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ABSTRACT 

 

 

YU LAN. A Web-based Geographic Framework to Detect and Visualize Space-time Clusters of 

Infectious Diseases  

(Under the direction of Dr. ERIC DELMELLE) 

 

 

Infectious diseases pose a significant threat to public health worldwide as evidenced by 

the recent coronavirus 2019 (COVID-19) pandemic. Despite significant human losses, the advent 

of web-accessed, map-based “data dashboards” that can monitor disease outbreaks, proved 

essential in managing public health responses. In many cases, the backend of these dashboards 

employs basic mapping functionality, displaying counts or rates. As the pandemic advanced, the 

identification of elevated rates was increasingly important in the geographical allocation of 

public health resources. However, such maps miss the opportunity to provide accurate 

information to policy decision makers such as the rate of disease spread, cyclicity, direction, 

intensity, and the risk of diffusion to new regions. Space-time geoanalytics, when coupled with 

rich visualizations, can address these shortcomings. Moreover, when implemented over the web, 

such functionality can be accessed from virtually anywhere. 

This dissertation presents a web-based geographic framework for detecting and 

visualizing explicit space-time clusters of infectious diseases. First, I conduct a systematic 

review of the literature around the theme of space-time cluster detection for infectious diseases to 

identify state-of-the-art techniques that should be included in the proposed web-based 

framework. Second, I develop a tightly coupled, web-based analytical framework for the 

detection of clusters of infectious diseases using interactive and animated 3D visualizations to 

aid epidemiologists in readily and adequately uncovering the characteristics of space-time 

clusters. As a proof of concept, I populate the framework with COVID-19 county-level data for 
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the 48 contiguous states in the US, and demonstrate data retrieval and storage, space-time cluster 

detection analysis, and 3D visualization within an open source WebGIS environment. Third, I 

evaluate the prototype in two steps: 1) present this and two existed COVID-19 systems to a 

group of infectious diseases experts and solicit feedback, 2) and evaluate functionalities on the 

prototype by conducting a user study with graduate students in a setting of online surveys. 

This tightly coupled approach facilitates the detection of space-time clusters of diseases 

in a computationally acceptable timeframe. The characteristics of this framework (generic, open 

source, highly accurate, modifiable) will enable low-cost monitoring of the spatial and temporal 

trends of diseases causing high risks of infection.  
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CHAPTER 1: INTRODUCTION 

1.1 Background 

On the last day of 2019, the World Health Organization (WHO) made the first response 

to an infectious disease caused by a newly discovered coronavirus (named COVID-19), which 

became a pandemic on March 11, 2020 (WHO, 2020a). As a novel and highly contagious 

infectious disease among humans, COVID-19 spreads from communities to cities, states, 

countries, and globally at a rapid transmission rate. Two years later, despite the development and 

rollout of effective vaccines, the number of daily new cases of COVID-19 is still substantial, and 

the COVID-19 pandemic has had enormous health, economic and societal impacts in every 

country. Unfortunately, threats of infectious diseases to humans have existed and increased since 

1980 and will likely continue (Smith et al., 2014). Thus, the question is not “... if another 

outbreak will occur, but when and where” (Boulos & Geraghty, 2020). 

Infectious diseases, also known as communicable diseases, are defined as “diseases 

caused by pathogenic microorganisms, such as bacteria, viruses, parasites or fungi; the diseases 

can be spread, directly or indirectly, from one person to another” (WHO, n.d.). The spread or 

transmission route could be through direct and/or indirect contact, airborne, waterborne or 

foodborne, vector-borne, and the environment. For instance, the transmission of COVID-19 

among humans includes both direct and indirect contacts (such as contaminated surfaces) and 

airborne aerosol/droplet routes; the latter is considered the dominant transmission mechanism for 

this disease (Zhang et al., 2020). 

According to the WHO, the number of deaths caused by communicable diseases has 

dropped since 2000. However, several communicable diseases, including lower respiratory 
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infections (ranked 4th), neonatal conditions (ranked 5th), and diarrheal diseases (ranked 8th), 

claimed 6.1 million deaths in 20191, are still among the top 10 leading causes of death globally 

(see Figure 1). In a comparison, deaths caused by the COVID-19 pandemic already surpassed 5 

million by the first day of November 2021 worldwide (World Health Organization, 2020), and 

this number is expected to increase given emerging variants of SARS-CoV-2, the virus that 

causes COVID-19. Therefore, stopping or slowing the transmission of COVID-19 and other 

infectious diseases is critical. 

 
Figure 1. Leading causes of death globally. The left graph shows the trend of leading causes of death 

globally from 2010 to 2019. Each belt represents one disease in three types of causes, and its height is the 

death at that time (WHO, 2020b). The right graph shows the numbers of death of the top 10 leading 

causes in 2000 and 2019 (WHO, 2020c). 

 

In public health, epidemic models are used to measure the dynamics of an infectious 

disease through different groups of the population. Those groups contain individuals who are 

susceptible to being infected (S), people who are infected or exposed (I), and individuals who are 

recovered (R). When a new infectious disease is introduced in a community, the number of 

 
1 WHO only updated data on leading causes of death globally until 2019. 
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susceptible (S) is extremely elevated since no immunity has yet been built. As the number of 

infected individuals (I) increases, the number of susceptible decreases, and so does the number of 

recovered people (R). A common approach to model infectious diseases is the Susceptible-

Infected-Recovered (SIR) compartmental model. However, recovered individuals could become 

infected again, especially when new variants are emerging and introduced in a community, 

leading to an SIR-S model or when immunity vanishes. Another critical measure of the potential 

spread of infectious diseases in the population is the basic reproduction number R0, the expected 

number of cases infected from one case in a population with the assumption that other 

individuals are not infected or immunized, calculated using different compartmental models (van 

den Driessche & Watmough, 2008). An R0 higher than 1 reflects a spreading disease and 

indicates the contagiousness or transmissibility of infectious agents. In contrast, a value of less 

than 1 marks the end of an outbreak (Delamater et al., 2019). It is worth noting that R0 is not a 

constant value and changes over time (Rt is used in this case). It is dynamic throughout space and 

time because of different human-environmental interactions (e.g., various levels of lockdowns) 

and health policies (e.g., vaccine adoption). For example, R0 would be smaller if an area adopted 

a lockdown policy than areas with no such policy. As to COVID-19, the range of estimated R0 by 

March 2020 was 1.90 to 6.49 (Alimohamadi et al., 2020). 

Geography plays a pivotal role in disease spread. Barrows (1923) defined geography as 

the science of human ecology that focuses on the relationships between the environment and the 

distribution of human activities. Changes in human ecology, such as long-distance mobility, raise 

unprecedented challenges to limiting the spread of infectious diseases (Weiss & McMichael, 

2004). 
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As noted by Kirby et al. (2017) and Kwan (2016), the health outcomes of a population 

are the results of “an interplay of different factors, such as individual characteristics, the physical 

and social environments an individual interacts with, cultural norms, and both the provision and 

utilization of health services.” In other words, the “activity spaces” are connected with the 

natural, social, and economic surrounding environments. This ‘activity space’ can manifest itself 

at different scales (local, regional, national to global) and should be considered a potential 

disease determinant (Cromley & McLafferty, 2011; Diez Roux, 2001), because it will improve 

our understanding of health outcomes. Rogers & Randolph (2003) point out that the key to 

understanding the diffusion of infectious diseases is to uncover the dynamic process of spreading 

patterns with the investigation of time, place, and person at the same time. 

1.2 GIS and infectious diseases surveillance 

When monitoring the burden of infectious diseases, timely surveillance is an essential 

epidemiological component to describe the ongoing dynamics of a disease, identify trends, and 

detect outbreaks and new pathogens (Murray & Cohen, 2017). Three key elements are critical 

when conducting space-time surveillance of infectious diseases; (1) the time when the disease 

occurs, (2) the geographic location where cases are reported, and (3) the segments of the 

population who get infected. Documenting each of these factors is complicated and made even 

more challenging when data is uncertain or incomplete. For instance, individuals may be infected 

days before a test reveals positivity due to the incubation period. Or individuals may be 

asymptomatic, increasing uncertainty in the number of daily cases. Reported cases may originate 

from another region than where the test for the disease was conducted at. In fact, too often in 

geography, the residential location of an individual is assumed to be the place where the 

infection occurred, but as mentioned earlier, humans have complex space-time paths making up 
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the so-called ‘activity space.’ Despite those issues and uncertainties, effective prevention 

methods, monitoring and early detection of outbreaks, and controls and treatments aimed to stop 

or slow down the spread of infection have improved (Smith et al., 2014). Among the 

technologies that contribute to infectious diseases surveillance are geospatial technologies, which 

are particularly suited to capture the geographic complexity of infectious diseases (Kirby et al., 

2017). 

A geographic information system (GIS) is a computer system for creating, managing, 

analyzing, and displaying geographic data, a valuable and practical tool for monitoring the 

infectious disease research (Cromley, 2003; Eisen & Eisen, 2014; Kirby et al., 2017). As early as 

1854, John Snow, the father of modern epidemiology, identified the cluster around a public 

water pump, which became the source of the cholera outbreak in London due to contaminated 

water found in that pump (Newsom, 2006). Back at that time, cholera was a dangerous infectious 

disease which would mainly spread through contaminated water. This example has been used in 

many textbooks to showcase how a simple map of deaths could uncover the distribution of an 

infectious disease. Obviously, the display of data on the map is not the most important tool in the 

epidemiology (Kistemann et al., 2002); other geospatial functionality can be used for geographic 

data collection, management, and spatial analysis, such as geocoding, geographic management, 

and proximity analysis to name a few. GIS can be used in concert with detection tools to monitor 

and respond to health issues, ultimately assisting health professionals in identifying cases, spatial 

trends, disease clusters, and correlation with other spatial data (Carroll et al., 2014; Delmelle et 

al., 2011; Delmelle et al., 2015). As a vital component of disease surveillance, cluster detection 

can identify high-risk areas, and it can facilitate the investigation of the spread of infectious 

diseases (Aamodt et al., 2006).  
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Space-time cluster detection methods play a pivotal role in monitoring the spread of 

infectious disease. The key to understanding the diffusion of infectious diseases is to uncover the 

dynamic process of spreading patterns with the investigation of time, place, and person at the 

same time (Rogers & Randolph, 2003). The combination of these three components makes the 

major difference of infectious disease from other diseases. Epidemic models are used to measure 

the dynamics of an infectious disease through different groups of the population during its 

spread. However, infectious diseases are not merely related to infected populations and 

populations at risk, as the risks of infection and transmission are caused by a myriad of 

covariates, such as demographics, socioeconomic factors, and environmental characteristics. 

These conditions can act as confounding factors leading to variations in the risk of infection and 

transmission (Delmelle et al., 2016; McMichael, 2004; Taylor et al., 2001; Weiss & McMichael, 

2004; Wichmann et al., 2007). In addition, as evidenced by the COVID-19 pandemic, 

interactions among individuals can accelerate the spread of disease, adding another layer of 

complexity to the analysis of infectious diseases. 

1.3 Cluster, outbreak, or hotspot? 

Before introducing cluster detection techniques, it is fundamental to highlight the 

conceptual differences between clusters, outbreaks, and hotspots. These terms are often used 

interchangeably in infectious diseases surveillance. Knox (1989) provided a non-mathematical 

definition of a cluster as “a geographically bounded group of occurrences of sufficient size and 

concentration to be unlikely to have occurred by chance.” As to hotspot, Lessler et al. (2017) 

summarized three distinct types in epidemiology and suggested alternative terms such as 

transmission hotspot (elevated transmission efficiency), emergence hotspots (a high frequency of 

emergence or re-emergence of diseases), and burden hotspot (elevated disease incidence or 
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prevalence or a geographic cluster of cases). Among these three types, the definition of burden 

hotspots is similar to clusters, as it was defined as “a geographic cluster of cases”. Farrington and 

Beale (1998) defined an outbreak as the increment in the number of cases beyond expected 

levels. According to those definitions above, an outbreak refers to the status of unexpectedly 

elevating infected cases in areas during a particular time. During an outbreak, hotspots and 

clusters are areas with elevated incidence or prevalence or sufficient concentration of the disease, 

and these two terms are interchangeable. For example, the current pandemic is an outbreak of 

COVID-19, while hotspots and clusters of COVID-19 cases are dynamic in both spatial and 

temporal dimensions. This dissertation is primarily concerned with “clusters,” particularly space-

time clusters, as they also imply statistical significance that hotspots do not provide. 

1.4 Techniques for cluster detection 

Although forecasting is a necessary tool in public health responses, the focus of my 

dissertation is to understand the 'nowcasting,' the current situation, and the presence of clusters. 

In most commercial GISs, methods of spatial modeling are integrated to predict the trend of 

infectious diseases, such as geographically weighted regression (GWR) and agent-based 

modeling (ABM), while many spatial statistical methods are used to evaluate and map risk areas 

(e.g., through kernel density estimation for instance) (Carroll et al., 2014). As the focus here is to 

detect clusters, only spatial statistical methods able to do so are introduced.  An inherent 

advantage of using spatial statistics to detect clusters is their ability to reveal the current 

distribution patterns, which is essential to finding high-risk areas in need of a timely response 

during an outbreak (Aamodt et al., 2006). Several spatial statistics methods have been developed 

to detect clusters (see Figure 2), and these can broadly be classified into three categories based 

on their mechanisms: (1) distance-based methods that measure distances among cases, such as 
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the K function; (2) area-based methods that analyze cases within subset regions of a study area, 

such as spatial autocorrelation and scan statistics; and (3) continuous methods that estimate a risk 

surface, such as kernel density analysis.  

 

 
Figure 2. Popular techniques for spatial and spatiotemporal cluster detection among point and areal data. 

 

The two most common data types used in health surveillance are disaggregated (e.g., 

point) data that contain spatial coordinates for each case and areal or aggregated data that 

aggregate cases for a specific region (e.g., postal code) during a given time. Aggregated data are 

typically more available and less sensitive to privacy issues (Olson et al., 2006).  

Some cluster detection techniques have been extended to deal with temporal information 

in two different ways: (1) the spatial statistical method is repeated over different time periods; 

(2) a more robust approach that explicitly takes space and time into account can be developed. 

These cluster detection methods are typically implemented as part of specific standalone 

software such as CrimeStat (Levine, 2013), Geoda (Anselin et al., 2010), SaTScan (Kulldorff, 

2010), SpaceStat and ClusterSeer from Biomedware, or codes in opensource programming 
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platforms using R (Bivand et al., 2008; Gómez-Rubio et al., 2005; Moraga, 2017), Python (Rey 

& Anselin, 2010), etc. However, those methods suffer from poor visualization, especially in 

space and time.  

In the following section, I introduce several methods for space-time cluster detections, 

categorized by the type of data they require (point or area, see Figure 2). Although the list is not 

exhaustive, this is representative of the most popular methods found in the literature review (see 

Chapter 2). 

1.4.1 Techniques for point data 

Techniques to evaluate clustering among point data can be categorized into methods with 

first-order and second-order variation or properties. First-order variation defines that the point 

process varies over space because of spatial variation in the mean (for example, cholera cases 

may vary depending on contaminated water distribution). In contrast, second-order variation 

describes that the variation in a spatial process is associated with spatial dependency (Gatrell et 

al., 1996; Rogerson & Yamada, 2008). For example, areas with high community transmission 

could result in high rates of COVID-19. Among first-order variation techniques, I describe the 

Kernel Density Estimation (KDE) and interpolation methods, including Inverse Distance 

Weighted and Kriging; and among second order techniques, I explain the nearest neighbor 

statistic and the K-function.  

The first-order variation techniques can map the variation of certain event, such as the 

patterns of the disease. One such techniques is KDE, which calculates the intensity of observed 

points over the study region. The study region is divided into a grid of square cells, and the 

intensity at each cell is estimated using the Kernel function. This weighted distance function 

measures the intensity between the cell’s centroid to all events within a predefined bandwidth. 
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The result of the KDE for a given cell is the sum of the intensities within the bandwidth. As the 

choice of bandwidth is arbitrary, KDE results are subject to a tradeoff between bias due to a 

considerable bandwidth and uncertainty due to a small bandwidth (Rogerson & Yamada, 2008).  

Although less prevalent in infectious diseases, interpolation methods such as Inverse 

Distance Weighted or Kriging can monitor the spatial variation of infectious diseases, but they 

require an attribute (Z-value) to be interpolated. Typically, data aggregated at an areal level (e.g., 

count or rate of events in a zip code), however the data are generally reduced to area point, such 

as the centroid of that area. Interpolation methods will then use points and attribute as an input to 

generate a continuous surface. One crucial assumption of interpolation methods is that the spatial 

correlation structure is spatially constant, suitable for environmental variables such as water or 

air pollution, but not infectious cases or rates (Pfeiffer et al., 2008). 

Unlike those first-order techniques that only map disease patterns, second-order 

techniques such as the nearest neighbor statistic and K-function can estimate clustering of the 

disease. The nearest neighbor statistic calculates the distance to the nearest neighbor, which is 

used to test whether closer incidents are randomly distributed or not (Delmelle, 2009). Two 

popular nearest neighbor techniques are the average nearest neighbor or k-nearest neighbors. The 

average nearest neighbor averages all nearest neighbor distances between each event and its 

nearest neighbor (also an event) and then returns the ratio of the observed mean distance to the 

expected mean distance for total events given in a random pattern. If this ratio is less than one, it 

indicates clustering. In the k-nearest neighbors (kNN) test, Cuzick and Edwards (1990) extended 

the nearest neighbor to k nearest neighbors of events, and this test can be used to detect spatial 

clustering of events with the consideration of the inhomogeneous populations. 
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The (Ripley’s) K-function is another popular method to estimate second-order properties 

but assumes that no first-order effects exist in terms of the spatial pattern (Pfeiffer et al., 2008; 

Ripley, 1977). In essence, the K-function counts the number of events within a circular search 

window around each case, and the window moves to the next event until all the events are visited 

(Hohl et al., 2017). The process is repeated for increasing radius values up to a maximum 

distance, coinciding with the two most distant point events. For evaluation of statistical 

significance, (random or population-based) simulations are generated by locating the same 

number of events in the study area, and the K-function is estimated for these simulations. 

Significance envelopes can be generated from these K-function falls inside, above, or below 

them (inside = randomness, below = dispersion, above = clustering).  

When point events have a temporal signature (e.g., time of occurrence), several 

techniques described earlier can be extended to handle the temporal dimension, including the 

Knox test or the space-time K function. The Knox test is a pairing method to detect space-time 

clustering present in data points, based on the assumption that events’ spatial and temporal 

features are independent of one another (Knox & Bartlett, 1964). The Knox test requires setting 

both a spatial and a temporal threshold distance, and it counts the number of pairs of events 

separated by critical space and time thresholds. It compares the observed and expected number 

of pairs of points using a Chi-Square test, where the expected number of pairs of points are 

calculated from simulated space-time point events. It is then possible to identify the space-time 

distance at which the Chi-square statistic is the greatest (note that multiple maxima can occur, 

suggesting clustering at different scales). The K-function has been extended by Diggle et al. 

(1995) to account for its temporal counterpart. The mechanism of the space-time K function is, in 

essence, similar to the Knox test. Thus, the space-time K function can be considered a series of 
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Knox tests with different critical distances, and it further measures the spatial and temporal 

bandwidth for significant clusters, which would be used for further space-time analysis. 

1.4.2 Techniques for areal data 

One key feature inherent to spatial data is spatial autocorrelation, which refers to the 

correlation of a variable of interest between two locations. Based on Tobler’s first law of 

geography, correlation decreases with increasing spatial separation (Schabenberger & Gotway, 

2017). Many tests can examine spatial autocorrelation, and these statistics are categorized into 

global and local statistics based on whether the returned result of clusters is nonspecific (global) 

or specific (local). 

As to global statistics, these methods measure whether the pattern of aggregated events is 

clustered, dispersed, or random. The global Moran’s I is one of the most popular spatial 

autocorrelation methods for areal data, and the reported Moran’s I value indicates whether events 

are statistically clustered (when I > 0). This test reflects the similarity among areas based on the 

assumption of the even distribution of the population at risk within the study area (Moran, 1950).  

The algorithm computes the mean and variance for the attribute of the variable being studied. 

Then, for each areal feature, it subtracts the mean, creating a deviation from the mean. Deviation 

values for all neighboring features (features within the specified distance band, for example) are 

multiplied together to create a cross-product. Thus, it provides a statistic (I) for each location 

with an assessment of significance (p-value). Second, it establishes a proportional relationship 

between the sum of the local statistics and a corresponding global statistic. 

Local spatial autocorrelation methods are different from their global counterparts in that 

they are aimed at identifying the locations and extent of clusters (Pfeiffer et al., 2008). The local 

Moran’s I test (LISA) is the local level version of the global Moran’s I test, estimated by 
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decomposing the Moran’s I statistic geographically, resulting in local indicators of spatial 

association (Anselin, 1995). The LISA statistic measures the strength of patterns among nearby 

geographic units, resulting in four different types of clusters (see Figure 3). Low-Low clusters 

indicate low values surrounded by low values, High-High clusters indicate high values 

surrounded by high values, Low-High outliers indicate low values surrounded by high values, 

and High-Low outliers indicate high values surrounded by low values. These four categories can 

be used to lay out not only clusters of high values (e.g., High-High: the high infection rate area 

surrounded with other high infection rate areas) but also clusters with different surrounding 

situations (e.g., High-Low: the high infection rate area while surrounding areas have low 

infection rates). From Figure 3, the center of the map is classified as High-High clusters from 

Figure 3 (b), and the rates for the same area also have the highest number from Figure 3 (a). 

 
Figure 3. An example of LISA results of lung and tracheal cancer among males from 2011 to 2015 in the 

eastern US. (a) average annual rates for the lung and tracheal cancer among males using the 65+ male 

census population as the denominator; (b) LISA results of the same dataset. 

  

Another local clustering detection method for aggregated or areal data is the Getis-Ord 

Gi* statistic, which compares local estimates of spatial autocorrelation with global averages to 

detect clusters in spatial data (Ord & Getis, 1995). It has been called the hot spot analysis since 

the test returns significant clusters of high (hot spot) and low (cold spot) values. 
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Another important clustering detection at the local level is Kulldorff’s spatial scan 

statistic. The scan statistic detects spatial clusters by scanning the data via a circular or elliptic 

window with the radius ranging from zero to a maximum value specified by the user (Kulldorff, 

1997). A cluster is defined as a circle with a significant maximum likelihood ratio, and only 

events with centroids located within this circular are affiliated to this cluster. In addition, each 

cluster contains a relative risk (RR) value, which is the ratio of the estimated risk within the 

cluster to the estimated risk outside the cluster. 

The Kulldorff's spatial scan statistic can be extended in time to account for the temporal 

dimension by replacing the scanning circular or elliptic window with a cylindrical window where 

the height represents the period of potential clusters (Kulldorff et al., 2005). The window with 

the maximum likelihood is the most likely cluster, that is the cluster least likely to be due by 

chance. Thus, this cylindrical window not only moves in space but also in time. In public health 

surveillance, this statistic can be applied to both retrospective and prospective studies depending 

on the different focus either on past patterns or on current trends. Retrospective methods carry 

out analyses  -such as hypothesis tests- for a fixed geographical region and a fixed study period 

to estimate the prevalence of diseases or compare diseases patterns in the different areas in one 

frame; in contrast, prospective methods use ongoing collected data and repeat analysis to detect a 

significant change in a timely manner (Sonesson & Bock, 2003).  

1.5 Web-based GIS for infectious diseases 

Although desktop GIS software generally contains several techniques to analyze spatial 

patterns, web-based GIS or WebGIS can support methods to any individual through the internet 

with no system requirements. In particular, lower-income countries can potentially access these 

web-based tools to monitor the spread of infectious diseases locally, without the need for extra 
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resources. According to Luan and Law (2014) who reviewed web-based GIS public health 

surveillance systems (WGPHSS) between 2000 and 2013, WGPHSS are not just good platforms 

to share and display data in (near) real-time, but they can also include advanced analytical 

techniques, such as cross-correlation and cluster analysis. For instance, EpiScanGIS is an online 

geographic surveillance system for meningococcal disease in Germany, and this system 

implemented the detection and visualization of spatiotemporal clusters of disease; it integrated 

the SaTScan module, which can retrieve weekly reported data, perform cluster detection and 

store results in a PostgreSQL database (M. Reinhardt et al., 2008). However, the system is now 

defunct. Other similar web-based infectious diseases surveillance systems include Flumapper 

(Padmanabhan et al., 2014), VBD-AIR (Huang et al., 2012), Dengue-GIS (Hernandez-Avila et 

al., 2013), and others. As to the COVID-19, several infectious diseases surveillance systems 

were implemented with GIS technologies mostly to map patterns and conduct limited analysis. 

Several organizations and studies2 display COVID-19 related count data along with brief 

statistical results via web-based GIS dashboards, but these lack analytical capabilities (Boulos & 

Geraghty, 2020). Dashboards are usually designed to share and visualize data on a single screen 

in a dynamically updating manner (Ivanković et al., 2021). Current web-based GIS infectious 

diseases surveillance systems have several weaknesses. One of them is the system’s lack of 

timely updates of the currently used dataset because of formatting issues. Second, not many web-

based GIS infectious diseases surveillance systems were implemented with spatial statistical 

methods, and even those with such techniques did not allow users to experience different 

parameters to gain insight into the sensitivity of the results, and rarely were these systems able to 

generate dynamic results based on customized parameters. One barrier to improving this issue is 

 
2  1) COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University; 

2) The World Health Organization dashboard; 3) HealthMap. 
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that advanced spatial statistic methods require complicated parameters calibration and 

computationally demanding calculations. Another weakness of web-based GIS surveillance 

systems is the visualization of resulting clusters. Lan et al. (2021) call attention to advanced 

geovisualization techniques of COVID-19, as most WebGIS platforms merely display and share 

cases data in a two-dimensional framework that is challenging to identify space-time patterns. 

Finally, these systems are not adequate to reveal uncertainty; although some researchers have 

attempted to develop novel visualization to display the stability of clusters (Chen et al., 2008; 

Preim & Lawonn, 2020), these approaches have not been tested in a web-environment, nor have 

they been tested in a dynamic (i.e., space-time) environment. 

1.6 Dissertation’s Objectives 

This dissertation is aimed at developing a web-based GIS solution that can be customized 

to detect space-time clusters in a timely manner, which is critical to help monitor the spread of 

infectious diseases. Based on this aim, three chief research objectives are formulated.  

 

Objective 1. I conduct a systematic review of the literature around the theme of space-time 

cluster detection for infectious diseases. I evaluate current research trends, including methods for 

cluster detection, visuals of space-time clusters, and efforts to integrate cluster detection in web-

based applications.  

 

Objective 2. I propose a web-based geographic framework (see Figure 4) to detect and visualize 

space-time clusters for infectious diseases and demonstrate its usefulness using reported COVID-

19 cases in the contiguous US. Based on this framework, I develop a tight-coupled WebGIS 

system that incorporates a spatial and temporal analysis module and a visualization module. 
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According to the systematic review, the space-time scan statistics and the LISA algorithm are 

found to be the most popular techniques for space-time cluster detection, with the caveat that the 

LISA statistic is not actually using the temporal dimension. As to the visualization module, 

animated and interactive mapping techniques are chosen as methods of visualization. In this 

system, the users can obtain visualizations of space-time clusters in various ways.  

 

 
Figure 4. The illustration of the proposed framework to detect and visualize space-time Clusters of 

Infectious Diseases. 

 

Objective 3. I evaluate the framework using a combination of qualitative methods. For the 

evaluation, I first conduct a user study with graduate students using an online survey on the web-

based prototype, then a focus group interview with four health disease surveillance experts is 

also conducted. All collected results from the evaluation are analyzed and discussed.  

1.7 Contributions 

This dissertation addresses important gaps in research around the detection and 

visualization of space-time clusters of infectious diseases. The overarching question this 
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dissertation attempts to answer is: in the context of detecting infectious diseases, which methods 

are sufficiently robust for the timely detection of disease clusters and powerful enough to display 

the dynamics of these clusters, and how can we integrate data with a fine temporal scale into a 

robust framework? We can tackle the first question throughout a systematic literature review, 

while the second question has no solid answers in the literature. My dissertation is dedicated to 

addressing that question, and it makes two significant contributions to the literature. 

 First, it integrates techniques, including 3D, WebGIS, and interactivity, to robust 

visualize space-time patterns, which is a novelty. While the literature on the combination of 3D, 

WebGIS, and interactivity is scant, the integration of 2D and the latter two techniques are 

commonly seen because of their advantages in accessing and exploring spatial data. However, 

only combining those two techniques in a 2D environment is not conducive to reflect the 

dynamic characteristics of space-time data. The temporal dimension is a crucial element to 

understand the dynamics of infectious diseases. A three-dimensional approach has the advantage 

of using this extra space to represent temporal information. Therefore, patterns revealed from a 

3D visualization could be hidden in a 2D visualization. Several studies in computer science 

introduced visualizations with 3D, WebGIS, and interactivity, but none of them apply those 

techniques to health data with a spatial and temporal signature. Furthermore, the visualization 

interaction of space-time clusters enhances the ability to discover patterns from both dimensions 

at the same time. Thus, a robust geovisualization with the integration of 3D, WebGIS, and 

interactivity is desirable to reveal space-time patterns of infectious diseases.  

Second, the system I propose is tightly coupled; meaning that it integrates data retrieving 

and preparation, analysis, and visualization into a connected and automatic manner, facilitating 

timely surveillance. Early cluster detection, such as daily spatiotemporal clusters detection, can 
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facilitate “outbreak recognition and investigation, provider and community outreach, and timely 

intervention (Greene et al., 2016).” However, it could take a significantly longer time to obtain 

results when each step is loosely connected and not automated. Therefore, for daily surveillance, 

an automatic and routine process is needed, and this process should include 1) downloading and 

preparing data from the data source, 2) running statistical analyses on daily updated data, and 3) 

generating visualization results for that analysis. 

1.8 Road Map 

This dissertation is organized as follows (Figure 5). In Chapter 2, a systematic literature 

review on detecting spatiotemporal patterns of infectious diseases is presented. Based on gaps 

identified in the review, the problem statement is introduced in Chapter 3. The scope and its 

limitations are discussed therein as well. Chapter 4 describes the architecture and implementation 

of a web-based GIS system to detect space-time clusters of infectious diseases. In Chapter 5, I 

introduce an evaluation scheme for the proposed web-based GIS system. Finally, discussion and 

conclusion are provided.  
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Figure 5. The structure of this dissertation. 
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CHAPTER 2: LITERATURE REVIEW3 

This chapter presents a systematic literature review that reflects recent trends in space-

time cluster detection for infectious diseases. The first section introduces the search and 

screening criteria for this review. The second and third sections provide an overview of the topic 

in both general and descriptive ways. The fourth section presents two very different approaches 

to space-time cluster detection, namely the temporal repetition of existing spatial methods and 

“true” space-time cluster detection methods. Meaningful findings and relevant discussion are 

provided in the fifth section. The last section ends this chapter with a discussion of gaps in the 

literature.  

2.1 Search and screening strategies 

2.1.1 Search strategy including keywords 

I conducted an electronic literature search for relevant articles from PubMed, the Web of 

Science (WoS), and Scopus databases on August 27, 2022, articulated around four main queries 

(see Figure 6). The first query included different types of infectious diseases but excluded non-

human infectious studies. The second query attempted to incorporate articles that dealt with the 

spatial and temporal nature of contagious diseases (purely predictive studies, such as the ones 

using regression techniques, and which did not use clustering techniques, were excluded). The 

third query retained articles that focused on detecting spatial or space-time clusters and excluded 

genotype clustering papers. Finally, the fourth query further ruled out papers that were not 

 
3 This chapter was submitted to Spatial and Spatio-temporal Epidemiology and under review after a first round of 

revision. 
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relevant using specific. Therefore, the first three queries are connected using the “AND” 

operator, while the last query uses “NOT” as a set of exclusion. 

 

 
Figure 6. Search queries. 

2.1.2 Screening and selection of criteria 

 

Two individuals (myself and my committee chair) independently screened the title and 

the abstract of the articles that matched our inclusion/exclusion criteria, in an effort to determine 

whether they needed to be fully reviewed. Articles were included if spatial and spatiotemporal 

analytical techniques were applied for the detection of clusters of infectious diseases prevalence 

rates for human populations (i.e., not animals). In other words, this dissertation mainly focuses 

on the space-time cluster detection of incidence, not accounting for the transmission risk 

generated by human movement in space and time. I used the Cohen’s Kappa Statistic to evaluate 

the agreements between both reviewers for the screening, resulting in a k value of 0.77, which is 
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considered a substantial agreement according to (Landis & Koch, 1977). For each manuscript 

where there was a disagreement, the two authors discussed the validity of the article; 

disagreement could stem from a lack of clarity and depth in the title or in the abstract, or that the 

abstract was misleading (for instance several papers discussed clustering of Dengue Fever, but 

the focus was on mosquito distribution). For each paper that had a disagreement, both authors 

reviewed the full text together, and arrived in a consensus. Only after both authors agreed on all 

manuscripts, the full text was reviewed together by both authors to confirm that those articles 

met the criteria described above.  

2.2 General summary  

The searching and screening processes are summarized in Figure 7. Using the four search 

criteria, a total of n = 2,887 articles published from 1974 to 2021 were identified from the 

PubMed, Web of Science, and Scopus databases (n = 677, n = 540, n = 1,670 respectively). After 

removing duplicates (n = 811) and review articles (n = 79) returned by all the databases, that set 

of articles was reduced to n = 1,996 papers. We further excluded n = 1,538 articles during the 

screening phase; some articles were related to raster studies (n = 404) or not good sources (n = 

45), while others were identified as not relevant to the topic (e.g., discussing habitats of 

mosquitoes; n = 1,089). We consider not good sources including articles in non-English, not 

accessible on-line, etc. For the latter, articles were excluded when 1) there was no evidence of 

using space-time cluster analysis; 2) the study dealt with non-human infectious diseases; or 3) 

spatial regression or modeling methods were the main methods in the paper. The remaining 

articles (n = 458) were fully vetted for their eligibility. Of those, n = 104 were further flagged 

because they were not related to our search (e.g., review papers, regression-based papers, non-

human diseases, etc.). Once this process was completed, a total of n = 354 articles spanning 44 
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years from 1977 to 2021 were included in this literature review with n = 332 articles (94%) that 

could be considered as application papers and n = 22 articles that were focused on methods. The 

list of articles can be found in the appendix. 

 
Figure 7. Searching and screening results. 

 

2.3 Descriptive summary  

This section provides a descriptive summary of our review according to disease types, 

study area, discipline, and data aggregation level. The number of articles published per year is 

summarized in Figure 8, suggesting a marked increase every year, and especially so in 2020 and 
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2021 many COVID-19 studies (19 out of 53 in 2020 and 40 out of 68 in 2021) contributed to this 

increase. I illustrate our results for papers from 1977 forward since the number of articles prior to 

that date were not relevant to the criteria. 

 
Figure 8. Published articles per year (note that from 1978 to 1988 and 1988 to 1998 there was no papers 

reported). 

 

 

Disease types. Figure 9 summarizes the frequency of articles by disease type (Dengue Fever, 

COVID-19, Tuberculosis, Malaria, Sexually Transmitted Infections, and other infectious 

diseases), while Figure 10 reports the diseases which are most studied, year by year4.  

Overall, the largest number of articles was reported around vector-borne diseases (VBDs, 

n = 142). The most-reported VBD was Dengue Fever (n = 83), a disease caused by the Dengue 

virus, spreading from humans to humans through infected mosquitoes. Other VBDs with the 

same pathways, such as Chikungunya (n = 2) and Zika (n = 2), received less attention. A few 

 
4 Figures 10 and 12 were started in 2004 because of the gap in the literature, and only three articles were searched 

before 2000. 
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studies reported the space-time prevalence of multiple VBDs in the same paper, including 

Dengue Fever, Chikungunya, and/or Zika. Malaria, another significant vector-borne disease 

caused by a parasite, received less attention (n = 31) than Dengue Fever. From Figure 10, the 

number of studies related to Dengue Fever and malaria peaked in 2017 and 2018 but has 

decreased since then. 

Articles related to airborne diseases (n = 139 including COVID-19, Tuberculosis, 

Influenza, and Respiratory Infections) formed the second most significant category. Two 

airborne diseases were ranked among the top five, namely COVID-19 (n = 60) and tuberculosis 

(n = 47). Influenza (n = 25) and Respiratory Infection (n = 7) were also ranked among the top ten 

of most documented infectious diseases. While the earliest articles on COVID-19 were published 

in 2020, the number of studies in 2021 was at least five times that for any other diseases (see 

Figure 10). 

STIs (n = 37) include infection from human immunodeficiency virus (HIV), Syphilis, 

Hepatitis B, Chlamydia, and others transmitted through sexual contact. Although the number of 

studies was much smaller as to the other two types of infectious diseases, it shows a steady 

increase since 2015, according to Figure 10. 
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Figure 9. Number and percentage of articles related to infectious diseases. When the number of articles 

for a particular disease was less than three, they were categorized as “others”. 

 

 
Figure 10. The five most reported diseases. 
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Study areas. Figure 11 maps the number of case studies based on the countries or regions where 

the data originated from. The top 3 countries that have experienced the most studies were China 

(n = 76), US (n = 35), and Brazil (n = 31). Among studies in China, more than half (n = 35) were 

papers on airborne transmission including COVID-19 (n = 18), followed by VBD studies (n = 

17). In the US, almost two third (n = 22) of the articles focused on airborne diseases, and half of 

these airborne disease studies related to COVID-19 (n = 12). As to Brazil, most studies also 

related to airborne diseases (n = 13 including n = 8 of COVID-19) and VBD (n = 10). It is worth 

noting that no studies were conducted in countries or regions located in central Africa, eastern 

Europe, and western Asia. 

 

 
Figure 11. Variation in the number of case studies by country and region. 

 

Discipline. We wanted to investigate the role of different disciplines for each article, because 

many studies are collaborative in nature. The disciplines were identified by extracting the first 

author’s affiliation and the type of journal. The results showed that more than 60% of articles 

were published by authors from epidemiology or public health, while less than 30% were from 
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geographers or similar background. In addition, a small percentage of studies were published 

from other disciplines, such as bioinformatics and mathematics. 

Figure 12 reflects the temporal trends of papers across the different disciplines from 2004 

to 2021. The number of studies in epidemiology increased annually, while the number of studies 

originating from geographers experienced a sharp increase since 2020. This growth is consistent 

with the rise of COVID-19 studies, as 26 studies related to COVID-19 (44% of all COVID-19 

studies) were published from within geography. More geographers have been involved in studies 

of COVID-19 and other infectious diseases, particularly in detecting spatial and temporal 

patterns. 

 

 
Figure 12. The number of studies by discipline and year. 

 

Data types.  About a fourth of studies used point data, while others used aggregated data. One 

important reason for the dominance of areal data is that such data types are more readily 

available, partly because of an effort to protect patient confidentiality by preventing disclosure of 
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a patient's identity (Goovaerts, 2009). In addition, for those studies using aggregated data, the 

geographic scale was either at the county (27.4%) or local level (57.4%), while only 11.6% of 

studies were at state (10%) or country (2%) level. 

2.4 Space-time cluster detection methods 

This section summarizes the most common techniques of space-time cluster detection 

methods found in the literature (see Figure 13 for a summary of the frequencies). The most 

popular methodological approach in the literature was the Kulldorff’s space-time scan statistics 

(n = 205 articles). This number is almost twice as high when compared to studies that used the 

(Global) Moran’s I method (n = 79), the second most popular technique. The third and fourth 

most popular techniques are the Local Moran’s I (n = 65) and the Local Gi* (shortened for Getis-

Ord, n = 44). It is worth noting that several articles compared and contrasted the results of more 

than one technique in the same paper. The purely spatial scan statistics was also very popular (n 

= 32). 
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Figure 13. The number of studies by methods. 

 

I further distinguish among two distinct approaches to perform space-time detection: 

either a temporal repetition of an existing spatial method or a true, space-time approach that 

explicitly considers space and time. Table 1 shows the number of studies using those two 

approaches along with the data type that was used, suggesting that more studies used true space-

time methods instead of a temporal repetition of spatial methods. 

 
Table 1 The number of studies using two types of space-time detection methods. 

 Temporal repetition of spatial 

methods 

Space-time methods Both Total 

Point 23 48 12 83 

Aggregated 87 134 55 276 

Total 110 182 67 359 (n = 4 using 

both point and 

aggregated data) 
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2.4.1 Temporal repetition of spatial methods 

A temporal repetition of a spatial method can help to identify space-time patterns of a 

disease over a certain time range. Generally, this approach is based on two types of methods: 

spatial smoothing and interpolation for point data and purely spatial cluster detection for both 

point data and aggregated data. 

 

Spatial smoothing and interpolation. A total of 23 studies used interpolation and smoothing 

methods, including KDE, to reconstruct the spatial variation of the patterns across multiple 

timespans. Several studies applied interpolation methods to detect space-time clusters by 

generating continuous estimated surfaces from point data at multiple time intervals (See 

McIntosh et al., 2018; Singh & Chaturvedi, 2021). For example, de Azevedo et al. (2020) used 

KDE to create yearly density maps of dengue outbreaks in Brazil from 2000 to 2018 and to 

identify outbreaks. In an article by Pardhan-Ali et al. (2012), the authors used ordinary kriging to 

generate a relative risk map of notifiable gastrointestinal illness in the Northwest Territories of 

Canada, while relative risks were estimated using the results of the spatial scan test.  

 Although temporal extensions for these methods have been proposed in the literature 

(such as STKDE, space-time interpolation), they are computationally demanding, and despite 

one notable exception (Hohl et al., 2022), these approaches do not take population change into 

account during the period under consideration. The results of the STKDE are best visualized in a 

three-dimensional framework, however this is computationally demanding and can be 

cognitively challenging. Therefore, a simple repetition of the same method for different time 

ranges is generally preferred to understand the temporal variation of a disease  (see de Azevedo 

et al., 2020; Sifuna et al., 2018). 
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Spatial cluster detection methods. Among that implemented a temporal repetition of spatial 

methods, most of them applied spatial cluster detection (e.g., LISA) instead of spatial smoothing 

or interpolation. Few studies applied the nearest neighbor techniques (n = 3) to detect the scale at 

which clusters were dominant. Some papers used kNN to generate spatially smoothed dengue 

incidence maps, but not for the cluster detection (e.g., Acharya et al., 2016).  

From the literature review, n = 79 articles implemented the global Moran’s I statistic to 

inform on the presence of areal clustering. For example, Lippi et al. (2020) used the Moran’s I 

statistic on annual aggregated dengue cases at the level of the health districts and polyclinic 

administrative catchment (PAC) areas in Barbados from 2013 to 2016. Similarly, Yu et al. 

(2020) conducted the Moran’s I statistic on annual aggregated rates of pulmonary tuberculosis 

(PTB) in counties of Chongqing, one of the biggest cities in China, from 2011 to 2018, 

suggesting significant clusters each year.  

Several studies (n = 100) used either the LISA or Gi* algorithm to detect local clusters. 

In Lippi et al. (2020), the LISA algorithm identified the dynamic patterns of both high and low 

clusters of Dengue Fever, revealing a shift in the spatial patterns of clusters at a local level (PAC 

level). Yu et al. (2020) also conducted the local Gi* statistics for PTB at the county level in 

Chongqing, China, reporting yearly statistically significant clusters. As the Gi* statistics 

compares local estimates of spatial autocorrelation with global averages to detect hotspots, this 

method may not be suitable for small sample sizes, implying high levels of global 

autocorrelation (Getis & Ord, 1996). 

Instead of considering spatial autocorrelation, Kulldorff’s spatial scan statistic (n = 32) is 

applied to detect the presence of local clusters of infectious diseases (see Rocheleau et al., 2020). 
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Many studies used this scan statistic to estimate the relative risk (RR) or risk ratio, which can 

help to compare this risk of infection among areas (see Rejeki et al., 2019; Sloan et al., 2020).    

2.4.2 Space-time methods 

Unlike temporal repetition of spatial approaches, space-time methods include both the 

spatial and the temporal dimensions in statistical tests. The first literature from my search applied 

a trend-surface analysis by using the time as the third variable to generalize cubic surfaces to 

map the space-time distribution of an epidemic in a Brazilian city in 1956 (Angulo et al., 1977). 

Some of the most popular techniques in this category from the literature are introduced as 

follows. 

A few studies applied the Knox test (n = 15), and in ten articles, Knox was applied to 

Dengue Fever (e.g., Tran et al., 2004; Vazquez-Prokopec et al., 2010; Wen et al., 2012). One 

possible reason is the clear space-time transmission among infected mosquitoes in dengue 

disease, making it easy to set the critical thresholds of space and time distance. However, 

because it is a global test, the Knox test is not good at visualizing cluster information on the map. 

Therefore, some papers have relied on additional visualization methods to display these space-

time patterns. For instance, Rotela et al. (2017) used the Knox test for spatial-temporal analysis 

and KDE with a 300-meter radius to show the density of Dengue cases in Cordoba, a city in 

Argentina.  

Only five studies have used the space-time K function, primarily due to heavy 

computational requirements. Hohl et al. (2016) for instance calculated spatial and temporal 

bandwidths using the space-time K function on daily Dengue Fever cases in Cali, Colombia from 

2010 to 2011. They used these results (different bandwidths) as inputs to estimate the space-time 

kernel density, and ultimately visualized results in a three-dimensional space-time cube. 
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According to my review, the space-time scan statistic is the most popular technique to 

detect clusters for aggregated data (n = 204). In a recent study, Hohl et al. (2020) used a 

prospective space-time scan statistic to estimate clusters of COVID-19 in the US at the county 

level. One possible reason for the popularity of the scan statistic lies in its ability to incorporate 

multiple covariates (e.g., Whiteman et al., 2019), including population. For example, in 

infectious diseases, the population is a critical variable that needs to be considered in the 

analysis, while many other pattern detection methods cannot include this covariate directly. Also, 

some studies focus on interpret spatial result only, even though they used space-time methods in 

the studies. For example, Tadesse et al. (2013) concluded that both purely spatial and space-time 

scan tests detected similar and significant high-risk clusters of smear-positive TB cases in a 

district of Ethiopia, but no temporal information on clusters was provided in the study. In another 

article, even though Gurjav et al. (2015) claimed to use the retrospective space-time scan test and 

detect three TB clusters in Mongolia from 2006 to 2012, no temporal characteristics of the 

clusters were provided.  

Space-time clusters can be detected or suggested by either space-time methods (e.g., the 

space-time scan test) or repetition of purely spatial methods (e.g., the LISA algorithm). Although 

both methods return geographic units considered to be in a cluster, the results are generally 

different. Fuentes-Vallejo (2017) implemented both the Gi* statistic and the space-time scan 

statistics to compare the different sensitivity of parameters to detect local clusters from these two 

methods. Their results show that spatial clusters (using the Gi* statistic for each year) and space-

time clusters from the scan test were located in different regions, although some results were 

overlapping. They claimed that this different spatial and spatiotemporal clusters distribution is 

possibly due to different territorial dynamics.  
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Overall, few studies applied cluster detection approach into a web environment. Markus 

Reinhardt et al. (2008) launched an online GIS, EpiScanGIS, integrated SaTScan to monitor the 

invasive meningococcal disease in Germany, while the system was not functioning anymore. 

Besides EpiScanGIS, only five recent studies on COVID-19 published in 2020 and 2021 

deployed their detection approach into a web-based application. Four of them used the 

prospective space-time scan statistics, while one used another algorithm (a modified space-time 

density-based spatial clustering of applications with noise). Two studies are similar in that their 

online systems map daily clusters as an animation based on daily COVID-19 cases (Hohl et al., 

2020; Rosillo et al., 2021), and another study, instead of mapping clusters, animated daily 

relative risk and cluster frequency results (Lan et al., 2021). Two other studies (De Ridder et al., 

2021; Güemes et al., 2021) detected space-time clusters of COVID-19 symptoms by collecting 

symptoms from users. But in none of these five systems were users able to conduct customized 

space-time analysis. 

 Although most studies use traditional visualization techniques (e.g., small multiples) to 

map space-time clusters, a few studies (n = 13) introduced novel methods to portray these 

clusters. The most popular method (n = 11) maps the temporal characteristics of space-time 

clusters using the third dimension. Among those studies, six of them used three-dimensional 

(3D) figures to represent cluster as cylinders with the height as the time (e.g., see Desjardins et 

al., 2018), and five of them rendered space-time clusters into different colors or/and transparency 

in the 3D volume, which have no well-defined boundary (e.g., see Kuo et al., 2018). Other than 

3D methods, three studies used ring maps (Tang et al., 2019), calendar-based visualization (Wu 

et al., 2021), and bivariate and spike maps as different visualization of space-time clusters (Lan 

et al., 2021). 
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2.4.3 COVID-19 studies 

From our systematic review, several studies in 2020 and 2021 were applied to the 

analysis of COVID-19 outbreaks (n = 60). The number of COVID-19 articles that used a space-

time algorithm (n = 34) was nearly the same as the papers that used a repetition of a spatial 

clustering algorithm (n = 32); six studies use both algorithms. The number of papers was split 

among epidemiologists (n = 25) and geographers (n = 26), and the remaining studies (n = 9) 

were led by researchers from other disciplines. Most studies used aggregated data (n = 51), and 

48 of those studies were conducted at the county or finer (i.e., more local) level.     

2.5 Findings 

This chapter presented a systematic literature review that reflected recent trends in space-

time cluster detection for infectious diseases. I searched and selected 354 articles from PubMed, 

Web of Science, and Scopus databases. I noted important findings as followed. First, the number 

of articles exhibited a continuous increase from 2004 to 2021, and nearly doubled from 2019 to 

2020 and 2021 due to the emergence of research related to COVID-19. Second, most of the 

articles were application type papers featuring spatial and spatiotemporal techniques to detect 

space-time clusters of infectious diseases. Third, I noted that very few studies attempted to 

publish their results over web-based interfaces, and the visualization results were for the most 

part two dimensional. Fourth, most research was focused on airborne diseases, followed by 

vector-borne diseases. Fifth, most studies were conducted in China, US, and Brazil. Sixth, most 

studies used aggregated data instead of point data. Seventh, there was also a greater number of 

studies using “true” space-time detection algorithms as compared to papers only using temporal 

repetitions of the same spatial method. Along those lines, the most popular methods were the 

space-time scan statistics, the global Moran’s I, and the LISA statistic.  
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2.6 Gaps in the literature 

Several research gaps can be identified in the current understanding of this field. From 

the literature review, few online applications or platforms have implemented spatial or space-

time analytical techniques to identify space-time clusters of infectious diseases. Only five online 

applications incorporated those techniques, and all of them are COVID-19 related with limited 

functionality. Some commercial GIS platforms, such as ArcGIS Online, have implemented 

specific spatial cluster detection techniques (e.g., the LISA algorithm) online. However, these 

platforms require credits to access these resources. Further, none of these applications can 

conduct an analysis that would account for both spatial and temporal dimensions simultaneously. 

In other words, users can only conduct a repetition of these purely spatial methods by performing 

the same analysis for different temporal intervals. Other issues that may prevent the deployment 

of web-based platforms lie in their scalability, computation, and high-level programming skills to 

develop such systems.  

Another critical question requiring more attention is how to visualize space-time clusters 

(only 13 articles deliberately discussed this issue). Using the space-time cube as a framework, 

the third dimension can be used to visualize the dynamics of space-time clusters better, 

potentially uncovering hidden space-time patterns. New technologies for web-based data 

visualization, such as WebGL and D3.js, can be used to visualize space-time patterns on the 

internet.  

As far as the literature review is concerned, no study implemented space-time analysis 

and visualization into one web platform. For space-time cluster detection of infectious diseases, 

those two components are complementary. A good analysis of space-time clusters could 
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undermine the conclusion without proper geovisualization and vice versa. Tight-coupled systems 

that can handle both analysis and geovisualization are greatly needed. 

I also underline several methodological concerns in applying such methods, promising to 

improve future studies. It is worth noting that repeating a spatial clustering algorithm across time 

instead of using a true space-time cluster detection technique may cause an increase of type I and 

type II errors (false positive and false negative, respectively), and almost half of the studies 

found in the literature review used a temporal repetition of a spatial clustering method alone or 

together with “true” space-time detection methods. In addition, the temporal range used in these 

approaches is usually arbitrary (e.g., week, month, trimester) based on the dataset or personal 

experience; analysis conducted at different scales can further exacerbate these type I and type II 

errors.  

As mentioned earlier, space-time statistics can be applied both retrospectively and 

prospectively, but each approach answers different research questions. Retrospective cluster 

detection conducts the analysis once and identify all existed clusters during the whole study time, 

while a prospective method conducts the analysis on multiple time interval (e.g., daily, weekly, 

or yearly) to detect ‘alive clusters’ on each end date of that time interval during the study period. 

The retrospective method scans to detect clusters from the end of the study to the beginning, 

while the prospective one moves reversely through time. Mainly, retrospective methods detect 

patterns for a fixed dataset, while prospective methods adapt the results considering both newly 

available and past data. Therefore, prospective methods are more appropriate to promptly detect 

the dynamics of space-time clusters, especially during an outbreak that needs a rapid response. 

As to COVID-19, retrospective methods can determine whether it will become a seasonal 
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recurrent disease like flu when cases are recorded for more than one year, while prospective 

methods can closely monitor the change in the current situation. 

Some studies also overlooked the importance of interpreting the temporal information of 

space-time clusters. In some reviewed articles, the temporal extent of space-time clusters was not 

presented, although space-time scan tests were used. Without an adequate examination of the 

temporal characteristic of space-time clusters, their ability to offer additional insights in the 

temporal dimension vanishes.  

Since 2011, multidisciplinary collaboration has steadily increased. In addition, the 

collaboration among the academy, government, and research centers represented nearly 50% of 

all the publications. Both results suggest that investigating the presence of infectious diseases is 

best tackled by a holistic team of researchers. Thus, it is also essential to incorporate multiple 

levels of collaboration across academics, health agencies, and other organizations. This kind of 

collaboration will offer theoretical evidence to support the implementation of health policies and 

practical experiences to guide research design and evaluation. 

Several issues warrant further investigations. First, most reviewed articles did not account 

for the potential effects of scale. For instance, clusters identified from cases reported at the postal 

code level (e.g., ZIP in the US) may not be the same as if data were reported at the county level. 

I argue that the comparison among multiple scales for the same study region (e.g., county and 

census tract levels) could provide additional insights into the mechanism of the disease under 

study. Second, research should more explicitly discuss the temporal dimension in cluster 

detection, because it can reflect the cyclicity and dynamic nature of a disease. Both spatial and 

temporal dimensions are equally essential for the monitoring of infectious diseases. Third, more 

research is needed to compare the validity of clusters found from a repetitive spatial method, or 
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from a true space-time clustering algorithm as it can affect the risk of false alarms. Fourth, other 

clustering techniques such as wombling (Hossain & Lawson, 2005; Hossain & Lawson, 2010; 

Lu & Carlin, 2005; Monir Hossain & Lawson, 2006) -which identifies various levels of cluster 

boundaries- are promising, but are rarely used for temporal processes, nor in infectious diseases. 

There is a potential to extend these approaches in time. Fifth, this literature review did not 

explicitly search for papers using space-time Bayesian modeling; in fact, most of the algorithms 

discussed in this chapter are to describe and identify space-time clusters; as such this topic falls 

outside of the scope of this dissertation. Sixth, I found several studies that used the space-time K 

function to detect space-time clustering from events, but the inhomogeneous K function 

(Baddeley et al., 2000) has rarely been discussed in space and time (a notable exception is (Hohl 

et al., 2022)); this is partly due to the difficulty to have temporally varying information on the 

population itself, unless the study covers a large period of time, and fine-grained population 

count is available. Finally, researchers should facilitate the replication of their study, either by 

publishing their data and developing web-based visualization solutions. 
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CHAPTER 3: PROBLEM STATEMENT 

 The literature review in Chapter 2 has revealed some important gaps in the monitoring of 

infectious diseases. In this dissertation, I propose to focus on four significant issues, specifically 

(1) the repeated use of a spatial method which do not capture the true clusters of the disease 

under investigation, (2) the use of rather simplistic geovisualization techniques that do not reveal 

the space-time patterns of the disease, (3) the lack of a tightly integrated system that can conduct 

both cluster detection and visualization, but also communicate with a server where infectious 

data information is stored and updated frequently, and finally (4) the absence of such systems on 

the internet. I now elaborate on these four gaps, and briefly discuss the scope and limitations of 

this study. 

3.1 Emerging problems from the literature review 

3.1.1 Reliance on non-exact space-time cluster detection algorithms  

From the systematic literature review (see Chapter 2), nearly one-third of the articles 

have relied on a temporal repetition of purely spatial algorithms to detect space-time clusters, 

while the others use “exact” approaches or both. For the former, this is a critical weakness 

because the temporal dimension is not explicitly accounted for and can lead to false positives and 

possibly false negatives. The presence of false positives, which are unknown to public health 

experts, may lead to public health interventions where no problem exists; likewise false 

negatives may reduce public health efforts in areas where a problem truly exists. It is therefore 

critical to rely on methods that can minimize false positives and false negatives. 
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3.1.2 The need for robust geovisualization to reveal space-time patterns of infectious diseases  

 Another important but overlooked issue is how to visualize space-time patterns (e.g., 

clusters, relative risk) of infectious diseases. Only 13 articles deliberately discussed how to 

visualize space-time patterns of an outbreak. However, it is vital to capitalize on the temporal 

dimension because infectious diseases are not static over time. With the inherent characteristics 

of spatial and temporal dimensions, spatiotemporal patterns may be hidden from traditional 2D 

geovisualization. Although multiple static maps or basic web maps can display changes in both 

dimensions by displaying all maps or information simultaneously, it is impossible to present 

numerous maps together, such as showing all the daily or weekly maps at the county level. 

Space-time visualization approaches could help uncover concealed space-time patterns hidden 

from statistical tables and traditional maps. 

3.1.3 The need for rapid surveillance at a fine temporal scale 

An effective monitoring system should be able to detect and visualize clusters in both 

space and time, but also use the most up-to-date reported data (e.g., cases, death, 

hospitalizations…) that is updated on a fine temporal scale (e.g., daily). With the development of 

data monitoring and sharing technologies, infectious diseases data are sometimes available at the 

daily or weekly level and carry a massive volume of information. For instance, during the current 

COVID-19 pandemic, several online dashboards, or platforms, such as Johns Hopkins and New 

York Times, have shared and updated COVID cases and deaths worldwide, at various levels of 

spatial and temporal granularity. Take the dataset in the US from the Johns Hopkins dashboard 

as an example. This dataset has reported daily cases or deaths at the county level for most US 

counties since January 2019. With the advantage of daily data availability, the essential question 

is how to capitalize on such a rich dataset to uncover the dynamic patterns. As time is the 



44 

 

 

 

essence in infectious disease, the monitoring system needs to regularly retrieve and analyze daily 

data or as soon as the data are ready. In other words, we have the opportunity to promptly 

discover changing patterns of the disease. By examining daily data regularly and speedily, 

experts have an opportunity to prepare better ahead of the next surge of infectious spreading. 

3.1.4 The need for an integrated online solution 

Online web-based mapping applications can facilitate the sharing of data and information 

among different communities, improving response time to rapidly evolving situations. From the 

literature review, few online applications or platforms have implemented spatial analytic 

techniques to identify clusters for infectious diseases. Only five online applications incorporated 

those techniques, and many of them consist of limited functionality. Some commercial GIS 

platforms, such as ArcGIS Online, have implemented some spatial cluster detection techniques 

(e.g., the LISA algorithm). However, they require credits to access these online resources. 

Furthermore, none of these applications could conduct an analysis that would account for both 

spatial and temporal dimensions simultaneously. In other words, if users want to conduct a 

space-time analysis, they need to repeat the spatial test as many as the frequency of the temporal 

interval. For example, for a weekly spatial analysis of COVID cases for one year, the user will 

need to repeat the analysis 52 times, which could be a time-consuming process. Other issues that 

may prevent the web-based deployment of space-time clustering tests lay in scalability5, 

computation, and that the programmer who develops these applications must possess high-level 

programming skills.  

 
5 For instance, ArcGIS Online can conduct hotspot analysis with credits, and it will cost more credits if the number of 

features increases. 
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Furthermore, incorporating robust visualization techniques such as web-based 

geovisualization could provide a much-needed option for researchers who have limited 

knowledge in the use of geospatial technologies. Although incorporating three-dimensional 

visualization techniques into a web environment can be challenging, innovative techniques of 

web-based data visualization, such as WebGL for 3D visualization and D3.js for dynamic, 

interactive data visualizations make this attempt possible.  

3.2 General problem statement 

 Those issues reveal that significant problems remain unsolved in the context of infectious 

diseases. My dissertation is aimed to address those issues by integrating all essential ingredients 

of cluster detection analysis into one tight, online system. This online health surveillance system 

assembles components of data retrieving, data analysis, and data and uncertainty 

geovisualization into a tightly coupled GIS system. This system facilitates the communication 

among each module with interfaces, while in a loosely coupled system, the user needs to 

manually switch among each module (database, analysis, and visualization). The tightly coupled 

GIS system is more robust than a loosely coupled system, because it integrates data, analytical 

tools, and visual tools together.  

 Taken together, my dissertation addresses these four gaps mentioned earlier, and provide 

the following contributions: 

● Emphasis on the exact space-time cluster detection algorithm and use of the non-exact 

one as a complementary resource in space-time cluster detection 

● Generate innovative visualization techniques for daily updated health data with 

spatiotemporal information 
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● Develop a tight, online system to facilitate experts making rapid responses during the 

outbreak 

 

I evaluated the proposed system by combined a user study and an expert evaluation. The 

user study was conducted by collecting survey responses from graduate students, and the expert 

evaluation directly collected feedbacks from experts in COVID-19 data and analysis during a 

group interview. Collected results and feedbacks were further analyzed. 

3.3 Scope and limitations of the study  

Although the proposed framework could virtually be applied to any other disease, I use 

COVID-19 cases in the US at the county level for the 48 conterminous states to demonstrate its 

usefulness. The analysis module focuses on detecting both exact and inexact space-time clusters 

implemented with two methods (the SaTScan and LISA statistics, respectively), but other 

methods could also be deployed, depending on the research questions. There are other limitations 

to this study. First, the case dataset cannot be uploaded by users because data security is most 

important. Since the prototype (described in Chapter 4) is accessible to the public, it would be 

challenging to handle potential privacy issues, such as those mentioned in the Health Insurance 

Portability and Accountability Act (HIPAA) in the US (Centers for Disease Control Prevention, 

2003). Second, the uploaded case information should be in the same scale as other datasets, such 

as population and boundaries. For example, if one user uploaded cases at the neighborhood level, 

then population and boundaries at the same level are also required. Third, only cases are used to 

demonstrate two methods for space-time cluster detection in this prototype, but deaths or 

hospitalizations could also be used.   
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CHAPTER 4: METHODOLOGY 

Space-time clustering detection is essential in spatial epidemiology, especially for 

infectious diseases (Pfeiffer et al., 2008). As discussed earlier, the space-time scan statistics and 

local indicators of spatial association (LISA) are two popular methods to detect local space and 

space-time clusters for infectious diseases. While the LISA statistic (Anselin, 1995) is a purely 

spatial method that does not take the temporal information into account, many studies have used 

this approach, essentially repeating it over multiple time ranges to detect space-time clusters for 

infectious diseases (see Ghosh & Cartone, 2020; Sugumaran et al., 2009). Unlike the LISA 

statistic, the space-time scan statistic “scans” the data using a cylindrical window in both space 

and time (Kulldorff et al., 2005). Also, unlike the LISA statistics, space-time scan statistics are 

not restricted by administrative boundaries (Naish & Tong, 2014), because the scan statistic 

searches for clusters beyond the so-called ‘adjacency matrix’ that is central to the LISA statistic. 

The space-time geovisualization of these two methods is crucial to infectious diseases 

such as COVID-19, but many current COVID-19 dashboards neglect this temporal component 

(Lan et al., 2021). Moreover, the space-time scan statistic requires an application (SaTScan) or 

libraries (through R, for instance) to estimate the presence and magnitude of clusters, while a 

commercial GIS is still needed to visualize the space-time extent of these clusters. A tight-

coupling system with different modules connected into one system can address this issue. Using 

this approach, epidemiologists could conduct spatiotemporal analysis and uncover the underlying 

pattern without the need to go from one software to another (Delmelle et al., 2011). However, to 

the best of my knowledge, a tight coupling system for space-time clustering detection 

visualization is not available. 
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This study proposes a web-based geographic framework for the detection and 

visualization of space-time clusters for infectious diseases. To demonstrate the framework, I 

develop an automatic surveillance system that uses the prospective space-time scan statistics and 

the LISA algorithm at the county level in the continental US. The system retrieves daily updated 

COVID-19 data. I further elaborate on the objectives of this tightly-coupled system, namely: (1) 

to implement automatic and customized space-time clustering detection for a given geography 

and specific time range and (2) to generate novel 2D and 3D visual features of space-time 

clustering; (3) to develop a tight coupling system that incorporates daily data updated and 

components for the objective one and two. This system is named US COVID-19 YuTu and 

described further in the below sections. 

4.1 Data 

In this study, the COVID-19 Data Repository prepared by the Center for Systems Science 

and Engineering (CSSE) at Johns Hopkins University is used to extract daily US COVID-19 data 

(JHU CSSE COVID-19 Data) at both state and county levels. Halpern et al. (2021) claimed the 

dataset from JHU is one of the closest to the one from CDC when compared to other commonly 

used COVID-19 datasets.  

For this study, I use reported date is from January 22, 2020 -the date CDC confirmed the 

first US coronavirus case in Washington state- to the latest date for which this website is 

updated. Table 2 is an example of daily case data retrieved on October 18, 2021. Daily COVID-

19 data are extracted and updated into corresponding databases. Attributes of the COVID-19 data 

include federal information processing standards code (FISPS), county name, state name, date, 

latitude, longitude, counts of confirmed cases, and counts of deaths. In addition, the latest 

available population figures and boundaries are retrieved from the US Census Bureau. The 
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population data are in the 2019 Community Survey (ACS) 5-year estimates of the resident 

population for both 48 states and corresponding counties, and the used boundaries data is the 

2020 TIGER/Line shapefiles6. Rates are calculated by dividing the number of cases -averaged 

over seven days- in a geographic region by the population in that region. 

 

Table 2. Example of daily case data from JHU. 

UID iso2 iso3 code3 FIPS Admin2 State Country Lat Long 1/22/2020 … 10/16/2021 10/17/2021 

84001001 US USA 840 1001 Autauga Alabama US 32.53953 -86.6441 0 … 9893 9901 

84001003 US USA 840 1003 Baldwin Alabama US 30.72775 -87.7221 0 … 37069 37087 

84001005 US USA 840 1005 Barbour Alabama US 31.86826 -85.3871 0 … 3554 3556 

84001007 US USA 840 1007 Bibb Alabama US 32.99642 -87.1251 0 … 4216 4217 

84001009 US USA 840 1009 Blount Alabama US 33.98211 -86.5679 0 … 10094 10102 

84001011 US USA 840 1011 Bullock Alabama US 32.10031 -85.7127 0 … 1517 1517 

84001013 US USA 840 1013 Butler Alabama US 31.753 -86.6806 0 … 3247 3248 

… … … … … … … … … … … … … … 

4.2 Method 

This section introduces the framework and workflow for detecting and visualizing space-

time clusters of infectious diseases using COVID-19 data in the conterminous US. The 

framework is based on a “tight-coupling” system with customized spatial and temporal settings. 

It incorporates data extraction capabilities, clustering detection, and geovisualization in a web-

based GIS environment, and uses a server-side (running procedure on the server) and a client-

side (running procedure on the user's web browser), as illustrated in Figure 14. 

 
6 Boundaries: https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html 

https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html
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Figure 14. The framework of a tight coupling system to detect space-time clustering of COVID-19. 

 

The server side is articulated around three types of servers for different purposes: a 

database server, an interface server, and a method server; each server in this system is 

represented as a docker container. The database server stores all the relevant input data and 

output results. Disease information at the county level is extracted daily from the JHU CSSE 

COVID-19 database and imported into our COVID-19 database using a processing script written 

in Python, which removes unnecessary attributes. The other two datasets are population and 

cartographic boundaries from the US Census Bureau. The disease detection algorithms are 

processed on the methods server and generated results. This process is repeated every night after 
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the data is automatically retrieved and processed. The interface server connects the client and 

database sides for visualizations.  

The client side is the graphical user interface (GUI) of the COVID prototype. It consists 

of basic online map functions, including zoom, pan, etc. The default homepage contains the 

distribution of US COVID-19 space-time clusters at the county level. The geovisualization of 

space-time clusters is displayed in both two and three dimensions. My framework is articulated 

around three modules implemented on individual servers: (a) an analysis module (Method 

Server), (b) a visualization module (Interface Server), and (c) a data processing module 

(Database Server).  

4.2.1 Analysis module 

Among various methods of disease space-time detection, the local indicators of spatial 

association (LISA) and space-time scan tests are two popular methods.  

Local indicators of spatial association-LISA.  Anselin (1995) introduced LISA as 

decomposition of global indicators of each individual observation, which can detect significant 

local clustering around an individual location and recognize the spatial nonstationary with 

outliers. For a region i, the local indicators of spatial association 𝐼𝑖 defined as:    

𝐼𝑖 =
(𝑛 − 1)(𝑥𝑖 − 𝑥)

∑ (𝑥𝑗 − 𝑥̅)
2𝑛

𝑗=1

∑ 𝑤𝑖𝑗(𝑥𝑗 − 𝑥̅)

𝑛

𝑗=1

 
Eq. 1 

 

where 𝑥𝑖 is the attribute of the variable of interest (here, the disease rate) in region i, 𝑥̅ is the 

mean of 𝑥𝑖 (i=1…, n), 𝑤𝑖𝑗  is the spatial weight between regions i and j (typically derived from an 

adjacency matrix). The results of the LISA algorithm group regions into different groups (e.g., 

High-High, Low-Low, High-Low, Low-High) with an associated p-value. When a location is 
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categorized as High-High/Low-Low, it denotes a region exhibiting high/low rates, surrounded by 

other regions with similar, high values/low values. A High-Low category characterizes a county 

with high rates, surrounded by low rates. This could be indicative of an area experiencing a rapid 

increase in cases that is more than what would be expected, while surrounding regions do not 

experience such rapid growth. Low-High represents outlier regions of low value surrounded by 

high values. The LISA statistic (Anselin, 1995) is purely a cross-sectional method that does not 

take the temporal information into account. There are ample examples of this repetitive approach 

to identify clusters of infectious diseases (see Ghosh & Cartone, 2020; Sugumaran et al., 2009). 

However, the LISA statistic is likely to lead to the discovery of false negatives and false 

positives. 

Space-time scan statistics. Kulldorff and Nagarwalla (1995) introduced the spatial scan statistic 

as a test for detecting clusters by assessing the likelihood ratios of events inside and outside of 

circular scanning windows, adjusted for the density of the population. The radii of the windows 

are varied continuously from zero to the maximum bandwidth, e.g., to a size containing a certain 

percentage of the population. The window with the maximum likelihood ratio is defined as a 

cluster, and only regions located within this window are considered to ‘belong’ to that cluster.  

Kulldorff et al. (1998) further expand the spatial scan statistics to incorporate the 

temporal dimension by adding the circle’s height to represent the time (Figure 15). Thus, each 

cylinder represents the scanned geographic region (the circle projected to the area) within a 

temporal range (the hight of the cylinder). 
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Figure 15. The illustration of space-time scan statistics. 

 

As the statistic is designed to detect clusters, the null hypothesis H0 is that the risk of 

infection within a cylinder Z is similar to this risk outside the cylinder; the alternative hypothesis 

Ha is that the risk of infection within a cylinder Z is larger than this risk outside this cylinder. 

Accordingly, the expected number of cases (𝜇) based on the null hypothesis is  

𝜇 = 𝑝 ×
𝑁

𝑃
 

Eq. 2 

with 𝑝 the population in the cylinder, N the total number of cases within the cylinder Z, and P the 

total population within the study area. Thus, the maximum likelihood ration to identify space-

time clusters is defined as: 

𝐿(𝑍)

𝐿0
=

(
𝑛𝑍

𝜇(𝑍)
)

𝑛𝑍

(
𝑁 − 𝑛𝑍

𝑁 − 𝜇(𝑍)
)

𝑁−𝑛𝑍

(
𝑁

𝜇(𝑇)
)

𝑁  

 

Eq. 3 

where 𝐿(𝑍) is the likelihood function for the cylinder Z, and 𝐿0 is the likelihood for the null 

hypothesis H0, 𝑛𝑍 is the number of cases in the cylinder Z, 𝜇(𝑍) is the number of expected cases 

in cylinder Z, and 𝜇(𝑇) is the total number of expected cases within all time periods in the study 

area. I reported 1) the relative risk for each location (RR of the location), defined as the 
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estimated risk (observed/expected) within the location divided by the estimated risk outside the 

location, and 2) the relative risk for the cluster that the location belonged to (RR of the cluster), 

representing the estimated risk divided by the risk outside of the cluster. For instance, if the RR 

of the county is 1.4 and its RR of the cluster is 2.5, then this county is 1.4 times more likely to be 

exposed to COVID-19 while it also belongs to a cluster that is 2.5 times more likely than outside 

this cluster. 

The space-time scan statistic on the other hand “scans” the data using a cylindrical 

window in both space and time (Kulldorff et al., 2005). Also, unlike the LISA statistics, space-

time scan statistics are not restricted by administrative boundaries (Naish & Tong, 2014), 

because the scan statistic searches for clusters beyond the so-called ‘adjacency matrix’, which is 

central to the LISA statistic. 

Implementation of the algorithms. The LISA and space-time scan statistics are automated and 

conducted every night when the JHU data are updated and retrieved. The LISA algorithm is 

repeatedly conducted within the system to detect geographic clusters for each day. An open-

source, cross-platform python library of spatial analysis functions, including LISA, called 

pygeoda, is implemented and integrated for the temporal repetition of the LISA statistic. I 

conduct LISA on the incidence rate (7-day average cases divided by population) using a Queen 

contiguity matrix. For the space-time cluster detection, I run SaTScan in a batch mode approach 

using a discrete Poisson prospective test with a maximum spatial cluster size as 50% of the 

population at risk and a maximum temporal cluster size of 50 days7. Input files, parameter files, 

 
7 The maximum spatial cluster size (50%) is the default setting; the maximum temporal cluster size is based on our 

experiments with different values (1~59) for this variable using the dataset in October to December 2021 and authors’ 

experiences as there is no rigor rule for the parameter selection. 
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and batch files for the analysis in SaTScan were generated using python scripts. Both outputs 

from LISA and space-time scan statistics are stored in separated databases. 

 

4.2.2 Visualization module 

In the YuTu system, several visualizations are implemented. One of them is the animated 

bivariate map which displays two variables simultaneously (see Figure 16). This visualization 

displays results from the space-time scan statistics, using animated bivariate maps to visualize 

different cluster detection results (Lan et al., 2021). The two presented variables are the relative 

risk when the location with a cluster and the relative risk for this location on that day. In this 

interactive system, the values for each variable can be displayed by hovering over the county.  

 
Figure 16. The animated bivariate map of space-time cluster using the space-time scan statistics. 

 

I also complement this system with LISA results (see Figure 17). The two variables for 
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the LISA map are the p-value and the cluster group to which a county belongs. The p-value is 

ranged from 0.05, 0.01, 0.001, and 0.0001, and the cluster group is ranged from Low-Low, Low-

High, High-Low, to High-High. From the two maps, some areas are detected as clusters in both 

maps, while some regions are detected only on one map. 

 

Figure 17. The animated bivariate map of space-time cluster using space-time scan statistic (left) and 

LISA (right) around August 11, 2022. 

 

Although the animated bivariate map has the advantage of showing the dynamic of 

cluster distribution each day, it is hard to memorize the overall patterns. To complement that, 

other visualization solutions are incorporated to display the data in various ways, and these 

methods include the spiral map, the TimeChart, and the 3D space-time cube. 

The spiral map (Weber et al., 2001) shows the average daily relative risk at the state level 

(see Figure 18). Each bar from the spiral map has represented this value by using both color and 

length. The darker and more extended the bar, the bigger its value. When one county is selected 

in the bivariate map, the spiral map is switched to the spiral of the state that this county is within. 

The central cartogram displays that value of each state at the latest date.  
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Figure 18. The animated bivariate map of space-time cluster using the space-time scan statistic (left) and 

a spiral map reflecting the average relative risk for each conterminous US state (right). 

 

I use the TimeChart to show the results of the bivariate map in a static and linear fashion 

(Figure 19). When one or more counties are selected on the bivariate map, the TimeChart 

displays the chart for the selected counties. The first chart in red represents the county's relative 

risk (RR of the location), while the second chart in blue represents 1) the RR of the cluster that 

the county belonged to, and 2) the 7-day average cases for this county. In this way, animated 

results are linked with static and linear results to help discovering the dynamic patterns in space 

and time. 
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Figure 19. The animated bivariate map of space-time cluster using space-time scan statistic (top) and the 

TimeChart of different variables (bottom). 

 

I also develop 3D web-based geovisualization, named 3D space-time cube (Figure 20), 

using multiple JavaScript libraries (3D Scatter Plots Plotly and Data-Driven Documents (D3) 

(Bostock et al., 2011)). In this 3D plot, the x and y represent the latitude and longitude of the 

centroid for each county, while the z-axis represents the time. Finally, each dot is color-coded to 

reflect the value of its relative risk. The system also incorporates a filter that essentially masks to 
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focus on regions is flexible given that a filter of the relative risk is offered to show more or fewer 

points. 

 
Figure 20. The 3D space-time cube of clusters with displaying the relative risk of the cluster (left) and 

relative risk of the county (right). 

 

4.2.3 Data processing module 

 The data processing module contains daily data retrieving and processing, data analysis, 

and storing, and these steps are connected to the WebGIS environment. All the data are stored in 

databases created and managed using PostGIS, an open-source software program that supports 

geographic objects.  

Daily retrieved data are processed and imported into the database on the server. Python 

scripts are used for daily data retrieving, processing, and space-time cluster detection for all 

counties. Population and boundaries data are stable in years and are stored as separate databases.  

4.3 Case study 

I illustrate the YuTu system to monitor the variation of COVID-19 cases across the 

conterminous US. As multiple visual components display different results, I introduce serval 

case studies as examples to show potential ways to use this system by combining visualizations. 
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The animated bivariate map is intended to indicate the daily relative risks, which are the basic 

information for all other visuals.  

4.3.1 Four waves of COVID-19 outbreaks  

Four waves were identifiable from Figure 21, using the 7-day average cases in the US 

since the beginning of the pandemic. I selected four time intervals around the peak of each wave, 

that were July 21, 2020 (peak 1), January 4, 2021 (peak 2), Sep. 3, 2021 (peak 3), and January 

15, 2022 (peak 4).  

 
Figure 21. The four waves and their estimated peak dates using the data from WHO Coronavirus 

(COVID-19) Dashboard (World Health Organization, 2020). 

 

Figure 22 shows the results of the SaTScan algorithm (a) and the LISA statistic (b) for 

peak 1. From the SaTScan results, one large cluster covered many counties in the south and 

center of the US. From the LISA results however, high-high and high-low clusters were found in 

the south, southeast and the southwest, while many counties in the central US belonged to groups 

of low-low clusters. Also, several counties in Washington state and Idaho were classified as 

high-high clusters by the LISA method, yet the SaTScan method did not detect these counties. 
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Figure 22. The animated bivariate maps at peak 1 using the prospective space-time scan statistics (a) and 

LISA (b). 

 

Figure 23 shows the results of SaTScan (a) and LISA (b) on peak 2. However, SaTScan 

results showed that the RR of the clusters are not as high as during peak 1 (Figure 22).  One 

cluster with higher relative risk was in the southwestern, including the south part of California, 

the west part of Arizona, and several counties in the boundary of Nevada with these two states. 

From the LISA results, most counties in the cluster found by SaTScan were categorized as high-

high clusters with the LISA algorithm.  

 
Figure 23. The animated bivariate maps at peak 2 using the prospective space-time scan statistics (a) and 

LISA (b). 
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Interestingly, I also found clusters with higher relative risk one month earlier than peak 2. 

On November 26, 2020, the SaTScan (Figure 24a) detected one very large cluster covering 

several counties in the North and central parts of the US. Most counties within this cluster had 

higher relative risks (colored in dark purple) compared with the rest of counties (colored in light 

purple). As to LISA results (Figure 24b), high-high and high-low were also found in the north 

and centre of the US.  

 
Figure 24. The animated bivariate maps on November 26, 2020, 40 days before peak 2 using the 

prospective space-time scan statistics (a) and LISA (b). 

 

On peak 3 (Figure 25), multiple small clusters were shown from the SaTScan results 

(Figure 25a), and the cluster with the highest relative risk on that day included the whole Florida 

state and many counties from neighboring states. Other clusters were found in the western, 

central, southern sections of the US. Many counties within clusters from SaTScan were also 

classified as high-high clusters using LISA (Figure 25b). Similarly, clusters with higher relative 

risks were detected one month before peak 3 (Figure 25c&d). 
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Figure 25. The animated bivariate maps at peak 3 (a & b), and the maps on July 24th, 2021, 42 days 

before peak 3 (c & d). 

 

During the interval that covered peak 4, only one cluster covering many states in the east 

of the US was detected by the SaTScan results (Figure 26a), while high-high cluster were 

distributed across the US according to LISA results (Figure 26b). When looking at the results 

one month ago of peak 4, both SaTScan and LISA (Figure 26c&d) suggested clusters of higher 

relative risks or high-high values detected in the northeast of the US.   
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Figure 26. Animated bivariate maps at peak 4 (a and b) and the maps on December 16th, 2021, 31 days 

before peak 4 (c and d). 

 

4.3.2 Comparing situations among counties 

I picked three counties with relatively high population density in three different states: 

Los Angeles County in California, Miami-Dade County in Florida, and Queens County in New 

York (see Figure 27). According to the TimeChart functionality, all of them had a very high 

number of cases on January 11, 2022, around the peak day of the fourth wave. Although they had 

the highest cases on that day, two counties belonged to the same cluster with a relative risk of 

3.7, and Los Angeles County was not within a cluster. The relative risks of those counties were 
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1.1 with 38,007 cases (Los Angeles County), 2.54 with 15,777 cases (Miami-Dade County), and 

2.28 with 11,896 cases (Queens County).  

 
Figure 27. The animated bivariate maps of selected three counties on the date that all of them reported 

most cases (a and b), and the TimeChart of 7-days avg cases (c), and the Timechart of relative risk of 

clusters (d). 
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4.3.3 Interpret waves using the 3D space-time cube 

I also looked at the third wave from June 2020 to December 2020 using the 3D space-

time cube (Figure 28). The left side of the figure shows the extent of space-time clusters by 

displaying the relative risk of each cluster, and its right side shows the relative risk distribution 

of counites with clusters in space and time. The value was filtered to show more or fewer points. 

When the relative risk is equal to or larger than 2, it is clear that there is a shift from the centre 

and some counties in the east to the northwest of the US, and this change happened around 

September, which was around the peak time of the third wave. By increasing the threshold to 4 

and 8, the results are clearer, and the relative risk of clusters and counties was higher before 

September. 
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Figure 28. The 3D space-time cubes during the third wave from June 2020 to December 2020 with 

different threshold of relative risk. 

 

4.3.4 Different scales using Wisconsin as an example 

To explore the use of multiple scales, I also generated results of Wisconsin on three 

scales. According to the spiral map, there were two periods when the average relative risk of 

Wisconsin was higher (Figure 29). I selected three months from one of that two period, from 

December 1, 2021, to February 28, 2022, when the value peaked and then decreased.  
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Figure 29. The animated bivariate map and the spiral map of Wisconsin. 

 

To compare results at different scales, I included scales from the county levels with all 

other states, the county level with one state, the zip code level, and the census tract level (see 

Figure 30, Figure 31, Figure 32). From the cluster map using results of SaTScan and LISA for 

the entire region, most counties in Wisconsin were detected in the clusters on December 1, 2021. 

For SaTScan results only considered cases within the state, all three levels detected clusters in 

most areas except areas at the bottom, and results at three scales were similar. On January 5, 

2022, most counties in Wisconsin no longer belong to a cluster from the results of SaTScan and 

LISA considering all states. However, clusters were detected on all three scales when only 

considering regions in Wisconsin, and the area that belonged to clusters was smallest at the 

county level and largest at the zip code level. On February 28, 2022, most counties in Wisconsin 

remained not within a cluster from the results of SaTScan and LISA. Clusters were only detected 

at the zip code level. 
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Figure 30. The animated bivariate map of Wisconsin at multiple levels on December 1, 2021. 
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Figure 31. The animated bivariate map of Wisconsin at multiple levels on January 5, 2022. 
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Figure 32. The animated bivariate map of Wisconsin at multiple levels on February 28, 2021. 

4.4 Discussion and conclusion 

 

US COVID-19 YuTu is a health surveillance system based on space-time cluster detection 

analysis and visualization implemented with near real-time monitoring and novel visual features. 

This system emphasizes spatiotemporal analysis and representation in various ways. To illustrate 

the framework, the prospective space-time scan statics and the LISA algorithm are applied to 

detect space-time clusters daily, although other ESDA or statics methods can also be 

implemented. As for the visualization, the animated bivariate map of those two methods presents 

all the available space-time clusters each day, together with the TimeChart for linear 



72 

 

 

 

representation and the spiral map for the higher level summary to complement the weakness of 

processing a large set of dynamic information. The 3D space-time cube offers another relative 

static way to explore the same results with the ability to filter data on both the range of time and 

the value of the relative risk of space-time clusters. This framework can also apply multiple 

scales, such as from the county to the zip code level.  

 This system also has some limitations. First, the calibration of the parameters used in the 

spatial analysis requires fine tuning with epidemiologists, which may initiate some hypothesis 

for prediction, such as recognizing the signal before the peak of a current wave. From the 

introduced case study that focused on four specific waves, I found that two peaks in 2021 have 

higher relative risk and larger extent of clusters according to results using the prospective space-

time scan statistics. Likely, this signal was detected because of the choice of time maximum 

range as 50 days based on the 2021 dataset. It is worth noting that the LISA result cannot detect 

this signal, as it only considers data for one day. 

 Secondly, because of the limited source of available open access datasets, this system 

only takes cases and deaths into account, while other COVID-19 related information, such as 

hospitalization rate, could also be useful to detect space-time patterns.  

 Thirdly, I did not consider the uncertainty in population as I use the 2019 ACS data. In 

the early of the system development, the 2019 ACS data was the best source in early 2021. 

Although the US Census Bureau released the 2020 Census later, the population after 2020 

remains unknown and it is heavily impacted by the pandemic. The solution should not be simple 

update the population data when the latest is available. More investigations on this issue are 

necessary to near real-time health surveillance systems like the US COVID-19 YuTu. 
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This study presents a framework of novel surveillance systems that automatically detects 

space-time clusters daily, and a prototype using the framework, named US COVID-19 YuTu, is 

introduced. This COVID-19 surveillance system integrates two popular methods and a various of 

novel interactive visualization features in 2D and 3D within an open-source web-based GIS 

environment. Although the prototype focused on 48 states in the US using the space-time scan 

statistics and the LISA algorithm, it can apply to any other countries or regions at multiple scales 

using other possible algorithms. On the one hand, I hope this system can assist health 

policymakers in making interventions, such as slowing down the spread of COVID-19 in the US. 

On the other hand, I hope to inspire others to develop health surveillance systems that reflect 

more on the spatiotemporal analysis results instead of merely descriptive data. 
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CHAPTER 5: EVALUATION 

When developing new visualization and analytics tools, it is important to evaluate their 

effectiveness (Carroll et al., 2014). The motivation for this chapter is to assess the functionality 

and usability of US COVID-19 YuTu, the proposed online surveillance. In a 2007 study, 

Robinson (2007) presented a design framework for exploratory geovisualization in 

epidemiology. The research questions in this study focused on identifying necessary features and 

interactions of visualizations and how epidemiologists may use the application for decision 

making. Likewise, my proposed online surveillance system in Chapter 4 is designed to assist 

epidemiologists to detect space-time patterns to assist in a response during an outbreak.  

 

In this chapter, I summarize efforts to evaluate the proposed online surveillance system based on 

three specific research questions:  

1. Is this a helpful system for detecting and identifying space-time patterns of infectious 

diseases? If so, which features of visualizations and represented information are helpful 

and why? 

2. Does this system assist epidemiologists in making timely responses during an outbreak? 

If so, how could they use results or information from the system?  

3. What are the strengths and weaknesses of this system compared with traditional methods 

epidemiologists used?  

To answerer these questions, I conducted an evaluation consisting of a user study and an 

export evaluation. The remainder of this section presents the background information of selected 

qualitative methods to evaluate this system. I introduce the design and process for the evaluation 
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in the second section and the results in the third. Lastly, I provide a summary and discussion of 

the evaluation.  

5.1 Background 

Popular methods to evaluate the effectiveness of novel visualization techniques in 

geospatial health are interviews, participant observations, task analysis, and a combination of 

these methods (Carroll et al., 2014). These qualitative methods are beneficial for collecting 

feedback from targeted users and connecting practice with theory. For example, Ban and 

Ahlqvist (2010) evaluated a geovisualization of uncertain urban ontologies, including two types 

of interviews, a pilot interview with students, and in-depth discussion with experts, examining 

different aspects of the geovisualization. They concluded that the pilot interview with closed 

questions was an excellent resource for collecting qualitative data and that the in-depth interview 

offered new information that was not indicated in the pilot interview. 

Participant observation is one popular method that has been implemented in the design 

process of analytical and geovisualization systems. For example, Robinson et al. (2005) invited 

domain experts to assess an exploratory geovisualization toolkit for epidemiology, and Lloyd 

and Dykes (2011) collaborated with experts during the design phase of geographic visuals lasted 

for a the long term (3 years).  

Task analysis is another widely used method for evaluating a system or application in 

epidemiology, and it usually combines a survey after completing an analytical task. For example, 

Robinson et al. (2017) evaluated a visual analytics system to detect space-time patterns using a 

combination of task analysis, followed by participant surveys. Their task analysis required 

participants to provide written responses of the patterns they identified, followed by a usability 

and utility survey. Similarly, Pezanowski et al. (2018) developed a user evaluation approach in 
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which participants were required to answer questions for the evaluation after finishing a task that 

guided them through primary functions of an analytical application of social media. They created 

an online survey consisting of basic demographic questions, sample tasks to complete, and 

usability and utility questions. In another study, Wagner Filho et al. (2019) evaluated an 

immersive space-time cube geovisualization for trajectory data exploration. They introduced 

evaluation strategies, including measuring users’ performance in relevant tasks, observing how 

users interact, interviewing users on their subjective experience, including both novice and 

domain experts.  

Besides selecting qualitative methods, another vital component for conducting qualitative 

research is to decide on target respondents and recruitment. For instance, Anderson and 

Robinson (2021) recruited 320 participants using Amazon Mechanical Turk8 to collect 

information on reading categorical maps, and participants were recruited without constraints of 

knowledge or skills. However, studies designed for professionals may require participants to 

demonstrate specific domain knowledge, and it may be difficult to recruit sufficient participants. 

For this reason, researchers generally include novice users (typically students) and domain 

experts (see Robinson, 2007; Robinson et al., 2017; Wagner Filho et al., 2019). 

5.2 Evaluation design and process 

The evaluation of US COVID-19 YuTu consists of a user study (task analysis integrated 

into a survey) and an expert evaluation (a group interview) to capture different dimensions of the 

same issue as the triangulation (Patton, 1999). The user study aimed at testing the functionality 

and general thoughts by collecting responses from graduate students using an online survey, and 

 
8 Amazon Mechanical Turk is a crowdsourcing website to remotely recruit participants to conduct tasks. 
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the expert evaluation further collected feedback, comments, and discussion from a group 

interview with experts in COVID-19 analysis. The evaluation procedure (a user study and a 

group interview) was approved by the University of North Carolina at Charlotte’s Office of 

Research Protections and Integrity (Case No. IRB-22-0219). 

5.2.1 User study: Survey 

Survey design 

The survey instrument included questions about the participant’s basic background 

information and five groups of tasks and questions for each visualization from the prototype. The 

five groups are 1) the single bivariate map on the home page, 2) the two bivariate maps 

combining the space-time scan statistics and the LISA algorithm, 3) the spiral map showing 

results at the state level, 4) the TimeChart summarizing trends in a time series, and 5) the 3D 

space-time cube representing results in a 3D dimension (see Chapter 4 for details of each 

visualization). To confirm that participants understood basic functionality and visualization of 

the evaluated system, they were required to correctly answer three questions before proceeding 

to the next section. Tasks and questions for each visualization can be classified into five 

categories: 1) the accuracy of submitted answers, 2) the confidence level of answers related to 

the accuracy, 3) the usefulness of this visualization, 4) the possible use of this visualization for 

decision making, 5) and an open-ended question to collect additional feedback.  

For questions related to accuracy, participants were asked to directly ascertain values or 

answers to the question from the current evaluated visualization. The questions asked were 

similar, such as “What was the time range when more than half of the counties in California 

belonged to a cluster?” and “Which state had the highest average relative risk yesterday from the 

center of the spiral map?” Some questions in this category used a 5-point Likert scale, which 
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asks responders to identify their level of agreement to a statement on a scale of five points: 1) 

strongly disagree, 2) somewhat disagree, 3) neither agree nor disagree, 4) somewhat agree, and 

5) strongly agree. In this survey, all questions with the 5-point Likert scale used this scale of five 

points. The task asked participants to select their agreement level with a statement that described 

the pattern shown from the visualization. An example statement for this category is “The average 

relative risk in Washington state was very high at the beginning of the pandemic.”  

In an effort to further interpret how confident participants were that they understood the 

visualization, the participants were then asked to identify their confidence level. This information 

is helpful to interpret how clear and easy that participants can understand the represented 

information from the system.  

For questions that evaluated the usefulness of the visualization, participants needed to 

select an agreement for the following statements using the 5-point Likert scale. Questions 

included “I think both maps provided under the ‘@LISA’ tab allow for a comparison of 

clustering techniques” or “I think the ‘TimeChart’ is useful to identify the trend of different 

variables (e.g., relative risk).”  

To evaluate and explore potential indications from the represented information of the 

visualization in decision making, participants were asked to imagine themselves as health 

policymakers and submit their agreement level on prompted statements, such as “I will rely on 

the information provided on both maps to make an informed decision” and “I will use the filter 

function from 3D space-time cube to warn the counties with a high relative risk (e.g., RR > = 

4).”  

At the end of each visualization evaluation, participants had the opportunity to provide 

overall feedback. Any suggestions and comments for the prototype, in general, were also 
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gathered. The survey was created and distributed using Qualtrics XM, a sophisticated online 

survey tool. Before the survey recruitment, we also conducted a pilot test with three participants 

to ensure that the survey process was smooth and that no problems occurred. The participants 

include a post-doc in public health and two graduate students in geography. 

 

Survey Process 

For the evaluation process, each participant was required to participate in the introduction 

section and then complete an online survey. Twenty-four graduate students were recruited from 

the Department of Public Health Sciences and the Department of Geography and Earth Science 

at UNCC to evaluate the prototype’s functionality.  

As this prototype is designed to assist health experts in decision-making, the majority of 

participants were from the Department of Public Health Sciences (n = 18). Multiple recruitment 

approaches were employed to maximize the total number of participants with a background in 

public health. These approaches included sending recruitment information to professors in 

epidemiology and all graduate students in the department and hanging flyers within the 

department building. Each participant met with me for the introduction section. Only one 

participant requested to meet in person, and the others were scheduled for a Zoom meeting. The 

meeting usually took 15-30 minutes to introduce basic concepts and tools on the prototype and 

answer any questions the participants had. The survey link was sent to the participant after the 

meeting. We also recruited graduate students from the Department of Geography and Earth 

Science (n = 6).9  

 
9 Three participants were interested and participated in the evaluation, after I presented the prototype and introduction 

in front of a GIS class in the department; another three participants in geography were recruited by email, and I 

introduced basic concepts and tools to each of them individually. 
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A Qualtrics survey link was sent to the participant’s email account once they obtained the 

basic knowledge to evaluate the prototype from an individual meeting or the presentation to the 

whole class. All of the surveys were taken using the participants’ computers, although my 

personal computer was also available if needed. Only one participant reported issues accessing 

specific visualization, which was solved using another device. The prototype was accessible 

using popular browsers, such as Google Chrome, Apple’s Safari, Microsoft Edge, and Firefox, 

without issues. 

 

5.2.2 Expert evaluation: A group interview 

Design 

The expert evaluation was designed to evaluate the general prototype by experts with 

experience using COVID-19 data and dashboards. The group interview consisted of an 

introduction, group tasks, a general discussion, and a conclusion. For the introduction, all 

attendees, including participants and facilitators, presented relevant background information 

about themselves and their experiences related to COVID-19 data and dashboards. This 

introduction was designed to help participants learn about each other’s backgrounds and 

encourage discussion. Three group tasks evaluated two COVID-19 dashboards or systems and 

my prototype by collecting feedback and making comparisons. The two COVID-19 dashboards 

presented were the CDC’s COVID Data Tracker and the US Covid Atlas. Health officials widely 

use the former as it updates COVID-19 and its relevant data in accordance with the CDC. The 

US Covid Atlas is a near-real-time visualization tool to connect case data and community 

indicators from the pandemic’s onset to the present. Furthermore, it incorporates maps using the 

LISA algorithm. Thus, the US Covid Atlas uses similar methods as my prototype. Each group 



81 

 

 

 

task individually introduced one of the three tools (COVID Data Tracker, US Covid Atlas, US 

COVID-19 YuTu), and similar questions for each tool were asked during the section. The 

following questions were listed as examples and were adapted during the meeting based on the 

discussion:  

1. What do you think about the effectiveness of this system for public health surveillance? 

2. What do you think about the usefulness of the system’s cluster detection (or could it be 

useful if the system does not have this function)? 

3. Which information from this system would be particularly interesting to you? 

The goal of the general discussion was to prompt a conversation about all three COVID-

19 dashboards or tools and compare them. From the discussion, my objective was to determine 

which information was useful or which visualizations were useful. After the general discussion 

section, the group interview meeting was concluded, and participants were encouraged to 

provide additional comments. 

 

Process 

The group interview was held in an online Zoom format for approximately two hours, 

and four experts with different backgrounds in COVID-19 analysis were recruited. These four 

experts include one professor from the Department of Public Health Sciences at UNCC, one 

professor from the Department of Geography at The University of Hong Kong, and two 

epidemiologists from the Mecklenburg County Government in North Carolina. All of them have 

direct experience in COVID-19 data and analysis. Two committee members of this dissertation 

(Drs. Eric Delmelle and Deborah Thomas) also joined the interview with me as facilitators and 

notetakers. The two committee members took turns leading each section, and I was responsible 
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for presenting the demonstration of each dashboard or tool during three group tasks. All three of 

us took notes during the entire meeting, which was recorded for further analysis with the 

participants’ agreement.  

5.3 Results  

5.3.1 User study 

Twenty-four surveys were collected and used for analysis; 75% of the participants (n = 

18) were female, most of the participants (n = 21) were between the ages of 18 and 33, and 

62.5% of the participants (n = 15) had a major in Public Health Science. Regarding the degree 

level, the number of master’s students (54.17%, n = 13) was slightly higher than doctoral 

students. Most participants (except two) considered themselves knowledgeable in epidemiology 

and understood relative risk in epidemiology. Additionally, over 70% (n = 19) felt confident in 

interpreting clusters, while less than 60% (n = 14) felt confident in interpreting space-time 

clusters. Regarding interpreting results using the LISA algorithm, only approximately 45% of the 

participants (n = 11) considered themselves knowledgeable, although they received basic training 

during the introduction meeting.  

 

In the following section, responses from the survey of the user study are demonstrated in detail.  

 

The single bivariate map: Homepage   

In the questions related to the accuracy of the single bivariate map, the results indicate 

that most participants understood the bivariate map by identifying the values of two variables. 

Seventy-five percent (n = 18) of the participants recognized the patterns from the bivariate map, 
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and 91.67% (n = 22) identified the time range when more than half of the counties belonged to a 

cluster. From Figure 33, over 91% (n = 22) felt confident in their answers to the abovementioned 

accuracy questions. Regarding the usefulness, 83.43% of the participants (n = 20) agreed the 

bivariate map can help them interpret the different relative risks among counties within the same 

cluster (usefulness statement #1), and 91.67% of the participants (n = 22) agreed that the 

bivariate map is useful (usefulness statement #2). In terms of decision making, 75% of the 

participants (n = 18) stated that they would use the results from the bivariate map to allocate 

more health resources to areas with high relative risk.  

 
Figure 33. Agreement levels among participants for the single bivariate map. 
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Additional feedback and comments were also collected. Several participants mentioned 

that a bivariate map is a valuable tool in understanding “sensitive areas” and see their usefulness 

to public health professionals. An example of a response from a participant is:  

The bivariate map is useful for the comparison of within-cluster rates, which is very 

useful for large clusters or states with large and varying geographic areas. I see this as 

useful for state legislators/public health professionals, whereas other visualizations may 

be more helpful for between-cluster comparisons or federal public health providers.  

Some participants also provided some suggestions on the design and functionality of the 

bivariate map. Some mentioned that the legend and its color “can be a bit confusing,” and many 

suggested having an additional function to be able to locate a specific date. Additionally, some of 

the participants think it requires more information on the website to assist the general public 

understanding the maps: 

Mmm, it’s okay for health professionals who have background knowledge in data 

science/analytics. If I was a regular person this would seem like too much or confusing – 

maybe add a reference key/footnotes so [people] can get a quick understanding of the 

maps vs. having to flip between tabs to understand the functionality of the map(s). 

 

The combined bivariate maps: Tab “@LISA” 

Regarding the accuracy of the combined bivariate maps, 91.67% of the participants (n = 

22) were able to recognize the cluster indicated on the LISA map, while no clusters were 

detected on the left map using the SaTScan algorithm. Furthermore, participants were requested 

to select the agreement level for three statements that discussed the reasons for the different 

results from the two maps (Figure 34). Over 70% of the participants (the range is n = 18~19 for 

accuracy statement #1~#3) indicated that they were able to understand and interpret the 

differences. Regarding the usefulness, 91.67% of the participants (n = 22) agreed that these two 



85 

 

 

 

bivariate maps combined were useful; however, 20.83% of them (n = 5) disagreed that one 

bivariate map is easier to interpret than two maps side-by-side (see Figure 35). Regarding the 

decision making question, over 70% of the participants agreed that they could use both maps for 

different purposes (n = 17~18 for decision statements #1 and #2) and not simply rely on the 

results from one single map (n = 22, decision statement #3).  

 
Figure 34. Agreement levels among participants for two bivariate maps, provided side-by-side. 
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Figure 35. Usefulness of the two maps and comparison with the single bivariate map. 

 

Although some participants thought it is “overwhelming” or “confusing” to observe two 

maps simultaneously, most of them believed that each map could provide helpful information 

from different perspectives. For example, one participant mentioned: 

If I’m a policy maker, I would probably primarily use the right map to make decisions 

about alerting counties and implementing policies because it shows acute emergence in 

the state. The left map is also useful for making longer-term decisions and seeing if a 

cluster may be nearing the border where we might need to prepare. It would also help to 

assess where we should focus resources, but the right map will tell me when those daily 

rates are letting up when a cluster will likely be decreasing. So, I think both are useful in 

policy making. 

 

The spiral map at the state level: Tab “@State” 

Regarding questions of accuracy for the spiral map, approximately 80% of the 

participants identified the correct value (n = 20) and date regarding the state when it had the 
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highest average relative risk (n = 19) and the state that had the highest value using the map 

located in the center of the spiral (n = 19). Regarding confidence (Figure 36), although there 

were three missing answers, over 76% of the participants (n = 16) stated that they were confident 

in their responses. Concerning usefulness, over 60% of the participants agreed with the spiral 

map’s effectiveness in connecting the bivariate map (n = 15, usefulness statement #1), exploring 

the latest value (n = 16, usefulness statement #2), and showing patterns at the state level (n = 17, 

usefulness statement #3). Regarding decision making, many of the participants (n = 17) agreed to 

utilize the pattern established from the visualization to decide the policy for the state (decision 

statement #1), while fewer (n = 14) agreed to use it to evaluate implemented policies, such as a 

lockdown (decision statement #2). 

 
Figure 36. Agreement levels among participants for statements on the spiral map. 
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Some participants mentioned that the spiral map is complex or “tricky” to understand or 

navigate (e.g., “It is more difficult to read than the other maps”), and they suggested having some 

guidelines for it. However, many of them had different opinions of the visualization’s usefulness, 

such as “The spiral map is incredibly helpful because you can’t remember what is happening at 

different points in time across the bivariate map playback” and “I find the spiral map very useful 

for between-state comparisons and for estimating the success of COVID-19 implementations in 

reducing transmissions.” 

 

Time series charts: Tab “TimeChart” 

Regarding the accuracy of the TimeChart (Figure 37), approximately 80% of the 

participants (n = 19) could identify the time range with the highest value in three years for one 

county, while the percentage to determine the date for the highest value of another variable was 

lower, at approximately 45.83% (n = 11). One possible reason is that the time range was 

relatively short, which participants may neglect. Approximately 80% of the participants (n = 20) 

were able to identify which county has more often been part of a cluster when comparing two 

counties. Furthermore, 74% of the participants (n = 18) could identify a similar pattern between 

the two counties in California (accuracy statement #1), and 66.67% (n = 16) could identify the 

difference of relative risk between the two counties (accuracy statement #2). Concerning the 

confidence level, 83.33% of the participants (n = 20) felt confident in their answers. Regarding 

the usefulness of the visualization, 87.5% of the participants (n = 21) agreed that the TimeChart 

was helpful for identifying the trends of provided variables (usefulness statement #1) and 

comparing counties (usefulness statement #2). Concerning decision making, 87.5% of the 

participants (n = 21) agreed to carefully monitor the RR of the county due to the high value of 
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this variable, while the other two values (RR of the cluster and 7-days avg. case) are decreasing 

according to the TimeChart. 

 
Figure 37. Agreement levels among participants for statements of the TimeChart. 

 

Although some of the participants considered the TimeChart complicated and challenging 

to get the exact rate, some mentioned its usefulness in comparing multiple counties. For instance, 

one respondent said, “I love the ability to directly compare counties by being able to select 

multiple counties at a time. This function is great for public health resource allocation.” 

 

3D space-time cube: Tab “@3D” 

Regarding the accuracy of the 3D space-time cube, 87.5% of the participants (n = 21) 

identified the county and date with the highest relative risk among the selected space and time 

range. Concerning the confidence level (Figure 38), 79.17% (n = 19) felt confident in their 

answers. Regarding the usefulness, 75% (n = 18) agreed that the 3D space-time cube is valuable, 
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and 50% (n = 12) agreed that it is easier to understand the dynamic of space-time clusters using 

the 3D visualization. However, the rate was much lower when compared with other 2D-

visualization techniques. Only 25% of the participants (n = 6) agreed that the 3D visualization 

was more useful than the animated bivariate map, and 12.5% (n = 3) agreed that it is more useful 

than the TimeChart. For decision making, 62.5% (n = 12) indicated that they would use the filter 

function to identify and warn counties with a higher relative risk (decision statement #1) about 

the significant high risk of transmission and that they would investigate the cluster shift as shown 

from the 3D space-time cube (decision statement #2). 

 
Figure 38. Agreement levels among participants for statements of the 3D space-time cube. 

 

Although some of the participants (n = 5) thought a 3D visualization was great for 

representation, a higher number of the participants (n = 10) mentioned it was difficult to 
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navigate, use, or interpret. Some of them also said that 2D visualization was more appropriate in 

some ways. For instance, one participant mentioned: 

I can see this type of mapping to be very useful. As it is now, it can be a little difficult to 

interpret compared to other forms of space-time mapping. For instance, while the orange 

and red dots do stand out, it is less clear than some of the 2D representations as to which 

county was most at risk and when. 

 

Results from the five visualizations were summarized based on those four evaluated 

categories, as shown in Figure 39. When multiple questions were asked within one category, the 

percentages displayed in Figure 39 show the average percentages for that category. Regarding 

accuracy, responses with corrected answerer were in the range of 79~88% (n = 19~21), while the 

TimeChart was slightly lower with a rate of 71% (n = 17). For the confidence level, the lowest 

level was for the spiral map (67%, n = 16), and the highest was for the single bivariate map 

(92%, n = 22). Regarding the rate of usefulness, the one with lowest positive responses was also 

for the spiral map (67%, n = 16), and the highest was for the two bivariate maps (92%, n = 22). 

For the rate of decision making, the one with lowest positive responses was for the 3D space-

time cube (50%, n = 12), and the highest was for the TimeChart (92%, n = 22). 
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Figure 39. The summary of positive responses for all five visualizations. 

 

The 2D visualization is also compared with the 3D space-time cube in Figure 40. Many 

participants (n = 9) disagreed that the 3D visualization is more useful than the single bivariate 

map. Similarly, a higher number of participants (n = 12) disagreed (and n = 5 strongly disagreed) 

that the 3D visualization is more useful than the TimeChart.  
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Figure 40. The results of usefulness when comparing different visualizations. 

 

Geography student participants 

The responses of geography graduate students were analyzed separately, but the response 

was similar to that of graduate students in public health. However, the geography graduate 

students’ feedback that was collected through open-ended questions was more critical compared 

to the public health participants’ feedback. 

 

Participants were also asked to provide comments in general. Over 91% of them agreed 

that the introduction session and the provided information were helpful for them to interpret 

represented information from the visualizations and answer the questions in the survey. Some 
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participants enjoyed the functionality in general and mentioned its usefulness. For instance, one 

participant said: 

The system is impressive. It needs a few enhancements to improve the user experience 

(UX). I suggest video tutorials, in addition to the read me button, to guide users on how 

to navigate the system. The time chart is the best, the dual maps are also great. The 3D is 

somewhat difficult to visualize but when it’s few cases, it explains very well, the space-

time dimension. 

Another participant stated: 

I am a big fan of this dashboard overall. I think providing multiple options for 

representing and interpreting space-time COVID-19 data is crucial for public health 

practitioners and very helpful. The only map that gets a little murky is the space-time 

cube, but if you use the zoom function, and practice with the controls, I think it becomes 

[clearer]. 

5.3.2 Expert evaluation 

During the interview, all four participants introduced their experiences with COVID-19 

data and dashboards. Two health officers who worked for the COVID-19 response unit at the 

Mecklenburg County in North Carolina also discussed their experiences with multiple types of 

COVID-19 data, including cases, testing rates, and wastewater data. They mentioned that they 

mainly use the North Carolina COVID-19 Dashboard (e.g., to analyze neighboring counties) and 

that the North Carolina Department of Health and Human Services provides information about 

clusters and outbreaks, but they also use the CDC COVID data tracker and COVID-19 

Dashboard by Johns Hopkins University. Another participant had experience with analyzing 

COVID-19 data in health geography and was familiar with different health data visualization 

techniques. The fourth participant also had experience using the CDC dashboard for research in 

public health. 

The first task of the group interview essentially asked participants to discuss the CDC 

COVID data tracker, which is the most familiar to recruited four experts. Concerning its 

effectiveness, one health officer considered it “a friendly tool” that can be used to compare the 
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rates in Mecklenburg County to surrounding counties, while the other participants mentioned its 

ability to discover the general pattern of COVID-19 in the US. However, participants spent more 

time discussing its limitations. Both health officers said that the COVID-19 data was not updated 

daily and discovered that it did not match their county data. The academic participant in public 

health stated that it is difficult to locate and download the data. As this dashboard is not capable 

of cluster detection, we asked the participants whether it would be helpful to implement this 

functionality. Both public health officers stated that it would not work or be useful, while the 

health geographer said it would be helpful to educate the general public with such information. 

Concerning the usefulness of the maps from the dashboard, one health officer claimed that the 

community-level map from the CDC was the most useful map as the county government did not 

have access to COVID-19 hospital data, including new admissions of patients and percentages of 

staffed inpatient beds. 

The second task asked participants to answer questions about the US Covid Atlas. The 

question about its effectiveness was also discussed. Two participants liked its overlay function, 

which can add extra boundaries to the map to examine specific regions. Participants also 

mentioned that it was easy to understand the map and that the map was clear. They agreed that 

some content in the US Covid Atlas was suitable for the general public but that some content 

would have required the readers to have knowledge in geography to properly interpret the map. 

As this system uses the LISA algorithm to detect areas with high evaluated risks of transmission, 

the second question referring to the usefulness of clustering information was asked. One health 

officer pointed out that a cluster may be conceptualized differently based on the audience. Other 

participants also expressed that cluster information at the county level is not helpful for public 

health officers from the county because such information does not show inner county variation, 
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which depends on the spatial resolution data. The public health researcher also pointed out the 

importance of such results from a temporal perspective. They said this system is good at 

retrospective analysis but limited to prospective studies to identify current and future outbreak 

clusters quickly. 

 The last task asked participants to answer questions about my prototype. First, they were 

asked to provide overall feedback and comments on the system; second, participants were asked 

to provide comments on each visualization. The participants mentioned that the prototype has 

many details, but they suggested defining what cluster and relative risk are using in this syterm 

as these terms caused confusion. One health officer pointed out the different cluster definitions in 

geography and epidemiology. Participants mentioned that the color scheme of bivariate maps 

was excellent but that there were too many colors for human eyes to distinguish. Regarding the 

spiral map to display values in a time-series, they liked the design and suggested adding 

benchmarks (e.g., the date that some health policies, such as lockdown, were implemented) to 

help interpretation. For another time-series visualization, the TimeChart, the participants made 

similar comments to the comments made about the spiral map. Concerning the 3D space-time 

cube, the participants indicated that it was informative but overwhelming to use in the context of 

public health surveillance.  

 In conclusion, two questions were asked: 1) Which system is the most useful? and 2) can 

the dashboard provide rich information to make decisions? The academic researcher in public 

health pointed out that each system’s audience, as well as its purpose, is essential. The health 

geographer thought that the CDC system was not very useful and that the other two systems (the 

US Covid Atlas and the US COVID-19 YuTu) have nice maps and are informative. Furthermore, 

this expert stated that the Atlas platform was more straightforward and provided more 
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information. Both health officers mentioned that the three systems have different purposes. They 

must use the CDC system because of the data instead of maps, and the Atlas system is good at 

combining with other information, which could be used to understand patterns behind the scenes. 

My prototype is suitable for in-depth analysis of specific research questions, and it could also be 

beneficial for providing precise definitions of terms used, such as cluster and relative risk. 

Generally, it was agreed that a more granular scale was needed to assist in decision making. All 

three systems were considered suitable for hypothesis testing but did not provide information to 

answer questions in decision making directly. 

I further analyzed the transcriptions of the three group tasks using NVIVO, a qualitative 

data analysis computer software package. Each task’s transcriptions were automatically 

generated using the software and manually checked and changed incorrect words that generated 

automatically to make them meaningful in the context. Then, the text of those three 

transcriptions was coded based on a codebook with two main types, descriptive and analytic 

codes. The descriptive codes included data, audience, time, and cluster; the analytical codes 

included pros, cons, scale, and usefulness. The coverage rate was calculated, which showed how 

much of the source content was coded in the transcriptions. The word clouds of the 20 most 

frequent words were also generated after removing irrelevant stop words (e.g., “like” and 

“think”).  

 The coverage rate of coding results for the three transcriptions is shown in Table 3, and 

the highest coverage of each code is highlighted. The word clouds (Figure 41) were generated 

from the transcription of each task to further understand responses from those four experts to 

questions. Regarding the CDC system, the participants mostly mentioned “data” and “cluster” 

from the coverage table and its word cloud. This is because the CDC system is more like a “data 
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hub” to share data, and the definition of the cluster was first discussed during this interview. 

Concerning the coverage of codes in the Atlas system, most discussions focused on the audience, 

the scale, and the scale’s usefulness, which is reflected in its word cloud. The scale was 

discussed along with the overlay function. Regarding my prototype, significantly more 

discussion about time (as a temporal dimension) was identified. One reason for this focus was 

that the YuTu system focused on space-time visualization. The pros and cons of the YuTu system 

were also discussed more than the other two systems, as the purpose of this group interview was 

to evaluate this system.   

Table 3. The coding results of transcription of three group tasks. 

 Descriptive codes by coverage (%) Analytical codes by coverage (%) 

Source Data Audience Time Cluster Pros Cons Scale Usefulness 

CDC 7.77 0.82 - 21.80 0.86 11.80 0.65 4.85 

Atlas 1.24 15.36 4.84 13.25 3.17 4.55 9.65 11.90 

YuTu - 4.36 26.77 3.12 5.86 20.53 - 7.91 

 

 
Figure 41. The word clouds for three transcriptions of group tasks. 
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5.4 Discussion & Conclusions   

In this chapter, a user study and a group interview are introduced to evaluate my 

proposed system, US COVID-19 YuTu, to collect feedback from different perspectives. The 

evaluated system is implemented with several novel 2D and 3D visualizations.  

According to the user study with graduate students in public health (n = 18) and 

geography (n = 6), the system is generally well designed as good responses were noted regarding 

accuracy, confidence, usefulness, and assistance with decision making. For each visualization, 

these four categories were evaluated. The bivariate map is easy to understand, while the 

combined maps with two different algorithms tend to be confusing. Compared with other 

visualizations, the spiral map gained fewer positive feedbacks from all three categories 

(confidence, usefulness, and assistance with decision making) except accuracy, which suggests a 

need to improve the visualization by adjusting representation and functionalities. In contrast, the 

TimeChart visualization obtained high votes in all categories except accuracy due to insufficient 

representation to identify patterns when the time span of a pattern (e.g., high RR) shown in the 

chart is relatively short. Although most participants correctly identified values and information 

from the 3D space-time cube, minor participants agreed with the proposed policies derived from 

this visualization, suggested that it may be difficult to be utilized in decision making. 

According to the group interview with experts, the missing component of the YuTu 

system is the provision of clear definitions of important concepts, such as clusters and relative 

risk. Furthermore, guidance on how to interpret visual representations from each visualization is 

also necessary. Since the recruited health officers work for the county government, their 

responsibility for COVID-19 monitoring mainly focuses on the local level. However, patterns 

indicated in the system are more beneficial to health officers who work for the state or on the 
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national level. As a result, such patterns were not discussed during this group interview. 

Regarding the temporal information, experts from the meeting suggested that meaningful time 

points, such as the date when one COVID-19 variate dominated, should be added on the time-

series visualizations. Participant responses for the 3D visualization were similar to the responses 

from the user study where participants felt unfamiliar and overwhelmed. 

This evaluation combines two qualitative methods to assess the system. On the one hand, 

feedback collected from the user study with graduate students mainly assessed the functionality 

and usability of the proposed system by analyzing their responses. On the other hand, experts 

with relevant experience in such systems discussed and evaluated the prototype in depth and its 

potential usefulness in the real world. The user study suggests that novel visualizations are 

informative to represent the massive volume of space-time cluster information, which is usually 

limited in traditional visualizations (e.g., multiple static maps). In the group interview, the 

experts recognized the useful design of the system and rich details from the visualizations. 

However, they recommended that clear definitions of important terms and guidance for result 

interpretation are given, which are essential to utilize the system as a decision support tool. 

The evaluation indicates that most of the participants from both groups did not prefer the 

3D space-time cube due to it being overly complicated in terms of interactivity and 

interpretation. Although it displays the shape of space-time clusters in a natural 3D environment 

that cannot be achieved by the traditional 2D methods, the results suggest that further 

investigation of a better design of visual representation is needed. 

This study also reveals the existence of disconnection between professionals and 

academics, such as the different understanding of the term, “cluster”. Health officers who work 

in the county consider a cluster to be a small group of people, such as a cluster in one high 
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school. However, the cluster in spatial epidemiology refers to an area with an elevating risk of 

transmission of diseases. According to the literature search in Chapter 2, hotspots and clusters 

are usually interchangeable terms; however, public health professionals do not use these terms 

interchangeably. Thus, for systems designed for professionals, it is critical to provide a clear 

definition of the terms used. 

Despite the strengths of this study, several limitations are also acknowledged. First, 

collected responses may be different even with similar questions, as it is impossible to develop 

questions (or statements) that is most suitable for evaluation. Although I designed most questions 

in the survey to be closed-ended, many questions or statement are subjective to my own 

perception on interpreting visual representations, especially when the answer is not number, like 

the 5-point Likert scale question. It is possible that participants understood the visualization and 

its information, but they disagreed on some provided statements because of different 

interpretations.  

Second, although we recruited graduate students from both public health (n=18) and 

geography (n=6), the number of participants in each group was unequal. Because of these non-

balance responses, I did not conduct a statistical test to identify whether meaningful differences 

existed between these two groups. This issue could be addressed by recruiting a higher number 

of participants from public health and geography to evaluate this system in the future.  

Third, we only recruited health professionals who worked for a county instead of a state 

or on a national level. As a result, they are interested in data on a more granular scale, and results 

at the county level are not that useful for monitoring the transmission of COVID-19. The health 

professionals also mentioned that cluster information at the zip code level was not that useful due 

to the nature of human mobility (e.g., moving in and out). Thus, this limitation could be 
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addressed by recruiting health professionals from the Department of Health and Human Services 

of a state or a national government in public health (e.g., CDC) to evaluate the system, as they 

work with data at a similar scale that the YuTu system mainly focuses on. However, it is difficult 

to recruit participants from the government without a connection.  

Fourth, the evaluation reveals that health officials were interested in specific data for 

decision making, while they showed less interest in novel visualizations. The health officials 

mentioned that the most helpful map from the CDC dashboard is the map showing COVID-19 

community level data by county, based on cases together with relevant patient data in the 

hospital. However, such data is not available for public access. The health officials found it hard 

to interpret results from novel visualizations, such as the 3D space-time cube, while it is my goal 

that those novel visualizations in YuTu system can assist in decision making. A further 

evaluation is necessary to be conducted to compare the usefulness of traditional visuals (e.g., 

basic online maps) with proposed advanced visuals. 

This chapter indicates the significant role of qualitative research in developing a health 

surveillance system to assist decision making. The user study and the expert evaluation evaluated 

the YuTu system in terms of its usability and usefulness. Based on survey results and the group 

interview, information represented in the 3D space-time cube is difficult to interpret. Therefore, 

further research on such visualization is needed before implementing it into a surveillance 

system. More importantly, the usefulness of other 2D visualizations and possible required 

components (e.g., different data and methods) in decision making remains unclear and needs 

more attention in future work. Although experts did not favor one of the three evaluated systems, 

they expressed the importance of data and the system’s simplicity when comparing them. The 

profitable way to develop a health surveillance system that can assist in decision making is to 
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collaborate with health experts from the beginning of the design phase to the end of the 

evaluation phase.                 
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CHAPTER 6: GENERAL DISCUSSION AND CONCLUSIONS 

In this dissertation, I proposed a web-based geographic framework to detect and visualize 

space-time clusters of infectious diseases. In the context of the current COVID-19 pandemic, 

there is a need for effective surveillance that monitors the dynamic transmission of the virus by 

taking advantage of data at fine spatial and temporal resolutions, as such data becomes more 

available than ever before due to the development of web technologies. The proposed framework 

is a response to this need and further explores possible visual representations of such data. 

Chapter 2 identified the most popular methods used to detect space-time clusters of 

infectious diseases. I conducted an electronic literature search for relevant studies published 

before 2022 from three popular databases, including PubMed, the Web of Science, and Scopus, 

around this topic. The systematic review reflected recent trends in space-time cluster detection 

for infectious diseases. According to the results, the most popular clustering methods were the 

space-time scan statistics that detect regions with the maximum likelihood ratios and the LISA 

algorithm that identifies regions of high spatial autocorrelation. However, the implementation of 

such clustering methods together with representation of these analytical results into a web-based 

environment is missing from the literature. 

Chapter 3 presented research gaps from the literature review and derived the general 

problem statement for this dissertation. In this chapter, I identified four critical issues that 

remained unclear in the literature: 1) the use of statistical methods (e.g., LISA, GI*) in clustering 

detection with a reflection in the temporal dimension, 2) the need for robust geovisualization to 

reveal space-time patterns of infectious diseases, 3) the urge for rapid surveillance on a fine 

temporal scale, and 4) the demand for an integrated online platform for the mentioned 

components. Thus, this dissertation proposed a new method to address these issues.  
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In Chapter 4, I introduced YuTu, a prototype system of the web-based analytical 

framework for detecting and visualizing space-time clusters using US COVID-19 data. To 

address the first issue identified in Chapter 3, I implemented the prospective space-time scan 

statistics and the LISA algorithm into the system and deliberately introduced terms of “true” (for 

the former method) and “not-true” (for the later method) space-time clusters to reflect the 

differences between these two methods. The system is articulated around five novel visualization 

approaches in an attempt to address the second issue, including the animated bivariate map, the 

combined bivariate maps, a spiral map, the TimeChart, and the 3D space-time cube. The 

animated bivariate map represents the results of the SaTScan algorithm and displays the values 

of two important variables, namely the relative risk of the cluster a county belongs to at the time 

of the analysis. Furthermore, this visualization is the baseline visualization linked with other 

visualizations to display space-time data in two factors. The second visualization is two animated 

bivariate maps side-by-side using the abovementioned two methods. In this way, clustering 

information that considers past days (using the SaTScan method) and information that focuses on 

the current day (using the LISA algorithm) are displayed together, which allow to combine this 

two information together to interpret the results. The third visualization linked the basic bivariate 

map with a spiral map to show each state’s daily average relative risk. Thus, the relative risk 

pattern of each state is shown from the start of the pandemic to the current date, and the 

distribution of this value at the state level is also displayed and updated every day. Users can 

easily understand the dynamic change of space-time clusters using the animated map, while 

memorizing all daily changes over the years is cognitively challenging. The fourth visualization 

approach combines the TimeChart with the animated bivariate map by displaying the pattern 

with all values in a continuous time-series chart. The TimeChart also allows users to select 
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multiple counties to examine the change in relative risk in the same time series. Lastly, the 3D 

space-time cube displays the relative risk by applying gradient colors to the point representing 

each county, with the third dimension (z-axis) representing the temporal dimension. Therefore, 

the shape of true space-time cluster is shown, which cannot be recreated in a traditional 2D 

visualization.  

Finally, the design of this framework addressed the third and fourth issues identified in 

chapter 3. Every day, the system automatically collects data for analysis and generates results for 

visualization by running scheduled scripts. The system is built in an open-source environment, 

including the database (PostGIS), the interface and its visualizations (D3), analysis procedures 

with multiple programming languages (e.g., Python), and other components (e.g., Docker). 

The evaluation of the system was discussed in Chapter 5. To collect comprehensive 

feedback, I conducted two types of evaluation: a user study with graduate students in public 

health and geography and a group interview with experts who have experience in COVID-19 

data and analysis. The user study suggested that the prototype system is generally well designed 

and that the various visualizations provided details and multiple ways to display and interpret 

space-time cluster information. Experts from the group interview pointed out the conflict 

regarding the definition used in the system of a cluster and demanded further information to 

interpret the relative risk. This evaluation result indicates the significance of communicating with 

audiences to agree on fundamental concepts in health surveillance systems such as YuTu. With 

the elaboration on such agreements, the target audiences (e.g., health officers) could gain the 

confidence to investigate the results and further utilize their interpretations in their decision 

making. Therefore, the user study and the expert evaluation seem important for evaluating such a 

system in epidemiology. 
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Serval issues are worth to be discussed. To begin with, it is critical to visualize space-

time information in a way that is easy to understand, while the richness of such information 

should not be compromised. In other words, the key issue is how to represent the space-time 

information to be easily interpreted whilst keeping the richness of such information. The 

evaluation results in this dissertation show that users recognized the usefulness of space-time 

information from the visualizations, while some space-time representations may be 

overwhelming to them. The visualizations introduced in this dissertation shed light on visuals 

analytic system of space-time data, and creative ways to visualize high volumes of data in space 

and time still require investigation.  

3D visualization is still unfamiliar to most people, and its implementation in health 

surveillance systems must be treated with caution. Both the experts and graduate students 

responded with concerns about transferring the identified patterns from the 3D visualization into 

decision making or even interpreting the patterns. However, it is still valuable to investigate such 

issues, as 2D can hardly display space-time data in high volumes as one single illustration 

simultaneously (e.g., animation can visual space-time data but not all at once). For instance, 3D 

visualization is capable of showing the seasonality of infectious diseases by displaying the daily 

incidence of infection in the US for one year at the same time, while it is challenging to represent 

such space-time information at once. Possible research questions could be whether users will use 

such a tool after training and then discern how to utilize the unique patterns in 3D. Additional 

immersive visualizations or real-time visualizations, including augmented reality, virtual reality, 

and mixed reality, could be a solution to this issue. Additionally, the evaluation of 3D 

representations should be included to understand the usefulness.   
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Another unavoidable and critical issue is the scale in spatial and temporal dimensions. 

The proposed framework is capable of being scaled up or down depending on the different 

audiences (e.g., health officials monitor COVID-19 transmission within a county or the entire 

US). I was attempted to include local scales (e.g., zip code) for the whole study area, while no 

open-source data at this level is available. With data and results at a finer scale shown in the 

surveillance system, it would be more beneficial for health officials to use it for decision making 

in the local communities (e.g., census tracts within a county). The geographic scale can also be 

scaled up, such as analyzing the clusters at the country level, which are mostly beneficial to 

health officers in the UN. Similar, the time interval can be daily, weekly, monthly, yearly, etc. It 

is worth investigating a combination of different time scales to uncover patterns.  

When implemented with more than one method, the similarity and dissimilarity in results 

using different algorithms exist. In YuTu system, I did not discuss the accuracy of clusters from 

the space-time scan statistics and the LISA algorithm, as the time information is treated distinctly 

between these two methods. I proposed a way to use the LISA result as a complementary (spatial 

clustering on one day) to interpret continuous results in space and time (true space-time clusters) 

using the other method. However, the purely spatial scan statistic was compared to the LISA 

algorithm for spatial clustering by (Grubesic et al., 2014), and their conclusion is that there is no 

a superior method as a trade-off between log-likelihood ratio and spatial accuracy existed.  

Another critical issue is the existence of edge effects when conducting a spatial analysis. 

Although the scan statistics scans any point within the study extent, a location on the edge is still 

less likely to belong to a detected cluster than a location in the interior (Gangnon, 2012). The 

edge effect has an influence on type I error when conducting spatial scan statistic, and Bayesian 

smoothing can be used to descript the spatial distribution of type I error (Guttmann et al., 2014). 
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Also, counties or territories from the neighbor countries have an impact on the transmission of 

COVID-19, while this YuTu system only takes accounts in the incidence in the US.  

Providing an option for users to change the parameter setting accordingly could be 

helpful to further assist them in the rapid response of dynamic changes during an outbreak of 

infectious diseases. From the prototype, the maximum temporal window was selected based on 

one year of data, and possible signals of the peak of waves during that year were detected. 

Situations were changed, such as the increasing of vaccination rates and the different 

characteristics of variants. Thus, with the capability to change parameters of analysis that reflect 

situational changes, patterns that are closer to events that are happening in the real world may be 

detected.  

Lastly, it is vital to collaborate with the target audiences (e.g., health officers work for a 

state government) to avoid disconnection. For instance, the target audience can offer suggestions 

for selecting methods and guidance to educate users to interpret results. The format of such 

collaboration could be different qualitative methods, such as in-depth interviews or focus groups 

with multiple audiences.  

I suggest serval significant avenues that can be beneficial to develop similar health 

surveillance systems for monitoring current and future infectious diseases. First, the prevalence 

rates of COVID-19 used in the YuTu system need to be smoothed to avoid the bias in the data. 

For instance, a county may have a higher risk of COVID-19 infection if it has a higher 

percentage of senior population as they are more vulnerable to be infected. Therefore, space-time 

smoothing methods (e.g., Bayesian smoothing) are needed. 

Second, it is important to include further analysis of uncertainty in future research. The 

uncertainty exists in the dataset, and it also refers to how to represent the uncertainty. In the 
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YuTu system, I applied a 7-day moving average to the daily COVID-19 cases, while the exact 

number is still hard to get as many cases are underreported by self-testing at home. Such 

uncertainty also exists in other used dataset, such as the population. As to representation, I did 

display the p-value for the LISA results as one variable from the bivariate map to reduce the 

uncertainty from the results, while the effectiveness of this representation remains unclear.  

Third, as I discussed the importance of the collaboration with the audience, another vital 

issue is to decide the audience and the robustness of different scales to them. From the user 

study, participants were asked to evaluate the system by imaging they were health officials for 

the state. However, the recruited experts were from a county government, and they had limited 

interests on information at the county level. Thus, focus groups with health officers from other 

two scales (country and state) are necessary. It is also possible that the YuTu system could be 

useful to both two scales with different perceptive to interpret results. 

Fourth, after the decision of the audience, it is also necessary to collocate with them on 

the design phase. The proposed framework and the YuTu system were designed and built 

according to gaps identified from the literature review instead of collaborating with the audience, 

although it is a starting point to facilitate this collaboration with proposed solutions instead of 

merely concepts. In the future research, based on the framework along with its visualizations, it 

can be applied to other infectious diseases or improve the current YuTu prototype. For either 

purpose, the collaboration with the audience (e.g., participant observation) during the (re-)design 

phase can gain insides of what information are useful and needed in their viewpoints.  

Fifth, as to decision making, further evaluation with experts is needed to understand 

whether this system can lead to generating decisions in the real world. One possible way is to 

observe health officers if they want to use the system to make decisions in the real world. 
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However, it requires a long-term close collaboration with government agencies at the very 

beginning phase of the study. 

Sixth, it is worth to investigating the way to implement changeable parameter settings 

from the interface. In the YuTu system, users can use the filter function from 3D space-time cube 

to focus on certain relative risk, while other parameters of two analysis methods are fixed. 

Although it requires advance knowledge of used algorithms, users may need to change the 

parameter settings to suit their needs. For instance, the temporal maximum cluster size from the 

space-time scan statistic is set to 50 days, while it may need to be reduced as the latest variant of 

the coronavirus (e.g., the Omicron variant) spreads more easily than earlier variants.  

Effectively monitoring and representing the transmission of infectious diseases are 

critical in the health surveillance system, and my dissertation contributes to this topic. First, I 

conducted a systematic literature review that revealed significant gaps. Then, I attempted to 

address some of these gaps by proposing a framework that automatically generates clustering 

information in space and time and visualizes such information in serval novel ways. 

Furthermore, I assessed the prototype system based on the proposed framework by conducting a 

user study with graduate students and a group interview with experts in the domain. The findings 

from my dissertation not only present possible solutions to the gaps that were found but also 

could inspire the research community to investigate this topic further. Promising opportunities 

exist to improve the representation of space-time clustering information in epidemiology under 

the rapid evolution of web-based technologies. Lastly, I urge collaboration among and between 

disciplines to build health surveillance systems together in a thriving ecosystem that could 

evolve to suit the dynamic pattern in the transmission of infectious diseases. 
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11/5/22, 6:43 PM Qualtrics Survey Software

https://uncc.az1.qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrintPreview?ContextSurveyID=SV_4JgQQx57HROTd42&ContextLibraryID=UR_6nxJN2JA… 5/27

What is the relative risk of the cluster?

On that date, which county had the highest relative risk (RR

of county) among all counties belonging to this cluster, and

what was the value?

1.49

1.45

1.51

York 1.51

Knox 1.19

Oxford 1.58
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11/5/22, 6:44 PM Qualtrics Survey Software

https://uncc.az1.qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrintPreview?ContextSurveyID=SV_4JgQQx57HROTd42&ContextLibraryID=UR_6nxJN2J… 10/27

Any thoughts about the bivariate map?

LISA Map

G o to the webpage of "@LISA" tab, and explore the similarity

and dissimilarity between the left and right maps. Please

answer the following questions by combining two maps.

When comparing the map on the right (LISA) and the one

on the left (Satscan), we realize that they do not always

coincide. Using the state of California, for which of these
dates did you notice cluster on the right map, but no
cluster on the left map?  

I would allocate more health resources to Central and Southern California.

I would allocate equal health resources to all the counties.
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11/5/22, 6:44 PM Qualtrics Survey Software

https://uncc.az1.qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrintPreview?ContextSurveyID=SV_4JgQQx57HROTd42&ContextLibraryID=UR_6nxJN2J… 13/27

Do you agree with these two statements?

Any thoughts about those two maps?

Spiral Map

    

Strongly

Disagree

Somewhat

disagree

Neither

agree nor

disagree

Somewhat

agree

Strongly

agree

I think both maps

provided under the

"@LISA" tab allow for

a comparison of

clustering

techniques.

  

I think the single map

under the "HOME" tab

is easier to interpret

than when having

two maps side-by-

side.
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11/5/22, 6:45 PM Qualtrics Survey Software

https://uncc.az1.qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrintPreview?ContextSurveyID=SV_4JgQQx57HROTd42&ContextLibraryID=UR_6nxJN2J… 24/27

3D

G o to the tab "@3D". Visualize results into a 3D space-time

cube. The time range is from 01/20/2022 to 02/28/2022.

Set the "Minimum Relative Risk" as 1 (the default), and

check "rr_c" (the default). Use the mouse to interact with

the space-time cube to answer the following questions.

Using the 3D space-time cube, I think it is easier to

understand the dynamics of space-time clusters. 

Now, check "rr_l" to show the relative risk of locations, and

increase the filter of the Minimum Relative Risk to 2. Which

of these counties has the highest relative risk (rr_L) and

Strongly

Disagree

Somewhat

disagree

Neither agree

nor disagree

Somewhat

agree

Strongly agree
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11/5/22, 6:46 PM Qualtrics Survey Software

https://uncc.az1.qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrintPreview?ContextSurveyID=SV_4JgQQx57HROTd42&ContextLibraryID=UR_6nxJN2J… 27/27

Powered by Qualtrics

Do you agree that the provided information (ReadMe) is

helpful to interpret results and answer the questions?

Please provide any suggestions or comments that you

have for this system.

Strongly

Disagree

Somewhat

disagree

Neither agree

nor disagree

Somewhat

agree

Strongly agree
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APPENDIX C: IRB APPROVAL NOTICE 

 

To: Yu Lan

Graduate School

From: Office of Research Protections and Integrity

RE: Notice of Exemption with Limited Review Approval

Approval Date: 25-Aug-2022

Exemption Category: 2~3

Study #: IRB-22-0219

Study Title:
Evaluation of A Web-based Geographic Framework to Detect

and Visualize Space-time Clusters of Infectious Diseases

This submission has been reviewed by the Office of Research Protections and Integrity (ORPI) and was

determined to meet the Exempt category cited above under 45 CFR 46.104(d). In addition, this Exemption

has received Limited Review by the IRB under 45 CFR 46.111(a)(7). This determination has no expiration

or end date and is not subject to an annual continuing review. However, you are required to obtain IRB

approval for all changes to any aspect of this study before they can be implemented and to comply with

the Investigator Responsibilities detailed below.

Important Information:

Face masks are optional on UNC Charlotte’s campus. This includes classrooms and other academic

spaces. Researchers conducting HSR activities in other locations must continue to adhere to local

and state requirements in the setting where the research is conducted.

1. 

Face masks are still required in healthcare settings. Researchers conducting HSR activities in these

settings must continue to adhere to face coving requirements.

2. 

Organizations, institutions, agencies, businesses, etc. may have further site-specific requirements

such as continuing to have a mask requirement, limiting access, and/or physical distancing.

Researchers must adhere to all requirements mandated by the study site.

3. 

Your approved study documents are available online at Submission Page.

Investigator’s Responsibilities:

Amendments must be submitted for review and the amendment must be approved before

implementing the amendment. This includes changes to study procedures, study materials,

personnel, etc.

1. 
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Data security procedures must follow procedures as approved in the protocol and i n accordance with

OneIT Guidelines for Data Handling .

2. 

Promptly notify the IRB (uncc-irb@uncc.edu) of any adverse events or unanticipated risks to

participants or others.

3. 

Five years (5) following this approval, ORPI will request a study status update.4. 

Be aware that this study is now included in the Office of Research Protections and Integrity (ORPI)

Post-Approval Monitoring program and may be selected for post-review monitoring at some point

in the future.

5. 

Reply to ORPI post-review monitoring and administrative check-ins that w ill be conducted

periodically to update ORPI as to the status of the study

6. 

Complete the Closure eform via IRBIS once the study is complete7. 

Please be aware that additional approvals may still b e required from other relevant author ities or

"gatekeepers" (e.g., school principals, facility directors, custodians of records).

This study was reviewed in accordance with federal regulations governing human sub jects research,

including those found at 45 CFR 46 (Common Rule), where applicable.
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APPENDIX D: CONCENT FORM FOR STUDENTS  

 
 

 
Department of Geography and Earth Sciences 

9201 University City Boulevard, Charlotte, NC  28223-0001 

 

Consent to Participate in a Research Study 

 

Title of the Project:  Evaluation of A Web-based Geographic Framework to Detect and Visualize 

Space-time Clusters of Infectious Diseases 

 

Principal Investigator: Yu Lan, Ph.D. Candidate, University of North Carolina at Charlotte and 

Center for Applied Geographic Information Science, USA 

 

Co-investigators: Eric Delmelle, Ph.D., University of North Carolina at Charlotte, USA;  

  Deborah Thomas, Ph.D., University of North Carolina at Charlotte, USA 
 

Study Sponsor: None 
 

You are invited to participate in a research study. Participation in this research study is 

voluntary. The information provided is to help you decide whether or not to participate. If you 

have any questions, please ask.   

 

Important Information You Need to Know 
 

• The purpose of this research is to evaluate a prototype of a web-based geographic 

framework to detect and visualize space-time clusters of infectious diseases. 

 

• We are asking graduate students from UNCC to participate in a survey that participants 

will follow the instruction to use the prototype and answer questions after exploring some 

functionalities of the prototype.  

 

• You have the right to refuse participation at any time and the information collected from 

you will be deleted from the investigation. 

 

• Please read this form and ask any questions you may have before you decide whether to 

participate in this research study.   

 

Why are we doing this study?  

Infectious diseases pose a significant threat to public health worldwide as evidenced by the 

recent coronavirus 2019 (COVID-19) pandemic. Despite significant human losses, the advent of 

web-accessed, map-based “data dashboards” that monitored disease outbreaks, proved essential 
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in managing public health responses. In many cases, the backend of these dashboards employed 

basic mapping functionality, displaying counts or rates. As the pandemic advanced, the 

identification of elevated rates was increasingly important in the geographical allocation of 

public health resources. However, such maps miss the opportunity to provide accurate 

information to policy decision makers such as the rate of disease spread, cyclicity, direction, 

intensity and the risk of diffusion to new regions. Space-time geoanalytics, when coupled with 

rich visualizations, can address these shortcomings. Moreover, when implemented over the web, 

such space-time functionality can be accessed from virtually anywhere. Thus, my dissertation 

presents a web-based geographic framework for detecting and visualizing explicit space-time 

clusters of infectious diseases. As a proof of concept, I will populate the framework with 

COVID-19 county-level data for the 48 contiguous states in the US, and demonstrate data 

retrieval and storage, space-time cluster detection analysis, and 3D visualization within an open-

source WebGIS environment. This tightly coupled approach coupling approach will facilitate the 

detection of space-time clusters of diseases in a computationally acceptable timeframe. 

 

Why are you being asked to be in this research study? 

You are being asked to be in this study because you are graduate students, who are capable to 

use the prototype and interpret results as it was designed to assist health policymakers during the 

pandemic. 

 

What will happen if I take part in this study?  

If you choose to participate you will be asked to take a survey with multiple questions. Questions 

include your gender, age group, major, degree level, the knowledge level in related background, 

questions related to prototype, and usability and user experience. There will be no time limit, and 

it usually will take 0.5~1 hours. 

 

What benefits might I experience?  

You will not benefit directly from being in this study. Others might benefit because it is 

important to understand the space-time clusters of COVID-19. The results can improve 

educational resources and improve health policy to help protect the community from disease.   

 

What risks might I experience?  

There are no risks if you decide to participate in this study.   

 

How will my information be protected?  

This collected response from the survey will be stored and analyzed. We are not collecting your 

name, address, or any information that will identify you. You will be assigned an identification 

number for reference for the analysis.  While the study is active, the researchers listed above will 

only have access to the results; while the analysis results will be stored in a password-protected 

Google Drive that can be accessed by the primary researcher. Only the research team will have 

routine access to the study data.  Other people with approval from the Investigator, may need to 

see the information we collect about you.  Including people who work for UNC Charlotte and 

other agencies as required by law or allowed by federal regulations. Your individual privacy will 

be maintained in all written and published material resulting from the research.       

 

How will my information be used after the study is over?   
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After this study is complete, study data may be shared with other researchers for use in other 

studies or as may be needed as part of publishing our results. The data we share will NOT 

include information that could identify you.   

 

Will I receive an incentive for taking part in this study? 

You will be paid a gift card ($25) to participate in this study, and it will be given to you after you 

submit all your responses. 

 

What other choices do I have if I don’t take part in this study?  

You do not have to participate in this study. If you are interested in the results of this study, you 

can contact the principal investigator.   

 

What are my rights if I take part in this study?   

It is up to you to decide to be in this research study. Participating in this study is voluntary. Even 

if you decide to be part of the study now, you may change your mind and stop at any time. You 

do not have to answer any questions you do not want to answer.  

 

Who can answer my questions about this study and my rights as a participant? 

For questions about this research, you may contact Yu Lan – email: ylan1@uncc.edu, phone: 

+1(704)499-0107 and Dr. Eric Delmelle – email: Eric.Delmelle@uncc.edu. 

 

If you have questions about your rights as a research participant, or wish to obtain information, 

ask questions, or discuss any concerns about this study with someone other than the 

researcher(s), please contact the Office of Research Protections and Integrity at +1 (704)-687-

1871 or uncc-irb@uncc.edu.  

 

 

Consent to Participate 

 

If you agree to participate in this research study, please reply to the email and paste the following 

sentences in your replied email.  

 

“I have read and I understand the provided information and have had the opportunity to ask 

questions. I understand that my participation is voluntary and that I am free to withdraw at any 

time, without giving a reason and without cost.” 

   

Be sure that any questions have been answered clearly to you and that you have a thorough 

understanding of the study. 

 

Please ask any questions regarding this study’s objectives and your participation.   

 

If you have further questions that come up later, please feel free to ask a member of the research 

team.  

 

 

 

mailto:uncc-irb@uncc.edu
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APPENDIX E: CONCENT FORM FOR EXPERTS  

 
 

 
Department of Geography and Earth Sciences 

9201 University City Boulevard, Charlotte, NC  28223-0001 

 

Consent to Participate in a Research Study 

 

Title of the Project:  Evaluation of A Web-based Geographic Framework to Detect and Visualize 

Space-time Clusters of Infectious Diseases 

 

Principal Investigator: Yu Lan, Ph.D. Candidate, University of North Carolina at Charlotte and 

Center for Applied Geographic Information Science, USA 

 

Co-investigators: Eric Delmelle, Ph.D., University of North Carolina at Charlotte, USA;  

  Deborah Thomas, Ph.D., University of North Carolina at Charlotte, USA 
 

Study Sponsor: None 
 

You are invited to participate in a research study. Participation in this research study is 

voluntary. The information provided is to help you decide whether or not to participate. If you 

have any questions, please ask.   

 

Important Information You Need to Know 
 

• The purpose of this research is to evaluate a prototype of a web-based geographic 

framework to detect and visualize space-time clusters of infectious diseases. 

 

• We are asking experts in public health to participate in a semi-structured group interview 

that participants will answer questions and have a discussion with other participants after 

a presentation of this system in the beginning.  

 

• You have the right to refuse participation at any time and the information collected from 

you will be deleted from the investigation. 

 

• Please read this form and ask any questions you may have before you decide whether to 

participate in this research study.   

 

Why are we doing this study?  

Infectious diseases pose a significant threat to public health worldwide as evidenced by the 

recent coronavirus 2019 (COVID-19) pandemic. Despite significant human losses, the advent of 

web-accessed, map-based “data dashboards” that monitored disease outbreaks, proved essential 
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in managing public health responses. In many cases, the backend of these dashboards employed 

basic mapping functionality, displaying counts or rates. As the pandemic advanced, the 

identification of elevated rates was increasingly important in the geographical allocation of 

public health resources. However, such maps miss the opportunity to provide accurate 

information to policy decision makers such as the rate of disease spread, cyclicity, direction, 

intensity and the risk of diffusion to new regions. Space-time geoanalytics, when coupled with 

rich visualizations, can address these shortcomings. Moreover, when implemented over the web, 

such space-time functionality can be accessed from virtually anywhere. Thus, my dissertation 

presents a web-based geographic framework for detecting and visualizing explicit space-time 

clusters of infectious diseases. As a proof of concept, I will populate the framework with 

COVID-19 county-level data for the 48 contiguous states in the US, and demonstrate data 

retrieval and storage, space-time cluster detection analysis, and 3D visualization within an open-

source WebGIS environment. This tightly coupled approach coupling approach will facilitate the 

detection of space-time clusters of diseases in a computationally acceptable timeframe. 

 

Why are you being asked to be in this research study? 

You are being asked to be in this study because you are experts in public health, who are capable 

to use interpret results as it was designed to assist health policymakers during the pandemic. 

 

What will happen if I take part in this study?  

If you choose to participate you will be asked to participate a semi-structed group interview with 

other recruited experts. The interview will be held as a zoom meeting, and it will be recorded and 

later transcribed for subsequent analysis. The interview should last around one hour. 

 

What benefits might I experience?  

You will not benefit directly from being in this study. Others might benefit because it is 

important to understand the space-time clusters of COVID-19. The results can improve 

educational resources and improve health policy to help protect the community from disease.   

 

What risks might I experience?  

There are no risks if you decide to participate in this study.   

 

How will my information be protected?  

This collected response from the survey will be stored and analyzed. We are not collecting your 

name, address, or any information that will identify you. You will be assigned an identification 

number for reference for the analysis.  While the study is active, the researchers listed above will 

only have access to the results; while the analysis results will be stored in a password-protected 

Google Drive that can be accessed by the primary researcher. Only the research team will have 

routine access to the study data.  Other people with approval from the Investigator, may need to 

see the information we collect about you.  Including people who work for UNC Charlotte and 

other agencies as required by law or allowed by federal regulations. Your individual privacy will 

be maintained in all written and published material resulting from the research.       

 

How will my information be used after the study is over?   
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After this study is complete, study data may be shared with other researchers for use in other 

studies or as may be needed as part of publishing our results. The data we share will NOT 

include information that could identify you.   

 

Will I receive an incentive for taking part in this study? 

There are no incentives and you will not be paid to participate in this study.  

 

What other choices do I have if I don’t take part in this study?  

You do not have to participate in this study. If you are interested in the results of this study, you 

can contact the principal investigator.   

 

What are my rights if I take part in this study?   

It is up to you to decide to be in this research study. Participating in this study is voluntary. Even 

if you decide to be part of the study now, you may change your mind and stop at any time. You 

do not have to answer any questions you do not want to answer.  

 

Who can answer my questions about this study and my rights as a participant? 

For questions about this research, you may contact Yu Lan – email: ylan1@uncc.edu, phone: 

+1(704)499-0107 and Dr. Eric Delmelle – email: Eric.Delmelle@uncc.edu. 

 

If you have questions about your rights as a research participant, or wish to obtain information, 

ask questions, or discuss any concerns about this study with someone other than the 

researcher(s), please contact the Office of Research Protections and Integrity at +1 (704)-687-

1871 or uncc-irb@uncc.edu.  

 

 

Consent to Participate 

 

If you agree to participate in this research study, please reply to the email and paste the following 

sentences in your replied email.  

 

“I have read and I understand the provided information and have had the opportunity to ask 

questions. I understand that my participation is voluntary and that I am free to withdraw at any 

time, without giving a reason and without cost.” 

   

Be sure that any questions have been answered clearly to you and that you have a thorough 

understanding of the study. 

 

Please ask any questions regarding this study’s objectives and your participation.   

 

If you have further questions that come up later, please feel free to ask a member of the research 

team.  

  

mailto:uncc-irb@uncc.edu
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APPENDIX F: THE CODEBOOK OF SCRIPTS FROM THE GROUP INTERVIEW  

Note: There are three scripts (files) for each group task. 

Codes 

Name Description Files References 

audience Discussion on the audience of the evaluated 

dashboard or system 

3 15 

cluster Discussion on cluster  3 17 

cons Discussion on the disadvantages of the evaluated 

dashboard or system 

3 25 

data Discussion on the data from the evaluated dashboard 

or system 

2 8 

maps Discussion on the maps from the evaluated 

dashboard or system 

2 3 

pros Discussion on the advantages of the evaluated 

system or dashboard 

3 15 

scale Discussion on the scales from the evaluated system 

or dashboard 

2 9 

time Discussion on the temporal information or 

representation from the evaluated system or 

dashboard 

2 7 

usefulness Discussion on the usefulness of the evaluated system 

or dashboard 

3 20 
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