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ABSTRACT
YU LAN. A Web-based Geographic Framework to Detect and Visualize Space-time Clusters of
Infectious Diseases
(Under the direction of Dr. ERIC DELMELLE)

Infectious diseases pose a significant threat to public health worldwide as evidenced by
the recent coronavirus 2019 (COVID-19) pandemic. Despite significant human losses, the advent
of web-accessed, map-based “data dashboards” that can monitor disease outbreaks, proved
essential in managing public health responses. In many cases, the backend of these dashboards
employs basic mapping functionality, displaying counts or rates. As the pandemic advanced, the
identification of elevated rates was increasingly important in the geographical allocation of
public health resources. However, such maps miss the opportunity to provide accurate
information to policy decision makers such as the rate of disease spread, cyclicity, direction,
intensity, and the risk of diffusion to new regions. Space-time geoanalytics, when coupled with
rich visualizations, can address these shortcomings. Moreover, when implemented over the web,
such functionality can be accessed from virtually anywhere.

This dissertation presents a web-based geographic framework for detecting and
visualizing explicit space-time clusters of infectious diseases. First, | conduct a systematic
review of the literature around the theme of space-time cluster detection for infectious diseases to
identify state-of-the-art techniques that should be included in the proposed web-based
framework. Second, | develop a tightly coupled, web-based analytical framework for the
detection of clusters of infectious diseases using interactive and animated 3D visualizations to
aid epidemiologists in readily and adequately uncovering the characteristics of space-time

clusters. As a proof of concept, | populate the framework with COVID-19 county-level data for



the 48 contiguous states in the US, and demonstrate data retrieval and storage, space-time cluster
detection analysis, and 3D visualization within an open source WebGIS environment. Third, |
evaluate the prototype in two steps: 1) present this and two existed COVID-19 systems to a
group of infectious diseases experts and solicit feedback, 2) and evaluate functionalities on the
prototype by conducting a user study with graduate students in a setting of online surveys.

This tightly coupled approach facilitates the detection of space-time clusters of diseases
in a computationally acceptable timeframe. The characteristics of this framework (generic, open
source, highly accurate, modifiable) will enable low-cost monitoring of the spatial and temporal

trends of diseases causing high risks of infection.
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CHAPTER 1: INTRODUCTION

1.1 Background

On the last day of 2019, the World Health Organization (WHO) made the first response
to an infectious disease caused by a newly discovered coronavirus (named COVID-19), which
became a pandemic on March 11, 2020 (WHO, 2020a). As a novel and highly contagious
infectious disease among humans, COVID-19 spreads from communities to cities, states,
countries, and globally at a rapid transmission rate. Two years later, despite the development and
rollout of effective vaccines, the number of daily new cases of COVID-19 is still substantial, and
the COVID-19 pandemic has had enormous health, economic and societal impacts in every
country. Unfortunately, threats of infectious diseases to humans have existed and increased since
1980 and will likely continue (Smith et al., 2014). Thus, the question is not “... if another
outbreak will occur, but when and where” (Boulos & Geraghty, 2020).

Infectious diseases, also known as communicable diseases, are defined as “diseases
caused by pathogenic microorganisms, such as bacteria, viruses, parasites or fungi; the diseases
can be spread, directly or indirectly, from one person to another” (WHO, n.d.). The spread or
transmission route could be through direct and/or indirect contact, airborne, waterborne or
foodborne, vector-borne, and the environment. For instance, the transmission of COVID-19
among humans includes both direct and indirect contacts (such as contaminated surfaces) and
airborne aerosol/droplet routes; the latter is considered the dominant transmission mechanism for
this disease (Zhang et al., 2020).

According to the WHO, the number of deaths caused by communicable diseases has

dropped since 2000. However, several communicable diseases, including lower respiratory



infections (ranked 4™, neonatal conditions (ranked 5), and diarrheal diseases (ranked 8t"),
claimed 6.1 million deaths in 2019*, are still among the top 10 leading causes of death globally
(see Figure 1). In a comparison, deaths caused by the COVID-19 pandemic already surpassed 5
million by the first day of November 2021 worldwide (World Health Organization, 2020), and
this number is expected to increase given emerging variants of SARS-CoV-2, the virus that
causes COVID-19. Therefore, stopping or slowing the transmission of COVID-19 and other
infectious diseases is critical.

Leading causes of death globally Leading causes of death globally

2000 2010 2019 2000 2019
1. Ischaemic heart disease
2. Stroke

3. Chronic obstructive pulmonary disease

4. Lower respiratory infections
~
J

5. Neonatal conditions

6. Trachea, bronchus, lung cancers

7. Alzheimer's disease and other dementias
8. Diarrhoeal diseasﬁ:i

9. Diabetes mellitus

10. Kidney diseases

B Noncommunicable M Communicable M Injuries

0 2 4 6 8 10
Number of deaths (in millions)

Moncommunicable @ Communicable @ Injuries
Figure 1. Leading causes of death globally. The left graph shows the trend of leading causes of death
globally from 2010 to 2019. Each belt represents one disease in three types of causes, and its height is the
death at that time (WHO, 2020b). The right graph shows the numbers of death of the top 10 leading
causes in 2000 and 2019 (WHO, 2020c).

In public health, epidemic models are used to measure the dynamics of an infectious
disease through different groups of the population. Those groups contain individuals who are
susceptible to being infected (S), people who are infected or exposed (1), and individuals who are

recovered (R). When a new infectious disease is introduced in a community, the number of

L WHO only updated data on leading causes of death globally until 2019.



susceptible (S) is extremely elevated since no immunity has yet been built. As the number of
infected individuals (I) increases, the number of susceptible decreases, and so does the number of
recovered people (R). A common approach to model infectious diseases is the Susceptible-
Infected-Recovered (SIR) compartmental model. However, recovered individuals could become
infected again, especially when new variants are emerging and introduced in a community,
leading to an SIR-S model or when immunity vanishes. Another critical measure of the potential
spread of infectious diseases in the population is the basic reproduction number R;, the expected
number of cases infected from one case in a population with the assumption that other
individuals are not infected or immunized, calculated using different compartmental models (van
den Driessche & Watmough, 2008). An R higher than 1 reflects a spreading disease and
indicates the contagiousness or transmissibility of infectious agents. In contrast, a value of less
than 1 marks the end of an outbreak (Delamater et al., 2019). It is worth noting that R. is not a
constant value and changes over time (R.is used in this case). It is dynamic throughout space and
time because of different human-environmental interactions (e.g., various levels of lockdowns)
and health policies (e.g., vaccine adoption). For example, R, would be smaller if an area adopted
a lockdown policy than areas with no such policy. As to COVID-19, the range of estimated R, by
March 2020 was 1.90 to 6.49 (Alimohamadi et al., 2020).

Geography plays a pivotal role in disease spread. Barrows (1923) defined geography as
the science of human ecology that focuses on the relationships between the environment and the
distribution of human activities. Changes in human ecology, such as long-distance mobility, raise
unprecedented challenges to limiting the spread of infectious diseases (Weiss & McMichael,

2004).



As noted by Kirby et al. (2017) and Kwan (2016), the health outcomes of a population
are the results of “an interplay of different factors, such as individual characteristics, the physical
and social environments an individual interacts with, cultural norms, and both the provision and
utilization of health services.” In other words, the “activity spaces” are connected with the
natural, social, and economic surrounding environments. This ‘activity space’ can manifest itself
at different scales (local, regional, national to global) and should be considered a potential
disease determinant (Cromley & McLafferty, 2011; Diez Roux, 2001), because it will improve
our understanding of health outcomes. Rogers & Randolph (2003) point out that the key to
understanding the diffusion of infectious diseases is to uncover the dynamic process of spreading

patterns with the investigation of time, place, and person at the same time.

1.2 GIS and infectious diseases surveillance

When monitoring the burden of infectious diseases, timely surveillance is an essential
epidemiological component to describe the ongoing dynamics of a disease, identify trends, and
detect outbreaks and new pathogens (Murray & Cohen, 2017). Three key elements are critical
when conducting space-time surveillance of infectious diseases; (1) the time when the disease
occurs, (2) the geographic location where cases are reported, and (3) the segments of the
population who get infected. Documenting each of these factors is complicated and made even
more challenging when data is uncertain or incomplete. For instance, individuals may be infected
days before a test reveals positivity due to the incubation period. Or individuals may be
asymptomatic, increasing uncertainty in the number of daily cases. Reported cases may originate
from another region than where the test for the disease was conducted at. In fact, too often in
geography, the residential location of an individual is assumed to be the place where the

infection occurred, but as mentioned earlier, humans have complex space-time paths making up



the so-called ‘activity space.” Despite those issues and uncertainties, effective prevention
methods, monitoring and early detection of outbreaks, and controls and treatments aimed to stop
or slow down the spread of infection have improved (Smith et al., 2014). Among the
technologies that contribute to infectious diseases surveillance are geospatial technologies, which
are particularly suited to capture the geographic complexity of infectious diseases (Kirby et al.,
2017).

A geographic information system (GIS) is a computer system for creating, managing,
analyzing, and displaying geographic data, a valuable and practical tool for monitoring the
infectious disease research (Cromley, 2003; Eisen & Eisen, 2014; Kirby et al., 2017). As early as
1854, John Snow, the father of modern epidemiology, identified the cluster around a public
water pump, which became the source of the cholera outbreak in London due to contaminated
water found in that pump (Newsom, 2006). Back at that time, cholera was a dangerous infectious
disease which would mainly spread through contaminated water. This example has been used in
many textbooks to showcase how a simple map of deaths could uncover the distribution of an
infectious disease. Obviously, the display of data on the map is not the most important tool in the
epidemiology (Kistemann et al., 2002); other geospatial functionality can be used for geographic
data collection, management, and spatial analysis, such as geocoding, geographic management,
and proximity analysis to name a few. GIS can be used in concert with detection tools to monitor
and respond to health issues, ultimately assisting health professionals in identifying cases, spatial
trends, disease clusters, and correlation with other spatial data (Carroll et al., 2014; Delmelle et
al., 2011; Delmelle et al., 2015). As a vital component of disease surveillance, cluster detection
can identify high-risk areas, and it can facilitate the investigation of the spread of infectious

diseases (Aamodt et al., 2006).



Space-time cluster detection methods play a pivotal role in monitoring the spread of
infectious disease. The key to understanding the diffusion of infectious diseases is to uncover the
dynamic process of spreading patterns with the investigation of time, place, and person at the
same time (Rogers & Randolph, 2003). The combination of these three components makes the
major difference of infectious disease from other diseases. Epidemic models are used to measure
the dynamics of an infectious disease through different groups of the population during its
spread. However, infectious diseases are not merely related to infected populations and
populations at risk, as the risks of infection and transmission are caused by a myriad of
covariates, such as demographics, socioeconomic factors, and environmental characteristics.
These conditions can act as confounding factors leading to variations in the risk of infection and
transmission (Delmelle et al., 2016; McMichael, 2004; Taylor et al., 2001; Weiss & McMichael,
2004; Wichmann et al., 2007). In addition, as evidenced by the COVID-19 pandemic,
interactions among individuals can accelerate the spread of disease, adding another layer of

complexity to the analysis of infectious diseases.

1.3 Cluster, outbreak, or hotspot?

Before introducing cluster detection techniques, it is fundamental to highlight the
conceptual differences between clusters, outbreaks, and hotspots. These terms are often used
interchangeably in infectious diseases surveillance. Knox (1989) provided a non-mathematical
definition of a cluster as “a geographically bounded group of occurrences of sufficient size and
concentration to be unlikely to have occurred by chance.” As to hotspot, Lessler et al. (2017)
summarized three distinct types in epidemiology and suggested alternative terms such as
transmission hotspot (elevated transmission efficiency), emergence hotspots (a high frequency of

emergence or re-emergence of diseases), and burden hotspot (elevated disease incidence or



prevalence or a geographic cluster of cases). Among these three types, the definition of burden
hotspots is similar to clusters, as it was defined as “a geographic cluster of cases”. Farrington and
Beale (1998) defined an outbreak as the increment in the number of cases beyond expected
levels. According to those definitions above, an outbreak refers to the status of unexpectedly
elevating infected cases in areas during a particular time. During an outbreak, hotspots and
clusters are areas with elevated incidence or prevalence or sufficient concentration of the disease,
and these two terms are interchangeable. For example, the current pandemic is an outbreak of
COVID-19, while hotspots and clusters of COVID-19 cases are dynamic in both spatial and
temporal dimensions. This dissertation is primarily concerned with “clusters,” particularly space-

time clusters, as they also imply statistical significance that hotspots do not provide.

1.4 Techniques for cluster detection

Although forecasting is a necessary tool in public health responses, the focus of my
dissertation is to understand the 'nowcasting,' the current situation, and the presence of clusters.
In most commercial GISs, methods of spatial modeling are integrated to predict the trend of
infectious diseases, such as geographically weighted regression (GWR) and agent-based
modeling (ABM), while many spatial statistical methods are used to evaluate and map risk areas
(e.g., through kernel density estimation for instance) (Carroll et al., 2014). As the focus here is to
detect clusters, only spatial statistical methods able to do so are introduced. An inherent
advantage of using spatial statistics to detect clusters is their ability to reveal the current
distribution patterns, which is essential to finding high-risk areas in need of a timely response
during an outbreak (Aamodt et al., 2006). Several spatial statistics methods have been developed
to detect clusters (see Figure 2), and these can broadly be classified into three categories based

on their mechanisms: (1) distance-based methods that measure distances among cases, such as



the K function; (2) area-based methods that analyze cases within subset regions of a study area,
such as spatial autocorrelation and scan statistics; and (3) continuous methods that estimate a risk

surface, such as kernel density analysis.

Point Data Areal Data
(7777 Spatial """ .~ Spatial ")
; KDE ' | GlobalMoran'sl |
: IDW : : LISA :
: Kriging ANk Gi* :
: Nearest neighbor ! ] Spatial scan :
! K function I ! statistics !
] 1
] ]
: Knox : : !
1 I
: Space-time K ! : Space-time scan !
) |
: function ! : statistics i
] I

Figure 2. Popular techniques for spatial and spatiotemporal cluster detection among point and areal data.

The two most common data types used in health surveillance are disaggregated (e.g.,
point) data that contain spatial coordinates for each case and areal or aggregated data that
aggregate cases for a specific region (e.g., postal code) during a given time. Aggregated data are
typically more available and less sensitive to privacy issues (Olson et al., 2006).

Some cluster detection techniques have been extended to deal with temporal information
in two different ways: (1) the spatial statistical method is repeated over different time periods;
(2) a more robust approach that explicitly takes space and time into account can be developed.
These cluster detection methods are typically implemented as part of specific standalone
software such as CrimeStat (Levine, 2013), Geoda (Anselin et al., 2010), SaTScan (Kulldorff,

2010), SpaceStat and ClusterSeer from Biomedware, or codes in opensource programming



platforms using R (Bivand et al., 2008; Gomez-Rubio et al., 2005; Moraga, 2017), Python (Rey
& Anselin, 2010), etc. However, those methods suffer from poor visualization, especially in
space and time.

In the following section, I introduce several methods for space-time cluster detections,
categorized by the type of data they require (point or area, see Figure 2). Although the list is not
exhaustive, this is representative of the most popular methods found in the literature review (see

Chapter 2).

1.4.1 Techniques for point data

Techniques to evaluate clustering among point data can be categorized into methods with
first-order and second-order variation or properties. First-order variation defines that the point
process varies over space because of spatial variation in the mean (for example, cholera cases
may vary depending on contaminated water distribution). In contrast, second-order variation
describes that the variation in a spatial process is associated with spatial dependency (Gatrell et
al., 1996; Rogerson & Yamada, 2008). For example, areas with high community transmission
could result in high rates of COVID-19. Among first-order variation techniques, | describe the
Kernel Density Estimation (KDE) and interpolation methods, including Inverse Distance
Weighted and Kriging; and among second order techniques, I explain the nearest neighbor
statistic and the K-function.

The first-order variation techniques can map the variation of certain event, such as the
patterns of the disease. One such techniques is KDE, which calculates the intensity of observed
points over the study region. The study region is divided into a grid of square cells, and the
intensity at each cell is estimated using the Kernel function. This weighted distance function

measures the intensity between the cell’s centroid to all events within a predefined bandwidth.
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The result of the KDE for a given cell is the sum of the intensities within the bandwidth. As the
choice of bandwidth is arbitrary, KDE results are subject to a tradeoff between bias due to a
considerable bandwidth and uncertainty due to a small bandwidth (Rogerson & Yamada, 2008).

Although less prevalent in infectious diseases, interpolation methods such as Inverse
Distance Weighted or Kriging can monitor the spatial variation of infectious diseases, but they
require an attribute (Z-value) to be interpolated. Typically, data aggregated at an areal level (e.g.,
count or rate of events in a zip code), however the data are generally reduced to area point, such
as the centroid of that area. Interpolation methods will then use points and attribute as an input to
generate a continuous surface. One crucial assumption of interpolation methods is that the spatial
correlation structure is spatially constant, suitable for environmental variables such as water or
air pollution, but not infectious cases or rates (Pfeiffer et al., 2008).

Unlike those first-order techniques that only map disease patterns, second-order
techniques such as the nearest neighbor statistic and K-function can estimate clustering of the
disease. The nearest neighbor statistic calculates the distance to the nearest neighbor, which is
used to test whether closer incidents are randomly distributed or not (Delmelle, 2009). Two
popular nearest neighbor techniques are the average nearest neighbor or k-nearest neighbors. The
average nearest neighbor averages all nearest neighbor distances between each event and its
nearest neighbor (also an event) and then returns the ratio of the observed mean distance to the
expected mean distance for total events given in a random pattern. If this ratio is less than one, it
indicates clustering. In the k-nearest neighbors (kNN) test, Cuzick and Edwards (1990) extended
the nearest neighbor to k nearest neighbors of events, and this test can be used to detect spatial

clustering of events with the consideration of the inhomogeneous populations.
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The (Ripley’s) K-function is another popular method to estimate second-order properties
but assumes that no first-order effects exist in terms of the spatial pattern (Pfeiffer et al., 2008;
Ripley, 1977). In essence, the K-function counts the number of events within a circular search
window around each case, and the window moves to the next event until all the events are visited
(Hohl et al., 2017). The process is repeated for increasing radius values up to a maximum
distance, coinciding with the two most distant point events. For evaluation of statistical
significance, (random or population-based) simulations are generated by locating the same
number of events in the study area, and the K-function is estimated for these simulations.
Significance envelopes can be generated from these K-function falls inside, above, or below
them (inside = randomness, below = dispersion, above = clustering).

When point events have a temporal signature (e.g., time of occurrence), several
techniques described earlier can be extended to handle the temporal dimension, including the
Knox test or the space-time K function. The Knox test is a pairing method to detect space-time
clustering present in data points, based on the assumption that events’ spatial and temporal
features are independent of one another (Knox & Bartlett, 1964). The Knox test requires setting
both a spatial and a temporal threshold distance, and it counts the number of pairs of events
separated by critical space and time thresholds. It compares the observed and expected number
of pairs of points using a Chi-Square test, where the expected number of pairs of points are
calculated from simulated space-time point events. It is then possible to identify the space-time
distance at which the Chi-square statistic is the greatest (note that multiple maxima can occur,
suggesting clustering at different scales). The K-function has been extended by Diggle et al.
(1995) to account for its temporal counterpart. The mechanism of the space-time K function is, in

essence, similar to the Knox test. Thus, the space-time K function can be considered a series of
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Knox tests with different critical distances, and it further measures the spatial and temporal

bandwidth for significant clusters, which would be used for further space-time analysis.

1.4.2 Techniques for areal data

One key feature inherent to spatial data is spatial autocorrelation, which refers to the
correlation of a variable of interest between two locations. Based on Tobler’s first law of
geography, correlation decreases with increasing spatial separation (Schabenberger & Gotway,
2017). Many tests can examine spatial autocorrelation, and these statistics are categorized into
global and local statistics based on whether the returned result of clusters is nonspecific (global)
or specific (local).

As to global statistics, these methods measure whether the pattern of aggregated events is
clustered, dispersed, or random. The global Moran’s | is one of the most popular spatial
autocorrelation methods for areal data, and the reported Moran’s | value indicates whether events
are statistically clustered (when | > 0). This test reflects the similarity among areas based on the
assumption of the even distribution of the population at risk within the study area (Moran, 1950).
The algorithm computes the mean and variance for the attribute of the variable being studied.
Then, for each areal feature, it subtracts the mean, creating a deviation from the mean. Deviation
values for all neighboring features (features within the specified distance band, for example) are
multiplied together to create a cross-product. Thus, it provides a statistic (1) for each location
with an assessment of significance (p-value). Second, it establishes a proportional relationship
between the sum of the local statistics and a corresponding global statistic.

Local spatial autocorrelation methods are different from their global counterparts in that
they are aimed at identifying the locations and extent of clusters (Pfeiffer et al., 2008). The local

Moran’s | test (LISA) is the local level version of the global Moran’s I test, estimated by



13

decomposing the Moran’s | statistic geographically, resulting in local indicators of spatial
association (Anselin, 1995). The LISA statistic measures the strength of patterns among nearby
geographic units, resulting in four different types of clusters (see Figure 3). Low-Low clusters
indicate low values surrounded by low values, High-High clusters indicate high values
surrounded by high values, Low-High outliers indicate low values surrounded by high values,
and High-Low outliers indicate high values surrounded by low values. These four categories can
be used to lay out not only clusters of high values (e.g., High-High: the high infection rate area
surrounded with other high infection rate areas) but also clusters with different surrounding
situations (e.g., High-Low: the high infection rate area while surrounding areas have low
infection rates). From Figure 3, the center of the map is classified as High-High clusters from

Figure 3 (b), and the rates for the same area also have the highest number from Figure 3 (a).
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"Figure 3. An example of LISA results of lung and tracheal cancer among males from 2011 to 2015 in the
eastern US. (a) average annual rates for the lung and tracheal cancer among males using the 65+ male
census population as the denominator; (b) LISA results of the same dataset.

Another local clustering detection method for aggregated or areal data is the Getis-Ord
Gi™* statistic, which compares local estimates of spatial autocorrelation with global averages to
detect clusters in spatial data (Ord & Getis, 1995). It has been called the hot spot analysis since

the test returns significant clusters of high (hot spot) and low (cold spot) values.
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Another important clustering detection at the local level is Kulldorff’s spatial scan
statistic. The scan statistic detects spatial clusters by scanning the data via a circular or elliptic
window with the radius ranging from zero to a maximum value specified by the user (Kulldorff,
1997). A cluster is defined as a circle with a significant maximum likelihood ratio, and only
events with centroids located within this circular are affiliated to this cluster. In addition, each
cluster contains a relative risk (RR) value, which is the ratio of the estimated risk within the
cluster to the estimated risk outside the cluster.

The Kulldorff's spatial scan statistic can be extended in time to account for the temporal
dimension by replacing the scanning circular or elliptic window with a cylindrical window where
the height represents the period of potential clusters (Kulldorff et al., 2005). The window with
the maximum likelihood is the most likely cluster, that is the cluster least likely to be due by
chance. Thus, this cylindrical window not only moves in space but also in time. In public health
surveillance, this statistic can be applied to both retrospective and prospective studies depending
on the different focus either on past patterns or on current trends. Retrospective methods carry
out analyses -such as hypothesis tests- for a fixed geographical region and a fixed study period
to estimate the prevalence of diseases or compare diseases patterns in the different areas in one
frame; in contrast, prospective methods use ongoing collected data and repeat analysis to detect a

significant change in a timely manner (Sonesson & Bock, 2003).

1.5 Web-based GIS for infectious diseases

Although desktop GIS software generally contains several techniques to analyze spatial
patterns, web-based GIS or WebGIS can support methods to any individual through the internet
with no system requirements. In particular, lower-income countries can potentially access these

web-based tools to monitor the spread of infectious diseases locally, without the need for extra
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resources. According to Luan and Law (2014) who reviewed web-based GIS public health
surveillance systems (WGPHSS) between 2000 and 2013, WGPHSS are not just good platforms
to share and display data in (near) real-time, but they can also include advanced analytical
techniques, such as cross-correlation and cluster analysis. For instance, EpiScanGIS is an online
geographic surveillance system for meningococcal disease in Germany, and this system
implemented the detection and visualization of spatiotemporal clusters of disease; it integrated
the SaTScan module, which can retrieve weekly reported data, perform cluster detection and
store results in a PostgreSQL database (M. Reinhardt et al., 2008). However, the system is now
defunct. Other similar web-based infectious diseases surveillance systems include Flumapper
(Padmanabhan et al., 2014), VBD-AIR (Huang et al., 2012), Dengue-GIS (Hernandez-Avila et
al., 2013), and others. As to the COVID-19, several infectious diseases surveillance systems
were implemented with GIS technologies mostly to map patterns and conduct limited analysis.
Several organizations and studies? display COVID-19 related count data along with brief
statistical results via web-based GIS dashboards, but these lack analytical capabilities (Boulos &
Geraghty, 2020). Dashboards are usually designed to share and visualize data on a single screen
in a dynamically updating manner (Ivankovi¢ et al., 2021). Current web-based GIS infectious
diseases surveillance systems have several weaknesses. One of them is the system’s lack of
timely updates of the currently used dataset because of formatting issues. Second, not many web-
based GIS infectious diseases surveillance systems were implemented with spatial statistical
methods, and even those with such techniques did not allow users to experience different
parameters to gain insight into the sensitivity of the results, and rarely were these systems able to

generate dynamic results based on customized parameters. One barrier to improving this issue is

2 1) COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University;
2) The World Health Organization dashboard; 3) HealthMap.
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that advanced spatial statistic methods require complicated parameters calibration and
computationally demanding calculations. Another weakness of web-based GIS surveillance
systems is the visualization of resulting clusters. Lan et al. (2021) call attention to advanced
geovisualization techniques of COVID-19, as most WebGIS platforms merely display and share
cases data in a two-dimensional framework that is challenging to identify space-time patterns.
Finally, these systems are not adequate to reveal uncertainty; although some researchers have
attempted to develop novel visualization to display the stability of clusters (Chen et al., 2008;
Preim & Lawonn, 2020), these approaches have not been tested in a web-environment, nor have

they been tested in a dynamic (i.e., space-time) environment.

1.6 Dissertation’s Objectives
This dissertation is aimed at developing a web-based GIS solution that can be customized
to detect space-time clusters in a timely manner, which is critical to help monitor the spread of

infectious diseases. Based on this aim, three chief research objectives are formulated.

Objective 1. | conduct a systematic review of the literature around the theme of space-time
cluster detection for infectious diseases. | evaluate current research trends, including methods for
cluster detection, visuals of space-time clusters, and efforts to integrate cluster detection in web-

based applications.

Objective 2. | propose a web-based geographic framework (see Figure 4) to detect and visualize
space-time clusters for infectious diseases and demonstrate its usefulness using reported COVID-
19 cases in the contiguous US. Based on this framework, | develop a tight-coupled WebGIS

system that incorporates a spatial and temporal analysis module and a visualization module.
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According to the systematic review, the space-time scan statistics and the LISA algorithm are
found to be the most popular techniques for space-time cluster detection, with the caveat that the
LISA statistic is not actually using the temporal dimension. As to the visualization module,
animated and interactive mapping techniques are chosen as methods of visualization. In this

system, the users can obtain visualizations of space-time clusters in various ways.

A Web-based Geographic Framework to Detect and Visualize Space-time Clusters of
Infectious Diseases

Frontend

Analysis Visualization Data Enviroment
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Figure 4. The illustration of the proposed framework to detect and visualize space-time Clusters of
Infectious Diseases.

Objective 3. | evaluate the framework using a combination of qualitative methods. For the
evaluation, I first conduct a user study with graduate students using an online survey on the web-
based prototype, then a focus group interview with four health disease surveillance experts is

also conducted. All collected results from the evaluation are analyzed and discussed.

1.7 Contributions
This dissertation addresses important gaps in research around the detection and

visualization of space-time clusters of infectious diseases. The overarching question this
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dissertation attempts to answer is: in the context of detecting infectious diseases, which methods
are sufficiently robust for the timely detection of disease clusters and powerful enough to display
the dynamics of these clusters, and how can we integrate data with a fine temporal scale into a
robust framework? We can tackle the first question throughout a systematic literature review,
while the second question has no solid answers in the literature. My dissertation is dedicated to
addressing that question, and it makes two significant contributions to the literature.

First, it integrates techniques, including 3D, WebGIS, and interactivity, to robust
visualize space-time patterns, which is a novelty. While the literature on the combination of 3D,
WebGIS, and interactivity is scant, the integration of 2D and the latter two techniques are
commonly seen because of their advantages in accessing and exploring spatial data. However,
only combining those two techniques in a 2D environment is not conducive to reflect the
dynamic characteristics of space-time data. The temporal dimension is a crucial element to
understand the dynamics of infectious diseases. A three-dimensional approach has the advantage
of using this extra space to represent temporal information. Therefore, patterns revealed from a
3D visualization could be hidden in a 2D visualization. Several studies in computer science
introduced visualizations with 3D, WebGIS, and interactivity, but none of them apply those
techniques to health data with a spatial and temporal signature. Furthermore, the visualization
interaction of space-time clusters enhances the ability to discover patterns from both dimensions
at the same time. Thus, a robust geovisualization with the integration of 3D, WebGIS, and
interactivity is desirable to reveal space-time patterns of infectious diseases.

Second, the system I propose is tightly coupled; meaning that it integrates data retrieving
and preparation, analysis, and visualization into a connected and automatic manner, facilitating

timely surveillance. Early cluster detection, such as daily spatiotemporal clusters detection, can
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facilitate “outbreak recognition and investigation, provider and community outreach, and timely
intervention (Greene et al., 2016).” However, it could take a significantly longer time to obtain

results when each step is loosely connected and not automated. Therefore, for daily surveillance,
an automatic and routine process is needed, and this process should include 1) downloading and
preparing data from the data source, 2) running statistical analyses on daily updated data, and 3)

generating visualization results for that analysis.

1.8 Road Map

This dissertation is organized as follows (Figure 5). In Chapter 2, a systematic literature
review on detecting spatiotemporal patterns of infectious diseases is presented. Based on gaps
identified in the review, the problem statement is introduced in Chapter 3. The scope and its
limitations are discussed therein as well. Chapter 4 describes the architecture and implementation
of a web-based GIS system to detect space-time clusters of infectious diseases. In Chapter 5, |
introduce an evaluation scheme for the proposed web-based GIS system. Finally, discussion and

conclusion are provided.
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CHAPTER 2: LITERATURE REVIEW?

This chapter presents a systematic literature review that reflects recent trends in space-
time cluster detection for infectious diseases. The first section introduces the search and
screening criteria for this review. The second and third sections provide an overview of the topic
in both general and descriptive ways. The fourth section presents two very different approaches
to space-time cluster detection, namely the temporal repetition of existing spatial methods and
“true” space-time cluster detection methods. Meaningful findings and relevant discussion are
provided in the fifth section. The last section ends this chapter with a discussion of gaps in the

literature.

2.1 Search and screening strategies

2.1.1 Search strategy including keywords

| conducted an electronic literature search for relevant articles from PubMed, the Web of
Science (WoS), and Scopus databases on August 27, 2022, articulated around four main queries
(see Figure 6). The first query included different types of infectious diseases but excluded non-
human infectious studies. The second query attempted to incorporate articles that dealt with the
spatial and temporal nature of contagious diseases (purely predictive studies, such as the ones
using regression techniques, and which did not use clustering techniques, were excluded). The
third query retained articles that focused on detecting spatial or space-time clusters and excluded

genotype clustering papers. Finally, the fourth query further ruled out papers that were not

3 This chapter was submitted to Spatial and Spatio-temporal Epidemiology and under review after a first round of
revision.
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relevant using specific. Therefore, the first three queries are connected using the “AND”

operator, while the last query uses “NOT” as a set of exclusion.

Query 1: Query 2:
“Infectious Diseases” NOT “Non-Human” “Space&Time” NOT “Modeling”

(((AB=("communicable disease") OR AB=("infectious disease") OR
AB =(Cholera) OR AB =(Malaria) OR AB =(Flu) OR AB = (Influenza)
OR AB = (Grippe) OR AB = (COVID) OR AB= (zika) OR AB = (zikv)
OR AB = (Dengue) OR AB = (Chikungunya) OR AB = ("sexually
transmitted diseases") OR AB = (STI) OR AB=( STD) OR AB =
(SARS) OR AB = ("Middle East Respiratory Syndrome") OR AB =

_ ; — i _ =(" ") OR AB=("spatial temporal’) OR

(MERS) OR AB = (Tuberculosis) OR AB = (Chlamydia) OR AB = AN D (SRR T ) = o '
{Gonorrhea) OR AB = (influenza) OR AB = (pneumonia) OR AB = FER R R (R = (R E) ERAD = ()
(HIV) OR AB = (Hepatitis) OR AB = (Legionellosis) OR AB =
(Measles) OR AB = (Rubella) OR AB = (SARS) OR AB = (Syphilis)
OR AB = (Chickenpox) OR AB = ("West Nile Virus") OR AB = ("Yellow
Fever") )NOT (AB = (animal) OR AB = (zoonotic) OR AB = (wildlife)
OR AB =(Parasites) OR AB =(Parasitology)}})

AND

. Query 3:
Query 4 . “Detect Clusters or Patterns” NOT
A set of Exclusion i . R B
J Diagnosis of Diseases

(AB=(cluster) OR AB=(pattern) OR AB=(saABcan) OR AB=("spatial
scan") OR AB=("space-time scan") OR AB=(Kulldorf) OR
AB=("permutation scan") OR AB=(clustering) OR AB=("cluster

L _ _ e pattern”) OR AB=("clustering patterns”) OR AB=(ClusterSeer) OR
erpsplmsm} O_R AB = (boar) OR AB B (!.?oars) OR AE = (pig) CiR AB AB=(Geosurveillance) OR AB=(GIS) OR AB=("Geographic
= (pigs) OR AB = (bluetongue) OR AB = ("blue tongue") OR AB = N 5 i : - w
(poultry) OR AB = (chicken) OR AB = (flack) OR AR = (bird) OR AB = N T‘ Information Systems”) OR AB=("syndromic surveillance") OR
(p inry OR AB = {horse) OR AB = (donkey) OR AB = (mules)OR AB=(surveillance) OR AB=(Signal) OR AB=("cumulative sum") OR
qu .F) = = Anorse S(@tay) . n =) AB=(monitoring) OR AB = ("disease outbreak") OR AB = ("early
AB= ("Normalized Difference Vegetation Index") OR AB= (NDVI) OR " " OR AB = (d OR AB = ("k | density”) OR AB
AB= (spike) OR AB= (membrane) OR AB= (nucleocapsid) OR AB= warming systsm’) OR AB = (detect) = ("kemel density”)
(proteins) OR AB= (antibody) OR AB= (antibodies) ) = ("density estimation") OR AB = ("space-time pattern") OR AB =

("spatiotemporal pattern")OR (AB=(detection) NOT (AB = (diagnosis)

OR AB = (microscopy) OR AB = (cell) )))

(AB = (sequencing) OR AB = (phylodynamic) OR AB = ("nucleic acid")
OR AB = (canine) OR AB = (dog) OR AB = (dogs) OR AB =

Figure 6. Search queries.

2.1.2 Screening and selection of criteria

Two individuals (myself and my committee chair) independently screened the title and
the abstract of the articles that matched our inclusion/exclusion criteria, in an effort to determine
whether they needed to be fully reviewed. Articles were included if spatial and spatiotemporal
analytical techniques were applied for the detection of clusters of infectious diseases prevalence
rates for human populations (i.e., not animals). In other words, this dissertation mainly focuses
on the space-time cluster detection of incidence, not accounting for the transmission risk
generated by human movement in space and time. | used the Cohen’s Kappa Statistic to evaluate

the agreements between both reviewers for the screening, resulting in a k value of 0.77, which is
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considered a substantial agreement according to (Landis & Koch, 1977). For each manuscript
where there was a disagreement, the two authors discussed the validity of the article;
disagreement could stem from a lack of clarity and depth in the title or in the abstract, or that the
abstract was misleading (for instance several papers discussed clustering of Dengue Fever, but
the focus was on mosquito distribution). For each paper that had a disagreement, both authors
reviewed the full text together, and arrived in a consensus. Only after both authors agreed on all
manuscripts, the full text was reviewed together by both authors to confirm that those articles

met the criteria described above.

2.2 General summary

The searching and screening processes are summarized in Figure 7. Using the four search
criteria, a total of n = 2,887 articles published from 1974 to 2021 were identified from the
PubMed, Web of Science, and Scopus databases (n = 677, n = 540, n = 1,670 respectively). After
removing duplicates (n = 811) and review articles (n = 79) returned by all the databases, that set
of articles was reduced to n = 1,996 papers. We further excluded n = 1,538 articles during the
screening phase; some articles were related to raster studies (n = 404) or not good sources (n =
45), while others were identified as not relevant to the topic (e.g., discussing habitats of
mosquitoes; n = 1,089). We consider not good sources including articles in non-English, not
accessible on-line, etc. For the latter, articles were excluded when 1) there was no evidence of
using space-time cluster analysis; 2) the study dealt with non-human infectious diseases; or 3)
spatial regression or modeling methods were the main methods in the paper. The remaining
articles (n = 458) were fully vetted for their eligibility. Of those, n = 104 were further flagged
because they were not related to our search (e.g., review papers, regression-based papers, non-

human diseases, etc.). Once this process was completed, a total of n = 354 articles spanning 44
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years from 1977 to 2021 were included in this literature review with n = 332 articles (94%) that

could be considered as application papers and n = 22 articles that were focused on methods. The

list of articles can be found in the appendix.

Eligibility Screening Identification

Included

PubMed n=677

WoS n=540

Scopus n=1670

Duplicates n=812 &
Review articles n=79

Title and Abstract
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Image related n=404
Mot good source n=45

Full manuscript
review: n=458
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analysis n=60

. Mon human infectious
diseases n=24

. Review or perspective
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. No access n=8
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e  Application n=332
. Methods n=22

Figure 7. Searching and screening results.

2.3 Descriptive summary

This section provides a descriptive summary of our review according to disease types,

study area, discipline, and data aggregation level. The number of articles published per year is

summarized in Figure 8, suggesting a marked increase every year, and especially so in 2020 and
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2021 many COVID-19 studies (19 out of 53 in 2020 and 40 out of 68 in 2021) contributed to this
increase. | illustrate our results for papers from 1977 forward since the number of articles prior to

that date were not relevant to the criteria.
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Figure 8. Published articles per year (note that from 1978 to 1988 and 1988 to 1998 there was no papers
reported).
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Disease types. Figure 9 summarizes the frequency of articles by disease type (Dengue Fever,
COVID-19, Tuberculosis, Malaria, Sexually Transmitted Infections, and other infectious
diseases), while Figure 10 reports the diseases which are most studied, year by year®.

Overall, the largest number of articles was reported around vector-borne diseases (VBDs,
n = 142). The most-reported VBD was Dengue Fever (n = 83), a disease caused by the Dengue
virus, spreading from humans to humans through infected mosquitoes. Other VBDs with the

same pathways, such as Chikungunya (n = 2) and Zika (n = 2), received less attention. A few

4 Figures 10 and 12 were started in 2004 because of the gap in the literature, and only three articles were searched
before 2000.
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studies reported the space-time prevalence of multiple VBDs in the same paper, including
Dengue Fever, Chikungunya, and/or Zika. Malaria, another significant vector-borne disease
caused by a parasite, received less attention (n = 31) than Dengue Fever. From Figure 10, the
number of studies related to Dengue Fever and malaria peaked in 2017 and 2018 but has
decreased since then.

Articles related to airborne diseases (n = 139 including COVID-19, Tuberculosis,
Influenza, and Respiratory Infections) formed the second most significant category. Two
airborne diseases were ranked among the top five, namely COVID-19 (n = 60) and tuberculosis
(n = 47). Influenza (n = 25) and Respiratory Infection (n = 7) were also ranked among the top ten
of most documented infectious diseases. While the earliest articles on COVID-19 were published
in 2020, the number of studies in 2021 was at least five times that for any other diseases (see
Figure 10).

STIs (n = 37) include infection from human immunodeficiency virus (HIV), Syphilis,
Hepatitis B, Chlamydia, and others transmitted through sexual contact. Although the number of
studies was much smaller as to the other two types of infectious diseases, it shows a steady

increase since 2015, according to Figure 10.
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Figure 9. Number and percentage of articles related to infectious diseases. When the number of articles
for a particular disease was less than three, they were categorized as “others”.
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Study areas. Figure 11 maps the number of case studies based on the countries or regions where
the data originated from. The top 3 countries that have experienced the most studies were China
(n=76), US (n = 35), and Brazil (n = 31). Among studies in China, more than half (n = 35) were
papers on airborne transmission including COVID-19 (n = 18), followed by VVBD studies (n =
17). In the US, almost two third (n = 22) of the articles focused on airborne diseases, and half of
these airborne disease studies related to COVID-19 (n = 12). As to Brazil, most studies also
related to airborne diseases (n = 13 including n = 8 of COVID-19) and VBD (n = 10). It is worth
noting that no studies were conducted in countries or regions located in central Africa, eastern

Europe, and western Asia.

Figure 11. Variation in the number of case studies by country and region.

Discipline. We wanted to investigate the role of different disciplines for each article, because
many studies are collaborative in nature. The disciplines were identified by extracting the first
author’s affiliation and the type of journal. The results showed that more than 60% of articles

were published by authors from epidemiology or public health, while less than 30% were from
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geographers or similar background. In addition, a small percentage of studies were published
from other disciplines, such as bioinformatics and mathematics.

Figure 12 reflects the temporal trends of papers across the different disciplines from 2004
to 2021. The number of studies in epidemiology increased annually, while the number of studies
originating from geographers experienced a sharp increase since 2020. This growth is consistent
with the rise of COVID-19 studies, as 26 studies related to COVID-19 (44% of all COVID-19
studies) were published from within geography. More geographers have been involved in studies
of COVID-19 and other infectious diseases, particularly in detecting spatial and temporal

patterns.
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Figure 12. The number of studies by discipline and year.

Data types. About a fourth of studies used point data, while others used aggregated data. One
important reason for the dominance of areal data is that such data types are more readily

available, partly because of an effort to protect patient confidentiality by preventing disclosure of
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a patient's identity (Goovaerts, 2009). In addition, for those studies using aggregated data, the
geographic scale was either at the county (27.4%) or local level (57.4%), while only 11.6% of

studies were at state (10%) or country (2%) level.

2.4 Space-time cluster detection methods

This section summarizes the most common techniques of space-time cluster detection
methods found in the literature (see Figure 13 for a summary of the frequencies). The most
popular methodological approach in the literature was the Kulldorff’s space-time scan statistics
(n =205 articles). This number is almost twice as high when compared to studies that used the
(Global) Moran’s | method (n = 79), the second most popular technique. The third and fourth
most popular techniques are the Local Moran’s | (n = 65) and the Local Gi* (shortened for Getis-
Ord, n = 44). 1t is worth noting that several articles compared and contrasted the results of more
than one technique in the same paper. The purely spatial scan statistics was also very popular (n

= 32).
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Figure 13. The number of studies by methods.

| further distinguish among two distinct approaches to perform space-time detection:

either a temporal repetition of an existing spatial method or a true, space-time approach that

explicitly considers space and time. Table 1 shows the number of studies using those two

approaches along with the data type that was used, suggesting that more studies used true space-

time methods instead of a temporal repetition of spatial methods.

Table 1 The number of studies using two types of space-time detection methods.

Temporal repetition of spatial ~ Space-time methods Both Total
methods
Point 23 48 12 83
Aggregated 87 134 55 276
Total 110 182 67 359 (n = 4 using

both point and
aggregated data)
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2.4.1 Temporal repetition of spatial methods

A temporal repetition of a spatial method can help to identify space-time patterns of a
disease over a certain time range. Generally, this approach is based on two types of methods:
spatial smoothing and interpolation for point data and purely spatial cluster detection for both

point data and aggregated data.

Spatial smoothing and interpolation. A total of 23 studies used interpolation and smoothing
methods, including KDE, to reconstruct the spatial variation of the patterns across multiple
timespans. Several studies applied interpolation methods to detect space-time clusters by
generating continuous estimated surfaces from point data at multiple time intervals (See
Mclintosh et al., 2018; Singh & Chaturvedi, 2021). For example, de Azevedo et al. (2020) used
KDE to create yearly density maps of dengue outbreaks in Brazil from 2000 to 2018 and to
identify outbreaks. In an article by Pardhan-Ali et al. (2012), the authors used ordinary kriging to
generate a relative risk map of notifiable gastrointestinal illness in the Northwest Territories of
Canada, while relative risks were estimated using the results of the spatial scan test.

Although temporal extensions for these methods have been proposed in the literature
(such as STKDE, space-time interpolation), they are computationally demanding, and despite
one notable exception (Hohl et al., 2022), these approaches do not take population change into
account during the period under consideration. The results of the STKDE are best visualized in a
three-dimensional framework, however this is computationally demanding and can be
cognitively challenging. Therefore, a simple repetition of the same method for different time
ranges is generally preferred to understand the temporal variation of a disease (See de Azevedo

et al., 2020; Sifuna et al., 2018).



33

Spatial cluster detection methods. Among that implemented a temporal repetition of spatial
methods, most of them applied spatial cluster detection (e.g., LISA) instead of spatial smoothing
or interpolation. Few studies applied the nearest neighbor techniques (n = 3) to detect the scale at
which clusters were dominant. Some papers used kNN to generate spatially smoothed dengue
incidence maps, but not for the cluster detection (e.g., Acharya et al., 2016).

From the literature review, n = 79 articles implemented the global Moran’s | statistic to
inform on the presence of areal clustering. For example, Lippi et al. (2020) used the Moran’s |
statistic on annual aggregated dengue cases at the level of the health districts and polyclinic
administrative catchment (PAC) areas in Barbados from 2013 to 2016. Similarly, Yu et al.
(2020) conducted the Moran’s | statistic on annual aggregated rates of pulmonary tuberculosis
(PTB) in counties of Chongging, one of the biggest cities in China, from 2011 to 2018,
suggesting significant clusters each year.

Several studies (n = 100) used either the LISA or Gi* algorithm to detect local clusters.
In Lippi et al. (2020), the LISA algorithm identified the dynamic patterns of both high and low
clusters of Dengue Fever, revealing a shift in the spatial patterns of clusters at a local level (PAC
level). Yu et al. (2020) also conducted the local Gi* statistics for PTB at the county level in
Chongging, China, reporting yearly statistically significant clusters. As the Gi* statistics
compares local estimates of spatial autocorrelation with global averages to detect hotspots, this
method may not be suitable for small sample sizes, implying high levels of global
autocorrelation (Getis & Ord, 1996).

Instead of considering spatial autocorrelation, Kulldorftf’s spatial scan statistic (n = 32) is

applied to detect the presence of local clusters of infectious diseases (see Rocheleau et al., 2020).
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Many studies used this scan statistic to estimate the relative risk (RR) or risk ratio, which can

help to compare this risk of infection among areas (see Rejeki et al., 2019; Sloan et al., 2020).

2.4.2 Space-time methods

Unlike temporal repetition of spatial approaches, space-time methods include both the
spatial and the temporal dimensions in statistical tests. The first literature from my search applied
a trend-surface analysis by using the time as the third variable to generalize cubic surfaces to
map the space-time distribution of an epidemic in a Brazilian city in 1956 (Angulo et al., 1977).
Some of the most popular techniques in this category from the literature are introduced as
follows.

A few studies applied the Knox test (n = 15), and in ten articles, Knox was applied to
Dengue Fever (e.g., Tran et al., 2004; Vazquez-Prokopec et al., 2010; Wen et al., 2012). One
possible reason is the clear space-time transmission among infected mosquitoes in dengue
disease, making it easy to set the critical thresholds of space and time distance. However,
because it is a global test, the Knox test is not good at visualizing cluster information on the map.
Therefore, some papers have relied on additional visualization methods to display these space-
time patterns. For instance, Rotela et al. (2017) used the Knox test for spatial-temporal analysis
and KDE with a 300-meter radius to show the density of Dengue cases in Cordoba, a city in
Argentina.

Only five studies have used the space-time K function, primarily due to heavy
computational requirements. Hohl et al. (2016) for instance calculated spatial and temporal
bandwidths using the space-time K function on daily Dengue Fever cases in Cali, Colombia from
2010 to 2011. They used these results (different bandwidths) as inputs to estimate the space-time

kernel density, and ultimately visualized results in a three-dimensional space-time cube.
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According to my review, the space-time scan statistic is the most popular technique to
detect clusters for aggregated data (n = 204). In a recent study, Hohl et al. (2020) used a
prospective space-time scan statistic to estimate clusters of COVID-19 in the US at the county
level. One possible reason for the popularity of the scan statistic lies in its ability to incorporate
multiple covariates (e.g., Whiteman et al., 2019), including population. For example, in
infectious diseases, the population is a critical variable that needs to be considered in the
analysis, while many other pattern detection methods cannot include this covariate directly. Also,
some studies focus on interpret spatial result only, even though they used space-time methods in
the studies. For example, Tadesse et al. (2013) concluded that both purely spatial and space-time
scan tests detected similar and significant high-risk clusters of smear-positive TB cases in a
district of Ethiopia, but no temporal information on clusters was provided in the study. In another
article, even though Gurjav et al. (2015) claimed to use the retrospective space-time scan test and
detect three TB clusters in Mongolia from 2006 to 2012, no temporal characteristics of the
clusters were provided.

Space-time clusters can be detected or suggested by either space-time methods (e.g., the
space-time scan test) or repetition of purely spatial methods (e.g., the LISA algorithm). Although
both methods return geographic units considered to be in a cluster, the results are generally
different. Fuentes-Vallejo (2017) implemented both the Gi* statistic and the space-time scan
statistics to compare the different sensitivity of parameters to detect local clusters from these two
methods. Their results show that spatial clusters (using the Gi* statistic for each year) and space-
time clusters from the scan test were located in different regions, although some results were
overlapping. They claimed that this different spatial and spatiotemporal clusters distribution is

possibly due to different territorial dynamics.
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Overall, few studies applied cluster detection approach into a web environment. Markus
Reinhardt et al. (2008) launched an online GIS, EpiScanGIS, integrated SaTScan to monitor the
invasive meningococcal disease in Germany, while the system was not functioning anymore.
Besides EpiScanGlIS, only five recent studies on COVID-19 published in 2020 and 2021
deployed their detection approach into a web-based application. Four of them used the
prospective space-time scan statistics, while one used another algorithm (a modified space-time
density-based spatial clustering of applications with noise). Two studies are similar in that their
online systems map daily clusters as an animation based on daily COVID-19 cases (Hohl et al.,
2020; Rosillo et al., 2021), and another study, instead of mapping clusters, animated daily
relative risk and cluster frequency results (Lan et al., 2021). Two other studies (De Ridder et al.,
2021; Gliemes et al., 2021) detected space-time clusters of COVID-19 symptoms by collecting
symptoms from users. But in none of these five systems were users able to conduct customized
space-time analysis.

Although most studies use traditional visualization techniques (e.g., small multiples) to
map space-time clusters, a few studies (n = 13) introduced novel methods to portray these
clusters. The most popular method (n = 11) maps the temporal characteristics of space-time
clusters using the third dimension. Among those studies, six of them used three-dimensional
(3D) figures to represent cluster as cylinders with the height as the time (e.g., see Desjardins et
al., 2018), and five of them rendered space-time clusters into different colors or/and transparency
in the 3D volume, which have no well-defined boundary (e.g., see Kuo et al., 2018). Other than
3D methods, three studies used ring maps (Tang et al., 2019), calendar-based visualization (Wu
et al., 2021), and bivariate and spike maps as different visualization of space-time clusters (Lan

etal., 2021).
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2.4.3 COVID-19 studies

From our systematic review, several studies in 2020 and 2021 were applied to the
analysis of COVID-19 outbreaks (n = 60). The number of COVID-19 articles that used a space-
time algorithm (n = 34) was nearly the same as the papers that used a repetition of a spatial
clustering algorithm (n = 32); six studies use both algorithms. The number of papers was split
among epidemiologists (n = 25) and geographers (n = 26), and the remaining studies (n = 9)
were led by researchers from other disciplines. Most studies used aggregated data (n = 51), and

48 of those studies were conducted at the county or finer (i.e., more local) level.

2.5 Findings

This chapter presented a systematic literature review that reflected recent trends in space-
time cluster detection for infectious diseases. | searched and selected 354 articles from PubMed,
Web of Science, and Scopus databases. | noted important findings as followed. First, the number
of articles exhibited a continuous increase from 2004 to 2021, and nearly doubled from 2019 to
2020 and 2021 due to the emergence of research related to COVID-19. Second, most of the
articles were application type papers featuring spatial and spatiotemporal techniques to detect
space-time clusters of infectious diseases. Third, | noted that very few studies attempted to
publish their results over web-based interfaces, and the visualization results were for the most
part two dimensional. Fourth, most research was focused on airborne diseases, followed by
vector-borne diseases. Fifth, most studies were conducted in China, US, and Brazil. Sixth, most
studies used aggregated data instead of point data. Seventh, there was also a greater number of
studies using “true” space-time detection algorithms as compared to papers only using temporal
repetitions of the same spatial method. Along those lines, the most popular methods were the

space-time scan statistics, the global Moran’s I, and the LISA statistic.
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2.6 Gaps in the literature

Several research gaps can be identified in the current understanding of this field. From
the literature review, few online applications or platforms have implemented spatial or space-
time analytical techniques to identify space-time clusters of infectious diseases. Only five online
applications incorporated those techniques, and all of them are COVID-19 related with limited
functionality. Some commercial GIS platforms, such as ArcGIS Online, have implemented
specific spatial cluster detection techniques (e.g., the LISA algorithm) online. However, these
platforms require credits to access these resources. Further, none of these applications can
conduct an analysis that would account for both spatial and temporal dimensions simultaneously.
In other words, users can only conduct a repetition of these purely spatial methods by performing
the same analysis for different temporal intervals. Other issues that may prevent the deployment
of web-based platforms lie in their scalability, computation, and high-level programming skills to
develop such systems.

Another critical question requiring more attention is how to visualize space-time clusters
(only 13 articles deliberately discussed this issue). Using the space-time cube as a framework,
the third dimension can be used to visualize the dynamics of space-time clusters better,
potentially uncovering hidden space-time patterns. New technologies for web-based data
visualization, such as WebGL and D3.js, can be used to visualize space-time patterns on the
internet.

As far as the literature review is concerned, no study implemented space-time analysis
and visualization into one web platform. For space-time cluster detection of infectious diseases,

those two components are complementary. A good analysis of space-time clusters could
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undermine the conclusion without proper geovisualization and vice versa. Tight-coupled systems
that can handle both analysis and geovisualization are greatly needed.

| also underline several methodological concerns in applying such methods, promising to
improve future studies. It is worth noting that repeating a spatial clustering algorithm across time
instead of using a true space-time cluster detection technique may cause an increase of type | and
type Il errors (false positive and false negative, respectively), and almost half of the studies
found in the literature review used a temporal repetition of a spatial clustering method alone or
together with “true” space-time detection methods. In addition, the temporal range used in these
approaches is usually arbitrary (e.g., week, month, trimester) based on the dataset or personal
experience; analysis conducted at different scales can further exacerbate these type | and type 1l
errors.

As mentioned earlier, space-time statistics can be applied both retrospectively and
prospectively, but each approach answers different research questions. Retrospective cluster
detection conducts the analysis once and identify all existed clusters during the whole study time,
while a prospective method conducts the analysis on multiple time interval (e.g., daily, weekly,
or yearly) to detect ‘alive clusters’ on each end date of that time interval during the study period.
The retrospective method scans to detect clusters from the end of the study to the beginning,
while the prospective one moves reversely through time. Mainly, retrospective methods detect
patterns for a fixed dataset, while prospective methods adapt the results considering both newly
available and past data. Therefore, prospective methods are more appropriate to promptly detect
the dynamics of space-time clusters, especially during an outbreak that needs a rapid response.

As to COVID-19, retrospective methods can determine whether it will become a seasonal
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recurrent disease like flu when cases are recorded for more than one year, while prospective
methods can closely monitor the change in the current situation.

Some studies also overlooked the importance of interpreting the temporal information of
space-time clusters. In some reviewed articles, the temporal extent of space-time clusters was not
presented, although space-time scan tests were used. Without an adequate examination of the
temporal characteristic of space-time clusters, their ability to offer additional insights in the
temporal dimension vanishes.

Since 2011, multidisciplinary collaboration has steadily increased. In addition, the
collaboration among the academy, government, and research centers represented nearly 50% of
all the publications. Both results suggest that investigating the presence of infectious diseases is
best tackled by a holistic team of researchers. Thus, it is also essential to incorporate multiple
levels of collaboration across academics, health agencies, and other organizations. This kind of
collaboration will offer theoretical evidence to support the implementation of health policies and
practical experiences to guide research design and evaluation.

Several issues warrant further investigations. First, most reviewed articles did not account
for the potential effects of scale. For instance, clusters identified from cases reported at the postal
code level (e.g., ZIP in the US) may not be the same as if data were reported at the county level.
| argue that the comparison among multiple scales for the same study region (e.g., county and
census tract levels) could provide additional insights into the mechanism of the disease under
study. Second, research should more explicitly discuss the temporal dimension in cluster
detection, because it can reflect the cyclicity and dynamic nature of a disease. Both spatial and
temporal dimensions are equally essential for the monitoring of infectious diseases. Third, more

research is needed to compare the validity of clusters found from a repetitive spatial method, or
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from a true space-time clustering algorithm as it can affect the risk of false alarms. Fourth, other
clustering techniques such as wombling (Hossain & Lawson, 2005; Hossain & Lawson, 2010;
Lu & Carlin, 2005; Monir Hossain & Lawson, 2006) -which identifies various levels of cluster
boundaries- are promising, but are rarely used for temporal processes, nor in infectious diseases.
There is a potential to extend these approaches in time. Fifth, this literature review did not
explicitly search for papers using space-time Bayesian modeling; in fact, most of the algorithms
discussed in this chapter are to describe and identify space-time clusters; as such this topic falls
outside of the scope of this dissertation. Sixth, | found several studies that used the space-time K
function to detect space-time clustering from events, but the inhomogeneous K function
(Baddeley et al., 2000) has rarely been discussed in space and time (a notable exception is (Hohl
et al., 2022)); this is partly due to the difficulty to have temporally varying information on the
population itself, unless the study covers a large period of time, and fine-grained population
count is available. Finally, researchers should facilitate the replication of their study, either by

publishing their data and developing web-based visualization solutions.
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CHAPTER 3: PROBLEM STATEMENT

The literature review in Chapter 2 has revealed some important gaps in the monitoring of
infectious diseases. In this dissertation, | propose to focus on four significant issues, specifically
(1) the repeated use of a spatial method which do not capture the true clusters of the disease
under investigation, (2) the use of rather simplistic geovisualization techniques that do not reveal
the space-time patterns of the disease, (3) the lack of a tightly integrated system that can conduct
both cluster detection and visualization, but also communicate with a server where infectious
data information is stored and updated frequently, and finally (4) the absence of such systems on
the internet. 1 now elaborate on these four gaps, and briefly discuss the scope and limitations of

this study.

3.1 Emerging problems from the literature review

3.1.1 Reliance on non-exact space-time cluster detection algorithms

From the systematic literature review (see Chapter 2), nearly one-third of the articles
have relied on a temporal repetition of purely spatial algorithms to detect space-time clusters,
while the others use “exact” approaches or both. For the former, this is a critical weakness
because the temporal dimension is not explicitly accounted for and can lead to false positives and
possibly false negatives. The presence of false positives, which are unknown to public health
experts, may lead to public health interventions where no problem exists; likewise false
negatives may reduce public health efforts in areas where a problem truly exists. It is therefore

critical to rely on methods that can minimize false positives and false negatives.
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3.1.2 The need for robust geovisualization to reveal space-time patterns of infectious diseases
Another important but overlooked issue is how to visualize space-time patterns (e.g.,
clusters, relative risk) of infectious diseases. Only 13 articles deliberately discussed how to
visualize space-time patterns of an outbreak. However, it is vital to capitalize on the temporal
dimension because infectious diseases are not static over time. With the inherent characteristics
of spatial and temporal dimensions, spatiotemporal patterns may be hidden from traditional 2D
geovisualization. Although multiple static maps or basic web maps can display changes in both
dimensions by displaying all maps or information simultaneously, it is impossible to present
numerous maps together, such as showing all the daily or weekly maps at the county level.
Space-time visualization approaches could help uncover concealed space-time patterns hidden

from statistical tables and traditional maps.

3.1.3 The need for rapid surveillance at a fine temporal scale

An effective monitoring system should be able to detect and visualize clusters in both
space and time, but also use the most up-to-date reported data (e.g., cases, death,
hospitalizations...) that is updated on a fine temporal scale (e.g., daily). With the development of
data monitoring and sharing technologies, infectious diseases data are sometimes available at the
daily or weekly level and carry a massive volume of information. For instance, during the current
COVID-19 pandemic, several online dashboards, or platforms, such as Johns Hopkins and New
York Times, have shared and updated COVID cases and deaths worldwide, at various levels of
spatial and temporal granularity. Take the dataset in the US from the Johns Hopkins dashboard
as an example. This dataset has reported daily cases or deaths at the county level for most US
counties since January 2019. With the advantage of daily data availability, the essential question

is how to capitalize on such a rich dataset to uncover the dynamic patterns. As time is the
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essence in infectious disease, the monitoring system needs to regularly retrieve and analyze daily
data or as soon as the data are ready. In other words, we have the opportunity to promptly
discover changing patterns of the disease. By examining daily data regularly and speedily,

experts have an opportunity to prepare better ahead of the next surge of infectious spreading.

3.1.4 The need for an integrated online solution

Online web-based mapping applications can facilitate the sharing of data and information
among different communities, improving response time to rapidly evolving situations. From the
literature review, few online applications or platforms have implemented spatial analytic
techniques to identify clusters for infectious diseases. Only five online applications incorporated
those technigues, and many of them consist of limited functionality. Some commercial GIS
platforms, such as ArcGIS Online, have implemented some spatial cluster detection techniques
(e.g., the LISA algorithm). However, they require credits to access these online resources.
Furthermore, none of these applications could conduct an analysis that would account for both
spatial and temporal dimensions simultaneously. In other words, if users want to conduct a
space-time analysis, they need to repeat the spatial test as many as the frequency of the temporal
interval. For example, for a weekly spatial analysis of COVID cases for one year, the user will
need to repeat the analysis 52 times, which could be a time-consuming process. Other issues that
may prevent the web-based deployment of space-time clustering tests lay in scalability®,
computation, and that the programmer who develops these applications must possess high-level

programming skills.

5 For instance, ArcGIS Online can conduct hotspot analysis with credits, and it will cost more credits if the number of
features increases.



45

Furthermore, incorporating robust visualization techniques such as web-based
geovisualization could provide a much-needed option for researchers who have limited
knowledge in the use of geospatial technologies. Although incorporating three-dimensional
visualization techniques into a web environment can be challenging, innovative techniques of
web-based data visualization, such as WebGL for 3D visualization and D3.js for dynamic,

interactive data visualizations make this attempt possible.

3.2 General problem statement
Those issues reveal that significant problems remain unsolved in the context of infectious
diseases. My dissertation is aimed to address those issues by integrating all essential ingredients
of cluster detection analysis into one tight, online system. This online health surveillance system
assembles components of data retrieving, data analysis, and data and uncertainty
geovisualization into a tightly coupled GIS system. This system facilitates the communication
among each module with interfaces, while in a loosely coupled system, the user needs to
manually switch among each module (database, analysis, and visualization). The tightly coupled
GIS system is more robust than a loosely coupled system, because it integrates data, analytical
tools, and visual tools together.
Taken together, my dissertation addresses these four gaps mentioned earlier, and provide
the following contributions:
e Emphasis on the exact space-time cluster detection algorithm and use of the non-exact
one as a complementary resource in space-time cluster detection
e Generate innovative visualization techniques for daily updated health data with

spatiotemporal information
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e Develop atight, online system to facilitate experts making rapid responses during the

outbreak

| evaluated the proposed system by combined a user study and an expert evaluation. The
user study was conducted by collecting survey responses from graduate students, and the expert
evaluation directly collected feedbacks from experts in COVID-19 data and analysis during a

group interview. Collected results and feedbacks were further analyzed.

3.3 Scope and limitations of the study

Although the proposed framework could virtually be applied to any other disease, | use
COVID-19 cases in the US at the county level for the 48 conterminous states to demonstrate its
usefulness. The analysis module focuses on detecting both exact and inexact space-time clusters
implemented with two methods (the SaTScan and LISA statistics, respectively), but other
methods could also be deployed, depending on the research questions. There are other limitations
to this study. First, the case dataset cannot be uploaded by users because data security is most
important. Since the prototype (described in Chapter 4) is accessible to the public, it would be
challenging to handle potential privacy issues, such as those mentioned in the Health Insurance
Portability and Accountability Act (HIPAA) in the US (Centers for Disease Control Prevention,
2003). Second, the uploaded case information should be in the same scale as other datasets, such
as population and boundaries. For example, if one user uploaded cases at the neighborhood level,
then population and boundaries at the same level are also required. Third, only cases are used to
demonstrate two methods for space-time cluster detection in this prototype, but deaths or

hospitalizations could also be used.
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CHAPTER 4: METHODOLOGY

Space-time clustering detection is essential in spatial epidemiology, especially for
infectious diseases (Pfeiffer et al., 2008). As discussed earlier, the space-time scan statistics and
local indicators of spatial association (LISA) are two popular methods to detect local space and
space-time clusters for infectious diseases. While the LISA statistic (Anselin, 1995) is a purely
spatial method that does not take the temporal information into account, many studies have used
this approach, essentially repeating it over multiple time ranges to detect space-time clusters for
infectious diseases (see Ghosh & Cartone, 2020; Sugumaran et al., 2009). Unlike the LISA
statistic, the space-time scan statistic “’scans” the data using a cylindrical window in both space
and time (Kulldorff et al., 2005). Also, unlike the LISA statistics, space-time scan statistics are
not restricted by administrative boundaries (Naish & Tong, 2014), because the scan statistic
searches for clusters beyond the so-called ‘adjacency matrix’ that is central to the LISA statistic.

The space-time geovisualization of these two methods is crucial to infectious diseases
such as COVID-19, but many current COVID-19 dashboards neglect this temporal component
(Lan et al., 2021). Moreover, the space-time scan statistic requires an application (SaTScan) or
libraries (through R, for instance) to estimate the presence and magnitude of clusters, while a
commercial GIS is still needed to visualize the space-time extent of these clusters. A tight-
coupling system with different modules connected into one system can address this issue. Using
this approach, epidemiologists could conduct spatiotemporal analysis and uncover the underlying
pattern without the need to go from one software to another (Delmelle et al., 2011). However, to
the best of my knowledge, a tight coupling system for space-time clustering detection

visualization is not available.
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This study proposes a web-based geographic framework for the detection and
visualization of space-time clusters for infectious diseases. To demonstrate the framework, |
develop an automatic surveillance system that uses the prospective space-time scan statistics and
the LISA algorithm at the county level in the continental US. The system retrieves daily updated
COVID-19 data. I further elaborate on the objectives of this tightly-coupled system, namely: (1)
to implement automatic and customized space-time clustering detection for a given geography
and specific time range and (2) to generate novel 2D and 3D visual features of space-time
clustering; (3) to develop a tight coupling system that incorporates daily data updated and
components for the objective one and two. This system is named US COVID-19 YuTu and

described further in the below sections.

4.1 Data

In this study, the COVID-19 Data Repository prepared by the Center for Systems Science
and Engineering (CSSE) at Johns Hopkins University is used to extract daily US COVID-19 data
(JHU CSSE COVID-19 Data) at both state and county levels. Halpern et al. (2021) claimed the
dataset from JHU is one of the closest to the one from CDC when compared to other commonly
used COVID-19 datasets.

For this study, | use reported date is from January 22, 2020 -the date CDC confirmed the
first US coronavirus case in Washington state- to the latest date for which this website is
updated. Table 2 is an example of daily case data retrieved on October 18, 2021. Daily COVID-
19 data are extracted and updated into corresponding databases. Attributes of the COVID-19 data
include federal information processing standards code (FISPS), county name, state name, date,
latitude, longitude, counts of confirmed cases, and counts of deaths. In addition, the latest

available population figures and boundaries are retrieved from the US Census Bureau. The
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population data are in the 2019 Community Survey (ACS) 5-year estimates of the resident
population for both 48 states and corresponding counties, and the used boundaries data is the
2020 TIGER/Line shapefiles®. Rates are calculated by dividing the number of cases -averaged

over seven days- in a geographic region by the population in that region.

Table 2. Example of daily case data from JHU.

uID iso02  iso3  code3 FIPS  Admin2 State Country Lat Long 1/22/2020 ... 10/16/2021  10/17/2021

84001001 us USA 840 1001 Autauga Alabama us 32.53953 -86.6441 0 9893 9901
84001003 us USA 840 1003 Baldwin  Alabama us 30.72775 -87.7221 0 37069 37087
84001005 us USA 840 1005 Barbour Alabama us 31.86826 -85.3871 0 3554 3556
84001007 uUs USA 840 1007 Bibb Alabama us 32.99642 -87.1251 0 4216 4217
84001009 us USA 840 1009 Blount Alabama us 33.98211 -86.5679 0 10094 10102
84001011 us USA 840 1011 Bullock Alabama us 32.10031 -85.7127 0 1517 1517
84001013 us USA 840 1013 Butler Alabama us 31.753 -86.6806 0 3247 3248
4.2 Method

This section introduces the framework and workflow for detecting and visualizing space-
time clusters of infectious diseases using COVID-19 data in the conterminous US. The
framework is based on a “tight-coupling” system with customized spatial and temporal settings.
It incorporates data extraction capabilities, clustering detection, and geovisualization in a web-
based GIS environment, and uses a server-side (running procedure on the server) and a client-

side (running procedure on the user's web browser), as illustrated in Figure 14.

6 Boundaries: https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html


https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html
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Figure 14. The framework of a tight coupling system to detect space-time clustering of COVID-19.

The server side is articulated around three types of servers for different purposes: a
database server, an interface server, and a method server; each server in this system is
represented as a docker container. The database server stores all the relevant input data and
output results. Disease information at the county level is extracted daily from the JHU CSSE
COVID-19 database and imported into our COVID-19 database using a processing script written
in Python, which removes unnecessary attributes. The other two datasets are population and
cartographic boundaries from the US Census Bureau. The disease detection algorithms are

processed on the methods server and generated results. This process is repeated every night after
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the data is automatically retrieved and processed. The interface server connects the client and
database sides for visualizations.

The client side is the graphical user interface (GUI) of the COVID prototype. It consists
of basic online map functions, including zoom, pan, etc. The default homepage contains the
distribution of US COVID-19 space-time clusters at the county level. The geovisualization of
space-time clusters is displayed in both two and three dimensions. My framework is articulated
around three modules implemented on individual servers: (a) an analysis module (Method
Server), (b) a visualization module (Interface Server), and (c) a data processing module

(Database Server).

4.2.1 Analysis module
Among various methods of disease space-time detection, the local indicators of spatial

association (LISA) and space-time scan tests are two popular methods.

Local indicators of spatial association-LISA. Anselin (1995) introduced LISA as
decomposition of global indicators of each individual observation, which can detect significant
local clustering around an individual location and recognize the spatial nonstationary with

outliers. For a region i, the local indicators of spatial association I; defined as:

1)(xl—x)
I; = wiilx —x
zyl(xj—x) Z o

Eq.1

where x; is the attribute of the variable of interest (here, the disease rate) in region i, x is the
mean of x; (i=1..., n), w;; is the spatial weight between regions i and j (typically derived from an
adjacency matrix). The results of the LISA algorithm group regions into different groups (e.g.,

High-High, Low-Low, High-Low, Low-High) with an associated p-value. When a location is
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categorized as High-High/Low-Low, it denotes a region exhibiting high/low rates, surrounded by
other regions with similar, high values/low values. A High-Low category characterizes a county
with high rates, surrounded by low rates. This could be indicative of an area experiencing a rapid
increase in cases that is more than what would be expected, while surrounding regions do not
experience such rapid growth. Low-High represents outlier regions of low value surrounded by
high values. The LISA statistic (Anselin, 1995) is purely a cross-sectional method that does not
take the temporal information into account. There are ample examples of this repetitive approach
to identify clusters of infectious diseases (see Ghosh & Cartone, 2020; Sugumaran et al., 2009).
However, the LISA statistic is likely to lead to the discovery of false negatives and false

positives.

Space-time scan statistics. Kulldorff and Nagarwalla (1995) introduced the spatial scan statistic
as a test for detecting clusters by assessing the likelihood ratios of events inside and outside of
circular scanning windows, adjusted for the density of the population. The radii of the windows
are varied continuously from zero to the maximum bandwidth, e.g., to a size containing a certain
percentage of the population. The window with the maximum likelihood ratio is defined as a
cluster, and only regions located within this window are considered to ‘belong’ to that cluster.
Kulldorff et al. (1998) further expand the spatial scan statistics to incorporate the
temporal dimension by adding the circle’s height to represent the time (Figure 15). Thus, each
cylinder represents the scanned geographic region (the circle projected to the area) within a

temporal range (the hight of the cylinder).
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Figure 15. The illustration of space-time scan statistics.

As the statistic is designed to detect clusters, the null hypothesis HO is that the risk of
infection within a cylinder Z is similar to this risk outside the cylinder; the alternative hypothesis
Ha is that the risk of infection within a cylinder Z is larger than this risk outside this cylinder.

Accordingly, the expected number of cases (i) based on the null hypothesis is

_ xﬁ Eq. 2
n=px3

with p the population in the cylinder, N the total number of cases within the cylinder Z, and P the
total population within the study area. Thus, the maximum likelihood ration to identify space-

time clusters is defined as:

ny, \"2( N—mn, \"
L@) _ (#(é)) (N - u(é))
Lo - N Y Eqg. 3
()
where L(Z) is the likelihood function for the cylinder Z, and L, is the likelihood for the null

hypothesis HO, n, is the number of cases in the cylinder Z, u(Z) is the number of expected cases
in cylinder Z, and u(T) is the total number of expected cases within all time periods in the study

area. | reported 1) the relative risk for each location (RR of the location), defined as the



54

estimated risk (observed/expected) within the location divided by the estimated risk outside the
location, and 2) the relative risk for the cluster that the location belonged to (RR of the cluster),
representing the estimated risk divided by the risk outside of the cluster. For instance, if the RR
of the county is 1.4 and its RR of the cluster is 2.5, then this county is 1.4 times more likely to be
exposed to COVID-19 while it also belongs to a cluster that is 2.5 times more likely than outside
this cluster.

The space-time scan statistic on the other hand “scans” the data using a cylindrical
window in both space and time (Kulldorff et al., 2005). Also, unlike the LISA statistics, space-
time scan statistics are not restricted by administrative boundaries (Naish & Tong, 2014),
because the scan statistic searches for clusters beyond the so-called ‘adjacency matrix’, which is

central to the LISA statistic.

Implementation of the algorithms. The LISA and space-time scan statistics are automated and
conducted every night when the JHU data are updated and retrieved. The LISA algorithm is
repeatedly conducted within the system to detect geographic clusters for each day. An open-
source, cross-platform python library of spatial analysis functions, including LISA, called
pygeoda, is implemented and integrated for the temporal repetition of the LISA statistic. I
conduct LISA on the incidence rate (7-day average cases divided by population) using a Queen
contiguity matrix. For the space-time cluster detection, | run SaTScan in a batch mode approach
using a discrete Poisson prospective test with a maximum spatial cluster size as 50% of the

population at risk and a maximum temporal cluster size of 50 days’. Input files, parameter files,

" The maximum spatial cluster size (50%) is the default setting; the maximum temporal cluster size is based on our
experiments with different values (1~59) for this variable using the dataset in October to December 2021 and authors’
experiences as there is no rigor rule for the parameter selection.
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and batch files for the analysis in SaTScan were generated using python scripts. Both outputs

from LISA and space-time scan statistics are stored in separated databases.

4.2.2 Visualization module

In the YuTu system, several visualizations are implemented. One of them is the animated
bivariate map which displays two variables simultaneously (see Figure 16). This visualization
displays results from the space-time scan statistics, using animated bivariate maps to visualize
different cluster detection results (Lan et al., 2021). The two presented variables are the relative
risk when the location with a cluster and the relative risk for this location on that day. In this

interactive system, the values for each variable can be displayed by hovering over the county.

—) November 6, 2021

Figure 16. The animated bivariate map of space-time cluster using the space-time scan statistics.

I also complement this system with LISA results (see Figure 17). The two variables for
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the LISA map are the p-value and the cluster group to which a county belongs. The p-value is
ranged from 0.05, 0.01, 0.001, and 0.0001, and the cluster group is ranged from Low-Low, Low-
High, High-Low, to High-High. From the two maps, some areas are detected as clusters in both

maps, while some regions are detected only on one map.

August 11, 2021

Figure 17. The animated bivariate map of space-time cluster using space-time scan statistic (left) and
LISA (right) around August 11, 2022.

Although the animated bivariate map has the advantage of showing the dynamic of
cluster distribution each day, it is hard to memorize the overall patterns. To complement that,
other visualization solutions are incorporated to display the data in various ways, and these
methods include the spiral map, the TimeChart, and the 3D space-time cube.

The spiral map (Weber et al., 2001) shows the average daily relative risk at the state level
(see Figure 18). Each bar from the spiral map has represented this value by using both color and
length. The darker and more extended the bar, the bigger its value. When one county is selected
in the bivariate map, the spiral map is switched to the spiral of the state that this county is within.

The central cartogram displays that value of each state at the latest date.
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Figure 18. The animated bivariate map of space-time cluster using the space-time scan statistic (left) and
a spiral map reflecting the average relative risk for each conterminous US state (right).

I use the TimeChart to show the results of the bivariate map in a static and linear fashion

(Figure 19). When one or more counties are selected on the bivariate map, the TimeChart

displays the chart for the selected counties. The first chart in red represents the county's relative

risk (RR of the location), while the second chart in blue represents 1) the RR of the cluster that

the county belonged to, and 2) the 7-day average cases for this county. In this way, animated

results are linked with static and linear results to help discovering the dynamic patterns in space

and time.
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Figure 19. The animated bivariate map of space-time cluster using space-time scan statistic (top) and the
TimeChart of different variables (bottom).

| also develop 3D web-based geovisualization, named 3D space-time cube (Figure 20),
using multiple JavaScript libraries (3D Scatter Plots Plotly and Data-Driven Documents (D3)
(Bostock et al., 2011)). In this 3D plot, the x and y represent the latitude and longitude of the
centroid for each county, while the z-axis represents the time. Finally, each dot is color-coded to

reflect the value of its relative risk. The system also incorporates a filter that essentially masks to
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focus on regions is flexible given that a filter of the relative risk is offered to show more or fewer

points.

%
% | gngtude : v %
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Figure 20. The 3D space-time cube of clusters with displaying the relative risk of the cluster (left) and
relative risk of the county (right).

4.2.3 Data processing module

The data processing module contains daily data retrieving and processing, data analysis,
and storing, and these steps are connected to the WebGIS environment. All the data are stored in
databases created and managed using PostGIS, an open-source software program that supports

geographic objects.

Daily retrieved data are processed and imported into the database on the server. Python
scripts are used for daily data retrieving, processing, and space-time cluster detection for all

counties. Population and boundaries data are stable in years and are stored as separate databases.

4.3 Case study

I illustrate the YuTu system to monitor the variation of COVID-19 cases across the
conterminous US. As multiple visual components display different results, I introduce serval

case studies as examples to show potential ways to use this system by combining visualizations.
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The animated bivariate map is intended to indicate the daily relative risks, which are the basic

information for all other visuals.

4.3.1 Four waves of COVID-19 outbreaks

Four waves were identifiable from Figure 21, using the 7-day average cases in the US
since the beginning of the pandemic. | selected four time intervals around the peak of each wave,
that were July 21, 2020 (peak 1), January 4, 2021 (peak 2), Sep. 3, 2021 (peak 3), and January

15, 2022 (peak 4).

1,400,000 Peak 4
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The fourth wave
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Figure 21. The four waves and their estimated peak dates using the data from WHO Coronavirus
(COVID-19) Dashboard (World Health Organization, 2020).

Figure 22 shows the results of the SaTScan algorithm (a) and the LISA statistic (b) for
peak 1. From the SaTScan results, one large cluster covered many counties in the south and
center of the US. From the LISA results however, high-high and high-low clusters were found in
the south, southeast and the southwest, while many counties in the central US belonged to groups
of low-low clusters. Also, several counties in Washington state and Idaho were classified as

high-high clusters by the LISA method, yet the SaTScan method did not detect these counties.
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—0 July 21, 2020

a. Using SaTScan on Jul. 21, 2020. b. Using LISA on Jal. 21, 2020.

Figure 22. The animated bivariate maps at peak 1 using the prospective space-time scan statistics (a) and
LISA (b).

Figure 23 shows the results of SaTScan (a) and LISA (b) on peak 2. However, SaTScan
results showed that the RR of the clusters are not as high as during peak 1 (Figure 22). One
cluster with higher relative risk was in the southwestern, including the south part of California,
the west part of Arizona, and several counties in the boundary of Nevada with these two states.
From the LISA results, most counties in the cluster found by SaTScan were categorized as high-

high clusters with the LISA algorithm.
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a. Using SaTScan on Jan. 4, 2021. b. Using LISA on Jan. 4, 2021.

Figure 23. The animated bivariate maps at peak 2 using the prospective space-time scan statistics (a) and
LISA (b).
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Interestingly, 1 also found clusters with higher relative risk one month earlier than peak 2.
On November 26, 2020, the SaTScan (Figure 24a) detected one very large cluster covering
several counties in the North and central parts of the US. Most counties within this cluster had
higher relative risks (colored in dark purple) compared with the rest of counties (colored in light
purple). As to LISA results (Figure 24b), high-high and high-low were also found in the north

and centre of the US.

—_— November 26, 2020

a. Using SaTScan on Nov. 26, 2020. b. Using LISA on Nov. 26, 2020.

Figure 24. The animated bivariate maps on November 26, 2020, 40 days before peak 2 using the
prospective space-time scan statistics (a) and LISA (b).

On peak 3 (Figure 25), multiple small clusters were shown from the SaTScan results
(Figure 25a), and the cluster with the highest relative risk on that day included the whole Florida
state and many counties from neighboring states. Other clusters were found in the western,
central, southern sections of the US. Many counties within clusters from SaTScan were also
classified as high-high clusters using LISA (Figure 25b). Similarly, clusters with higher relative

risks were detected one month before peak 3 (Figure 25¢c&d).
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ey September 3, 2021

July 24, 2021

c. Using SaTScan on Jul. 24, 2021. d. Using LISA on Jul. 24, 2021.

Figure 25. The animated bivariate maps at peak 3 (a & b), and the maps on July 24th, 2021, 42 days
before peak 3 (c & d).

During the interval that covered peak 4, only one cluster covering many states in the east
of the US was detected by the SaTScan results (Figure 26a), while high-high cluster were
distributed across the US according to LISA results (Figure 26b). When looking at the results
one month ago of peak 4, both SaTScan and LISA (Figure 26c&d) suggested clusters of higher

relative risks or high-high values detected in the northeast of the US.
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—0 January 15, 2022
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a. Using SaTScan on Jan. 15, 2022.

_— December 16, 2021

c. Using SaTScan on Dec. 16, 2021. d. Using LISA on Dec. 16, 2021.

Figure 26. Animated bivariate maps at peak 4 (a and b) and the maps on December 16th, 2021, 31 days
before peak 4 (c and d).

4.3.2 Comparing situations among counties

| picked three counties with relatively high population density in three different states:
Los Angeles County in California, Miami-Dade County in Florida, and Queens County in New
York (see Figure 27). According to the TimeChart functionality, all of them had a very high
number of cases on January 11, 2022, around the peak day of the fourth wave. Although they had
the highest cases on that day, two counties belonged to the same cluster with a relative risk of

3.7, and Los Angeles County was not within a cluster. The relative risks of those counties were
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1.1 with 38,007 cases (Los Angeles County), 2.54 with 15,777 cases (Miami-Dade County), and

2.28 with 11,896 cases (Queens County).

— January 11, 2022

a. Using SaTScan on Jan. 11, 2022. b. Using LISA on Jan. 11, 2022.
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c. TimeCharts of selected counties showing the RR of county (red) and its 7-days avg cases (blue).
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d. TimeCharts of selected counties showing the RR of county (red) and relative risk of clusters (blue).

Figure 27. The animated bivariate maps of selected three counties on the date that all of them reported
most cases (a and b), and the TimeChart of 7-days avg cases (c), and the Timechart of relative risk of
clusters (d).
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4.3.3 Interpret waves using the 3D space-time cube

| also looked at the third wave from June 2020 to December 2020 using the 3D space-
time cube (Figure 28). The left side of the figure shows the extent of space-time clusters by
displaying the relative risk of each cluster, and its right side shows the relative risk distribution
of counites with clusters in space and time. The value was filtered to show more or fewer points.
When the relative risk is equal to or larger than 2, it is clear that there is a shift from the centre
and some counties in the east to the northwest of the US, and this change happened around
September, which was around the peak time of the third wave. By increasing the threshold to 4
and 8, the results are clearer, and the relative risk of clusters and counties was higher before

September.
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RR of clusters RR of counties

Figure 28. The 3D space-time cubes during the third wave from June 2020 to December 2020 with
different threshold of relative risk.

4.3.4 Different scales using Wisconsin as an example

To explore the use of multiple scales, | also generated results of Wisconsin on three
scales. According to the spiral map, there were two periods when the average relative risk of
Wisconsin was higher (Figure 29). | selected three months from one of that two period, from

December 1, 2021, to February 28, 2022, when the value peaked and then decreased.
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Figure 29. The animated bivariate map and the spiral map of Wisconsin.

To compare results at different scales, I included scales from the county levels with all
other states, the county level with one state, the zip code level, and the census tract level (see
Figure 30, Figure 31, Figure 32). From the cluster map using results of SaTScan and LISA for
the entire region, most counties in Wisconsin were detected in the clusters on December 1, 2021.
For SaTScan results only considered cases within the state, all three levels detected clusters in
most areas except areas at the bottom, and results at three scales were similar. On January 5,
2022, most counties in Wisconsin no longer belong to a cluster from the results of SaTScan and
LISA considering all states. However, clusters were detected on all three scales when only
considering regions in Wisconsin, and the area that belonged to clusters was smallest at the
county level and largest at the zip code level. On February 28, 2022, most counties in Wisconsin

remained not within a cluster from the results of SaTScan and LISA. Clusters were only detected

at the zip code level.



c. Using SaTScan at multiple levels.

Figure 30. The animated bivariate map of Wisconsin at multiple levels on December 1, 2021.
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c. Using SaTScan at multiple levels.

Figure 31. The animated bivariate map of Wisconsin at multiple levels on January 5, 2022.
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Figure 32. The animated bivariate map of Wisconsin at multiple levels on February 28, 2021.

4.4 Discussion and conclusion

US COVID-19 YuTu is a health surveillance system based on space-time cluster detection

analysis and visualization implemented with near real-time monitoring and novel visual features.

This system emphasizes spatiotemporal analysis and representation in various ways. To illustrate

the framework, the prospective space-time scan statics and the LISA algorithm are applied to

detect space-time clusters daily, although other ESDA or statics methods can also be

implemented. As for the visualization, the animated bivariate map of those two methods presents

all the available space-time clusters each day, together with the TimeChart for linear
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representation and the spiral map for the higher level summary to complement the weakness of
processing a large set of dynamic information. The 3D space-time cube offers another relative
static way to explore the same results with the ability to filter data on both the range of time and
the value of the relative risk of space-time clusters. This framework can also apply multiple
scales, such as from the county to the zip code level.

This system also has some limitations. First, the calibration of the parameters used in the
spatial analysis requires fine tuning with epidemiologists, which may initiate some hypothesis
for prediction, such as recognizing the signal before the peak of a current wave. From the
introduced case study that focused on four specific waves, | found that two peaks in 2021 have
higher relative risk and larger extent of clusters according to results using the prospective space-
time scan statistics. Likely, this signal was detected because of the choice of time maximum
range as 50 days based on the 2021 dataset. It is worth noting that the LISA result cannot detect
this signal, as it only considers data for one day.

Secondly, because of the limited source of available open access datasets, this system
only takes cases and deaths into account, while other COVID-19 related information, such as
hospitalization rate, could also be useful to detect space-time patterns.

Thirdly, I did not consider the uncertainty in population as I use the 2019 ACS data. In
the early of the system development, the 2019 ACS data was the best source in early 2021.
Although the US Census Bureau released the 2020 Census later, the population after 2020
remains unknown and it is heavily impacted by the pandemic. The solution should not be simple
update the population data when the latest is available. More investigations on this issue are

necessary to near real-time health surveillance systems like the US COVID-19 YuTu.
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This study presents a framework of novel surveillance systems that automatically detects
space-time clusters daily, and a prototype using the framework, named US COVID-19 YuTu, is
introduced. This COVID-19 surveillance system integrates two popular methods and a various of
novel interactive visualization features in 2D and 3D within an open-source web-based GIS
environment. Although the prototype focused on 48 states in the US using the space-time scan
statistics and the LISA algorithm, it can apply to any other countries or regions at multiple scales
using other possible algorithms. On the one hand, | hope this system can assist health
policymakers in making interventions, such as slowing down the spread of COVID-19 in the US.
On the other hand, | hope to inspire others to develop health surveillance systems that reflect

more on the spatiotemporal analysis results instead of merely descriptive data.
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CHAPTER 5: EVALUATION

When developing new visualization and analytics tools, it is important to evaluate their
effectiveness (Carroll et al., 2014). The motivation for this chapter is to assess the functionality
and usability of US COVID-19 YuTu, the proposed online surveillance. In a 2007 study,
Robinson (2007) presented a design framework for exploratory geovisualization in
epidemiology. The research questions in this study focused on identifying necessary features and
interactions of visualizations and how epidemiologists may use the application for decision
making. Likewise, my proposed online surveillance system in Chapter 4 is designed to assist

epidemiologists to detect space-time patterns to assist in a response during an outbreak.

In this chapter, | summarize efforts to evaluate the proposed online surveillance system based on
three specific research questions:

1. Is this a helpful system for detecting and identifying space-time patterns of infectious
diseases? If so, which features of visualizations and represented information are helpful
and why?

2. Does this system assist epidemiologists in making timely responses during an outbreak?
If so, how could they use results or information from the system?

3. What are the strengths and weaknesses of this system compared with traditional methods
epidemiologists used?

To answerer these questions, | conducted an evaluation consisting of a user study and an
export evaluation. The remainder of this section presents the background information of selected

qualitative methods to evaluate this system. | introduce the design and process for the evaluation
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in the second section and the results in the third. Lastly, | provide a summary and discussion of

the evaluation.

5.1 Background

Popular methods to evaluate the effectiveness of novel visualization techniques in
geospatial health are interviews, participant observations, task analysis, and a combination of
these methods (Carroll et al., 2014). These qualitative methods are beneficial for collecting
feedback from targeted users and connecting practice with theory. For example, Ban and
Ahlgvist (2010) evaluated a geovisualization of uncertain urban ontologies, including two types
of interviews, a pilot interview with students, and in-depth discussion with experts, examining
different aspects of the geovisualization. They concluded that the pilot interview with closed
questions was an excellent resource for collecting qualitative data and that the in-depth interview
offered new information that was not indicated in the pilot interview.

Participant observation is one popular method that has been implemented in the design
process of analytical and geovisualization systems. For example, Robinson et al. (2005) invited
domain experts to assess an exploratory geovisualization toolkit for epidemiology, and Lloyd
and Dykes (2011) collaborated with experts during the design phase of geographic visuals lasted
for a the long term (3 years).

Task analysis is another widely used method for evaluating a system or application in
epidemiology, and it usually combines a survey after completing an analytical task. For example,
Robinson et al. (2017) evaluated a visual analytics system to detect space-time patterns using a
combination of task analysis, followed by participant surveys. Their task analysis required
participants to provide written responses of the patterns they identified, followed by a usability

and utility survey. Similarly, Pezanowski et al. (2018) developed a user evaluation approach in
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which participants were required to answer questions for the evaluation after finishing a task that
guided them through primary functions of an analytical application of social media. They created
an online survey consisting of basic demographic questions, sample tasks to complete, and
usability and utility questions. In another study, Wagner Filho et al. (2019) evaluated an
immersive space-time cube geovisualization for trajectory data exploration. They introduced
evaluation strategies, including measuring users’ performance in relevant tasks, observing how
users interact, interviewing users on their subjective experience, including both novice and
domain experts.

Besides selecting qualitative methods, another vital component for conducting qualitative
research is to decide on target respondents and recruitment. For instance, Anderson and
Robinson (2021) recruited 320 participants using Amazon Mechanical Turk® to collect
information on reading categorical maps, and participants were recruited without constraints of
knowledge or skills. However, studies designed for professionals may require participants to
demonstrate specific domain knowledge, and it may be difficult to recruit sufficient participants.
For this reason, researchers generally include novice users (typically students) and domain

experts (see Robinson, 2007; Robinson et al., 2017; Wagner Filho et al., 2019).

5.2 Evaluation design and process

The evaluation of US COVID-19 YuTu consists of a user study (task analysis integrated
into a survey) and an expert evaluation (a group interview) to capture different dimensions of the
same issue as the triangulation (Patton, 1999). The user study aimed at testing the functionality

and general thoughts by collecting responses from graduate students using an online survey, and

8 Amazon Mechanical Turk is a crowdsourcing website to remotely recruit participants to conduct tasks.
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the expert evaluation further collected feedback, comments, and discussion from a group
interview with experts in COVID-19 analysis. The evaluation procedure (a user study and a
group interview) was approved by the University of North Carolina at Charlotte’s Office of

Research Protections and Integrity (Case No. IRB-22-0219).

5.2.1 User study: Survey
Survey design

The survey instrument included questions about the participant’s basic background
information and five groups of tasks and questions for each visualization from the prototype. The
five groups are 1) the single bivariate map on the home page, 2) the two bivariate maps
combining the space-time scan statistics and the LISA algorithm, 3) the spiral map showing
results at the state level, 4) the TimeChart summarizing trends in a time series, and 5) the 3D
space-time cube representing results in a 3D dimension (see Chapter 4 for details of each
visualization). To confirm that participants understood basic functionality and visualization of
the evaluated system, they were required to correctly answer three questions before proceeding
to the next section. Tasks and questions for each visualization can be classified into five
categories: 1) the accuracy of submitted answers, 2) the confidence level of answers related to
the accuracy, 3) the usefulness of this visualization, 4) the possible use of this visualization for
decision making, 5) and an open-ended question to collect additional feedback.

For questions related to accuracy, participants were asked to directly ascertain values or
answers to the question from the current evaluated visualization. The questions asked were
similar, such as “What was the time range when more than half of the counties in California
belonged to a cluster?” and “Which state had the highest average relative risk yesterday from the

center of the spiral map?” Some questions in this category used a 5-point Likert scale, which
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asks responders to identify their level of agreement to a statement on a scale of five points: 1)
strongly disagree, 2) somewhat disagree, 3) neither agree nor disagree, 4) somewhat agree, and
5) strongly agree. In this survey, all questions with the 5-point Likert scale used this scale of five
points. The task asked participants to select their agreement level with a statement that described
the pattern shown from the visualization. An example statement for this category is “The average
relative risk in Washington state was very high at the beginning of the pandemic.”

In an effort to further interpret how confident participants were that they understood the
visualization, the participants were then asked to identify their confidence level. This information
is helpful to interpret how clear and easy that participants can understand the represented
information from the system.

For questions that evaluated the usefulness of the visualization, participants needed to
select an agreement for the following statements using the 5-point Likert scale. Questions
included “I think both maps provided under the ‘@LISA’ tab allow for a comparison of
clustering techniques” or “I think the ‘TimeChart’ is useful to identify the trend of different
variables (e.g., relative risk).”

To evaluate and explore potential indications from the represented information of the
visualization in decision making, participants were asked to imagine themselves as health
policymakers and submit their agreement level on prompted statements, such as “I will rely on
the information provided on both maps to make an informed decision” and “I will use the filter
function from 3D space-time cube to warn the counties with a high relative risk (e.g., RR > =
4).”

At the end of each visualization evaluation, participants had the opportunity to provide

overall feedback. Any suggestions and comments for the prototype, in general, were also
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gathered. The survey was created and distributed using Qualtrics XM, a sophisticated online
survey tool. Before the survey recruitment, we also conducted a pilot test with three participants
to ensure that the survey process was smooth and that no problems occurred. The participants

include a post-doc in public health and two graduate students in geography.

Survey Process

For the evaluation process, each participant was required to participate in the introduction
section and then complete an online survey. Twenty-four graduate students were recruited from
the Department of Public Health Sciences and the Department of Geography and Earth Science
at UNCC to evaluate the prototype’s functionality.

As this prototype is designed to assist health experts in decision-making, the majority of
participants were from the Department of Public Health Sciences (n = 18). Multiple recruitment
approaches were employed to maximize the total number of participants with a background in
public health. These approaches included sending recruitment information to professors in
epidemiology and all graduate students in the department and hanging flyers within the
department building. Each participant met with me for the introduction section. Only one
participant requested to meet in person, and the others were scheduled for a Zoom meeting. The
meeting usually took 15-30 minutes to introduce basic concepts and tools on the prototype and
answer any questions the participants had. The survey link was sent to the participant after the
meeting. We also recruited graduate students from the Department of Geography and Earth

Science (n = 6).°

% Three participants were interested and participated in the evaluation, after | presented the prototype and introduction
in front of a GIS class in the department; another three participants in geography were recruited by email, and |
introduced basic concepts and tools to each of them individually.
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A Qualtrics survey link was sent to the participant’s email account once they obtained the
basic knowledge to evaluate the prototype from an individual meeting or the presentation to the
whole class. All of the surveys were taken using the participants’ computers, although my
personal computer was also available if needed. Only one participant reported issues accessing
specific visualization, which was solved using another device. The prototype was accessible
using popular browsers, such as Google Chrome, Apple’s Safari, Microsoft Edge, and Firefox,

without issues.

5.2.2 Expert evaluation: A group interview
Design

The expert evaluation was designed to evaluate the general prototype by experts with
experience using COVID-19 data and dashboards. The group interview consisted of an
introduction, group tasks, a general discussion, and a conclusion. For the introduction, all
attendees, including participants and facilitators, presented relevant background information
about themselves and their experiences related to COVID-19 data and dashboards. This
introduction was designed to help participants learn about each other’s backgrounds and
encourage discussion. Three group tasks evaluated two COVID-19 dashboards or systems and
my prototype by collecting feedback and making comparisons. The two COVID-19 dashboards
presented were the CDC’s COVID Data Tracker and the US Covid Atlas. Health officials widely
use the former as it updates COVID-19 and its relevant data in accordance with the CDC. The
US Covid Atlas is a near-real-time visualization tool to connect case data and community
indicators from the pandemic’s onset to the present. Furthermore, it incorporates maps using the

LISA algorithm. Thus, the US Covid Atlas uses similar methods as my prototype. Each group
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task individually introduced one of the three tools (COVID Data Tracker, US Covid Atlas, US
COVID-19 YuTu), and similar questions for each tool were asked during the section. The
following questions were listed as examples and were adapted during the meeting based on the
discussion:
1. What do you think about the effectiveness of this system for public health surveillance?
2. What do you think about the usefulness of the system’s cluster detection (or could it be
useful if the system does not have this function)?
3. Which information from this system would be particularly interesting to you?
The goal of the general discussion was to prompt a conversation about all three COVID-
19 dashboards or tools and compare them. From the discussion, my objective was to determine
which information was useful or which visualizations were useful. After the general discussion
section, the group interview meeting was concluded, and participants were encouraged to

provide additional comments.

Process

The group interview was held in an online Zoom format for approximately two hours,
and four experts with different backgrounds in COVID-19 analysis were recruited. These four
experts include one professor from the Department of Public Health Sciences at UNCC, one
professor from the Department of Geography at The University of Hong Kong, and two
epidemiologists from the Mecklenburg County Government in North Carolina. All of them have
direct experience in COVID-19 data and analysis. Two committee members of this dissertation
(Drs. Eric Delmelle and Deborah Thomas) also joined the interview with me as facilitators and

notetakers. The two committee members took turns leading each section, and I was responsible
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for presenting the demonstration of each dashboard or tool during three group tasks. All three of
us took notes during the entire meeting, which was recorded for further analysis with the

participants’ agreement.

5.3 Results

5.3.1 User study

Twenty-four surveys were collected and used for analysis; 75% of the participants (n =
18) were female, most of the participants (n = 21) were between the ages of 18 and 33, and
62.5% of the participants (n = 15) had a major in Public Health Science. Regarding the degree
level, the number of master’s students (54.17%, n = 13) was slightly higher than doctoral
students. Most participants (except two) considered themselves knowledgeable in epidemiology
and understood relative risk in epidemiology. Additionally, over 70% (n = 19) felt confident in
interpreting clusters, while less than 60% (n = 14) felt confident in interpreting space-time
clusters. Regarding interpreting results using the LISA algorithm, only approximately 45% of the
participants (n = 11) considered themselves knowledgeable, although they received basic training

during the introduction meeting.

In the following section, responses from the survey of the user study are demonstrated in detail.

The single bivariate map: Homepage
In the questions related to the accuracy of the single bivariate map, the results indicate
that most participants understood the bivariate map by identifying the values of two variables.

Seventy-five percent (n = 18) of the participants recognized the patterns from the bivariate map,
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and 91.67% (n = 22) identified the time range when more than half of the counties belonged to a
cluster. From Figure 33, over 91% (n = 22) felt confident in their answers to the abovementioned
accuracy questions. Regarding the usefulness, 83.43% of the participants (n = 20) agreed the
bivariate map can help them interpret the different relative risks among counties within the same
cluster (usefulness statement #1), and 91.67% of the participants (n = 22) agreed that the
bivariate map is useful (usefulness statement #2). In terms of decision making, 75% of the
participants (n = 18) stated that they would use the results from the bivariate map to allocate

more health resources to areas with high relative risk.
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Figure 33. Agreement levels among participants for the single bivariate map.
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Additional feedback and comments were also collected. Several participants mentioned
that a bivariate map is a valuable tool in understanding “sensitive areas” and see their usefulness
to public health professionals. An example of a response from a participant is:

The bivariate map is useful for the comparison of within-cluster rates, which is very

useful for large clusters or states with large and varying geographic areas. | see this as

useful for state legislators/public health professionals, whereas other visualizations may
be more helpful for between-cluster comparisons or federal public health providers.

Some participants also provided some suggestions on the design and functionality of the
bivariate map. Some mentioned that the legend and its color “can be a bit confusing,” and many
suggested having an additional function to be able to locate a specific date. Additionally, some of
the participants think it requires more information on the website to assist the general public
understanding the maps:

Mmm, it’s okay for health professionals who have background knowledge in data

science/analytics. If | was a regular person this would seem like too much or confusing —

maybe add a reference key/footnotes so [people] can get a quick understanding of the
maps vs. having to flip between tabs to understand the functionality of the map(s).

The combined bivariate maps: Tab “@LISA”

Regarding the accuracy of the combined bivariate maps, 91.67% of the participants (n =
22) were able to recognize the cluster indicated on the LISA map, while no clusters were
detected on the left map using the SaTScan algorithm. Furthermore, participants were requested
to select the agreement level for three statements that discussed the reasons for the different
results from the two maps (Figure 34). Over 70% of the participants (the range is n = 18~19 for
accuracy statement #1~#3) indicated that they were able to understand and interpret the

differences. Regarding the usefulness, 91.67% of the participants (n = 22) agreed that these two
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bivariate maps combined were useful; however, 20.83% of them (n = 5) disagreed that one
bivariate map is easier to interpret than two maps side-by-side (see Figure 35). Regarding the
decision making question, over 70% of the participants agreed that they could use both maps for
different purposes (n = 17~18 for decision statements #1 and #2) and not simply rely on the

results from one single map (n = 22, decision statement #3).
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Figure 34. Agreement levels among participants for two bivariate maps, provided side-by-side.
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Figure 35. Usefulness of the two maps and comparison with the single bivariate map.

Although some participants thought it is “overwhelming” or “confusing” to observe two
maps simultaneously, most of them believed that each map could provide helpful information
from different perspectives. For example, one participant mentioned:

If I’m a policy maker, | would probably primarily use the right map to make decisions

about alerting counties and implementing policies because it shows acute emergence in

the state. The left map is also useful for making longer-term decisions and seeing if a

cluster may be nearing the border where we might need to prepare. It would also help to

assess where we should focus resources, but the right map will tell me when those daily
rates are letting up when a cluster will likely be decreasing. So, I think both are useful in
policy making.

The spiral map at the state level: Tab “@State”

Regarding questions of accuracy for the spiral map, approximately 80% of the

participants identified the correct value (n = 20) and date regarding the state when it had the
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highest average relative risk (n = 19) and the state that had the highest value using the map
located in the center of the spiral (n = 19). Regarding confidence (Figure 36), although there
were three missing answers, over 76% of the participants (n = 16) stated that they were confident
in their responses. Concerning usefulness, over 60% of the participants agreed with the spiral
map’s effectiveness in connecting the bivariate map (n = 15, usefulness statement #1), exploring
the latest value (n = 16, usefulness statement #2), and showing patterns at the state level (n = 17,
usefulness statement #3). Regarding decision making, many of the participants (n = 17) agreed to
utilize the pattern established from the visualization to decide the policy for the state (decision
statement #1), while fewer (n = 14) agreed to use it to evaluate implemented policies, such as a

lockdown (decision statement #2).
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Figure 36. Agreement levels among participants for statements on the spiral map.
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Some participants mentioned that the spiral map is complex or “tricky” to understand or
navigate (e.g., “It is more difficult to read than the other maps”), and they suggested having some
guidelines for it. However, many of them had different opinions of the visualization’s usefulness,
such as “The spiral map is incredibly helpful because you can’t remember what is happening at
different points in time across the bivariate map playback™ and “I find the spiral map very useful
for between-state comparisons and for estimating the success of COVID-19 implementations in

reducing transmissions.”

Time series charts: Tab “TimeChart”

Regarding the accuracy of the TimeChart (Figure 37), approximately 80% of the
participants (n = 19) could identify the time range with the highest value in three years for one
county, while the percentage to determine the date for the highest value of another variable was
lower, at approximately 45.83% (n = 11). One possible reason is that the time range was
relatively short, which participants may neglect. Approximately 80% of the participants (n = 20)
were able to identify which county has more often been part of a cluster when comparing two
counties. Furthermore, 74% of the participants (n = 18) could identify a similar pattern between
the two counties in California (accuracy statement #1), and 66.67% (n = 16) could identify the
difference of relative risk between the two counties (accuracy statement #2). Concerning the
confidence level, 83.33% of the participants (n = 20) felt confident in their answers. Regarding
the usefulness of the visualization, 87.5% of the participants (n = 21) agreed that the TimeChart
was helpful for identifying the trends of provided variables (usefulness statement #1) and
comparing counties (usefulness statement #2). Concerning decision making, 87.5% of the

participants (n = 21) agreed to carefully monitor the RR of the county due to the high value of



89

this variable, while the other two values (RR of the cluster and 7-days avg. case) are decreasing

according to the TimeChart.
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Figure 37. Agreement levels among participants for statements of the TimeChart.

Although some of the participants considered the TimeChart complicated and challenging

to get the exact rate, some mentioned its usefulness in comparing multiple counties. For instance,

one respondent said, “I love the ability to directly compare counties by being able to select

multiple counties at a time. This function is great for public health resource allocation.”

3D space-time cube: Tab “@3D”

Regarding the accuracy of the 3D space-time cube, 87.5% of the participants (n = 21)

identified the county and date with the highest relative risk among the selected space and time

range. Concerning the confidence level (Figure 38), 79.17% (n = 19) felt confident in their

answers. Regarding the usefulness, 75% (n = 18) agreed that the 3D space-time cube is valuable,
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and 50% (n = 12) agreed that it is easier to understand the dynamic of space-time clusters using
the 3D visualization. However, the rate was much lower when compared with other 2D-
visualization techniques. Only 25% of the participants (n = 6) agreed that the 3D visualization
was more useful than the animated bivariate map, and 12.5% (n = 3) agreed that it is more useful
than the TimeChart. For decision making, 62.5% (n = 12) indicated that they would use the filter
function to identify and warn counties with a higher relative risk (decision statement #1) about
the significant high risk of transmission and that they would investigate the cluster shift as shown

from the 3D space-time cube (decision statement #2).

24
20 . . .

16

37.50% 37.50%
12
45.83%
41.67%
8
29.17% 29.17%
4 12.50%
12.50%
4.17% Bt 4.17% 8.33%
0 4.17% 4.17% 4.17% ’
Confidence Usefulness Decision Statement #1 Decision Statement #2
Strongly Disagree Somewhat Disagree Neither Somewhat Agree M Strongly Agree

Figure 38. Agreement levels among participants for statements of the 3D space-time cube.

Although some of the participants (n = 5) thought a 3D visualization was great for

representation, a higher number of the participants (n = 10) mentioned it was difficult to
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navigate, use, or interpret. Some of them also said that 2D visualization was more appropriate in
some ways. For instance, one participant mentioned:

| can see this type of mapping to be very useful. As it is now, it can be a little difficult to

interpret compared to other forms of space-time mapping. For instance, while the orange

and red dots do stand out, it is less clear than some of the 2D representations as to which
county was most at risk and when.

Results from the five visualizations were summarized based on those four evaluated
categories, as shown in Figure 39. When multiple questions were asked within one category, the
percentages displayed in Figure 39 show the average percentages for that category. Regarding
accuracy, responses with corrected answerer were in the range of 79~88% (n = 19~21), while the
TimeChart was slightly lower with a rate of 71% (n = 17). For the confidence level, the lowest
level was for the spiral map (67%, n = 16), and the highest was for the single bivariate map
(92%, n = 22). Regarding the rate of usefulness, the one with lowest positive responses was also
for the spiral map (67%, n = 16), and the highest was for the two bivariate maps (92%, n = 22).

For the rate of decision making, the one with lowest positive responses was for the 3D space-

time cube (50%, n = 12), and the highest was for the TimeChart (92%, n = 22).
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Figure 39. The summary of positive responses for all five visualizations.

The 2D visualization is also compared with the 3D space-time cube in Figure 40. Many
participants (n = 9) disagreed that the 3D visualization is more useful than the single bivariate
map. Similarly, a higher number of participants (n = 12) disagreed (and n = 5 strongly disagreed)

that the 3D visualization is more useful than the TimeChart.
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Figure 40. The results of usefulness when comparing different visualizations.

Geography student participants

The responses of geography graduate students were analyzed separately, but the response
was similar to that of graduate students in public health. However, the geography graduate
students’ feedback that was collected through open-ended questions was more critical compared

to the public health participants’ feedback.

Participants were also asked to provide comments in general. Over 91% of them agreed
that the introduction session and the provided information were helpful for them to interpret

represented information from the visualizations and answer the questions in the survey. Some
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participants enjoyed the functionality in general and mentioned its usefulness. For instance, one

participant said:
The system is impressive. It needs a few enhancements to improve the user experience
(UX). I suggest video tutorials, in addition to the read me button, to guide users on how
to navigate the system. The time chart is the best, the dual maps are also great. The 3D is
somewhat difficult to visualize but when it’s few cases, it explains very well, the space-
time dimension.

Another participant stated:
| am a big fan of this dashboard overall. I think providing multiple options for
representing and interpreting space-time COVID-19 data is crucial for public health
practitioners and very helpful. The only map that gets a little murky is the space-time

cube, but if you use the zoom function, and practice with the controls, I think it becomes
[clearer].

5.3.2 Expert evaluation

During the interview, all four participants introduced their experiences with COVID-19
data and dashboards. Two health officers who worked for the COVID-19 response unit at the
Mecklenburg County in North Carolina also discussed their experiences with multiple types of
COVID-19 data, including cases, testing rates, and wastewater data. They mentioned that they
mainly use the North Carolina COVID-19 Dashboard (e.g., to analyze neighboring counties) and
that the North Carolina Department of Health and Human Services provides information about
clusters and outbreaks, but they also use the CDC COVID data tracker and COVID-19
Dashboard by Johns Hopkins University. Another participant had experience with analyzing
COVID-19 data in health geography and was familiar with different health data visualization
techniques. The fourth participant also had experience using the CDC dashboard for research in
public health.

The first task of the group interview essentially asked participants to discuss the CDC
COVID data tracker, which is the most familiar to recruited four experts. Concerning its

effectiveness, one health officer considered it “a friendly tool” that can be used to compare the



95

rates in Mecklenburg County to surrounding counties, while the other participants mentioned its
ability to discover the general pattern of COVID-19 in the US. However, participants spent more
time discussing its limitations. Both health officers said that the COVID-19 data was not updated
daily and discovered that it did not match their county data. The academic participant in public
health stated that it is difficult to locate and download the data. As this dashboard is not capable
of cluster detection, we asked the participants whether it would be helpful to implement this
functionality. Both public health officers stated that it would not work or be useful, while the
health geographer said it would be helpful to educate the general public with such information.
Concerning the usefulness of the maps from the dashboard, one health officer claimed that the
community-level map from the CDC was the most useful map as the county government did not
have access to COVID-19 hospital data, including new admissions of patients and percentages of
staffed inpatient beds.

The second task asked participants to answer questions about the US Covid Atlas. The
question about its effectiveness was also discussed. Two participants liked its overlay function,
which can add extra boundaries to the map to examine specific regions. Participants also
mentioned that it was easy to understand the map and that the map was clear. They agreed that
some content in the US Covid Atlas was suitable for the general public but that some content
would have required the readers to have knowledge in geography to properly interpret the map.
As this system uses the LISA algorithm to detect areas with high evaluated risks of transmission,
the second question referring to the usefulness of clustering information was asked. One health
officer pointed out that a cluster may be conceptualized differently based on the audience. Other
participants also expressed that cluster information at the county level is not helpful for public

health officers from the county because such information does not show inner county variation,
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which depends on the spatial resolution data. The public health researcher also pointed out the
importance of such results from a temporal perspective. They said this system is good at
retrospective analysis but limited to prospective studies to identify current and future outbreak
clusters quickly.

The last task asked participants to answer questions about my prototype. First, they were
asked to provide overall feedback and comments on the system; second, participants were asked
to provide comments on each visualization. The participants mentioned that the prototype has
many details, but they suggested defining what cluster and relative risk are using in this syterm
as these terms caused confusion. One health officer pointed out the different cluster definitions in
geography and epidemiology. Participants mentioned that the color scheme of bivariate maps
was excellent but that there were too many colors for human eyes to distinguish. Regarding the
spiral map to display values in a time-series, they liked the design and suggested adding
benchmarks (e.g., the date that some health policies, such as lockdown, were implemented) to
help interpretation. For another time-series visualization, the TimeChart, the participants made
similar comments to the comments made about the spiral map. Concerning the 3D space-time
cube, the participants indicated that it was informative but overwhelming to use in the context of
public health surveillance.

In conclusion, two questions were asked: 1) Which system is the most useful? and 2) can
the dashboard provide rich information to make decisions? The academic researcher in public
health pointed out that each system’s audience, as well as its purpose, is essential. The health
geographer thought that the CDC system was not very useful and that the other two systems (the
US Covid Atlas and the US COVID-19 YuTu) have nice maps and are informative. Furthermore,

this expert stated that the Atlas platform was more straightforward and provided more
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information. Both health officers mentioned that the three systems have different purposes. They
must use the CDC system because of the data instead of maps, and the Atlas system is good at
combining with other information, which could be used to understand patterns behind the scenes.
My prototype is suitable for in-depth analysis of specific research questions, and it could also be
beneficial for providing precise definitions of terms used, such as cluster and relative risk.
Generally, it was agreed that a more granular scale was needed to assist in decision making. All
three systems were considered suitable for hypothesis testing but did not provide information to
answer questions in decision making directly.

| further analyzed the transcriptions of the three group tasks using NVIVO, a qualitative
data analysis computer software package. Each task’s transcriptions were automatically
generated using the software and manually checked and changed incorrect words that generated
automatically to make them meaningful in the context. Then, the text of those three
transcriptions was coded based on a codebook with two main types, descriptive and analytic
codes. The descriptive codes included data, audience, time, and cluster; the analytical codes
included pros, cons, scale, and usefulness. The coverage rate was calculated, which showed how
much of the source content was coded in the transcriptions. The word clouds of the 20 most
frequent words were also generated after removing irrelevant stop words (e.g., “like” and
“think”).

The coverage rate of coding results for the three transcriptions is shown in Table 3, and
the highest coverage of each code is highlighted. The word clouds (Figure 41) were generated
from the transcription of each task to further understand responses from those four experts to
questions. Regarding the CDC system, the participants mostly mentioned “data” and “cluster”

from the coverage table and its word cloud. This is because the CDC system is more like a “data
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hub” to share data, and the definition of the cluster was first discussed during this interview.
Concerning the coverage of codes in the Atlas system, most discussions focused on the audience,
the scale, and the scale’s usefulness, which is reflected in its word cloud. The scale was
discussed along with the overlay function. Regarding my prototype, significantly more
discussion about time (as a temporal dimension) was identified. One reason for this focus was
that the YuTu system focused on space-time visualization. The pros and cons of the YuTu system
were also discussed more than the other two systems, as the purpose of this group interview was

to evaluate this system.

Table 3. The coding results of transcription of three group tasks.

Descriptive codes by coverage (%) Analytical codes by coverage (%)
Source  Data  Audience Time Cluster  Pros Cons Scale  Usefulness
CDC 7.77 0.82 - 2180 0.86 11.80 0.65 4.85
Atlas 1.24 15.36 484 1325  3.17 4.55 9.65 11.90
YuTu - 4.36 26.77  3.12 5.86 20.53 - 7.91
particular  surveillance relative
frymg VOIEJGS COlorS question
cdccase use Souzces CIUSffr;r;i;'l”;Kl"d dllffe renf dlis:alse
state day < .coun genera o helpfu
time maps Wanid a’ray showT M @St
public : map 1Q much risk ap using
dashboard PUbFIlIC point 1.
county health useru ClUBIRE. . .
Tiseot et Ay

CDC COVID Data Tracker US Covid Atlas US COVID-19 YuTu

Figure 41. The word clouds for three transcriptions of group tasks.
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5.4 Discussion & Conclusions

In this chapter, a user study and a group interview are introduced to evaluate my
proposed system, US COVID-19 YuTu, to collect feedback from different perspectives. The
evaluated system is implemented with several novel 2D and 3D visualizations.

According to the user study with graduate students in public health (n = 18) and
geography (n = 6), the system is generally well designed as good responses were noted regarding
accuracy, confidence, usefulness, and assistance with decision making. For each visualization,
these four categories were evaluated. The bivariate map is easy to understand, while the
combined maps with two different algorithms tend to be confusing. Compared with other
visualizations, the spiral map gained fewer positive feedbacks from all three categories
(confidence, usefulness, and assistance with decision making) except accuracy, which suggests a
need to improve the visualization by adjusting representation and functionalities. In contrast, the
TimeChart visualization obtained high votes in all categories except accuracy due to insufficient
representation to identify patterns when the time span of a pattern (e.g., high RR) shown in the
chart is relatively short. Although most participants correctly identified values and information
from the 3D space-time cube, minor participants agreed with the proposed policies derived from
this visualization, suggested that it may be difficult to be utilized in decision making.

According to the group interview with experts, the missing component of the YuTu
system is the provision of clear definitions of important concepts, such as clusters and relative
risk. Furthermore, guidance on how to interpret visual representations from each visualization is
also necessary. Since the recruited health officers work for the county government, their
responsibility for COVID-19 monitoring mainly focuses on the local level. However, patterns

indicated in the system are more beneficial to health officers who work for the state or on the
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national level. As a result, such patterns were not discussed during this group interview.
Regarding the temporal information, experts from the meeting suggested that meaningful time
points, such as the date when one COVID-19 variate dominated, should be added on the time-
series visualizations. Participant responses for the 3D visualization were similar to the responses
from the user study where participants felt unfamiliar and overwhelmed.

This evaluation combines two qualitative methods to assess the system. On the one hand,
feedback collected from the user study with graduate students mainly assessed the functionality
and usability of the proposed system by analyzing their responses. On the other hand, experts
with relevant experience in such systems discussed and evaluated the prototype in depth and its
potential usefulness in the real world. The user study suggests that novel visualizations are
informative to represent the massive volume of space-time cluster information, which is usually
limited in traditional visualizations (e.g., multiple static maps). In the group interview, the
experts recognized the useful design of the system and rich details from the visualizations.
However, they recommended that clear definitions of important terms and guidance for result
interpretation are given, which are essential to utilize the system as a decision support tool.

The evaluation indicates that most of the participants from both groups did not prefer the
3D space-time cube due to it being overly complicated in terms of interactivity and
interpretation. Although it displays the shape of space-time clusters in a natural 3D environment
that cannot be achieved by the traditional 2D methods, the results suggest that further
investigation of a better design of visual representation is needed.

This study also reveals the existence of disconnection between professionals and
academics, such as the different understanding of the term, “cluster”. Health officers who work

in the county consider a cluster to be a small group of people, such as a cluster in one high
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school. However, the cluster in spatial epidemiology refers to an area with an elevating risk of
transmission of diseases. According to the literature search in Chapter 2, hotspots and clusters
are usually interchangeable terms; however, public health professionals do not use these terms
interchangeably. Thus, for systems designed for professionals, it is critical to provide a clear
definition of the terms used.

Despite the strengths of this study, several limitations are also acknowledged. First,
collected responses may be different even with similar questions, as it is impossible to develop
questions (or statements) that is most suitable for evaluation. Although I designed most questions
in the survey to be closed-ended, many questions or statement are subjective to my own
perception on interpreting visual representations, especially when the answer is not number, like
the 5-point Likert scale question. It is possible that participants understood the visualization and
its information, but they disagreed on some provided statements because of different
interpretations.

Second, although we recruited graduate students from both public health (n=18) and
geography (n=6), the number of participants in each group was unequal. Because of these non-
balance responses, | did not conduct a statistical test to identify whether meaningful differences
existed between these two groups. This issue could be addressed by recruiting a higher number
of participants from public health and geography to evaluate this system in the future.

Third, we only recruited health professionals who worked for a county instead of a state
or on a national level. As a result, they are interested in data on a more granular scale, and results
at the county level are not that useful for monitoring the transmission of COVID-19. The health
professionals also mentioned that cluster information at the zip code level was not that useful due

to the nature of human mobility (e.g., moving in and out). Thus, this limitation could be
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addressed by recruiting health professionals from the Department of Health and Human Services
of a state or a national government in public health (e.g., CDC) to evaluate the system, as they
work with data at a similar scale that the YuTu system mainly focuses on. However, it is difficult
to recruit participants from the government without a connection.

Fourth, the evaluation reveals that health officials were interested in specific data for
decision making, while they showed less interest in novel visualizations. The health officials
mentioned that the most helpful map from the CDC dashboard is the map showing COVID-19
community level data by county, based on cases together with relevant patient data in the
hospital. However, such data is not available for public access. The health officials found it hard
to interpret results from novel visualizations, such as the 3D space-time cube, while it is my goal
that those novel visualizations in YuTu system can assist in decision making. A further
evaluation is necessary to be conducted to compare the usefulness of traditional visuals (e.g.,
basic online maps) with proposed advanced visuals.

This chapter indicates the significant role of qualitative research in developing a health
surveillance system to assist decision making. The user study and the expert evaluation evaluated
the YuTu system in terms of its usability and usefulness. Based on survey results and the group
interview, information represented in the 3D space-time cube is difficult to interpret. Therefore,
further research on such visualization is needed before implementing it into a surveillance
system. More importantly, the usefulness of other 2D visualizations and possible required
components (e.g., different data and methods) in decision making remains unclear and needs
more attention in future work. Although experts did not favor one of the three evaluated systems,
they expressed the importance of data and the system’s simplicity when comparing them. The

profitable way to develop a health surveillance system that can assist in decision making is to
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collaborate with health experts from the beginning of the design phase to the end of the

evaluation phase.
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CHAPTER 6: GENERAL DISCUSSION AND CONCLUSIONS

In this dissertation, | proposed a web-based geographic framework to detect and visualize
space-time clusters of infectious diseases. In the context of the current COVID-19 pandemic,
there is a need for effective surveillance that monitors the dynamic transmission of the virus by
taking advantage of data at fine spatial and temporal resolutions, as such data becomes more
available than ever before due to the development of web technologies. The proposed framework
is a response to this need and further explores possible visual representations of such data.

Chapter 2 identified the most popular methods used to detect space-time clusters of
infectious diseases. | conducted an electronic literature search for relevant studies published
before 2022 from three popular databases, including PubMed, the Web of Science, and Scopus,
around this topic. The systematic review reflected recent trends in space-time cluster detection
for infectious diseases. According to the results, the most popular clustering methods were the
space-time scan statistics that detect regions with the maximum likelihood ratios and the LISA
algorithm that identifies regions of high spatial autocorrelation. However, the implementation of
such clustering methods together with representation of these analytical results into a web-based
environment is missing from the literature.

Chapter 3 presented research gaps from the literature review and derived the general
problem statement for this dissertation. In this chapter, I identified four critical issues that
remained unclear in the literature: 1) the use of statistical methods (e.g., LISA, GI*) in clustering
detection with a reflection in the temporal dimension, 2) the need for robust geovisualization to
reveal space-time patterns of infectious diseases, 3) the urge for rapid surveillance on a fine
temporal scale, and 4) the demand for an integrated online platform for the mentioned

components. Thus, this dissertation proposed a new method to address these issues.
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In Chapter 4, | introduced YuTu, a prototype system of the web-based analytical
framework for detecting and visualizing space-time clusters using US COVID-19 data. To
address the first issue identified in Chapter 3, | implemented the prospective space-time scan
statistics and the LISA algorithm into the system and deliberately introduced terms of “true” (for
the former method) and “not-true” (for the later method) space-time clusters to reflect the
differences between these two methods. The system is articulated around five novel visualization
approaches in an attempt to address the second issue, including the animated bivariate map, the
combined bivariate maps, a spiral map, the TimeChart, and the 3D space-time cube. The
animated bivariate map represents the results of the SaTScan algorithm and displays the values
of two important variables, namely the relative risk of the cluster a county belongs to at the time
of the analysis. Furthermore, this visualization is the baseline visualization linked with other
visualizations to display space-time data in two factors. The second visualization is two animated
bivariate maps side-by-side using the abovementioned two methods. In this way, clustering
information that considers past days (using the SaTScan method) and information that focuses on
the current day (using the LISA algorithm) are displayed together, which allow to combine this
two information together to interpret the results. The third visualization linked the basic bivariate
map with a spiral map to show each state’s daily average relative risk. Thus, the relative risk
pattern of each state is shown from the start of the pandemic to the current date, and the
distribution of this value at the state level is also displayed and updated every day. Users can
easily understand the dynamic change of space-time clusters using the animated map, while
memorizing all daily changes over the years is cognitively challenging. The fourth visualization
approach combines the TimeChart with the animated bivariate map by displaying the pattern

with all values in a continuous time-series chart. The TimeChart also allows users to select
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multiple counties to examine the change in relative risk in the same time series. Lastly, the 3D
space-time cube displays the relative risk by applying gradient colors to the point representing
each county, with the third dimension (z-axis) representing the temporal dimension. Therefore,
the shape of true space-time cluster is shown, which cannot be recreated in a traditional 2D
visualization.

Finally, the design of this framework addressed the third and fourth issues identified in
chapter 3. Every day, the system automatically collects data for analysis and generates results for
visualization by running scheduled scripts. The system is built in an open-source environment,
including the database (PostGIS), the interface and its visualizations (D3), analysis procedures
with multiple programming languages (e.g., Python), and other components (e.g., Docker).

The evaluation of the system was discussed in Chapter 5. To collect comprehensive
feedback, | conducted two types of evaluation: a user study with graduate students in public
health and geography and a group interview with experts who have experience in COVID-19
data and analysis. The user study suggested that the prototype system is generally well designed
and that the various visualizations provided details and multiple ways to display and interpret
space-time cluster information. Experts from the group interview pointed out the conflict
regarding the definition used in the system of a cluster and demanded further information to
interpret the relative risk. This evaluation result indicates the significance of communicating with
audiences to agree on fundamental concepts in health surveillance systems such as YuTu. With
the elaboration on such agreements, the target audiences (e.g., health officers) could gain the
confidence to investigate the results and further utilize their interpretations in their decision
making. Therefore, the user study and the expert evaluation seem important for evaluating such a

system in epidemiology.
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Serval issues are worth to be discussed. To begin with, it is critical to visualize space-
time information in a way that is easy to understand, while the richness of such information
should not be compromised. In other words, the key issue is how to represent the space-time
information to be easily interpreted whilst keeping the richness of such information. The
evaluation results in this dissertation show that users recognized the usefulness of space-time
information from the visualizations, while some space-time representations may be
overwhelming to them. The visualizations introduced in this dissertation shed light on visuals
analytic system of space-time data, and creative ways to visualize high volumes of data in space
and time still require investigation.

3D visualization is still unfamiliar to most people, and its implementation in health
surveillance systems must be treated with caution. Both the experts and graduate students
responded with concerns about transferring the identified patterns from the 3D visualization into
decision making or even interpreting the patterns. However, it is still valuable to investigate such
issues, as 2D can hardly display space-time data in high volumes as one single illustration
simultaneously (e.g., animation can visual space-time data but not all at once). For instance, 3D
visualization is capable of showing the seasonality of infectious diseases by displaying the daily
incidence of infection in the US for one year at the same time, while it is challenging to represent
such space-time information at once. Possible research questions could be whether users will use
such a tool after training and then discern how to utilize the unique patterns in 3D. Additional
immersive visualizations or real-time visualizations, including augmented reality, virtual reality,
and mixed reality, could be a solution to this issue. Additionally, the evaluation of 3D

representations should be included to understand the usefulness.
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Another unavoidable and critical issue is the scale in spatial and temporal dimensions.
The proposed framework is capable of being scaled up or down depending on the different
audiences (e.g., health officials monitor COVID-19 transmission within a county or the entire
US). | was attempted to include local scales (e.g., zip code) for the whole study area, while no
open-source data at this level is available. With data and results at a finer scale shown in the
surveillance system, it would be more beneficial for health officials to use it for decision making
in the local communities (e.g., census tracts within a county). The geographic scale can also be
scaled up, such as analyzing the clusters at the country level, which are mostly beneficial to
health officers in the UN. Similar, the time interval can be daily, weekly, monthly, yearly, etc. It
is worth investigating a combination of different time scales to uncover patterns.

When implemented with more than one method, the similarity and dissimilarity in results
using different algorithms exist. In YuTu system, | did not discuss the accuracy of clusters from
the space-time scan statistics and the LISA algorithm, as the time information is treated distinctly
between these two methods. | proposed a way to use the LISA result as a complementary (spatial
clustering on one day) to interpret continuous results in space and time (true space-time clusters)
using the other method. However, the purely spatial scan statistic was compared to the LISA
algorithm for spatial clustering by (Grubesic et al., 2014), and their conclusion is that there is no
a superior method as a trade-off between log-likelihood ratio and spatial accuracy existed.

Another critical issue is the existence of edge effects when conducting a spatial analysis.
Although the scan statistics scans any point within the study extent, a location on the edge is still
less likely to belong to a detected cluster than a location in the interior (Gangnon, 2012). The
edge effect has an influence on type I error when conducting spatial scan statistic, and Bayesian

smoothing can be used to descript the spatial distribution of type I error (Guttmann et al., 2014).
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Also, counties or territories from the neighbor countries have an impact on the transmission of
COVID-19, while this YuTu system only takes accounts in the incidence in the US.

Providing an option for users to change the parameter setting accordingly could be
helpful to further assist them in the rapid response of dynamic changes during an outbreak of
infectious diseases. From the prototype, the maximum temporal window was selected based on
one year of data, and possible signals of the peak of waves during that year were detected.
Situations were changed, such as the increasing of vaccination rates and the different
characteristics of variants. Thus, with the capability to change parameters of analysis that reflect
situational changes, patterns that are closer to events that are happening in the real world may be
detected.

Lastly, it is vital to collaborate with the target audiences (e.g., health officers work for a
state government) to avoid disconnection. For instance, the target audience can offer suggestions
for selecting methods and guidance to educate users to interpret results. The format of such
collaboration could be different qualitative methods, such as in-depth interviews or focus groups
with multiple audiences.

| suggest serval significant avenues that can be beneficial to develop similar health
surveillance systems for monitoring current and future infectious diseases. First, the prevalence
rates of COVID-19 used in the YuTu system need to be smoothed to avoid the bias in the data.
For instance, a county may have a higher risk of COVID-19 infection if it has a higher
percentage of senior population as they are more vulnerable to be infected. Therefore, space-time
smoothing methods (e.g., Bayesian smoothing) are needed.

Second, it is important to include further analysis of uncertainty in future research. The

uncertainty exists in the dataset, and it also refers to how to represent the uncertainty. In the
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YuTu system, | applied a 7-day moving average to the daily COVID-19 cases, while the exact
number is still hard to get as many cases are underreported by self-testing at home. Such
uncertainty also exists in other used dataset, such as the population. As to representation, | did
display the p-value for the LISA results as one variable from the bivariate map to reduce the
uncertainty from the results, while the effectiveness of this representation remains unclear.

Third, as | discussed the importance of the collaboration with the audience, another vital
issue is to decide the audience and the robustness of different scales to them. From the user
study, participants were asked to evaluate the system by imaging they were health officials for
the state. However, the recruited experts were from a county government, and they had limited
interests on information at the county level. Thus, focus groups with health officers from other
two scales (country and state) are necessary. It is also possible that the YuTu system could be
useful to both two scales with different perceptive to interpret results.

Fourth, after the decision of the audience, it is also necessary to collocate with them on
the design phase. The proposed framework and the YuTu system were designed and built
according to gaps identified from the literature review instead of collaborating with the audience,
although it is a starting point to facilitate this collaboration with proposed solutions instead of
merely concepts. In the future research, based on the framework along with its visualizations, it
can be applied to other infectious diseases or improve the current YuTu prototype. For either
purpose, the collaboration with the audience (e.g., participant observation) during the (re-)design
phase can gain insides of what information are useful and needed in their viewpoints.

Fifth, as to decision making, further evaluation with experts is needed to understand
whether this system can lead to generating decisions in the real world. One possible way is to

observe health officers if they want to use the system to make decisions in the real world.
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However, it requires a long-term close collaboration with government agencies at the very
beginning phase of the study.

Sixth, it is worth to investigating the way to implement changeable parameter settings
from the interface. In the YuTu system, users can use the filter function from 3D space-time cube
to focus on certain relative risk, while other parameters of two analysis methods are fixed.
Although it requires advance knowledge of used algorithms, users may need to change the
parameter settings to suit their needs. For instance, the temporal maximum cluster size from the
space-time scan statistic is set to 50 days, while it may need to be reduced as the latest variant of
the coronavirus (e.g., the Omicron variant) spreads more easily than earlier variants.

Effectively monitoring and representing the transmission of infectious diseases are
critical in the health surveillance system, and my dissertation contributes to this topic. First, I
conducted a systematic literature review that revealed significant gaps. Then, | attempted to
address some of these gaps by proposing a framework that automatically generates clustering
information in space and time and visualizes such information in serval novel ways.
Furthermore, | assessed the prototype system based on the proposed framework by conducting a
user study with graduate students and a group interview with experts in the domain. The findings
from my dissertation not only present possible solutions to the gaps that were found but also
could inspire the research community to investigate this topic further. Promising opportunities
exist to improve the representation of space-time clustering information in epidemiology under
the rapid evolution of web-based technologies. Lastly, | urge collaboration among and between
disciplines to build health surveillance systems together in a thriving ecosystem that could

evolve to suit the dynamic pattern in the transmission of infectious diseases.



112

REFERENCES

Aamodt, G., Samuelsen, S. O., & Skrondal, A. (2006). A simulation study of three methods for
detecting disease clusters. International Journal of Health Geographics, 5(1), 1-11.

Acharya, B. K., Cao, C., Lakes, T., Chen, W., & Naeem, S. (2016). Spatiotemporal analysis of
dengue fever in Nepal from 2010 to 2014. BMC Public Health, 16(1), 1-10.

Alimohamadi, Y., Taghdir, M., & Sepandi, M. (2020). Estimate of the Basic Reproduction
Number for COVID-19: A Systematic Review and Meta-analysis. Journal of preventive
medicine and public health = Yebang Uihakhoe chi, 53(3), 151-157.
https://doi.org/10.3961/jpmph.20.076

Anderson, C. L., & Robinson, A. C. (2021). Affective congruence in visualization design:
influences on reading categorical maps. IEEE transactions on visualization and computer
graphics.

Angulo, J. J., Haggett, P., Megale, P., & Pederneiras, C. A. (1977). VARIOLA MINOR IN
BRAGANCA PAULISTA COUNTY, 1956: A TRENDSURFACE ANALYSIS.
American Journal of Epidemiology, 105(3), 272-280.

Anselin, L. (1995). Local indicators of spatial association—LISA. Geographical analysis, 27(2),
93-115.

Anselin, L., Syabri, I., & Kho, Y. (2010). GeoDa: an introduction to spatial data analysis. In
Handbook of applied spatial analysis (pp. 73-89). Springer.

Baddeley, A. J., Mgller, J., & Waagepetersen, R. (2000). Non- and semi-parametric estimation of
interaction in inhomogeneous point patterns. Statistica Neerlandica, 54(3), 329-350.
https://doi.org/https://doi.org/10.1111/1467-9574.00144

Ban, H., & Ahlgyvist, O. (2010). User evaluation of a software interface for geovisualization and
communication of uncertain urban ontologies. Journal of Information Technology in
Construction (ITcon), 15(9), 122-131.

Barrows, H. H. (1923). Geography as human ecology. Annals of the association of American
Geographers, 13(1), 1-14.

Bivand, R. S., Pebesma, E. J., Gomez-Rubio, V., & Pebesma, E. J. (2008). Applied spatial data
analysis with R (Vol. 747248717). Springer.

Bostock, M., Ogievetsky, V., & Heer, J. (2011). D3 data-driven documents. IEEE transactions on
visualization and computer graphics, 17(12), 2301-2309.

Boulos, M. K. N., & Geraghty, E. M. (2020). Geographical tracking and mapping of coronavirus
disease COVID-19/severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
epidemic and associated events around the world: how 21st century GIS technologies are
supporting the global fight against outbreaks and epidemics [Editorial Material].
International Journal of Health Geographics, 19(1), 12, Article 8.
https://doi.org/10.1186/s12942-020-00202-8

Carroll, L., Au, A., Detwiler, L., Fu, T.-c., Painter, I., & Abernethy, N. (2014). Visualization and
analytics tools for infectious disease epidemiology: a systematic review. Journal of
biomedical informatics, 51, 287-298.
https://doi.org/https://doi.org/10.1016/j.jbi.2014.04.006

Chen, J., Roth, R. E., Naito, A. T., Lengerich, E. J., & MacEachren, A. M. (2008). Geovisual
analytics to enhance spatial scan statistic interpretation: an analysis of US cervical cancer
mortality. International Journal of Health Geographics, 7(1), 1-18.

Cromley, E. K. (2003). GIS and disease. Annual review of public health, 24(1), 7-24.



https://doi.org/10.3961/jpmph.20.076
https://doi.org/https:/doi.org/10.1111/1467-9574.00144
https://doi.org/10.1186/s12942-020-00202-8
https://doi.org/https:/doi.org/10.1016/j.jbi.2014.04.006

113

Cromley, E. K., & McLafferty, S. L. (2011). Introduction. In E. K. Cromley & S. L. McLafferty
(Eds.), GIS and public health (pp. 2). Guilford Press.

Cuzick, J., & Edwards, R. (1990). Spatial clustering for inhomogeneous populations. Journal of
the Royal Statistical Society: Series B (Methodological), 52(1), 73-96.

de Azevedo, T. S., Lorenz, C., & Chiaravalloti-Neto, F. (2020). Spatiotemporal evolution of
dengue outbreaks in Brazil. Transactions of the Royal Society of Tropical Medicine and
Hygiene, 114(8), 593-602.

De Ridder, D., Loizeau, A. J., Sandoval, J. L., Ehrler, F., Perrier, M., Ritch, A., Violot, G.,
Santolini, M., Tzovaras, B. G., Stringhini, S., Kaiser, L., Pradeau, J. F., Joost, S., &
Guessous, I. (2021). Detection of Spatiotemporal Clusters of COVID-19-Associated
Symptoms and Prevention Using a Participatory Surveillance App: Protocol for the
@choum Study. Jmir Research Protocols, 10(10), Article e30444.
https://doi.org/10.2196/30444

Delamater, P. L., Street, E. J., Leslie, T. F,, Yang, Y. T., & Jacobsen, K. H. (2019). Complexity
of the basic reproduction number (R0). Emerging infectious diseases, 25(1), 1.

Delmelle, E. (2009). Point pattern analysis. In R. Kitchin & N. Thrift (Eds.), International
encyclopedia of human geography (Vol. 8, pp. 204-211). Elsevier.

Delmelle, E., Delmelle, E. C., Casas, I., & Barto, T. (2011). HELP: a GIS-based health
exploratory analysis tool for practitioners. Applied Spatial Analysis and Policy, 4(2), 113-
137.

Delmelle, E., Hagenlocher, M., Kienberger, S., & Casas, I. (2016). A spatial model of
socioeconomic and environmental determinants of dengue fever in Cali, Colombia
[Article]. Acta Tropica, 164, 169-176. https://doi.org/10.1016/j.actatropica.2016.08.028

Delmelle, E., Péez, A., & Kanaroglou, P. (2015). Spatial analysis in health geography. Ashgate
Publishing, Ltd.

Desjardins, M. R., Whiteman, A., Casas, I., & Delmelle, E. (2018). Space-time clusters and co-
occurrence of chikungunya and dengue fever in Colombia from 2015 to 2016 [Article].
Acta Tropica, 185, 77-85. https://doi.org/10.1016/j.actatropica.2018.04.023

Diez Roux, A. V. (2001). Investigating neighborhood and area effects on health. American
journal of public health, 91(11), 1783-1789.

Diggle, P. J., Chetwynd, A. G., Haggkvist, R., & Morris, S. E. (1995). Second-order analysis of
space-time clustering. Statistical methods in medical research, 4(2), 124-136.

Eisen, R. J., & Eisen, L. (2014). Use of geographic information systems in infectious disease
surveillance. Concepts and Methods in Infectious Disease Surveillance, Wiley-Blackwell,
219-229.

Farrington, C., & Beale, A. (1998). The detection of outbreaks of infectious disease. In
Geomed’97 (pp. 97-117). Springer.

Fuentes-Vallejo, M. (2017). Space and space-time distributions of dengue in a hyper-endemic
urban space: the case of Girardot, Colombia. BMC Infectious Diseases, 17, Article 512.
https://doi.org/10.1186/s12879-017-2610-7

Gangnon, R. E. (2012). Local multiplicity adjustment for the spatial scan statistic using the
Gumbel distribution. Biometrics, 68(1), 174-182.

Gatrell, A. C., Bailey, T. C., Diggle, P. J., & Rowlingson, B. S. (1996). Spatial point pattern
analysis and its application in geographical epidemiology. Transactions of the Institute of
British geographers, 256-274.



https://doi.org/10.2196/30444
https://doi.org/10.1016/j.actatropica.2016.08.028
https://doi.org/10.1016/j.actatropica.2018.04.023
https://doi.org/10.1186/s12879-017-2610-7

114

Getis, A., & Ord, J. K. (1996). Local spatial statistics: an overview. In P. A. Longley & M. Batty
(Eds.), Spatial analysis: modelling in a GIS environment (pp. 261-277). John Wiley &
Sons.

Ghosh, P., & Cartone, A. (2020). A Spatio-temporal analysis of COVID-19 outbreak in Italy.
Regional Science Policy & Practice, 12(6), 1047-1062.

Gomez-Rubio, V., Ferrandiz-Ferragud, J., & Lépez-Quilez, A. (2005). Detecting clusters of
disease with R. Journal of geographical systems, 7(2), 189-206.

Goovaerts, P. (2009). Medical geography: a promising field of application for geostatistics.
Mathematical Geosciences, 41(3), 243-264.

Greene, S. K., Peterson, E. R., Kapell, D., Fine, A. D., & Kulldorff, M. (2016). Daily reportable
disease spatiotemporal cluster detection, New York City, New York, USA, 2014-2015.
Emerging infectious diseases, 22(10), 1808.

Grubesic, T. H., Wei, R., & Murray, A. T. (2014). Spatial clustering overview and comparison:
Accuracy, sensitivity, and computational expense. Annals of the Association of American
Geographers, 104(6), 1134-1156.

Guemes, A., Ray, S., Aboumerhi, K., Desjardins, M. R., Kvit, A., Corrigan, A. E., Fries, B.,
Shields, T., Stevens, R. D., Curriero, F. C., & Etienne-Cummings, R. (2021). A
syndromic surveillance tool to detect anomalous clusters of COVID-19 symptoms in the
United States. Sci Rep, 11(1), 4660. https://doi.org/10.1038/s41598-021-84145-5

Gurjav, U., Burneebaatar, B., Narmandakh, E., Tumenbayar, O., Ochirbat, B., Hill-Cawthorne,
G., Marais, B., & Sintchenko, V. (2015). Spatiotemporal evidence for cross-border
spread of MDR-TB along the Trans-Siberian Railway line. The International Journal of
Tuberculosis and Lung Disease, 19(11), 1376-1382.

Guttmann, A., Li, X., Gaudart, J., Gérard, Y., Demongeot, J., Boire, J.-Y., & Ouchchane, L.
(2014). Spatial heterogeneity of type I error for local cluster detection tests. International
Journal of Health Geographics, 13(1), 1-11.

Hernandez-Awvila, J. E., Rodriguez, M. H., Santos-Luna, R., Sanchez-Castaneda, V., Roman-
Perez, S., Rios-Salgado, V. H., & Salas-Sarmiento, J. A. (2013). Nation-Wide, Web-
Based, Geographic Information System for the Integrated Surveillance and Control of
Dengue Fever in Mexico [Article]. Plos One, 8(8), 9, Article e70231.
https://doi.org/10.1371/journal.pone.0070231

Hohl, A., Delmelle, E., Tang, W., & Casas, |. (2016). Accelerating the discovery of space-time
patterns of infectious diseases using parallel computing. Spatial and spatio-temporal
epidemiology, 19, 10-20.

Hohl, A., Delmelle, E. M., Desjardins, M. R., & Lan, Y. (2020). Daily surveillance of COVID-
19 using the prospective space-time scan statistic in the United States. Spatial and spatio-
temporal epidemiology, 34, 100354.

Hohl, A., Tang, W., Casas, I., Shi, X., & Delmelle, E. (2022). Detecting space-time patterns of
disease risk under dynamic background population. Journal of geographical systems,
24(3), 389-417. https://doi.org/10.1007/s10109-022-00377-7

Hohl, A., Zheng, M., Tang, W., Delmelle, E., & Casas, I. (2017). Spatiotemporal point pattern
analysis using Ripley’s K function. Geospatial Data Science: Techniques and
Applications. Taylor & Francis.

Hossain, M. D. M., & Lawson, A. B. (2005). Local likelihood disease clustering: development
and evaluation. Environmental and Ecological Statistics, 12(3), 259-273.
https://doi.org/10.1007/s10651-005-1512-9



https://doi.org/10.1038/s41598-021-84145-5
https://doi.org/10.1371/journal.pone.0070231
https://doi.org/10.1007/s10109-022-00377-7
https://doi.org/10.1007/s10651-005-1512-9

115

Hossain, M. M., & Lawson, A. B. (2010). Space-time Bayesian small area disease risk models:
development and evaluation with a focus on cluster detection. Environmental and
Ecological Statistics, 17(1), 73-95. https://doi.org/10.1007/s10651-008-0102-z

Huang, Z. J., Das, A., Qiu, Y. L., & Tatem, A. J. (2012). Web-based GIS: the vector-borne
disease airline importation risk (VBD-AIR) tool [Article]. International Journal of
Health Geographics, 11, 14, Article 33. https://doi.org/10.1186/1476-072x-11-33

Ivankovié, D., Barbazza, E., Bos, V., Fernandes, O. B., Gilmore, K. J., Jansen, T., Kara, P.,
Larrain, N., Lu, S., & Meza-Torres, B. (2021). Features constituting actionable COVID-
19 dashboards: descriptive assessment and expert appraisal of 158 public web-based
COVID-19 dashboards. Journal of medical Internet research, 23(2), e25682.

Kirby, R. S., Delmelle, E., & Eberth, J. M. (2017). Advances in spatial epidemiology and
geographic information systems. Annals of epidemiology, 27(1), 1-9.

Kistemann, T., Dangendorf, F., & Schweikart, J. (2002). New perspectives on the use of
Geographical Information Systems (GIS) in environmental health sciences. International
journal of hygiene and environmental health, 205(3), 169-181.

Knox, E. G. (1989). Detection of clusters. Methodology of enquiries into disease clustering.
London: Small Area Health Statistics Unit, 17, 20.

Knox, E. G., & Bartlett, M. S. (1964). The detection of space-time interactions. Journal of the
Royal Statistical Society. Series C (Applied Statistics), 13(1), 25-30.

Kulldorff, M. (1997). A spatial scan statistic. Communications in Statistics-Theory and methods,
26(6), 1481-1496.

Kulldorff, M. (2010). SaTScan user guide for version 9.0. In.

Kulldorff, M., Athas, W. F., Feurer, E. J., Miller, B. A., & Key, C. R. (1998). Evaluating cluster
alarms: a space-time scan statistic and brain cancer in Los Alamos, New Mexico.
American journal of public health, 88(9), 1377-1380.
https://doi.org/10.2105/ajph.88.9.1377

Kulldorff, M., Heffernan, R., Hartman, J., Assungao, R., & Mostashari, F. (2005). A space-time
permutation scan statistic for disease outbreak detection. Plos med, 2(3), e59.

Kulldorff, M., & Nagarwalla, N. (1995). Spatial disease clusters: detection and inference.
Statistics in medicine, 14(8), 799-810.

Kuo, F. Y., Wen, T. H., & Sabel, C. E. (2018). Characterizing Diffusion Dynamics of Disease
Clustering: A Modified Space-Time DBSCAN (MST-DBSCAN) Algorithm [Article].
Annals of the American Association of Geographers, 108(4), 1168-1186.
https://doi.org/10.1080/24694452.2017.1407630

Kwan, M.-P. (2016). Geographies of health, disease and well-being: recent advances in theory
and method.

Lan, Y., Desjardins, M. R., Hohl, A., & Delmelle, E. (2021). Geovisualization of COVID-19:
State of the Art and Opportunities. Cartographica: The International Journal for
Geographic Information and Geovisualization, 56(1), 2-13.

Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical
data. biometrics, 159-174.

Lessler, J.,, Azman, A. S., McKay, H. S., & Moore, S. M. (2017). What is a hotspot anyway? The
American journal of tropical medicine and hygiene, 96(6), 1270.

Levine, N. (2013). Crimestat IV: A spatial statistics program for the analysis of crime incident
locations, version 4.0. Ned Levine & Associates: Houston, TX, USA.



https://doi.org/10.1007/s10651-008-0102-z
https://doi.org/10.1186/1476-072x-11-33
https://doi.org/10.2105/ajph.88.9.1377
https://doi.org/10.1080/24694452.2017.1407630

116

Lippi, C. A., Stewart-lbarra, A. M., Romero, M., Lowe, R., Mahon, R., Van Meerbeeck, C. J.,
Rollock, L., Hilaire, M. G.-S., Trotman, A. R., & Holligan, D. (2020). Spatiotemporal
tools for emerging and endemic disease hotspots in small areas: An analysis of dengue
and chikungunya in Barbados, 2013-2016. The American journal of tropical medicine
and hygiene, 103(1), 149.

Lloyd, D., & Dykes, J. (2011). Human-centered approaches in geovisualization design:
Investigating multiple methods through a long-term case study. IEEE transactions on
visualization and computer graphics, 17(12), 2498-2507.

Lu, H., & Carlin, B. P. (2005). Bayesian Areal Wombling for Geographical Boundary Analysis.
Geographical analysis, 37(3), 265-285. https://doi.org/https://doi.org/10.1111/].1538-
4632.2005.00624.x

Luan, H., & Law, J. (2014). Web GIS-Based Public Health Surveillance Systems: A Systematic
Review [Review]. Isprs International Journal of Geo-Information, 3(2), 481-506.
https://doi.org/10.3390/ijgi3020481

Mclntosh, A. I., Jenkins, H. E., White, L. F., Barnard, M., Thomson, D. R., Dolby, T., Simpson,
J., Streicher, E. M., Kleinman, M. B., Ragan, E. J., van Helden, P. D., Murray, M. B.,
Warren, R. M., & Jacobson, K. R. (2018). Using routinely collected laboratory data to
identify high rifampicin-resistant tuberculosis burden communities in the Western Cape
Province, South Africa: A retrospective spatiotemporal analysis. Plos med, 15(8),
€1002638. https://doi.org/10.1371/journal.pmed.1002638

McMichael, A. J. (2004). Environmental and social influences on emerging infectious diseases:
past, present and future. Philosophical Transactions of the Royal Society of London.
Series B: Biological Sciences, 359(1447), 1049-1058.

Monir Hossain, M., & Lawson, A. B. (2006). Cluster detection diagnostics for small area health
data: with reference to evaluation of local likelihood models. Statistics in Medicine,
25(5), 771-786. https://doi.org/https://doi.org/10.1002/sim.2401

Moraga, P. (2017). SpatialEpiApp: A Shiny web application for the analysis of spatial and
spatio-temporal disease data. Spatial and spatio-temporal epidemiology, 23, 47-57.

Moran, P. A. (1950). Notes on continuous stochastic phenomena. Biometrika, 37(1/2), 17-23.

Murray, J., & Cohen, A. L. (2017). Infectious Disease Surveillance. International Encyclopedia
of Public Health, 222-229. https://doi.org/10.1016/B978-0-12-803678-5.00517-8

Naish, S., & Tong, S. (2014). Hot spot detection and spatio-temporal dynamics of dengue in
Queensland, Australia. ISPRS Technical Commission VIII Symposium,

Newsom, S. (2006). Pioneers in infection control: John Snow, Henry Whitehead, the Broad
Street pump, and the beginnings of geographical epidemiology. Journal of Hospital
Infection, 64(3), 210-216.

Olson, K. L., Grannis, S. J., & Mandl, K. D. (2006). Privacy protection versus cluster detection
in spatial epidemiology. American journal of public health, 96(11), 2002-2008.

Ord, J. K., & Getis, A. (1995). Local spatial autocorrelation statistics: distributional issues and an
application. Geographical analysis, 27(4), 286-306.

Padmanabhan, A., Wang, S. W., Cao, G. F., Hwang, M., Zhang, Z. H., Gao, Y. Z., Soltani, K., &
Liu, Y. (2014). FluMapper: A cyberGIS application for interactive analysis of massive
location-based social media [Article]. Concurrency and Computation-Practice &
Experience, 26(13), 2253-2265. https://doi.org/10.1002/cpe.3287

Pardhan-Ali, A., Berke, O., Wilson, J., Edge, V. L., Furgal, C., Reid-Smith, R., Santos, M., &
McEwen, S. A. (2012). A spatial and temporal analysis of notifiable gastrointestinal



https://doi.org/https:/doi.org/10.1111/j.1538-4632.2005.00624.x
https://doi.org/https:/doi.org/10.1111/j.1538-4632.2005.00624.x
https://doi.org/10.3390/ijgi3020481
https://doi.org/10.1371/journal.pmed.1002638
https://doi.org/https:/doi.org/10.1002/sim.2401
https://doi.org/10.1016/B978-0-12-803678-5.00517-8
https://doi.org/10.1002/cpe.3287

117

illness in the Northwest Territories, Canada, 1991-2008. International Journal of Health
Geographics, 11(1), 1-10.

Patton, M. Q. (1999). Enhancing the quality and credibility of qualitative analysis. Health
services research, 34(5 Pt 2), 1189.

Pezanowski, S., MacEachren, A. M., Savelyev, A., & Robinson, A. C. (2018). SensePlace3: a
geovisual framework to analyze place—time—attribute information in social media.
Cartography and Geographic Information Science, 45(5), 420-437.

Pfeiffer, D., Robinson, T. P., Stevenson, M., Stevens, K. B., Rogers, D. J., & Clements, A. C.
(2008). Spatial analysis in epidemiology (Vol. 142). Oxford University Press Oxford.

Preim, B., & Lawonn, K. (2020). A survey of visual analytics for public health. Computer
Graphics Forum,

Reinhardt, M., Elias, J., Albert, J., Frosch, M., Harmsen, D., & Vogel, U. (2008). EpiScanGIS:
an online geographic surveillance system for meningococcal disease. International
journal of health geographics, 7(1), 1-7.

Reinhardt, M., Elias, J., Albert, J., Frosch, M., Harmsen, D., & Vogel, U. (2008). EpiScanGIS:
an online geographic surveillance system for meningococcal disease [Article].
International Journal of Health Geographics, 7, 7, Article 33.
https://doi.org/10.1186/1476-072x-7-33

Rejeki, D. S. S., Fuad, A., Widartono, B. S., Murhandarwati, E. E. H., & Kusnanto, H. (2019).
Spatiotemporal patterns of malaria at cross-boundaries area in Menoreh Hills, Java,
Indonesia. Malar J, 18(1), 80. https://doi.org/10.1186/s12936-019-2717-y

Rey, S. J., & Anselin, L. (2010). PySAL.: A Python library of spatial analytical methods. In
Handbook of applied spatial analysis (pp. 175-193). Springer.

Ripley, B. D. (1977). Modelling spatial patterns. Journal of the Royal Statistical Society: Series
B (Methodological), 39(2), 172-192.

Robinson, A. C. (2007). A design framework for exploratory geovisualization in epidemiology.
Information visualization, 6(3), 197-214.

Robinson, A. C., Chen, J., Lengerich, E. J., Meyer, H. G., & MacEachren, A. M. (2005).
Combining usability techniques to design geovisualization tools for epidemiology.
Cartography and Geographic Information Science, 32(4), 243-255.

Robinson, A. C., Peuquet, D. J., Pezanowski, S., Hardisty, F. A., & Swedberg, B. (2017). Design
and evaluation of a geovisual analytics system for uncovering patterns in spatio-temporal
event data. Cartography and Geographic Information Science, 44(3), 216-228.

Rocheleau, J.-P., Kotchi, S.-O., & Arsenault, J. (2020). Can local risk of West Nile virus
infection be predicted from previous cases? A descriptive study in Quebec, 2011-2016.
Canadian Journal of Public Health, 111(2), 229-238.

Rogers, D. J., & Randolph, S. E. (2003). Studying the global distribution of infectious diseases
using GIS and RS. Nature Reviews Microbiology, 1(3), 231-237.
https://doi.org/10.1038/nrmicro776

Rogerson, P., & Yamada, I. (2008). Introductory spatial statistics: description and interence. In
Statistical detection and surveillance of geographic clusters (pp. 31-34). CRC Press.

Rosillo, N., Del-Aguila-Mejia, J., Rojas-Benedicto, A., Guerrero-Vadillo, M., Penuelas, M.,
Mazagatos, C., Segu-Tell, J., Ramis, R., & Gomez-Barroso, D. (2021). Real time
surveillance of COVID-19 space and time clusters during the summer 2020 in Spain.
BMC Public Health, 21(1), Article 961. https://doi.org/10.1186/s12889-021-10961-z



https://doi.org/10.1186/1476-072x-7-33
https://doi.org/10.1186/s12936-019-2717-y
https://doi.org/10.1038/nrmicro776
https://doi.org/10.1186/s12889-021-10961-z

118

Rotela, C., Lopez, L., Céspedes, M. F., Barbas, G., Lighezzolo, A., Porcasi, X., Lanfri, M. A,
Scavuzzo, C. M., & Gorla, D. E. (2017). Analytical report of the 2016 dengue outbreak in
Cordoba city, Argentina. Geospatial health.

Schabenberger, O., & Gotway, C. A. (2017). Introduction. In Statistical methods for spatial data
analysis (pp. 26). CRC press.

Sifuna, P., Otieno, L., Andagalu, B., Oyieko, J., Ogutu, B., Singoei, V., Owuoth, J., Ogwang, S.,
Cowden, J., & Otieno, W. (2018). A Spatiotemporal Analysis of HIV-Associated
Mortality in Rural Western Kenya 2011-2015. Journal of acquired immune deficiency
syndromes (1999), 78(5), 483.

Singh, P. S., & Chaturvedi, H. K. (2021). Temporal variation and geospatial clustering of dengue
in Delhi, India 2015-2018. BMJ Open, 11(2), e043848. https://doi.org/10.1136/bmjopen-
2020-043848

Sloan, C., Chandrasekhar, R., Mitchel, E., Ndi, D., Miller, L., Thomas, A., Bennett, N. M., Chai,
S., Spencer, M., & Eckel, S. (2020). Spatial and temporal clustering of patients
hospitalized with laboratory-confirmed influenza in the united states. Epidemics, 31,
100387.

Smith, K. F., Goldberg, M., Rosenthal, S., Carlson, L., Chen, J., Chen, C., & Ramachandran, S.
(2014). Global rise in human infectious disease outbreaks. Journal of the Royal Society
Interface, 11(101), 20140950.

Sonesson, C., & Bock, D. (2003). A review and discussion of prospective statistical surveillance
in public health. Journal of the Royal Statistical Society: Series A (Statistics in Society),
166(1), 5-21.

Sugumaran, R., Larson, S. R., & DeGroote, J. P. (2009). Spatio-temporal cluster analysis of
county-based human West Nile virus incidence in the continental United States.
International Journal of Health Geographics, 8(1), 1-19.

Tadesse, T., Demissie, M., Berhane, Y., Kebede, Y., & Abebe, M. (2013). The clustering of
smear-positive tuberculosis in Dabat, Ethiopia: a population based cross sectional study.
Plos One, 8(5), e65022.

Tang, J. H., Tseng, T. J., & Chan, T. C. (2019). Detecting spatio-temporal hotspots of scarlet
fever in Taiwan with spatio-temporal Gi* statistic. Plos One, 14(4), e0215434.
https://doi.org/10.1371/journal.pone.0215434

Taylor, L. H., Latham, S. M., & Woolhouse, M. E. (2001). Risk factors for human disease
emergence. Philosophical Transactions of the Royal Society of London. Series B:
Biological Sciences, 356(1411), 983-989.

Tran, A., Deparis, X., Dussart, P., Morvan, J., Rabarison, P., Remy, F., Polidori, L., & Gardon, J.
(2004). Dengue spatial and temporal patterns, French Guiana, 2001. Emerging infectious
diseases, 10(4), 615.

van den Driessche, P., & Watmough, J. (2008). Further Notes on the Basic Reproduction
Number. In F. Brauer, P. van den Driessche, & J. Wu (Eds.), Mathematical Epidemiology
(pp. 159-178). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-78911-6_6

Vazquez-Prokopec, G. M., Kitron, U., Montgomery, B., Horne, P., & Ritchie, S. A. (2010).
Quantifying the spatial dimension of dengue virus epidemic spread within a tropical
urban environment. PLoS Negl Trop Dis, 4(12), €920.

Wagner Filho, J. A., Stuerzlinger, W., & Nedel, L. (2019). Evaluating an immersive space-time
cube geovisualization for intuitive trajectory data exploration. IEEE transactions on
visualization and computer graphics, 26(1), 514-524.



https://doi.org/10.1136/bmjopen-2020-043848
https://doi.org/10.1136/bmjopen-2020-043848
https://doi.org/10.1371/journal.pone.0215434
https://doi.org/10.1007/978-3-540-78911-6_6

119

Weber, M., Alexa, M., & Muller, W. (2001). Visualizing time-series on spirals. Infovis,

Weiss, R. A., & McMichael, A. J. (2004). Social and environmental risk factors in the
emergence of infectious diseases. Nature medicine, 10(12), S70-S76.

Wen, T. H., Lin, M. H., & Fang, C. T. (2012). Population Movement and Vector-Borne Disease
Transmission: Differentiating Spatial-Temporal Diffusion Patterns of Commuting and
Noncommuting Dengue Cases [Article]. Annals of the Association of American
Geographers, 102(5), 1026-1037. https://doi.org/10.1080/00045608.2012.671130

Whiteman, A., Desjardins, M. R., Eskildsen, G. A., & Loaiza, J. R. (2019). Detecting space-time
clusters of dengue fever in Panama after adjusting for vector surveillance data. PLoS
neglected tropical diseases, 13(9), e0007266.

WHO. (2020a). Coronavirus. Retrieved 07/17/2020 from https://www.who.int/health-
topics/coronavirus#tab=tab_1

WHO. (2020b). Leading causes of death and disability 2000-2019: A visual summary. Retrieved
09/24 from https://www.who.int/data/stories/leading-causes-of-death-and-disability-
2000-2019-a-visual-summary

WHO. (2020c). The top 10 causes of death. Retrieved 09/24 from https://www.who.int/news-
room/fact-sheets/detail/the-top-10-causes-of-death

WHO. (n.d.). Infectious diseases. Retrieved 07/01/2021 from http://www.emro.who.int/health-
topics/infectious-diseases/index.html

Wichmann, O., Gascon, J., Schunk, M., Puente, S., Siikamaki, H., Gjg, I., Lopez-Velez, R.,
Clerinx, J., Peyerl-Hoffmann, G., & Sundgy, A. (2007). Severe dengue virus infection in
travelers: risk factors and laboratory indicators. The Journal of infectious diseases,
195(8), 1089-1096.

World Health Organization. (2020). WHO Coronavirus (COVID-19) Dashboard. Retrieved
10/22/2022 from https://covid19.who.int/

Wu, C., Zhou, M. J., Liu, P. Y., & Yang, M. J. (2021). Analyzing COVID-19 Using Multisource
Data: An Integrated Approach of Visualization, Spatial Regression, and Machine
Learning [Article]. Geohealth, 5(8), 14, Article e2021GH000439.
https://doi.org/10.1029/2021gh000439

Yu, Y., Wu, B., Wu, C., Wang, Q., Hu, D., & Chen, W. (2020). Spatial-temporal analysis of
tuberculosis in Chongging, China 2011-2018. BMC Infectious Diseases, 20(1), 1-12.

Zhang, R., Li, Y., Zhang, A. L., Wang, Y., & Molina, M. J. (2020). Identifying airborne
transmission as the dominant route for the spread of COVID-19. Proceedings of the
National Academy of Sciences, 117(26), 14857-14863.



https://doi.org/10.1080/00045608.2012.671130
https://www.who.int/health-topics/coronavirus#tab=tab_1
https://www.who.int/health-topics/coronavirus#tab=tab_1
https://www.who.int/data/stories/leading-causes-of-death-and-disability-2000-2019-a-visual-summary
https://www.who.int/data/stories/leading-causes-of-death-and-disability-2000-2019-a-visual-summary
https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
http://www.emro.who.int/health-topics/infectious-diseases/index.html
http://www.emro.who.int/health-topics/infectious-diseases/index.html
https://covid19.who.int/
https://doi.org/10.1029/2021gh000439

10.

11.

12.

13.

14.

120

APPENDIX A: INCLUDE LITERRATURE OF THE SYSTEMATIC REVIEW

Abd Naeeim, N. S., & Abdul Rahman, N. (2021). Spatio-temporal clustering analysis of
dengue disease in Peninsular Malaysia. Journal of Public Health, 1-11.

Acharya, B. K., Cao, C., Lakes, T., Chen, W., & Naeem, S. (2016). Spatiotemporal analysis
of dengue fever in Nepal from 2010 to 2014. Bmc Public Health, 16(1), 1-10.

Acharya, B. K., Cao, C., Xu, M., Chen, W., & Pandit, S. (2018). Spatiotemporal distribution
and geospatial diffusion patterns of 2013 dengue outbreak in Jhapa District, Nepal. Asia
Pacific Journal of Public Health, 30(4), 396-405.

Ahmed, S., Ersbgll, A. K., Biswas, P., & Christensen, J. P. (2010). The space-time clustering
of highly pathogenic avian influenza (HPAI) H5N1 outbreaks in Bangladesh. Epidemiology
& Infection, 138(6), 843-852.

Akter, R., Naish, S., Gatton, M., Bambrick, H., Hu, W., & Tong, S. (2019). Spatial and
temporal analysis of dengue infections in Queensland, Australia: Recent trend and
perspectives. Plos One, 14(7), e0220134.

Al-Ahmadi, K., Alahmadi, S., & Al-Zahrani, A. (2019). Spatiotemporal clustering of Middle
East respiratory syndrome coronavirus (MERS-CoV) incidence in Saudi Arabia, 2012—20109.
International Journal of Environmental Research and Public Health, 16(14), 2520.
Al-Kindi, K. M., Alkharusi, A., Alshukaili, D., Al Nasiri, N., Al-Awadhi, T., Charabi, Y., &
El Kenawy, A. M. (2020). Spatiotemporal assessment of COVID-19 spread over Oman using
GIS techniques. Earth Systems and Environment, 4(4), 797-811.

Alcantara, E., Mantovani, J., Rotta, L., Park, E., Rodrigues, T., Carvalho, F. C., & Souza
Filho, C. R. (2020). Investigating spatiotemporal patterns of the COVID-19 in S&o Paulo
State, Brazil. Geospatial Health, 15(2).

Aldstadt, J., Yoon, I. K., Tannitisupawong, D., Jarman, R. G., Thomas, S. J., Gibbons, R. V.,
Uppapong, A., lamsirithaworn, S., Rothman, A. L., & Scott, T. W. (2012). Space-time
analysis of hospitalised dengue patients in rural Thailand reveals important temporal
intervals in the pattern of dengue virus transmission. Tropical Medicine & International
Health, 17(9), 1076-1085.

Ali, S., Corner, R. J., & Hashizume, M. (2014). Spatiotemporal analysis of dengue infection
between 2005 and 2010. In Dhaka Megacity (pp. 367-384). Springer.

Allan, M., Grandesso, F., Pierre, R., Magloire, R., Coldiron, M., Martinez-Pino, I., Goffeau,
T., Gitenet, R., Francois, G., & Olson, D. (2016). High-resolution spatial analysis of cholera
patients reported in Artibonite department, Haiti in 2010-2011. Epidemics, 14, 1-10.

Alves, A. T., & Nobre, F. F. (2014). The acquired immunodeficiency syndrome in the state
of Rio de Janeiro, Brazil: a spatio-temporal analysis of cases reported in the period 2001-
2010. Geospatial Health, 8(2), 437-443.

Alves, J. D., Abade, A. S., Peres, W. P., Borges, J. E., Santos, S. M., & Scholze, A. R.
(2021). Impact of COVID-19 on the indigenous population of Brazil: a geo-epidemiological
study. Epidemiology & Infection, 149.

Andrade, L. A., Gomes, D. S., Goes, M. A. d. O., Souza, M. S. F. d., Teixeira, D. C. P.,
Ribeiro, C. J. N., Alves, J. A. B., Araljo, K. C. G. M. d., & Santos, A. D. d. (2020).
Surveillance of the first cases of COVID-19 in Sergipe using a prospective spatiotemporal
analysis: the spatial dispersion and its public health implications. Revista Da Sociedade
Brasileira De Medicina Tropical, 53.



15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

121

ANGULDO, J. J., HAGGETT, P., MEGALE, P., & PEDERNEIRAS, C. A. (1977).
VARIOLA MINOR IN BRAGANCA PAULISTA COUNTY, 1956: A TRENDSURFACE
ANALYSIS. American Journal of Epidemiology, 105(3), 272-280.

Anis Fuad, D. (2020). Spatiotemporal proximity of rubella cases to the occurrence of
congenital rubella syndrome in Yogyakarta, Indonesia. Med J Malaysia, 75, 41.
Arauzo-Carod, J.-M., Domenech, A., & Gutiérrez, A. (2021). Do local characteristics act in a
similar way for the first two waves of COVID-19? Analysis at intraurban level in Barcelona.
Journal of Public Health, 43(3), 455-461.

Areias, C., Briz, T., & Nunes, C. (2015). Pulmonary tuberculosis space-time clustering and
spatial variation in temporal trends in Portugal, 2000-2010: an updated analysis.
Epidemiology & Infection, 143(15), 3211-3219.

Ashmore, P., Lindahl, J. F., Coldén-Gonzélez, F. J., Sinh Nam, V., Quang Tan, D., & Medley,
G. F. (2020). Spatiotemporal and socioeconomic risk factors for dengue at the province level
in Vietnam, 2013-2015: clustering analysis and regression model. Tropical Medicine and
Infectious Disease, 5(2), 81.

Ashok, S., Ullah, M. Z., Vadivelu, N., Islam, M. T., Nasereddin, S., & Khan, W. Z. (2021).
Surveillance of COVID-19 Using Geospatial Data: An Emergency Department Perspective.
Dubai Medical Journal, 4(4), 330-338.

Atique, S., Chan, T.-C., Chen, C.-C., Hsu, C.-Y., Igtidar, S., Louis, V. R., Shabbir, S. A., &
Chuang, T.-W. (2018). Investigating spatio-temporal distribution and diffusion patterns of
the dengue outbreak in Swat, Pakistan. Journal of infection and public health, 11(4), 550-
557.

Augustijn, E.-W., & Zurita-Milla, R. (2013). Self-organizing maps as an approach to
exploring spatiotemporal diffusion patterns. International Journal of Health Geographics,
12(1), 1-14.

Azage, M., Kumie, A., Worku, A., C. Bagtzoglou, A., & Anagnostou, E. (2017). Effect of
climatic variability on childhood diarrhea and its high risk periods in northwestern parts of
Ethiopia. Plos One, 12(10), e0186933.

Balaji, D., & Saravanabavan, V. (2020). A geo medical analysis of dengue cases in Madurai
city-Tamilnadu India. Geojournal, 85(4), 979-994.

Balino, L. V. A,, Caasi, K. S., & Addawe, R. C. (2021, 2021//). Spatio-Temporal Distribution
of Dengue Infections in Baguio City, Philippines. Modelling, Simulation and Applications of
Complex Systems, Singapore.

Banu, S., Hu, W., Guo, Y., Naish, S., & Tong, S. (2014). Dynamic spatiotemporal trends of
dengue transmission in the Asia-Pacific region, 1955-2004. Plos One, 9(2), €89440.

Bauer, D., Higgs, B. W., & Mohtashemi, M. (2007). High performance computing for
disease surveillance. NSF Workshop on Intelligence and Security Informatics,

Bautista, C. T., Chan, A. S., Ryan, J. R., Calampa, C., Roper, M. H., Hightower, A. W., &
Magill, A. J. (2006). Epidemiology and spatial analysis of malaria in the Northern Peruvian
Amazon. The American journal of tropical medicine and hygiene, 75(6), 1216-1222.
BenBella, D., & Ghosh, D. (2021). Combining geospatial analysis with hiv care continuum
to identify differential hiv/aids treatment indicators in uganda. The Professional Geographer,
73(2), 213-229.

Beninca, E., van Boven, M., Hagenaars, T., & van der Hoek, W. (2017). Space-time analysis
of pneumonia hospitalisations in the Netherlands. Plos One, 12(7), e0180797.



31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

122

Bisanzio, D., Dzul-Manzanilla, F., Gomez-Dantés, H., Pavia-Ruz, N., Hladish, T. J., Lenhart,
A., Palacio-Vargas, J., Gonzalez Roldan, J. F., Correa-Morales, F., & Sanchez-Tejeda, G.
(2018). Spatio-temporal coherence of dengue, chikungunya and Zika outbreaks in Merida,
Mexico. Plos Neglected Tropical Diseases, 12(3), e€0006298.

Blackburn, J. K., Diamond, U., Kracalik, I. T., Widmer, J., Brown, W., Morrissey, B. D.,
Alexander, K. A., Curtis, A. J., Ali, A., & Morris Jr, J. G. (2014). Household-level
spatiotemporal patterns of incidence of cholera, Haiti, 2011. Emerging Infectious Diseases,
20(9), 1516.

Blake, A., Keita, V. S., Sauvageot, D., Saliou, M., Njanpop, B. M., Sory, F., Sudre, B.,
Lamine, K., Mengel, M., & Gessner, B. D. (2018). Temporo-spatial dynamics and
behavioural patterns of 2012 cholera epidemic in the African mega-city of Conakry, Guinea.
Infectious Diseases of Poverty, 7(1), 1-10.

Boitrago, G. M., Mbnica, R. B., Silva, D. M., Cerroni, M. d. P., Cortez-Escalante, J. J.,
Almiron, M., Terabe, S. H., & Rocha, T. A. H. (2021). Restructuring of emergency services
to COVID-19 in Brazil: a space-time analysis from February to August 2020. Epidemiologia
E Servicos De Saude, 30.

Bruce, A. T. |., Berra, T. Z., Dos Santos, F. L., Alves, Y. M., Souza, L. L. L., Ramos, A. C.
V., Arroyo, L. H., de Almeida Crispim, J., Pinto, I. C., & Palha, P. F. (2020). Temporal
trends in areas at risk for concomitant tuberculosis in a hyperendemic municipality in the
Amazon region of Brazil. Infectious Diseases of Poverty, 9(1), 1-14.

Cambou, M. C., Saad, E., McBride, K., Fuller, T., Swayze, E., & Nielsen-Saines, K. (2021).
Maternal HIV and syphilis are not syndemic in Brazil: Hot spot analysis of the two
epidemics. Plos One, 16(8), e0255590.

Canal, M. R., Ferreira, E. R. d. S., Estofolete, C. F., Dias, A. M., Tukasan, C., Bertoque, A.
C., Muniz, V. D., Nogueira, M. L., & Silva, N. S. d. (2018). Spatiotemporal-based clusters as
a method for dengue surveillance. Revista Panamericana de Salud Publica, 41, e162.

Cao, C., Xu, M., Chen, J., Wu, Y., & Xie, X. (2010). Space-time scan statistic based early
warning of HIN1 influenza a in Shenzhen, China. International Archives of the
Photogrammetry, Remote Sensing and Spatial Information Science, 28(8).
Carrasco-Escobar, G., Schwalb, A., Tello-Lizarraga, K., Vega-Guerovich, P., & Ugarte-Gil,
C. (2020). Spatio-temporal co-occurrence of hotspots of tuberculosis, poverty and air
pollution in Lima, Peru. Infectious Diseases of Poverty, 9(1), 1-6.

Carrel, M., Emch, M., Streatfield, P. K., & Yunus, M. (2009). Spatio-temporal clustering of
cholera: The impact of flood control in Matlab, Bangladesh, 1983-2003. Health & Place,
15(3), 771-782.

Carvalho, R. M. d., & Nascimento, L. F. C. (2014). Space-time description of dengue
outbreaks in Cruzeiro, Sao Paulo, in 2006 and 2011. Revista da Associacdo Médica
Brasileira, 60, 565-570.

Castro, M. C., Kim, S., Barberia, L., Ribeiro, A. F., Gurzenda, S., Ribeiro, K. B., Abbott, E.,
Blossom, J., Rache, B., & Singer, B. H. (2021). Spatiotemporal pattern of COVID-19 spread
in Brazil. Science, 372(6544), 821-826.

Chadee, D. D., & Kitron, U. (1999). Spatial and temporal patterns of imported malaria cases
and local transmission in Trinidad. Am J Trop Med Hyg, 61(4), 513-517.
https://doi.org/10.4269/ajtmh.1999.61.513



https://doi.org/10.4269/ajtmh.1999.61.513
https://doi.org/10.4269/ajtmh.1999.61.513

44,

45.

46.

47.

48.

49,

50.

51.

52.

53.

54,

55.

56.

S7.

123

Chen, J.,, Qiu, Y., Yang, R,, Li, L., Hou, J., Lu, K., & Xu, L. (2019). The characteristics of
spatial-temporal distribution and cluster of tuberculosis in Yunnan Province, China, 2005—
2018. Bmc Public Health, 19(1), 1-13.

Chen, Q., Lai, S., Yin, W., Zhou, H., Li, Y., Mu, D., Li, Z,, Yu, H., & Yang, W. (2016).
Epidemic characteristics, high-risk townships and space-time clusters of human brucellosis in
Shanxi Province of China, 2005-2014. Bmc Infectious Diseases, 16(1), 1-10.

Cheng, Y.-J., Norris, J., Bao, C.-J,, Liang, Q., Hu, J.-L., Wu, Y., Tang, F.-Y., Liu, W.-D.,
Ding, K.-Q., & Zhao, Y. (2012). Geographical information systems-based spatial analysis
and implications for syphilis interventions in Jiangsu province, People’s Republic of China.
Geospatial Health, 7(1), 63-72.

Cherry, C. B., Griffin, M. R., Edwards, K. M., Williams, J. V., Gil, A. I., Verastegui, H.,
Lanata, C. F., & Grijalva, C. G. (2016). Spatial and Temporal Spread of Acute Viral
Respiratory Infections in Young Children Living in High-altitude Rural Communities: A
Prospective Household-based Study. Pediatr Infect Dis J, 35(10), 1057-1061.
https://doi.org/10.1097/inf.0000000000001234

Chin, W.-C.-B., Wen, T.-H., Sabel, C. E., & Wang, I. (2017). A geo-computational algorithm
for exploring the structure of diffusion progression in time and space. Scientific Reports,
7(1), 1-13.

Chiu, Y.-W., Hsu, C. E., Wang, M.-Q., & Nkhoma, E. T. (2008). Examining geographic and
temporal variations of AIDS mortality: evidence of racial disparities. Journal of the National
Medical Association, 100(7), 788-796.

Choi, K.-M., Yu, H.-L., & Wilson, M. L. (2008). Spatiotemporal statistical analysis of
influenza mortality risk in the State of California during the period 1997-2001. Stochastic
Environmental Research and Risk Assessment, 22(1), 15-25.

Chuang, T.-W., Ng, K.-C., Nguyen, T. L., & Chaves, L. F. (2018). Epidemiological
characteristics and space-time analysis of the 2015 dengue outbreak in the metropolitan
region of Tainan City, Taiwan. International Journal of Environmental Research and Public
Health, 15(3), 396.

Cos Guerra, O. d., Castillo Salcines, V., & Cantarero Prieto, D. (2021). Data mining and
socio-spatial patterns of COVID-19: geo-prevention keys for tackling the pandemic.

Costa, M. A., & Kulldorff, M. (2014). Maximum linkage space-time permutation scan
statistics for disease outbreak detection. International Journal of Health Geographics, 13(1),
1-14.

Coura-Vital, W., Cardoso, D. T., Ker, F. T. d. O., Magalhaes, F. d. C., Bezerra, J. M. T,
Viegas, A. M., Morais, M. H. F., Bastos, L. S., Reis, I. A., & Carneiro, M. (2021).
Spatiotemporal dynamics and risk estimates of COVID-19 epidemic in Minas Gerais State:
analysis of an expanding process. Revista Do Instituto De Medicina Tropical De Sao Paulo,
63.

Craig, M. (1988). Time-space clustering of Vibrio cholerae 01 in Matlab, Bangladesh, 1970—
1982. Social science & medicine, 26(1), 5-13.

Crighton, E. J., Elliott, S. J., Kanaroglou, P., Moineddin, R., & Upshur, R. E. (2008). Spatio-
temporal analysis of pneumonia and influenza hospitalizations in Ontario, Canada.
Geospatial Health, 2(2), 191-202.

Cuadros, D. F., & Abu-Raddad, L. J. (2014). Spatial variability in HIV prevalence declines in
several countries in sub-Saharan Africa. Health & Place, 28, 45-49.
https://doi.org/https://doi.org/10.1016/j.healthplace.2014.03.007



https://doi.org/10.1097/inf.0000000000001234
https://doi.org/10.1097/inf.0000000000001234
https://doi.org/https:/doi.org/10.1016/j.healthplace.2014.03.007
https://doi.org/https:/doi.org/10.1016/j.healthplace.2014.03.007

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

124

Cui, Z., Lin, D., Chongsuvivatwong, V., Zhao, J., Lin, M., Ou, J., & Zhao, J. (2019).
Spatiotemporal patterns and ecological factors of tuberculosis notification: A spatial panel
data analysis in Guangxi, China. Plos One, 14(5), e0212051.

Dangisso, M. H., Datiko, D. G., & Lindtjgrn, B. (2015). Spatio-temporal analysis of smear-
positive tuberculosis in the Sidama Zone, southern Ethiopia. Plos One, 10(6), e0126369.
Dass, S., Ngui, R., Gill, B. S., Chan, Y. F., Wan Sulaiman, W. Y., Lim, Y. A. L., Mudin, R.
N., Chong, C. K., Sulaiman, L. H., & Sam, I.-C. (2021). Spatiotemporal spread of
chikungunya virus in Sarawak, Malaysia. Transactions of the Royal Society of Tropical
Medicine and Hygiene, 115(8), 922-931.

Daw, M. A., Buktir Ali, L. A., Daw, A. M., Sifennasr, N. E., Dau, A. A., Agnhan, M. M., &
El-Bouzedi, A. (2018). The geographic variation and spatiotemporal distribution of hepatitis
C virus infection in Libya: 2007-2016. Bmc Infectious Diseases, 18(1), 1-10.

Daw, M. A., Daw, A. M., Sifennasr, N. E., Draha, A. M., Daw, A. A, Daw, A. A., Ahmed,
M. O., Mokhtar, E. S., EI-Bouzedi, A. H., & Daw, I. M. (2019). Spatiotemporal analysis and
epidemiological characterization of the human immunodeficiency virus (HIV) in Libya
within a twenty five year period: 1993-2017. Aids Research and Therapy, 16(1), 1-9.

de Aradjo Morais, L. R., & da Silva Gomes, G. S. (2021). Applying Spatio-temporal Scan
Statistics and Spatial Autocorrelation Statistics to identify Covid-19 clusters in the world-A
Vaccination Strategy? Spatial and Spatio-Temporal Epidemiology, 39, 100461.

de Azevedo, T. S., Lorenz, C., & Chiaravalloti-Neto, F. (2020). Spatiotemporal evolution of
dengue outbreaks in Brazil. Transactions of the Royal Society of Tropical Medicine and
Hygiene, 114(8), 593-602.

De Ridder, D., Loizeau, A. J., Sandoval, J. L., Ehrler, F., Perrier, M., Ritch, A., Violot, G.,
Santolini, M., Tzovaras, B. G., & Stringhini, S. (2021). Detection of Spatiotemporal Clusters
of COVID-19-Associated Symptoms and Prevention Using a Participatory Surveillance
App: Protocol for the@ choum Study. Jmir Research Protocols, 10(10), e30444.

Delmelle, E., Casas, I., Rojas, J. H., & Varela, A. (2013). Spatio-temporal patterns of dengue
fever in Cali, Colombia. International Journal of Applied Geospatial Research (IJAGR),
4(4), 58-75.

Delmelle, E., Dony, C., Casas, 1., Jia, M., & Tang, W. (2014). Visualizing the impact of
space-time uncertainties on dengue fever patterns. International Journal of Geographical
Information Science, 28(5), 1107-1127.

Desjardins, M., Whiteman, A., Casas, I., & Delmelle, E. (2018). Space-time clusters and co-
occurrence of chikungunya and dengue fever in Colombia from 2015 to 2016. Acta Tropica,
185, 77-85.

Desjardins, M. R., Hohl, A., & Delmelle, E. M. (2020). Rapid surveillance of COVID-19 in
the United States using a prospective space-time scan statistic: Detecting and evaluating
emerging clusters. Applied Geography, 118, 102202.

Dhewantara, P. W., Prasetyowati, H., Ridwan, W., & Hakim, L. (2020). The application of
spatiotemporal scan statistics to detect high-risk clusters for dengue fever in Jakarta,
Indonesia. American Institute of Physics Conference Series,

Dionne, C. G., Sullivan, A. B., Norwood, T. A., MSA, b., Serre, M. L., & Miller, W. C.
(2012). Does Core Area Theory Apply to Sexually Transmitted Diseases in Rural
Environments?



72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

125

Dismer, A. M., Lemoine, J. F., Baptiste, M. J., Mace, K. E., Impoinvil, D. E., Eng, J. V., &
Chang, M. A. (2021). Detecting Malaria Hotspots in Haiti, a Low-Transmission Setting. The
American Journal of Tropical Medicine and Hygiene, 104(6), 2108.

Duczmal, L. H., Moreira, G. J., Burgarelli, D., Takahashi, R. H., Magalhées, F. C., &
Bodevan, E. C. (2011). Voronoi distance based prospective space-time scans for point data
sets: a dengue fever cluster analysis in a southeast Brazilian town. International Journal of
Health Geographics, 10(1), 1-14.

e Silva, M. d. A., Oliveira, C. D. L., Neto, R. G. T., & Camargos, P. A. (2016). Spatial
distribution of tuberculosis from 2002 to 2012 in a midsize city in Brazil. Bmc Public Health,
16(1), 1-8.

Edens, C., Alden, N. B., Danila, R. N., Fill, M.-M. A., Gacek, P., Muse, A., Parker, E.,
Poissant, T., Ryan, P. A., & Smelser, C. (2019). Multistate analysis of prospective
Legionnaires’ disease cluster detection using SaTScan, 2011-2015. Plos One, 14(5),
e0217632.

Elias, J., Harmsen, D., Claus, H., Hellenbrand, W., Frosch, M., & Vogel, U. (2006).
Spatiotemporal analysis of invasive meningococcal disease, Germany. Emerging Infectious
Diseases, 12(11), 1689.

Elson, R., Davies, T. M., Lake, I. R., Vivancos, R., Blomquist, P. B., Charlett, A., & Dabrera,
G. (2021). The spatio-temporal distribution of COVID-19 infection in England between
January and June 2020. Epidemiology & Infection, 149.

Fang, L. Q., De Vlas, S. J., Feng, D., Liang, S., Xu, Y. F., Zhou, J. P., Richardus, J. H., &
Cao, W. C. (2009). Geographical spread of SARS in mainland China. Tropical Medicine &
International Health, 14, 14-20.

Fariza, A., & Astuti, D. W. (2021). Spatial-Temporal Visualization of Dengue Haemorrhagic
Fever Vulnerability in Kediri District, Indonesia, Using K-means Algorithm. 2021
International Conference on Data and Software Engineering (ICoDSE),

Freitas, L. P., Cruz, O. G., Lowe, R., & S& Carvalho, M. (2019). Space-time dynamics of a
triple epidemic: dengue, chikungunya and Zika clusters in the city of Rio de Janeiro.
Proceedings of the Royal Society B, 286(1912), 20191867.

Fuentes-Vallejo, M. (2017). Space and space-time distributions of dengue in a hyper-
endemic urban space: the case of Girardot, Colombia. Bmc Infectious Diseases, 17(1), 1-16.
Gaudart, J., Poudiougou, B., Dicko, A., Ranque, S., Toure, O., Sagara, |., Diallo, M.,
Diawara, S., Ouattara, A., & Diakite, M. (2006). Space-time clustering of childhood malaria
at the household level: a dynamic cohort in a Mali village. Bmc Public Health, 6(1), 1-13.
Gaudart, J., Rebaudet, S., Barrais, R., Boncy, J., Faucher, B., Piarroux, M., Magloire, R.,
Thimothe, G., & Piarroux, R. (2013). Spatio-temporal dynamics of cholera during the first
year of the epidemic in Haiti. Plos Neglected Tropical Diseases, 7(4), e2145.

Ge, E., Zhang, X., Wang, X., & Wei, X. (2016). Spatial and temporal analysis of tuberculosis
in Zhejiang Province, China, 2009-2012. Infectious Diseases of Poverty, 5(1), 1-10.

Ge, L., Zhao, Y., Zhou, K., Mu, X., Yu, H., Wang, Y., Wang, N., Fan, H., Guo, L., & Huo,
X. (2016). Spatio-temporal pattern and influencing factors of hemorrhagic fever with renal
syndrome (HFRS) in Hubei Province (China) between 2005 and 2014. Plos One, 11(12),
e0167836.

Ghosh, P., & Cartone, A. (2020). A Spatio-temporal analysis of COVID-19 outbreak in Italy.
Regional Science Policy & Practice, 12(6), 1047-1062.



87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

126

Gomez-Barroso, D., Rodriguez-Valin, E., Ramis, R., & Cano, R. (2013). Spatio-temporal
analysis of tuberculosis in Spain, 2008-2010. The International journal of tuberculosis and
lung disease, 17(6), 745-751.

Gomez-Barroso, D., Varela, C., Ramis, R., Del Barrio, J., & Simon, F. (2012). Space-time
pattern of hepatitis A in Spain, 1997-2007. Epidemiology & Infection, 140(3), 407-416.
Greene, S. K., lonides, E. L., & Wilson, M. L. (2006). Patterns of influenza-associated
mortality among US elderly by geographic region and virus subtype, 1968—1998. American
Journal of Epidemiology, 163(4), 316-326.

Greene, S. K., Kulldorff, M., Huang, J., Brand, R. J., Kleinman, K. P., Hsu, J., & Platt, R.
(2011). Timely detection of localized excess influenza activity in Northern California across
patient care, prescription, and laboratory data. Statistics in Medicine, 30(5), 549-559.
Greene, S. K., Peterson, E. R., Balan, D., Jones, L., Culp, G. M., Fine, A. D., & Kulldorff, M.
(2021). Detecting COVID-19 Clusters at High Spatiotemporal Resolution, New York City,
New York, USA, June—July 2020. Emerging Infectious Diseases, 27(5), 1500.

Greene, S. K., Peterson, E. R., Kapell, D., Fine, A. D., & Kulldorff, M. (2016). Daily
reportable disease spatiotemporal cluster detection, New York City, New York, USA, 2014
2015. Emerging Infectious Diseases, 22(10), 1808.

Greene, S. K., Schmidt, M. A., Stobierski, M. G., & Wilson, M. L. (2005). Spatio-temporal
pattern of viral meningitis in Michigan, 1993-2001. Journal of Geographical Systems, 7(1),
85-99. https://doi.org/10.1007/s10109-005-0151-x

Grubesic, T. H., Nelson, J. R., Wallace, D., Eason, J., Towers, S., & Walker, J. (2021).
Geodemaographic insights on the COVID-19 pandemic in the State of Wisconsin and the role
of risky facilities. Geojournal, 1-23.

Guan, Z., Chen, C., Huang, C., Zhang, H., Zhou, Y., Zhou, Y., Wu, J., Zhou, Z., Yang, S., &
Li, L. (2021). Epidemiological features and spatial-temporal distribution of visceral
leishmaniasis in mainland China: a population-based surveillance study from 2004 to 2019.
Parasites & Vectors, 14(1), 1-11.

Guemes, A., Ray, S., Aboumerhi, K., Desjardins, M. R., Kvit, A., Corrigan, A. E., Fries, B.,
Shields, T., Stevens, R. D., & Curriero, F. C. (2021). A syndromic surveillance tool to detect
anomalous clusters of COVID-19 symptoms in the United States. Scientific Reports, 11(1),
1-11.

Gui, J., Liu, Z., Zhang, T., Hua, Q., Jiang, Z., Chen, B., Gu, H., Lv, H., & Dong, C. (2015).
Epidemiological characteristics and spatial-temporal clusters of hand, foot, and mouth
disease in Zhejiang Province, China, 2008-2012. Plos One, 10(9), e0139109.

Guis, H., Clerc, S., Hoen, B., & Viel, J.-F. (2006). Clusters of autochthonous hepatitis A
cases in a low endemicity area. Epidemiology & Infection, 134(3), 498-505.

Gurjav, U., Burneebaatar, B., Narmandakh, E., Tumenbayar, O., Ochirbat, B., Hill-
Cawthorne, G., Marais, B., & Sintchenko, V. (2015). Spatiotemporal evidence for cross-
border spread of MDR-TB along the Trans-Siberian Railway line. The International Journal
of Tuberculosis and Lung Disease, 19(11), 1376-1382.

Gurjav, U., Jelfs, P., Hill-Cawthorne, G. A., Marais, B. J., & Sintchenko, V. (2016).
Genotype heterogeneity of Mycobacterium tuberculosis within geospatial hotspots suggests
foci of imported infection in Sydney, Australia. Infection, Genetics and Evolution, 40, 346-
351.



https://doi.org/10.1007/s10109-005-0151-x

127

101. Hafeez, S., Amin, M., & Munir, B. A. (2017). Spatial mapping of temporal risk to
improve prevention measures: A case study of dengue epidemic in Lahore. Spatial and
Spatio-Temporal Epidemiology, 21, 77-85.

102. Hass, F. S., & Jokar Arsanjani, J. (2021). The geography of the COVID-19 pandemic: A
data-driven approach to exploring geographical driving forces. International Journal of
Environmental Research and Public Health, 18(6), 2803.

103. Hernandez-Gaytan, S. I, Diaz-Vasquez, F. J., Duran-Arenas, L. G., Cervantes, M. L., &
Rothenberg, S. J. (2017). 20 years spatial-temporal analysis of dengue fever and hemorrhagic
fever in Mexico. Archives of Medical Research, 48(7), 653-662.

104. Hervind, & Widyaningsih, Y. (2017). Dengue hemorrhagic fever and typhoid fever
association based on spatial standpoint using scan statistics in DKI Jakarta. AIP Conference
Proceedings.

105. Hiwat, H., Martinez-Lo6pez, B., Cairo, H., Hardjopawiro, L., Boerleider, A., Duarte, E.
C., & Yadon, Z. E. (2018). Malaria epidemiology in Suriname from 2000 to 2016: trends,
opportunities and challenges for elimination. Malaria Journal, 17(1), 1-13.

106. Hohl, A., & Chen, P. (2019). Spatiotemporal simulation: local Ripley's K function
parameterizes adaptive kernel density estimation. Proceedings of the 2nd ACM
SIGSPATIAL International Workshop on GeoSpatial Simulation,

107. Hohl, A., Delmelle, E., Tang, W., & Casas, I. (2016). Accelerating the discovery of
space-time patterns of infectious diseases using parallel computing. Spatial and Spatio-
Temporal Epidemiology, 19, 10-20.

108. Hohl, A., Delmelle, E. M., Desjardins, M. R., & Lan, Y. (2020). Daily surveillance of
COVID-19 using the prospective space-time scan statistic in the United States. Spatial and
Spatio-Temporal Epidemiology, 34, 100354.

109. Hohl, A., Delmelle, E. M., & Tang, W. (2015). Spatiotemporal domain decomposition for
massive parallel computation of space-time kernel density. ISPRS Annals of the
Photogrammetry, Remote Sensing and Spatial Information Sciences, 2(4), 7.

110. Hohl, A., Zheng, M., Tang, W., Delmelle, E., & Casas, I. (2017). Spatiotemporal point
pattern analysis using Ripley’s K function. Geospatial Data science techniques and
applications, 155-176.

111. Horwood, P. F., Karl, S., Mueller, 1., Jonduo, M. H., Pavlin, B. I., Dagina, R., Ropa, B.,
Bieb, S., Rosewell, A., & Umezaki, M. (2014). Spatio-temporal epidemiology of the cholera
outbreak in Papua New Guinea, 2009-2011. Bmc Infectious Diseases, 14(1), 1-10.

112. Hosein, S., Al-Tahir, R., & Ramlal, B. (2013). Spatiotemporal analysis of dengue
hemorrhagic fever and dengue shock syndrome incidence within Trinidad, West Indies
Proceedings of the Second ACM SIGSPATIAL International Workshop on the Use of GIS in
Public Health, Orlando, Florida._https://doi.org/10.1145/2535708.2535710

113. Hu, B., Gong, J., Zhou, J., Sun, J., Yang, L., Xia, Y., & Ibrahim, A. N. (2013). Spatial-
temporal characteristics of epidemic spread in-out flow—Using SARS epidemic in Beijing as
a case study. Science China Earth Sciences, 56(8), 1380-1397.

114.  Hu, W., Clements, A., Williams, G., & Tong, S. (2011). Spatial analysis of notified
dengue fever infections. Epidemiology & Infection, 139(3), 391-399.

115. Huang, J., Kwan, M.-P., & Kan, Z. (2021). The superspreading places of COVID-19 and
the associated built-environment and socio-demographic features: A study using a spatial
network framework and individual-level activity data. Health & Place, 72, 102694.



https://doi.org/10.1145/2535708.2535710

128

116. Huang, L., Li, X.-X., Abe, E. M., Xu, L., Ruan, Y., Cao, C.-L., & Li, S.-Z. (2017).
Spatial-temporal analysis of pulmonary tuberculosis in the northeast of the Yunnan province,
People's Republic of China. Infectious Diseases of Poverty, 6(02), 57-67.

117. Huang, L., Michael Abe, E., Li, X.-X., Bergquist, R., Xu, L., Xue, J.-B., Ruan, Y., Cao,
C.-L., & Li, S.-Z. (2018). Space-time clustering and associated risk factors of pulmonary
tuberculosis in southwest China. Infectious Diseases of Poverty, 7(04), 63-73.

118. Huang, Q., Hu, L., Liao, Q.-b., Xia, J., Wang, Q.-r., & Peng, H.-J. (2017). Spatiotemporal
analysis of the malaria epidemic in Mainland China, 2004—-2014. The American journal of
tropical medicine and hygiene, 97(2), 504.

119. Huang, Q., Jackson, S., Derakhshan, S., Lee, L., Pham, E., Jackson, A., & Cultter, S. L.
(2021). Urban-rural differences in COVID-19 exposures and outcomes in the South: A
preliminary analysis of South Carolina. Plos One, 16(2), e0246548.
https://doi.org/10.1371/journal.pone.0246548

120. Huang, Z. (2021). Spatiotemporal Evolution Patterns of the COVID-19 Pandemic Using
Space-Time Aggregation and Spatial Statistics: A Global Perspective. ISPRS International
Journal of Geo-Information, 10(8), 519.

121.  Hui, F.-M,, Xu, B., Chen, Z.-W., Cheng, X., Liang, L., Huang, H.-B., Fang, L.-Q., Yang,
H., Zhou, H.-N., & Yang, H.-L. (2009). Spatio-temporal distribution of malaria in Yunnan
Province, China. Am J Trop Med Hyg, 81(3), 503-509.

122. Hundessa, S. H., Williams, G., Li, S., Guo, J., Chen, L., Zhang, W., & Guo, Y. (2016).
Spatial and space-time distribution of Plasmodium vivax and Plasmodium falciparum malaria
in China, 2005-2014. Malaria Journal, 15(1), 1-11.

123. Hussain, S., Mubeen, M., Ahmad, A., Fahad, S., Nasim, W., Hammad, H. M., Shah, G.
M., Murtaza, B., Tahir, M., & Parveen, S. (2021). Using space-time scan statistic for
studying the effects of COVID-19 in Punjab, Pakistan: a guideline for policy measures in
regional agriculture. Environmental Science and Pollution Research, 1-14.

124. Jalilian, F. A., Parvin, M., Olfatifar, M., Erfani, H., & Bathaei, J. (2018). The critical role
of injecting drug users on the spatial distribution of hepatitis C virus; a study in the West of
Iran. Gastroenterology and Hepatology from Bed to Bench, 11(Suppl 1), S129.

125. Jat, M. K., & Mala, S. (2017). Application of GIS and Space-Time Scan Statistic for
Vector Born Disease Clustering Proceedings of the 10th International Conference on Theory
and Practice of Electronic Governance, New Delhi AA, India.
https://doi.org/10.1145/3047273.3047361

126. Jaya, I., Andriyana, Y., Tantular, B., & Ruchjana, B. (2019). Spatiotemporal Dengue
Disease Clustering by Means Local Spatiotemporal Moran’s Index. IOP Conference Series:
Materials Science and Engineering,

127. Jeefoo, P., Tripathi, N. K., & Souris, M. (2011). Spatio-temporal diffusion pattern and
hotspot detection of dengue in Chachoengsao province, Thailand. International Journal of
Environmental Research and Public Health, 8(1), 51-74.

128. Jiang, L., Li, Z., Huang, J., Liu, B., Yang, Y., Lin, L., Wang, C., Xie, X., Peng, X., & Xu,
W. (2019). Spatiotemporal clusters of HIVV/AIDS infections caused by drug use and
heterosexual contact in Ruili city, China 1989-2016. Bmc Infectious Diseases, 19(1), 1-9.

129. Jones, S. G., & Kulldorff, M. (2012). Influence of Spatial Resolution on Space-Time
Disease Cluster Detection. Plos One, 7(10), e48036.
https://doi.org/10.1371/journal.pone.0048036



https://doi.org/10.1371/journal.pone.0246548
https://doi.org/10.1371/journal.pone.0246548
https://doi.org/10.1145/3047273.3047361
https://doi.org/10.1145/3047273.3047361
https://doi.org/10.1371/journal.pone.0048036
https://doi.org/10.1371/journal.pone.0048036

129

130. Kammerer, J. S., Shang, N., Althomsons, S. P., Haddad, M. B., Grant, J., & Navin, T. R.
(2013). Using statistical methods and genotyping to detect tuberculosis outbreaks.
International Journal of Health Geographics, 12(1), 1-8.

131. Kan, C.-C,, Lee, P.-F., Wen, T.-H., Chao, D.-Y., Wu, M.-H., Lin, N. H., Huang, S. Y.-J.,
Shang, C.-S., Fan, 1.-C., & Shu, P.-Y. (2008). Two clustering diffusion patterns identified
from the 2001-2003 dengue epidemic, Kaohsiung, Taiwan. The American journal of tropical
medicine and hygiene, 79(3), 344-352.

132. Kan, Z., Kwan, M.-P., Wong, M. S., Huang, J., & Liu, D. (2021). Identifying the space-
time patterns of COVID-19 risk and their associations with different built environment
features in Hong Kong. Science of the Total Environment, 772, 145379.

133.  Kan, Z., Kwan, M. P., Huang, J., Wong, M. S., & Liu, D. (2021). Comparing the space-
time patterns of high-risk areas in different waves of COVID-19 in Hong Kong. Transactions
in Gis, 25(6), 2982-3001.

134. Kang, D., Choi, H., Kim, J.-H., & Choi, J. (2020). Spatial epidemic dynamics of the
COVID-19 outbreak in China. International Journal of Infectious Diseases, 94, 96-102.

135. Kayembe, H. C. N., Linard, C., Bompangue, D., Muwonga, J., Moutschen, M.,
Situakibanza, H., & Ozer, P. (2021). The spread of cholera in western Democratic Republic
of the Congo is not unidirectional from East-West: a spatiotemporal analysis, 1973-2018.
Bmc Infectious Diseases, 21(1), 1-11.

136. Kazazian, L., Lima Neto, A. S., Sousa, G. S., Nascimento, O. J. d., & Castro, M. C.
(2020). Spatiotemporal transmission dynamics of co-circulating dengue, Zika, and
chikungunya viruses in Fortaleza, Brazil: 2011-2017. Plos Neglected Tropical Diseases,
14(10), e0008760.

137. Kejzar, N., & Lusa, L. (2020). Classification of weekly provincial overall age-and
gender-specific mortality patterns during the COVID-19 epidemics in Italy. Epidemiologia e
prevenzione, 44(5-6 Suppl 2), 271-281.

138. Khademi, N., Reshadat, S., Zangeneh, A., Saeidi, S., Ghasemi, S., Rajabi-Gilan, N., &
Zakiei, A. (2017). A comparative study of the spatial distribution of HIV prevalence in the
metropolis of Kermanshah, Iran, in 1996— 2014 using geographical information systems. Hiv
Medicine, 18(3), 220-224.

139. Khalique, F., Shaheen, R., & Khan, S. A. (2020). Spatio-Temporal Investigations of
Dengue Fever in Pakistan Through an HL7 Based Public Health Framework for Hotspot
Analysis. IEEE Access, 8, 199980-199994. https://doi.org/10.1109/ACCESS.2020.3027234

140. Kiani, B., Raouf Rahmati, A., Bergquist, R., Hashtarkhani, S., Firouraghi, N., Bagheri,
N., Moghaddas, E., & Mohammadi, A. (2021). Spatio-temporal epidemiology of the
tuberculosis incidence rate in Iran 2008 to 2018. Bmc Public Health, 21(1), 1-20.

141. Kim, S., Kim, M., Lee, S., & Lee, Y. J. (2021). Discovering spatiotemporal patterns of
COVID-19 pandemic in South Korea. Scientific Reports, 11(1), 1-17.

142. Kim, Y. H., Ahn, H. J,, Kim, D., Hong, S. J., Kim, T. S., & Nam, H. W. (2021). Recent
Spatial and Temporal Trends of Malaria in Korea. Korean J Parasitol, 59(6), 585-593.
https://doi.org/10.3347/kjp.2021.59.6.585

143. Kleinman, K., Abrams, A., Katherine Yih, W., Platt, R., & Kulldorff, M. (2006).
Evaluating spatial surveillance: detection of known outbreaks in real data. Statistics in
Medicine, 25(5), 755-769.



https://doi.org/10.1109/ACCESS.2020.3027234
https://doi.org/10.3347/kjp.2021.59.6.585
https://doi.org/10.3347/kjp.2021.59.6.585

130

144.  Kulldorff, M., Heffernan, R., Hartman, J., Assuncao, R., & Mostashari, F. (2005). A
space-time permutation scan statistic for disease outbreak detection [Article]. Plos Medicine,
2(3), 216-224, Article €59. https://doi.org/10.1371/journal.pmed.0020059

145.  Kuo, F.-Y., Wen, T.-H., & Sabel, C. E. (2018). Characterizing diffusion dynamics of
disease clustering: a modified space-time DBSCAN (MST-DBSCAN) algorithm. Annals of
the American Association of Geographers, 108(4), 1168-1186.

146. Ladoy, A., Opota, O., Carron, P.-N., Guessous, I., Vuilleumier, S., Joost, S., & Greub, G.
(2021). Size and duration of COVID-19 clusters go along with a high SARS-CoV-2 viral
load: A spatio-temporal investigation in Vaud state, Switzerland. Science of the Total
Environment, 787, 147483.

147. Lai, W. T., Chen, C. H., Hung, H., Chen, R. B., Shete, S., & Wu, C. C. (2018).
Recognizing spatial and temporal clustering patterns of dengue outbreaks in Taiwan. BMC
Infect Dis, 18(1), 256._https://doi.org/10.1186/s12879-018-3159-9

148. Lan, Y., Desjardins, M. R., Hohl, A., & Delmelle, E. (2021). Geovisualization of
COVID-19: State of the Art and Opportunities. Cartographica: The International Journal for
Geographic Information and Geovisualization, 56(1), 2-13.

149. Lazarus, N. W. (2021). Multivariate analysis of the dengue virus in Sri Lanka using the
ordination method. Geojournal, 86(1), 281-302. https://doi.org/10.1007/s10708-019-10069-3

150. Le Viet, T., Choisy, M., Bryant, J. E., Vu Trong, D., Pham Quang, T., Horby, P., Nguyen
Tran, H., Tran Thi Kieu, H., Nguyen Vu, T., & Nguyen Van, K. (2015). A dengue outbreak
on a floating village at Cat Ba Island in Vietnam. Bmc Public Health, 15(1), 1-8.

151. Leal, P. R., de Paula, R. J., Guimarées, S., & Kampel, M. (2021). Sociodemographic and
spatiotemporal profiles of hepatitis-A in the state of Para, Brazil, based on reported notified
cases. Geospatial Health, 16(2).

152. Lee, S.S., & Wong, N. S. (2011). The clustering and transmission dynamics of pandemic
influenza A (HIN1) 2009 cases in Hong Kong. Journal of Infection, 63(4), 274-280.

153. Leveau, C. M., Uez, O., & Vacchino, M. N. (2015). Spatiotemporal trends of cases of
pandemic influenza A (H1N1) pdmQ9 in Argentina, 2009-2012. Revista Do Instituto De
Medicina Tropical De Sao Paulo, 57, 133-138.

154. Li, F., He, F., Sun, J., Zhai, Y., Jiang, J., & Lin, J. (2019). Spatial and temporal analysis
of severe fever with thrombocytopenia syndrome in Zhejiang Province, China, 2011-2015.
The Journal of Infection in Developing Countries, 13(01), 35-43.

155.  Li, J., Kolivras, K. N., Hong, Y., Duan, Y., Seukep, S. E., Prisley, S. P., Campbell, J. B.,
& Gaines, D. N. (2014). Spatial and temporal emergence pattern of Lyme disease in Virginia.
Am J Trop Med Hyg, 91(6), 1166-1172. https://doi.org/10.4269/ajtmh.13-0733

156. Li, L., Xi, Y., &Ren, F. (2016). Spatio-temporal distribution characteristics and
trajectory similarity analysis of tuberculosis in Beijing, China. International Journal of
Environmental Research and Public Health, 13(3), 291.

157. Li, Q., Cao, W., Ren, H., Ji, Z., & Jiang, H. (2018). Spatiotemporal responses of dengue
fever transmission to the road network in an urban area. Acta Tropica, 183, 8-13.

158. Li, T., Cheng, Q., Li, C., Stokes, E., Collender, P., Ohringer, A., Li, X., Li, J., Zelner, J.
L., & Liang, S. (2019). Evidence for heterogeneity in China’s progress against pulmonary
tuberculosis: uneven reductions in a major center of ongoing transmission, 2005-2017. Bmc
Infectious Diseases, 19(1), 1-11.



https://doi.org/10.1371/journal.pmed.0020059
https://doi.org/10.1186/s12879-018-3159-9
https://doi.org/10.1007/s10708-019-10069-3
https://doi.org/10.4269/ajtmh.13-0733

131

159. Li, X,, Chen, D., Zhang, Y., Xue, X., Zhang, S., Chen, M., Liu, X., & Ding, G. (2021).
Analysis of spatial-temporal distribution of notifiable respiratory infectious diseases in
Shandong Province, China during 2005-2014. Bmc Public Health, 21(1), 1-13.

160. Li, Z, Fu,J., Lin, G, & Jiang, D. (2019). Spatiotemporal variation and hotspot detection
of the avian influenza A (H7N9) virus in China, 2013-2017. International Journal of
Environmental Research and Public Health, 16(4), 648.

161. Li, Z, Yin, W, Clements, A., Williams, G., Lai, S., Zhou, H., Zhao, D., Guo, Y., Zhang,
Y., & Wang, J. (2012). Spatiotemporal analysis of indigenous and imported dengue fever
cases in Guangdong province, China. Bmc Infectious Diseases, 12(1), 1-9.

162. Liao, W.-B., Ju, K., Gao, Y.-M., & Pan, J. (2020). The association between internal
migration and pulmonary tuberculosis in China, 2005-2015: a spatial analysis. Infectious
Diseases of Poverty, 9(1), 1-12.

163. Lin, C.-H., Schigler, K. L., Jepsen, M. R., Ho, C.-K,, Li, S.-H., & Konradsen, F. (2012).
Dengue outbreaks in high-income area, Kaohsiung City, Taiwan, 2003—-2009. Emerging
Infectious Diseases, 18(10), 1603.

164. Ling, C. Y., Gruebner, O., Krdmer, A., & Lakes, T. (2014). Spatio-temporal patterns of
dengue in Malaysia: combining address and sub-district level. Geospatial Health, 9(1), 131-
140.

165. Lippi, C. A., Stewart-Ibarra, A. M., Romero, M., Lowe, R., Mahon, R., Van Meerbeeck,
C. J., Rollock, L., Hilaire, M. G.-S., Trotman, A. R., & Holligan, D. (2020). Spatiotemporal
tools for emerging and endemic disease hotspots in small areas: An analysis of dengue and
chikungunya in Barbados, 2013-2016. The American Journal of Tropical Medicine and
Hygiene, 103(1), 149.

166. Liu, K., Sun, J., Liu, X,, Li, R., Wang, Y., Lu, L., Wu, H., Gao, Y., Xu, L., & Liu, Q.
(2018). Spatiotemporal patterns and determinants of dengue at county level in China from
2005-2017. International Journal of Infectious Diseases, 77, 96-104.

167. Liu, S., Qin, Y., Xie, Z., & Zhang, J. (2020). The spatio-temporal characteristics and
influencing factors of covid-19 spread in Shenzhen, China—An analysis based on 417 cases.
International Journal of Environmental Research and Public Health, 17(20), 7450.

168. Liu, W., Wang, D., Hua, S., Xie, C., Wang, B., Qiu, W., Xu, T., Ye, Z,, Yu, L., & Yang,
M. (2021). Spatiotemporal analysis of COVID-19 outbreaks in Wuhan, China. Scientific
Reports, 11(1), 1-9.

169. Liu, W., Yang, K., Qi, X, Xu, K., Ji, H., Ai, J., Ge, A., Wu, Y., Li, Y., & Dai, Q. (2013).
Spatial and temporal analysis of human infection with avian influenza A (H7N9) virus in
China, 2013. Eurosurveillance, 18(47), 20640.

170. Liu, Y., Li, X., Wang, W., Li, Z., Hou, M., He, Y., Wu, W., Wang, H., Liang, H., & Guo,
X. (2012). Investigation of space-time clusters and geospatial hot spots for the occurrence of
tuberculosis in Beijing. The International Journal of Tuberculosis and Lung Disease, 16(4),
486-491.

171. Low, G. K., Papapreponis, P., Isa, R. M., Gan, S. C., Chee, H. Y., Te, K. K., & Hatta, N.
M. (2018). Geographical distribution and spatio-temporal patterns of hospitalization due to
dengue infection at a leading specialist hospital in Malaysia. Geospatial Health, 13(1).

172. Ma, Q., Gao, J., Zhang, W., Wang, L., Li, M., Shi, J., Zhai, Y., Sun, D., Wang, L., &
Chen, B. (2021). Spatio-temporal distribution characteristics of COVID-19 in China: a city-
level modeling study. Bmc Infectious Diseases, 21(1), 1-14.



132

173.  Majid, N. A., & Rasdi, R. M. (2020). Dengue Hotspot Detection in Bangi, Selangor,
Malaysia. IOP Conference Series: Earth and Environmental Science, 540(1), 012041.
https://doi.org/10.1088/1755-1315/540/1/012041

174. Majumdar, S. (2021). Spatiotemporal pattern and hotspot detection of malaria using
spatial analysis and GIS in West Bengal: an approach to medical GIS. In Healthcare
Paradigms in the Internet of Things Ecosystem (pp. 83-100). Elsevier.

175. Mala, S., & Jat, M. K. (2019). Geographic information system based spatio-temporal
dengue fever cluster analysis and mapping. The Egyptian Journal of Remote Sensing and
Space Science, 22(3), 297-304.

176. Malvisi, L., Troisi, C. L., & Selwyn, B. J. (2018). Analysis of the spatial and temporal
distribution of malaria in an area of Northern Guatemala with seasonal malaria transmission.
Parasitology research, 117(9), 2807-2822.

177. Manabe, T., Phan, D., Nohara, Y., Kambayashi, D., Nguyen, T. H., Van Do, T., & Kudo,
K. (2021). Spatiotemporal distribution of COVID-19 during the first 7 months of the
epidemic in Vietnam. Bmc Infectious Diseases, 21(1), 1-8.

178. Manabe, T., Yamaoka, K., Tango, T., Binh, N. G., Co, D. X., Tuan, N. D., Izumi, S.,
Takasaki, J., Chau, N. Q., & Kudo, K. (2015). Chronological, geographical, and seasonal
trends of human cases of avian influenza A (H5N1) in Vietnam, 2003-2014: a spatial
analysis. Bmc Infectious Diseases, 16(1), 1-8.

179. Mao, Q., Zeng, C., Zheng, D., & Yang, Y. (2019). Analysis on spatial-temporal
distribution characteristics of smear positive pulmonary tuberculosis in China, 2004-2015.
International Journal of Infectious Diseases, 80, S36-S44.

180. Mao, Y., He, R., Zhu, B., Liu, J., & Zhang, N. (2020). Notifiable respiratory infectious
diseases in China: a spatial-temporal epidemiology analysis. International Journal of
Environmental Research and Public Health, 17(7), 2301.

181. Mao, Y., Zhang, N., Zhu, B., Liu, J., & He, R. (2019). A descriptive analysis of the
Spatio-temporal distribution of intestinal infectious diseases in China. Bmc Infectious
Diseases, 19(1), 1-14.

182. Marek, L., Tucek, P., & Paszto, V. (2015). Using geovisual analytics in Google Earth to
understand disease distribution: a case study of campylobacteriosis in the Czech Republic
(2008-2012). International Journal of Health Geographics, 14(1), 1-13.

183. Martins-Melo, F. R., Ramos Jr, A. N., Cavalcanti, M. G., Alencar, C. H., & Heukelbach,
J. (2017). Reprint of “Neurocysticercosis-related mortality in Brazil, 2000-2011:
Epidemiology of a neglected neurologic cause of death”. Acta Tropica, 165, 170-178.

184. Masrur, A., Yu, M., Luo, W., & Dewan, A. (2020). Space-time patterns, change, and
propagation of COVID-19 risk relative to the intervention scenarios in Bangladesh.
International Journal of Environmental Research and Public Health, 17(16), 5911.

185. Mclntosh, A. 1., Jenkins, H. E., White, L. F., Barnard, M., Thomson, D. R., Dolby, T.,
Simpson, J., Streicher, E. M., Kleinman, M. B., & Ragan, E. J. (2018). Using routinely
collected laboratory data to identify high rifampicin-resistant tuberculosis burden
communities in the Western Cape Province, South Africa: A retrospective spatiotemporal
analysis. Plos Medicine, 15(8), €1002638.

186. Mee, P., Collinson, M. A., Madhavan, S., Root, E. D., Tollman, S. M., Byass, P., &
Kahn, K. (2014). Evidence for localised HIV related micro—epidemics associated with the
decentralised provision of antiretroviral treatment in rural South Africa: a spatio—temporal
analysis of changing mortality patterns (2007—-2010). Journal of global health, 4(1).



https://doi.org/10.1088/1755-1315/540/1/012041
https://doi.org/10.1088/1755-1315/540/1/012041

133

187. Meiring, S., Cohen, C., de Gouveia, L., du Plessis, M., Kularatne, R., Hoosen, A.,
Lekalakala, R., Lengana, S., Seetharam, S., & Naicker, P. (2019). Declining incidence of
invasive meningococcal disease in South Africa: 2003-2016. Clinical Infectious Diseases,
69(3), 495-504.

188. Melchior, L. A. K., & Neto, F. C. (2016). Spatial and spatio-temporal analysis of malaria
in the state of Acre, western Amazon, Brazil. Geospatial Health, 11(3).

189. Mercado, C. E. G., Lawpoolsri, S., Sudathip, P., Kaewkungwal, J., Khamsiriwatchara, A.,
Pan-Ngum, W., Yimsamran, S., Lawawirojwong, S., Ho, K., & Ekapirat, N. (2019).
Spatiotemporal epidemiology, environmental correlates, and demography of malaria in Tak
Province, Thailand (2012-2015). Malaria Journal, 18(1), 1-15.

190. Mesquita, C. R., Enk, M. J., & Guimaraes, R. J. d. P. S. (2021). Spatial analysis studies of
endemic diseases for health surveillance: Application of scan statistics for surveillance of
tuberculosis among residents of a metropolitan municipality aged 60 years and above.
Ciencia & Saude Coletiva, 26, 5149-5156.

191. Meyers, D. J., Hood, M. E., & Stopka, T. J. (2014). HIV and hepatitis C mortality in
Massachusetts, 2002—-2011: spatial cluster and trend analysis of HIV and HCV using multiple
cause of death. Plos One, 9(12), e114822.

192. Mo, C, Tan, D., Mai, T., Bei, C., Qin, J., Pang, W., & Zhang, Z. (2020). An analysis of
spatiotemporal pattern for COIVD-19 in China based on space-time cube. Journal of Medical
Virology, 92(9), 1587-1595.

193. MohammadEbrahimi, S., Mohammadi, A., Bergquist, R., Dolatkhah, F., Olia, M.,
Tavakolian, A., Pishgar, E., & Kiani, B. (2021). Epidemiological characteristics and initial
spatiotemporal visualisation of COVID-19 in a major city in the Middle East. Bmc Public
Health, 21(1), 1-18.

194. Moirano, G., Richiardi, L., Calzolari, M., Merletti, F., & Maule, M. (2020). Recent rapid
changes in the spatio-temporal distribution of West Nile Neuro-invasive Disease in Italy.
Zoonoses and Public Health, 67(1), 54-61.

195. Morato, D. G., Barreto, F. R., Braga, J. U., Natividade, M. S., Costa, M. d. C. N., Morato,
V., & Teixeira, M. d. G. L. C. (2015). The spatiotemporal trajectory of a dengue epidemic in
a medium-sized city. Memorias Do Instituto Oswaldo Cruz, 110, 528-533.

196. Morrison, A. C., Getis, A., Santiago, M., Rigau-Perez, J. G., & Reiter, P. (1998).
Exploratory space-time analysis of reported dengue cases during an outbreak in Florida,
Puerto Rico, 1991-1992. Am J Trop Med Hyg, 58(3), 287-298.
https://doi.org/10.4269/ajtmh.1998.58.287

197. Mulatti, P., Mazzucato, M., Montarsi, F., Ciocchetta, S., Capelli, G., Bonfanti, L., &
Marangon, S. (2015). Retrospective space-time analysis methods to support west nile virus
surveillance activities. Epidemiology & Infection, 143(1), 202-213.

198. Muttitanon, W. (2021). Clustering Analysis Influenza Disease to Identify Spatio-
Temporal Spread Pattern in Thailand. International Journal of Geoinformatics, 17(5).

199. Mylona, E. K., Shehadeh, F., Kalligeros, M., Benitez, G., Chan, P. A., & Mylonakis, E.
(2020). Real-time spatiotemporal analysis of microepidemics of influenza and COVID-19
based on hospital network data: colocalization of neighborhood-level hotspots. American
Journal of Public Health, 110(12), 1817-1824.

200. Naim, M., Sahani, M., Hod, R., Hidayatulfathi, O., Idrus, S., Norzawati, Y., Hazrin, H.,
Tahir, A., Wen, T., & King, C. (2014). Spatial-temporal analysis for identification of



https://doi.org/10.4269/ajtmh.1998.58.287
https://doi.org/10.4269/ajtmh.1998.58.287

134

vulnerability to dengue in Seremban district, Malaysia. International Journal of
Geoinformatics.

201. Naish, S., Dale, P., Mackenzie, J. S., McBride, J., Mengersen, K., & Tong, S. (2014).
Spatial and temporal patterns of locally-acquired dengue transmission in northern
Queensland, Australia, 1993-2012. Plos One, 9(4), 92524,

202. Naish, S., & Tong, S. (2014). Hot spot detection and spatio-temporal dynamics of dengue
in Queensland, Australia. Proceedings of the ISPRS Technical Commission VIII Symposium
[International Archives of the Photogrammetry, Remote Sensing and Spatial Information
Sciences-ISPRS Archives, Volume XL-8],

203. Nagvi, S. A. A, Sajjad, M., Waseem, L. A., Khalid, S., Shaikh, S., & Kazmi, S. J. H.
(2021). Integrating Spatial Modelling and Space-time Pattern Mining Analytics for Vector
Disease-Related Health Perspectives: A Case of Dengue Fever in Pakistan. International
Journal of Environmental Research and Public Health, 18(22), 12018.

204. Nascimento, M. L. F. (2020). A multivariate analysis on spatiotemporal evolution of
Covid-19 in Brazil. Infectious Disease Modelling, 5, 670-680.

205. Nazia, N., Ali, M., Jakariya, M., Nahar, Q., Yunus, M., & Emch, M. (2018). Spatial and
population drivers of persistent cholera transmission in rural Bangladesh: Implications for
vaccine and intervention targeting. Spatial and Spatio-Temporal Epidemiology, 24, 1-9.

206. Ngwa, M. C., Ihekweazu, C., Okwor, T., Yennan, S., Williams, N., Elimian, K., Karaye,
N. Y., Bello, I. W., & Sack, D. A. (2021). The cholera risk assessment in Kano State,
Nigeria: A historical review, mapping of hotspots and evaluation of contextual factors. Plos
Neglected Tropical Diseases, 15(1), e0009046.

207. Nimbalkar, P. M., & Tripathi, N. K. (2016). Space-time epidemiology and effect of
meteorological parameters on influenza-like illness in Phitsanulok, a northern province in
Thailand. Geospatial Health, 11(3).

208. Nogé, A., Zaman, S. ., Rahman, M., Saha, A. K., Aktaruzzaman, M., & Maude, R. J.
(2018). Mapping the stability of malaria hotspots in Bangladesh from 2013 to 2016. Malaria
Journal, 17(1), 1-21.

209. Nsoesie, E. O., Ricketts, R. P., Brown, H. E., Fish, D., Durham, D. P., Ndeffo Mbah, M.
L., Christian, T., Ahmed, S., Marcellin, C., & Shelly, E. (2015). Spatial and temporal
clustering of chikungunya virus transmission in Dominica. Plos Neglected Tropical Diseases,
9(8), e0003977.

210. Olfatifar, M., Karami, M., Hosseini, S. M., & Parvin, M. (2016). Clustering of pulmonary
tuberculosis in Hamadan province, west of Iran: a population based cross sectional study
(2005-2013). Journal of Research in Health Sciences, 16(3), 166.

211. Oliveira, L. R. d., Santos, E. S. d., & Souto, F. J. D. (2020). Syphilis in pregnant women
and congenital syphilis: spatial pattern and relationship with social determinants of health in
Mato Grosso. Revista Da Sociedade Brasileira De Medicina Tropical, 53.

212. Onozuka, D., & Hagihara, A. (2007). Geographic prediction of tuberculosis clusters in
Fukuoka, Japan, using the space-time scan statistic. Bmc Infectious Diseases, 7(1), 1-9.

213. Owusu-Edusei, K., & Owens, C. J. (2009). Monitoring county-level chlamydia incidence
in Texas, 2004-2005: application of empirical Bayesian smoothing and Exploratory Spatial
Data Analysis (ESDA) methods. International Journal of Health Geographics, 8(1), 1-6.

214.  Owusu, C., Desjardins, M. R., Baker, K. M., & Delmelle, E. (2019). Residential mobility
impacts relative risk estimates of space-time clusters of chlamydia in Kalamazoo County,
Michigan. Geospatial Health, 14(2).



135

215. Pai, S., Polgreen, P. M., Segre, A. M., Sewell, D. K., & Pemmaraju, S. V. (2020).
Spatiotemporal clustering of in-hospital Clostridioides difficile infection. Infection Control &
Hospital Epidemiology, 41(4), 418-424.

216. Panahi, M. H., Parsaeian, M., Mansournia, M. A., Khoshabi, M., Gouya, M. M., Hemati,
P., & Fotouhi, A. (2020). A spatio-temporal analysis of influenza-like illness in Iran from
2011 to 2016. Medical Journal of the Islamic Republic of Iran, 34, 65.

217. Pardhan-Ali, A., Berke, O., Wilson, J., Edge, V. L., Furgal, C., Reid-Smith, R., Santos,
M., & McEwen, S. A. (2012). A spatial and temporal analysis of notifiable gastrointestinal
illness in the Northwest Territories, Canada, 1991-2008. International Journal of Health
Geographics, 11(1), 1-10.

218. Park, S., Nam, H.-S., & Na, B.-J. (2021). Evaluating the spatial and temporal patterns of
the severe fever thrombocytopenia syndrome in Republic of Korea. Geospatial Health, 16(2).

219. Parra-Amaya, M. E., Puerta-Yepes, M. E., Lizarralde-Bejarano, D. P., & Arboleda-
Sénchez, S. (2016). Early detection for dengue using local indicator of spatial association
(LISA) analysis. Diseases, 4(2), 16.

220. Pasaribu, A. P., Tsheten, T., Yamin, M., Maryani, Y., Fahmi, F., Clements, A. C., Gray,
D. J., & Wangdi, K. (2021). Spatio-temporal patterns of dengue incidence in Medan city,
North Sumatera, Indonesia. Tropical Medicine and Infectious Disease, 6(1), 30.

221. Pearson, A. L., Kingham, S., Mitchell, P., & Apparicio, P. (2013). Exploring hotspots of
pneumococcal pneumonia and potential impacts of ejecta dust exposure following the
Christchurch earthquakes. Spatial and Spatio-Temporal Epidemiology, 7, 1-9.

222.  Pellini, A. C. G., Chiaravalloti-Neto, F., & Zanetta, D. M. T. (2020). AIDS in men in the
city of Sdo Paulo, 1980-2012: spatial and space-time analysis. Revista De Saude Publica, 54,
96.

223. Petersen, J., Gibin, M., Sile, B., & Simmes, 1. (2016). Identifying and interpreting
spatiotemporal variation in diagnoses of infectious syphilis among men, England: 2009 to
2013. Sexually Transmitted Infections, 92(5), 380-386.

224. Pijnacker, R., Mughini-Gras, L., Vennema, H., Enserink, R., Van den Wijngaard, C.,
Kortbeek, T., & van Pelt, W. (2016). Characteristics of child daycare centres associated with
clustering of major enteropathogens. Epidemiology & Infection, 144(12), 2527-2539.

225.  Pinchoff, J., Chipeta, J., Banda, G. C., Miti, S., Shields, T., Curriero, F., & Moss, W. J.
(2015). Spatial clustering of measles cases during endemic (1998-2002) and epidemic (2010)
periods in Lusaka, Zambia. Bmc Infectious Diseases, 15(1), 1-8.

226. Pinchoff, J., Henostroza, G., Carter, B. S., Roberts, S. T., Hatwiinda, S., Hamainza, B.,
Hawela, M., & Curriero, F. C. (2015). Spatial patterns of incident malaria cases and their
household contacts in a single clinic catchment area of Chongwe District, Zambia. Malaria
Journal, 14(1), 1-7.

227. Pishgar, E., Fanni, Z., Tavakkolinia, J., Mohammadi, A., Kiani, B., & Bergquist, R.
(2020). Mortality rates due to respiratory tract diseases in Tehran, Iran during 2008-2018: a
spatiotemporal, cross-sectional study. Bmc Public Health, 20(1), 1-12.

228. Portella, T. P., & Kraenkel, R. A. (2021). Spatial-temporal pattern of cutaneous
leishmaniasis in Brazil. Infectious Diseases of Poverty, 10(03), 47-57.

229. Qi, C, Zhu, Y., Li, C., Hu, Y., Liu, L., Zhang, D., Wang, X., She, K., Jia, Y., & Liu, T.
(2020). Epidemiological characteristics and spatial— temporal analysis of COVID-19 in
Shandong Province, China. Epidemiology & Infection, 148.



136

230. Qin, Q., Guo, W., Tang, W., Mahapatra, T., Wang, L., Zhang, N., Ding, Z., Cai, C., Cui,
Y., & Sun, J. (2017). Spatial analysis of the human immunodeficiency virus epidemic among
men who have sex with men in China, 2006-2015. Clinical Infectious Diseases, 64(7), 956-
963.

231. Rahman, M., Islam, A., & Islam, M. (2021). Geospatial modelling on the spread and
dynamics of 154 day outbreak of the novel coronavirus (COVID-19) pandemic in
Bangladesh towards vulnerability zoning and management approaches. Modeling earth
systems and environment, 7(3), 2059-2087.

232. Ramirez, I. J., Lee, J., & Grady, S. C. (2018). Mapping Multi-Disease Risk during El
Nifio: An Ecosyndemic Approach. Int J Environ Res Public Health, 15(12).
https://doi.org/10.3390/ijerph15122639

233. Reinhardt, M., Elias, J., Albert, J., Frosch, M., Harmsen, D., & Vogel, U. (2008).
EpiScanGIS: an online geographic surveillance system for meningococcal disease.
International Journal of Health Geographics, 7(1), 1-7.

234. Rejeki, D., Nurhayati, N., & Aji, B. (2021). A spatiotemporal analysis of dengue
hemorrhagic fever in Banyumas, Indonesia. Int. J. Public Health Sci.(1JPHS), 10, 231-240.

235. Rejeki, D. S. S., Fuad, A., Widartono, B. S., Murhandarwati, E., & Kusnanto, H. (2019).
Spatiotemporal patterns of malaria at cross-boundaries area in Menoreh Hills, Java,
Indonesia. Malaria Journal, 18(1), 1-12.

236. Ren, H., Ning, W, Lu, L., Zhuang, D., & Liu, Q. (2015). Characterization of dengue
epidemics in mainland China over the past decade. The Journal of Infection in Developing
Countries, 9(09), 970-976.

237. Ren,J., Ling, F., Sun, J., Gong, Z., Liu, Y., Shi, X., Zhang, R., Zhai, Y., Chen, E., &
Chen, Z. (2018). Epidemiological profile of dengue in Zhejiang Province, southeast China.
Plos One, 13(12), e0208810.

238. Reyes-Castro, P. A., Harris, R. B., Brown, H. E., Christopherson, G. L., & Ernst, K. C.
(2017). Spatio-temporal and neighborhood characteristics of two dengue outbreaks in two
arid cities of Mexico. Acta Tropica, 167, 174-182.

239. Riyanto, I. A,, Susianti, N. A., Sholihah, R. A., Rizki, R. L. P., Cahyadi, A., Naufal, M.,
Ramadhan, F., Ramadan, V. K., & Risky, A. S. (2020). The spatiotemporal analysis of
dengue fever in Purwosari district, Gunungkidul Regency, Indonesia. The Indonesian
Journal of Geography, 52(1), 80-91.

240. Rocheleau, J.-P., Kotchi, S.-O., & Arsenault, J. (2020). Can local risk of West Nile virus
infection be predicted from previous cases? A descriptive study in Quebec, 2011-2016.
Canadian Journal of Public Health, 111(2), 229-238.

241. Romanyukha, A. A., Karkach, A. S., Borisov, S. E., Belilovsky, E. M., Sannikova, T. E.,
& Krivorotko, O. I. (2020). Small-scale stable clusters of elevated tuberculosis incidence in
Moscow, 2000-2015: Discovery and spatiotemporal analysis. International Journal of
Infectious Diseases, 91, 156-161.

242. Rosillo, N., Del-Aguila-Mejia, J., Rojas-Benedicto, A., Guerrero-Vadillo, M., Pefiuelas,
M., Mazagatos, C., Segu-Tell, J., Ramis, R., & Gomez-Barroso, D. (2021). Real time
surveillance of COVID-19 space and time clusters during the summer 2020 in Spain. Bmc
Public Health, 21(1), 1-11.

243. Rotela, C., Lopez, L., Céspedes, M. F., Barbas, G., Lighezzolo, A., Porcasi, X., Lanfri,
M. A., Scavuzzo, C. M., & Gorla, D. E. (2017). Analytical report of the 2016 dengue
outbreak in Cérdoba city, Argentina. Geospatial Health, 12(2).



https://doi.org/10.3390/ijerph15122639
https://doi.org/10.3390/ijerph15122639

137

244. Rouamba, T., Nakanabo-Diallo, S., Derra, K., Rouamba, E., Kazienga, A., Inoue, Y.,
Ouédraogo, E. K., Waongo, M., Dieng, S., & Guindo, A. (2019). Socioeconomic and
environmental factors associated with malaria hotspots in the Nanoro demographic
surveillance area, Burkina Faso. Bmc Public Health, 19(1), 1-14.

245. Saavedra-Nieves, P. (2021). Nonparametric estimation of highest density regions for
COVID-19. Journal of Nonparametric Statistics, 1-20.

246. Sadeq, M., & Bourkadi, J. E. (2018). Spatiotemporal distribution and predictors of
tuberculosis incidence in Morocco. Infectious Diseases of Poverty, 7(1), 1-13.

247. Saita, S., Silawan, T., Parker, D. M., Sriwichali, P., Phuanukoonnon, S., Sudathip, P.,
Maude, R. J., White, L. J., & Pan-Ngum, W. (2019). Spatial heterogeneity and temporal
trends in malaria on the Thai-Myanmar border (2012—2017): a retrospective observational
study. Tropical Medicine and Infectious Disease, 4(2), 62.

248. Sakai, T., Suzuki, H., Sasaki, A., Saito, R., Tanabe, W., & Taniguchi, K. (2004).
Geographic and temporal trends in influenzalike illness, Japan, 1992-1999 [Article].
Emerging Infectious Diseases, 10(10), 1822-1826. https://doi.org/10.3201/eid1010.040147

249. Salway, T., Gesink, D., Lukac, C., Roth, D., Ryan, V., Mak, S., Wang, S., Newhouse, E.,
Hayden, A., & Bharmal, A. (2019). Spatial-temporal epidemiology of the syphilis epidemic
in relation to neighborhood-level structural factors in British Columbia, 2005-2016. Sexually
Transmitted Diseases, 46(9), 571-578.

250. Salway, T., Gesink, D., Lukac, C., Roth, D., Ryan, V., Mak, S., Wang, S., Newhouse, E.,
Hayden, A., Bharmal, A., Hoyano, D., Morshed, M., Grennan, T., Gilbert, M., & Wong, J.
(2019). Spatial-Temporal Epidemiology of the Syphilis Epidemic in Relation to
Neighborhood-Level Structural Factors in British Columbia, 2005-2016. Sex Transm Dis,
46(9), 571-578. _https://doi.org/10.1097/0lg.0000000000001034

251. Santos, C. V. B. d., Cavalcante, J. R., Pungartnik, P. C., & Guimarées, R. M. (2021).
Space-time analysis of the first year of COVID-19 pandemic in the city of Rio de Janeiro,
Brazil. Revista Brasileira de Epidemiologia, 24.

252. Santos, J. A., Santos, D. T., Arcencio, R. A., & Nunes, C. (2021). Space-time clustering
and temporal trends of hospitalizations due to pulmonary tuberculosis: potential strategy for
assessing health care policies. European Journal of Public Health, 31(1), 57-62.

253. Santos, J. P. C. d., Hondrio, N. A., & Nobre, A. A. (2019). Definition of persistent areas
with increased dengue risk by detecting clusters in populations with differing mobility and
immunity in Rio de Janeiro, Brazil. Cadernos De Saude Publica, 35.

254. Santos Neto, M., Yamamura, M., Garcia, M. C. d. C., Popolin, M. P., Rodrigues, L. B.
B., Chiaravalloti Neto, F., Fronteira, ., & Arcéncio, R. A. (2015). Pulmonary tuberculosis in
Sé&o Luis, State of Maranhdo, Brazil: space and space-time risk clusters for death (2008-
2012). Revista Da Sociedade Brasileira De Medicina Tropical, 48, 69-76.

255.  Sartorius, B., Kahn, K., Vounatsou, P., Collinson, M., & Tollman, S. (2010). Space and
time clustering of mortality in rural South Africa (Agincourt HDSS), 1992-2007. Global
Health Action, 3(1), 5225.

256. Sasaki, S., Suzuki, H., Fujino, Y., Kimura, Y., & Cheelo, M. (2009). Impact of drainage
networks on cholera outbreaks in Lusaka, Zambia. American Journal of Public Health,
99(11), 1982-1987.

257. Saule, E., Panchananam, D., Hohl, A., Tang, W., & Delmelle, E. (2017). Parallel space-
time kernel density estimation. 2017 46th International Conference on Parallel Processing
(ICPP),



https://doi.org/10.3201/eid1010.040147
https://doi.org/10.1097/olq.0000000000001034

138

258.  Schellenberg, J. A., Newell, J. N., Snow, R. W., Mung'ala, V., Marsh, K., Smith, P. G., &
Hayes, R. J. (1998). An analysis of the geographical distribution of severe malaria in children
in Kilifi District, Kenya [Article]. International Journal of Epidemiology, 27(2), 323-329.
https://doi.org/10.1093/ije/27.2.323

259. Schleihauf, E., Watkins, R. E., & Plant, A. J. (2009). Heterogeneity in the spatial
distribution of bacterial sexually transmitted infections. Sexually Transmitted Infections,
85(1), 45-49.

260. Sebu, A. T., Genati, K. T., Bekalo, D. B., & Deressa, T. K. (2020). Spatiotemporal
dynamics of tuberculosis in East Hararge Zone, Oromiya Region, Ethiopia. Spatial
Information Research, 28(6), 623-633.

261. Seyoum, D., Yewhalaw, D., Duchateau, L., Brandt, P., Rosas-Aguirre, A., & Speybroeck,
N. (2017). Household level spatio-temporal analysis of Plasmodium falciparum and
Plasmodium vivax malaria in Ethiopia. Parasites & Vectors, 10(1), 1-11.

262. Shabani, J., Lutambi, A. M., Mwakalinga, V., & Masanja, H. (2010). Clustering of under-
five mortality in Rufiji Health and Demographic Surveillance System in rural Tanzania.
Global Health Action, 3(1), 5264.

263. Shaffer, J. G., Touré, M. B., Sogoba, N., Doumbia, S. O., Gomis, J. F., Ndiaye, M.,
Ndiaye, D., Diarra, A., Abubakar, I., & Ahmad, A. (2020). Clustering of asymptomatic
Plasmodium falciparum infection and the effectiveness of targeted malaria control measures.
Malaria Journal, 19(1), 1-13.

264. Shan, X., Wang, Y., Song, R., Wei, W., Liao, H., Huang, H., Xu, C., Chen, L., & Li, S.
(2020). Spatial and temporal clusters of avian influenza a (H7N9) virus in humans across five
epidemics in mainland China: an epidemiological study of laboratory-confirmed cases. Bmc
Infectious Diseases, 20(1), 1-7.

265.  Shanks, G., Waller, M., & Smallman-Raynor, M. (2013). Spatiotemporal patterns of
pandemic influenza-related deaths in Allied naval forces during 1918. Epidemiology &
Infection, 141(10), 2205-2212.

266. Shariati, M., Mesgari, T., Kasraee, M., & Jahangiri-Rad, M. (2020). Spatiotemporal
analysis and hotspots detection of COVID-19 using geographic information system (March
and April, 2020). Journal of Environmental Health Science and Engineering, 18(2), 1499-
1507.

267. Sharma, K. D., Mahabir, R. S., Curtin, K. M., Sutherland, J. M., Agard, J. B., & Chadee,
D. D. (2014). Exploratory space-time analysis of dengue incidence in Trinidad: a
retrospective study using travel hubs as dispersal points, 1998-2004. Parasites & Vectors,
7(1), 1-11.

268. Shi, J., Gao, X., Xue, S., Li, F., Nie, Q., Lv, Y., Wang, J., Xu, T., Du, G., & LI, G.
(2021). Spatio-temporal evolution and influencing mechanism of the COVID-19 epidemic in
Shandong province, China. Scientific Reports, 11(1), 1-16.

269. Shiode, N., Shiode, S., Rod-Thatcher, E., Rana, S., & Vinten-Johansen, P. (2015). The
mortality rates and the space-time patterns of John Snow’s cholera epidemic map.
International Journal of Health Geographics, 14(1), 1-15.

270. Shobugawa, Y., Wiafe, S. A., Saito, R., Suzuki, T., Inaida, S., Taniguchi, K., & Suzuki,
H. (2012). Novel measurement of spreading pattern of influenza epidemic by using weighted
standard distance method: retrospective spatial statistical study of influenza, Japan, 1999
2009. International Journal of Health Geographics, 11(1), 1-9.



https://doi.org/10.1093/ije/27.2.323
https://doi.org/10.1093/ije/27.2.323

139

271. Sifuna, P., Otieno, L., Andagalu, B., Oyieko, J., Ogutu, B., Singoei, V., Owuoth, J.,
Ogwang, S., Cowden, J., & Otieno, W. (2018). A spatiotemporal analysis of hiv-associated
mortality in rural western kenya 2011-2015. Journal of Acquired Immune Deficiency
Syndromes (1999), 78(5), 483.

272. Sifuna, P. M., Ouma, C., Atieli, H., Owuoth, J., Onyango, D., Andagalu, B., & Cowden,
J. (2019). Spatial epidemiology of tuberculosis in the high-burden counties of Kisumu and
Siaya, Western Kenya, 2012-2015. Int J Tuberc Lung Dis, 23(3), 363-370.
https://doi.org/10.5588/ijtld.18.0245

273. Silva, A.P.d. S. C., Souza, W. V. d., & Albuquerque, M. d. F. P. M. d. (2016). Two
decades of tuberculosis in a city in Northeastern Brazil: advances and challenges in time and
space. Revista Da Sociedade Brasileira De Medicina Tropical, 49, 211-221.

274. Singh, P. S., & Chaturvedi, H. K. (2021). Temporal variation and geospatial clustering of
dengue in Delhi, India 2015-2018. Bmj Open, 11(2), e043848.

275. Sloan, C., Chandrasekhar, R., Mitchel, E., Ndi, D., Miller, L., Thomas, A., Bennett, N.
M., Chai, S., Spencer, M., & Eckel, S. (2020). Spatial and temporal clustering of patients
hospitalized with laboratory-confirmed influenza in the united states. Epidemics, 31, 100387.

276. Smith, M. K., Searle, K. M., Yang, W., Rapheal, E., Wang, C., Zhao, P., Yang, L.,
Huang, S., & Yang, B. (2021). Spatiotemporal analysis of 11 years of Chlamydia trachomatis
data from southern China. The Lancet Regional Health-Western Pacific, 11, 100143.

277. Soto-Calle, V., Rosas-Aguirre, A., Llanos-Cuentas, A., Abatih, E., DeDeken, R.,
Rodriguez, H., Rosanas-Urgell, A., Gamboa, D., Erhart, A., & Speybroeck, N. (2017).
Spatio-temporal analysis of malaria incidence in the Peruvian Amazon Region between 2002
and 2013. Scientific Reports, 7(1), 1-13.

278. Stach, A. (2021). Temporal variation of spatial autocorrelation of COVID-19 cases
identified in Poland during the year from the beginning of the pandemic. Geographia
Polonica, 94(3), 355-380.

279. Suchar, V. A., Aziz, N., Bowe, A., Burke, A., & Wiest, M. M. (2018). An exploration of
the spatiotemporal and demographic patterns of Ebola Virus Disease epidemic in West
Africa using open access data sources. Applied Geography, 90, 272-281.

280. Sugumaran, R., Larson, S. R., & DeGroote, J. P. (2009). Spatio-temporal cluster analysis
of county-based human West Nile virus incidence in the continental United States.
International Journal of Health Geographics, 8(1), 1-19.

281. Sun, W, Xue, L., & Xie, X. (2017). Spatial-temporal distribution of dengue and climate
characteristics for two clusters in Sri Lanka from 2012 to 2016. Scientific Reports, 7(1), 1-12.

282. Sun, Z., Zhang, Z., Liu, Q., Lyu, B., Fang, X., Wang, S., Xu, J., Xu, L., & Xu, B. (2020).
Identifying the spatiotemporal clusters of plague occurrences in China during the Third
Pandemic. Integrative Zoology, 15(1), 69-78.

283. Tadesse, S., Enqueselassie, F., & Hagos, S. (2018). Spatial and space-time clustering of
tuberculosis in Gurage Zone, Southern Ethiopia. Plos One, 13(6), e0198353.

284. Tadesse, T., Demissie, M., Berhane, Y., Kebede, Y., & Abebe, M. (2013). The clustering
of smear-positive tuberculosis in Dabat, Ethiopia: a population based cross sectional study.
Plos One, 8(5), €65022.

285. Tang, J.-H., Tseng, T.-J., & Chan, T.-C. (2019). Detecting spatio-temporal hotspots of
scarlet fever in Taiwan with spatio-temporal Gi* statistic. Plos One, 14(4), e0215434.

286. Tang, X., Geater, A., McNeil, E., Deng, Q., Dong, A., & Zhong, G. (2017). Spatial,
temporal and spatio-temporal clusters of measles incidence at the county level in Guangxi,



https://doi.org/10.5588/ijtld.18.0245
https://doi.org/10.5588/ijtld.18.0245

140

China during 2004-2014: flexibly shaped scan statistics. Bmc Infectious Diseases, 17(1), 1-
10.

287. Telle, O., Vaguet, A., Yadav, N., Lefebvre, B., Daudé, E., Paul, R. E., Cebeillac, A., &
Nagpal, B. (2016). The spread of dengue in an endemic urban milieu—the case of Delhi,
India. Plos One, 11(1), e01465309.

288. Thakar, V. (2020). Unfolding events in space and time: Geospatial insights into COVID-
19 diffusion in Washington State during the initial stage of the outbreak. ISPRS International
Journal of Geo-Information, 9(6), 382.

289. Thanh Toan, D. T., Hu, W., Quang Thai, P., Ngoc Hoat, L., Wright, P., & Martens, P.
(2013). Hot spot detection and spatio-temporal dispersion of dengue fever in Hanoi,
Vietnam. Global Health Action, 6(1), 18632.

290. Tiwari, N., Adhikari, C., Tewari, A., & Kandpal, V. (2006). Investigation of geo-spatial
hotspots for the occurrence of tuberculosis in Almora district, India, using GIS and spatial
scan statistic. International Journal of Health Geographics, 5(1), 1-11.

291. Tlou, B., Sartorius, B., & Tanser, F. (2017). Space-time variations in child mortality in a
rural South African population with high HIV prevalence (2000-2014). Plos One, 12(8),
e0182478.

292. Tomita, A., Smith, C. M., Lessells, R. J., Pym, A., Grant, A. D., de Oliveira, T., &
Tanser, F. (2019). Space-time clustering of recently-diagnosed tuberculosis and impact of
ART scale-up: evidence from an HIV hyper-endemic rural South African population.
Scientific Reports, 9(1), 1-9.

293. Touray, K., Adetifa, 1., Jallow, A., Rigby, J., Jeffries, D., Cheung, Y., Donkor, S.,
Adegbola, R., & Hill, P. (2010). Spatial analysis of tuberculosis in an urban west African
setting: is there evidence of clustering? Tropical Medicine & International Health, 15(6),
664-672.

294. Tran, A., Deparis, X., Dussart, P., Morvan, J., Rabarison, P., Remy, F., Polidori, L., &
Gardon, J. (2004). Dengue spatial and temporal patterns, French Guiana, 2001 [Article].
Emerging Infectious Diseases, 10(4), 615-621. https://doi.org/10.3201/eid1004.030186

295. Tuite, A., Guthrie, J., Alexander, D., Whelan, M., Lee, B., Lam, K., Ma, J., Fisman, D.,
& Jamieson, F. (2013). Epidemiological evaluation of spatiotemporal and genotypic
clustering of Mycobacterium tuberculosis in Ontario, Canada. The International journal of
tuberculosis and lung disease, 17(10), 1322-1327.

296. Ullah, S, Daud, H., Dass, S. C., Fanaee-T, H., Kausarian, H., & Khalil, A. (2020). Space-
time clustering characteristics of tuberculosis in Khyber Pakhtunkhwa Province, Pakistan,
2015-2019. International Journal of Environmental Research and Public Health, 17(4),
1413.

297. Ullah, S., Daud, H., Dass, S. C., Fanaee-T, H., & Khalil, A. (2018). An Eigenspace
approach for detecting multiple space-time disease clusters: Application to measles hotspots
detection in Khyber-Pakhtunkhwa, Pakistan. Plos One, 13(6), e0199176.

298. Ullah, S., Daud, H., Dass, S. C., Khan, H. N., & Khalil, A. (2017). Detecting space-time
disease clusters with arbitrary shapes and sizes using a co-clustering approach. Geospatial
Health, 12(2).

299. Umer, M. F., Zofeen, S., Majeed, A., Hu, W., Qi, X., & Zhuang, G. (2018).
Spatiotemporal clustering analysis of malaria infection in Pakistan. International Journal of
Environmental Research and Public Health, 15(6), 1202.



https://doi.org/10.3201/eid1004.030186

141

300. Valson, J. S., & Soman, B. (2017). Spatiotemporal clustering of dengue cases in
Thiruvananthapuram district, Kerala. Indian Journal of Public Health, 61(2), 74.

301. Van Aar, F., Den Daas, C., Van Der Sande, M., Soetens, L., De Vries, H., & Van
Benthem, B. (2017). Outbreaks of syphilis among men who have sex with men attending STI
clinics between 2007 and 2015 in the Netherlands: a space-time clustering study. Sexually
Transmitted Infections, 93(6), 390-395.

302. Van Den Wijngaard, C. C., Van Asten, L., Van Pelt, W., Doornbos, G., Nagelkerke, N.
J., Donker, G. A., van der Hoek, W., & Koopmans, M. P. (2010). Syndromic surveillance for
local outbreaks of lower-respiratory infections: would it work? Plos One, 5(4), e10406.

303. Vazquez-Prokopec, G. M., Kitron, U., Montgomery, B., Horne, P., & Ritchie, S. A.
(2010). Quantifying the spatial dimension of dengue virus epidemic spread within a tropical
urban environment. Plos Neglected Tropical Diseases, 4(12), €920.

304. Venkat, A., Falconi, T. M. A,, Cruz, M., Hartwick, M. A., Anandan, S., Kumar, N.,
Ward, H., Veeraraghavan, B., & Naumova, E. N. (2019). Spatiotemporal patterns of cholera
hospitalization in Vellore, India. International Journal of Environmental Research and
Public Health, 16(21), 4257.

305. Verma, A., Schwartzman, K., Behr, M. A., Zwerling, A., Allard, R., Rochefort, C. M., &
Buckeridge, D. L. (2014). Accuracy of prospective space-time surveillance in detecting
tuberculosis transmission. Spatial and Spatio-Temporal Epidemiology, 8, 47-54.

306. Vissoci, J. R. N., Rocha, T. A. H., Silva, N. C. d., de Sousa Queiroz, R. C., Thomaz, E.
B. A. F., Amaral, P. V. M,, Lein, A., Branco, M. d. R. F. C., Aquino, J., & Rodrigues, Z. M.
R. (2018). Zika virus infection and microcephaly: Evidence regarding geospatial
associations. Plos Neglected Tropical Diseases, 12(4), e0006392.

307. Wahnich, A, Clark, S., Bloch, D., Kubinson, H., Hrusa, G., Liu, D., Rakeman, J. L.,
Deocharan, B., Jones, L., & Slavinski, S. (2018). Surveillance for mosquitoborne
transmission of Zika virus, New York City, NY, USA, 2016. Emerging Infectious Diseases,
24(5), 827.

308. Wang, P, Ren, H., Zhu, X,, Fu, X,, Liu, H., & Hu, T. (2021). Spatiotemporal
characteristics and factor analysis of SARS-CoV-2 infections among healthcare workers in
Wuhan, China. Journal of Hospital Infection, 110, 172-177.

309. Wang, Q., Dong, W., Yang, K., Ren, Z., Huang, D., Zhang, P., & Wang, J. (2021).
Temporal and spatial analysis of COVID-19 transmission in China and its influencing
factors. International Journal of Infectious Diseases, 105, 675-685.

310. Wang, T., Xue, F., Chen, Y., Ma, Y., & Liu, Y. (2012). The spatial epidemiology of
tuberculosis in Linyi City, China, 2005-2010. Bmc Public Health, 12(1), 1-8.

311. Wang, Y., Liu, Y., Struthers, J., & Lian, M. (2021). Spatiotemporal characteristics of the
COVID-19 epidemic in the United States. Clinical Infectious Diseases, 72(4), 643-651.

312. Wangdi, K., Kaewkungwal, J., Singhasivanon, P., Silawan, T., Lawpoolsri, S., & White,
N. J. (2011). Spatio-temporal patterns of malaria infection in Bhutan: a country embarking on
malaria elimination. Malaria Journal, 10(1), 1-9.

313.  Wangdi, K., Penjor, K., Lawpoolsri, S., Price, R. N., Gething, P. W., Gray, D. J., Da
Silva Fonseca, E., & Clements, A. C. (2021). Space-time clustering characteristics of malaria
in Bhutan at the end stages of elimination. International Journal of Environmental Research
and Public Health, 18(11), 5553.

314.  Weiss, K., Karuchit, S., Pattanasin, S., Chitwarakorn, A., Wimonsate, W., Suksamosorn,
J., Visavakum, P., Sukwicha, W., Ungsedhapand, C., & Dunne, E. F. (2020). Spatial



142

characteristics of men who have sex with men and transgender women attending HIV
voluntary counselling and testing in Bangkok, Thailand, 2005-2015. Geospatial Health,
15(1).

315. Wen, L., Li, C., Lin, M., Yuan, Z., Huo, D., Li, S., Wang, Y., Chu, C., Jia, R., & Song,
H. (2011). Spatio-temporal analysis of malaria incidence at the village level in a malaria-
endemic area in Hainan, China. Malaria Journal, 10(1), 1-7.

316. Wen, T.-H., Lin, M.-H., & Fang, C.-T. (2012). Population movement and vector-borne
disease transmission: differentiating spatial-temporal diffusion patterns of commuting and
noncommuting dengue cases. Annals of the Association of American Geographers, 102(5),
1026-1037.

317. Wen, T.-H., Lin, N. H., Chao, D.-Y., Hwang, K.-P., Kan, C.-C., Lin, K. C.-M., Wu, J. T .-
S., Huang, S. Y.-J,, Fan, I.-C., & King, C.-C. (2010). Spatial-temporal patterns of dengue in
areas at risk of dengue hemorrhagic fever in Kaohsiung, Taiwan, 2002. International Journal
of Infectious Diseases, 14(4), e334-e343.

318. Wen, T.-h,, Lin, N. H,, Lin, K. C.-m., Fan, l.-c., Su, M.-d., & King, C.-c. (2007). A
Spatial-Temporal Approach to Differentiate Epidemic Risk Patterns. In GIS for Health and
the Environment (pp. 214-227). Springer.

319. Wen, T.-H., & Tsai, Y.-S. (2015). Analyzing the Patterns of Space-Time Distances for
Tracking the Diffusion of an Epidemic. In M.-P. Kwan, D. Richardson, D. Wang, & C. Zhou
(Eds.), Space-Time Integration in Geography and GlScience: Research Frontiers in the US
and China (pp. 269-282). Springer Netherlands._https://doi.org/10.1007/978-94-017-9205-

9 15

320. Wijayanti, S. P. M., Nurlaela, S., Octaviana, D., Putra, F. A., Nurhayati, S., &
Sulistyawati, S. (2019). Dengue virus transmission during outbreak within endemic area in
Indonesia: A spatial and temporal analysis. Annals of Tropical Medicine and Public Health,
22, 158-164.

321.  Wilson, J. G., Ballou, J., Yan, C., Fisher-Hoch, S. P., Reininger, B., Gay, J., Salinas, J.,
Sanchez, P., Salinas, Y., & Calvillo, F. (2010). Utilizing spatiotemporal analysis of
influenza-like illness and rapid tests to focus swine-origin influenza virus intervention.
Health & Place, 16(6), 1230-1239.

322.  Wiru, K., Oppong, F. B., Gyaase, S., Agyei, O., Abubakari, S. W., Amenga-Etego, S.,
Zandoh, C., & Asante, K. P. (2021). Geospatial analysis of malaria mortality in the kintampo
health and demographic surveillance area of central Ghana. Annals of Gis, 27(2), 139-149.

323.  Wolf, A., Padayatchi, N., Naidoo, K., Master, 1., Mathema, B., & O’donnell, M. R.
(2020). Spatiotemporal Clustering of Multidrug-Resistant and Extensively Drug-Resistant
Tuberculosis Is Associated With Human Immunodeficiency Virus Status and Drug-
Susceptibility Patterns in KwaZulu-Natal, South Africa. Clinical Infectious Diseases, 70(10),
2224-22217.

324. Wu, C., Zhou, M., Liu, P., & Yang, M. (2021). Analyzing COVID-19 using multisource
data: An integrated approach of visualization, spatial regression, and machine learning.
Geohealth, 5(8), e2021GH000439.

325.  Wu, H.,, Wu, C,, Lu, Q., Ding, Z., Xue, M., & Lin, J. (2021). Spatiotemporal analysis and
the characteristics of the case transmission network of 2019 novel coronavirus disease
(COVID-19) in Zhejiang Province, China. Plos One, 16(9), e0257587.



https://doi.org/10.1007/978-94-017-9205-9_15
https://doi.org/10.1007/978-94-017-9205-9_15

143

326. Xia, J., Huang, X., Sun, L., Zhu, H., Lin, W., Dong, X., Wu, D., Qiu, J., Zheng, L., &
Cao, M. (2018). Epidemiological characteristics of malaria from control to elimination in
Hubei Province, China, 2005-2016. Malaria Journal, 17(1), 1-10.

327. Xiao, D., Long, Y., Wang, S., Wu, K., Xu, D., Li, H., Wang, G., & Yan, Y. (2012).
Epidemic distribution and variation of Plasmodium falciparum and Plasmodium vivax
malaria in Hainan, China during 1995-2008. The American journal of tropical medicine and
hygiene, 87(4), 646.

328. Xie, Z,,Qin, Y., Li, Y., Shen, W., Zheng, Z., & Liu, S. (2020). Spatial and temporal
differentiation of COVID-19 epidemic spread in mainland China and its influencing factors.
Science of the Total Environment, 744, 140929.

329. Xiong, Y., Wang, Y., Chen, F., & Zhu, M. (2020). Spatial statistics and influencing
factors of the COVID-19 epidemic at both prefecture and county levels in Hubei Province,
China. International Journal of Environmental Research and Public Health, 17(11), 3903.

330. Xu, F., & Beard, K. (2021). A comparison of prospective space-time scan statistics and
spatiotemporal event sequence based clustering for COVID-19 surveillance. Plos One, 16(6),
€0252990.

331. Xu, M, Cao, C., Zhang, X., Lin, H., Yao, Z., Zhong, S., Huang, Z., & Shea Duerler, R.
(2021). Fine-scale space-time cluster detection of COVID-19 in Mainland China using
retrospective analysis. International Journal of Environmental Research and Public Health,
18(7), 3583.

332.  Xu, X., Zhou, G., Wang, Y., Hu, Y., Ruan, Y., Fan, Q., Yang, Z., Yan, G., & Cui, L.
(2016). Microgeographic heterogeneity of border malaria during elimination phase, Yunnan
Province, China, 2011-2013. Emerging Infectious Diseases, 22(8), 1363.

333. Yang, S., Gao, Y., Luo, W, Liu, L., Lei, Y., & Zhang, X. (2019). Spatiotemporal
distribution of tuberculosis during urbanization in the new urban area of Nanchang City,
China, 2010-2018. International Journal of Environmental Research and Public Health,
16(22), 4395.

334. Yang, W., Deng, M., Li, C., & Huang, J. (2020). Spatio-temporal patterns of the 2019-
nCoV epidemic at the county level in Hubei Province, China. International Journal of
Environmental Research and Public Health, 17(7), 2563.

335. Yeboah-Manu, D., Asare, P., Asante-Poku, A., Otchere, I., Osei-Wusu, S., Danso, E.,
Forson, A., Koram, K., & Gagneux, S. (2016). Spatio-temporal distribution of
Mycobacterium tuberculosis complex strains in Ghana. Plos One, 11(8), e0161892.

336. Yiannakoulias, N., & Svenson, L. (2009). Differences between notifiable and
administrative health information in the spatial-temporal surveillance of enteric infections.
International Journal of Medical Informatics, 78(6), 417-424.

337. Ying, R., Fekadu, L., Schackman, B. R., & Verguet, S. (2020). Spatial distribution and
characteristics of HIV clusters in Ethiopia. Tropical Medicine & International Health, 25(3),
301-307.

338.  Yu, Y., Wu,B., Wu, C., Wang, Q., Hu, D., & Chen, W. (2020). Spatial-temporal analysis
of tuberculosis in Chongging, China 2011-2018. Bmc Infectious Diseases, 20(1), 1-12.

339. Yuan, F.-s., Liu, L., Liu, L.-h., Zeng, Y.-l., Zhang, L.-l., He, F., Liu, X.-j., Li, J.-m., Liu,
Q., & Xu, M.-j. (2021). Epidemiological and spatiotemporal analyses of HIV/AIDS
prevalence among older adults in Sichuan, China between 2008 and 2019: A population-
based study. International Journal of Infectious Diseases, 105, 769-775.



144

340. Yue, Y, Liu, X., Xu, M., Ren, D., & Liu, Q. (2019). Epidemiological dynamics of
dengue fever in mainland China, 2014-2018. International Journal of Infectious Diseases,
86, 82-93.

341. Zaragoza Bastida, A., Hernandez Tellez, M., Bustamante Montes, L. P., Medina Torres,
., Jaramillo Paniagua, J. N., Mendoza Martinez, G. D., & Ramirez Durén, N. (2012). Spatial
and temporal distribution of tuberculosis in the State of Mexico, Mexico. The Scientific
World Journal, 2012.

342. Zhang, J.-C., Liu, W.-D., Liang, Q., Hu, J.-L., Norris, J., Wu, Y., Bao, C.-J., Tang, F.-Y.,
Huang, P., & Zhao, Y. (2014). Spatial distribution and risk factors of influenza in Jiangsu
province, China, based on geographical information system. Geospatial Health, 8(2), 429-
435.

343. Zhang, W.-Y., Wang, L.-Y., Ding, F., Hu, W.-B., Soares Magalhaes, R. J., Sun, H.-L.,
Liu, Y.-X,, Liu, Q.-Y., Huang, L.-Y., & Clements, A. C. (2013). Scrub typhus in mainland
China, 2006-2012: the need for targeted public health interventions. Plos Neglected Tropical
Diseases, 7(12), e2493.

344. Zhang, X., Rao, H., Wu, Y., Huang, Y., & Dai, H. (2020). Comparison of spatiotemporal
characteristics of the COVID-19 and SARS outbreaks in mainland China. Bmc Infectious
Diseases, 20(1), 1-7.

345. Zhang, X., Tang, W., Li, Y., Mahapatra, T., Feng, Y., Li, M., Chen, F., Li, P., Xing, J., &
Qian, S. (2017). The HIV/AIDS epidemic among young people in China between 2005 and
2012: results of a spatial temporal analysis. Hiv Medicine, 18(3), 141-150.

346. Zhang, Y.-H., Ge, L., Liu, L., Huo, X.-X., Xiong, H.-R., Liu, Y.-Y., Liu, D.-Y., Luo, F.,
Li, J.-L., & Ling, J.-X. (2014). The epidemic characteristics and changing trend of
hemorrhagic fever with renal syndrome in Hubei Province, China. Plos One, 9(3), €92700.

347. Zhang, Y., Li, L., Dong, X., Kong, M., Gao, L., Dong, X., & Xu, W. (2014). Influenza
surveillance and incidence in a rural area in China during the 2009/2010 influenza pandemic.
Plos One, 9(12), €115347.

348. Zhang, Y., Shen, Z., Ma, C., Jiang, C., Feng, C., Shankar, N., Yang, P., Sun, W., &
Wang, Q. (2015). Cluster of human infections with avian influenza A (H7N9) cases: a
temporal and spatial analysis. International Journal of Environmental Research and Public
Health, 12(1), 816-828.

349. Zhang, Y., Xiao, Q., Zhou, L., Ma, D., Liu, L., Lu, R., Yi, D., & Yi, D. (2015). The
AIDS epidemic and economic input impact factors in Chongging, China, from 2006 to 2012:
a spatial-temporal analysis. Bmj Open, 5(3), e006669.

350. Zhang, Y., Zhang, M., Kang, D., Sun, W., Yang, C., & Wei, R. (2021). Spatio-temporal
analysis of bacillary dysentery in Sichuan province, China, 2011-2019. Bmc Infectious
Diseases, 21(1), 1-10.

351. Zhu, B., Fu, Y., Liu, J., & Mao, Y. (2017). Notifiable sexually transmitted infections in
China: epidemiologic trends and spatial changing patterns. Sustainability, 9(10), 1784.

352. Zhu, B., Liu, J., Fu, Y., Zhang, B., & Mao, Y. (2018). Spatio-temporal epidemiology of
viral hepatitis in China (2003-2015): implications for prevention and control policies.
International Journal of Environmental Research and Public Health, 15(4), 661.

353. Zhu, H., Zhao, H., Ou, R., Zeng, Q., Hu, L., Qiu, H., Sharma, M., & Ye, M. (2020).
Spatiotemporal Epidemiology of Varicella in Chongging, China, 2014-2018. International
Journal of Environmental Research and Public Health, 17(2), 662.



145

354. Zhu, Y., Xu, Q., Lin, H., Yue, D., Song, L., Wang, C., Tian, H., Wu, X., Xu, A., & Li, X.
(2013). Spatiotemporal analysis of infant measles using population attributable risk in
Shandong Province, 1999-2008. Plos One, 8(11), e79334.



146

APPENDIX B: THE ONLINE SURVEY

11/5/22, 6:43 PM Qualtrics Survey Software

Survey

Introduction & Consent

This survey is designed to evaluate the US COVID-19 YuTu.
Before conducting this survey, you must read and sign the
consent form. If not, please stop and contact Pl (Yu Lan,
ylani@uncc.edu). You will need to explore the prototype to
answer questions for the task analysis, which will take about
45 minutes.

If you agree to participate in this research study, please
click "Yes" and continue to the task analysis.

Yes, | agree to participate in this research study.

No, | disagree with participating in this research study.

Tell us about you

We will collect some background information to help us to
know you.

https://uncc.az1.qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrintPreview ?ContextSurveyID=SV_4JgQQx57HROTd42&ContextLibraryID=UR_6nxJN2JA... 1/27
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11/5/22,6:43 PM Qualtrics Survey Software

To which gender identity do you most identify?

O Male

O Female

O Non-binary / third gender
O Pprefer not to say

Choose your age group.

O 18-24
O 25-33
O 34-44
O 45-54
O 55-65
O 66 and above

My maijor is

O Health Administration
O public Health (sciences)
O Health Services Research

O Others

https://uncc.azl .qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrintPreview ?ContextSurveyID=SV_4JgQQx57HROTd42&ContextLibraryID=UR_6nxJN2JA... 2/27
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| am pursuing a degree at the level of

O Master's
O Doctoral
O Others

| consider myself knowledgeable in epidemiology.

148

Strongly Somewhat Neither agree Somewhat Strongly agree

di3@ree dis,@ree nor d'@ugree agree O

| consider myself knowledgeable in understanding relative
risk in epidemiology.

Strongly Somewhat Neither agree Somewhat Strongly agree

dlS(@ree dlS@ree nor d@dgree agree O

| consider myself knowledgeable in interpreting clusters in
epidemiology.

Strongly Somewhat Neither agree Somewhat Strongly agree

d|3@ree d|5@ree nor d@gree agree O

https://uncc.azl .qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrintPreview ?ContextSurveyID=SV_4JgQQx57HROTd42& ContextLibraryID=UR_6nxJN2JA...

3/27
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| consider myself knowledgeable in interpreting space-time
clusters in epidemiology.

Strongly Somewnhat Neither agree Ssomewhat Strongly agree
disagree disagree nor disgigree agree

| consider myself knowledgeable in interpreting results of
local indicators of spatial autocorrelation (LISA) in
epidemiology.

Strongly Somewhat Neither agree Somewhat Strongly agree
disggree disggree nor disgigree agree
Warm-up

Here are a few warm-up exercises that ensure you
understand the basics of the bivariate map.

Please open the US COVID YuTu for the survey. On the Home
page, go to February 17, 2022 using the slide. Look at the
cluster in the state of Maine, as shown in the screenshot.

https://uncc.az1.qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrintPreview ?ContextSurveyID=SV_4JgQQx57HROTd42&ContextLibraryID=UR_6nxJN2JA... 4/27
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https://uncc.az1.qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrintPreview?ContextSurveyID=SV_4JgQQx57HROTd42&ContextLibraryID=UR_6nxJN2JA... 5/27
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Click on the "@LISA" tab. Look at the same date and same
regions from the right map (using LISA).

What were the p value and the group that the county we
selected for the previous question? Check two answers, one
for each column.

0.01 Low-High
0.001 High-Low
0.0001 High-High

Bivariate Map

The task analysis will ask you to perform the required task
and answer task-relevant questions. Please open the US
COVID YuTu for the survey, which only includes data from
01/20/2022 - 02/28/2022 for some web pages.

On the "Home" page, interact with the cluster map using
space-time scan statistics (SaTScan) by playing the
animation or hovering to get details. Find the California

https://uncc.az1.qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrintPreview ?ContextSurveyID=SV_4JgQQx57HROTd42&ContextLibraryID=UR_6nxJN2JA... 6/27
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State (center in the screenshot). Please answer the
following questions.

‘1

California

What was the time range when more than half of counties
in California belongs to a cluster?

O January 20, 2022 ~ February 14, 2022
O January 28, 2022 ~ February 13, 2022

https://uncc.az1 .qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrintPreview ?ContextSurveyID=SV_4JgQQx57HROTd42&ContextLibraryID=UR_6nxJN2JA... 7/27
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O January 25, 2022 ~ February 15, 2022

On February 4th, 2022 as shown in the screenshot, what
patterns do you recognize from the bivariate map?

A
Northern

Central

O counties in Northern had a higher relative risk compared with other
counties.

O Counties in Central and Southern had a higher relative risk compared with
other counties.

https://uncc.az1 .qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrintPreview ?ContextSurveyID=SV_4JgQQx57HROTd42&ContextLibraryID=UR_6nxJN2JA... 8/27
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O Al the counties had the same relative risk (RR of county) as they were in
the same cluster.

O Others

Please select the answer that you agree most.

Neither
Strongly Somewhat agree nor Somewhat Strongly
Disagree disagree disagree agree agree

| felt confident in my

answers to the

orevious two O O O O O
questions.

The bivariate map
helps me to interpret

the different relative O O O O O

risks among counties
within the same
cluster.

| think the “Bivariate

Map” with results O O O O O

from SaTScan is
useful.

Imagine you are a health policy maker in California State,
which of the following statements do you agree with the
mMost?

O | would allocate more health resources to Northern California.

https://uncc.azl .qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrintPreview ?ContextSurveyID=SV_4JgQQx57HROTd42&ContextLibraryID=UR_6nxJN2JA... 9/27
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O January 20, 2022 ~ January 27, 2022
O February 1, 2022 ~ February 14, 2022
O January 20, 2022 ~ February 14, 2022

What are the reasons that the results from the two maps
are different?

Neither
Strongly Somewhat agree nor Somewhat Strongly
Disagree disagree disagree agree agree

The algorithm used

to calculate space-

time cluster as

shown on the left O O O O O
map uses 50 days of

data; as such the

change in Relative
Risk is not as sudden.

The algorithm used

to calculate the

spatial cluster as

shown on the right

map uses data for O O O O O
one day. As such, the

change in risk can
be abrupt.

The right map could

help me to identify

when a cluster is

emerging, while the O O O O O
algorithm on the left

map cannot detect it

yet

https://uncc.az1 .qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrintPreview ?ContextSurveyID=SV_4JgQQx57HROTd42&ContextLibraryID=UR_6nxJN2J...
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The left map shows true space-time clusters, while the right
map shows the repetitions of spatial clusters at the current
date. Imagine you are a health policy maker for the state of
California, what do you think about the following

statements?
Neither
Strongly Somewhat agree nor Somewhat Strongly
Disagree disagree disagree agree agree

I will use the right

map to alarm

counties located

within a high-high

cluster, even though O O O O O
the left map did not

detect any clusters

within the region

quite yet.

I will use the left map

to monitor the

dynamic of space-

time clusters, even

though counties do O O O O O
not belong to a

high-high cluster as

displayed on the

right map.

| will rely on the
information provided

on both maps to O O O O O

make an informed
decision.

https://uncc.azl .qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrintPreview ?ContextSurveyID=SV_4JgQQx57HROTd42&ContextLibraryID=UR_6nxJN2J...  12/27
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Spiral Map

https://uncc.az1.qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrintPreview?ContextSurveyID=SV_4JgQQx57HROTd42&ContextLibraryID=UR_6nxJN2J...  13/27
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Go to the webpage of "@sState”. The spiral map of average
relative risk of states. Explore the spiral map by clicking both
the bivariate map and the spiral map. Then click any
county in Washington state from the left bivariate map or
select the state in the center of the spiral map. Washington
is located at the northwestern corner of the 48
conterminous states.

Washington

What was the highest average relative risk in the State of
Washington and what date was it on? Check two answers,

https://uncc.az1.qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrintPreview ?ContextSurveyID=SV_4JgQQx57HROTd42&ContextLibraryID=UR_6nxJN2J...  14/27
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one for each column.

0 the highest average relative risk was 2020-01-24

3.7413 D
0 the highest average relative risk was 0 2020-06-23
5.423I
2020-03-05

the highest average relative risk was
N 5.8464 H

Which state has the highest average relative risk yesterday
from the center of the spiral map?

| felt confident in my answers to the above two questions.

Strongly Somewhat Neither agree Somewhat Strongly agree

D|S@ree d|3@ree nor d@gree agree O

Do you agree with these statements?

Neither
Strongly Somewhat agree nor Somewhat Strongly
Disagree disagree disagree agree agree

https://uncc.azl .qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrintPreview ?ContextSurveyID=SV_4JgQQx57HROTd42&ContextLibraryID=UR_6nxJN2J...  15/27
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The average relative
risk in Washington
state was very high
at the beginning of
the pandemic.

The connection
between the
bivariate map with
the spiral map is
useful to explore the
average relative risk
at the state level.

The center state
map from the spiral
is useful for me to
explore the latest
average relative risk
at the state level
compared with other
states.

I think the “spiral”
map is useful to
show the patterns at
the state level.

Strongly
Disagree

O

O

Qualtrics Survey Software

Neither
Somewhat agree nor Somewhat
disagree disagree agree

O O O

Strongly
agree

O

Imagine you are a health policy maker for the Centers for
Disease Control and Prevention (CDC) and could decide
on policy decisions for the entire US, what do you think

about the following statements?

https://uncc.azl .qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrintPreview ?ContextSurveyID=SV_4JgQQx57HROTd42& ContextLibraryID=UR_6nxJN2J...
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Neither
Strongly Somewhat agree nor Somewhat Strongly
Disagree disagree disagree agree agree

In the state of

Washington, | would

keep the current

health policy on

COVID-19 as the O O O O O
average relative risk

seems to be stable

at a lower level (less

than 1).

The spiral map

allows us to

compare and

contrast how well

some states respond

to some new policies O O O O O
(e.g. lockdown,

loosening social

distancing
interventions).

Any thoughts about the spiral map?

Time Chart

Go to the tab "@TimeChart'. This visualization shows the
linear chart of variables during the whole study time. Click

https://uncc.az1 .qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrintPreview ?ContextSurveyID=SV_4JgQQx57HROTd42&ContextLibraryID=UR_6nxJN2J...
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on the Miami-Dade County on the bivariate map. Miami-
Dade County is located in the south of the state of Florida.

Looking at the red-colored time chart -which summarizes
the relative risk in that county-, in which months did Miami-
Date experienced its highest value?

O July and August 2020
O July and August 2021
O July and August 2022

https://uncc.azl .qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrintPreview ?ContextSurveyID=SV_4JgQQx57HROTd42&ContextLibraryID=UR_6nxJN2J...  18/27
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Make sure the "RR within the cluster” is selected (default).
The blue colored time chart summarizes the relative risk of
the cluster to which the county belongs at a particular time.

At what time was the RR of the cluster the highest in the
blue color time chart?

2022-07-0I
2021-08-02
2020-03-21

Click on the Los Angeles County, California. It is located to
the south of the State of California (highlighted in yellow in
the following screenshot).

https://uncc.az1.qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrintPreview ?ContextSurveyID=SV_4JgQQx57HROTd42&ContextLibraryID=UR_6nxJN2J...  19/27
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Los Angeles, California

Make sure the "RR within the cluster” is selected (default).
Only focus on the blue time chart.

Which of the two counties has more often been part of
cluster?

O Los Angeles County
O Miami-Dade County

https://uncc.az1 .qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrintPreview ?ContextSurveyID=SV_4JgQQx57HROTd42&ContextLibraryID=UR_6nxJN2J...  20/27
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Click on the San Diego County, California. It is also located
in the southern of Callifornia (highlighted in yellow in the
following screenshot).

San Diego, California

https://uncc.az1 .qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrintPreview ?ContextSurveyID=SV_4JgQQx57HROTd42&ContextLibraryID=UR_6nxJN2J...  21/27
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Look at the changes by switching between "Daily Cases 7-
days avg’ and 'RR within the cluster”. From the TimeChart,
what patterns do you find between those two counties in

California?

If you toggle back
and forth between
the variables "Daily
Cases 7-days avg'
and "RR within the
cluster” (blue chart),
the temporal
patterns are very
similar overall.

As to RR of location
(red chart), Los
Angeles had the
highest RR at the
beginning of the
pandemic, while San
Diego had the
highest RR around
August 2022.

Strongly
Disagree

O

O

Neither
Somewhat agree nor Somewhat Strongly
disagree disagree agree agree

Please select the answer that best represents your feeling.

Strongly

Disagree

Neither
Somewhat agree nor Somewhat Strongly
disagree disagree agree agree

https://uncc.azl .qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrintPreview ?ContextSurveyID=SV_4JgQQx57HROTd42&ContextLibraryID=UR_6nxJN2J...  22/27
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Neither
Strongly Somewhat agree nor Somewhat Strongly
Disagree disagree disagree agree agree

| felt confident in my

answers to the O O O O O

above three
questions.

| think the
“TimeChart” is useful

to identify the trend O O O O O

of different variables
(e.g. relative risk).

| think the

“TimeChart” is useful O O O O O

to compare counties

Imagine you are a health policy maker in Los Angeles
County, what do you think about the following statement?

| will carefully monitor the RR of the county (red chart) as it
is still high although the RR within the cluster and daily
cases -as represented by the blue charts- are decreasing.

Strongly Somewhat Neither agree Somewhat Strongly agree

D|s®ree dls®ree nor d@dgree agree O

Any thoughts on the TimeChart?

https://uncc.azl .qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrintPreview ?ContextSurveyID=SV_4JgQQx57HROTd42&ContextLibraryID=UR_6nxJN2J...  23/27
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what is the value (Check two answers, one for each
column)?

] Loving County, TX (] rr_1=123
|| Dewey County, SD [] rr_1=20.09
] Brown County, IL [ ] rr_1=25.22

| felt confident in my answers to the above question.

Strongly Somewhat Neither agree Somewhat Strongly agree

D|S@ree d|3@ree nor d@gree agree O

Do you agree with the following statements?

Neither
Strongly Somewhat agree nor Somewhat Strongly
disagree disagree disagree agree agree
I think the “3D space-
time cube” is useful. O O O O O
I think the “3D space-
time cube” is more
useful than the O O O O O
animated bivariate
map.

https://uncc.azl .qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrintPreview ?ContextSurveyID=SV_4JgQQx57HROTd42& ContextLibraryID=UR_6nxJN2J...
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I think the “3D space-
time cube” is more
useful than the
bivariate map
combined with
timecharts (from
"@TimeChart" tab).

Strongly
disagree

Qualtrics Survey Software

Neither
Somewhat agree nor
disagree disagree

171

Somewhat
agree

Strongly
agree

Imagine you are a health policy maker for CDC, what do
you think about the following policies?

I will use the filter
function to 3D
space-time cube to
warn the counties
with a higher relative
risk (e.g., RR>=4).

I will investigate why
space-time clusters
were shifted from
Eastern to Western.

strongly
Disagree

O

O

Neither
Somewhat agree nor
disagree disagree

O O

Somewhat
agree

Strongly
agree

O O

Any thoughts about the 3D space-time cube?

https://uncc.azl .qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrintPreview ?ContextSurveyID=SV_4JgQQx57HROTd42&ContextLibraryID=UR_6nxJN2J...  26/27
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APPENDIX C: IRB APPROVAL NOTICE

CHARLOTTE

RESEARCH AND ECONOMIC DEVELOPMENT

To: Yu Lan
Graduate School

From: Office of Research Protections and Integrity

RE: Notice of Exemption with Limited Review Approval
Approval Date: 25-Aug-2022

Exemption Category: 2~3

Study #: IRB-22-0219

Evaluation of A Web-based Geographic Framework to Detect

Study Title: and Visualize Space-time Clusters of Infectious Diseases

This submission has been reviewed by the Office of Research Protections and Integrity (ORPI) and was
determined to meet the Exempt category cited above under 45 CFR 46.104(d). In addition, this Exemption
has received Limited Review by the IRB under 45 CFR 46.111(a)(7). This determination has no expiration
or end date and is not subject to an annual continuing review. However, you are required to obtain IRB

approval for all changes to any aspect of this study before they can be implemented and to comply with
the Investigator Responsibilities detailed below.

Important Information:

1. Face masks are optional on UNC Charlotte’s campus. This includes classrooms and other academic
spaces. Researchers conducting HSR activities in other locations must continue to adhere to local
and state requirements in the setting where the research is conducted.

2. Face masks are still required in healthcare settings. Researchers conducting HSR activities in these
settings must continue to adhere to face coving requirements.

3. Organizations, institutions, agencies, businesses, etc. may have further site-specific requirements
such as continuing to have a mask requirement, limiting access, and/or physical distancing.
Researchers must adhere to all requirements mandated by the study site.

Your approved study documents are available online at Submission Page.

Investigator’s Responsibilities:

1. Amendments must be submitted for review and the amendment must be approved before
implementing the amendment. This includes changes to study procedures, study materials,
personnel, etc.
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2. Data security procedures must follow procedures as approved in the protocol and i n accordance with
OnelT Guidelines for Data Handling .

3. Promptly notify the IRB (uncc-irb@uncc.edu) of any adverse events or unanticipated risks to
participants or others.

4. Five years (5) following this approval, ORPI will request a study status update.

5. Be aware that this study is now included in the Office of Research Protections and Integrity (ORPI)
Post-Approval Monitoring program and may be selected for post-review monitoring at some point
in the future.

6. Reply to ORPI post-review monitoring and administrative check-ins that w ill be conducted
periodically to update ORPI as to the status of the study

7. Complete the Closure eform via IRBIS once the study is complete

Please be aware that additional approvals may still be required from other relevant author ities or
"gatekeepers" (e.g., school principals, facility directors, custodians of records).

This study was reviewed in accordance with federal regulations governing human sub jects research,
including those found at 45 CFR 46 (Common Rule), where applicable.



175

APPENDIX D: CONCENT FORM FOR STUDENTS

c CHARLOTTE

Department of Geography and Earth Sciences
9201 University City Boulevard, Charlotte, NC 28223-0001

Consent to Participate in a Research Study

Title of the Project: Evaluation of A Web-based Geographic Framework to Detect and Visualize
Space-time Clusters of Infectious Diseases

Principal Investigator: Yu Lan, Ph.D. Candidate, University of North Carolina at Charlotte and
Center for Applied Geographic Information Science, USA

Co-investigators: Eric Delmelle, Ph.D., University of North Carolina at Charlotte, USA;
Deborah Thomas, Ph.D., University of North Carolina at Charlotte, USA

Study Sponsor: None

You are invited to participate in a research study. Participation in this research study is
voluntary. The information provided is to help you decide whether or not to participate. If you
have any questions, please ask.

Important Information You Need to Know

e The purpose of this research is to evaluate a prototype of a web-based geographic
framework to detect and visualize space-time clusters of infectious diseases.

e We are asking graduate students from UNCC to participate in a survey that participants
will follow the instruction to use the prototype and answer questions after exploring some
functionalities of the prototype.

e You have the right to refuse participation at any time and the information collected from
you will be deleted from the investigation.

e Please read this form and ask any questions you may have before you decide whether to
participate in this research study.

Why are we doing this study?

Infectious diseases pose a significant threat to public health worldwide as evidenced by the
recent coronavirus 2019 (COVID-19) pandemic. Despite significant human losses, the advent of
web-accessed, map-based “data dashboards” that monitored disease outbreaks, proved essential
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in managing public health responses. In many cases, the backend of these dashboards employed
basic mapping functionality, displaying counts or rates. As the pandemic advanced, the
identification of elevated rates was increasingly important in the geographical allocation of
public health resources. However, such maps miss the opportunity to provide accurate
information to policy decision makers such as the rate of disease spread, cyclicity, direction,
intensity and the risk of diffusion to new regions. Space-time geoanalytics, when coupled with
rich visualizations, can address these shortcomings. Moreover, when implemented over the web,
such space-time functionality can be accessed from virtually anywhere. Thus, my dissertation
presents a web-based geographic framework for detecting and visualizing explicit space-time
clusters of infectious diseases. As a proof of concept, | will populate the framework with
COVID-19 county-level data for the 48 contiguous states in the US, and demonstrate data
retrieval and storage, space-time cluster detection analysis, and 3D visualization within an open-
source WebGIS environment. This tightly coupled approach coupling approach will facilitate the
detection of space-time clusters of diseases in a computationally acceptable timeframe.

Why are you being asked to be in this research study?

You are being asked to be in this study because you are graduate students, who are capable to
use the prototype and interpret results as it was designed to assist health policymakers during the
pandemic.

What will happen if | take part in this study?

If you choose to participate you will be asked to take a survey with multiple questions. Questions
include your gender, age group, major, degree level, the knowledge level in related background,
questions related to prototype, and usability and user experience. There will be no time limit, and
it usually will take 0.5~1 hours.

What benefits might | experience?

You will not benefit directly from being in this study. Others might benefit because it is
important to understand the space-time clusters of COVID-19. The results can improve
educational resources and improve health policy to help protect the community from disease.

What risks might | experience?
There are no risks if you decide to participate in this study.

How will my information be protected?

This collected response from the survey will be stored and analyzed. We are not collecting your
name, address, or any information that will identify you. You will be assigned an identification
number for reference for the analysis. While the study is active, the researchers listed above will
only have access to the results; while the analysis results will be stored in a password-protected
Google Drive that can be accessed by the primary researcher. Only the research team will have
routine access to the study data. Other people with approval from the Investigator, may need to
see the information we collect about you. Including people who work for UNC Charlotte and
other agencies as required by law or allowed by federal regulations. Your individual privacy will
be maintained in all written and published material resulting from the research.

How will my information be used after the study is over?
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After this study is complete, study data may be shared with other researchers for use in other
studies or as may be needed as part of publishing our results. The data we share will NOT
include information that could identify you.

Will I receive an incentive for taking part in this study?
You will be paid a gift card ($25) to participate in this study, and it will be given to you after you
submit all your responses.

What other choices do I have if I don’t take part in this study?
You do not have to participate in this study. If you are interested in the results of this study, you
can contact the principal investigator.

What are my rights if | take part in this study?

It is up to you to decide to be in this research study. Participating in this study is voluntary. Even
if you decide to be part of the study now, you may change your mind and stop at any time. You
do not have to answer any questions you do not want to answer.

Who can answer my guestions about this study and my rights as a participant?
For questions about this research, you may contact Yu Lan — email: ylanl@uncc.edu, phone:
+1(704)499-0107 and Dr. Eric Delmelle — email: Eric.Delmelle@uncc.edu.

If you have questions about your rights as a research participant, or wish to obtain information,
ask questions, or discuss any concerns about this study with someone other than the
researcher(s), please contact the Office of Research Protections and Integrity at +1 (704)-687-
1871 or uncc-irb@uncc.edu.

Consent to Participate

If you agree to participate in this research study, please reply to the email and paste the following
sentences in your replied email.

“I have read and I understand the provided information and have had the opportunity t0 ask
questions. | understand that my participation is voluntary and that | am free to withdraw at any

time, without giving a reason and without cost.”

Be sure that any questions have been answered clearly to you and that you have a thorough
understanding of the study.

Please ask any questions regarding this study’s objectives and your participation.

If you have further questions that come up later, please feel free to ask a member of the research
team.


mailto:uncc-irb@uncc.edu
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APPENDIX E: CONCENT FORM FOR EXPERTS

c CHARLOTTE

Department of Geography and Earth Sciences
9201 University City Boulevard, Charlotte, NC 28223-0001

Consent to Participate in a Research Study

Title of the Project: Evaluation of A Web-based Geographic Framework to Detect and Visualize
Space-time Clusters of Infectious Diseases

Principal Investigator: Yu Lan, Ph.D. Candidate, University of North Carolina at Charlotte and
Center for Applied Geographic Information Science, USA

Co-investigators: Eric Delmelle, Ph.D., University of North Carolina at Charlotte, USA;
Deborah Thomas, Ph.D., University of North Carolina at Charlotte, USA

Study Sponsor: None
You are invited to participate in a research study. Participation in this research study is

voluntary. The information provided is to help you decide whether or not to participate. If you
have any questions, please ask.

Important Information You Need to Know

e The purpose of this research is to evaluate a prototype of a web-based geographic
framework to detect and visualize space-time clusters of infectious diseases.

e We are asking experts in public health to participate in a semi-structured group interview
that participants will answer questions and have a discussion with other participants after
a presentation of this system in the beginning.

e You have the right to refuse participation at any time and the information collected from
you will be deleted from the investigation.

e Please read this form and ask any questions you may have before you decide whether to
participate in this research study.

Why are we doing this study?

Infectious diseases pose a significant threat to public health worldwide as evidenced by the
recent coronavirus 2019 (COVID-19) pandemic. Despite significant human losses, the advent of
web-accessed, map-based “data dashboards” that monitored disease outbreaks, proved essential
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in managing public health responses. In many cases, the backend of these dashboards employed
basic mapping functionality, displaying counts or rates. As the pandemic advanced, the
identification of elevated rates was increasingly important in the geographical allocation of
public health resources. However, such maps miss the opportunity to provide accurate
information to policy decision makers such as the rate of disease spread, cyclicity, direction,
intensity and the risk of diffusion to new regions. Space-time geoanalytics, when coupled with
rich visualizations, can address these shortcomings. Moreover, when implemented over the web,
such space-time functionality can be accessed from virtually anywhere. Thus, my dissertation
presents a web-based geographic framework for detecting and visualizing explicit space-time
clusters of infectious diseases. As a proof of concept, | will populate the framework with
COVID-19 county-level data for the 48 contiguous states in the US, and demonstrate data
retrieval and storage, space-time cluster detection analysis, and 3D visualization within an open-
source WebGIS environment. This tightly coupled approach coupling approach will facilitate the
detection of space-time clusters of diseases in a computationally acceptable timeframe.

Why are you being asked to be in this research study?
You are being asked to be in this study because you are experts in public health, who are capable
to use interpret results as it was designed to assist health policymakers during the pandemic.

What will happen if I take part in this study?

If you choose to participate you will be asked to participate a semi-structed group interview with
other recruited experts. The interview will be held as a zoom meeting, and it will be recorded and
later transcribed for subsequent analysis. The interview should last around one hour.

What benefits might | experience?

You will not benefit directly from being in this study. Others might benefit because it is
important to understand the space-time clusters of COVID-19. The results can improve
educational resources and improve health policy to help protect the community from disease.

What risks might | experience?
There are no risks if you decide to participate in this study.

How will my information be protected?

This collected response from the survey will be stored and analyzed. We are not collecting your
name, address, or any information that will identify you. You will be assigned an identification
number for reference for the analysis. While the study is active, the researchers listed above will
only have access to the results; while the analysis results will be stored in a password-protected
Google Drive that can be accessed by the primary researcher. Only the research team will have
routine access to the study data. Other people with approval from the Investigator, may need to
see the information we collect about you. Including people who work for UNC Charlotte and
other agencies as required by law or allowed by federal regulations. Your individual privacy will
be maintained in all written and published material resulting from the research.

How will my information be used after the study is over?
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After this study is complete, study data may be shared with other researchers for use in other
studies or as may be needed as part of publishing our results. The data we share will NOT
include information that could identify you.

Will I receive an incentive for taking part in this study?
There are no incentives and you will not be paid to participate in this study.

What other choices do I have if I don’t take part in this study?
You do not have to participate in this study. If you are interested in the results of this study, you
can contact the principal investigator.

What are my rights if | take part in this study?

It is up to you to decide to be in this research study. Participating in this study is voluntary. Even
if you decide to be part of the study now, you may change your mind and stop at any time. You
do not have to answer any questions you do not want to answer.

Who can answer my guestions about this study and my rights as a participant?
For questions about this research, you may contact Yu Lan — email: ylanl@uncc.edu, phone:
+1(704)499-0107 and Dr. Eric Delmelle — email: Eric.Delmelle@uncc.edu.

If you have questions about your rights as a research participant, or wish to obtain information,
ask questions, or discuss any concerns about this study with someone other than the
researcher(s), please contact the Office of Research Protections and Integrity at +1 (704)-687-
1871 or uncc-irb@uncc.edu.

Consent to Participate

If you agree to participate in this research study, please reply to the email and paste the following
sentences in your replied email.

“I have read and | understand the provided information and have had the opportunity to ask
questions. | understand that my participation is voluntary and that | am free to withdraw at any

time, without giving a reason and without cost.”

Be sure that any questions have been answered clearly to you and that you have a thorough
understanding of the study.

Please ask any questions regarding this study’s objectives and your participation.

If you have further questions that come up later, please feel free to ask a member of the research
team.


mailto:uncc-irb@uncc.edu
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APPENDIX F: THE CODEBOOK OF SCRIPTS FROM THE GROUP INTERVIEW

Note: There are three scripts (files) for each group task.

Codes

audience Discussion on the audience of the evaluated
dashboard or system

cluster Discussion on cluster 3 17

cons Discussion on the disadvantages of the evaluated 3 25
dashboard or system

data Discussion on the data from the evaluated dashboard 2 8
or system

maps Discussion on the maps from the evaluated 2 3
dashboard or system

pros Discussion on the advantages of the evaluated 3 15
system or dashboard

scale Discussion on the scales from the evaluated system 2 9
or dashboard

time Discussion on the temporal information or 2 7
representation from the evaluated system or
dashboard

usefulness Discussion on the usefulness of the evaluated system 3 20

or dashboard
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