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ABSTRACT

A B M MOHAIMENUR RAHMAN. Photoplethysmographic Sensor-based
Non-intrusive and Secure Smart Sensing and Applications. (Under the direction of

DR. YU WANG)

In the past few decades, there have been revolutionary developments in the field

of smart sensing. The new era of next-generation intelligent systems is leveraging

the usage of smart sensing technology to perform intelligent sensing tasks and col-

lect useful information for different applications. Smart sensors, besides the task

of collecting information from an object and converting it into an electric signal,

can facilitate different diagnoses, functions, identifications, and conclusion-oriented

tasks after processing the signal using advanced signal processing and artificial in-

telligent algorithms. The advancement of smart sensing techniques and applications

is advancing rapidly and has been implemented in modern mobile devices or wear-

able devices. Different smart sensing systems use different types of sensors, such as

temperature, pressure, infrared, proximity, light, acoustic, motion, magnetic, and vi-

bration. This dissertation discusses secure smart sensing and applications based on

the non-intrusive Photoplethysmography (PPG) sensor, which is commonly available

in current wearable devices.

There are different aspects of secure smart sensing systems, such as purely security-

based solutions to protect smart sensing and secure applications built based on smart

sensors. Our focus of this dissertation is the latter one. In this dissertation, we first

study how to authenticate a user’s offline/online signature with data from the PPG

sensor. Conventionally, offline signatures are verified manually in the banks, and for

the online signatures, dedicated electronic devices like tablets are used for verification.

We propose a novel method for both offline and online signature authentication, which

leverages the widely deployed PPG sensors in the wrist-worn wearable devices. The

unique blood flow changes in the supplicant’s hand movement are being exploited in



iv

this system to validate the signature. We design a low-cost hardware implementation

to verify our proposed method. Our experiments with real-life data sets verify the

feasibility and efficiency of the proposed solution.

In addition, we also study a smart application of PPG sensing for weight lifting

assessment. Physical activity (PA) plays an important role in a person’s health.

Weight lifting is one of the essential stationary exercises which helps a person maintain

a fit lifestyle. It is also important for a person to be aware of the intensity of performed

exercise during a workout. In our proposed work, the PPG-based system is able to

classify a user’s lifted weighted object into its corresponding weight label. It leverages

the change in the blood volume in the wrist region that occurred due to the strain

caused by the different weights being lifted in order to classify the labels. We believe

the importance of PPG sensing in secure smart sensing and applications during this

technology era is immense.
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CHAPTER 1: INTRODUCTION

The proliferation of smart devices equipped with built-in sensors is enabling a new

paradigm called smart sensing [2]. Smart sensing is an emerging field for research in

this exponentially evolving tech era. Almost most of the households are turning into

smart homes equipped with smart devices. Devices now-a-days are equipped with

multiple sensors to sense data from their surroundings in order to perform a specific

action or task according to the need of the user. The use of sensors and communication

technology and the processing of the sensed data using advanced signal processing

and artificial intelligent algorithms in combination form Smart sensing. Applications

based on smart sensing is used nowadays in almost every sector to reduce human

intervention and increase automation. Mainly it is used for various monitoring and

control systems.

In this world of emerging technology, as days go by the number of smart devices

thus the number of sensors is increasing. In these smart devices or in the smart

sensing systems, the use of different types of sensors, such as temperature, pressure,

infrared, proximity, light, acoustic, motion, magnetic, and vibration are found. These

sensors can be either passive or active in action. When it measures the effect of the

energy in the environment for a purpose it is passive. On the other hand, when the

sensors themselves emit some energy and measure the response of the environment

based on that energy it is the active scenario. Each sensor modality has its own

advantages which are exploited in diversified applications. The range of these appli-

cations is vast. Fields such as, transportation, traffic automation, health monitoring,

agriculture, telecommunication, military, industrial machinery, industrial logistics,

education, home automation, and offices. The popularity of smart sensor systems is
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on the rise because of its higher advantages over its price. Besides being low-cost,

these systems are generally highly reliable with high performance and implementable

with easy maintenance.

This dissertation is based on one of the commonly available sensors called Photo-

plethysmography (PPG) Sensor found in wearable devices. It discusses secure smart

sensing and applications made with the help of this non-intrusive PPG sensor. The

focus is primarily on the secure applications or smart applications built on PPG sensor

rather than purely security-based solutions to protect smart sensing.

A Photoplethysmogram is an optical signal reading to measure the changes in the

blood volume under the skin. There are mainly two phases of a cardiac cycle which

are diastole and systole, relaxing and contracting of the heart muscles respectively to

run the blood flow throughout the body. These blood flow reaches the terminal part of

the body such as, fingers, ear lobes, palms, and wrists. PPG sensors are composed of

an LED light and an optical receiver i.e. a photo-diode. The LED light is transmitted

towards the skin which illuminates the skin and then the photo-diode captures the

reflected light from the skin as the optical reading. The optical readings reflect the

cardiac cycles with peaks if there is no movement of the body part associated with the

sensor. And if there are movements of the body parts then the output readings reflect

the movements in its signals. PPG sensors are used in mainly medical devices for a

wide variety of applications such as, measurement of Heart rate and its variability,

Blood pressure, Blood oxygen saturation, assessing respiratory conditions, detection

of arterial diseases, and monitoring of various health conditions. These are also found

to be in the smart wearable devices such as, smart watches and fitness trackers to

monitor pulse rate and other health aspects.

And as the use of these devices and sensors is increasing, the risk of maintaining

user’s security is also increasing [3]. Issues related to privacy invasion, breach of

personal information, email scamming, hacking, phishing, are on the rise [4, 5, 6, 7].
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To solve these issues, various methods like PIN numbers, passwords, certificates, bio-

metrics have been used [8]. In recent times, different types of authentication schemes

[9, 10, 11, 12, 13, 14] are proposed in the literature. The main purpose is to verify a

user before the user starts to use the device or product. On the other hand, attackers

try different methods to by-pass these schemes in order to access the system or device

to fetch or breach the user’s privacy. It is a competition between the attackers and the

researchers trying to come up with new techniques and strategies to attack and defend

a system respectively. Existing solutions might have tried solving these security issues

but it was observed that the solutions were not that secure or non-intrusive. Some

of them require user extra involvement which seriously affects user experience and

delay authentication time. Few physiological-based techniques are inconvenient for

users to authenticate frequently and continuously. There are some systems which

can verify users non-intrusively but are not that effective against different advanced

attacks like statistical, replay, hacking, etc. But PPG sensors on the other hand can

provide non-intrusive and secure authentication.

Hence, in our first work, we propose a system which tries to verify online/offline

signatures of a user leveraging the PPG sensed data from the wrist-worn wearable.

Current scenario in banks or financial institution is that the user’s signature has to be

manually verified or if it is online i.e. on a tablet or dedicated smart device it has to be

verified using various software module which may suffer from various common attack

model mentioned above. To make the solutions convenient, the use of existing wrist-

worn wearable devices come into play. Almost all the smartwatch/fitness watches

have this PPG sensor as a built-in sensor. Mainly all types of smartwatch/fitness

watches make use of PPG sensors to measure user’ heart rate.

The other work is another smart sensing application based on PPG sensor for strain

sensing where a user wearing a smartwatch or fitness tracker is able to recognize the

certain amount of weight being lifted based on the strain occurring when he/she is
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Figure 1.1: Overview of the dissertation.

lifting the weight.

The first work regarding the signature authentication can be used in banking sec-

tors, agreement signing scenarios or in any smart device sign in. It could be used

in situations where an authentication of signature, whether it is online or offline, is

needed. For the strain sensing work, there are different potential applications. For

example, automatic detection of weights when doing weight-based workouts, and rec-

ognizing the weight of objects outside of workout-scenario. Besides these applications,
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there are further potential in scenarios where the awareness of the weight lifting is

required.

In summary, in this dissertation, we mainly focus on a secure signature authen-

tication system and a smart sensing system both based on PPG sensing data. The

overview of this dissertation is shown in Fig. 1.1. The rest of this dissertation is

organized as follows. We first introduce the backgrounds and related works to the

dissertation in Chapter 2. The above-mentioned first work will be introduced in

Chapter 3 along with the technical details. Its implementation and evaluation will

be presented in Chapter 4. The strain sensing work mentioned earlier will be intro-

duced in Chapter 5. The implementation and evaluation of the strain sensing work

is discussed in Chapter 6. Finally, Chapter 7 concludes the dissertation and presents

the potential future works.



CHAPTER 2: BACKGROUNDS

In this chapter, we provide brief backgrounds on related work in smart sensing,

secure sensing applications, PPG-based smart sensing, PPG sensor-based secure ap-

plications, and sensor-based fitness applications.

2.1 Smart Sensing

The sensing paradigm where smart devices equipped with smart sensors are used is

called smart sensing. In this fast changing technology era, there have also been rev-

olutionary developments in the smart sensing area. Households are becoming smart

homes consisting of a wide range of smart devices. The devices are using the smart

sensing technology to perform different intelligent sensing tasks. Different diagnoses,

functions, identifications, conclusion-oriented tasks are also performed after process-

ing the raw signals received by the smart sensors using advanced signal processing

and artificial intelligent algorithms. Smart-sensor based applications are making hu-

man life easier and comfortable in all sectors. Smart sensing applications are now an

integral part of Internet of Things (IoT). A general architecture of a smart sensing

system is shown in Fig. 2.1.

A variety of sensors is incorporated in different smart sensing systems. Sensors such

as infrared, proximity, temperature, pressure, light, acoustic, accelerometer, motion,

magnetic, vibration, and air quality are commonly found in the existing systems

[15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26]. Based on how it operates, these sensors

can be two types - active and passive. When the sensors transmit and measure the

reflections from the environment or object then it is an active sensor. And when the

sensor just directly measures the sensing element from the object or environment it is
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Figure 2.1: General architecture of smart sensing systems.

called a passive sensor. The popularity of smart sensing systems is increasing because

of the following advantages -

• low-cost: The cost of sensor devices has been continuously reduced, which

make them more popular in current mobile devices;

• highly reliable: Smart sensors can monitor the health of a system and control

any failure or fault which makes them highly reliable in different scenarios.

• high performance: The computational overhead is really less for smart-

sensors compared to the actions performed by them.

The applications are spread over almost every fields because of the popularity

such as transportation, traffic automation, health monitoring, agriculture, military,

industrial machinery, industrial logistics, education, home automation, and offices

[27, 28, 29, 30, 31, 32, 33, 34, 35].

2.2 Secure Sensing Applications

The requirement for technological devices and applications is a reliable and con-

venient authentication process. Traditional user authentication mechanisms lead to
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security vulnerabilities and have serious usability issues. This influences the user

to just leave their devices unprotected while trying to simplify their authentication

processes. In ideal case, the authentication process should be such that it is easy,

fast and convenient to the user but susceptible to the attacker. To meet these re-

quirements, various sensor-based authentication schemes came into the picture. In

the current days, almost all the smart phone devices contain fingerprint sensors for

authentication. Fingerprint as a bio-metric for authentication scheme is very popular

[36]. Last few years have been a great advancement in the camera sensor-based face

recognition schemes for authentication. Even though face recognition is fast and intu-

itive, there are still limitations from computer vision perspective [37]. Camera is also

used in smartphones to capture the unique characteristics of a cardiac cycle to detect

cardiac motion patterns. These unique characteristics are leveraged to authenticate

a user [12]. People find that camera-based solutions are a threat to privacy. Lu et

al. in [38], used acoustic sensing to read the user’s lips or mouth movement in order

to extract unique patterns to verify the users using a deep learning-based method in

smartphone. In the literature, a lot of the systems are using the built-in sensors such

as, accelerometer, gyroscope, and magnetometer in order to authenticate users. For

example, in [39], Ehatisham-ul-Haq et al. developed a user authentication framework

where the behavioral traits of smartphone users is exploited after the data of the

embedded sensors (accelerometer, gyroscope, and magnetometer) was processed.

Another area of secure applications is the verification of signatures. There are two

types of signatures out of which the first one is the offline and the other one is the

online signature. When users give their signature on a piece of paper with a pen it

is offline signature. And when the signatures are given on an electronic device or

any smart device/hardware it is called the online signature. Different sensors have

been used in the existing systems in order to verify offline/online signatures. For

example, in [40], Wang et al. used a pen-type device where there were force sensors
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to measure the force signal between the pen tip and the paper. After collecting the

force signals, they match them with the saved signals using Dynamic Time Warping

(DTW) method for verification. Bromley et al. came up with a time delay neural

network called "Siamese" where there were two identical sub-networks joined together

at their outputs and their setup contained pen-input tablet [41]. Most commonly used

sensors in the literature for signature verification are accelerometer, and gyroscope.

Shastry et al. designed a custom pen hardware consisting of accelerometer, gyroscope,

temperature, and magnetometer sensors to collect sensor data capturing dynamic

information of the signature such as, instantaneous acceleration, number of maxima

and minima, rotation, rotation time series and then the extracted features are stored

and a combination of dynamic time warping and hidden Markov models with Gaussian

mixtures is used as the classifier [42].

Secure application such as intruder detection is also an area which is being focused

in the recent era. Arjun et al. in their survey paper, explained the wireless sensor

network (WSN) techniques related to intruder detection and border surveillance [43].

The applications based on the WSN techniques mainly focus on different sensors

such as, seismic, acoustic, light, and surveillance camera. In [44], Al-qaness et al.

introduced a device-free intruder detection and alarm system where they leveraged

the channel state information (CSI) of COTS Wi-Fi to detect intruders. Alsalami

et al. also introduces a comprehensive study to detect intruders using visible light

communication [45] .

2.3 Photoplethysmography Smart Sensing

Photoplethysmogram is an optical measurement method which measures the changes

in the blood volume in tissue level. And the changes in the blood volume generally

occur due to cardiac cycles. A cardiac cycle helps run the blood flow through out the

human body. It consists of diastole and systole which are relaxation and contraction

of the heart muscles. As it flows throughout the body, it reaches the terminal parts



10

0 50 100 150 200 250 300 350 400
Sample Data

450

500

550

600

650

700

PP
G 

Se
ns

or
 R

ea
di

ng

Systolic Peak

Diastolic Peak

Dicrotic Notch

Figure 2.2: PPG readings for cardiac cycles.

of our body like, fingers, ear lobes, palms, and wrists. The optical method of Photo-

plethysmogram consists of light transmission via an optical LED and reception of the

reflected energy via a photo-diode. Mainly, it is getting the reading from just below

the surface of the skin where the blood change can be detected. PPG is considered

as a non-invasive technology. When plotted, the PPG sensor reflects the systolic and

diastolic peaks in its readings as shown in Fig. 2.2. The second derivative of this

PPG signal reading contains additional health-related information such as cardio-

vascular illness can be evaluated by analysing the waveform [46]. In general for the

LED, green color LED is selected, as it has the highest absorption capacity for both

oxyhaemoglobin and deoxyhaemoglobin with respect to other light sources [47].

The use of PPG sensor is frequently found in physiological measurements. Appli-

cations such as, measurement of blood pressure [48], heart rate and its variability

[49], blood oxygen saturation [50] or assessing and detection of respiratory and ar-

terial diseases [51], and monitoring of different health conditions. Over the past few

years, the health monitoring technologies have moved to wearable devices. And PPG

sensor is preferred over ECG sensor-based systems because of the simpler hardware

implementation, lower costs, and the requirement of only one sensor to measure the

data. PPG sensors are generally placed at some easily accessible anatomical positions

of the body such as, wrist, ear lobes, fingertip, and forehead.
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The forehead region is a good place for PPG sensing as it has a thin skin and a lot

of blood vessel passing all around it. This is the reason which reduces the effect of

motion artifacts by increasing the quality of the PPG signal reading [47]. Mendelson

et al. had experimented on forehead by placing an array of sensors mounted on a

soldier’s helmet to find out that the the signal is less noisy when the pressure between

the sensors and tissues is minimal [52]. One of the most frequently placed positions is

the earlobe for PPG devices. The ear lobes contain a large number of blood sources.

Poh et al. used an earring type setup for placing the PPG sensor on the earlobes [53].

In [47], the PPG sensor was installed inside an earphone and earbud for collecting

the reading. The PPG sensor can also be placed inside the ear canal where the signal

is less noisy compared to other location of the ear [54]. The most popular location to

place a PPG sensor is the wrist position. According to [47], wrist-type PPG devices

are popular because (1) wristband-type devices are inexpensive; (2) they are highly

portable; and (3) users find those convenient to wear.

In [55], Lee et al. placed the PPG sensor around the radial and ulnar arteries

in the wrist. Thomas et al. in [56], proposed a wristband-type PPG device called

"BioWatch" where there are two electrodes on the bottom of the device in contact

with the arm the device is worn on and there is another electrode on the opposite

side i.e. on the top of the device making contact with the other arm using any finger.

2.4 PPG Sensor-based Secure Applications

This section talks about the contribution of Photoplethysmography sensor based

systems to conduct reliable authentication process. PPG-based systems are efficient,

reliable, secure and non-intrusive. Some of the systems use oximeters to collect the

data and some use wrist-worn wearable which has the built-in PPG sensor [57, 58, 59,

60, 8, 61, 62, 63, 64, 1]. As wrist-worn wearable devices are on the increase and most of

them contains the PPG sensor, the research community is starting to understand the

importance of PPG-based smart sensing. Now, there is a great interest in biometric
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authentication on a smartwatch due to the fact that it is worn and is with the user

almost all the time. There are also some works based on other sensors embedded

in the smartwatches/fitness trackers e.g. motion sensors, accelerometer, gyroscope,

etc. But the problem of these systems are that a good amount of space is needed

for the user to perform certain gestures and thus take a lot of time for the whole

authentication process. So, it is not feasible for scenarios where fast authentication

is required or the user is not in a space to perform certain gestures.

In [65], Choudhary et al. proposed a novel Normalized Cross Correlation (NCC)

based PPG biometric method which is noise-robust and applicable for body area net-

works and m-health applications. The method firstly pre-processes the PPG signal

then the systolic peaks are detected. After that, the averaged pulsatile waveform is

extracted and finally similarity matching is done based on NCC measure. Karimian

used an adaptive quantization approach to extract PPG biometric-based key gener-

ation [66]. Firstly, a wavelet transformation is done and then from the output, the

reliable PPG features are only considered for the key generation phase. Yathav et al.

developed a custom made handheld device where they collected PPG signals besides

ECG signals as a robust hardware for on-the-go biometric identification [67]. For

their comparative analysis they considered heart rate variability as their basis. In

[60], Kavsaoğlu et al. considered running a feature ranking algorithm over the time

domain features extracted from the first and second derivative of the PPG signal and

passing it to a k-NN classifier model for the final identification.

As the popularity of wrist-worn wearable is increasing rapidly, research are being

done on wearable comprising PPG sensors. Spooren et al. in [57], implemented a

multi-factor authentication where at first they extracted an rPPG signal from the

facial video for liveness check and then finally the PPG signal is extracted from the

user’s smart watch. Zhao et al. for the first time introduced a low-cost Continu-

ous Authentication (CA) system by extracting PPG signal from wrist-worn wearable
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which represents the cardiac biometrics of an user [1]. In their system, they developed

such mechanisms which effectively identify and eliminate motion artifacts (MA) and

generate fiducial features to capture the uniqueness of the users’ cardiac patterns. An

adaptive gradient boosting tree based classifier was used to continuously authenticate

the users. In [64], Cao et al. besides presenting a two-factor authentication system

based on PPG sensing, also presented a two stage Motion Artifacts (MA) removal

algorithm to separate clean heartbeat signals. Their system does not have the re-

striction to the user to stay still during the process of authentication. They also have

a backup authentication method where if the biometrics fail, there is a repeatable

and non-invertible method to generate canceleable feature templates as alternative

credentials.

Though the PPG sensor measures the volumetric change in the blood flow, most

of the existing works consider extracting the pulse signal for further processing to

authenticate the users. Each work has its own set of features extracted and tried

implementing disparate classifiers to finally identify the legitimate users from the

illegitimate ones. In the first part of this dissertation, we will use PPG sensors for

signature authentication, which has not been done before.

2.5 Sensor-based Fitness Applications

So far we have talked about the backgrounds on smart sensing, secure sensing ap-

plications, PPG smart sensing, PPG sensor-based secure applications. For the final

section of the background chapter, we will be talking about sensor-based fitness ap-

plications. Over the recent years, studies have been conducted related to monitoring

and assessing stationary exercises using smart sensing techniques.

In order to recognize the type of exercises or physical activity, the number of

repetitions, sets, and phases, plenty amount of research has been conducted so far.

Qi et al. [68] proposed a two-layer recognition framework where stationary exercises,

aerobic, and free weight activities and sets & repetitions of free weight exercises were
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classified. Two Shimmer3 wireless wearable sensors were placed on the subject’s wrist,

and chest respectively. For sedentary activities, the chest is an ideal measurement

position as it is closer to the center of body mass and also the heartbeat can be

obtained. They also placed a sensor on the wrist to increase recognizer accuracy

as arm movements play an important role in most of the physical activities. In

[69], Pernek et al. implemented a hierarchical algorithm which is composed of two

layers of Support Vector Machines (SVMs). The first layer is to recognize which type

of exercises is being performed. And the second layer recognizes the intensity of the

exercise. A single SVM is used in the first layer to sever the purpose. After the type of

exercises is recognized, based on it, the second layer’s SVM predicts the corresponding

intensity which is mainly the intensity prediction for the previously predicted type of

exercise. The system focuses on a set of upper-body exercises using different weight

loads. Their system consists of COTS five wearable sensors and one smartphone

connected over Bluetooth into a piconet local area network. These systems had used

multiple wearable sensors as did [70] and [71]. Most recently, several sensing systems

[72, 73, 74], leveraging a single wearable sensor in one location, have been proposed

to determine the type of training exercises and identify sets, repetitions, and phases

in a workout.

There are also infrastructure-based solutions besides these wearable systems where

sensors such as cameras, RFID readers, WiFi access points are deployed in the envi-

ronment passively instead of directly on the objective body. For example, an acoustic

based personalized fitness monitoring system to classify fitness actions and also iden-

tify users along side was proposed by Xie et al. in [75, 76] where a smart speaker

and a microphone array are used for active acoustic sensing. Another example is a

work from Xiao et al. in [77] where back-scattered wireless signals are used that are

obtained at passive tags to detect and/or recognize macro/micro human movements

during the exercises.
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Besides the work on physical activity and performance recognition, there have also

been many works on the qualitative analysis of exercises using camera-based, wearable

device-based, or wireless device-based methods. It is very common for systems to use

Kinect in camera-based methods. Works such as [78, 79, 80, 81] leveraged Kinect

for monitoring fitness activities and demonstrating the users on how to improve the

performance. Ai et al. in [78], developed a real-time feedback system (RTFS) using

a Kinect sensor to capture the depth data. They also video-recorded the sessions

and digitized the data by the SIMI Motion system under the same reference system.

The comparisons of the displacements were almost similar. The feedback provided

by the system was like the maximal height of the bar, the trajectory of the bar, and

so on. They analyzed the data to track the movement of barbell. Yasser et al. [79]

leveraged an IR camera (Microsoft Kinect Xbox 360) to detect the misplaced joints of

the athlete while doing a lift, and alert the athlete before an injury can occur. They

used the Fast Dynamic Time Warping (FastDTW) method to detect if the lift was

correct or wrong and to detect what type of mistake has been made in the lift. They

worked on Shoulder Press, Deadlift, and Squat and focused on 6 joints for each of

them. 10 athletes aged from 20-30 years participated in the experiments. For most

of the wearable device-based methods, one or multiple wearable devices are carried by

the users during the exercises, and the sensing data from those wearable devices are

analyzed to understand the quality of the exercises performed by the users. Velloso

et al. [82] focus on the qualitative assessment of the exercise and providing feedback

to the user. They investigated three aspects - specifying correct execution, detecting

execution mistakes, and giving feedback to the user. They have used 3 types of sensors

- accelerometer, magnetometer, and gyroscope along the 3 axes and in 4 positions.

So, a total of 12 sensors were used for the dataset. They developed two systems

- one with ML techniques where they collected data from participants while they

performed exercises correctly and with different types of mistakes and the other one
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with a model-based approach. In Weight-Mate [83], a prototype wearable system

was designed for giving weightlifters of different skill levels personalized, precise and

non-distracting immediate feedback on how to correct their current body positioning

during deadlift training. They developed a wearable suit Weight-Mate suit consisting

of 14 IMU sensors. They generated a 3D model in UNITY based on the sensor

readings. They gave audio, visual, and textual feedback to the weightlifters based

on their postures while lifting the weights. Similarly, iCoach [84], FitCoach [85]

and GymSoles [86] can assess the quality of the workout leveraging a smart fitness

glove, smartwatch/smartphone mounted on upper arms, and an insole prototype,

respectively. Different wireless technologies such as acoustic, RFID, Wi-Fi can also

be used for assessing exercises qualitatively in case of wireless device-based methods.

For example, SEARE [87] leverages the Channel State Information (CSI) received

from Wi-Fi devices to evaluate the quality of the exercises.

One of the important features in the commonly available wearable devices such as

wristbands, smartwatches, and fitness watches is monitoring the heart rate during a

workout or even during daily routine activities. This is achieved by the contributions

from PPG sensor. But in our second work of this dissertation, different from all

these research, we investigate the quantitative side of a weight lifting activity. Our

proposed system focuses on the automatic recognition of the weight lifted by a user

using only a single wearable PPG sensor. To the best of our knowledge, we are the

first to address this specific quantitative analysis problem of a weight lifting activity

via smart sensing.



CHAPTER 3: PPG-BASED OFFLINE/ONLINE SIGNATURE

AUTHENTICATION (POSA)

3.1 Introduction

Fraudulent activities persist all over the world among which financial fraud is the

major one. Despite various prevention methods from the financial institutions, paper

checks continue to lead the way of transaction and they are susceptible to fraudulent

attacks. Besides paper checks, other important legal and financial documents still

require handwritten signatures to verify a person. And attackers try to forge those

signatures in order to by pass the system to conduct their fraudulent activities.

To help prevent these fraudulent activities, different types of authentication systems

have been proposed in the literature depending on the type of signature. Mainly, there

are two types of handwritten signatures - offline and online. Offline signatures are

the ones user give on a piece of paper with a pen. And online signatures are the

ones user give on an electronic device which might be a tablet or any other smart

device/hardware. Almost all the offline signature verification methods use image

processing in their systems to identify the correctness of the signature [88, 89, 90, 91,

92]. And for online signature verification, first the data is collected from the electronic

device on which the user is giving his/her signature to be authenticated. Then the

signature data is sent to be pre-processed and based on generated features a model is

trained which finally decides whether the signature is valid or not [93, 94, 95, 96, 97].

In this work, we have proposed a novel method for both offline and online signature

authentication which leverages the widely deployed PPG sensors in the wrist-worn

wearable devices. There have been some works regarding user authentication based

on PPG sensors. However, there are no existing works that deal with offline or online
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signature verification. The unique blood flow changes in the supplicant’s finger and

hand movement is being exploited in this system to validate the signature. The

motivation behind the idea are the limitations of existing works which are:

• Relies on dedicated devices [98, 99, 100, 101, 102, 103].

• Finger-worn devices are limited to gestures of a specific finger [104, 105, 106].

• Uses motion data of wearable to authenticate signatures [107, 108, 109].

These methods enjoy the low cost, non-intrusiveness, and easy deployment. How-

ever, many of them still require users’ extra effort (for calibration or training) and

suffer from low accuracy (due to environmental noises or different attacks). There-

fore, there is still a need for new low-cost, non-intrusive, pervasive, robust signature

authentication methods.

3.2 Problem Definition and Security Model

In this section, we first define the signature authentication problem and then in-

troduce the security model we used.

3.2.1 Signature Authentication Problem

The signature authentication problem is primarily a user verification problem but

based on signature. The handwriting analysis is a close field related to this problem

where the users’ handwriting is analysed to recognize different written letters or ges-

tures. In [110], Ardüser et al. proposed a framework which could recognize text data

collected from a smartwatch when writing on a whiteboard. Xu et al. had a system

where the users wrote on a sheet of paper and the platform would infer the letters

being written [111]. Signature can also be considered a type of handwriting as the

user is giving the signature using their hand. So, it can be said that the problem here

is authenticating a user after analysing the handwritten signature either on a sheet

of paper or on a smart device.
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Figure 3.1: A generalized signature authentication problem.

The problem of signature authentication is like any other authentication problem

in the field of security. Typically, a user gives his/her signature online/offline to

claim to be a certain person. The system should be such that it would be able to

verify the claim whether the user is a legitimate user or an illegitimate user. The

data for the signature can be collected in a lot of ways such as, using additional

hardware (e.g., cameras, signature pads, or custom-built sensors) or leveraging the

commercially off-the-shelf (COTS) smart devices (e.g., smartwatches or wristbands).

In our work, the data is the sensor reading of Photoplethysmography sensor and is

collected from the wrist-worn wearable device which contains the PPG sensor. The

trajectory of the used pen affecting the blood flow of the users’ wrist is taken into

consideration. The effect is reflected upon the PPG reading samples over the time.

Thus the signal can be represented as: S(n) where n = 1, 2, 3, ..., N and each of the

samples are separated at a time interval of 1/100 Hz or 0.01 seconds.

A user first registers into the system with his/her own signature. The system is

trained on that registered signature to create a model based on the features extracted

from that signature. Then when a new signature input is given into the device,

the system model based on the saved feature matrix decides whether the user is a
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Figure 3.2: POSA security model.

legitimate user or an attacker. Many consider it as a machine learning classification

problem. A general picture of the process can be seen in Fig. 3.1. In case of PPG-

based system, the input to the system model would be the PPG sensor’s data.

3.2.2 Security Model

As it is an authentication system, there will always be trusts and threats within the

system model. Our system tries to prevent fraudulent activities in scenarios where

an illegitimate user is trying to forge signature to claim to be a different person. The

whole security model consists of four main entities, which are mentioned below with

their trust assumptions:

• Users: This is the authorized or legitimate person who should be the only one

to be approved by the system. A user registers his/her signature in the system

wearing the smart watch with the PPG sensor built-in. The system trains on

those registered signatures to create a model which later verifies the user.

• Smart Devices: A smart device has the PPG sensor as a built-in sensor to

collect the PPG readings while the user/attacker gives the signature. It is
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generally a wrist-worn wearable device which is also suitable for our system.

Also, for collecting the online signatures, another device is considered where

the signature is given. In this work, it is assumed that the smart devices are

trustworthy.

• Server & Links: After completing the writing of the signature, the PPG

sensor data from the smart device is sent to the server for data processing

and verification. We assume that the server itself and the communication link

between the devices and the server are all trustworthy.

• Attackers: An attacker tries to forge the signature of the legitimate user to

bypass the system to do fraudulent activities. We assume that the attacker can

come close to the user and shoulder peek to observe the signature and the way

the user gives his/her signature.

The security model and how the authentication system operates to protect the

user is shown in Fig. 3.2. As you can see, the attacker tries to forge the signature

like the real user. Both the sensing data of the real user and attacker goes into the

authentication system but only the real user is approved and the attacker is rejected

by the system.

3.3 System Design

Now we introduce the overall system architecture and workflow of POSA.

3.3.1 System Architecture

The system architecture of POSA is shown in Fig. 3.3, which consists of four parts:

Data Collection, Data Segmentation, Feature Characterization, and Classification.

The wrist-worn wearable device is used to collect the signature data written either on

a sheet of paper or on a smart device screen in the data collection module. After the

collection of the data it is passed on to the data segmentation module where there are
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Figure 3.3: System architecture of POSA.

four steps of processing: noise filter, signal normalization, signature segmentation, and

signature separation. Noise filter has the ability to filter out the combined noises of

the signal. The signal normalization component normalizes any signal that comes into

it. Two very important components are signature segmentation and separation where

there are algorithms to segment the signature from the main data and then separate

the overlapped signature and pulse signal data. After the data segmentation module,

comes the feature characterization module which includes three main components:

feature extraction, relevant features, and feature matrix. This module mainly deals

with the extraction of relevant intrinsic characteristics of the input signal data that

can discriminate each user’s signature from another. Finally, the last module is the

classification module which is the foundation model of the system. The classifier

model is trained on the whole dataset of a user in order to classify a new incoming

signal into any of the two categories: legitimate user or attacker.
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3.3.2 Workflow

The workflow of POSA is illustrated in Fig. 3.4. There are primarily two main

phases for the system which are: Training Phase, and Authentication Phase. The

workflow of the system in light of the phases is discussed below.

Training Phase: In the training phase, every new user provides some sample sig-

natures of his/hers using their wrist-worn wearable device. The provided PPG sensor

signal data is then sent to the server-end from the user-end for each new user. After

the data collection whose details are discussed in Section 4.2, the data goes to the

Data Segmentation module. The noise from the raw data is first filtered & normalized

and passed on to the next step for segmentation & separation. The raw data contains

a mixture of pulse signal and signature motion artifact. In the segmentation stage,

the signature portion is segmented from the raw PPG data. Even though we segment

the signature portion, it contains a combination of both pulse signal and signature

artifact which is separated in the signature separation step. After receiving the pro-

cessed signature data, features are extracted and filtered according to relevance in

the feature characterization module mentioned in the previous Section 3.3.1. Feature

matrix is created based on the relevant features and stored in the database for each

user. The classifier is trained based on the feature matrix to create a model for each

user. The whole process can be related in analogy with the process of registering

a new vehicle under a user. The user provides all the necessary information to the

DMV to register his/her vehicle. Later if there is any scenario where the vehicle needs

to be inspected for example, if police stops the vehicle to check then all the previous

stored information is used to verify the user as the owner of the vehicle.

Authentication Phase: In the authentication phase, the data collection is done

in the same way as in the training phase. The user trying to gain access, would

provide the signature while wearing the wrist-worn wearable device. The data would

then be sent to the server-end for data processing which includes the noise filtering of
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the raw data, normalizing the data, segmenting the signature portion from the whole

collected signal, and finally separating the signature source from the combination of

signature and pulse signals. After that, the feature matrix is generated based on the

same feature extraction process mentioned in the training phase. Now, this feature

matrix is passed on to the pre-trained classifier model for validation of the user. Then

finally, the system lets the user know about the authentication result based on the

comparison of the feature matrix of the newly collected data with the stored feature

matrix of the legit user in the database.

3.4 Challenges

As this is an authentication-based system, the system should be able to validate

the fine-grained signatures of the users using the wrist-worn device for PPG signal

capture. In order to achieve that, there are primarily four challenges that needs to

be addressed.

3.4.1 Coarse-grained Wrist PPG Signals

PPG signals are relatively more coarse-grained, noisier, and interfere with other

signals than ECG signals. And wrist-worn PPG techniques are even more coarse-

grained. As it can be seen from Fig. 3.5, the critical landmarks are more detectable
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Figure 3.5: Example of PPG data from fingertip & wrist [1].

in the fingertip region based PPG signals while the landmarks in the wrist region are

not. This means, methods or systems that are applicable to fingertip PPG techniques

won’t be applicable to wrist PPG technique. Besides these, the signal is generally

contaminated with noises due to subtle hardware capture issues.

For handling this challenge, first we filtered the noise using different state of the art

filters which are discussed in Section 3.5. And as the landmarks are less detectable and

critical, we use various relevant feature extraction techniques to extract discriminating

features which makes the authentication system a fine-grained one. The details of

this feature extraction is explained in Section 3.6.

3.4.2 Different PPG Readings of Same User

This was one of the major challenges of the system initially when the plan was to

use some of the strategies of the state of the art user authentication systems such as,

[1], [64] where the user pulse is mainly considered for validating a user. In our system,

we want to verify the users based on the signature or it can be said that we wanted to

validate the signatures. If the whole signal is considered for validation which contains

the pulse signal along with the signature signal of the user then the major issue is

the variation of the PPG readings of the same user. As you can see in Fig. 3.6, the

left sub-figure and the right sub-figure have a big variation in the sensor reading even

though they represent the PPG sensor reading of the same user’s pulse signal. The

data is ranging between 430-610 in the left sub-figure and between 470-580 in the

right sub-figure. This study brings out the fact that it is not feasible to use the pulse
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Figure 3.6: Example of a user with different PPG pulse signal.

signal along with the signature signal for the signature authentication as the pulse

signal may vary due to the effect of pressure and emotions of the user.

As the same user has a different pulse signal in different situation, so we need to

segment the signature portion and the pulse signal portion from the whole signal and

remove the pulse signal portion so that the effect of pressure, and emotion is not a

problem anymore. The details of the segmentation process is explained in Section 3.5.

3.4.3 Effect of PPG Sensor Placement

Another important challenge for the system is the effect of the placement of the

PPG sensor. For our system, we built our own wrist-worn wearable device. For the

custom built wrist-worn device, the sensor was not attached to the Velcro band so,

we could change the position of the sensor according to our need. The details of the

hardware will be explained in Section 4.1.

Generally, the pulse signal of a user is measured from the radial artery, the right

red circle in the right sub-figure of Fig. 3.7. As the PPG sensor is generally used

for measuring heart rate, blood pressure, and pulse oximetry, existing applications

concentrate on the radial artery more. In our work, we focus on the minute movements

of fingers along with the hand itself while writing the signature. PPG sensor readings

vary if the placement of the sensor is effectively done. After a lot of iteration of

the placement of the PPG sensor, we found out that if the sensor is placed around
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Figure 3.7: Location for placement of the PPG sensor.

the Median Antebrachial Vein (left red circle in the right sub-figure of Fig. 3.7),

the readings would represent the significant motion artifacts occurring due to the

signature writing. The commercially available wrist-worn device is generally worn

with the sensor being placed on the posterior side of the wrist (shown in the leftmost

red circle in Fig. 3.7) but for this work, we wear it on the anterior side of the wrist

to cover the Median Antebrachial Vein to capture the minute motion artifacts caused

by the signature writing.

3.4.4 Overlapped Signature Signals

The final challenge is the overlapping of pulse signals with signature signals in

the overall received signal via the PPG sensor of the wrist-worn wearable device.

Existing works do not consider the case of overlapping of signals, rather they focus

on segmenting the motion artifacts part from the main signal [112, 1]. In our case we

have to consider the motion artifacts only not the pulse signal. And even if we are

able to segment the motion artifacts part i.e. the signature portion, there will be a

mandatory overlapping with the pulse signal because the user’s pulse is continuous.

A schematic example is shown in Fig. 3.8.

The removal of overlapping of these two signals is still a challenge that needs
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Figure 3.8: A schematic representation of POSA’s signal overlapping.

to be further studied. In PPGPass [64], the authors want to remove the motion

artifacts from the mixed signals to get the pure pulse signal for extracting intrinsic

discriminating features of a user. This algorithm demands two sources of input in

order to apply the blind source separation algorithms. One of our future work is to

introduce a novel algorithm that can separate the mixed signals from only one source.

Therefore, the signature separation part is not implemented in this dissertation.

3.5 Data Segmentation

In this section, we will see the details of the data segmentation module. As soon as

the data is collected via the wrist-worn wearable device, it is being sent to the server

for data processing and the first step that the data comes to, is the data segmentation

module. We have divided the data segmentation flow into the following three phases:

• Pre-processing

• Signature Segmentation

• Signature Separation

The flow of the data segmentation module is briefly shown in Fig. 3.9.
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Figure 3.9: A schematic representation of data segmentation module flow.

3.5.1 Pre-processing

The first phase of the data segmentation module is the pre-processing step. After

the PPG sensor data is collected using the wrist-worn device, the raw data is passed

on to the server for further processing. Before starting the segmentation phase, the

raw data needs to be pre-processed so as to be able to be worked on. The raw data

comes into the system as ".csv" formatted files. The two steps for working on the

data is noise filtering and data normalization which are discussed below.

Noise Filtering: Due to the user’s behavioral changes and surrounding environ-

mental changes, there are bound to be noises in the raw PPG data collected using

the wrist-worn wearable devices. Also because of hardware imperfections, there are

baseline drifts and high frequency interference in the PPG sensor readings [1].

The human heart rate is generally around 50-100 beats per minute [64]. That

means the frequency is ranging from 0.8 - 1.7 Hz. Initially, we applied high band

pass filter or Butterworth filter high cut-off with a frequency of 2 Hz. But we cannot

actually use these filters because the signature portion might have also some element

with low frequency which will get filtered and it should not be the case. So, for the

initial pre-processing, we focus on the noises mentioned in the previous paragraph.

To remove those noises, we apply a famous smoothing method called Savitzky-Golay

(S-G) Filter [113]. Fig. 3.10 shows the effect of the application of the S-G filter.
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Before applying the filter, you can see that the signal has some granular noises along

the trajectory which is smoothed in the right sub-figure after applying the S-G filter.

Savitzky-Golay filter can be called as a type of low-pass filter which is a smooth-

ing method based on local least-squares polynomial approximation. The polynomial

fitting of the sample points and the evaluation of it at a single point within the ap-

proximation is equivalent to discrete convolution with a fixed impulse response [114].

Savitzky and Golay were trying to smooth the data for Chemical spectrum analyzers.

The technique of theirs using the least squares polynomial approximation have not

only removed the noises but also was able to maintain the shape and height of the

peaks of the signal’s/sample’s waveform.
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Figure 3.10: Comparison after applying noise filtering method.

Data Normalization: After the noises were removed in the noise filtering step,

the noise filtered PPG data is passed on to the next step where the data is normalized.

After a lot of experiments, we saw that the PPG data is generally ranging from 400-

750. The range is quite big and different user have different variation of it within the

range. It is a good practice in general to normalize a data before further processing it.

The scale of data would be different resulting in a different scale of features for each

different user in the feature characterization module in Section 3.6. Normalization
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would handle this issue resulting in the training to be less of an problem to the scale

of the data/features. After normalization, the whole dataset is within the range of 0

to 1 which would ultimately make the features more consistent with each other for a

better training model. The effect of normalization is shown in Fig. 3.11 where the Y-

axis of the left sub-figure ranges from 450 - 700 and the Y-axis of the right sub-figure

is ranging from 0 to 0.03 which is within the range of 0-1. There are conditions for

convergence of data which can be satisfied easily if normalization is done beforehand.

To make an optimization problem work, the convergence problem can not have a big

variance. And Normalization process helps to keep the variance less which leads to

an optimized solution for an optimization problem. If the given signal is an array Y ,

and each data is yi where i ranges from 0 to n (the length of Y ), and the normalized

data is y′i then:

y′i =
yi −min(Y )

max(Y )−min(Y )
where, i = 0, 1, ..., n.

0 100 200 300 400 500
Sample Index

450

500

550

600

650

700

PP
G 

Se
ns

or
 R

ea
di

ng

Before Normalization

0 100 200 300 400 500
Sample Index

0.018

0.020

0.022

0.024

0.026

PP
G 

Se
ns

or
 R

ea
di

ng

After Normalization

Figure 3.11: Comparison after applying data normalization method.

3.5.2 Signature Segmentation

The second and the most important phase of data segmentation is the step of

signature segmentation. The raw data after being pre-processed i.e. after being noise
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filtered and normalized is passed on to this step according to Fig. 3.9. In this step,

the processed data is segmented in such a way that the signature portion of the data

is obtained as an output. As we mentioned before that this data is a mixed signal

of the pulse profile of the user and the signature motion of the user. So, even if we

are able to segment the signature portion, the signal data for that portion will be a

mixed signal.
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Figure 3.12: Segmentation of signature signal using Skewness-DTW method.

We have implemented multiple algorithms to segment the signature signals and run

the whole framework of the system after the segmentation. The first algorithm that

we designed is called the "Skewness-DTW" method. In this Algorithm 1, the input

is the filtered & normalized signal of the user and the output is the start and end

index of the signature portion of the signal. From Line 1 to 7 of the Algorithm 1, we

find out the start index of the signature portion based on the skewness values of the

signal with a fixed window size. After a lot of iterations, we found out that a window

size of 100 is a good fit for our system. The index of the minimum value of skewness

of the signal gives us the start point of the signature portion of the user. From

Line 8 to 16 of the Algorithm 1, we find out the end index of the signature portion

of the signal similar to [112]. This part of the Algorithm uses the Dynamic Time

Warping technique to find out the end point. In the beginning, it requires a pulse

profile of the user which is obtained from the first few seconds of the signal where the

user didn’t start writing his/her signature rather keeps their hand/wrist static. This



33

gives the system a portion of the signal which is just the pulse signal of the user. A

sliding window based approach is taken where the window size is considered to be the

average size of a single pulse of the user. In our case the pulse size was considered as

80. Each window of the signal was compared with the pulse profile of the user based

on the dynamic time warping method and a score was generated which indicates the

similarity between them. Finally, the end point was detected based on the minimum

value of the scores obtained via the DTW method. Thus, we get both the start and

end index of the signature portion of the signal using this "Skewness-DTW" method.

Fig. 3.12 shows an example of the output.
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Figure 3.13: Segmentation of signature signal using dynamic programming method.

We implemented two more algorithms which are offline change point detection

methods from [115]. The first algorithm is based on a dynamic programming and

the second algorithm is based on a modified binary search method. The methods

are shown in Algorithm 2 and Algorithm 3. In the Algorithm 2, the costs of all the

subsequences of the signal is computed at first and then the minimum of the sum

of the costs is calculated. In this process, the number of change points to detect

has to be predefined. After some iterations, we found out that when the number of

change points is 3, the accuracy of the segmentation is the best where the first and

last change points are the start & end points of the signature signal. Fig. 3.13 shows

an example of the output. The complexity of the Algorithm 2 is O(CKn2), where

C is the complexity of calling the considered cost function on one sub-signal , K is
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the predefined number of change points, and n is the number of samples of the given

signal.
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Figure 3.14: Segmentation of signature signal using binary segmentation method.

Algorithm 3 is a greedy sequential algorithm. It is greedy because it searches for

the point for which the sum of the costs gets lowered. After the first change point is

detected, the signal is split into two parts on that point. The algorithm is repeated

on the sub-signals until the stopping condition is satisfied. As it relates to the process

of binary search, it is called the Binary Segmentation method. The complexity of the

Algorithm 3 is O(Cn log n), where C is the complexity of calling the considered cost

function on one sub-signal , and n is the number of samples of the given signal. For

this algorithm, it is fine even if there are no predefined number of change points. But

after a lot of iterations, we found that the system gives the best output when the

number is predefined as 3 where the first and the last change points are the start &

end points of the signature signal. Fig. 3.14 shows an example of the output.

Another possible segmentation technique we intended to do is a design-based seg-

mentation method. This design-based method would broadcast a beep sound from

the wrist-worn wearable device to indicate the start time & end time of the writing

of the signature. By using this technique, we restrict the users to sign with a certain

time range that we have defined using the design of the beep sound. Now, as we

already know in which start time and end time the signature is in within the signal,

we can easily segment the signature portion from the main signal.
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Algorithm 1 Skewness-DTW Method
Input: Filtered & Normalized Signal S(n)
Output: Start and End index of Signature Portion of the signal
1: windowSize = 100
2: DECLARE skewList: LIST
3: for i = 0→ (length of S(n)− windowSize) do
4: value = SKEWNESS(S[i : (i+ windowSize)])
5: Append value to skewList
6: end for
7: startPoint = IndexOfMin(skewList)
8: pulseSize = 80
9: DECLARE scoreList: LIST

10: for i = 0→ (length of S(n)− pulseSize) do
11: pulseProfile = S[: pulseSize]
12: dataCompare = S[i : (i+ pulseSize)]
13: score = DTW (pulseProfile, dataCompare)
14: Append score to scoreList
15: end for
16: endPoint = IndexOfMin(scoreList)
17: return startPoint, endPoint

Algorithm 2 Dynamic Programming Method
Input: Filtered & Normalized Signal S(n)
Output: Start and End index of Signature Portion of the signal
1: Assign linearl1 to Cost Function
2: Fitting the signal based on the Cost Function
3: bkps = Calling Prediction function for breakpoints
4: startPoint = bkps[0]
5: endPoint = bkps[−2]
6: return startPoint, endPoint

3.5.3 Signature Separation

This subsection deals with the challenge mentioned earlier in Section 3.4.4. The

challenge was the overlapping of pulse signals with signature signals in the overall

received signal via the PPG sensor of the wrist-worn wearable device. The state of

the art systems do not consider the case of overlapping signals [112, 1]. Rather they

concentrate on the segmentation part only. In our case, the motion artifact portion is

the signature portion which is the main concern. Cao et al. in [64], even though they
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Algorithm 3 Binary Segmentation Method
Input: Filtered & Normalized Signal S(n)
Output: Start and End index of Signature Portion of the signal
1: Assign normal to Cost Function
2: Fitting the signal based on the Cost Function
3: bkps = Calling Prediction function for breakpoints
4: startPoint = bkps[0]
5: endPoint = bkps[−2]
6: return startPoint, endPoint

considered the overlapping of the signals, their concern was to get the pulse profile of

the user for authentication. But for our system, even if we are able to segment the

motion artifacts part i.e. the signature portion, there will be a mandatory overlapping

with the pulse signal because the user’s pulse is continuous. A schematic example

was shown in Fig. 3.8 before. The algorithm mentioned in [64] demands two sources

of input in order to apply a blind source separation algorithm. They have applied

a two stage motion artifact removal algorithm where the first stage uses a modified

semi-blind source separation (S-BSS) algorithm [116] to estimate the pulse signals

and the motion artifacts assuming the fact that they are linearly combined with each

other. In [64], green and infrared light data were used as the two sources for the

S-BSS algorithm. In the first stage of the algorithm, it was assumed that the signals

are linearly mixed but in reality they are not ideally linearly mixed for which Cao

et al. implemented an adaptive filter known as adaptive step-size least mean squares

(AS-LMS) to remove the motion artifacts [117].

To adopt this two stage algorithm we would need two sources of the signal. But

instead of removing the motion artifacts, in our case which is the signature portion, we

would store the signature portion as it is the main focus of our scope. Our developed

hardware prototype for collecting the PPG data from the user is compromised of only

a single PPG sensor. Thus the two-stage algorithm from [64] can not be applied in

this case. One of our future work is to introduce a novel algorithm that can separate

the mixed signals from only one source. For this dissertation, the signature separation
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Figure 3.15: Feature characterization module flow.

step was not implemented. Even without the signature separation step, our system

had satisfactory performance discussed in Section 4.3.

3.6 Feature Characterization

After the collected raw PPG data is being processed in the data segmentation

module and a noise filtered, normalized, and segmented signature signal is received,

the signature portion of the data is passed on to the Feature Characterization module.

The Feature Characterization module is divided into four phases:

• Feature Extraction

• Relevant Features

• Feature Matrix

• Classifiers

In this subsection, various PPG features are explored in order to facilitate the

signature authentication or one can say signature recognition for a certain user. Then

those features are built into a feature matrix which helps to build the classifier required

to classify the signature into either legitimate user or an attacker class. The flow of

the Feature Characterization module is briefly shown in Fig. 3.15.
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3.6.1 Feature Extraction

As we have the clean signature portion now, the feature characterizing process

can be started. The first step of the feature Characterization module is the feature

extraction of the signature PPG data. The PPG features that we focus on are the

time-domain features. For feature extraction, we used a software tool called TS-

FRESH [118]. TSFRESH is a python package that is used to automatically calculate

a huge number of time series characteristics or features. By using about 63 character-

ization methods, it computes more than 700 time series features in an accelerated way

compared to existing time-consuming processes. The clean and segmented signature

data is converted into suitable dataframe which could be processed by the methods

of tsfresh package. The features that tsfresh can extract are listed in Tables 3.1-3.4

[119].

3.6.2 Relevant Features

The second phase of the feature Characterization module is the relevant feature

selection. This means the proper selection of strong and weak features which is a

hard problem for a time-series classification. tsfresh incorporates a feature extrac-

tion process based on scalable hypothesis tests. It is really efficient, as it filters the

important features to be used for the machine learning model beforehand which helps

to train the model well as there are less percentage of irrelevant features.

The feature vectors that were generated in the previous step are all individually

tested to predict the labels in regards of their significance. The output of these tests

give a score vector for each feature vector. Later, these score vectors are evaluated on

the basis of the Benjamini-Yekutieli procedure to decide which features to be discared

and which features are important enough to be kept[120].

After running the tool, we found 763 features out of which 36 features were

selected as relevant features by TSFRESH. The selected features can be summarized
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Table 3.1: List of Extracted Features by tsfresh.

Features Description

abs_energy(x)
Returns the absolute energy of the time series which is
the sum over the squared values.

absolute_sum_of_changes(x)
Returns the sum over the absolute value of consecutive
changes in the series x.

agg_autocorrelation(x, param) Calculates the value of an aggregation function fagg.

agg_linear_trend(x, param)

Calculates a linear least-squares regression for values of
the time series that were aggregated over chunks versus
the sequence from 0 up to the number of chunks minus
one.

approximate_entropy(x, m, r)
Implements a vectorized Approximate entropy algo-
rithm.

ar_coefficient(x, param)
This feature calculator fits the unconditional maximum
likelihood of an autoregressive AR(k) process.

augmented_dickey_fuller(x,
param)

The Augmented Dickey-Fuller test is a hypothesis test
which checks whether a unit root is present in a time
series sample.

autocorrelation(x, lag) Calculates the autocorrelation of the specified lag.
benford_correlation(x) Useful for anomaly detection applications.

binned_entropy(x, max_bins)
First bins the values of x into max_bins equidistant
bins.

change_quantiles
(x,ql,qh,isabs,f_agg)

First fixes a corridor given by the quantiles ql and qh

of the distribution of x.

cid_ce(x, normalize)
This function calculator is an estimate for a time se-
ries complexity (A more complex time series has more
peaks, valleys etc.).

count_above(x, t)
Returns the percentage of values in x that are higher
than t.

count_above_mean(x)
Returns the number of values in x that are higher than
the mean of x.

count_below(x, t)
Returns the percentage of values in x that are lower
than t.

count_below_mean(x)
Returns the number of values in x that are lower than
the mean of x.

cwt_coefficients(x, param)
Calculates a Continuous wavelet transform for the
Ricker wavelet, also known as the “Mexican hat
wavelet”.
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Table 3.2: Continued List of Extracted Features by tsfresh.

Features Description

energy_ratio_by_chunks(x,
param)

Calculates the sum of squares of chunk i out of N

chunks expressed as a ratio with the sum of squares
over the whole series.

fft_aggregated(x, param)
Returns the spectral centroid (mean), variance, skew,
and kurtosis of the absolute fourier transform spectrum.

fft_coefficient(x, param)
Calculates the fourier coefficients of the one-
dimensional discrete Fourier Transform for real
input by fast.

first_location_of_maximum(x) Returns the first location of the maximum value of x.
first_location_of_minimum(x) Returns the first location of the minimal value of x.

fourier_entropy(x, bins)
Calculate the binned entropy of the power spectral den-
sity of the time series (using the welch method).

friedrich_coefficients(x, param) Coefficients of polynomial h(x).
has_duplicate(x) Checks if any value in x occurs more than once.

has_duplicate_max(x)
Checks if the maximum value of x is observed more
than once.

has_duplicate_min(x)
Checks if the minimal value of x is observed more than
once.

index_mass_quantile(x,
param)

Those apply features calculate the relative index i

where q% of the mass of the time series x lie left of
i.

kurtosis(x)
Returns the kurtosis of x (calculated with the adjusted
Fisher-Pearson standardized moment coefficient G2).

large_standard_deviation(x, r)
Boolean variable denoting if the standard dev of x is
higher than ‘r’ times the range = difference between
max and min of x.

last_location_of_maximum(x)
Returns the relative last location of the maximum value
of x.

last_location_of_minimum(x) Returns the last location of the minimal value of x.
lempel_ziv_complexity(x,
bins)

Calculate a complexity estimate based on the Lempel-
Ziv compression algorithm.

length(x) Returns the length of x.

linear_trend(x, param)
Calculate a linear least-squares regression for the values
of the time series versus the sequence from 0 to length
of the time series minus one.

linear_trend_timewise(x,
param)

Calculate a linear least-squares regression for the values
of the time series versus the sequence from 0 to length
of the time series minus one.

longest_strike_above_mean(x)
Returns the length of the longest consecutive subse-
quence in x that is bigger than the mean of x.
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Table 3.3: Continued List of Extracted Features by tsfresh.

Features Description

longest_strike_below_mean(x)
Returns the length of the longest consecutive
subsequence in x that is smaller than the mean
of x.

max_langevin_fixed_point(x, r, m)
Largest fixed point of dynamics
:math:argmax_x h(x)=0‘ estimated from
polynomial h(x).

maximum(x)
Calculates the highest value of the time series
x.

mean(x) Returns the mean of x.

mean_abs_change(x)
Returns the mean over the absolute differences
between subsequent time series values.

mean_change(x)
Returns the mean over the differences between
subsequent time series values.

mean_second_derivative _central(x)
Returns the mean value of a central approxi-
mation of the second derivative.

median(x) Returns the median of x.

minimum(x)
Calculates the lowest value of the time series
x.

number_crossing_m(x, m) Calculates the number of crossings of x on m.

number_cwt_peaks(x, n)
This feature calculator searches for different
peaks in x.

number_peaks(x, n)
Calculates the number of peaks of at least sup-
port n in the time series x.

partial_autocorrelation(x, param)
Calculates the value of the partial autocorre-
lation function at the given lag.

percentage_of_reoccurring_datapoints_
to_all_datapoints(x)

Returns the percentage of non-unique data
points.

percentage_of_reoccurring_values_to_
all_values(x)

Returns the percentage of values that are
present in the time series more than once.

permutation_entropy (x,tau,dimension) Calculate the permutation entropy.
quantile(x, q) Calculates the q quantile of x.

range_count(x, min, max)
Count observed values within the interval
[min, max).

ratio_beyond_r_sigma(x,r)
Ratio of values that are more than r ∗ std(x)
(so r sigma) away from the mean of x.

ratio_value_number_to_time_series_
length(x)

Returns a factor which is 1 if all values in the
time series occur only once, and below one if
this is not the case.

sample_entropy(x) Calculate and return sample entropy of x.
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Table 3.4: Continued List of Extracted Features by tsfresh.

Features Description

set_property(key, value)
This method returns a decorator that sets the
property key of the function to value.

skewness(x)
Returns the sample skewness of x (calculated
with the adjusted Fisher-Pearson standard-
ized moment coefficient G1).

spkt_welch_density(x, param)
This feature calculator estimates the cross
power spectral density of the time series x at
different frequencies.

standard_deviation(x) Returns the standard deviation of x.

sum_of_reoccurring_data_points(x)
Returns the sum of all data points, that are
present in the time series more than once.

sum_of_reoccurring_values(x)
Returns the sum of all values, that are present
in the time series more than once.

sum_values(x) Calculates the sum over the time series values.

symmetry_looking(x, param)
Boolean variable denoting if the distribution
of x looks symmetric.

value_count(x, value) Count occurrences of value in time series x.
variance(x) Returns the variance of x.
variance_larger_than_standard_
deviation(x)

Boolean variable denoting if the variance of x
is greater than its standard deviation.

variation_coefficient(x)
Returns the variation coefficient (standard er-
ror / mean, give relative value of variation
around mean) of x.



43

Table 3.5: List of Relevant Features selected by tsfresh.

Features Description

count_below_mean(x)
Returns the number of values in x that are lower than
the mean of x.

number_peaks(x, n)
Calculates the number of peaks of at least support n in
the time series x.

range_count(x, min, max) Count observed values within the interval [min, max).

fft_coefficient(x, param)
Calculates the fourier coefficients of the one-
dimensional discrete Fourier Transform for real
input by fast.

number_cwt_peaks(x, n) This feature calculator searches for different peaks in x.

absolute_sum_of_changes(x)
Returns the sum over the absolute value of consecutive
changes in the series x.

agg_linear_trend(x, param)

Calculates a linear least-squares regression for values of
the time series that were aggregated over chunks versus
the sequence from 0 up to the number of chunks minus
one.

linear_trend(x, param)
Calculate a linear least-squares regression for the values
of the time series versus the sequence from 0 to length
of the time series minus one.

into primarily 8 features which are shown in Table 3.5.

3.6.3 Feature Matrix

Now that we have all the extracted features and selected relevant features of the

user’s signature signal, we work on the third phase of the feature characterization

module which is feature matrix. After collecting n calibrating sample signals from

a user, the relevant 36 features are generated for each sample. The next step is

feature scaling which is one of the most important step before passing the data onto

training a classifier. Different machine learning algorithms are insensitive to the scale

of diversified features. Each feature value might have a different range either a higher

value or a lower value. But if feature scaling is done then the convergence for the

machine learning algorithms is faster. In our system, for feature scaling, we use

standardization of the data. Say, the new value for a certain feature is Ynew then:
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Ynew =
Y − mean

Standard Deviation
.

After standardizing the features, we form a 2D matrix of the dimension n ∗ 36

where each row represents the signature sample data and each column represents a

selected relevant feature.

3.6.4 Classifiers

The final and the most important step of Feature Characterization module is build-

ing and training the classifiers. So far we have collected the raw PPG data then noise

filtered it, normalized it, segmented the signature portion, extracted the features,

selected the relevant features, standardized the features, and generated a feature ma-

trix. Now we train the model based on this feature matrix to build a classifier. For

our classifiers, we tested on the following standard classifiers:

• Random Forest (RF)

• Support Vector Machine (RBF Kernel)

• Gradient Boosting (GB)

• k-nearest neighbor (kNN)

• Multilayer Perceptron (MLP)

• Feed-Forward Neural Network (NN)

• OnevsRest (OvR)

These classifiers will determine whether the new input signature PPG data belongs

to a legitimate user or an attacker.



CHAPTER 4: POSA IMPLEMENTATION AND EVALUATION

In this chapter, we discuss the implementation of the so far discussed modules of the

POSA system and the subsequent evaluation of the system’s different pre-mentioned

classifiers based on the experiments.

4.1 Experimental Setup

This subsection explains the implementation of the experimental setup that we

built for our experiments. The experimental setup has two folds: POSA Band and

Server. The POSA Band is built from the scratch from commercially off-the shelf

components and the server is set up on a commercially off-the shelf laptop. The

details of these setups are further discussed below in Section 4.1.1 and Section 4.1.2.

4.1.1 POSA Band

The commercially available smart watches and fitness trackers though they use

PPG sensors to measure the heartbeat/pulse, most of them do not provide access to

the raw PPG data. For this reason, the first device that we use for our experiments is

a low-cost proof-of-concept prototype, designed and implemented by us and we named

it as “POSA Band”. This POSA Band would try to imitate the wrist-worn wearable

devices to validate the feasibility of POSA. The different components of POSA Band

is shown in Fig. 4.1. The prototype that we developed consists of a velcro wristband,

a PPG sensor with a green LED (as green LED performs the best), a USB cable (to

connect the micro-controller to the server), an Arduino UNO micro-controller, and a

slide switch to start and stop collecting data.

The PPG sensor is from “World Famous Electronics llc.” and has three wires

connected to it which are red, black, and violet. The red wire has to be connected
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to the 5V port of the Arduino and the black & violet wire have to be connected

to the Ground port and Pin A0 of the Arduino. For the slide switch to work it was

connected to the 3.3V port and the other ends were connected to the GND and pin 12

of the micro-controller. The USB cable is connected as the communication between

the Arduino and the server which is a Dell Inspiron 15 laptop in our case. The pulse

sensor is strapped to the Velcro band so that it remains facing towards the wrist when

the Velcro band is worn on the wrist to imitate the commercially available wrist-worn

wearable.

Velcro 
WristBand

PPG Sensor

USB Cable

Arduino UNO

Slide Switch

Figure 4.1: Overall hardware setup for data collection via POSA band.

4.1.2 Server

In our system, we used a Dell Inspiron 15 7000 laptop as our server which has a 16

GB RAM, Intel(R) Core(TM) i7-7700HQ CPU @ 2.80GHz, 2801 Mhz, 4 Core(s), 8

Logical Processor(s), & a NVIDIA GeForce GTX 1050 Ti GPU.

The processing modules of POSA are all programmed into the server in Python 3.8.3.

Algorithm 2 and Algorithm 3 were implemented using the library package called “rup-
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tures” mentioned in [115]. For feature extraction, we used a package called “tsfresh”

mentioned in [118]. For building the different types of classifiers, we used the python

package scikit-learn [121].

4.2 Data Collection

In this section, we discuss how the POSA Band (Section 4.1.1) is used to collect

the user’s raw PPG data while writing the signature.

The user is seating on a chair resting his/her hand on a piece of paper on which

he/she will provide the signature with a pen or it can also be the case that the user is

resting the hand on a smart device screen on which he/she will provide the signature

with a digital pen. The POSA band is wrapped around the wrist of the user with the

PPG sensor facing towards the Median Antebrachial vein discussed in Section 3.4.3.

The data collection setup is shown in Fig. 4.2.

Server 
(Laptop)

PPG Sensor

USB Cable

Arduino UNO

Slide Switch

Velcro Band

Figure 4.2: Data collection using the POSA band prototype.

After the slide switch is pressed, the raw stream of PPG data at a sample rate of

97.5 Hz starts flowing to the server from the PPG sensor via the Arduino micro-

controller. In the server side, a software called “TeraTerm” , which is a computer
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terminal program and supports Serial Port connections, is used. TeraTerm captures

the raw PPG data coming via the serial port connection and saves it into a “.csv”

formatted file. This “.csv” formatted file is then passed on to the advanced signal

processing and artificial intelligent algorithms implemented in Python 3.8.3.

For this dissertation, we designed the experiment with pen and paper-based signa-

tures and did not include the digital signatures or online signatures. As our system

relies on the minute movements of the user’s fingers and hand movement during a

signature writing, logically, it should have the same performance for both offline and

online signature authentication. Because of the logistic limitations being created due

to the COVID-19 pandemic situation at the time, 5 healthy volunteers participated

in the experiment. Participants take part in 6 sessions of signature writing. During

each session, the participants provide 20 valid signatures of themselves, and 10 ran-

dom forgeries and 10 skilled forgeries against each of the other four users. We adopt

the same definition of random and skilled forgeries from [107]. In random forgeries,

the attacker does not know the legitimate user’s signature, while in skilled forgeries

the attacker trains on the claimed user’s signature.

4.3 Evaluation

Extensive performance evaluation has been conducted on our POSA system. For

the evaluation, we have tested the data collected via POSA Band on multiple clas-

sifiers with the different splitting of training and test data. In our work, we adopted

the user-specific model training where a model is trained for each user. In the eval-

uation, random forgery and skilled forgery attacks on the legitimate user from other

users were primarily focused upon. In addition to these evaluations, we also tested

a special case of attack where the legitimate user fakes his signature. We perform

tests on three signature segmentation algorithms from Section 3.5 and all classifiers

mentioned in Section 3.6.4. For splitting training and test data, we use a different

portion of samples as the training data, from 20% up to 80%.
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4.3.1 Metrics

For the quantitative analysis of the system, three main metrics were selected which

are mentioned below:

Precision: Precision is the ratio of correctly predicted positive values to the total

predicted positive values.

Precision =
TP

TP + FP
.

Recall: Recall is the ratio of correctly predicted positives values to the actual

positive values.

Recall =
TP

TP + FN
.

F1 score: F1 score is a ratio of the positive and negative class. The formula for

F1 score is as follows:

F1 =
2 ∗ Precision ∗Recall
(Precision+Recall)

.

Here, TP = True Positive, FP = False Positive, and FN = False Negative.

For our system, high recall and low precision values mean that the positive cases i.e.

the legitimate users are recognized but there are a lot of false positives i.e. approves

illegitimate users. On the other hand, low recall and high precision values mean that

the system has low false positives but high false negatives.

4.3.2 Performance

We have conducted performance evaluation on our current POSA system. For the

evaluation, we tested the data collected via POSA Band on multiple classifiers with

different splitting of training and test data. The classifiers that were used are Ran-

dom Forest (RF), Support Vector Machine (SVM) (RBF Kernel), Gradient Boosting

(GB), k-nearest neighbor (kNN), Multilayer Perceptron (MLP), Feed-Forward Neu-

ral Network (NN), and OnevsRest (OvR). Three types of segmentation techniques

were used which are Algorithm 1, Algorithm 2, and Algorithm 3. Next we report the
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detailed experimental results based on the impacts of different factors, such as types

of segmentation methods, classifiers, training sizes, placement of the sensor, attack

from same user, and different surfaces. All the results are based on the random and

skilled forgery attacks except "attack from same user".

Impact of Segmentation Methods: In Section 3.5, three segmentation algo-

rithms (Algorithm 1, Algorithm 2, and Algorithm 3) were introduced. The average

performance of POSA for the segmentation methods with all the classifiers when the

dataset was split into 60% training and 40% testing is shown in Fig. 4.3. Skewness-

DTW and Dynamic Programming-based segmentation methods achieves an F1 score

of 92% and 93% respectively. So, we can say that these two methods both performed

well. In the rest of our evaluations, the results where the Skewness-DTW method is

used, is reported.
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Figure 4.3: Performance of POSA for different segmentation algorithms averaged over
all classifiers with 60% training data.

Impact of Training Sizes: In our experiment, for the training size of the data, we

chose different percentages of the data. The average performance of Skewness-DTW

segmentation method and all the classifiers when training data size is from 20% to

80% is shown in Fig. 4.4. The average F1-score increases from 86% to 94% overall

when the size of the training dataset is increased. This also proves the fact that our
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system can achieve a reasonable performance even with a lower training size.
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Figure 4.4: Performance of POSA for different training size varying from 20%-80%
averaged over all classifiers.

Impact of Classifiers: In our system, we compare 7 commonly used classifiers:

Random Forest (RF), Support Vector Machine (RBF Kernel), Gradient Boosting

(GB), k-nearest neighbor (kNN), Multilayer Perceptron (MLP), Feed-Forward Neural

Network (NN), and OnevsRest (OvR). The classifiers are considered under Skewness-

DTW segmentation and with a training size of 80%. The F1-scores for each classifier

are shown in Fig. 4.5. According to Fig. 4.5, Feed-forward Neural Network (NN)

performed the best with an F1 score of 98% while Random Forest (RF), Gradient

Boosting (GB) and OnevsRest (OvR) perform well consistently. The average per-

formance for RF, GB and OvR over all the segmentation methods are 95%, 96%,

and 95% respectively. As of now, multiple classifiers are performing well and one of

our future work is to incorporate ensemble learning where these multiple classifiers

will be combined conceptually. Then each classifier will return a label for the given

data and the label that gets the most votes from the classifiers would be returned by

the ensemble classifier as the final predicted label. As multiple models are used for

ensemble learning, the probability of getting better predictive performance increases.

Impact of Placement of Sensor: As we mentioned earlier in Section 3.4.3,
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Figure 4.5: Performance of POSA for different classifiers (Skewness-DTW segmenta-
tion with 80% training data).

one of the challenges of the system was the placement of the sensor within the wrist

area. In general, for pulse measurement PPG sensors are placed near the radial artery

which is conventionally considered for measuring heart rate, blood pressure, and pulse

oximetry. But for minute finger movements, the change in blood flow in Median An-

tebrachial Vein (left red circle in the right sub-figure of Fig. 3.7) region is most likely

to occur. Also, in smartwatches/fitness trackers the sensors are beneath the watches

and it is worn on the posterior side of the wrist. We also placed the sensor on that

side of the wrist to see the feasibility for our system. A preliminary result of the

comparison of the signature portion signal for different placement of the PPG sensor

is shown in Fig. 4.6. As you can see, even though the same user wrote the same

signature, for different location the signature portion is different. It is really hard to

distinguish the signature portion from the pulse signal in case of Radial Artery and

Posterior Wrist-side data. But when the placement of the PPG sensor is around the

Median Antebrachial Vein, the signature portion is very distinguishable among the

pulse signals. This proves the feasibility of the placement of the PPG sensor around

the Median Antebrachial Vein region for our system. Such placement is also feasible
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since the user can rotate the smartwatch/tracker 180o so that its PPG sensor faces

the anterior side of the wrist when writing the signature.
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Figure 4.6: Comparison of the signature portion of the three different locations of
PPG-sensor placement (a) median antebrachial vein (b) radial artery (c) posterior
wrist-side.

Impact of Surface: The matter of surface comes into place for the offline signature

scenario where the user is signing on a document placed on a certain surface. For

online scenario, conventionally the option is the same where you need to sign using a

digital pen on either a smart device screen (Resistive or Capacitive) or a digital screen.

In case of offline signatures, the signing happens on a piece of paper, though the

surface the paper is placed on might be different such as, plastic, wood, granite, and

metal. For evaluating the impact of different surfaces, we collected 30 new samples

for each type of surfaces . A preliminary result of the performance of the system

for different surfaces based on Skewness-DTW segmentation method are shown in

Fig. 4.7. As we can see from Fig. 4.7, the performance of the POSA system is almost

the same in each of the scenarios which means there is no impact of surfaces on the

system unless the surface is really uneven for which the finger, and wrist movements

are irregular.

Attack from Same User: This is a unique type of attack where the user himself

is trying to falsify signing the document in the system by signing other than his

signature. For example, a user is legitimately ordered to sign a document which

he/she does not want to sign. So the user tries to forge his own signature to escape

from the situation. Our system shows a promising performance to handle this type of
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Figure 4.7: Performance of POSA on the three different surfaces (a) wood (b) metal
(c) plastic.
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Figure 4.8: Performance of POSA under attacks from the same user.

attack. Here, for each user’s dataset, only his invalid signatures are used as the forged

signatures. The result is shown in Fig. 4.8, with near 80% scores for 20% training

data.



CHAPTER 5: PPG-BASED WEIGHT LIFTING ASSESSMENT (PaWLA)

5.1 Introduction

An important key to a healthy life is Physical Activity (PA) which reduces the

possibility of having different kinds of chronic disease such as, cardiovascular diseases,

hypertension, obesity, depression, diabetes, muscular tissue damages, and respiratory

illness. Among the PAs, stationary exercises such as, strength training is an important

part of routine workout sessions [122]. Another important thing is to be aware of the

intensity of the performed exercise to receive the full advantage of the training. Many

research and investigation has been done in both industry and academia to recognize

the intensity of stationary exercises like strength training. Different systems used

different modality to serve the purpose like video, garment, and wearable sensor

[123, 124, 70].

Besides physical activities, there are different scenarios where a person needs/wants

to be aware of the quantitative intensity of the strength activity like weightlifting. For

example, when a woman is pregnant she does not want be in such a situation where

she is lifting a highly weighted object because she is not aware about the quantitative

intensity of the physical act. Another scenario can be for a daily labor working in a

construction site. For his daily work, he might need to lift weighted objects but there

is obviously a certain amount of weight that he should never exceed to avoid suffering

from muscle strains.

Currently, some works deal with only the qualitative part of the strength training

or weight lifting exercises [82, 68]. But Pernek et al. in [69], evaluates their system

based on different weight loads for a set of upper body exercises. Though they deal

with the quantitative observation of the strength training, it is not the objective
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one rather their system incorporates a subjective measure of the intensity by asking

the participants to self-assess the intensity of the exercise using the Borg’s rating

of perceived exertion (RPE). The motivation behind our idea are the limitations of

existing works which are:

• Relies on multiple sensors [69, 68].

• Deals with only the qualitative part of the strength training [82, 68].

• Works with the subjective measurement of the intensity during quantitative

analysis [69].

Therefore, in our work, we rely on a single sensor and focus on the quantitative

part of the weight lifting activity. Our system is named PaWLA which is elaborated

as PPG-based Weight Lifting Assessment.

5.2 Problem Definition

The strain sensing problem is physically a weight recognition problem where differ-

ent weights have different strain effect on the users’ muscles or body. Typically, a user

lifts a certain amount of weight using his/her hand in a scenario for example, during

workout or during any chores. Thus, the hand muscles of the user is tightened a bit

which causes a certain amount of strain which might be tolerable or not tolerable to

the user depending on the amount of weight of the object. Generally, a person knows

the amount of weight he/she can comfortably lift and which amount of weight he/she

can lift but has to suffer from strain effect or muscle fatigue.

The system should be such that it would be able to recognize the weight of the

lifted object. Each user will have a certain predefined threshold for avoiding strenu-

ous effect while lifting a weight. If the recognized weight is crossing the predefined

threshold then the system should alert the user that the lifted object is going to put a

strenuous effect on the user’s muscles. Conventionally, a smart sensing system would
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be applicable for addressing a problem like this where automation is required to per-

form an activity after recognizing the weights. The workflow for this type of system

would as follows. The sensor will capture the user’s data which reflects the activity

of lifting the object. Based on that captured data from the sensor, the system will be

able to recognize the weight label. In order to achieve a good accuracy for a system

as this, training data is required so that the model of the system can be trained well

to classify the weight labels correctly.

The data for the system can be collected in a lot of ways such as, using addi-

tional monitoring hardware setup to get the sensing data (e.g., cameras, acoustic

sonars, or custom-built sensors), putting smart sensors on the hand/arm, or lever-

aging the commercially off-the-shelf (COTS) smart devices (e.g., smartwatches or

fitness-wristbands). In our work, the data is the sensor reading of Photoplethysmog-

raphy sensor and is collected from the wrist-worn wearable device which contains the

PPG sensor. The lifting of the object affecting the blood flow of the users’ wrist is

taken into consideration. The strain effect would cause changes in the blood volume

reflected upon the PPG reading samples over the time. Fig. 5.1 shows an example of

two PPG readings for lifting two different weights.
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Figure 5.1: PPG sensor readings for lifting weights of 4 lb and 5 lb.

For the system to kick start, volunteers provide PPG sensing data of lifting objects

of different weights while wearing the given wrist-worn wearable device. The system
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is trained on that volunteered PPG data to create a model based on the features

extracted from those weightlifting signals of varied weights. Then when a new signal

input is given into the device, the system model based on the saved feature matrix

decides which weight label the input signal falls into. It is mainly considered as a

multi-class machine learning classification problem. A general picture of the process

can be seen in Fig. 5.2. In case of PPG-based system, the input to the system model

would be the PPG sensor’s data.
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Figure 5.2: A generalized strain sensing problem.

5.3 System Design

In this section, we present the system design of our proposed work which includes

the architecture and the workflow of the overall PaWLA system.

5.3.1 System Architecture

The system architecture of PaWLA is shown in Fig. 5.3, which consists of four

parts: Data Collection, Data Processing and Trimming, Feature Characterization,

and Classification. In the data collection module, when the user is lifting an object

with a certain weight, the wrist-worn wearable device with a single PPG sensor is

used to collect the PPG data. After the collection of the data, it is passed to the data
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processing and trimming module where there are three steps of processing: noise fil-

ter, signal normalization, and signal trimming. Noise filter has the ability to filter out

the combined noises of the signal. The signal normalization component normalizes

any signal that comes into it. The normalized signals are trimmed in such a way that

all the disturbances caused by the slide switch (used for starting/stopping data collec-

tion) are removed. After the data processing and trimming module, comes the feature

characterization module which includes three main components: feature extraction,

feature selection, and feature matrix. This module mainly deals with the extraction

of relevant intrinsic characteristics of the input signal data that can discriminate each

weight label from another. Finally, the last module is the classification module which

is the foundation model of the system. The classification model is trained on the

whole dataset of different weight labels in order to classify a new incoming signal into

its corresponding proper weight labels.
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Figure 5.3: System architecture of PaWLA.
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Figure 5.4: Workflow of PaWLA.

5.3.2 Workflow

The workflow of PaWLA is illustrated in Fig. 5.4. There are primarily two main

phases for the system which are: Training Phase, and Recognition Phase. The work-

flow of the system in light of the phases is discussed below.

Training Phase: In the training phase, volunteers provide some sample weightlift-

ing signals using the wrist-worn wearable device. The provided PPG sensor signal

data is then sent to the server-end from the user-end. After the data collection, the

data goes to the data processing and trimming module. The noise from the raw

data is first filtered and normalized and passed on to the next step for trimming.

After receiving the processed weightlifting data, features are extracted and filtered

according to relevance in the feature characterization module mentioned in previous

Section 5.3.1. Feature matrix is created based on the relevant features and stored in

the database. The classifier is trained based on the feature matrix to create a model

for each user. All the models are stored in the server for the recognition phase.

Recognition Phase: In the recognition phase, the data collection is done in the

same way as in the training phase. The user trying to lift an object, would provide

the PPG data while wearing the wrist-worn wearable device. The data would then

be sent to the server-end for data processing which includes the noise filtering of the
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raw data, normalizing the data, and trimming the signal data. After that, the feature

matrix is generated based on the same feature extraction process mentioned in the

training phase. Now, this feature matrix is passed on to the pre-trained classifier

model for classifying the input data to its corresponding weight label. Then finally,

the system lets the user know about the corresponding weight label for the lifted

weight based on the comparison of the feature matrix of the newly collected data

with the stored feature matrices in the database.

5.4 Challenges

Primarily, there are three challenges that needs to be addressed in order to rec-

ognize the lifted weights using the captured PPG signals from a wrist-worn device

successfully. These are discussed one by one below.

5.4.1 Coarse-grained Wrist PPG Signals

This challenge is similar to the first challenge discussed in our first work in Section

3.4. Compared to electrocardiogram (ECG) signals, PPG signals suffer more noises

and interference with other signals [1]. It is even more coarse-grained when the

location of the PPG sensor is in the wrist region. In clinical settings, the conventional

technique is to use the fingertip region-based PPG technique, as the critical landmarks

are more detectable. It is relatively harder to detect the critical landmarks in the wrist

region. This indicates the fact that the techniques used for the fingertip PPG systems

will not be applicable to the wrist region PPG techniques. The stray effects of the

AC current fields may cause power line interference due to the cable loops or issues

in the electrodes. In Section 5.5, we will design our noise filtering module to tackle

this challenge and extract critical landmarks. We also propose a feature extraction

module in Section 5.6 to extract discriminating features to make the recognition

system a fine-grained one.
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5.4.2 Effect of PPG Sensor Placement

It is to be noted that the performance of a system can vary based on the placement

of the PPG sensor as PPG readings vary at different locations. In order to observe the

effects of placement of PPG sensor at different locations, we have built our own pro-

totype where we can change the position of the PPG sensor to our desired locations.

The sensor was placed around the Median Antebrachial Vein (bottom red circle in

the right sub-figure of Fig. 3.7) in PPGSign [125], as the purpose of the system was to

capture the minute movements of fingers along with the hand itself while writing the

signature. Posterior wrist-side is one of the other locations for the placement which is

the most common one for the existing smartwatches/fitness trackers. This location is

the leftmost red circle in Fig. 3.7. As the lifting movement of the user is the same for

all the weights, in our work, we do not focus on the signal caused by the weight lifting

rather for our experiment, radial artery (the top red circle in the right sub-figure of

Fig. 3.7) is the preferred location for the placement of the PPG sensor. The solution

is feasible even though the location is not the commonly used one in a sense that the

user can rotate their wrist-worn wearable device to the desired location before lifting

the weights. In our experiment, we assume that the user is wearing the wrist-worn

wearable device on the hand which is being used for the weight lifting activity.

5.4.3 Similarity in Readings for Nearby Weights

This is an intuitive challenge. In our work, we are focusing on the strain effect

caused by the lifting of weights. In a practical scenario, the weights that are nearby

each other will cause almost a similar strain effect on the user. As shown in Fig. 5.1,

the PPG readings of the user lifting weights of 4 lb and 5 lb have a very close pattern.

It is applicable for any nearby weights having similarity in readings. As we are ana-

lyzing the patterns of the PPG readings, it is a challenging task to classify them into

correct labels. To do the classification accurately, traditional methods or techniques
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are not sufficient enough. In our system, we have incorporated a feature character-

ization module which extracts discriminatory features from the input readings and

classifies them into corresponding proper weight labels to solve this challenge even if

the weights are close to each other.

5.5 Data Processing

In this section, we discuss the technical details for the data processing and trimming

module mentioned earlier in the Section 5.3.1 for PaWLA. The module consists of

noise filtering, signal normalization, and signal trimming.

5.5.1 Noise Filtering

There will always be noises in the raw PPG data collected via wrist-worn wearable

devices because there are variations in surrounding environment and also changes

in user’s behavioral traits. Other than these common noises there are noises in the

PPG sensor readings due to high frequency interference, power line interference, and

baseline drifts because of the hardware imperfections. A straight forward solution

would be applying a high band-pass filter or Butterworth filter with a high cut-off

frequency at 2 Hz. But an issue is the filtration of probable important elements with a

low frequency hidden within the input signal due to the lifting of the weight. In order

to avoid that, Savitzky-Golay (S-G) filter [113] is applied to smooth the signal. S-G

filter is a type of low-pass filter, which is a smoothing method based on local least-

squares polynomial approximation. The polynomial fitting of the sample points and

the evaluation of it at a single point within the approximation is equivalent to discrete

convolution with a fixed impulse response [114]. S-G filter can not only remove the

noises from the signal but also maintain the shape and height of the peaks of the

signal’s/sample’s waveform. Fig. 3.10 shows an example of the effect of the S-G filter

in our system. Before applying the filter, the signal contains granular noises along the

trajectory (as shown in the left sub-figure), which is smoothed in the right sub-figure
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after applying the S-G filter.

5.5.2 Signal Normalization

Different range of the PPG readings exist for different users. These PPG sensor

readings generally ranges between 400 and 750. It is also possible that the same

user starts showing different range of the PPG readings based on different physical

conditions of the user. But if we focus on the visual pattern of the signals, usually they

are the same for the same user. We want to capture the visual pattern of the signal

rather than different range of values. For this reason, we normalize the signal with a

range of 0 to 1 before passing the PPG data to the feature characterization module.

If we focus on the pattern of the signals, the features extracted from those signals

would be more consistent and help the system’s classification accuracy eventually.

5.5.3 Signal Trimming

In our experimental setup, we have slide switch used for starting and stopping the

data collection process. As a result of hardware imperfections generally, there are

disturbances received in the sensor data due to the slide switch being turned on and

off. As these disturbances are caused by the slide switch and does not reflect the real

scenario of the user lifting a weight or putting a weight down, we need to get rid of

these. Therefore, in order to get ride of these unnecessary disturbances, we performed

a few micro seconds of signal trimming at the beginning and end of the input signal.

5.6 Feature Characterization

The processed signal is passed on to the feature characterization module from the

data processing and trimming module. This module consists of feature extraction,

feature selection and feature matrix. To facilitate the weight classification accurately,

various PPG features are explored. The selected features are built into a feature

matrix which helps to train the classifier required to classify the weights into the

correct label. The flow of this module is given in Fig. 3.15.
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Figure 5.5: Flow in feature characterization module.

5.6.1 Feature Extraction

Time-domain features are first extracted from the clean PPG signal data. We use

a time-series feature extraction tool, tsfresh [118], to do so. The tool is a python

package to automatically calculate time series characteristics or features. It has 63

characterization methods to serve its purpose. For these methods, it is able to com-

pute more than 700 time-series features in an accelerated way compared to existing

time-consuming processes. The clean processed PPG signal data needs to be con-

verted into suitable data frames so that it can be processed by tsfresh. For PaWLA,

tsfresh is used to extract 787 time-domain features, such as absolute energy of the

time series, sample entropy, number of different peaks, sample skewness, descrip-

tive statistics on the auto-correlation of the time series, binned entropy of the power

spectral density of the time series, and many more.

5.6.2 Feature Selection

In this step, we need to refine or filter our extracted features from the previous

step and come up with only the most important features that can help discriminate

the different weight labels. To obtain a proper selection of strong features is a hard

problem for a time-series classification. A feature selection process based on scalable

hypothesis tests is incorporated in tsfresh. Important features to be used for the

machine learning model can be filtered beforehand by it. In the following lines we
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tell how the process works. The feature vectors generated in the previous step are all

individually tested to predict the labels in regards of their significance. The output of

these tests gives a score vector for each feature vector. These score vectors are then

evaluated on the basis of the Benjamini-Yekutieli procedure to decide which features

to be discarded and which features are important enough to be kept [120]. Because

of this process, around 400 (denoted by N) important features are selected as the

relevant features out of the extracted 787 (denoted by O) features for PaWLA. The

number of selected features N varies depending on different classification tasks (i.e.

different weight categories mentioned in Table 6.1).

5.6.3 Feature Matrix

We then generate a feature matrix to represent all features of sampled signals from

the user u. After collecting M calibrating sample signals si (i = 1, · · · ,M) from this

user, N relevant features fi,j (j = 1, · · · , N) are generated by tsfresh for each sample

si. For each feature, its values fi,j might have a different range. Different machine

learning algorithms are insensitive to the scale of diversified features. Therefore, we

perform feature scaling on these values before passing them to train/feed the classifier.

In our system, we use the following to standardize the feature value of fi,j:

f ′i,j =
fi,j − µj
σj

,

where fi,j is the original j-th feature’s value of this sample si, and the new feature

value f ′i,j is calculated using the mean and standard deviation of all samples (i.e., µj =∑M

i=1
fi,j

M
and σj =

√∑M

i=1
(fi,j−µj)2
M

). This feature scaling can lead to fast convergence

for the machine learning algorithms. After standardizing the features, we form a 2D

matrix of the dimension M ×N for each user where each row represents the sample

data and each column represents a selected relevant feature. This feature matrix is

then used for training of the classification model of user u.
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5.6.4 Classification

Similar to POSA, in PaWLA, we used several standard classifiers to perform the

weight classification. The input of the classifier is the generated feature matrix, and

the output is the corresponding weight label. In our experiments, we have tested on

the following classifiers:

• Random Forest (RF)

• Support Vector Machine (RBF Kernel)

• Gradient Boosting (GB)

• k-nearest neighbor (kNN)



CHAPTER 6: PAWLA IMPLEMENTATION AND EVALUATION

In this chapter, we discuss the implementation of the so far discussed modules of the

PaWLA system and the subsequent evaluation of the system’s different pre-mentioned

classifiers based on the experiments.

6.1 Experimental Setup

The PaWLA prototype is quite similar to our POSA prototype except some ex-

tended accessories for the weight lifting scenario. It consists of PaWLA Band, Weight

Accessories, and Server.

6.1.1 PaWLA Band

Though there are a number of commercially available fitness trackers and smart-

watches in the market which leverages PPG sensors to measure the heartbeat/pulse

of the user, in the present, most of the devices do not provide access to the raw data.

We have developed our own prototype from off-the-shelf components to get hold of

the raw data. We call our low-cost proof-of-concept smart band the PaWLA Band as

shown in Fig. 6.1(a). It uses the same components as of the POSA band mentioned

in Section 4.1.

The PaWLA band also consists of multiple components: an Arduino UNO micro-

controller, a PPG sensor from World Famous Electronics, a velcro wristband, a USB

cable to connect the micro-controller to the server, and a slide switch to start and

stop the data collection process. The most commonly used LED in the COTS smart-

watches and fitness trackers is the green LED. As green LED performs the best, we

used the green LED in our prototype sensor. The PPG sensor is strapped to the

Velcro band so that it remains attached to the wrist of the user when worn in order
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Figure 6.1: PaWLA prototype and data collection: (a) hardware components of
PaWLA Band; (b) weight accessories; (c) data collection with a PaWLA band.

to imitate the wrist-worn wearable devices.

6.1.2 Weight Accessories

Two accessories were considered for the weight lifting part of PaWLA as shown in

Fig. 6.1(b). The first accessory is a small light bag which will contain the weights.

And the second accessory is the weight to be considered. In our experimental setup,

we considered dumbbells of different weights. There are two 2 lbs, two 3lbs, and two

5 lbs dumbbells.

6.1.3 Server

For the server side, similar to the one in Section 4.1.2, we use a Dell Inspiron 15

Laptop as the server. The real time data was transferred to the laptop (server) using

a USB cable connected with the Arduino UNO micro-controller on one end and the

other end with the laptop. To implement all the software module of PaWLA, Python

3.8 was selected. We utilized tsfresh tool [118] for the feature extraction task and the

python package scikit-learn [121] for implementing the classifiers.

6.2 Data Collection

We have seen all the components of PaWLA in the previous sections. In this

section, we make use of these components and discuss the process of collecting the

PPG signal data from the users. As we have shown previously in Table 6.1, we are
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Table 6.1: Distribution of Weights per Category.

Category Weights
1 lb diff. 2 lb, 3 lb, 4 lb, 5 lb, 6 lb, 7 lb, 8 lb, 9 lb, 10 lb
2 lb diff. 2 lb, 4 lb, 6 lb, 8 lb, 10 lb or 3 lb, 5 lb, 7 lb, 9 lb
3 lb diff. 2 lb, 5 lb, 8 lb or 3 lb, 6 lb, 9 lb

considering weights ranging from 2 lb to 10 lb. We fill the bag, mentioned in the earlier

section, with these variations of weights. The PaWLA band is wrapped around the

wrist region with the PPG sensor facing towards the Radial Artery vein. At the

beginning of the data collection process, the user stands in a stationary position as

shown in Fig. 6.1(c). Then the slide switch is turned on to start the data collection

process. The user stands still for a few seconds and then start lifting the bag for a

few seconds and finally puts down the bag of weights afterwards. The whole time

the real time data stream is transferred from the PPG sensor to the server using the

Arduino UNO micro-controller via the USB cable. Then finally, the slide switched is

turned off to stop the data collection process.

In our experiment, we recruited nine healthy participants (eight males and one

female) from whom the PPG signals were collected. The participants were healthy

in a sense that they had no history of heart disease and they were capable of lifting

a bag with a maximum weight of 10 lbs. In our system, we considered nine weights

starting from 2 lbs and ending at 10 lbs with 1 lb apart. For each weight label, the

user provided 30 samples of data. So, in total there were 9 sessions of weight lifting

for each user. We divided these sessions in to two different days for each user. The

even weights were collected in the first day and the odd weights were collected in the

second day. In total, we have collected 30× 9× 9 = 2, 430 samples of data.

6.3 Evaluation

We conduct weight classification tasks on different settings to extensively evaluate

our PaWLA system. Primarily, three weight categories of training of weights are
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considered for the evaluation, as shown in Table 6.1. All the evaluations for PaWLA

are done on user-specific (user-dependent) models unless mentioned otherwise. User-

specific (user-dependent) model training adoption means that each user has its own

classifier model to classify the weight labels. Our primary focus for our evaluation is

on the detection of the correct label of the weight lifted by the individual user. With

different splitting size of training and testing data (ranging from 20% up to 80%), the

data collected via PaWLA Band has been tested on multiple classifiers mentioned in

Section 5.6.

6.3.1 Metrics

For the quantitative analysis of the system on certain weight classification tasks,

we use similar metrics: Precision, Recall, and F1 score, as defined in Section 4.3.1.

In addition, we also report

• Confusion Matrix: A square matrix, where each row and column represent the

ground truth and the classification result, and each value in the matrix rep-

resents the percentage of a weight being classified into a weight label. The

diagonal values is primarily focused during evaluation as it represents the cor-

rectly predicted labels.

6.3.2 Performance

The overall average F1 score of our system irrespective of the weight categories is

around 91.8% with training size of 80% data. Fig. 6.2 shows the confusion matrix of

the overall performance of the system being trained with weights with 2 lb difference

i.e. the even and odd weights (2 lb, 4 lb, 6 lb, 8 lb, 10 lb and 3 lb, 5 lb , 7 lb, 9 lb).

For the even weights, our system can recognize the weight correctly at an average of

85.9%. For the odd weights, it can do it at an average of 88.4%.

We also perform experiments to investigate the effects of different folds of our sys-

tem, such as different classifiers, training sizes, sensor placements, weight categories,
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and user independent classification.
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Figure 6.2: Overall performance of classification for (a) even and (b) odd weights.

Impact of Classifiers: Fig. 6.3(a) presents a comparison of the performances of

four classifiers mentioned in Section 5.6. Here, we report the average performances

over 9 volunteers with the weight category of 2 lb differences and 60% data as training

data. Among the four classifiers, Random Forest (RF) and Support Vector Machine

(SVM) perform the best. Therefore, for the remaining evaluations, we use Random

Forest as the default classifier.
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Figure 6.3: Performance of PaWLA with (a) different classifiers (weight category of
2 lb difference, 60% data as training data) (b) different training sizes varying within
20− 80% of data (average among all weight categories).

Impact of Training Sizes: To study the impact of training data sizes, we train
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our model with different partitions of the collected data (i.e, using 20% to 80% as the

training data). The average performance for each training size is given in Fig. 6.3(b).

Here, the results are average among all weight categories. We observe that with

the increase in training size, the average F1 score also increases with a maximum of

91.8%. Even with the lowest training size (20% of data) the average F1 score of our

system is still 84.2%.

Impact of Sensor Placement: As discussed in Section 5.4, PPG sensor place-

ment also plays an important role. We test two sensor placements in our experiments:

radial artery and posterior wrist side. For this experiment, we test our user-specific

model with one user, a training size of 60%, and all the weight categories. As shown

in Fig. 6.4(a), the average F1 score of PaWLA is 94.6% and 91.6% when the sensor

location is at radial artery and posterior wrist side respectively. This shows a promise

that our system can be implemented in COTS smartwatches/fitness watches where

the PPG sensor is commonly placed over the posterior wrist side region.
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Figure 6.4: Performance of PaWLA for (a) different sensor placements (60% as train-
ing data) (b) different weight differences (80% as training data).

Impact of Weight Differences: We test our system with different weight cate-

gories mentioned in Table 6.1 with a training size of 80%. As shown in Fig. 6.4(b),

PaWLA performs the best when the training is done with the weights being 3 lb

apart with an average F1 score of 97.4%. The system performs the least with an

average F1 score of 80.9% when the weights are only 1 lb apart because of the similar
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strains caused by nearby weights. This shows that our current system can achieve

good accuracy when the weight difference is at least 2 lb apart. We leave further

investigation on new techniques to recognize finer weight difference.

User Dependent Model vs User Independent Model: So far, in our exper-

iment, we focus on user-dependent model where a user-specific model is trained and

tested for each of the participant. Fig. 6.5 shows the detailed performance of each

user-specific model for 9 participants when the training data size is 80%. Overall, the

model performance is similar irrespective of different users with an average of 91.8%

F1 score, a maximum of 95.0% and a minimum of 88.0% F1 score. Then we also

consider a user independent model where a global model is trained and tested using

data from all users. In other word, the global model is trained for each weight label

over an aggregation of all the users’ data for that weight label. The performance

of the user independent model is shown in Table 6.2. The average F1 score is now

80.0% with a maximum of 92.5% when the weight difference between the labels is 3

lb. This proves the feasibility of using our pre-trained system for users without any

training data at a standard performance or at least as a starting point. With more

user-specific training, the performance can then be further improved towards the user

dependent model.
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Figure 6.5: Performance of user specific model for each user (80% training).
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Table 6.2: Performance of User Independent Model (80% training).

Weight Category Precision Recall F1 Score
1 lb difference 74.0% 73.0% 74.0%
2 lb difference 73.5% 73.5% 73.5%
3 lb difference 92.5% 92.5% 92.5%
average over all 80.0% 79.7% 80.0%



CHAPTER 7: CONCLUSION AND FUTURE WORKS

7.1 Conclusion

In my dissertation, we firstly address the offline/online signature authentication

problem using the Photoplethysmography sensor present in the wrist-worn wearable

device. Almost all the smartwatches/fitness trackers have this PPG sensor as a built-

in sensor. For which there have been research with PPG sensor for being a biometric

authentication modality. Regarding signature authentication, most related works

rely on dedicated devices/additional hardware. Also existing solutions do not protect

against the common attack models. They are also not very user friendly or non-

intrusive. The proposed system (POSA) is non-intrusive, secure, and low-cost which

makes it a reliable solution. It can be used in banking sectors, agreement signing

scenarios or in any smart device sign in. It could be used in situations where an

authentication of signature, whether it is online or offline, is needed. Our system

POSA leverages the PPG sensed data from the wrist-worn wearable which is mainly

a measure of the volumetric variation in the blood flow when the user is actually

giving his/her signature. The sensed data is then processed in its data processing

module where the data is first noise filtered and normalized, then the signature signal

portion is segmented and finally trained with different classifiers based on the feature

matrix generated in the feature characterization module. The experiments show that

the system is promising and feasible enough to be implemented commercially and

thus solve the offline/online signature authentication problem.

In the second work, we worked on a strain sensing problem which is physically

a weight recognition problem. There have been a significant amount of research in

sensor-based fitness applications but quantitative assessment of physical activities is
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yet to be explored. In this work, we focus on the quantitative side of assessing a

physical activity. The proposed system (PaWLA) is non-intrusive, low-cost, and re-

liable based on the extensive evaluation results. PaWLA leverages the PPG sensed

data from the wrist region of the user lifting a certain weight. The sensed data is

then passed on to the data processing module where it is noise filtered, normalized

and trimmed. After that the processed signal is moved on to the feature characteri-

zation module where discriminating features are extracted and then relevant features

are selected to build the feature matrix. The classifiers are trained on these feature

matrices to classify the lifted weights to corresponding weight labels. As it exploits

the blood flow change within the wrist region based on the PPG sensor, it can be

implemented with the existing smartwatches/fitness trackers. Evaluation of the sys-

tem with nine volunteers shows that PaWLA can achieve a very good performance

proving the feasibility and efficiency of the proposed method.

7.2 Future Works

With the advancement of Internet of Things (IoT), smart technologies are being

innovated, leading to the success of smart sensing field. Automation in different

domains is taking place exponentially. Different applications or systems are designed

for different set of tasks. In this dissertation, we introduced POSA and PaWLA

one of which focused on a signature authentication-based problem and another on

a strain-sensing problem respectively. There are rooms for improvement for both

the systems. For our future work beyond the dissertation, we plan to introduce two

systems - Multi-modal Offline/Online Signature Authentication (MOSA) and PPG-

based Application for Strain Sensing (PASS).

Multi-modal Offline/Online Signature Authentication (MOSA): So far,

throughout Chapters 3 and 4, the PPG sensor-based offline/online signature authen-

tication system was discussed. Though the system is low-cost, non-intrusive, and

secure, it is not fully robust enough. To further extend this work and develop a more
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robust system, we have come up with Multi-modal Offline/Online Signature Authen-

tication (MOSA). In this work, we will make use of the accelerometer as the second

modality for authentication. For this, we would need such a wrist-worn wearable de-

vice that has both the PPG sensor and the tri-axial accelerometer sensor. Using two

sources would give us the better chance to separate the mixed signals and also verify

the user’s signature more robustly. Another modality that we want to pursue is the

magnetometer within a wearable device. The signals from it would interfere with the

magnetic signals of a smartphone leading it to change in the received signal which

can help detect the input by the user to authenticate the signatures being written.

If we combine all the modalities for the signature authentication, the system will be

able to handle situations when one of the modalities fail. Thus, we can say that the

multi-modal offline/online signature authentication is more robust.

PPG-based Application for Strain Sensing (PASS): Another future work

that we are planning to work on is the PPG-based Application for Strain Sensing

(PASS) which is an extension to PaWLA. In PaWLA, we tested out the global model

which was performing well but the individual model was performing better. For PASS,

we firstly plan to collect more data from diverse participants with different genders,

ages, and skin colors to train the global model on a more extensive dataset. We also

want to make the system robust enough to handle different states of a participant

such as, emotions, pre-workout, post-workout, cardiac disease. In PASS, we want to

investigate a neural network-based implementation to make the global model perform

better for fine weight differences. Generating a universal classifier to be able to

sense the strain for all the users depending on the predefined weight threshold of

the user is another goal for PASS. Lastly, for our future work, we will make efforts

to explore a real implementation of the PASS system on commercially off-the-shelf

smartwatches/fitness trackers with a user-friendly mobile and wearable app.
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