

20 3,246.1 85.9% 11.03 

D-P’ 

5 1,026.9 87.4% 0.39 

10 1,925.4 88.7% 3.46 

15 2,569.6 88.0% 12.50 

20 3,246.1 85.9% 11.03 

D-NP’ 

5 1,024 74.0% 4.49 

10 1,883.5 76.7% 6.51 

15 2,694.8 86.2% 8.71 

20 3,246.1 85.9% 11.03 

N’ 

5 1,019.4 88.9% 0.00 

10 1,926.8 84.6% 1.06 

15 2,730.5 81.0% 5.31 

20 3,323.5 78.6% 7.74 

 

Unlike any of the previous results (with ties included), it turns out that N’ most frequently 
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produced the most revenue (12 occurrences) compared to the other approaches. S’ and D-

P’ are tied for the most incidences of the largest utilization rates (10 occurrences). 

4.7 Conclusion 

 In this chapter, an optimization model is proposed to assist restaurant owners who 

need to comply with the safety rules under the pandemic of an infectious disease. The 

objective of the model is to maximize the capacity of the dining area by rearranging 

tables while satisfying social distancing and reduced capacity requirements. Several cases 

are presented to demonstrate the effectiveness of the proposed model. From this, a two-

stage stochastic program with recourse model is then proposed for optimizing TMP and 

PMP concurrently in consideration of maximizing the expected revenue instead of the 

capacity. To the author’s knowledge, this is the first time any study has proposed such an 

approach that allows both problems to be expressed and solved within a single 

optimization model. The performance of the proposed models is evaluated in a simulation 

study, where the results show that the stochastic program more frequently yields the best 

performance from an operational (i.e., revenue, utilization rate) and customer service 

perspective (i.e., rejection rate) when waiting is not permitted. 

 Solutions obtained from the proposed approaches can benefit restaurant 

practitioners by improving their revenue stream while accounting for seating assortment 

and arrangement simultaneously in consideration of customer demand, as well as newly 

emerging criteria due to the recent global pandemic, such as social distancing between 

parties and reduced capacity constraints. Research extensions include exploring valid 

inequalities to further improve the computational efficacy. Also, allowing for tables to be 
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combined and incorporating queueing theory dynamics in the stochastic programming 

model can be investigated. 
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CHAPTER 5: AUTOMATED LAYOUT GENERATION IN CONSIDERATION OF 

ADJACENCY SPECIFICATIONS 

 

5.1 Introduction 

 Architects are heavily involved in the construction process of new facilities from 

start to finish. During the early phase of a construction project, common tasks that are 

delegated to the architect(s) include (but not limited to) requirements gathering, data 

collection and analysis, defining physical space specifications, etc. The accumulation of 

these deliverables is typically referred to as the design program, and is used to qualify 

and quantify the stakeholders’ needs during the pre-design process (Karlen and Fleming, 

2016). The design program is a critical component to the project since it has a strong 

influence on the overall quality of the planning and design processes. Therefore, it is 

essential that all parties are satisfied with its contents before progressing because it can 

become costly to modify the program as the project matures. 

 During the pre-design process, departments to be placed in the facility are 

identified, and relationship diagrams are created to visualize the program specifications 

such as the desired adjacency between departments, travel or circulation patterns, relative 

sizes of spaces, etc. These specifications are derived collaboratively between the 

architect(s) and stakeholders based on a variety of factors, such as facility codes, 

acoustics, spatial quality, architect experience, etc. (Karlen and Fleming, 2016). Once the 

specifications are defined, preliminary layout designs can be generated to provide a 

glimpse as to how physical spaces will be arranged within the facility interior. Bubble 

diagram is an example of a sketching technique that architects use to quickly explore a 

large number of layout options. However, bubble diagrams can sometimes ignore the 

shape of the facility envelope, thus making it difficult in certain cases to transform the 
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bubble diagram into a more realistic depiction of the layout design. In addition, it can be 

time consuming to transform the bubble diagram into an actual layout design since it is 

possible that not all of the specifications can be satisfied simultaneously due to physical 

space limitations. 

 To assist architects in the aforementioned transformation process, researchers 

have proposed various techniques to automate the layout generation process. Most of 

these techniques require the user to provide the physical space specifications as input, and 

the system will output a layout design for the architect to evaluate. One important 

specification is the adjacency preference between spaces, which can be classified into one 

of three categories: adjacency, proximity, and separation. Adjacency is used when it is 

desired for two spaces to be directly accessible to each other. If adjacent, they must share 

a minimum common boundary length (e.g., the minimum size of the door or opening 

between the spaces). When two spaces are desired to be proximate, the distance between 

them is within a given threshold value. If the distance is larger than the threshold value, 

two spaces are considered separated. 

 Proximity and separation specifications have been addressed for facility layout 

planning problems where departments can be placed anywhere within the facility (Tari 

and Neghabi, 2015; Neghabi and Tari, 2016; Klausnitzer and Lasch, 2019). Separation is 

synonymous with minimum clearances in the engineering literature, and is frequently 

encountered in row layout problems where it is of interest to place departments along a 

series of rows to minimize the material flow cost (Simmons, 1969; Heragu and Alfa, 

1992; Chung and Tanchoco, 2010; Zhang and Murray 2012). In the context of 

architecture, studies on the automated layout generation typically address only the 
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adjacency constraints, whereas the proximity and separation constraints are ignored. 

However, it should be pointed out that there are certain situations where it is not required 

for pairs of departments to be placed directly beside one another, but rather to be within a 

tolerable distance. Similarly, it might be necessary for certain departments to be separated 

by a minimum distance due to a variety of factors, such as safety, efficiency, noise, etc. 

Ignoring these specifications can result in less attractive layout designs to be generated, 

thus consuming additional time and resources before arriving to a final design which all 

parties are satisfied with.  

 In this chapter, a mathematical optimization model is first proposed to 

accommodate as many adjacency specifications as possible with the intention of 

generating a layout design that faithfully reflects a given relationship diagram. The 

resulting layout itself can be selected as a final design, but more practically, it can serve 

as a reference design while the architect explores various design options. While the 

layout design itself offers an arrangement of departments, a separate effort needs to be 

subsequently made to create circulation in the facility. Thus, the second part of this 

chapter considers another optimization problem for configuring the aisle structure in the 

facility. This allows for the layout design to better represent what the facility interior will 

look like and how occupants will navigate within it. Therefore, travel distances between 

departments using the aisle structure can be used to calculate the overall cost. The 

remainder of this chapter is organized as follows. In the next section (Section 5.2), a 

literature review of relevant studies is provided. In Section 5.3, the proposed MILP for 

arranging the departments in the facility is presented. The MILP model for determining 

the optimal aisle structure based on the arrangement of departments is introduced in 
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Section 5.4, and Section 5.5 presents a computational study that was performed for two 

case studies. Final remarks are addressed in Section 5.6. 

5.2 Literature Review 

 Various solution methodologies have been employed for automating the layout 

generation process for architectural design problems, including (but not limited to) 

mathematical optimization, machine learning, and heuristics. Each approach has their 

respective strengths and weaknesses, and it is up to the architect to decide which 

approach to use based on (a) the desired solution quality, (b) the amount of time to spend 

on finding a solution, and (c) the assumptions that are made for representing the final 

layout design (i.e., rectangular-shaped departments, discretization of the facility into 

cells, convex/non-convex shaped facility envelope, etc.). Another step in the layout 

generation process consists of configuring the aisle structure to allow occupants to 

navigate the facility. Approaches have been developed that integrate layout and aisle 

generation into a single model, as well as considering both problems separately where 

aisle generation serves as a post-processing technique after a block layout is obtained. A 

review of these approaches and the corresponding shortcomings in the literature are 

discussed in the subsequent sections. 

5.2.1 Mathematical optimization 

 Koopmans and Beckmann (1957) introduced the QAP where the facility was 

represented as a grid with cells of equal size, and departments are assigned to cell-based 

units to minimize the material flow cost of the manufacturing facility. Sahni and 

Gonzales (1976) showed the NP-hardness of QAP, so it would be difficult to find an 

optimal solution using exact methods as the size of the layout design problem increases. 
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Glover et al. (1985) used mixed-integer and nonlinear programming for generating 

bubble diagrams based on architectural program requirements. MILP was used to cluster 

the departments into subsets where the relationship between departments in each subset is 

maximized. NLP was then used for creating bubble diagrams based on topological 

requirements and the output of the MILP. This sequential approach was intended to assist 

the architects in understanding the layout design problem by allowing the user to 

manipulate the output from both models as they see fit. 

 Montreuil et al. (1989) applied a LP model to transform the design skeletons 

created by layout planners into actual layout designs based on the relative positioning of 

departments in the design skeleton. Since not all positioning requirements can be satisfied 

in the layout (thus leading to model infeasibility), additional decision variables and 

constraints are added to guarantee a feasible solution is produced by extending the 

boundaries of the facility. Then, the layout planner determines which requirements are 

not satisfied in the resulting layout. This extension to the model may not be practical for 

the case where the surface area of the facility is fixed and cannot be increased due to 

limited space in the surrounding environment, thus resulting in impractical layouts to be 

generated. Montreuil (1990) proposed another MILP model where departments can be 

freely placed anywhere within the facility. However, its excessive computational demand 

made the implementation of the model impractical. 

 Meller et al. (1998) modified the model proposed by Montreuil to reduce the 

computational complexity in order to solve larger sized problem instances. Valid 

inequalities are introduced, and it is shown that they are helpful in improving the solution 

time. Sherali et al. (2003) enhanced the model presented by Meller et al. by introducing 
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additional valid inequality constraints, reducing problem symmetry, and constructing the 

partial convex hull representation of the non-overlapping and separation constraints. An 

improved linearization of the nonlinear departmental area constraints is also introduced, 

and it is shown that the overall accuracy of the layout design is increased as a result. 

 Michalek et al. (2002) formulated two models for optimizing the geometric and 

topological aspects of a facility. Their procedure generates a layout design using a 

combination of evolutionary algorithms and sequential quadratic programming to 

iteratively update the facility topology using an initial layout diagram as input. 

Architectural objectives are considered during the optimization, including heating, 

cooling, and lighting costs, as well as space utilization. Model infeasibility is prevented 

by assigning a penalty to the layout score, thus making it a less attractive solution to the 

layout planner. Doing so allows for a feasible solution to still be produced even if it is 

deemed impractical by the layout planner. Michalek and Papalambros (2002) extended 

the work of Michalek et al. by developing an interactive system that allows the user to 

add/remove departments, constraints, objectives, etc. during the pre-design phase until a 

satisficing solution is found. Kamol and Krung (2005) applied MILP for generating a 

layout design based on a functional diagram that is provided by the user. Alternative 

layout designs are created by forcing departments to be placed in the top-left region of 

the facility based on the architect’s preference. The facility is represented as a grid with 

cells of unit-length in consideration of orthogonal boundary shapes, and rectangular-

shaped departments are placed accordingly. 

 Tari and Neghabi (2015) proposed an alternative model where adjacency is the 

primary criterion in layout design generation. The authors define two departments as 
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being adjacent if they are placed within a tolerable distance of each other and share a 

minimum common boundary length. The material flow between departments is used to 

represent which pairs have a higher importance for being adjacent in the layout design. 

The adjacency between each pair of departments is measured by so-called adjacency 

degree, which is bounded between 0 and 1, and the objective is to maximize the weighted 

sum of those adjacency degrees. 

 Wu et al. (2018) proposed a hierarchical framework for generating the layout 

design of facility interiors using MIQP. The facility is decomposed into a set of sub-

domains where each sub-domain consists of multiple rectangles that serve a similar 

functional purpose. The layouts of the sub-domains are optimized iteratively to remove 

irregularities from the layout, including poor-space utilization, inaccessible areas, etc. 

Travel distances between departments are unaccounted for in the model since the 

objective function considers the optimization of space utilization inside of the facility. 

Adjacency requirements for department pairs are specified by adding additional 

constraints to the model. It is worth noting that model infeasibility can occur if an excess 

number of adjacency requirements are included for a particular problem instance since 

binary decision variables and disjunctive constraints are used to enforce them. 

5.2.2 Heuristic methods 

 Río-Cidoncha et al. (2007) integrated slicing trees, feng shui, and the shortest 

distance problem for determining the position, location, and orientation of departments in 

a layout design. After creating the layout design, a routing module is executed to 

determine the flow of materials/occupants within the space. Verma and Thakur (2010) 

developed a GA that generates floor plans for single and multi-story facilities. 
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Topological solutions are generated first using design requirements from the layout 

planner, and then a dimensional analysis is performed to determine the dimensions of 

each department. Evacuation time is one of the criteria for evaluating the generated 

layouts since the authors consider the residential setting.  

 Merrell et al. (2010) applied the Bayesian network theory to generate bubble 

diagrams using a list of high-level requirements that are provided by the layout planner as 

input. The Bayesian network creates the bubble diagram by referencing a corpus of 

layouts with a similar facility type and is optimized using structure learning. The 

Metropolis algorithm is then performed using the output from the Bayesian network to 

generate the layout design in consideration of four factors, namely accessibility, area and 

aspect ratio, the number of floors, and department shapes. 

 Guo and Li (2017) proposed an automation method to create facility topology and 

layout design by applying a set of evolutionary algorithms. A multi-agent system is 

applied first to make the functional diagram of the facility more compact and easier to 

interpret. The layout design is then created using the topology from the multi-agent 

system while accounting for important architectural criteria and objectives, such as aspect 

ratio, facility shape, and energy consumption. Laignel et al. (2021) integrated constraint 

programming and GA for their automated apartment plan generation. The facility is 

discretized into a grid with unequally sized cells, and the departments are assigned to 

cells so that architectural and functional constraints are satisfied. Multiple layout designs 

are generated and clustered together to make it easier to perform the evaluation. 

 Grason (1971) used the graph theory for generating layout designs in 

consideration of adjacency and departmental dimension requirements. A planar graph is 
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generated using a placement algorithm, and its dual graph is constructed to determine the 

relative location of departments with respect to one another in the layout design. The 

department dimensions are not considered until the dual graph is created, which can 

result in infeasible layouts for some cases. Ruch (1978) proposed a three-phase 

interactive procedure for generating layout designs. Graph theory is used in the first 

phase for generating planar graphs where the nodes and edges represent departments and 

departmental adjacencies, respectively. The second phase consists of transforming the 

planar graph to a bubble diagram (drawn to scale based on departmental area 

requirements), which is then followed by placing each bubble inside of a minimum area 

rectangular envelope to yield a final layout design in the third phase. 

5.2.3 Machine learning 

 Yeh (2006) proposed a heuristic framework, so-called annealed neural network 

that combines Hopfield neural networks and SA. It was observed that the model is 

sensitive to the selection of algorithmic parameters, thus making it difficult to 

systematically explore the solution space. Zawidski et al. (2010) presented a decision 

support system for generating functional layouts of a facility. The functional layout is 

represented as a unit grid where departments are assigned to sets of neighboring cells in 

consideration of topological requirements, geometrical complexity, and corridor size. 

Functional layouts are converted to architectural layouts to provide the user with a more 

detailed representation of the layout design within the facility envelope. A machine 

learning method is then applied to classify the layout as proper or improper according to 

internal communication criteria. 
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 Chaillou (2019) proposed a floorplan generation framework that utilizes a three-

phase stack of deep networks. The framework allows for the generation of a floorplan in 

consideration of its footprint, layout generation of the departments, and furniture 

placement simultaneously. Hu et al. (2020) used deep learning to suggest layout designs 

based on user-defined constraints. Adjacency graphs are stored in a database and 

referenced by the deep learning procedure, which represent actual floor plans that 

incorporate architecture-design principles. The model will readjust the suggested layouts 

based on the shape of the facility and then automatically generate the resulting layout 

design. 

5.2.4 Aisle generation 

 Consideration of the aisle structure is typically ignored in the approaches 

discussed so far since the layout design problem alone is challenging enough already. For 

approaches that do address aisle generation in conjunction with layout generation, it is 

common for the aisle structure to be constructed with respect to the boundaries of 

departments after a layout is obtained based on certain criteria and constraints. (Norman, 

Arapoglu, and Smith, 2001; Wu and Appleton, 2002; Xiao et al., 2017; Friedriech et al., 

2018). Given a block layout, Lee et al. (2009) applied the network flows optimization for 

minimizing the material flow cost while determining the locations of input/output points 

of each department. Peng et al. (2016) applied integer programming for optimizing the 

navigation, which was applied to urban design problems. They incorporated a variety of 

functional specifications, such as the length of the network and travel distance from 

points of interest to a sink node, and introduced constraints to make the flow look more 

realistic, including dead-end avoidance, zig-zag avoidance, etc. Li and Hua (2019) 
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extended the work of Peng et al. by proposing a formulation with fewer variables. Other 

approaches attempted to optimize the layout design and aisle structure simultaneously for 

minimizing the material flow cost, but typically require prohibitively expensive 

computational efforts (Klausnitzer and Lasch, 2019;  Pourvaziri, Pierreval, and Marian, 

2021). Hence, these integrated approaches simplify the problem by prescribing the 

number of vertical and horizontal aisle segments a priori, which would result in 

suboptimal solutions. 

5.2.5 Shortcomings in the literature and contribution 

 From this literature review, a few shortcomings were identified regarding the 

current state of the automated layout generation within the architecture community. First, 

a large portion of the literature in the automated layout generation only consider 

adjacency specifications between departments, while the proximity and separation 

requirements are overlooked. Second, current MILP models can handle a limited number 

of adjacency specifications to avoid model infeasibility and worsen the computational 

tractability by including more binary variables and constraints. Examples of the second 

shortcoming can be found in Kamol and Krung (2005), Tari and Neghabi (2015), and Wu 

et al. (2018), where each adjacency requirement is specified by a binary variable to 

indicate if the pair of departments are adjacent in the layout. It results in a large number 

of binary variables, which is likely to increase the overall computational complexity. 

Doing so also puts the MILP at risk of infeasibility since it may not be possible to satisfy 

all requirements simultaneously in the layout design. 

 Another shortcoming is that existing optimization studies rarely consider 

regulatory requirements set forth by the International Building Code (2021). For 
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example, facility exits must be separated by a threshold value, which is dependent on the 

facility dimensions. Hosseini et al. (2020) reference the International Building Code for 

satisfying minimum wall lengths and area ratios of departments for temporary housing 

units. Gao et al. (2020) consider an evacuation problem where the configuration of 

doorways is optimized for reducing the evacuation time based on doorway separation 

requirements set forth by the Chinese Fire Code. It is assumed that the facility layout and 

its corresponding aisle structure are known in advance (along with the placement of 

already existing doorways). 

 While addressing the aforementioned shortcomings of the automated layout 

generation techniques, a two-phase procedure for layout design and circulation 

optimization is proposed in this study. For the first phase, a penalty-based MILP model 

that can produce a feasible layout design without requiring additional binary decision 

variables for addressing the adjacency specifications is proposed to produce a block 

layout. To be more precise, continuous variables, namely deviational variables, for pairs 

of departments are introduced to represent the extent of the deviations from the desired 

adjacency preferences. Accordingly, penalties are imposed to positive values of the 

deviational variables. Removing the binary variables for representing the adjacency 

specifications is advantageous for: (a) reducing the computational burden for solving the 

problem, and (b) allowing a large number of specifications to be considered 

simultaneously during the optimization while avoiding model infeasibility. Lastly, the 

proposed model also addresses the proximity and separation specifications in addition to 

the adjacency, thus extending the applicability of the proposed automated layout 

generation model. 
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 In the second phase, an aisle generation problem is solved given the block layout 

generated in the first phase. The aisle generation problem is not only to generate aisles, 

but also to determine the optimal locations of department doorways and the facility 

accessways (i.e., main entrance and emergency exits), while minimizing the total travel 

distance from the doorways to the accessways.  Detailed descriptions of those models are 

presented in the next two sections, respectively. 

5.3 Phase I: Layout Design 

 In this section, an MILP model is presented for generating layout design 

alternatives based on the adjacency specifications furnished by the bubble diagram and 

adjacency matrix. The following notation of the problem parameters is used to present the 

model: 

 𝑛: number of departments 

 𝐼 = {1,2, … , 𝑛}: index set of departments 

 𝑊 = {𝑥, 𝑦}: set of axes for two-dimensional layout design problem 

 𝐿𝑤: length of the facility along direction 𝑤 ∈ 𝑊 

 𝑎𝑖: area requirement of department 𝑖 ∈ 𝐼 

 𝑙𝑏𝑖
𝑤/𝑢𝑏𝑖

𝑤: lower/upper bounds on the half-length of department 𝑖 ∈ 𝐼 along 

 direction 𝑤 ∈ 𝑊 

 𝑥̅: various points that are used for generating tangential supports of the nonlinear 

 area equations 

 𝐴: set of unordered pairs {𝑖, 𝑗} of departments 𝑖 and 𝑗 that are preferred to be 

 adjacent 

 𝑃: set of unordered pairs {𝑖, 𝑗} of departments 𝑖 and 𝑗 that are preferred to be 

 proximate 

 𝑆: set of unordered pairs {𝑖, 𝑗} of departments 𝑖 and 𝑗 that are preferred to be 

 separated 

 𝑇: the set of adjacency specification (i.e., 𝑇 = {𝐴, 𝑃, 𝑆}) 
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 𝑓𝑖𝑗
𝑡 : per unit distance penalty imposed when deviating from adjacency 

 specification 𝑡 ∈ 𝑇 for {𝑖, 𝑗} ∈ 𝑡 

 𝑟𝑖𝑗: minimum common boundary length for {𝑖, 𝑗} ∈ 𝐴 such that  

 𝑟𝑖𝑗 ≤ 2 min{𝑙𝑏𝑖
𝑤, 𝑙𝑏𝑗

𝑤} 

 𝑝𝑖𝑗: maximum boundary-to-boundary distance for {𝑖, 𝑗} ∈ 𝑃 

 𝑠𝑖𝑗: minimum boundary-to-boundary distance for {𝑖, 𝑗} ∈ 𝑆 

 𝑀 ≫ 1: a large constant. 

Specification sets 𝐴, 𝑃, and 𝑆 are populated directly from the bubble diagram and the 

adjacency matrix prior to the optimization. Note that department pairs without any 

adjacency specification can simply be excluded from the specifications sets. Parameters 

𝑙𝑏𝑖
𝑤 and 𝑢𝑏𝑖

𝑤 are calculated using the approximation by Sherali et al. (2003) for the 

nonlinear area equations (reference the paper for further details). In the proposed model, 

the 𝑙1 norm distance metric is applied for addressing the proximity and separation 

specifications. The Chebyshev distance metric (i.e., 𝑙∞ norm) can be applied by replacing 

certain constraints and introducing additional decision variables, which will be briefly 

discussed later. Note that applying either of these distance metrics will likely result in 

different layout design alternatives for the same problem instance. The Euclidean 

distance metric (i.e., 𝑙2 norm) is excluded for two reasons: 1) 𝑙1 is more stuitable for 

addressing distances between rectangular shaped departments as aisles are built on the 

boundaries, and 2) 𝑙2 results in a nonlinear and nonconvex problem, which significantly 

increases the computational complexity of the problem. 

 Figure 5.1 depicts the proper classification of adjacency between departments 𝑖 

and 𝑗. Figures 5.2 and 5.3 illustrate the concept of proximity and separation, respectively. 

Note that the depiction of the shaded region for 𝑃 and 𝑆 is dependent on the distance 

metric that is used for performing the layout optimization. 
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Figure 5.1: Graphical depiction of satisfied adjacency specification 

  

(a) 

𝑙1 norm distance 

 

(b) 

𝑙∞ norm distance 

 

Figure 5.2: Graphical depiction of satisfied proximity specification 

 
 

 

(a) 

𝑙1 norm distance 

 

(b) 

𝑙∞ norm distance 

 

Figure 5.3: Graphical depiction of satisfied separation specification 
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Observe in Figure 5.1 that the borders of departments 𝑖 and 𝑗 are touching and share a 

common boundary length of 𝑟𝑖𝑗 units, thus satisfying the desired adjacency specification 

(of course the common boundary length can exceed 𝑟𝑖𝑗 for satisfying the adjacency). 

However, if the common boundary length is less than 𝑟𝑖𝑗 (even by a slight amount), then 

the adjacency is not satisfied. Figure 5.1 considers the case where departments 𝑖 and 𝑗 

adjoin each other along the 𝑥-direction, thus requiring these departments to be touching 

along the 𝑦-direction.  

 In Figures 5.2 (a) and 5.2 (b), department 𝑗 overlaps the shaded region that is 

surrounded by department 𝑖, indicating that these two departments are within proximity 

of each other. Note in Figure 5.2 (a) that the 𝑙1 norm generates an octagon shaped 

proximity region, whereas a rectangular shaped region is produced using the 𝑙∞ norm in 

Figure 5.2 (b). In Figures 5.3 (a) and 5.3 (b), the entirety of department 𝑗 must be within 

the shaded region to be considered as separated from department 𝑖. 

 Given the problem parameters defined above, the proposed model will produce a 

layout design solution by determining the values of the following decision variables: 

 𝑐𝑖
𝑤: center point of department 𝑖 ∈ 𝐼 along direction 𝑤 ∈ 𝑊 

 𝑙𝑖
𝑤: half-length of department 𝑖 ∈ 𝐼 along direction 𝑤 ∈ 𝑊 

 𝑑𝑖𝑗
𝑤: center-to-center distance between departments 𝑖 and 𝑗 along direction 𝑤 ∈ 𝑊  

 (𝑖, 𝑗 ∈ 𝐼, 𝑖 < 𝑗) 

 𝐷𝑖𝑗
𝑤: boundary-to-boundary distance between departments 𝑖 and 𝑗 along direction 

 𝑤 ∈ 𝑊  

 (∀{𝑖, 𝑗} ∈ 𝑃 ∪ 𝑆) 

 ∆𝑖𝑗,𝑤
𝑎 : deviation from the adjacency condition for {𝑖, 𝑗} ∈ 𝐴 in direction 𝑤 ∈ 𝑊  

 ∆𝑖𝑗
𝑝

: deviation from the proximity condition for {𝑖, 𝑗} ∈ 𝑃 

 ∆𝑖𝑗
𝑠 : deviation from the separation condition for {𝑖, 𝑗} ∈ 𝑆 
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 𝑧𝑖𝑗
𝑤: 1 if department 𝑖 precedes department 𝑗 along direction 𝑤 ∈ 𝑊; 0 otherwise  

 (𝑖, 𝑗 ∈ 𝐼, 𝑖 < 𝑗) 

𝜎𝑖𝑗
𝑤: 1 if the center point of department 𝑖 precedes the center point of department 𝑗 

along direction 𝑤 ∈ 𝑊; 0 otherwise (𝑖, 𝑗 ∈ 𝐼, 𝑖 < 𝑗) 

 𝑜𝑖𝑗
𝑤: 1 if departments 𝑖 and 𝑗 are overlapping along direction 𝑤 ∈ 𝑊; 0 otherwise 

 (𝑖, 𝑗 ∈ 𝑆, 𝑖 < 𝑗). 

 

Note that deviational variables ∆𝑖𝑗,𝑤
𝑎 , ∆𝑖𝑗

𝑝
, and ∆𝑖𝑗

𝑠  determine if the adjacency specification 

between departments 𝑖 and 𝑗 is satisfied. If the adjacency specification is satisfied, then 

the corresponding deviational variable will equal 0 since its value is minimized in the 

objective function. On the other hand, the deviational variable will take on some positive 

value when the specification is not satisfied. The idea is to minimize the weighted sum of 

all deviational variables to find the layout design where the deviation between the bubble 

diagram and adjacency matrix is minimized. The definitions of deviations are as follows. 

Definition 5.1 (deviation for adjacency): 

(5.1.1) If two departments do not overlap in both 𝑥- and 𝑦-directions, the deviation 

for adjacency is defined as the boundary-to-boundary distance between two 

departments plus the minimum common boundary length (𝑟𝑖𝑗).  

(5.1.2) If two departments overlap in 𝑤-direction for 𝑤 ∈ {𝑥, 𝑦}, the deviation for 

adjacency is defined as the sum of two direction-specific deviations for 

adjacency: (a) max{0, 𝑟𝑖𝑗 − length of overlap} in 𝑤-direction, and (b) the 

boundary-to-boundary distance between two departments in direction 𝑤̅ ∈

𝑊\{𝑤}. 

Definition 5.2 (deviation for proximity): 
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The deviation for proximity is defined as max{0, the boundary-to-boundary 

distance between two departments−𝑝𝑖𝑗}.  

Definition 5.3 (deviation for separation): 

The deviation for separation is defined as max{0, 𝑠𝑖𝑗 − the boundary-to-boundary 

distance between two departments}.  

Now, the proposed MILP model can be stated as follows: 

Minimize 
∑ 𝑓𝑖𝑗

𝑎(∆𝑖𝑗,𝑥
𝑎

 

{𝑖,𝑗}∈ 𝐴

+ ∆𝑖𝑗,𝑦
𝑎 ) + ∑ 𝑓𝑖𝑗

𝑝
∆𝑖𝑗

𝑝

 

{𝑖,𝑗}∈𝑃

+ ∑ 𝑓𝑖𝑗
𝑠∆𝑖𝑗

𝑠

 

{𝑖,𝑗}∈𝑆

 

 

 

(5.1) 

subject to 𝑎𝑖𝑙𝑖
𝑥 + 4𝑥̅2𝑙𝑖

𝑦
≥ 2𝑎𝑖𝑥̅ 

 

∀𝑙𝑏𝑖
𝑥 ≤ 𝑥̅ ≤ 𝑢𝑏𝑖

𝑥 (5.2) 

 ∑ (𝑧𝑖𝑗
𝑤 + 𝑧𝑗𝑖

𝑤)

𝑤 ∈ 𝑊

= 1 

 

∀𝑖, 𝑗 ∈ 𝐼, 𝑖 < 𝑗 (5.3) 

 𝑐𝑖
𝑤 + 𝑙𝑖

𝑤 ≤ 𝑐𝑗
𝑤 − 𝑙𝑗

𝑤 + 𝑀(1 − 𝑧𝑖𝑗
𝑤) 

 

∀𝑖, 𝑗 ∈ 𝐼, 𝑖 ≠ 𝑗, 𝑤 ∈ 𝑊 (5.4) 

 −𝑑𝑖𝑗
𝑤 ≤ 𝑐𝑗

𝑤 − 𝑐𝑖
𝑤 ≤ 𝑑𝑖𝑗

𝑤 

 

∀𝑖, 𝑗 ∈ 𝐼, 𝑖 < 𝑗, 𝑤 ∈ 𝑊 (5.5) 

 𝑑𝑖𝑗
𝑤 ≤ 𝑐𝑗

𝑤 − 𝑐𝑖
𝑤 + 𝑀(1 − 𝜎𝑖𝑗

𝑤) 

 

∀𝑖, 𝑗 ∈ 𝐼, 𝑖 < 𝑗, 𝑤 ∈ 𝑊 (5.6) 

 𝑑𝑖𝑗
𝑤 ≤ 𝑐𝑖

𝑤 − 𝑐𝑗
𝑤 + 𝑀𝜎𝑖𝑗

𝑤 

 

∀𝑖, 𝑗 ∈ 𝐼, 𝑖 < 𝑗, 𝑤 ∈ 𝑊 (5.7) 

 𝑙𝑖
𝑤 ≤ 𝑐𝑖

𝑤 ≤ 𝐿𝑤 − 𝑙𝑖
𝑤 

 

∀𝑖 ∈ 𝐼, 𝑤 ∈ 𝑊 (5.8) 

 𝑙𝑏𝑖
𝑤 ≤ 𝑙𝑖

𝑤 ≤ 𝑢𝑏𝑖
𝑤 

 

∀𝑖 ∈ 𝐼, 𝑤 ∈ 𝑊 (5.9) 

 ∆𝑖𝑗,𝑤
𝑎 ≥ 𝑟𝑖𝑗(𝑧𝑖𝑗

𝑤′
+ 𝑧𝑗𝑖

𝑤′
) − [(𝑙𝑖

𝑤 + 𝑙𝑗
𝑤) − 𝑑𝑖𝑗

𝑤] 

 

∀{𝑖, 𝑗} ∈ 𝐴, 𝑤 ∈ 𝑊, 
𝑤′ ∈ 𝑊 \ {𝑤} 

(5.10) 

 𝐷𝑖𝑗
𝑤 ≥ 𝑑𝑖𝑗

𝑤 − 𝑙𝑖
𝑤 − 𝑙𝑗

𝑤 

 

∀{𝑖, 𝑗} ∈ 𝑃, 𝑤 ∈ 𝑊 (5.11) 

 ∆𝑖𝑗
𝑝

≥ (𝐷𝑖𝑗
𝑥 + 𝐷𝑖𝑗

𝑦
) − 𝑝𝑖𝑗  

 

∀{𝑖, 𝑗} ∈ 𝑃 (5.12) 

 𝑑𝑖𝑗
𝑤 − 𝑙𝑖

𝑤 − 𝑙𝑗
𝑤 ≤ 𝑀(1 − 𝑜𝑖𝑗

𝑤) 

 

∀{𝑖, 𝑗} ∈ 𝑆, 𝑤 ∈ 𝑊 (5.13) 

 𝑑𝑖𝑗
𝑤 − 𝑙𝑖

𝑤 − 𝑙𝑗
𝑤 ≥ −𝑀𝑜𝑖𝑗

𝑤 

 

∀{𝑖, 𝑗} ∈ 𝑆, 𝑤 ∈ 𝑊 (5.14) 

 𝐷𝑖𝑗
𝑤 ≤ 𝑑𝑖𝑗

𝑤 − 𝑙𝑖
𝑤 − 𝑙𝑗

𝑤 + 𝑀𝑜𝑖𝑗
𝑤 

 

∀{𝑖, 𝑗} ∈ 𝑆, 𝑤 ∈ 𝑊 (5.15) 

 𝐷𝑖𝑗
𝑤 ≤ 𝑀(1 − 𝑜𝑖𝑗

𝑤) 

 

∀{𝑖, 𝑗} ∈ 𝑆, 𝑤 ∈ 𝑊 (5.16) 

 ∆𝑖𝑗
𝑠 ≥ 𝑞𝑖𝑗 − (𝐷𝑖𝑗

𝑥 + 𝐷𝑖𝑗
𝑦

) 

  

∀{𝑖, 𝑗} ∈ 𝑆 (5.17) 

 𝑜𝑖𝑗
𝑥 + 𝑜𝑖𝑗

𝑦
≤ 1 

 

∀𝑖, 𝑗 ∈ {𝑃} ∪ {𝑆}, 𝑖 < 𝑗 

 

(5.18) 
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 ∆𝑖𝑗,𝑤
𝑎 ≥ 0 

 

∀{𝑖, 𝑗} ∈ 𝐴, 𝑤 ∈ 𝑊 (5.19) 

 ∆𝑖𝑗
𝑝

≥ 0 

 

∀{𝑖, 𝑗} ∈ 𝑃 

 

(5.20) 

 ∆𝑖𝑗
𝑠 ≥ 0 

 

∀{𝑖, 𝑗} ∈ 𝑆 (5.21) 

 𝐷𝑖𝑗
𝑤 ≥ 0 

 

∀{𝑖, 𝑗} ∈ 𝑃 ∪ 𝑆, 𝑤 ∈ 𝑊 (5.22) 

 𝑐𝑖
𝑤 , 𝑙𝑖

𝑤 , 𝑑𝑖𝑗
𝑤 ≥ 0 

 

∀𝑖, 𝑗 ∈ 𝐼, 𝑖 < 𝑗, 𝑤 ∈ 𝑊 (5.23) 

 𝑜𝑖𝑗
𝑤 ∈ {0,1} 

 

∀{𝑖, 𝑗} ∈ 𝑆, 𝑤 ∈ 𝑊 (5.24) 

 𝑧𝑖𝑗
𝑤 ∈ {0,1} 

 

∀𝑖, 𝑗 ∈ 𝐼, 𝑖 ≠ 𝑗, 𝑤 ∈ 𝑊. (5.25) 

The objective function (5.1) minimizes the weighted sum of the deviational variables for 

the adjacency specifications. When (5.1) is equal to 0 in an optimal solution, this 

indicates that all specification constraints are satisfied in the generated layout design. On 

the other hand, a positive optimal value indicates that at least one specification is not 

satisfied in the layout design. These particular specifications can be identified by looking 

at the positive values of the deviational variables in the optimal solution.  

 Constraint (5.2) is the linearization constraint proposed by Sherali et al. for the 

nonlinear area equations. Values of 𝑥̅ are generated using the following expression: 

𝑥̅ = 𝑙𝑏𝑖
𝑥 +

𝜆

(∆ − 1)
(𝑢𝑏𝑖

𝑥 − 𝑙𝑏𝑖
𝑥) 

 

∀𝜆 = 0,1, … , ∆ − 1 

for any selected integer ∆≥ 2. 
 

where ∆ represents the number of tangential supports to include in the model. A larger 

value of ∆ improves the quality of the approximation, but also increases the 

computational burden of the model. Constraints (5.3)-(5.4) prevent departments from 

overlapping each other in the layout design. Constraints (5.5)-(5.7) assign the exact 

center-to-center distance in the direction 𝑤 (i.e., |𝑐𝑖
𝑤 − 𝑐𝑗

𝑤|) to 𝑑𝑖𝑗
𝑤. While constraint (5.5) 

enforces the lower bounds on the distance (𝑑𝑖𝑗
𝑤), constraints (5.6)-(5.7) enforce the upper 

bounds with disjunction so that 𝑑𝑖𝑗
𝑤 = max{𝑐𝑖

𝑤 − 𝑐𝑗
𝑤, 𝑐𝑗

𝑤 − 𝑐𝑖
𝑤}. Constraint (5.8) ensures 
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that departments are placed within the facility envelope. Constraint (5.9) enforces the 

lower and upper bounds for the half-lengths of each department in the 𝑥- and 𝑦-

directions.  

 As shown in Proposition 5.1 later, constraint (5.10) prescribes the lower bound on 

the deviational variable for adjacency, Δ𝑖𝑗,𝑤
𝑎 , for {𝑖, 𝑗} ∈ 𝐴. Constraints (5.11) enforces the 

lower bound on the nonnegative variable 𝐷𝑖𝑗
𝑤, which represents the distance between 

boundaries of departments 𝑖 and 𝑗 for {𝑖, 𝑗} ∈ 𝑃. In turn, (5.12) prescribes the lower 

bound on the deviational variable for proximity. While deviations for adjacency and 

proximity specifications need lower bounds observing that the objective function is 

minimized, the deviation for separation needs extra consideration since the distance is 

desired to be longer for the objective function to be minimized. Hence, instead of 

enforcing a lower bound on the distance between boundaries, an upper bound is enforced 

for 𝐷𝑖𝑗
𝑤 in constraints (5.13)-(5.16). In (5.13)-(5.14), the value of the binary variable 𝑜𝑖𝑗

𝑤 is 

determined based on the sign of 𝑑𝑖𝑗
𝑤 − 𝑙𝑖

𝑤 − 𝑙𝑗
𝑤. Recall that 𝑜𝑖𝑗

𝑤 determines whether 

departments 𝑖 and 𝑗 are overlapping in 𝑤-direction. If  𝑑𝑖𝑗
𝑤 − 𝑙𝑖

𝑤 − 𝑙𝑗
𝑤 > 0, then two 

departments do not overlap in 𝑤-direction since the center-to-center distance is greater 

than the sum of half-lengths, and accordingly, constraint (5.13) results in 𝑜𝑖𝑗
𝑤 = 0. On the 

other hand, 𝑑𝑖𝑗
𝑤 − 𝑙𝑖

𝑤 − 𝑙𝑗
𝑤 < 0 indicates that two departments overlap in 𝑤-direction, and 

constraint (5.14) effectively assigns 𝑜𝑖𝑗
𝑤 = 1. When 𝑜𝑖𝑗

𝑤 = 0, i.e., no overlap between 

departments 𝑖 and 𝑗 in 𝑤-direction, (5.15) prescribes the upper bound on 𝐷𝑖𝑗
𝑤 as the exact 

distance between boundaries, i.e., 𝑑𝑖𝑗
𝑤 − 𝑙𝑖

𝑤 − 𝑙𝑗
𝑤. Otherwise, the distance between 

boundaries becomes zero as enforced in (5.16). In constraint (5.17), the lower bound on 

the deviational variable for separation is prescribed. Again, note that the sign of the 
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distances between boundaries is negative in (5.17). Therefore, minimizing the deviational 

variable corresponds to maximizing the distance between boundaries until the threshold 

is reached, which is effectively constrained by the upper bounds in (5.15)-(5.16). 

Constraint (5.18) prevents departments from overlapping in more than one dimension. 

Constraints (5.19)-(5.25) are for the nonnegativity and integrality of decision variables. 

 As mentioned above, the deviation for adjacency is determined by constraint 

(5.10). The following proposition provides its correctness. 

Proposition 5.1: Consider MILP in (5.1)-(5.25). Suppose that the minimum common 

boundary satisfies 𝑟𝑖𝑗 ≤ 2 min{𝑙𝑏𝑖
𝑤, 𝑙𝑏𝑗

𝑤}. Then, constraint (5.10) in conjunction with 

minimizing the objective function guarantees that (∆𝑖𝑗,𝑥
𝑎 + ∆𝑖𝑗,𝑦

𝑎 ) results in the deviation 

for adjacency as defined in Definition 5.1. 

Proof: First, consider a pair of departments {𝑖, 𝑗} ∈ 𝐴 that do not overlap in any direction. 

Since the pair do not overlap, the boundary-to-boundary distance in 𝑤-direction is given 

by 𝑑𝑖𝑗
𝑤 − (𝑙𝑖

𝑤 + 𝑙𝑗
𝑤). Hence, the boundary-to-boundary distance between 𝑖 and 𝑗 is 

∑ [𝑑𝑖𝑗
𝑤 − (𝑙𝑖

𝑤 + 𝑙𝑗
𝑤)]𝑤∈𝑊 . From (5.10), we have ∆𝑖𝑗,𝑥

𝑎 ≥ 𝑟𝑖𝑗(𝑧𝑖𝑗
𝑦

+ 𝑧𝑗𝑖
𝑦

) + 𝑑𝑖𝑗
𝑥 − (𝑙𝑖

𝑥 + 𝑙𝑗
𝑥) 

and ∆𝑖𝑗,𝑦
𝑎 ≥ 𝑟𝑖𝑗(𝑧𝑖𝑗

𝑥 + 𝑧𝑗𝑖
𝑥) + 𝑑𝑖𝑗

𝑥 − (𝑙𝑖
𝑥 + 𝑙𝑗

𝑥). Adding two inequalities and from (3), we 

have ∆𝑖𝑗,𝑥
𝑎 + ∆𝑖𝑗,𝑦

𝑎 ≥ 𝑟𝑖𝑗(𝑧𝑖𝑗
𝑥 + 𝑧𝑗𝑖

𝑥 + 𝑧𝑖𝑗
𝑦

+ 𝑧𝑗𝑖
𝑦

) + 𝑑𝑖𝑗
𝑥 − (𝑙𝑖

𝑥 + 𝑙𝑗
𝑥) + 𝑑𝑖𝑗

𝑥 − (𝑙𝑖
𝑥 + 𝑙𝑗

𝑥) = 𝑟𝑖𝑗 +

∑ [𝑑𝑖𝑗
𝑤 − (𝑙𝑖

𝑤 + 𝑙𝑗
𝑤)]𝑤∈𝑊 , the right-hand-side (RHS) of which is equivalent to Definition 

(5.1.1). In conjunction with minimizing the objective function, ∆𝑖𝑗,𝑥
𝑎 + ∆𝑖𝑗,𝑦

𝑎  will be the 

deviation for adjacency.  

Now, consider department pair {𝑖, 𝑗} ∈ 𝐴 that overlap in direction 𝑤 ∈ 𝑊. WLOG, 

assume 𝑤 = 𝑥, and hence, we have 𝑧𝑖𝑗
𝑥 + 𝑧𝑗𝑖

𝑥 = 0 and 𝑧𝑖𝑗
𝑦

+ 𝑧𝑗𝑖
𝑦

= 1. Since these 
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departments cannot overlap in 𝑦-direction, the direction-dependent deviation in 𝑦 as 

defined in Definition (5.1.2.b) is 𝑑𝑖𝑗 − (𝑙𝑖
𝑦

+ 𝑙𝑗
𝑦

). From (5.3) and 𝑧𝑖𝑗
𝑥 + 𝑧𝑗𝑖

𝑥 = 0, constraint 

(5.10) is given by ∆𝑖𝑗,𝑦
𝑎 ≥ 𝑑𝑖𝑗 − (𝑙𝑖

𝑦
+ 𝑙𝑗

𝑦
). Next, consider direction-dependent deviation in 

𝑥. Since two departments overlap in 𝑥, the overlap length can be expressed as 

min{𝑐𝑖
𝑥 + 𝑙𝑖

𝑥, 𝑐𝑗
𝑥 + 𝑙𝑗

𝑥} − max{𝑐𝑖
𝑥 − 𝑙𝑖

𝑥, 𝑐𝑗
𝑥 − 𝑙𝑗

𝑥} > 0. There are four cases to consider: 

Case (1) 𝑐𝑖
𝑥 + 𝑙𝑖

𝑥 <  𝑐𝑗
𝑥 + 𝑙𝑗

𝑥 and 𝑐𝑖
𝑥 − 𝑙𝑖

𝑥 <  𝑐𝑗
𝑥 − 𝑙𝑗

𝑥, Case (2) 𝑐𝑖
𝑥 + 𝑙𝑖

𝑥 <  𝑐𝑗
𝑥 + 𝑙𝑗

𝑥 and 

𝑐𝑖
𝑥 − 𝑙𝑖

𝑥 ≥  𝑐𝑗
𝑥 − 𝑙𝑗

𝑥, Case (3) 𝑐𝑖
𝑥 + 𝑙𝑖

𝑥 ≥  𝑐𝑗
𝑥 + 𝑙𝑗

𝑥 and 𝑐𝑖
𝑥 − 𝑙𝑖

𝑥 <  𝑐𝑗
𝑥 − 𝑙𝑗

𝑥, and Case (4) 

𝑐𝑖
𝑥 + 𝑙𝑖

𝑥 ≥  𝑐𝑗
𝑥 + 𝑙𝑗

𝑥 and 𝑐𝑖
𝑥 − 𝑙𝑖

𝑥 ≥  𝑐𝑗
𝑥 − 𝑙𝑗

𝑥.  

In Case (1), the overlap length is given by 𝑐𝑖 + 𝑙𝑖
𝑥 − ( 𝑐𝑗 − 𝑙𝑗

𝑥). Furthermore, adding two 

inequalities results in 𝑐𝑗 − 𝑐𝑖 > 0, and hence, we have 𝑑𝑖𝑗
𝑥 = |𝑐𝑗 − 𝑐𝑖| = 𝑐𝑗 − 𝑐𝑖. Then, the 

overlap length can be written as 𝑙𝑖
𝑥 + 𝑙𝑗

𝑥 − 𝑑𝑖𝑗
𝑥 . From (10), (3) and 𝑧𝑖𝑗

𝑥 + 𝑧𝑗𝑖
𝑥 = 0, we have 

∆𝑖𝑗,𝑥
𝑎 ≥ 𝑟𝑖𝑗(𝑧𝑖𝑗

𝑦
+ 𝑧𝑗𝑖

𝑦
) − [(𝑙𝑖

𝑥 + 𝑙𝑗
𝑥) − 𝑑𝑖𝑗

𝑥 ] = 𝑟𝑖𝑗 − [(𝑙𝑖
𝑥 + 𝑙𝑗

𝑥) − 𝑑𝑖𝑗
𝑥 ], the RHS of which is 

the direction-dependent deviation in 𝑥 as defined in Definition (5.1.2.a). In Case (2), the 

overlap length is given by 𝑐𝑖 + 𝑙𝑖
𝑥 − ( 𝑐𝑖 − 𝑙𝑖

𝑥) = 2𝑙𝑖
𝑥. Note that, since 𝑙𝑖

𝑥 ≥ 𝑙𝑏𝑖
𝑥, we have 

𝑟𝑖𝑗 ≤ 2 min{𝑙𝑏𝑖
𝑤, 𝑙𝑏𝑗

𝑤} ≤ 2𝑙𝑖
𝑥. From Definition (5.1.2.a), the direction-dependent 

deviation in 𝑥-direction is zero since 𝑟𝑖𝑗 − 2𝑙𝑖
𝑥 ≤ 0. Since ∆𝑖𝑗,𝑥

𝑎  is a nonnegative variable, 

it is sufficient to show the RHS of (5.10) is nonpositive. Adding two inequalities after 

matching the direction of inequalities, we have 𝑐𝑖
𝑥 + 𝑐𝑗

𝑥 + 𝑙𝑖
𝑥 − 𝑙𝑗

𝑥 < 𝑐𝑗
𝑥 + 𝑐𝑖

𝑥 + 𝑙𝑗
𝑥 − 𝑙𝑖

𝑥, 

which can be simplified to 𝑙𝑖
𝑥 < 𝑙𝑗

𝑥. Using this inequality and 𝑑𝑖𝑗
𝑥 ≥ 0, the RHS of (5.10) 

becomes 𝑟𝑖𝑗 − [(𝑙𝑖
𝑥 + 𝑙𝑗

𝑥) − 𝑑𝑖𝑗
𝑥 ] = 𝑟𝑖𝑗 − (𝑙𝑖

𝑥 + 𝑙𝑗
𝑥) + 𝑑𝑖𝑗

𝑥 < 𝑟𝑖𝑗 − 2𝑙𝑖
𝑥 ≤ 0.  

Case (3) is symmetric to Case (2) and can be proved using the same argument. Similarly, 

Case (4) is symmetric to Case (1) and the same proof as for Case (1) can be applied. 
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Adding the two direction-dependent deviations, (∆𝑖𝑗,𝑥
𝑎 + ∆𝑖𝑗,𝑦

𝑎 ) results in the deviation for 

ajoint specification as defined in Definition 5.1 when 𝑤 = 𝑥. This completes the proof. ∎ 

5.3.1 Representing proximity/separation specifications using Chebyshev distance  

 Recall that (5.12) and (5.17) address the proximity and separation specifications 

using the 𝑙1 norm distance metric, respectively, thus resulting in an octagon shaped 

region for satisfying either of these requirements. For the situation where a rectangular 

shaped region is desired by the layout planner, the Chebyshev (or 𝑙∞ norm) distance 

metric can be applied by modifying the optimization model that was presented earlier. 

This is accomplished by decomposing the proximity and separation specification 

deviational variables into 𝑥- and 𝑦-components (in a similar fashion to the adjacency 

specification deviational decision variables). Let  ∆𝑖𝑗,𝑤
𝑝 ≥ 0 (𝑖, 𝑗 ∈ 𝑃, 𝑖 < 𝑗) and ∆𝑖𝑗,𝑤

𝑠  ≥ 0 

(𝑖, 𝑗 ∈ 𝑆, 𝑖 < 𝑗) represent the total distance in which the proximity and separation 

requirements between departments 𝑖 and 𝑗 are not satisfied along direction 𝑤 ∈ 𝑊, 

respectively. Using these decision variables, (5.12) and (5.17) can be replaced with the 

following constraints: 

𝐷𝑖𝑗
𝑤 ≤ 𝑝𝑖𝑗 + ∆𝑖𝑗,𝑤

𝑝
 ∀𝑖, 𝑗 ∈ 𝑃, 𝑖 < 𝑗, 𝑤 ∈ 𝑊 

 

(5.26) 

𝐷𝑖𝑗
𝑤 ≥ 𝑞𝑖𝑗(𝑧𝑖𝑗

𝑤 + 𝑧𝑗𝑖
𝑤) − ∆𝑖𝑗,𝑤

𝑠  ∀𝑖, 𝑗 ∈ 𝑆, 𝑖 < 𝑗, 𝑤 ∈ 𝑊. (5.27) 

 

 Constraint (5.26) requires departments 𝑖 and 𝑗 to have a boundary-to-boundary 

distance less than or equal to 𝑞𝑖𝑗 for satisfying the proximity specification along the 𝑥- 

and 𝑦-directions to prevent ∆𝑖𝑗,𝑤
𝑝

 from being positive in value, whereas (5.27) requires 𝑖 

and 𝑗 to be separated by at least 𝑠𝑖𝑗 units along the 𝑥- or 𝑦-direction to avoid ∆𝑖𝑗,𝑤
𝑠  being 

assigned a positive value (reference Figures 5.2 (b) and 5.3 (b) for an illustrative 

representation of (5.26) and (5.27), respectively). In conjunction with replacing (5.12) 
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and (5.17) with (5.26)-(5.27), respectively, the weighted sum of deviation variables 

expressed in (5.1) can be modified as follows:  

∑ ∑ ∑ 𝑓𝑖𝑗
𝑢 ∑ ∆𝑖𝑗,𝑤

𝑢

 

𝑤∈𝑊

 

𝑗 > 𝑖
(𝑖,𝑗)∈ 𝑢

 

𝑖

 

𝑢∈{𝑎,𝑝,𝑠}

 
(5.28) 

Note that (5.1) is almost identical to (5.28) with the exception being that the proximity 

and separation deviational variables are expressed as 𝑥- and 𝑦-components in the latter. 

Updating the base model in consideration of the Chebyshev distance metric yields the 

following optimization model: 

Minimize (5.28)   

subject to 

(5.2)-(5.11), (5.13)-(5.16) (5.18),  

(5.21)-(5.24), (5.26)-(5.27) 

  

 ∆𝑖𝑗,𝑤
𝑢 ≥ 0 

∀𝑢 ∈ {𝑃, 𝑆}, 𝑖, 𝑗 ∈ 𝑢, 

𝑤 ∈ 𝑊. 

(5.29) 

 Depending on the situation, it might be desired by the layout planner to apply 

multiple distance metrics for a given problem instance, in which the metric for each pair 

of departments is selected a priori. This can easily be accommodated in the formulation 

by assigning department pairs to two sets, denoted by 𝐿1 and 𝐿∞, such that the 𝑙1 and 

Chebyshev distance metrics are applied, respectively, to the elements that they contain. 

Xie et al. (2018) propose a similar approach in the context of manufacturing systems. 

5.3.2 Valid inequalities 

 A phenomenon that often appears in combinatorial optimization problems is the 

problem symmetry. The symmetry typically results in longer solution times during the 

solution process since alternative solutions that yield the same objective function value 

can be unnecessarily explored (Margot, 2010). One approach for mitigating these effects 

is to include additional constraints, formally known as valid inequalities, into the 
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optimization model. In general, an inequality is said to be valid if it is satisfied by all 

other possible solutions that belong to the feasible region (Cornu´ejols, 2008). The 

benefit of implementing valid inequalities into a mathematical model allows for the 

feasible region to shrink in size, or tighten, while ensuring that the original problems 

constraints are still enforced, thus resulting in potentially reduced computational times. In 

an effort to reduce the computational burden, three valid inequality constraints that can be 

applied are introduced. 

𝑧𝑖𝑗
𝑤 ≤ 𝜎𝑖𝑗

𝑤 ∀𝑖, 𝑗 ∈ 𝐼, 𝑖 < 𝑗, 𝑤 ∈ 𝑊 (5.30) 

𝑧𝑗𝑖
𝑤 + 𝜎𝑖𝑗

𝑤 ≤ 1  ∀𝑖, 𝑗 ∈ 𝐼, 𝑖 < 𝑗, 𝑤 ∈ 𝑊 (5.31) 

𝑜𝑖𝑗
𝑤 ≤ 𝑧𝑖𝑗

𝑤′ + 𝑧𝑗𝑖
𝑤′ ∀𝑖, 𝑗 ∈ 𝑃 ∪ 𝑆, 𝑖 < 𝑗, 𝑤 ∈ 𝑊, 𝑤′ ∈ 𝑊 \ {𝑤} (5.32) 

 

 (5.30) and (5.31) eliminate the symmetry with respect to the department 

precedence binary decision variables, namely 𝑧𝑖𝑗
𝑤 and 𝜎𝑖𝑗

𝑤. (5.32) constrains the value of 

𝑜𝑖𝑗
𝑤 with respect to 𝑧𝑖𝑗

𝑤′
 and 𝑧𝑗𝑖

𝑤′
, where 𝑤′ = 𝑊 \ {𝑤}. It is only possible for departments 

𝑖 and 𝑗 to be overlapping along direction 𝑤 if either department precedes another along 

direction 𝑤′. The motivation behind this expression is displayed in Figure 5.4. 

 

 
(a) 

 

 

 

 
(b) 
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Figure 5.4: Graphical depiction of SBCs 

Observe in Figure 5.4 (a) that department 𝑖 precedes department 𝑗 along the 𝑦-axis, thus 

implying that 𝑧𝑖𝑗
𝑦

= 1. In addition, it can be noticed that the bottom-left corner of 

department 𝑗 is overlapping department 𝑖 along the 𝑥-axis. As a result of this second 

observation, the model will force 𝑜𝑖𝑗
𝑥 = 1 because of (5.12)-(5.13) in the proposed model. 

Since both conditions occurring in conjunction with one another result in 𝑜𝑖𝑗
𝑥 = 1, it is 

then deemed that (5.33) is valid. Figure 5.4 (b) represents the situation where 𝑧𝑖𝑗
𝑥 = 𝑜𝑖𝑗

𝑦
=

1. The same logic with respect to Figure 5.4 (a) can be applied for this case. 

5.4 Phase 2: Aisle Network Generation  

 In this section, an aisle generation model is proposed for transforming the block 

layout into a more-detailed representation of the facility. This second-phase model 

determines the optimal configuration of the aisle network for improving the navigability 

of occupants. What makes this model distinct from what is currently in the literature is 

that the facility entrance and exits are represented as decision variables, and their 

configuration along the facility are optimized with respect to requirements set forth by 

International Building Code (2021). In addition, the doorway configuration to each 

department is optimized for reducing the travel distance to the entrance and emergency 

exits (or primary accessway and secondary accessways, respectively) in the event of an 

emergency. Following the formulation of the base aisle generation model, additional 

functional specifications are considered for allowing additional criteria to be addressed 

during the optimization. 

 Given a layout design, the boundary of each department is in a rectangular shape 

with four sides. A side of a department may partially or entirely overlap a side of another 
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department, or does not overlap at all. For example, in Figure 5.5 (a), the lower side of 

department 1 partially overlaps the upper side of department 2. It also means the upper 

side of department 2 entirely overlaps the lower side of department 1. Furthermore, the 

left, upper and right sides of department 1 do not overlap sides of any other department. 

Let us define an aisle segment as the smallest overlapping section of a side. If the side is 

not overlapping, the entire side will be the aisle segment. Then, an aisle structure of a 

facility layout is configured by selecting a subset of aisle segments. Figure 5.5 (b) 

displays 10 potential aisle segments (colored in red) that can be used for navigating the 

facility. For the sake of simplicity, it is assumed that each department has one doorway 

for ingress and egress, and the doorway can be located along one of the department 

corners.  

 To develop a solution strategy, the layout is first represented as a directed planar 

graph 𝐺0(𝑉0, 𝐸0), where 𝑉0 consists of two sets of nodes, 𝑉𝐷 and  𝑉𝐶, that represent the 

center points of departments and the corner points of departments, respectively. Nodes in 

𝑉𝐷 are the origins and destinations of flows on the graph, and nodes in 𝑉𝐶 represent 

potential doorways of departments. Alexander et al. (1977) claim that placing the 

doorway away from the corners negatively impacts the occupant flow within in, as well 

its respective space utilization. 𝐸0 consists of edges that are aligned with aisle segments, 

plus those joining the node representing a department and its potential doorways. 

Associated with each edge is the length that corresponds to the actual length of the 

portion of that aisle segment. The length of the edges joining 𝑉𝐷 and 𝑉𝐶 (i.e., the distance 

from a department to its doorway) is assumed to be zero. Figure 5.6 displays the resulting 

graph for the layout in Figure 5.5 (a). 
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(a) 

layout for three department case 

(b) 

corresponding graph 𝐺0 

 

Figure 5.5: Potential aisle segments using department boundaries 

 

 

Figure 5.6: Illustration of transformation to a graph 

This representation of 𝐺0 is similar to what Lee et al. (2009) proposed for minimizing the 

material flow cost when a block layout of the facility is given. The corner points of 

departments are labeled as candidate locations for the doorways in their research. 
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However, they also allow the doorways to be located at the intersection points 

corresponding to departments that are touching because it is proven that these locations 

are optimal in this problem setting (Kiran and Tansel, 1989; Tanchoco and Sinreich, 

1992; Kim and Kim; 1999). However, they did not address the configuration of 

accessways for the facility, which is a crucial component during the pre-design phase of 

the facility because of the relevant building codes that must be satisfied (International 

Building Code, 2021). It is worth mentioning that this representation of 𝐺0 is smaller in 

size compared to the approaches from Peng et al. (2016) and Li and Hua (2019), where it 

is necessary to transform the entire facility blueprint into a mesh consisting of unit-sized 

cells that overlap the departments. 

 One requirement enforces the accessways to be separated by at least one-half 

(without sprinkler system installed) or one-third (with sprinkler system installed) of the 

length of the maximum overall diagonal dimension of the facility (denoted by 𝐿). When 

there are three or more accessways, then it is required for at least two of them to be 

separated by the minimum distance threshold, and all other pairs of accessways must be 

separated by a reasonable distance. Additional requirements address other functional 

specifications such as the maximum allowable travel distance from the departments to the 

exit accessways, the number of required exits based on occupancy, etc. Gao et al. (2020) 

consider an evacuation problem where the configuration of department doorways and 

facility accessways are optimized for improving the facility evacuation protocol. The 

difference between their work and this research is that the facility layout and its 

corresponding aisle structure are known a priori in the former, whereas only the block 

layout of the facility is known in the latter. 
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 Hence, the objective function is modified not only to accommodate the doorway 

configuration of each department, but also to address the configuration of the primary and 

secondary accessways when designing the aisle network. The former serves as a primary 

entrance/exit when entering/leaving the facility under normal conditions, whereas the 

latter are strictly used for evacuating the facility during an emergency event (also known 

as an exit accessway). Note that the primary accessway(s) can also be classified as an exit 

accessway during an emergency event since occupants are most familiar with its location 

and might have a preference to evacuate from that point. 

 To effectively handle primary and secondary accessways in the proposed model, 

𝐺0(𝑉0, 𝐸0) is transformed into 𝐺(𝑉, 𝐸) as follows. Let 𝐴𝑃 and 𝐴𝑆 denote the index sets of 

primary and secondary accessways, respectively. Also, let 𝐵 denote the set of nodes that 

are along the boundary of the facility (e.g., nodes 4, 5, 6, 8, 9, 10, and 11 in Figure 5.6). 

From this, each element from 𝐴′ = 𝐴𝑃 ∪ 𝐴𝑆 is inserted into 𝐺 (i.e., 𝑉 = 𝑉0⋃𝐴′), and an 

edge is drawn from elements in 𝐵 to elements in 𝐴′. Hence, newly added edges constitute 

the cut-set of a cut (𝑉0, 𝐴′). These newly introduced nodes in 𝐴′ will serve as sink nodes 

when finding a path from each department to the accessways. The rationale behind this 

expansion of 𝐺0 to 𝐺 is to map the accessways to a node along the facility boundary, 

where each boundary node can accommodate at most one accessway. Figure 5.7 displays 

a graphical representation of this transformation to 𝐺, where 𝐴′ = 𝐴𝑃 ∪ 𝐴𝑆 (circled in 

green) and the green arrows are the edges that connect nodes from 𝐵 to 𝐴′. Although only 

one green arrow from each node in 𝐵 to the set 𝐴′ is displayed in Figure 5.7 to avoid 

cluttered visualization, assume that all elements in 𝐴′ have an incoming edge from all 

elements in 𝐵. 
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Figure 5.7: Illustration when adding accessway nodes to the facility graph representation 

The primary concern in the second phase is the travel distance between each 

department to (both primary and secondary) accessways, which needs to be kept minimal. 

Furthermore, note that, when an aisle is included in the final layout design, this in turn 

reduces the amount of available space that can be allocated towards the departments. This 

can potentially impact their respective functionalities since less space would be made 

available for them, and hence, it is desired to have minimally spanned aisles. From this 

observation, the objective of the second phase problem is to carefully select edges in 𝐸 to 

generate aisle segments for minimizing the travel distance between departments and the 

accessways, while simultaneously minimizing the total length of the aisle network, thus 

resulting in a multi-objective optimization problem as presented below. 
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Let an ordered pair (𝑚, 𝑛) denote the directed edge from node 𝑚 to node 𝑛. 

Furthermore, let 𝐸𝑎𝑑𝑗 denote the set of undirected edges that lie along the boundary 

between department pairs that are desired to be adjacent as in Phase 1. The following 

notation of the problem parameters is used to present the model: 

𝐷(𝑎,𝑏):  Euclidean distance between node 𝑎 ∈ 𝐵 and 𝑏 ∈ 𝐵 

 𝑑(𝑚,𝑛):  length of edge (𝑚, 𝑛) ∈ 𝐸 

 𝑤1/𝑤2/𝑤3:  objective function weight associated with minimizing the distance 

 between departments and the primary accessway / distance between 

 departments and the secondary accessway(s)/total length of the aisle network.  

 𝛼𝑖:  threshold travel distance from the doorway of department 𝑖 to any accessway. 

 𝛽:  minimum separation distance that must be satisfied by at least one pair of 

 accessways as specified by the International Building Code (2021). 

 𝛾:  reasonable separation distance that must be satisfied between the remaining 

 accessways. 

 𝑀 ≫ 1:  a large constant. 

Let 𝐹𝑆(𝑖) = {𝑏 ∈ 𝑉: (𝑖, 𝑏) ∈ 𝐸} and 𝑅𝑆(𝑖) = {𝑎 ∈ 𝑉: (𝑎, 𝑖) ∈ 𝐸} represent the forward- 

and backward-star of node 𝑖, respectively. The following decision variables are then used 

for the optimization model: 

𝑓𝑖𝑘
(𝑚,𝑛):  network flow from department 𝑖 ∈ 𝑉𝐷 and to accessway 𝑘 ∈ 𝐴′ through 

edge (𝑚, 𝑛). 

𝑥𝑖
𝑏:  variable equal to 1 if the doorway of department 𝑖 ∈ 𝑉𝐷 is placed at node 

𝑏 ∈ 𝐹𝑆(𝑖). Otherwise, 0. 

𝑦𝑘
𝑏:   binary variable equal to 1 if accessway 𝑘 ∈ 𝐴′ is placed at node 𝑏 ∈ 𝐵. 

Otherwise, 0. 

𝑧(𝑚,𝑛):   binary variable equal to 1  if edge (𝑚, 𝑛) ∈ 𝐸 or (𝑚, 𝑛) ∈ 𝐸 is used as an 

aisle in the layout (𝑚 < 𝑛). Otherwise, 0. 
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𝑞(𝑘,𝑙):   binary variable equal to 1 if accessways 𝑘 ∈ 𝐴′ and 𝑙 ∈ 𝐴′ are separated by 

at least 𝛽 units. Otherwise, 0, implying they are separated by at least 𝛾 units of 

distance (𝑘 < 𝑙). 

 

Using this notation, the base MILP model can be formulated as follows: 

Minimize 

 𝑤1 ∑ ∑ ∑ 𝑑(𝑚,𝑛)𝑓𝑖𝑘
(𝑚,𝑛)

(𝑚,𝑛)∈𝐸𝑘∈𝐴𝑃𝑖∈𝑉𝐷

+ 𝑤2 ∑ ∑ ∑ 𝑑(𝑚,𝑛)𝑓𝑖𝑘
(𝑚,𝑛)

(𝑚,𝑛)∈𝐸

+ 𝑤3 ∑ 𝑑(𝑚,𝑛)𝑧(𝑚,𝑛)

(𝑚,𝑛)∈𝐸
𝑚<𝑛

𝑘∈𝐴𝑆𝑖∈𝑉𝐷

 

(5.33) 

subject to ∑ 𝑥𝑖
𝑏 = 1

𝑏∈𝐹𝑆(𝑖)

 ∀𝑖 ∈ 𝑉𝐷 
(5.34) 

 ∑ 𝑦𝑘
𝑏 = 1

𝑏∈𝐵

 ∀𝑘 ∈ 𝐴′ (5.35) 

 ∑ 𝑦𝑘
𝑏

𝑘∈𝐴𝑃∪𝐴𝑆

≤ 1 ∀𝑏 ∈ 𝐵 (5.36) 

 𝑓𝑖𝑘
(𝑖,𝑏)

= 𝑥𝑖
𝑏 ∀𝑖 ∈ 𝑉𝐷, 𝑘 ∈ 𝐴′, 

 𝑏 ∈ 𝐹𝑆(𝑖) 

(5.37) 

 𝑓𝑖𝑘
(𝑏,𝑘)

= 𝑦𝑘
𝑏 ∀𝑖 ∈ 𝑉𝐷, 𝑘 ∈ 𝐴′, 

 𝑏 ∈ 𝐵 

(5.38) 

 ∑ 𝑓𝑖𝑘
(𝑚,𝑛)

𝑚∈𝑅𝑆(𝑛)

= ∑ 𝑓𝑖𝑘
(𝑛,𝑜)

𝑜∈𝐹𝑆(𝑛)

 ∀𝑖 ∈ 𝑉𝐷, 𝑘 ∈ 𝐴′, 

𝑣 ∈ 𝑉 \ (𝑉𝐷 ∪ 𝐴′) 

(5.39) 

 ∑ ∑ (𝑓𝑖𝑘
(𝑚,𝑛)

+ 𝑓𝑖𝑘
(𝑛,𝑚)

) ≤ 𝑀𝑧(𝑚,𝑛)

𝑘∈𝐴𝑃∪𝐴𝑆𝑖∈𝑉𝐷

 ∀(𝑚, 𝑛) ∈ 𝐸, 𝑚 < 𝑛 
(5.40) 

 ∑ 𝑑(𝑚,𝑛)𝑓𝑖𝑘
(𝑚,𝑛)

(𝑚,𝑛)∈𝐸

≤ 𝛼𝑖 
∀𝑖 ∈ 𝑉𝐷, 𝑘 ∈ 𝐴′ 

(5.41) 

 ∑ ∑ 𝑞(𝑘,𝑙)

𝑙∈𝐴𝑃∪𝐴𝑆
𝑘<𝑙 

𝑘∈𝐴𝑃∪𝐴𝑆

= 1 
 (5.42) 
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 ∑ ∑ 𝐷(𝑏,𝑐)𝑦𝑘
𝑏

𝑐∈𝐵
𝑏≠𝑐

(𝑏,𝑐):𝐷(𝑏,𝑐)≥𝛾

𝑦𝑙
𝑐 ≥ 𝛽𝑞(𝑘,𝑙) + 𝛾(1 − 𝑞(𝑘,𝑙))

𝑏∈𝐵

 ∀𝑘, 𝑙 ∈ 𝐴′, 𝑘 < 𝑙 (5.43) 

 ∑ 𝑧(𝑚,𝑛)

(𝑚,𝑛)∈𝐸𝑎𝑑𝑗

= 0 
 

(5.44) 

 𝑓𝑖𝑘
(𝑚,𝑛)

≥ 0 ∀𝑖 ∈ 𝑉𝐷, 𝑘 ∈ 𝐴′, 

(𝑚, 𝑛) ∈ 𝐸 

(5.45) 

 𝑥𝑖
𝑏 ≥ 0 ∀𝑖 ∈ 𝑉𝐷, 𝑏 ∈ 𝐹𝑆(𝑖) (5.46) 

 𝑦𝑘
𝑏 ∈ {0,1} ∀ 𝑘 ∈ 𝐴′, 𝑏 ∈ 𝐵 (5.47) 

 𝑞(𝑘,𝑙) ∈ {0,1} 𝑘, 𝑙 ∈ 𝐴′, 𝑘 ≠ 𝑙 (5.48) 

 𝑧(𝑚,𝑛) ∈ {0,1} (𝑚, 𝑛) ∈ 𝐸, 𝑚 < 𝑛. (5.49) 

Objective function (5.33) minimizes the distance between each department and all 

accessways, and the total length of the aisle network. The weights can be adjusted based 

on design preferences, but for the numerical study in this research, it is assumed that 

𝑤1 ≫ 𝑤2, i.e., assigning a higher priority to the distance that occupants regularly travel 

through the primary accessway under normal circumstances, whereas the secondary 

accessways are only used during an emergency event. (5.36) assigns the doorways of 

each department to one of its corner points. (5.35) assigns the primary/secondary 

accessway to one of the boundary nodes in 𝐵. (5.36) prevents more than one accessway 

from being assigned to a boundary node. (5.37)-(5.38) represent the origin and 

destination flow balance constraints for department 𝑖 and accessway 𝑘, respectively. 

(5.39) represents the intermediary flow balance constraint. 

 (5.40) forces 𝑧(𝑚,𝑛) = 1 if edge (𝑚, 𝑛) is navigated along for any path between 

the departments and accessways. This constraint ties 𝑧(𝑚,𝑛) to the objective function such 

that every occurrence of 𝑧(𝑚,𝑛) = 1 increases the objective function value by its 



166 

 

associated length, namely 𝑑(𝑚,𝑛). (5.41) requires the travel distance between departments 

and accessways to be no more than 𝛼𝑖 units. Note that the threshold travel distance to the 

accessways is 𝛼 units (constant). However, 𝛼 needs to be adjusted with respect to the 

hypotenuse of each department (also constant) to account for the worst-case scenario of 

occupants traveling to the department doorway from the opposite side and corner of the 

room. This gives us 𝛼𝑖 = 𝛼 − ℎ(𝑖), where ℎ(∙) is a function for calculating the 

hypotenuse of department 𝑖. 

 (5.42)-(5.43) jointly determine which pair of accessways should be separated by 

the minimum threshold distance as specified by the International Building Code. This 

constraint is replicated for all pairs of accessways, namely ∀𝑘, 𝑙 ∈ 𝐴′, 𝑘 < 𝑙, where the 

value that is assigned to 𝑞(𝑘,𝑙) dictates how far apart the accessways are with respect to 

their respective Euclidean distance. The product of all pairs of 𝑦𝑘
𝑏 and 𝑦𝑙

𝑐 is necessary on 

the left-hand side for guaranteeing that accessways 𝑘 and 𝑙 are separated by 𝛽 units if 

𝑞(𝑘,𝑙) = 1 (or 𝛾 units if 𝑞(𝑘,𝑙) = 0) when 𝑦𝑘
𝑏 = 𝑦𝑘

𝑐 = 1. (5.44) forces all edges in 𝐸𝑎𝑑𝑗 to 

not be converted to aisles so that direct doorways between two departments with the 

adjacency requirement can be built on those aisles. (5.45)-(5.49) are used for defining the 

decision variables in the model. 

5.4.1 Extensions to the base aisle generation model 

 As addressed by Peng et al. (2016) and Li and Hua (2019), there are a variety of 

functional specifications that can be incorporated into the aisle generation model for 

improving the navigability of occupants. Some of these specifications include minimizing 

the number of turning points to reduce the level of confusion of occupants during an 

emergency evacuation (zig-zag avoidance), removing all dead-ends that may occur along 
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any corridor in the aisle network (dead-end avoidance), and minimizing the travel 

distance between particular points of interest other than the sink nodes (point-to-point 

constraint). 

 The first two of these specifications fall under the context of wayfinding, where it 

is of interest to generate simpler paths to make it easier for occupants to navigate the 

facility. Arthur and Passini (1992) suggest that aisle networks with fewer zig-zags reduce 

the amount of stress and anxiety that occupants might have. Typically, dead ends are 

prohibited within the aisle network because it can make the evacuation time of occupants 

longer and put them at severe risk if they make an incorrect turn. Incorporating the point-

to-point constraint in the aisle generation model will allow for more efficient navigation 

between various departments in the facility, rather than strictly generating the aisle 

network in consideration of primary and secondary accessways. Recall from Section 5.3 

that 𝑃 contains department pairs that are desired to be within proximity in the layout 

design. From this, point-to-point constraints can be applied not only to minimize the 

boundary-to-boundary distance between proximity desired departments using the model 

from Section 5.3, but to also minimize the travel distance between these corresponding 

department pairs. In addition, department pairs with an unsatisfied adjacency requirement 

in the layout design can be included in the set of departments for point-to-point 

constraints to keep them in the vicinity. 

5.4.1.1 Zig-zag avoidance 

 For minimizing the number of zig-zag occurrences in the aisle network, it is 

necessary to find all pairs of horizontal-vertical segments in 𝐺 prior to the optimization. 

Note that a zig-zag is only formed when a flow occurs in the network that transitions 
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from a horizontal (or vertical) segment to a vertical (or horizontal) segment. These pairs 

of horizontal-vertical aisle segments can be stored in set Φ. Without loss of generality, 

suppose the horizontal and vertical segments are defined along edges (𝑙, 𝑚) and (𝑛, 𝑜), 

respectively. The direction of the flow along these two segments is irrelevant in this 

situation. From this, let 𝑢(𝑙,𝑚),(𝑛,𝑜) be a binary variable equal to 1 if both segments are 

used in the aisle network, namely 𝑧(𝑙,𝑚) = 𝑧(𝑛,𝑜) = 1. Introducing 𝑢(𝑙,𝑚),(𝑛,𝑜) and 

expressing it as a term in the objective function with positive weight 𝑤4 then allows for 

the number of zig-zag occurrences to be reduced when also enforcing the following 

constraint. 

𝑧(𝑙,𝑚) + 𝑧(𝑛,𝑜) ≤ 1 + 𝑢(𝑙,𝑚),(𝑛,𝑜)  ∀{(𝑙, 𝑚), (𝑛, 𝑜)} ∈ Φ. (5.50) 

    

Constraint (5.50) prevents 𝑧(𝑙,𝑚) and 𝑧(𝑛,𝑜) from both being equal to 1 simultaneously 

when 𝑢(𝑙,𝑚),(𝑛,𝑜) = 0.  On the other hand, when 𝑢(𝑙,𝑚),(𝑛,𝑜) = 1, no restriction is imposed 

on the sum of 𝑧(𝑙,𝑚) and 𝑧(𝑛,𝑜), at the consequence of introducing an undesired zig-zag 

junction in the aisle network. Although the decision variable indices are represented 

using different notation in (5.50), it is required for at least two of them to be equal based 

on the construction of 𝐺. For example, in Figure 5.6, observe the zig-zag formed at node 

7 from edges (7,8) and (7,10). This results in 𝑧(7,8) + 𝑧(7,10) ≤ 1 + 𝑢(7,10),(7,8) to be 

included as a constraint in the model (where 𝑙 = 𝑛). 

5.4.1.2 Dead-end avoidance 

 A series of inequality constraints can be introduced to guarantee there are no 

abrupt dead-ends within the aisle network. However, dead-end avoidance is only 

necessary when an aisle does not have an accessway at the end of it. Since the location of 
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the accessways are variable and can only be placed on the facility boundary, it is 

necessary to consider two-cases for dead-end avoidance. The first case addresses edges 

that are within the interior of the facility, where neither of the nodes along these edges are 

in 𝐵. The second case addresses the opposite situation, namely edges where at least one 

of the nodes are in 𝐵. The former is the most straightforward, whereas for the latter, 

dead-end avoidance constraints become redundant if and only a boundary node along the 

edge is used as an accessway for the facility, guaranteeing that occupants can safely exit 

when traveling along this aisle. To formulate the dead-end avoidance constraints, let 

𝑧(𝑚,𝑛)
′ , ∀(𝑚, 𝑛) ∈ 𝐸, be a binary variable equal to 1 if the flow along edge (𝑚, 𝑛) is from 

node 𝑚 to 𝑛. Otherwise, if 𝑧(𝑚,𝑛)
′  = 0 and 𝑧(𝑚,𝑛) = 1, this implies that 𝑧(𝑛,𝑚)

′  = 1, indicating 

that the flow along edge (𝑚, 𝑛) is from node 𝑛 to 𝑚. Using this newly defined variable, 

the dead-end avoidance constraints can now be expressed. 

𝑧(𝑚,𝑛)
′ + 𝑧(𝑛,𝑚)

′ = 𝑧(𝑚,𝑛) ∀(𝑚, 𝑛) ∈ 𝐸, 𝑚 < 𝑛 (5.51) 

𝑧(𝑚,𝑛)
′ ≤ ∑ 𝑧(𝑛,𝑜)

′

𝑜∈𝐹𝑆(𝑛)

 ∀(𝑚, 𝑛) ∈ 𝐸, 𝑛 ∉ 𝐵 (5.52) 

𝑧(𝑚,𝑛)
′ ≤ ∑ 𝑧(𝑜,𝑚)

′

𝑜∈𝑅𝑆(𝑛)

 ∀(𝑚, 𝑛) ∈ 𝐸, 𝑛 ∉ 𝐵 (5.53) 

𝑧(𝑚,𝑛)
′ ≤ ∑ 𝑧(𝑛,𝑜)

′

𝑜∈𝐹𝑆(𝑛)

+ ∑ 𝑦𝑘
𝑛

𝑘∈𝐴𝑃∪𝐴𝑆

 ∀(𝑚, 𝑛) ∈ 𝐸, 𝑛 ∈ 𝐵 (5.54) 

𝑧(𝑚,𝑛)
′ ≤ ∑ 𝑧(𝑜,𝑚)

′

𝑜∈𝑅𝑆(𝑛)

+ ∑ 𝑦𝑘
𝑚

𝑘∈𝐴𝑃∪𝐴𝑆

 ∀(𝑚, 𝑛) ∈ 𝐸, 𝑛 ∈ 𝐵. (5.55) 

   

Constraint (5.51) selects a direction for the flow along edge (𝑚, 𝑛). (5.52)-(5.53) 

guarantees a continuous flow within the aisle network for all edges that do not have a 

node along the facility boundary. (5.54)-(5.55) are similar to (5.52)-(5.53), with the 

exception that the sum of all 𝑦𝑘
𝑛 decision variables makes the dead-end avoidance 
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unnecessary when node 𝑛 is selected for accessway assignment. Note that when 

∑ 𝑦𝑘
𝑛

𝑘∈𝐴𝑃∪𝐴𝑆
= 0, (5.54)-(5.55) are reduced to (5.52)-(5.53). It is worth mentioning that 

𝑧(𝑚,𝑛)
′  is strictly used for avoiding dead-ends in the aisle network, and does not dictate the 

flow of occupants within the aisle network. For example, 𝑧(𝑛,𝑚)
′ = 1 does not imply that 

𝑓𝑖𝑘
(𝑚,𝑛)

= 0 and 𝑓𝑖𝑘
(𝑛,𝑚)

= 1. If unidirectional flow is desired along the aisle segments, 

then another set of constraints can be formulated to do so using 𝑧(𝑛,𝑚)
′ . 

5.4.1.3 Point-to-point constraints 

 Minimizing the travel distance between proximity desired department pairs can be 

incorporated into the aisle generation model by introducing a series of constraints similar 

to (5.37)-(5.40). In addition, department pairs with an unsatisfied adjacency requirement 

can be included in the set of departments for point-to-point constraints to be applied 

towards.  Let 𝐴𝑢𝑛𝑠 denote the set of department pairs with an unsatisfied adjacency 

requirement. These department pairs can be determined by referencing the ∆𝑖𝑗,𝑥
𝑎  and ∆𝑖𝑗,𝑦

𝑎  

decision variables from the model in Section 5.3, and checking to see if  ∆𝑖𝑗,𝑥
𝑎 + ∆𝑖𝑗,𝑦

𝑎 > 0. 

Also, let 𝑔(𝑚,𝑛)
𝑖𝑗

 be a continuous variable equal to 1 if (𝑚, 𝑛) is on the shortest path 

between department 𝑖 ∈ 𝑉𝐷 and department 𝑗 ∈ 𝑉𝐷 (𝑖 < 𝑗, 𝑖, 𝑗 ∈ 𝐴𝑢𝑛𝑠 ∪ 𝑃). From this 

definition, the following constraints can be used for minimizing the distance between 

proximity desired departments. 

𝑔𝑖𝑗
(𝑖,𝑏)

= 𝑥𝑖
𝑏 ∀𝑖, 𝑗 ∈ 𝑉𝐷 , 𝑖 < 𝑗, 𝑖, 𝑗 ∈ 𝐴𝑢𝑛𝑠 ∪ 𝑃, 

𝑏 ∈ 𝐹𝑆(𝑖) 

(5.56) 

𝑔𝑖𝑗
(𝑏,𝑗)

= 𝑥𝑗
𝑏 ∀𝑖, 𝑗 ∈ 𝑉𝐷 , 𝑖 < 𝑗, 𝑖, 𝑗 ∈ 𝐴𝑢𝑛𝑠 ∪ 𝑃, 𝑏 ∈ 𝐵 (5.57) 

∑ 𝑔𝑖𝑗
(𝑚,𝑛)

𝑚∈𝑅𝑆(𝑛)

= ∑ 𝑔𝑖𝑗
(𝑛,𝑜)

𝑜∈𝐹𝑆(𝑛)

 ∀𝑖, 𝑗 ∈ 𝑉𝐷 , 𝑖 < 𝑗, 𝑖, 𝑗 ∈ 𝐴𝑢𝑛𝑠 ∪ 𝑃, 

𝑣 ∈ 𝑉 \ (𝑉𝐷 ∪ 𝐴′) 

(5.58) 
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∑ ∑ (𝑔𝑖𝑗
(𝑚,𝑛)

+ 𝑔𝑖𝑗
(𝑛,𝑚)

) ≤ 𝑀𝑧(𝑚,𝑛)

𝑗∈𝑉𝐷
𝑗>𝑖

𝑖,𝑗∈𝐴𝑢𝑛𝑠∪𝑃

𝑖∈𝑉𝐷

 ∀(𝑚, 𝑛) ∈ 𝐸, 𝑚 < 𝑛. (5.59) 

5.4.2 Modified aisle generation model 

The final aisle generation model in consideration of all functional specifications takes on 

the following form. 

Minimize (35) + 𝑤4 ∑ 𝑢(𝑙,𝑚),(𝑚,𝑛)

(𝑙,𝑚),(𝑚,𝑛)∈Φ

+ 𝑤5 ∑ ∑ ∑ 𝑑(𝑚,𝑛)𝑔𝑖𝑗
(𝑚,𝑛)

(𝑚,𝑛)∈𝐸𝑗∈𝑉𝐷
𝑗>𝑖

𝑖,𝑗∈𝐴𝑢𝑛𝑠∪𝑃

𝑖∈𝑉𝐷

 

(5.60) 

subject to (36)-(58)   

 𝑔𝑖𝑗
(𝑚,𝑛)

≥ 0 ∀𝑖, 𝑗 ∈ 𝑉𝐷 , 𝑖 < 𝑗, 𝑖, 𝑗 ∈ 𝐴𝑢𝑛𝑠 ∪ 𝑃 (5.61) 

 𝑢(𝑙,𝑚),(𝑛,𝑜) ∈ {0,1} ∀(𝑙, 𝑚), (𝑛, 𝑜) ∈ Φ (5.62) 

 𝑧(𝑚,𝑛)
′ ∈ {0,1} ∀(𝑚, 𝑛) ∈ 𝐸. (5.63) 

Incorporating the zig-zag avoidance and point-to-point distances in the objective function 

makes the base aisle generation model more complex in the sense that an optimal solution 

needs to be found for a larger multi-objective problem with conflicting criteria. 

5.4.3 Consideration of facility resilience during pandemic events 

 The recent global pandemic had a negative impact on business operations across a 

wide span of industries. Not only were financial losses incurred and a large number of 

people lost their jobs because of the pandemic, but many people were also exposed to the 

virus and became infected as a result. According to the NC Department of Health and 

Human Services (NC DHHS), the manufacturing and meat and poultry processing sectors 

contributed to the majority of infections for facilities belonging to the Workplace 

category in North Carolina (NC DHHS, 2021). Examples of other facility types that 

contributed to many infections include K-12 schools, colleges/universities, and child-

care. 
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 It is likely that people were infected from these facility types since infection 

prevention was not addressed during the layout design process, thus placing occupants at 

a higher risk of infection when navigating the facility during a pandemic. As addressed in 

Chapter 4, social distancing is an essential design feature for reducing the infection 

spread in the context of modifying the layout design of an interior space. In addition, it 

might also be of interest to address the flow of occupants and adjust how people navigate 

the facility by imposing restricted walking paths to reduce the overall infection spread. 

One approach to accommodate this is to enforce unidirectional flow along the aisle 

network. Several studies have shown that enforcing unidirectional flow was effective in 

reducing the spread of infection between healthcare workers (Lenaghan and 

Schwedhelm, 2015; Zimring et al., 2018; Wong, 2019). The CDC also recommends 

unidirectional flow along walking paths as an administrative control for promoting social 

distancing (CDC, 2019). Thus, designing the facility with an aisle structure in mind that 

allows for unidirectional flow to quickly be enforced can be advantageous to keep 

occupants healthy and resume facility operations under pandemic conditions. 

Incorporating this functional specification during the pre-design phase will likely incur 

additional costs when generating the aisle network because it is necessary to guarantee 

that a path between all departments exists with unidirectional flow enforced, thus 

requiring one or more cycles to be formed in the network for guaranteeing feasibility. At 

the same time, this allows for facility operations to carry on at a reduced capacity during 

a pandemic event with safety measures enforced that are effective in reducing the spread 

of infection. 
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 The symmetry which exists for department-to-department navigation (as shown in 

(59)) no longer holds when enforcing unidirectional flow in the aisle network (in other 

words, the path from department 𝑖 to 𝑗 is not the same as the path from department 𝑗 to 𝑖). 

As a result, it is necessary to apply asymmetric department indices so that these distinct 

paths can be determined. Department pairs that have a proximity, separation, or an 

unsatisfied adjacency requirement are considered since adjacent departments already 

have a direct passageway between them, making it unnecessary to construct a path 

between them along the aisle network. Let ℎ𝑖𝑗
(𝑚,𝑛)

 be a continuous variable equal to 1 if 

the path from department 𝑖 to 𝑗 traverses from node 𝑚 to 𝑛, and 0 otherwise (𝑖, 𝑗 ∈

𝑉𝐷 , 𝑖 ≠ 𝑗, 𝑖, 𝑗 ∈ 𝐴𝑢𝑛𝑠 ∪ 𝑃 ∪ 𝑆, (𝑚, 𝑛) ∈ 𝐸). Constraints are shown below using binary 

variable 𝑧(𝑚,𝑛)
′  from Section 5.4.1.2 for determining the aisle direction.  

ℎ𝑖𝑗
(𝑖,𝑏)

= 𝑥𝑖
𝑏 ∀𝑖, 𝑗 ∈ 𝑉𝐷 , 𝑖 ≠ 𝑗, 𝑖, 𝑗 ∈ 𝐴𝑢𝑛𝑠 ∪ 𝑃 ∪ 𝑆, 

𝑏 ∈ 𝐹𝑆(𝑖) 

(5.64) 

ℎ𝑖𝑗
(𝑏,𝑗)

= 𝑥𝑗
𝑏 ∀𝑖, 𝑗 ∈ 𝑉𝐷 , 𝑖 ≠ 𝑗, 𝑖, 𝑗 ∈ 𝐴𝑢𝑛𝑠 ∪ 𝑃 ∪ 𝑆, 

 𝑏 ∈ 𝐵 

(5.65) 

∑ ℎ𝑖𝑗
(𝑚,𝑛)

𝑚∈𝑅𝑆(𝑛)

= ∑ ℎ𝑖𝑗
(𝑛,𝑜)

𝑜∈𝐹𝑆(𝑛)

 ∀𝑖, 𝑗 ∈ 𝑉𝐷 , 𝑖 ≠ 𝑗, 𝑖, 𝑗 ∈ 𝐴𝑢𝑛𝑠 ∪ 𝑃 ∪ 𝑆, 

𝑣 ∈ 𝑉 \ (𝑉𝐷 ∪ 𝐴′) 

(5.66) 

∑ ∑ ℎ𝑖𝑗
(𝑚,𝑛)

≤ 𝑀𝑧(𝑚,𝑛)
′

𝑗∈𝑉𝐷
𝑗≠𝑖

𝑖,𝑗∈𝑃∪𝑆

𝑖∈𝑉𝐷

 ∀(𝑚, 𝑛) ∈ 𝐸 (5.67) 

𝑦𝑘
𝑚 ≤ ∑ 𝑧(𝑚,𝑛)

′

𝑛∈𝐹𝑆(𝑚)

 ∀𝑘 ∈ 𝐴𝑃, 𝑚 ∈ 𝐵 (5.68) 

𝑦𝑘
𝑛 ≤ ∑ 𝑧(𝑛,𝑚)

′

𝑛∈𝑅𝑆(𝑚)

 ∀𝑘 ∈ 𝐴𝑆, 𝑚 ∈ 𝐵. (5.69) 

   

Constraint (5.64)-(5.66) are similar to (5.56)-(5.58) with the exception that asymmetric 

indices are applied for 𝑖 and 𝑗. (5.67) determines the aisle direction if there is at least one 
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path that navigates it from node 𝑚 to 𝑛. (5.68)-(5.69) control the aisle direction for 

primary and secondary accessways, respectively, where occupants enter the facility using 

primary accessways, and exit the facility using secondary accessways. The motivation 

behind this is to have dedicated entry/exit points into the facility, which is a practice that 

was commonly adapted during the pandemic (Tesla, 2020; Lear, 2020). Note that (5.51) 

is applied in conjunction with (5.64)-(5.69) in a similar fashion as the dead-end 

avoidance functional specification. It is worth mentioning that (5.51)-(5.55) and (5.64)-

(5.69) can be applied simultaneously if unidirectional flow is desired since it is 

guaranteed that no dead-ends will be present in the aisle network. Only the department 

pairs with a proximity or unsatisfied adjacency requirement are included in the objective 

function to reduce their respective travel lengths. From this, the extended aisle generation 

model with unidirectional flow requirements is as follows. 

Minimize (60) + 𝑤6 ∑ ∑ ∑ 𝑑(𝑚,𝑛)ℎ𝑖𝑗
(𝑚,𝑛)

(𝑚,𝑛)∈𝐸𝑗∈𝑉𝐷
𝑗≠𝑖

𝑖,𝑗∈𝐴𝑢𝑛𝑠∪𝑃
 

𝑖∈𝑉𝐷

 

(5.70) 

subject to (36)-(68)   

 ℎ𝑖𝑗
(𝑚,𝑛)

≥ 0 ∀𝑖, 𝑗 ∈ 𝑉𝐷 , 𝑖 ≠ 𝑗, 𝑖, 𝑗 ∈ 𝐴𝑢𝑛𝑠 ∪ 𝑃 ∪ 𝑆, (𝑚, 𝑛) ∈ 𝐸. (5.71) 

5.5 Computational Study 

 In this section, the proposed framework is tested using two case studies (one 

small-scale and one large-scale) to demonstrate how an optimal arrangement of 

departments and configuration of aisles can be generated. The small-scale and large-scale 

case studies consist of seven and 27 departments, respectively, both of which are 

associated with educational facilities. The intention of the small-scale case study is to 

showcase how the layout design is subject to change under different configurations of the 
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functional specifications when applying the two-phase method. In addition, it is also of 

interest to gather feedback from professional architects using output from the small-scale 

problem to gauge the practicality of the approach. 

 On the other hand, the large-scale case study considers a more realistic project 

that an architect might take on and how they can apply the proposed framework for 

generating alternative layout design options. It was observed during these experiments 

that enforcing an excessive number of adjacency requirements amongst homogeneously 

sized departments with similar purposes results in block layouts containing departmental 

clusters scattered across the facility, thus reducing the overall attractiveness of the design. 

In an effort to improve the quality of the solutions that are generated under these 

conditions, it is suggested to cluster the similarly sized departments together to transform 

them into a series of larger-sized departments (as a pre-processing technique), and then 

proceed with optimizing the block layout in consideration of the adjacency specifications 

using the modified input data (output of the first phase model). Not only does this reduce 

the impact of the phenomenon as mentioned before, but it also improves the overall 

computational tractability since the number of departments in the problem instance is 

reduced by clustering subsets of them together. More details regarding this are provided 

later in this section. In addition, a discussion on calibrating the objective weights and 

functional specifications for the second phase model is presented. 

 The result of the small-scale case study will be presented first, which is then 

followed by the outcome of the large-scale case study afterwards. The proposed 

framework is implemented using Python (3.7.3, 2018) and solved by a commercial 

optimization solver, Gurobi (8.1.1, 2018), which is run in a server equipped with four 
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processors of Intel Xeon CPU E7-8890 v3 (3.60 GHz) and an OS of Windows Server 

2012 R2. A 1-hour time limit is imposed in case an optimal solution could not be found 

in a reasonable amount of time. It is assumed that all departments have a sufficiently 

small occupancy rate in which only one doorway is required. The second phase model 

can easily be extended to accommodate two doorways for departments with large 

occupancy rates. However, the corresponding mathematical formulation is out of scope 

for this research. 

5.5.1 Small-scale case study 

 To demonstrate how the two-phase method can produce an optimal layout design 

alternative, a small-scale problem resembling a floor inside of an educational facility 

(76.5’ x 102’) was generated consisting of seven departments, namely four classrooms 

(1,634 sq. ft; 1,560 sq. ft.; 1,596 sq. ft.; 1,480 sq. ft.), one bathroom (455 sq. feet), one 

computer lab (560 sq. ft; referred to as CAT/Prep), and a study area (518 sq. ft.). An 

aspect ratio of 2.25 was applied for all departments in the small-scale problem. The 

adjacency specifications for this problem instance are presented in Table 5.1.  

Table 5.1:   

 Classroom Bathroom CAT/Prep Study Area 

Classroom - Separate Proximity - 

Bathroom - - Separate Separate 

CAT/Prep - - - - 

Study Area - - - - 

It is assumed that all adjacency specifications are of equal importance in this problem 

instance, so all corresponding values of 𝑓𝑖𝑗
𝑝
 and 𝑓𝑖𝑗

𝑠 are set equal to 1. In addition, 𝑝𝑖𝑗 and 

𝑞𝑖𝑗 are set equal to 10 ft. for defining the threshold distances in which the proximity and 

separation requirements are satisfied, respectively. The 𝑙1- and 𝑙∞-norm distance metrics 

are applied for producing block layouts (separately) and are shown below in Figure 5.8. 
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𝑙1-norm distance 

Obj. value: 19.931 

Solution time: 741.89 secs. 

(a) 

𝑙∞-norm distance 

Obj. value: 19.931 

Solution time: 242.12 secs. 

(b) 

Figure 5.8: Block layouts for small-scale problem 

 Notice that applying either distance metric for enforcing the proximity and 

separation requirements results in block layouts that are almost identical, with the 

exception being the location of the study area. Observe how the study area is in the center 

of the layout in Figure 5.8 (a), whereas it is located at the bottom-left corner in Figure 5.8 

(b), which is on the opposite side of where the bathroom is located at the top-right corner. 

The block layout in Figure 5.8 (a) can be retrieved in (b) by swapping the location of the 

study area and the classroom that is directly above it (a similar operation can be 

performed to retrieve the layout in Figure 5.8 (b) from (a)). An optimal solution was 

found for both cases when applying the 𝑙1- and 𝑙∞-norm (741.89 and 242.12 seconds, 

respectively). Note that the objective function values for both cases are positive valued, 

indicating that at least one of the adjacency specifications are violated in the layout. It can 

be observed that the separation of the study area and bathroom is more severe in Figure 
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5.8 (b) compared to 5.8 (a). In addition, the objective values are identical in both layouts, 

indicating that alternative layouts exist in which the adjacency specifications are satisfied. 

 Referring to the adjacency specifications in Table 5.1 and the block layouts in 

Figure 5.8, it appears that the proximity requirement between all classrooms and the 

CAT/Prep room are satisfied since they are placed directly beside each other. The 

separation requirements between the bathroom and CAT/Prep room (as well as the study 

area) also appear to be satisfied at a quick glance (these observations can be verified 

directly using the optimal values of the proximity and separation deviational variables). 

Separation between the bathroom and study area is also apparent in both layouts with 

respect to the distance metric that is applied during the optimization. The only 

requirement that remains unchecked is between the classrooms and the bathroom, and it 

can be verified visually that this requirement is unsatisfied for two of the classrooms that 

are located beside the bathroom in both Figure 5.8 (a) and (b). Since an optimal solution 

was found for this small-scale problem, the model output suggests that it is necessary to 

violate the separation requirement between two of the classrooms and the bathroom to 

maximize the most adjacency specifications in the layout (assuming all adjacency 

specifications have equal preference). 

 Aisle networks were then constructed using the second phase model following the 

generation of block layouts from the first phase. Since the layouts in Figure 5.8 are 

similar to one another, it was decided to apply the second phase model on the block 

layout generated in Figure 5.8 (a). For this exercise, one primary and one secondary 

accessway were considered for placement along the perimeter of the facility, and the 

minimum separation distance between them was manipulated to see how the aisle 



179 

 

network changes as a result of doing so. The maximum diagonal length of the facility 𝐿 is 

used for enforcing the minimum separation distance between accessways depending on 

whether the building has an automatic sprinkler system (𝐿/3) or not (𝐿/2). Zig-zag 

avoidance, dead-end avoidance, and point-to-point constraints were also incorporated for 

modifying the aisle network, resulting in 10 combinations of the functional specifications 

(shown in Table 5.2). Six distinct aisle networks were generated after executing these test 

cases (TCs), and are displayed in Figure 5.9. Note that the thick black lines indicate an 

activated aisle segment, the magenta lines from the department centers represent which 

corner is used for the doorway, the green circle along the boundary represents the 

primary accessway, and the red circles along the boundary represent the secondary 

accessway. The values assigned to 𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, 𝑤6 for this exercise are 10, 5, 20, 

10, 5, and 1, respectively. 

Table 5.2: TCs for the small-scale problem 

TC 
Distance 

between exits 

Zig-zag 

avoidance 

Dead-end 

avoidance 

Point-

to-point 

Unidirectional 

flow 

1 𝐿/2     

2 𝐿/3     

3 𝐿/2 X X   

4 𝐿/3 X X   

5 𝐿/2  X X  

6 𝐿/3  X X  

7 𝐿/2  X  X 

8 𝐿/3  X  X 

9 𝐿/2 X X X  

10 𝐿/3 X X X  
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Layout 1 (output from TC 1,5) 

Solution time: 0.28 secs. 

Aisle network length: 113.8 ft. 

(a) 

 
Layout 2 (output from TC 2,6) 

Solution time: 0.25 secs. 

Aisle network length: 113.8 ft. 

(b) 

 
Layout 3 (output from TC 3,4,9) 

Solution time: 0.43 secs. 

Aisle network length: 118.8 ft. 

(c) 

 
Layout 4 (output from TC 7) 

Solution time: 29.90 secs. 

Aisle network length: 223.9 ft. 

(d) 
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Layout 5 (output from TC 8) 

Solution time: 6.18 secs. 

Aisle network length: 193.3 ft. 

(e) 

 
Layout 6 (output from TC 10) 

Solution time: 0.59 secs. 

Aisle network length: 118.8 ft. 

(f) 

Figure 5.9: Aisle network configurations for the small-scale problem 

Although certain pairs of the generated aisle networks result in similar layout designs 

(i.e., layout 1 and 2; layout 4 and 5; layout 3 and 6), there are unique properties about 

them that make each one distinct. For example, it can be noticed that the separation 

distance between the primary and secondary accessway is greater in layout 1 compared to 

layout 2. An additional aisle is necessary for satisfying the accessway separation distance 

in layout 4, resulting in the total aisle network length to be greater than the aisle length of 

layout 5 when enforcing unidirectional flow along the aisles. Lastly, the configuration of 

the doorway for the classroom along the top-border of the facility is different in layouts 3 

and 6 since the latter addresses all functional specifications simultaneously (except for 

unidirectional flow along the aisles since it has a dominating effect compared to the 

others). As a result, the classroom doorway is moved away from the primary accessway 
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and towards one of the main circulatory aisles to reduce the travel distance between other 

departments. 

5.5.1.1 Interviews with professional architects 

 A series of interviews with professional architects were scheduled after generating 

the layout alternatives in Section 5.5.1 to assess the efficacy of the proposed framework. 

Feedback was given by the architects while reviewing the layout alternatives regarding 

the practicality of certain functional specifications, as well as to identify certain factors 

that were excluded from the model output that are deemed important during the design 

process. Each interview lasted approximately 45 minutes in length, consisting of an 

overview of the proposed framework for automated layout generation, a review of the 

layout alternatives, and a brief question and answer session. This section will discuss the 

main takeaways from these interviews. All architects were made aware during the 

interviews that the purpose of this research is not intended to produce a final solution for 

an architectural project, but instead serve as a baseline that suggests how the departments, 

aisles, and doorways should roughly be configured for optimizing the quantitative criteria 

that are in-scope for this research. 

 One of the most frequently addressed comments was concerning the incorporation 

of the human experience into the layout design. In other words, how should the layout be 

modified such that the human experience is optimized? Ergan et al. (2018) administered a 

survey to 18 architectural experts, and it was found that a combination of quantitative and 

qualitative criterions are most influential on the human experience, including exposure to 

nature/lighting, ease of access and openness of spaces, and a balance between isolation 

and socialization, most of which can be expressed (at least to some degree) 
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quantitatively. Other qualitative factors that are much more challenging to express 

quantitatively include texture/material, symmetry of architectural components, contours 

of objects, spatial alignment, and colors. As the future of design becomes more data-

driven, Ergan et al. suggest the use of body area sensor networks for measuring health 

data of occupants to observe how different stimuli might impact their well-being as a 

future research-extension. 

 From an industrial engineering perspective, it is of interest to optimize the facility 

with respect to operational efficiency measures that are typically expressed quantitatively 

(i.e., flow cost, production time, etc.). Contrary to this, it is important to capture the 

human experience for the sake of making people feel comfortable at the facility from an 

architectural perspective. However, the challenges that arise from this include (a) 

determining which features of the layout design have the largest effect on the human 

experience, (b) expressing these features quantitatively, and (c) generalizing the effects of 

these features since all architects have different perspectives that influence their decision 

making. After addressing these points to the architects, it was suggested that it is essential 

to rely on past experiences, best practices, and artistic creativity for reflecting the human 

experience into the layout rather than solely relying on mathematical equations. One 

qualitative criteria that was frequently mentioned during the interviews was the amount 

of daylight that is emitted into certain rooms and the corresponding views that are 

generated as a result. In addition, there are situations where a subset of departments need 

to be located along/away from the facility perimeter. Although such requirements can 

have a dramatic effect on the layout design itself, it is straightforward to include 

additional constraints that address these qualitative features by forcing certain 
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departments to be placed along the facility boundary. It was also mentioned that for 

educational/workplace-related facilities, it is preferred to have classrooms/offices aligned 

with one another and/or proportional in size for improving the navigability of occupants 

(similar to the flexible bay structure in FLP). 

 Following the human experience discussion, the next topic was focused on 

improving the facility resilience during a pandemic event. As shown from several studies, 

implementing an aisle network that can support a unidirectional flow of occupants has the 

potential to reduce the spread of infection, thus allowing for facility operations to 

continue at a reduced capacity. After presenting the generated layouts in Figure 5.9 (d) 

and ©, there were some mixed opinions that took a variety of factors into consideration, 

such as budgetary aspects of a construction project, utilization of the available space, and 

occupant behavior. There was a concern that configuring an aisle network to support the 

unidirectional flow of occupants would become costly because the aisle network length 

would be too long (as shown in Figure 5.9 where the layouts that enforce unidirectional 

flow are much longer than the others). In addition, the space utilization of the facility 

would be impacted since some of the square footage allocated to each department would 

need to be sacrificed for constructing the aisle network. Another interesting point that 

was made was regarding the behavior of occupants. Although the layout can be designed 

with the intention of forcing occupants to behave a certain way, there is still the chance 

that these policies will be ignored by individuals for the sake of improving their personal 

experience when navigating the facility (such as minimizing the total travel distance). 

The idea of unidirectional flow in the aisle network was deemed to make sense 

conceptually amongst the architects, but it is uncertain whether it is practical to do so 
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since there exists other strategies that are more cost effective (i.e., natural air ventilation, 

heating, ventilation, and air conditioning, etc.). 

5.5.2 Large-scale case study 

 The large-scale problem consists of 27 departments within a 93.5’ x 97.95’ 

educational facility, including four classrooms (1,003.79 sq. ft., 1,081.05 sq. ft., 534.4 sq. 

ft., 549.83 sq. ft.), one engineering lab (1,989.42 sq. ft.), one restroom (712.81 sq. ft.; 

surface area for men and women bathrooms are combined into a single department), one 

administrative room (886.59 sq. ft.), and 20 offices (120 sq. ft. each). Unlike the previous 

case-study, two adjacency requirements are included in this problem instance. More 

specifically, it is desired to have the classrooms and offices adjacent to each other. The 

adjacency specifications and corresponding objective weights for this problem instance 

are presented in Table 5.3, where the most and least priority Go to the adjacency and 

proximity requirements, respectively. The separation requirements are similar in 

preference, except there being a higher emphasis on separating the restrooms from the 

offices. The 𝑙1-norm is the selected distance metric in the first phase model. Figure 5.10 

displays the block layout that was generated for this instance. 

Table 5.3: Adjacency specifications for small-scale problem 

 Classrooms Lab Restroom Admin Office 

Classrooms Adjacent (5) Proximity (1) Separate (2) - - 

Lab - - Separate (2) - - 

Restroom - - - Separate (2) Separate (3) 

Admin -   - - 

Office - - - - Adjacent (5) 
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Solution time: 3,600 seconds (timed out) 

Figure 5.10: Block layout for large-scale problem (no clusters) 

As mentioned earlier, an unintended phenomenon is observed in the block layout when 

applying the large-scale problem input data to the first phase model. Observe in Figure 

5.10 that there are four clusters of offices scattered throughout the facility, where the 

clusters along the north and south sides of the facility contain more offices compared to 

the other two. Similarly, there appears to be one case of adjacent classrooms towards the 

top-left corner, while the other classrooms are placed in other regions of the layout. Due 

to the large number of adjacency requirements that are enforced amongst the classrooms 

and offices, it becomes essentially impossible for all of them to be satisfied 

simultaneously due to the physical limitations of the facility. At the same time, the 

computational complexity also increases because of the problem symmetry that exists 

amongst the homogeneously sized departments (in conjunction with the number of 

departments in the large-scale problem). 

 To mitigate the effect of this issue, it was decided to transform the input data by 

clustering groups of departments together into larger-sized ones, and then apply the first 
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phase model using the new input data. Upon finding an optimal solution using the 

transformed input data, each individual department within a cluster can be arranged 

within the clustered department boundaries. This output can then be fed into the second 

phase model for generating the corresponding aisle network. Doing so is advantageous in 

two ways, specifically for improving the tractability of the proposed approach, as well as 

to make the generated layout designs more attractive for the architect. Additional 

constraints can be added to the phase one model that require the aspect ratios of clustered 

departments to be greater than or equal to some threshold value (in consideration of the 

comment from Section 5.5.1.1 regarding proportionally sized departments). Let 𝛼𝑐
𝑚𝑖𝑛 

denote the minimum aspect ratio of cluster 𝑐 ∈ 𝐶, where 𝐶 is an index set containing the 

indices of all clusters. Also, let 𝜙𝑐 be a binary variable equal to 1 if 𝑙𝑐
𝑥/𝑙𝑐

𝑦
 ≥ 𝛼𝑐

𝑚𝑖𝑛; 

Otherwise, 0 if 𝑙𝑐
𝑦

/𝑙𝑐
𝑥  ≥ 𝛼𝑐

𝑚𝑖𝑛. Note that 𝐶 ⊆ 𝐼 because clusters are treated as 

departments in the first phase model. The following constraints can be added to enforce a 

lower bound on the aspect ratio. 

𝑙𝑐
𝑥 ≥ 𝑙𝑐

𝑦
𝛼𝑐

𝑚𝑖𝑛 − 𝑀(1 − 𝜙𝑐) ∀𝑐 ∈ 𝐶 (5.71) 

𝑙𝑐
𝑦

≥ 𝑙𝑐
𝑥𝛼𝑐

𝑚𝑖𝑛 − 𝑀𝜙𝑐 ∀𝑐 ∈ 𝐶. (5.72) 

 Clustering the classrooms is straightforward since there are only four of them in 

the problem instance, resulting in Clusters 1 and 2 to consist of classrooms with square 

footage requirements of 1,003.79 sq. ft. and 1,081.05 sq. ft., and 534.4 sq. ft. and 549.83 

sq. ft., respectively. Performing this operation for the offices is not as straightforward 

because there are 20 of them in total and depending on how the clusters are formed, 

alternative layout designs will be generated. To demonstrate this, three different cases are 

considered, where for each case a different number of clusters are used. Table 5.4 

provides details behind the configuration of the office clusters for each case. 
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Table 5.4: Office cluster configurations 

 Number of offices Area requirement (sq. ft.) 

Two clusters 10 / 10 1,200 / 1,200  

Three clusters 7 / 7 / 6 840 / 840 / 720 

Four clusters 5 / 5 / 5 / 5 600 / 600 / 600 / 600 

   

 The layouts that are generated after performing the clustering operations and 

arranging the departments in each cluster are displayed in Figure 5.11. A lower bound 

was enforced on the aspect ratio of the office clusters using (5.71)-(5.72) in an effort to 

arrange them in an aligned fashion for improving the layout quality. The lower bound of 

the office clusters is set to three, while the upper bound is dependent on the number of 

offices in the cluster. For simplicity, it was decided to increase the maximum aspect ratio 

value by 1.5 units for each department that is assigned to the cluster. The printed 

objective function values and solution times in Figure 5.11 are from solving the first 

phase model using the transformed input data after clustering the departments. 

  

Obj. value: 19.881 

Solution time: 41.12 secs. 

(a) 
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Obj. value: 40.584 

Solution time: 172.52 secs. 

(b) 

  
Obj. value: 59.877 

Solution time: 1,179.54 secs. 

(c) 

Figure 5.11: Block layouts for large-scale problem (with clusters) 

Figure 5.11 (a) shows the offices arranged in two differently shaped clusters, where one 

of them has offices placed in a vertical orientation (Office 1 cluster) and the other in a 

horizontal orientation (Office 2 cluster). The classroom clusters are placed directly beside 

each other, and each classroom is arranged in a similar fashion as the offices in the sense 
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that one pair of classrooms have a vertical orientation (Classroom 1 cluster) while the 

other pair are oriented horizontally (Classroom 2 cluster). Similar observations can be 

made for Figure 5.11 (b) and (c). Empty spaces are apparent in Figure 5.11 (b) because of 

restricting departments to rectangular shapes, and perhaps as a result of an uneven 

distribution of offices amongst the three clusters. Figure 5.11 (c) shows all office clusters 

aligned along the west-region of the facility and the classrooms running along the center 

across both axes. 

 Applying two clusters yielded the best computational performance, whereas 

applying four clusters yielded the worst computational performance. Arguably, the four-

cluster case suffers more from problem-symmetry than the others since the office clusters 

can freely be swapped amongst one another since they all share equal area requirements 

(as shown in Table 5.4). This is also evident for the two- and three-cluster cases, but is 

less severe since they were solved to optimality in a reasonable amount of time. 

Regardless, this exercise portrays how transforming a large-scale problem into a smaller 

sized one can benefit the architect in producing layout alternatives. 

 The corresponding aisle networks for the layouts in Figure 5.11 can now be 

generated since all 27 departments are placed in the facility. It is assumed that a sprinkler 

system will be installed, suggesting that a separation distance of at least 𝐿/3 feet between 

the accessways is necessary (equal to 45.14 feet). The number of secondary accessways 

in the facility is manipulated (between one and two in total) during this exercise to 

demonstrate how the aisle network is impacted by this parameter, and the number of 

primary accessways is set to one. Zig-zag and dead-end avoidance constraints are 

incorporated into the second phase model for constructing the aisle networks. The 
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weights assigned to these functional specifications are identical to the ones shown in 

Section 5.5.1. Figure 5.12 contains the aisle network configurations that are generated for 

the large-scale problem. 

  

Solution time: 121.13 secs. 

Aisle network length: 373.2 ft. 

One secondary accessway 

(a) 

Solution time: 1,052.46 secs. 

Aisle network length: 348.7 ft. 

Two secondary accessways 

(b) 

  

Solution time: 58.18 secs. 

Aisle network length: 413.5 ft. 

Solution time: 390.15 secs. 

Aisle network length: 413.5 ft. 
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One secondary accessway 

(c) 

Two secondary accessways 

(d) 

  

Solution time: 107.1 secs. 

Aisle network length: 347.3 ft. 

One secondary accessway 

(e) 

Solution time: 79.21 secs. 

Aisle network length: 271.6 ft. 

Two secondary accessways 

(f) 

Figure 5.12: Aisle network configurations for the large-scale problem 

Observe that aisle networks with one secondary accessway require one or more cycles for 

satisfying the dead-end avoidance constraints. For example, notice in Figure 5.12 (a) how 

aisles surround one of the offices in the bottom-left corner. Similar behavior is present in 

Figure 5.12 (c) where there are two sets of offices with aisles constructed along the 

perimeter of the corresponding offices (also apparent in (c)). Although the offices are still 

accessible for these cases, it is likely that a fraction of their pre-allocated surface areas 

will have to be sacrificed to accommodate the aisle network, resulting in a less-efficient 

utilization of the space. It turns out that the aisle network in Figure5.12 (c) is the shortest 

compared to the others when one secondary accessway is used. 

 For the aisle networks with two secondary accessways, fewer cycles are present in 

Figure 5.12 (b) and Figure 5.12 (f), whereas Figure 5.12 (d) has the same number of 
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cycles, with the only difference being that one of them surrounds one office instead of 

two. Longer cycles that run along the boundaries of the classrooms, restroom, admin 

department, and the engineering lab are present in all layouts, but are essential for 

improving the navigability of the facility. The aisle networks in Figure 5.12 (b) and 

Figure 5.12 (f) are similar in the sense that the primary and secondary accessways are 

configured almost identically, resulting in a long corridor with the secondary accessways 

at both ends and the primary accessway approximately located at the midpoint. Figure 

5.12 (d) displays a similar structure where the endpoints are located at opposite ends of 

the facility but are misaligned since there is a horizontally oriented office located along 

the south-wall that prevents the aligned corridor from being built. Similar to the one 

secondary accessway case, Figure 5.12 (f) yields the shortest aisle network when two 

secondary accessways are included in the facility. Note that the accessways are placed 

near the offices in all layouts that were generated. Since most of the departments in the 

large-scale problem are offices, this results in a dominating effect in the objective 

function for minimizing the travel distance to the accessways from the offices. 

5.5.2.1 Objective weight and functional specification calibration 

 Given the multi-objective nature of the second-phase model, it is challenging to 

determine an appropriate assignment of weights in the objective function that results in 

desired layout properties to be incorporated into the design. Moreover, all architects have 

different preferences, so it is impractical to use a single set of weights that are applicable 

for all situations. Although the previous subsections illustrate how layout alternatives can 

be produced by modifying certain functional specifications of the facility, such as the 

number of secondary accessways, another layer of inherent complexity is introduced in 
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the objective function during the optimization process because all objectives are 

conflicting with each other. 

 To illustrate how the calibration of objective weights and functional specifications 

impact the aisle structure, a 2-level factorial experimental design with four factors was 

created where a subset of the objective weights (departmental travel distance from the 

primary and secondary accessways, and the aisle generation costs) and the dead-end 

avoidance functional specification are configured between low- and high-levels (denoted 

by – and +, respectively). The response variable of interest is the so-called “layout score”, 

which was gathered from an architect that agreed to evaluate each alternative with respect 

to three criteria, including the separation distance between the accessways, the number of 

turning points along egress paths, and the length of the aisle network. The location of the 

department doorways and facility accessways were also addressed in the evaluation. Each 

layout is assigned a score ranging from 1-10 based on the architect’s preferences, where a 

larger value indicates a more attractive design. One replication is enforced for all 

combinations of the factor levels, yielding 16 layout alternatives in total for the architect 

to evaluate.  

 Table 5.5 displays the values that are assigned to each factor level in the 

experimental design. Table 5.6 shows the assignment of factor-levels to each layout in 

the experiment. 

Table 5.5: Objective weight and functional specification calibration experimental design 

 Levels 

Factor - + 

1. Distance from departments to 

primary accessway 

1 20 

2. Distance from departments to 

secondary accessway 

1 20 

3. Aisle generation cost 

 

10 30 
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4. Dead-end avoidance 

 

Disabled Enabled 

 

Table 5.6: Experimental design setup 

 Factors 

Layout 1 2 3 4 

1 - - - - 

2 - - - + 

3 - - + - 

4 - - + + 

5 - + - - 

6 - + - + 

7 - + + - 

8 - + + + 

9 + - - - 

10 + - - + 

11 + - + - 

12 + - + + 

13 + + - - 

14 + + - + 

15 + + + - 

16 + + + + 

 

This experimental design was applied towards the block layouts in Figure 5.8 (a) and 

5.11 (c) for the small- and large-scale problems, respectively. It is assumed that one 

primary and secondary accessway needs to be placed along the facility perimeter by a 

minimum separation distance of 𝐿/3. It was requested by the architect to avoid placing 

the primary and secondary accessways near the offices simultaneously for the large-scale 

problem due to potential issues that might arise that are unaccounted for during the 

optimization, such as congestion, lack of privacy, unsatisfactory occupant experience, 

etc. This was accommodated by excluding the 𝑓(𝑚,𝑛)
𝑖𝑘  decision variables (∀𝑘 ∈

𝐴′, (𝑚, 𝑛) ∈ 𝐸) in the objective function for all departments labeled as offices. The aisle 

structures that were produced for the small- and large-scale problems after executing the 

experimental design and their corresponding scores are presented in Figure A1 and 
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Figure A2 in the Appendix, respectively. It can be noticed that the highest scored layouts 

for both problems assign factors 1,2, and 4 to their low-level values, while factor 3 is 

assigned the high- and low-level value in the large- and small-scale problems, 

respectively. 

From this objective weight and functional specification calibration procedure, a 

large number of layout alternatives can be produced for the architect to evaluate. 

However, this procedure is limited in the sense that the architect is restricted to only the 

layouts that are presented to them, which is also the case for most layout evaluations 

methods that exist in the literature (as mentioned in Chapter 2). This is of concern 

because it is possible for all layout alternatives to receive a poor evaluation from the 

architect, thus increasing the amount of time spent in the pre-design phase. Because of 

this, researchers have developed interactive systems that enable the user to incorporate 

their feedback during the layout generation process to eventually arrive to a solution that 

is most satisfying (García-Hernández et al., 2015; García-Hernandez et al., 2020). It is 

common for these kinds of systems to rely on metaheuristic algorithms since they are 

capable of producing a diverse set of solutions in a reasonable amount of time. Although 

these methods can incorporate the evaluation feedback in an iterative fashion, they fail to 

guarantee optimality since they rely on randomness rather than exact methods. To the 

authors’ best knowledge, such a system does not exist that utilizes exact methods for 

incorporating evaluation feedback during the layout optimization process. This 

dissertation research is not intended to propose a technique to fill this gap in the 

literature, but to instead emphasize its importance and suggest it is as a future research 

direction that is worth investigating. 
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5.6 Conclusion 

 This study considers the layout design problem in the architectural domain and 

how to automate the layout design process with respect to user-defined adjacency 

specifications using mathematical optimization. Existing models that utilize optimization 

techniques represent the adjacency requirements using binary variables, thus resulting in 

additional complexity to be introduced to the problem. In addition, these kinds of 

approaches can result in model infeasibility if an excess number of adjacency 

requirements are specified since it may not be possible to satisfy all of them 

simultaneously due to the physical limitations of the facility. This is disadvantageous for 

the architect because it is unclear which adjacency requirements will be violated prior to 

the optimization. This also constrains the architect to a lower level of detail for a problem 

instance due to the risk of model infeasibility. The proposed model addresses this 

shortcoming by using deviational variables that measure the total distance in which an 

adjacency requirement is violated without requiring binary variables, with the goal of 

minimizing the sum of all deviational variables in the objective function. 

 In addition, existing models in the architecture domain using mathematical 

optimization only address the adjacency requirements, whereas the proximity and 

separation requirements are disregarded. Excluding these requirements from the 

automated layout generation process may result in suboptimal designs to be generated. 

To accommodate this, the proposed model allows for all adjacency specifications to be 

addressed simultaneously by minimizing the total deviation between the specifications 

with respect to the arrangement of departments in the layout design. Following the 
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generation of the layout design, another optimization model is formulated for configuring 

the aisle structure to control occupant flow within the facility interior. 

 Future research directions include incorporating qualitative criteria during the 

layout generation process since existing studies show that they have a meaningful impact 

on how occupants behave inside of the facility. Also, further refinement of the calibration 

procedure in Section 5.5.2.1 can be investigated for appropriately incorporating feedback 

from architects to help produce layout alternatives that align with their preferences 

through the use of exact methods. Another research direction consists of relaxing the 

assumption where the facility blueprint needs to be specified a priori. Doing so would 

extend the applicability of the approach to consider cases where the site dimensions are 

unknown, or its surface area is greater than the cumulative surface area of the 

departments. Lastly, exploring additional valid inequalities and other model 

improvements to enhance the computational efficacy is also another promising research 

direction. 
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CHAPTER 6: CONCLUSION 

 In this dissertation, the facility layout problem (FLP) was considered. FLP is an 

important problem to address because it is directly correlated with how efficient 

operations are at the facility. Poorly designed facility layouts can result in excessive 

operational spending to occur. In the manufacturing setting, between 20% to 50% of 

operating expenses are contributed by the configuration of the material handling system, 

and can potentially be reduced by 10% to 30% if the facility is appropriately designed 

(Meller and Gau, 1996). This illustrates the impact that FLP can have not only in the 

manufacturing sector, but for other facility types as well because the same methodologies 

that have been applied since the 1950s can easily be extended to solve different layout 

problems. Although FLP does not have an overly complicated problem statement, the 

difficulty associated with it stems from the fact that it is an NP-hard combinatorial 

optimization problem. As a result, it is challenging to optimally solve relatively larger-

sized problem instances using exact methods. This has forced researchers to exploit 

heuristic approaches that can generate good-quality solutions, but fail to guarantee an 

optimal solution once the procedure terminates. 

 Some of the shortcomings in the FLP literature were addressed and investigated 

across a set of separate (but still interconnected) research efforts in this dissertation. 

Shortcomings in the literature include (but not limited to) (1) coping with the 

computational complexity of the problem, (2) consideration of pandemic related events 

during the layout design process, and (3) incorporating proximity and separation 

requirements in conjunction with desired adjacencies that are desired in the layout. The 

theme that ties these shortcomings together is the idea of clearances, which are used for 
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separating objects in the layout design by a minimum threshold distance due to factors 

such as noise, compliance, efficiency, etc. To accommodate these shortcomings, a variety 

of optimization models were introduced that can be used for (1) generating layout designs 

more efficiently from a computational standpoint, (2) assisting restaurant owners in 

redesigning their facilities with respect to social distancing and reduced capacity 

constraints and (3) allowing architects to specify additional adjacency specifications for 

generating more desired layout designs in an automated fashion. 

6.1 Contributions 

 The work presented in this dissertation is advantageous to the public and scientific 

communities in a variety of ways. First, improving the computational tractability allows 

for a larger spectrum of problem instances to be solved to optimality, thus increasing the 

applicability of mathematical programming to layout practitioners in public and scientific 

sectors. Also, the proposed model adjustments for improving the tractability of DRLP is a 

novel contribution to the scientific community pool of knowledge that allows other 

researchers to make further improvements based on the conclusions which were drawn in 

this dissertation. 

 Second, the incorporation of recently emerging criteria due to the COVID-19 

pandemic, namely social distancing and reduced capacity, into the layout design process 

can assist in reducing the spread of infection amongst occupants. Since studies that 

address these factors are currently scarce, this research helps lay the foundation for 

encouraging new investigations to improve facility resilience during pandemic events. In 

addition, merging FLP and restaurant revenue management related problems, such as 

TMP and PMP, in this context results in a new optimization framework that can be used 
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for improving business operations under normal or pandemic-induced conditions.  Lastly, 

providing architects with an automated layout generation tool that incorporates additional 

design features that were not previously addressed allows for more detailed layout 

designs to be created. Doing so helps them save time during the pre-design phase of the 

project, thus giving them more time to focus on other critical tasks. 

6.2 Limitations 

 One of the main limitations of this dissertation is restricting departments to only 

rectangular shapes. There are cases where nonlinear shaped departments may result in 

additional efficiency, but due to the computational complexity that is present when 

introducing these nonlinearities, it was decided to primarily focus on rectangular shapes. 

Also, in Chapter 4, it is assumed that customers arrive at the restaurant simultaneously in 

the second-stage model based on the deployed hourly arrival rate. This does not 

accurately resemble how restaurants operate since customers typically enter and exit the 

restaurant throughout the hour. Even though this simplifies the problem setting and 

allows for decomposition algorithms to be used for finding an optimal solution, it is still 

unknown if incorporating queueing theory dynamics into the modelling process can result 

in higher quality solutions to be produced. 

 Another limitation is directed towards Chapter 5, where a series of parameters and 

weights are introduced for incorporating adjacency specifications and objective 

preferences to produce layout alternatives. Proper calibration of these values is a non-

trivial task, which inherently introduces another layer of complexity during the layout 

design process. Although a simple procedure is proposed for weight calibration, 

additional research is still needed to streamline this process for architects with differing 
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perspectives/preferences. Along with this, occupancy rates of departments are ignored 

when generating the layout design. This can be concerning to architects because many 

building code requirements reference the departmental occupancy rates, and can have a 

dramatic effect on the feasibility of layouts that are produced from the approach. Finally, 

the proposed automated layout generation model is applicable towards facilities with only 

one floor. The mathematical model can be modified to accommodate multiple floors, but 

the computational complexity will greatly increase as a result. 

6.3 Future research directions 

 The findings from this dissertation present several opportunities for future 

research. One research direction is the investigation of valid inequalities and further 

reducing the size of the models by removing unnecessary binary decision variables. All 

models in this dissertation are formulated as MILPs, so any efforts that can be made for 

improving their respective efficacies would help make these approaches more attractive 

in practice. Also, revisiting the stochastic programming model in Chapter 4 is another 

promising direction to assess if combining tables and incorporating a queueing system 

would further improve the restaurant operations. Finally, enhancing the objective weight 

and functional specification calibration procedure in Chapter 5 for further establishing a 

“feedback loop” between the physical and psycho-physical properties would be an 

invaluable contribution to the field since there are currently no approaches in the 

literature that allow for feedback to be incorporated when applying exact methods. 

Introducing qualitative criteria during the layout generation process would also be helpful 

in improving the quality of generated solutions. 
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APPENDIX A: LAYOUT EVALUATIONS 

 
Layout 1 

Distance between accessways: 68.79 ft. 

Number of turns along egress paths: 3 

Aisle network length: 113.78 ft. 

Score: 4.5 

 
Layout 2 

Distance between accessways: 103.37 ft. 

Number of turns along egress paths: 2 

Aisle network length: 118.77 ft. 

Score: 8 

 
Layout 3 

Distance between accessways: 68.79 ft. 

Number of turns along egress paths: 3 

Aisle network length: 113.78 ft. 

Score: 7 

 
Layout 4 

Distance between accessways: 103.37 ft. 

Number of turns along egress paths: 2 

Aisle network length: 118.77 ft. 

Score: 10 

 
 Layout 5 

 
Layout 6 
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Distance between accessways: 68.79 ft. 

Number of turns along egress paths: 3 

Aisle network length: 113.78 ft. 

Score: 5 

Distance between accessways: 103.37 ft. 

Number of turns along egress paths: 2 

Aisle network length: 118.77 ft. 

Score: 8 

 
Layout 7 

Distance between accessways: 68.79 ft. 

Number of turns along egress paths: 3 

Aisle network length: 113.78 ft. 

Score: 5 

 
Layout 8 

Distance between accessways: 103.37 ft. 

Number of turns along egress paths: 2 

Aisle network length: 118.77 ft. 

Score: 8 

 
Layout 9 

Distance between accessways: 68.79 ft. 

Number of turns along egress paths: 3 

Aisle network length: 113.78 ft. 

Score: 4.5 

 
Layout 10 

Distance between accessways: 103.37 ft. 

Number of turns along egress paths: 2 

Aisle network length: 118.77 ft. 

Score: 8 

 
Layout 11 

 
Layout 12 
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Distance between accessways: 68.79 ft. 

Number of turns along egress paths: 3 

Aisle network length: 113.78 ft. 

Score: 4.5 

Distance between accessways: 103.37 ft. 

Number of turns along egress paths: 2 

Aisle network length: 118.77 ft. 

Score: 8 

 
Layout 13 

Distance between accessways: 68.79 ft. 

Number of turns along egress paths: 3 

Aisle network length: 113.78 ft. 

Score: 7 

 
Layout 14 

Distance between accessways: 68.79 ft. 

Number of turns along egress paths: 4 

Aisle network length: 164 ft. 

Score: 3 

 
Layout 15 

Distance between accessways: 68.79 ft. 

Number of turns along egress paths: 3 

Aisle network length: 113.78 ft. 

Score: 7 

 
Layout 16 

Distance between accessways: 68.79 ft. 

Number of turns along egress paths: 4 

Aisle network length: 164 ft. 

Score: 4 

Figure A1: Small-scale layout alternatives from the experimental design 
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Layout 1 

Distance between accessways: 50.45 ft. 

Number of turns along egress paths: 5 

Aisle network length: 211.91 ft. 

Score: 3 

 
Layout 2 

Distance between accessways: 110.42 ft. 

Number of turns along egress paths: 7 

Aisle network length: 240.13 ft. 

Score: 8 

 
Layout 3 

Distance between accessways: 50.48 ft. 

Number of turns along egress paths: 6 

Aisle network length: 197.82 ft. 

Score: 2 

 
Layout 4 

Distance between accessways: 110.42 ft. 

Number of turns along egress paths: 7 

Aisle network length: 240.13 ft. 

Score: 7 

 
 Layout 5 

 
Layout 6 
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Distance between accessways: 93.56 ft. 

Number of turns along egress paths: 5 

Aisle network length: 237.85 ft. 

Score: 2 

Distance between accessways: 84.49 ft. 

Number of turns along egress paths: 11 

Aisle network length: 324.6 ft. 

Score: 6 

 
Layout 7 

Distance between accessways: 50.45 ft. 

Number of turns along egress paths: 5 

Aisle network length: 211.91 ft. 

Score: 2 

 
Layout 8 

Distance between accessways: 110.42 ft. 

Number of turns along egress paths: 7 

Aisle network length: 240.13 ft. 

Score: 7 

 
Layout 9 

Distance between accessways: 93.57 ft. 

Number of turns along egress paths: 5 

Aisle network length: 237.85 ft. 

Score: 3 

 
Layout 10 

Distance between accessways: 84.49 ft. 

Number of turns along egress paths: 11 

Aisle network length: 324.6 ft. 

Score: 5 

 
Layout 11 

 
Layout 12 
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Distance between accessways: 50.45 ft. 

Number of turns along egress paths: 5 

Aisle network length: 211.91 ft. 

Score: 3 

Distance between accessways: 110.42 ft. 

Number of turns along egress paths: 7 

Aisle network length: 240.13 ft. 

Score: 7 

 
Layout 13 

Distance between accessways: 58.36 ft. 

Number of turns along egress paths: 8 

Aisle network length: 266.49 ft. 

Score: 3 

 
Layout 14 

Distance between accessways: 58.36 ft. 

Number of turns along egress paths: 13 

Aisle network length: 334.62 ft. 

Score: 5 

 
Layout 15 

Distance between accessways: 58.36 ft. 

Number of turns along egress paths: 8 

Aisle network length: 240.12 ft. 

Score: 1 

 
Layout 16 

Distance between accessways: 58.36 ft. 

Number of turns along egress paths: 13 

Aisle network length: 334.62 ft. 

Score: 4 

Figure A2: Large-scale layout alternatives from the experimental design 

 

 

 


