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ABSTRACT

GREGORY R WILLIAMS. Secure key updates for dynamically reconfigurable logic
locked designs. (Under the direction of DR. FAREENA SAQIB)

Due to globalization and the shift to the horizontal business model, there are

emerging security concerns in the semiconductor industry including FPGAs. Mod-

ern FPGAs are system on a chip platforms that integrates a processing system with

programmable logic. The horizontal design flow for FPGAs supports third party in-

tellectual properties integration into a design. Untrustworthy entities within in the

design flow can have several points of attack against the intellectual properties such

as intellectual property piracy, reverse engineering, hardware Trojans, and bitstream

cloning.

Logic locking is a mechanism to design trusted intellectual property, and its distri-

bution. Logic locking inserts additional logic into a design with key inputs where the

outputs are obfuscated and the design is functional only when a correct key combina-

tion is given. Current logic locking schemes hard code the key value into an IP and

rely on the assumption that the key will be kept secure during the life cycle of the

chip. This work proposes a key update mechanism for logic locked IPs that unlike

current schemes, provides dynamically reconfigurable lock updates to the IP and key

deployment in a trusted execution environment. We assess the security of the locked

IPs and evaluate resource and timing overhead of the proposed scheme. This work

demonstrates that the reconfigurable logic locked IP technique is feasible, with results

supporting that the locking scheme meets all timing requirements.
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CHAPTER 1: INTRODUCTION

1.1 Motivation

With the rise of globalization and increasing demand, the semiconductor industry

in recent years has shifted to the horizontal business model where the design house,

foundry, and assembly are distributed across different companies [1]. Modern Field-

Programmable Gate Arrays (FPGA)s are System on a Chip (SoC) platforms and are

used in commercial and government systems. The FPGA design flow support Third

Party Intellectual Properties (3PIP) integration that are sourced from many different

vendors and are combined together in a FPGA design [2]. The design flow improves

the design time and cost, but introduces trust and security issues for the Intellectual

Property (IP) owner and system integrator through the distribution and integration

of the IP [3].

The horizontal FPGA design flow, shown in Figure 1.1, starts with integration of

3PIP designs, that are integrated with in-house SoC design solutions. The system

integrator combines the 3PIP designs along with other design components at the

system level and generates the final bitstream. A bitstream is a binary file that

programs the FPGA to run the intended application. The bitstream is provided to a

system programmer who is responsible for loading the bitstream into the FPGA to

be used in the field.

Untrustworthy entities within the design flow can have several points of attack

against IPs such as IP piracy, reverse engineering, hardware Trojans, and bitstream

cloning. A hardware Trojan is a malicious modification of an IP by an untrusted IP

owner or system integrator to produce undesired behavior of an IP and to open side

channels for eavesdropping [4]. IP piracy is a risk to 3PIP owners that license their
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Figure 1.1: Modern FPGA design flow with the horizontal business model.

IP designs to untrustworthy system integrators who may over use their IP and sell

more copies than agreed upon in the licensing agreements. 3PIP vendors additionally

are at risk of system integrators using reverse engineering attacks to produce cloned

IPs.

To provide IP protection, hardware obfuscation techniques such as logic locking

have been proposed. Logic locking inserts additional logic into a design at the Register

Transfer Level (RTL), gate, or layout level. Inputs to the inserted logic are designated

as key inputs. The inserted logic is designed to produce incorrect outputs of the IP

if an incorrect key is given. If the key inputs are correct the logic will leave the IP

unaffected and produce the correct outputs. Users of the IP will not have a functional

design unless they obtain the correct key from the IP vendor. A conceptual overview

of a logic locked IP is shown in Figure 1.2.

Figure 1.2: Overview of Logic Locking.

Logic locking is a promising defense against IP piracy, Trojan insertions, and coun-

terfeiting as the original behavior of the IP is obfuscated to make the reverse engi-

neering process difficult [5]. IPs are not usable unless the IP owner provides a correct

key combination to unlock. Current logic locking techniques modify IPs by inserting
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key logic at the RTL, gate, and layout level, which physically embeds a key value into

the design. The current methods do not provide a mechanism to update the value of

the key. To have IPs with different key values, design updates are needed and a new

IP with different key logic must be generated. If the same locked IP is used on many

devices, a leak of the key value on one device in the field means the security of all

instances of the IP on other chips are also compromised.

Current logic locking techniques rely on an assumption that the secret key for

the IP resides in tamper-proof memory on a SoC platform [6]. On a SoC platform

the secret key is read from the tamper-proof memory and programmed to the IP by

software running on a processor within the SoC. The memory containing the secret

key may be tamper-proof from external probes, but an attacker may gain malicious

access of host software executing on the processor. The malicious access can be used

to access and leak the secret key of the IP.

In this work, we propose and demonstrate a novel logic locking scheme for combi-

national logic locking for FPGA architectures. Unlike existing logic locking schemes,

our proposed scheme provides a key update mechanism for the locked IP through the

use of partial reconfiguration. The partial reconfiguration changes the key logic of the

IP, subsequently updating the correct key combination. Furthermore, we demonstrate

a secure key-provisioning system enabled with a hardware based Trusted Execution

Environment (TEE) to protect the key during deployment and reconfiguration. This

work demonstrates that the reconfigurable logic locked IP technique is feasible, with

results supporting that the locking scheme meets all timing requirements.

1.2 Contributions

This work makes the following contributions:

• Proposes an automated framework to allow the IP owner to obfuscate the IP

design in the form of RTL files and integrates logic locking at the gate level.

The IP designer can generate a locked IP without the prior knowledge on IP
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security.

• Proposes and demonstrates a novel logic locking scheme that incorporates key

logic into reconfigurable partitions of the FPGA to allow multiple configurations

of the secret key for different clients and the ability to update the key during

runtime.

• Proposes and demonstrates a secure system for key deployment and updates

to the locked IP on a FPGA SoC Platform. The system is enabled with ARM

TrustZone hardware extensions to establish a TEE for secure key application

to unlock the IP.

1.3 Organization

The organization of the thesis is as follows. Chapter 2 describes the background

information and existing works related to this work. Chapter 3 discusses the logic

locking framework, proposed scheme for 3PIP integration, and the experimental setup

necessary for implementation on a Xilinx ZYNQ platform. The automated frame-

work, results, security and overhead analysis of the proposed technique is discussed

in Chapter 4. Lastly, chapter 5 provides a conclusion and Chapter 6 suggests future

work.



CHAPTER 2: BACKGROUND

2.1 Logic Locking

To combat the attacks against 3PIP’s in the modern day semiconductor supply

chain, IP owners use hardware obfuscation techniques to hide the structure and logic

of their IP. A hardware obfuscation technique that has recently come to prominence

in the fight against IP piracy is logic locking [7]. Logic locking is a technique defined

by inserting additional logic with key inputs into a netlist or gate level description

of the circuit. The additional logic is designed to leave the circuit unchanged if

the correct key is given but corrupt the outputs of the design if an incorrect key

is given. Logic locking, sometimes called logic encryption, has implementations for

sequential and combinational circuits, however this work focuses on combinational

locking techniques.

2.1.1 Random Logic Locking

An elementary implementation of combinational locking logic is to insert XOR/XNOR

gates, known as key gates, randomly throughout a netlist with one input connected to

a key input. This technique is known as random insertion [8]. An incorrect input to

a key gate causes the gate to flip its input, corrupting the functionality of the netlist.

When a correct key is given, the key gate does not flip its input leaving the netlist to

behave as intended. Table 2.1 shows the truth table for both XOR and XNOR gates.

From the table, it can be observed that a key input of 0 for XOR and a key input of

1 for XNOR leaves the input unchanged at the output. This is considered the correct

key input for the respective gates.

An example of random insertion using c17 from the ISCAS benchmark circuits is
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Table 2.1: Truth table for XOR and XNOR key gates.

(a) XOR truth table

K In Y
0 0 0
0 1 1
1 0 1
1 1 0

(b) XNOR truth table

K In Y
0 0 1
0 1 0
1 0 0
1 1 1

shown in Figure 2.1. The circuit in Figure 2.1b is modified in by inserting two key

gates with inputs K1 and K2. An incorrect key such as 10 for K1 and K2 respectively

causes both key gates to flip their inputs from the netlist which can produce incorrect

outputs. If the correct key is given and key inputs K1 and K2 are 0 and 1 respectively,

key gates K1 and K2 do not flip the input, which makes the circuit logically equivalent

to the circuit if Figure 2.1a and produces the correct outputs.

(a) Original c17 ISCAS Benchmark Circuit

(b) Logic Locked c17 with Key Inputs K1 & K2

Figure 2.1: Logic locking example for ISCAS benchmark c17.
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2.1.2 Fault-Analysis Based Logic Locking

The insertion of gates into the netlist does not guarantee that the outputs change

when an incorrect key is applied. An incorrect key can be blocked from propagating

to the output for certain input patterns. For example, take the logic locked circuit

shown in Figure 2.1b. If gate G3 evaluates to a value of 0, gate G5 evaluates to 1

regardless of the input coming from the key gate, and even an incorrect key produces

correct results. Key gates can also be masked by a second key gate on the same path.

If the second key gate also has an incorrect key input, it can reverse what is done by

the first incorrect key resulting in correct outputs.

Figure 2.2: Improper placement of key gates resulting in a masked incorrect key.

The circuit in Figure 2.2 has been locked with the insertion of 3 key gates. The gates

are configured in a way that produces the masking effect for a certain range of inputs.

For an input pattern of 00000 and correct key input of 000, the expected outputs O1

and O2 should be 00. For an incorrect key input of 111, the effect introduced by gate

K1 is reversed by the effects created by gates K2 and K3. Consequently, the correct
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outputs 00 are produced with incorrect keys.

The fault analysis based insertion algorithm demonstrated in [9] was proposed in

2015 to help mitigate against the insertion issues discussed with random insertion.

The insertion algorithm uses fault propagation analysis to determine where key gates

are most likely to change outputs if an incorrect key is applied. This probability

known as the fault impact and is determined by the number of faults detected at

the output of a gate for a set of test input patterns. The insertion algorithm then

inserts key gates into the locations with the highest fault impact, choosing randomly

whether it is an XOR or XNOR gate.

Fault analysis based insertion has been proven to be more effective than random

insertion in changing outputs if a wrong key is applied. The algorithm targets a 50%

Hamming distance between correct outputs and incorrect outputs when a wrong key

is applied, providing the maximum ambiguity to an attacker. The insertion algorithm

was tested on the ISCAS benchmark suite. Random insertion was not able to obtain

a 50% Hamming distance on any of the benchmark circuits. Fault analysis based

insertion was able to obtain a 50% Hamming distance on all benchmarks except for

C5315 and C7552. It was also determined that fault analysis based insertion requires

less gates to obtain the 50% metric leading to less overhead in the locked design.

2.1.3 Boolean Satisfiability (SAT) Attack

Traditional insertion techniques for combinational logic locking such as random

insertion and fault analysis based insertion are shown in [10] [11] to be vulnerable

to Boolean Satisfiability or SAT attacks. The SAT attack extracts the secret key by

iteratively ruling out incorrect key values using distinguishing input patterns (DIP)s.

A DIP is defined by a input value for which at least two different key values produce

differing outputs. Since the outputs are different for the key values, at least one or

both of key values are incorrect. The SAT attack can rule out multiple incorrect key

values per iteration, reducing the key search space even more for the next iteration.
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The DIPs for a locked netlist are discovered by using two copies of the locked circuit,

one being a functional IC with the correct key embedded inside. The primary inputs

of the two circuits are kept the same, while the key value for the non-functioning

circuit is left independent. The outputs of the two circuits are XORed then ORed

together, creating a diff signal that evaluates to 1 if any of the outputs of the two

circuits are different. The combined circuit is then passed to a SAT solver that finds

a DIP for which the diff signal is on. This DIP is then applied to the functional IC to

obtain the correct output which is then used to identify incorrect keys. The process

of finding a DIP and ruling out incorrect keys is then repeated and continues until

no more DIPs are found, meaning that all incorrect key values have been found.

2.1.4 SAT Attack Resistant Logic Locking

The worst case scenario for a SAT attack is when a DIP can only rule out one

incorrect key per iteration, effectively making the SAT attack use brute force to find

the secret key. Depending on the key size for the locked netlist, this can make the SAT

attack computationally unfeasible. The truth table in Table 2.2 represents a locked

netlist that ensures the worst case for the SAT attack. The netlist has 3 primary

inputs and 3 key inputs resulting in 8 different key combinations. The output Y for

the netlist is shown for every input pattern and key combination. For each input

pattern there is at most one incorrect key combination that produces an incorrect

output. With this configuration, the SAT attack can only rule out one incorrect key

combination per iteration and the number of DIPs for the algorithm to find increase

exponentially with key size.

Motivated by the example in Table 2.2, SAT Attack Resistant Locking or SARLock

proposed in [12] is a logic locking technique that ensures that the SAT attack can

rule out only one incorrect key combination per iteration. The proposed architecture

shown in Figure 2.3 uses a comparator circuit that asserts a flip signal for a specific

input and key value. The flip signal is then XORed with an output of the circuit and
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Table 2.2: Truth table representing worst case scenario for SAT attack.

Output Y for different key values
No. A B C Y k0 k1 k2 k3 k4 k5 k6 k7
0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 1 0 0 0 1 0 0 0 0 0
2 0 1 0 0 0 1 0 0 0 0 0 0
3 0 1 1 1 1 1 1 0 1 1 1 1
4 1 0 0 0 0 0 0 0 1 0 0 0
5 1 0 1 1 1 1 1 1 1 1 1 1
6 1 1 0 1 1 1 1 1 1 0 1 1
7 1 1 1 1 1 1 1 1 1 1 1 0

corrupts the output if asserted. The mask logic is inserted to prevent a correct key

from asserting the flip signal.

The comparator circuit logic has primary inputs IN and key inputs K, and a

single bit output flip. The comparator logic block is represented by the Boolean

function flip = F (IN,K). The Boolean function is a one-point function and for each

incorrect key guess to the comparator logic, the flip signal is different at only one

input with respect to the correct key. The resulting architecture achieves the desired

SAT resistance and overhead grows linearly with key size, while the number of DIPs

grows exponentially.

Figure 2.3: SAT attack resistant circuit diagram.

SARLock insertion successfully provides SAT resistance but does not protect against

other attacks on logic locking for example, a removal attack. A removal attack is where

an attacker identifies the logic that corresponds to the locking circuitry and removes
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it from the netlist [13]. Since SARLock is isolated outside of the original netlist, it

can be easier for the attacker to isolate and remove it. SARLock’s defense against

the SAT attack involves selectively flipping output bits resulting in a small Ham-

ming distance for incorrect keys. To provide maximum security, the authors propose

using two layer logic locking which combines SARLock with a traditional insertion

technique such as fault analysis based insertion. Combining these two techniques

offers maximum security with resistance against the SAT attack and provides a 50%

Hamming distance across outputs with an incorrect key.

2.2 Dynamic Partial Reconfiguration

Dynamic Partial Reconfiguration (DPR) is a technology offered by many FPGA

architectures to modify sections of implemented logic during the runtime of the FPGA

while the remaining logic continues to operate without interruption. A dynamic

partial reconfigurable design consists of non-reconfigurable logic known as static logic,

a reconfigurable area in the FPGA hardware known as a reconfigurable partition, and

reconfigurable modules to be placed into the reconfigurable partitions [14]. Figure 2.4

illustrates a top-level diagram of a DPR design consisting of three reconfigurable

partitions each with their own set of reconfigurable modules.

The dynamic partial reconfiguration technology provides more system flexibility

for application developers to take advantage of. An example is a system acting as

a communication hub may support many different functions to operate on the data.

Each time a new function is needed, the communication link must be temporarily

closed to reconfigure the FPGA fabric for the new function. The same system enabled

with DPR, can keep the links of communication active and partially reconfigure the

PL fabric to support the new function. Another example is an application might

need to support a variety of functions that cannot fit all on the FPGA at once. DPR

enables a system where time-multiplexing can be used to cycle through different

functions, reducing the overall size of the logic. An application developer can use
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Figure 2.4: Basic DPR architecture with static logic, reconfigurable partitions, and
reconfigurable modules for each partition.

DPR to also reduce power requirements by partially swap out power-hungry tasks

when not needed.

2.2.1 Reconfigurable Partitions

Many FPGA families today have support for dynamic partial reconfiguration, al-

though this work focuses on Xilinx’s ZYNQ-7000 SoC architecture. The ZYNQ SoC

integrates a dual-core Arm Cortex-A9 processor based processing system (PS) and

an FPGA known as the programmable logic (PL). The architecture of the PL can be

conceptually broken down into two layers, the configuration memory layer and hard-

ware layer [15]. The hardware layer consists of the computational hardware resources

such as lookup tables (LUTs), flip-flops, digital signal processors, and memory re-

sources. The configuration memory layer is composed of SRAM and stores all of the

information that determines initial states and configuration of the hardware resources
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as well as the routing information. The data programmed into the configuration is

known as a bitstream.

The ZYNQ architecture provides the ability of partial reconfiguration by allowing

applications to download partial bitstreams to certain areas of configuration memory.

The areas of configuration memory directly corresponds to the areas of the PL defined

as reconfigurable partitions. Reconfigural partitions are defined with Partition Pins

which are interfaces between static and reconfigurable logic. The pins are available

within the reconfigurable partition but are implemented as part of the static logic,

meaning that they must stay the same between configurations.

2.2.2 Reconfigurable Modules

The partial bitstreams downloaded to the reconfigurable partitions contain the

information necessary to implement the logic of reconfigurable modules. A reconfig-

urable module is the logic that occupies the reconfigurable partition of configuration

memory. There can be many reconfigurable modules per reconfigurable partition.

I/O interfaces must be consistent throughout the reconfigurable modules to support

the static partition pin interface.

2.2.3 ICAP and PCAP Interface

The ZYNQ architecture allows for modification of PL configuration memory through

mainly two configuration paths [16]. The Internal Configuration Access Port (ICAP)

provides an interface for reconfiguration by the PL. Xilinx provides the AXI HWICAP

IP that is instantiated in PL designs for reconfiguration. The IP uses an AXI slave

interface to take data from an application in the PL to write to the ICAP interface,

which then program configuration memory the PL. The interface is usually handled

by a MicroBlaze processor instantiated in the PL.

The PS includes an interface for PL device control called the Device Configuration

Interface (DevC). The DevC interface includes three modules, one to access the PLs
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analog to digital converters (XADC), manage PL security, and access to the AXI-

PCAP interface. The Processor Configuration Access Port (PCAP) interface is used

to download full or partial bitstreams to the PLs configuration memory. The PCAP

interface contains an AXI DMA engine to move bitstreams from memory, mainly on

chip memory, DDR, or addressable flash devices, to the PL configuration module.

The DevC has a slave AXI interface connected to the PS AXI interconnect, making

it accessible to an AXI master in the PS.

Figure 2.5: Data paths diagram for reconfiguration of PL configuration memory.

ICAP and PCAP interfaces can never be simultaneously active. Switching between

them is possible through the programming of a register in the DevC. This register

sets the select bit for a multiplexer to choose the interface to the PL configuration

module. The data path diagram for the two paths is shown in Figure 2.5.
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2.2.4 Partial Bistream Generation

Xilinx supports generation of full and partial bitstreams for partial configuration

applications through the Vivado Design Suite using a mix of the Graphical User In-

terface (GUI) and TCL command line flow. The flow uses “bottom-up synthesis”

meaning the static logic and reconfigurable modules are synthesized separately [17].

The reconfigurable logic modules must be instantiated in the top level for I/O pur-

poses but are treated as black boxes for the synthesis. Synthesis results for each

module, static and reconfigurable, are then written to a checkpoint file for later use.

Physical areas of the device are then defined as reconfigurable partitions using the

constraints file. A complete configuration with static logic and one reconfigurable

module for each reconfigurable partition must go through implementation to gener-

ate a checkpoint for a fully routed design. A checkpoint is also generated for the

routing of the static only logic. The static logic checkpoint is then used to generate

routing the rest of the possible configurations of the design. Once all configurations

are implemented and routed, a full bitstream with an initial configuration and partial

bitstreams for the reconfigurable modules can be generated.

2.3 Trusted Execution Environments

A Trusted Execution Environment (TEE) is a processing environment that guar-

antees secure process isolation and the authenticity of the executed code. Isolated

execution for a TEE is commonly ensured through the implementation of a separa-

tion kernel [18]. The separation kernel enables the co-execution of two systems that

have different security requirements on the same platform. The separation kernel

does this by dividing system resources into several partitions, providing strict isola-

tion between them. The separation kernel only allows interaction between partitions

through a carefully controlled interface. The main security criteria of the isolation

is that it should ensure that data within one partition should not be able to be



16

read or modified by other partitions, partitions cannot leak sensitive information to

shared resources, and partitions cannot communicate unless permitted. To support

the implementation of TEEs and separation kernels, processor architectures have in-

troduced hardware extensions to provide isolation at the hardware level. Examples

of commercial hardware based isolation schemes are ARM TrustZone and Intel SGX.

2.3.1 Intel SGX

Intel Software Guard Extensions (SGX) is a set of security extensions added to the

Intel architecture that guarantees integrity and confidentiality for security-sensitive

applications even if privileged software is potentially malicious. The fundamental

idea of SGX is a protected environment containing security-sensitive code and data

known as an enclave [19]. SGX security extensions provide the ability to have multiple

enclaves and ensures isolation of each enclave from untrusted or malicious software

outside of the enclave. The security extensions also allows software running inside

enclaves to use an attestation scheme to allow local or remote parties to verify its

authenticity.

Enclaves store their code and data in Processor Reserved Memory (PRM), a subset

of RAM in the system that cannot be directly access by other software including

system software. The CPUs memory controllers also block DMA transfers to the

PRM further protecting the region from peripherals. If any non-enclave software

attempts to access a virtual address that translates to a physical address in the PRM,

the processor returns an abort page that is filled with all ones. SGX also provides

isolation between enclaves, so if code running inside an enclave tries to access another

enclaves memory in the PRM, a page fault exception is raised.

System software such as an OS kernel is responsible for the creation and teardown

of enclaves through the use of the SGX instructions. Enclaves are created with the

ECREATE instruction which finds free pages in the PRM and puts the enclave into

an uninitialized state. The EADD instruction is used to load data into the enclave
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but validates its inputs before modifying the enclave. EEXTEND is then used to

measure the data loaded into the enclave if needed. The EINIT instruction is used

to mark the enclave as initialized but is still not in the running state. EENTER

and ERESUME are instructions that start or restart the execution of an initialized

enclave. To teardown the enclave the EEXIT instruction must be used to move the

enclave back to a non-running state. Once the enclave is not running the EREMOVE

instruction is then used to completely free the enclave.

2.3.2 ARM TrustZone

ARM TrustZone is a hardware enforced isolation architecture supported by ARM

Cortex-A application processors and Cortex-M micro-controllers. TrustZone divides

the SoC into two domains, the secure world and the normal or non-secure world [20].

It gives the designer the ability to isolate subsets of hardware like peripherals, memory

regions, areas of L2 cache, or even complete processors from the full system on chip

(SoC) for the normal world. Software running on the SoC can be executed in either

the secure or normal states.

To accomplish this separation, ARM introduced the Secure Configuration Register

(SCR) that specifies the security state of the processor, what mode the processor is

in (interrupt request, exception handling), and whether the normal world can disable

interrupts and asynchronous aborts in the Current Program Status Register (CPSR).

ARM SoCs provided TrustZone configuration registers that designates hardware items

as secure or non-secure. Software running in the secure state defined in the SCR has

full access to the entire SoC but software running in the non-secure state is isolated

to the hardware defined as non-secure hardware. If non-secure software attempts to

access a secure area of hardware, execution is halted and an exception is raised.

The software stack for a Cortex-A TrustZone enabled system is shown in Figure 2.6.

The normal world consists of a rich operating system (OS) like the Linux kernel which

is assumed to be flawed from a security perspective with its non-secure applications
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running on top of it. Software running in the secure state should be a small and

minimal OS to avoid the possibility of errors and exploits. Software running at the

highest privilege level known as the secure monitor should provide the ability to

handle exceptions from the normal world and provides mechanisms for secure context

switching between the two worlds. Context switching for ARM TrustZone is very

lightweight and efficient, only taking a few clock cycles to expose the full set of

hardware to trusted software or limiting the hardware to non-trusted software.

Figure 2.6: TrustZone software architecture for ARM Cortex-A processors.

There have been open source TEEs that have been developed to use ARM Trust-

Zone and execute in the secure state. Open Portable Trusted Execution Environment

(OP-TEE) is a TEE that follows the GlobalPlatform API standard for TEEs and is

ported to many ARM boards today. The GlobalPlatform API describes and defines

how a rich OS should communicate with a TEE. Another TEE is Nagoya (Japan)

University’s TOPPERS-SafeG which is a secure dual OS monitor. The purpose of

the monitor is to establish a trusted and non-trusted state for two separate operating

systems to be executed in. The monitor also facilitates secure communication be-

tween the two different operating systems through system calls to the monitor. The
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trusted state executes a small RTOS or baremetal OS where the non-trusted state

executes a larger general purpose OS like Linux or Android. Example commercial

implementations of ARM TrustZone today are applications such as Samsung KNOX

and Android’s Keystore.



CHAPTER 3: PROPOSED SCHEME AND EXPERIMENTAL SETUP

We propose a novel logic locking scheme enabled with Dynamic Partial Reconfig-

uration (DPR) to provide updates to the IPs key value during the runtime of the

IP. We present an automated framework for logic locked IP creation and a design

for secure integration of the locked IP on a FPGA SoC platforms. The FPGA SoC

platform consists of an ARM based Processing System (PS) integrated with FPGA

resources, the Programmable Logic (PL). The PS is connected to the PL through

the Advanced eXtensible Interface (AXI) interconnect for communication. The ARM

processor of the SoC is enabled with ARM TrustZone security extensions to facilitate

the secure deployment, management, and updates of the secret key for the locked IP.

3.1 Logic Locking Framework

The proposed framework provides an automated tool for state of the art logic

locking insertion schemes [21]. The framework uses a Python script to automate the

use of low level tools and provides a simple Graphical User Interface (GUI) shown

in Figure 3.1 to control the flow. The flow takes inputs of RTL Verilog files and

produces logic locked Verilog files with logic inserted at the gate level. A step-by-step

procedure of the framework flow for fault analysis insertion is given below.

The framework is given an input Verilog file containing a description of the IPs logic

at the RTL or at the gate level. The key insertion scheme requires insertion of key

logic at the gate level, so the RTL is synthesized using the Synopsis Design Compiler.

The compiler optimizes the RTL logic of the IP and converts the Verilog to the gate

level netlist. The new gate level Verilog file is analyzed to determine key insertions

following SARLock, fault analysis insertion, and random key insertions. The netlist
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Figure 3.1: Logic locking framework GUI.

is analyzed for testable faults of the given netlist for fault analysis based insertion

using ATPG generated input patterns and fault impact of each node is recorded.

The Verilog file is converted to the Berkeley bench format using the ABC tool. The

bench format is a gate level description used for gate insertion. The output of the

fault simulator is used to systematically insert key gates into netlist with the highest

fault impact, randomly chooses whether the gate is XOR or XNOR. The netlist bench

file with the key gates inserted is then converted back to Verilog and given to the

user.

The framework supports automatic integration of the locked IP with the PS and

bitstream generation with Vivado. The locked IP is integrated with a slave AXI

port that provides key inputs. Vivado TCL command line is used to connect the

AXI interface with the PS, place inputs and outputs of the IP in the PL, and gen-

erate a bitstream of the resulting hardware design. Once the generated bitstream

is programmed to the PL, secure interface of the PS writes the key value to the

memory-mapped AXI nterface to unlock the IP.
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3.2 Proposed Scheme

3.2.1 Partially Reconfigurable Logic Locking

Obfuscation of the IP can be done using combinational logic locking techniques

such as random insertion, fault analysis based insertion, or SARLock. The proposed

scheme places the additional key logic into reconfigurable partitions of the FPGA.

The logic locking technique allows for changes to the key value through partial recon-

figuration of key logic, while the rest of the primary logic is unaffected. Figure 3.2

shows the proposed logic locking scheme with the c17 ISCAS benchmark circuit. Re-

configurable partitions, highlighted with the red boxes, have a key input and hold

reconfigurable modules that act as the locking logic.

Figure 3.2: Example ISCAS benchmark c17 logic locked with key gates placed in
reconfigurable partitions.

To insert gates, the chosen nets are rerouted to an input of a reconfigurable parti-

tion. The reconfigurable partition has one output that is routed to the nets original

connection. If the key input to the reconfigurable partition is correct, the net is un-

affected and the netlist behaves as intended. If the key is wrong, the reconfigurable

partition flips the nets value, potentially corrupting the output of netlist. The exam-

ple in Figure 3.2 uses XOR/XNOR gates as the reconfigurable modules to provide

different configurations of logic locked design with different key values. Partial bit-
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streams for XOR and XNOR gates are generated for each reconfigurable partition in

the design. Each partial bit stream is specific to the reconfigurable partition it was

generated for. Key values are configured through downloading a partial bitstream to

the reconfigurable partitions of the configuration memory.

3.2.2 IP Integration on FPGA SoC Platform

The following section discusses a system design to securely integrate the 3PIPs

on an FPGA SoC platform. IPs are passed through the automated logic locking

framework for key insertion at the gate level. Key logic is extracted from the locked

netlist and inserted into reconfigurable partitions of the PL. An AXI slave port with

multiple data registers is instantiated along with the IP. The registers from the AXI

interfaces are used to store primary inputs and outputs of the locked IP and to

provide key inputs to all reconfigurable partitions. The resulting block diagram of

the integrated IP is shown in Figure 3.3.

Figure 3.3: Block level architecture of secure 3PIP placed in the PL.

The AXI interface of the IP is connected to the AXI interconnect between the PS

and PL, allowing the IP to communicate with an AXI master in the PS. The connec-

tion allows PS read and write access to the registers located inside the AXI interface.

The PS is responsible for setting primary and key inputs and monitoring outputs.
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The AXI HWICAP IP is not included as part of the bitstream, so reconfiguration of

the reconfigurable partitions must come from the PCAP.

To generate random configurations of the reconfigurable design, a Fibonacci Linear

Feedback Shift Register (LFSR) is implemented in the PL. The Fibonacci LFSR uses

a shift register that is initially set with a seed value. Some of the bits in the register,

the “taps”, are XORed together to produce a sequence of output bits. The output is

determined by the current state of the LFSR, and because there are finite states, the

output sequence is on a cycle. A well chosen feedback function can produce a sequence

that is seemingly random and has a very long cycle. The LFSR is built using the

register and a few XOR gates, so it provides a lightweight means of psuedo-random

number generation.

Figure 3.4: LFSR with 4 “taps” resulting in the addition of 3 XOR gates.

A 16 bit Fibonacci LFSR design with generator polynomial x16+x14+x13+x11+1,

is show in Figure 3.4. For connection to the PS, the LFSR is implemented with its

own AXI slave interface. The AXI interface logic contains data registers accessible

from the PS. The data registers are used to enable the LFSR to start its execution

and to store the current state of the LFSR.

3.2.3 Secure Key Reconfiguration and Provisioning

The system design uses the ARM based PS of the SoC to control the deployment

and reconfiguration of the secret key to the IP. The PS is enabled with ARM Trust-

Zone security extensions to facilitate a hardware based TEE and to isolate hardware
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for PL control. The key is only ever handled by software executing in the secure

domain. The TrustZone features are also used to isolate the PS connection to the PL

from any software executing in the non-secure domain.

Deployment of the secret key to the IP in the PL is done through a master AXI

port in the PS connected to the AXI interconnect. The locked IP has a slave AXI

port connected to the system AXI Interconnect, in order to receive data from the

PS. The interface for access the PCAP controller also has a slave connection to the

AXI Interconnect able to accept request from the PS master. The master AXI port is

accessible to the PS through a memory mapped interface. The PS accesses the data

registers in the slave through read or writes to the slaves AXI address space.

Figure 3.5: TrustZone configuration of hardware resources on SoC for 3PIP Integra-
tion.

TrustZone is used to configure areas of DDR memory and PS master AXI interfaces

as secure hardware shown in Figure 3.5. Any request made to the master AXI port by

software running in non-secure world is guaranteed by hardware to be ignored and not
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propagated to the AXI interconnect. This prohibits non-secure software from having

any communication with the PCAP interface as well as the IPs in the PL. Partial

bitstreams for the XOR/XNOR reconfigurable modules are stored in secure areas of

DDR memory. Any non-secure software attempting to access these areas of DDR

sets off an exception to be handled by the secure monitor, where the access is denied.

The DMA engine response from moving partial bitstreams from DDR to the PCAP

is capable of securing DMA channels under TrustZone. If a secure master makes a

request, a secure channel is established and the destination must be a secure area of

the device. If it is not, the DMA channel creates an external abort to be handled by

the secure monitor. The system architecture allows for continuous execution of a rich

OS that may be flawed from a security perspective. The hardware backed TrustZone

extensions ensure protection of the IP hardware from exploits in the rich OS.

3.3 Experimental Setup

The secure system design for integration of the locked IP on a FPGA SoC platform

is implemented on a Avnet Zedboard FPGA development board with a Xilinx ZYNQ

SoC. The SoC has a PS consisting of dual core ARM Cortex-A9 processors, on-chip

memory, a set of I/O peripherals and Xilinx FPGA fabric in the PL.

3.3.1 Gate Insertion

The automated framework is used to create an obfuscated RTL IP for integration

of the FPGA platform. The framework is tested on the ISCAS benchmark circuits

c17, c432, and c499 using fault analysis based key insertion at the gate level. Verilog

test benches were created for each benchmark to compare correct outputs to outputs

with an incorrect given for Hamming distance analysis. Figure 3.6 shows the original

RTL description and the RTL with key gates inserted.
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(a) Original c17 RTL (b) Logic Locked c17 RTL

Figure 3.6: Logic locking framework tested on ISCAS C17 Verilog RTL files using
fault analysis based insertion with 3 keys.

3.3.2 Hardware Design

The c17 benchmark locked with 3 keys was chosen for implementation on the

platform. For bottom-up synthesis of the design, the reconfigurable modules, in this

case XOR/XNOR key gates, are first synthesized separately. The Vivado TCL flow

is used to synthesize Verilog descriptions of the XOR and XNOR gates and design

checkpoints are saved for later use. The synthesis is executed in out of context mode

meaning I/O insertion is prevented. The synthesizer also is passed an option to

rebuild the hierarchy of the RTL design after synthesis.

## Synthesis of XOR gate ##

read_verilog xor.vhd

synth_design -mode out_of_context -flatten_hierarchy rebuilt -top xor

write_checkpoint -force xor.dcp

close_design

## Synthesis of XNOR gate ##
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read_verilog xnor.vhd

synth_design -mode out_of_context -flatten_hierarchy rebuilt -top xnor

write_checkpoint -force xnor.dcp

close_design

For creation of the static logic of the design, the locked IP is instantiated in a top

level RTL file that includes an instantiation of a slave AXI interface. Key logic is

extracted from the netlist and instead routed to three reconfigurable modules, one for

each key gate. The data registers of the AXI interface are tied to inputs and outputs of

the IP and key inputs to the reconfigurable modules. For synthesis of the static logic,

reconfigurable modules of the design are defined as “black boxes” with only input and

output ports defined. The resulting VHDL description of the reconfigurable modules

and file hierarchy of the locked IP is shown in Figure 3.7. The black box RTL has

port definitions of 2 inputs and 1 output with no behavioral description so it can

instead be filled with either an XOR or XNOR gate. The file hierarchy shows both

the locked c17 IP and the 3 reconfigurable modules are instantiated alongside of an

AXI slave interface.

(a) Black Box RTL for RMs

(b) File hierarchy of locked IP

Figure 3.7: Creation of static logic of IP for synthesis.
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Figure 3.8: Block design of secure IP connected to ZYNQ PS.

The resulting locked IP is instantiated in a Vivado block design and connected

to the AXI Interconnect and the ZYNQ PS in the block design editor shown in

Figure 3.8. The Xilinx Partial Reconfiguration Decoupler IP is placed between the

AXI Interconnect and locked IP to ensure the safety of the interface while partial

reconfiguration is occurring. Vivado is used to create an HDL wrapper for the block

design. The HDL wrapper containing all of the static logic is then synthesized and a

design checkpoint is saved.

The static logic synthesis checkpoint is loaded and the black boxes in the netlist of

the static design are selected. Each black box is loaded with the design checkpoints of

the synthesized XOR/XNOR reconfigurable modules. The following TCL commands

create a configuration of the locked IP with key 010 and marks the key modules as

reconfigurable.

read_checkpoint -cell rp_key0_inst xor2.dcp

read_checkpoint -cell rp_key1_inst xnor2.dcp

read_checkpoint -cell rp_key2_inst xor2.dcp

set_property HD.RECONFIGURABLE 1 [get_cells rp_key0_inst]
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set_property HD.RECONFIGURABLE 1 [get_cells rp_key1_inst]

set_property HD.RECONFIGURABLE 1 [get_cells rp_key2_inst]

The nets marked as reconfigurable must be placed into reconfigurable partitions

before implementation. The Vivado GUI is used to draw partially reconfigurable

blocks (pblocks) of FPGA resources. The reconfigurable XOR and XNOR gates only

use 1 LUT of FPGA resources, so no DSPS or block RAM need to be highlighted in

the pblock. Pblocks containing just FPGA slices are drawn for all 3 key gates and

linked with the key logic nets. Partial reconfiguration DRC checks are ran on the

created floorplan to check for violations. Once validated, the floorplan is saved to the

constraints file for the implementation phase.

Figure 3.9: Defining pblocks for each key gate.

The implementation phase is responsible for optimizing the logic, placing it in the

FPGA fabric, and the routing of the signals. During implementation the constraints

file created from pblock floor planning is read to know where to place pblocks in the

fabric and what logic is associated with them. After the implementation, the place-

ment and routing for the first configuration of the locked c17 is complete. Design

checkpoints are saved for the full routed design and for each reconfigurable partition.

The routed static logic design checkpoint is now generated to be used in other config-
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urations. The reconfigurable partition nets are updated to behave as black box logic,

leaving only the routed static logic for the writing of the checkpoint.

#Save full and partial routed designs

write_checkpoint -force key_010_route.dcp

write_checkpoint -force -cell rp_key0_inst key_0_xor_route.dcp

write_checkpoint -force -cell rp_key1_inst key_1_xnor_route.dcp

write_checkpoint -force -cell rp_key2_inst key_2_xor_route.dcp

#Save static routing

update_design -cell rp_key0_inst -black_box

update_design -cell rp_key1_inst -black_box

update_design -cell rp_key2_inst -black_box

lock_design -level routing

write_checkpoint -force static_route_design.dcp

The static design checkpoint is loaded to create new configurations of the IP with

different key values. A new configuration is made by reading in the reconfigurable

module synthesis design checkpoints into the nets assigned to reconfigurable parti-

tions. The new configuration is ran through the implementation phase and check-

points are saved for the full configuration and reconfigurable modules in the same

manner as the first configuration. The process of loading the static routed design

checkpoint and reading in reconfigurable synthesis checkpoints is repeated for every

configuration needed.

# Configuration of key 010

open_checkpoint static_route_design.dcp

read_checkpoint -cell rp_key0_inst xnor2.dcp

read_checkpoint -cell rp_key1_inst xor2.dcp

read_checkpoint -cell rp_key2_inst xnor2.dcp
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The pr_verify TCL command is given every routed design checkpoint from every

configuration to ensure that static implementation and interfaces are consistent across

all configurations. Bitstreams for the full configurations and their partial bitstreams

for the reconfigurable modules are generated by reading in the configurations routed

design checkpoint and executing write_bitstream. Both partial bitstreams for each

reconfigurable partition are converted to BIN format to be programmed by the PS

over PCAP at runtime.

3.3.3 Software Architecture

The ZYNQ platform provides an area of configuration registers to configure hard-

ware as either secure or non-secure [22]. Table 3.1 provides a summary of the registers

configured for the IPs secure integration on the SoC. These registers are only pro-

grammable by software in the secure world context.

Table 3.1: Summary of TrustZone configuration registers for ZYNQ SoC platform.

Register Name Address Width Description
TZ_DDR_RAM 0xF8000430 32 DDR RAM TrustZone Config
TZ_DMA_NS 0xF8000440 32 DMAC TrustZone Config

security_fssw_s0 0xF890001C 1 M_AXI_GP0 security setting
security_fssw_s1 0xF8900020 1 M_AXI_GP1 security setting

security_apb_slaves 0xE0200018 15 APB slave security setting

The TZ_DDR_RAM register configures incremental 64 MB sections of memory

as secure or non-secure memory regions. Setting a particular bit to 0 indicates a

secure memory region for that 64 MB segment. A 1 indicates a non-secure memory

segment accessible by secure or non-secure software. The security state of the DMA

controller is set by the last bit of the TZ_DMA_NS register. If the bit is 0 the DMA

controller operates in the secure state meaning the controller has the capability of

establish both secure and non-secure channels. The DMA controller operating in the

non-secure state can only create non-secure channels and access non-secure addresses.

When the DMA controller is in the secure state, security of the channel is determined
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by the security state of the processor making the request. If the DMA controller is

accessed by a non-secure processor, a non-secure channel is established and any access

to secure regions is blocked.

The security_fssw_s0 and security_fssw_s1 registers control the security state of

the two PS master AXI ports to the PL. Setting the registers to 0 means that any

AXI request from a non-secure processor is not propagated to the PL logic. The AXI

protocol provides the ability to transmit security status, allowing for the designation

of secure IPs in the PL. Non-secure software using the AXI master port receives AXI

errors when trying to access a secure slave in the PL. These secure AXI transactions

have been shown to be vulnerable to malicious non-secure IPs connected to the same

AXI interconnect [23]. The proposed mitigation is to separate the PL into secure

and non-secure IPs, connecting secure IPs to an AXI master designated as secure

hardware in the PS. The other AXI master is designated as non-secure hardware to

allow access from both secure and non-secure software. The security_apb_slaves

register is set to set the UART hardware as non-secure to allow access from both

worlds.

Figure 3.10: Boot flow diagram of TrustZone application.
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The boot flow of the integrated system, shown in Figure 3.10 is as follows. Upon

boot, the First Stage Boot Loader (FSBL) is copied from a boot device into on chip

memory to begin execution. The purpose of the FSBL is to initialize the memory

and hardware of the SoC as well as program the PL with the PL bitstream located

on the boot device. The initial bitstream ignores key inputs and places NOT gates

into reconfigurable partitions to ensure the IP is dysfunctional until it is configured.

The FSBL finishes execution and releases control to start the execution of the secure

world application. The secure application reconfigures IP and programs the key value

over the secure AXI interface. The TrustZone configuration is then initialized and

the secure monitor is established.

The secure world application relinquishes its control by executing a Secure Mon-

itor Call (SMC) instruction. This instruction raises an exception to be handled by

the monitor. The monitor handles the exception by executing a series of steps. The

monitor determines which world the call has come from and saves its current register

context. The monitor restores the other worlds context, switches the processor secu-

rity state, and returns from the exception. The non-secure application continues to

operate with the fully functional IP placed in the PL with no ability to access the IP

or any other sensitive areas of the SoC.

3.3.4 Reconfigurable IP Locking

Partial reconfiguration of the IP takes place within the secure world for trusted

execution and access to the IP hardware. Partial bitstreams for each reconfigurable

module are stored in areas of DDR marked for the secure world. Because the memory

is marked as secure, DMA transactions to move the bitstream to the PL are trans-

ferred using a secure channel and the execution must be started by a processor in

the secure state. The master AXI connection to locked IP is designated as secure

hardware. AXI transactions to read and write from the IP are only propagated to

the PL if a processor running in the secure state makes the request.
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Figure 3.11: Reconfiguration flow of partially reconfigurable IP.

For reconfiguration of the locked IP, the secure world reads a random number

from the LFSR within the PL over the secure master AXI port. Each bit of the

random number generated by the LFSR represents a reconfigurable partition, shown

in Figure 3.9, to be configured with either and XOR or XNOR reconfigurable modules.

The PS uses the PCAP interface to initiate DMA transactions over a secure channel

to download a partial bit file to every reconfigurable partition in the logic locked IP

based on the LFSR result. The LFSR result is then programmed to the IP over the

secure AXI connection which unlocks the IP for use. The flow of the reconfiguration

is shown in Figure 3.11.



CHAPTER 4: RESULTS

4.1 Automated Framework

The automated framework has been tested on the Verilog descriptions of ISCAS 85

benchmark circuits C17, C432, and C499 [24] to perform random, SARLock, fault-

analysis based insertion. In the results we demonstrate the fault-based insertion on

the benchmarks. The netlist level benchmark representations were used for fault

analysis where the fault impact of each node is calculated using ATPG generated test

patterns from Synopsys TetraMAX tool. An example of the fault analysis is shown

in Figure 4.1. The figure shows a list of faults and the net that is causing them. For

example in Figure 4.1, 3 faults are detected for test 4 for the given input pattern

on nets new_n58, N108->new_n88, and N108. The framework uses the analysis to

determine the net with the highest fault impact for key gate insertion. The nets with

the highest fault impact are nets that cause the most faults for all test input patterns.

Table 4.1 shows the number of faults detected by the framework and the total fault

coverage for each benchmark.

Table 4.1: Fault impact summary for ISCAS 85 benchmark circuits.

C17 C432 C499
# of Primary Inputs 5 36 41
# of Primary Outputs 2 7 32
# of Detected Faults 22 472 1271

# of Undetected Faults 0 28 83
Fault Coverage 100% 94.4% 93.9%

Key gates are systematically inserted into netlist where the fault impact is the

highest. Gates inserted into nets with higher fault impacts are more likely to change

output bits when an incorrect key is applied. Table 4.2 shows the range of key size

needed for the fault analysis based insertion scheme to achieve the 50% Hammming
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Figure 4.1: Fault log output during the frameworks fault analysis.

distance metric. The tables demonstrate that the automated framework reaches the

50% Hamming distance criteria to provide the most ambiguity of the locked IPs

design. The table also includes the percentage overhead in terms of gates for locking

the benchmark circuit. The smaller circuit c17 has a large overhead of 40% but needs

only 2 key gates. The table shows that for the larger circuits c432 and c499, overhead

stays under 20%.

Table 4.2: Range of key sizes to reach 50% Hamming distance.

Range of Key Size Benchmark # of Gates % of Total Gates
2-5 C17 5 40%
17-20 C432 160 11%
39-42 C499 202 19%

Table 4.3 shows the outputs for the logic locked C17 benchmark using the fault

analysis based key insertion. The c17 benchmark is passed to the automated logic

locking framework with 3 keys that has a correct key combination of 000. The locked

benchmark is programmed and verified on the FPGA platform and interfaced using

Vivado Virtual Input Output (VIO) debug interface. The VIO interface is used to

test the locked benchmark for every input pattern and key combination.

The table shows the IPs correct functionality when a correct key of 000 is applied

to the key gates. The number of bit flips between correct outputs and outputs with
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Table 4.3: Outputs for c17 locked with 3 keys with correct key is 000.

Output Y for different key values
I1 I2 I3 I4 I5 Y k0 k1 k2 k3 k4 k5 k6 k7
0 0 0 0 0 00 00 00 11 11 00 00 11 11
0 0 0 0 1 00 00 01 11 11 00 01 11 11
0 0 0 1 0 11 11 11 00 00 00 00 11 11
0 0 0 1 1 11 11 11 00 01 00 01 11 11
0 0 1 0 0 00 00 00 11 11 00 00 11 11
0 0 1 0 1 01 01 00 11 11 01 00 11 11
0 0 1 1 0 11 11 11 00 00 00 00 11 11
0 0 1 1 1 11 11 11 01 00 01 00 11 11
0 1 0 0 0 00 00 00 11 11 00 00 11 11
0 1 0 0 1 00 00 01 11 11 00 01 11 11
0 1 0 1 0 11 11 00 00 11 00 11 11 00
0 1 0 1 1 11 11 01 00 11 00 11 11 01
0 1 1 0 0 00 00 00 11 11 00 00 11 11
0 1 1 0 1 01 01 00 11 11 01 00 11 11
0 1 1 1 0 00 00 11 11 00 11 00 00 11
0 1 1 1 1 01 01 11 11 00 11 00 01 11
1 0 0 0 0 10 10 10 11 11 00 00 11 11
1 0 0 0 1 10 10 11 11 11 00 01 11 11
1 0 0 1 0 11 11 11 10 10 00 00 11 11
1 0 0 1 1 11 11 11 10 11 00 01 11 11
1 0 1 0 0 10 10 10 11 11 00 00 11 11
1 0 1 0 1 11 11 10 11 11 01 00 11 11
1 0 1 1 0 11 11 11 10 10 00 00 11 11
1 0 1 1 1 11 11 11 11 10 01 00 11 11
1 1 0 0 0 10 10 00 11 11 00 10 11 11
1 1 0 0 1 10 10 01 11 11 00 11 11 11
1 1 0 1 0 11 11 00 10 11 00 11 11 10
1 1 0 1 1 11 11 01 10 11 00 11 11 11
1 1 1 0 0 00 00 10 11 11 10 00 11 11
1 1 1 0 1 01 01 10 11 11 11 00 11 11
1 1 1 1 0 00 00 11 11 10 11 00 10 11
1 1 1 1 1 01 01 11 11 10 11 00 11 11

an incorrect key total to 222 for incorrect keys k1-k7 with a total of 448 output bits

tested. This gives an average Hamming distance across the outputs for incorrect keys

k1-k7 for all input patterns of 49.6%. The table demonstrates that the locked IP

meets the Hamming distance criteria that provides the most ambiguity of the design,

making sensitization and removal attacks more difficult.

The locked IP is reconfigured to have a correct key combination of 101 and the

VIO interface is used to test outputs for the new configuration. The ouputs for each

input and key pattern are shown in Table 4.4. The table demonstrates that k5 is the
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correct key and produces correct outputs. The reconfigured key produces the same

Hamming distance across outputs of 49.6% when incorrect keys are applied.

Table 4.4: Outputs for c17 locked with 3 keys with correct key is 101.

Output Y for different key values
I1 I2 I3 I4 I5 Y k0 k1 k2 k3 k4 k5 k6 k7
0 0 0 0 0 00 00 00 11 11 00 00 11 11
0 0 0 0 1 00 01 00 11 11 01 00 11 11
0 0 0 1 0 11 00 00 11 11 11 11 00 00
0 0 0 1 1 11 01 00 11 11 11 11 01 00
0 0 1 0 0 00 00 00 11 11 00 00 11 11
0 0 1 0 1 01 00 01 11 11 00 01 11 11
0 0 1 1 0 11 00 00 11 11 11 11 00 00
0 0 1 1 1 11 00 01 11 11 11 11 00 01
0 1 0 0 0 00 00 00 11 11 00 00 11 11
0 1 0 0 1 00 01 00 11 11 01 00 11 11
0 1 0 1 0 11 11 00 00 11 00 11 11 00
0 1 0 1 1 11 11 00 01 11 01 11 11 00
0 1 1 0 0 00 00 00 11 11 00 00 11 11
0 1 1 0 1 01 00 01 11 11 00 01 11 11
0 1 1 1 0 00 00 11 11 00 11 00 00 11
0 1 1 1 1 01 00 11 11 01 11 01 00 11
1 0 0 0 0 10 00 00 11 11 10 10 11 11
1 0 0 0 1 10 01 00 11 11 11 10 11 11
1 0 0 1 0 11 00 00 11 11 11 11 10 10
1 0 0 1 1 11 01 00 11 11 11 11 11 10
1 0 1 0 0 10 00 00 11 11 10 10 11 11
1 0 1 0 1 11 00 01 11 11 10 11 11 11
1 0 1 1 0 11 00 00 11 11 11 11 10 10
1 0 1 1 1 11 00 01 11 11 11 11 10 11
1 1 0 0 0 10 10 00 11 11 00 10 11 11
1 1 0 0 1 10 11 00 11 11 01 10 11 11
1 1 0 1 0 11 11 00 10 11 00 11 11 10
1 1 0 1 1 11 11 00 11 11 01 11 11 10
1 1 1 0 0 00 00 10 11 11 10 00 11 11
1 1 1 0 1 01 00 11 11 11 10 01 11 11
1 1 1 1 0 00 00 11 11 10 11 00 10 11
1 1 1 1 1 01 00 11 11 11 11 01 10 11

4.2 Timing Analysis

The c17 benchmark is locked with a key size of 3 gates. The logic for the 3

key gates is mapped to the reconfigurable partitions. The routing of key gates to

reconfigurable partitions comes with timing and routing costs. Figure 4.2.a shows

the timing analysis for a locked design with only one key versus 4.2.b which shows
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the overhead of the partially reconfigurable locked design. The figure shows that

the reconfigurable design does meet timing requirements but as a significantly larger

worst negative slack, meaning the partially reconfigurable design has a larger path

delay.

(a) Locked c17 without partial reconfiguration

(b) Locked c17 with partial reconfiguration

Figure 4.2: Comparison of timing results between normal and partially reconfigurable
design.

Reconfigurable partitions that are placed on the FPGA physically farther from each

other requires more sophisticated routing which can lead to higher delays. Depend-

ing on the design, this could lead to setup up violations. The setup violations can

be mitigated at the floorplanning and placement step of the partially reconfigurable

design. The key logic consists of only 1 LUT so reconfigurable partitions can be kept

closer together during the floorplanning to decrease the routing delay. The recon-

figurable design implementation meets all timing requirements and overall improves

the capability of key updates for the logic locked IPs using the proposed partially

reconfigurable based key update architecture for reconfigurable logic locking.
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4.3 Bitstream Generation

Partial bitstreams for XOR and XNOR gates must be generated for each reconfig-

urable partition for the configuration of the key at runtime. The design is implemented

with XOR gates placed in all 3 reconfigurable partitions creating a key value of 000.

Figure 4.3 shows successful bitstream geneartion for the full configuration bit file as

well as 3 partial bit files for every reconfigurable module. Another configuration of

the design is implemented with XNOR gates in all of the reconfigurable partitions.

Partial bitstreams were successfully generated for XNOR gates in the reconfigurable

partitions. The partial bitstream files for each reconfigurable module are converted

into the BIN format for programming of the PL through the PCAP interface.

Figure 4.3: Generation of full and partial bitstreams for locked c17.

The proposed secure system and logic locked IP is implemented on a Xilinx Zed-

board FPGA development board witha ZYNQ-7000 SoC. The FSBL programs the

PL with the initial bitstream and loads the secure application. The secure application

initializes the TrustZone configuration registers, and transfers partial bitstreams from

the boot device to secure areas of DDR. The PS uses the secure master AXI port to

read a random sequence of bits from the LFSR. The sequence determines whether to

download a XOR or XNOR partial bitstreams to the PL for that particular key in-

dex. The key is programmed to the PL using the secure master AXI port. The secure
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app establishes the secure monitor, then makes a call to it to switch the processor’s

security state to non-secure.

4.4 Security Analysis

The IP is obfuscated with logic locking and produces incorrect outputs until a

correct key is provided. Keys are only be provided through the IP owner which

makes piracy or cloning of the IP unfeasible. The framework gate insertion meets

the 50% Hamming distance criteria to provide the most ambiguity to the behavior

of the locked IP. The secure application reads the key from the LFSR and stores the

key in registers in the IP. After initialization the system continues to operate in the

non-secure context and be isolated from the IPs resources. The partial bitstream files

are placed into secure areas of memory, blocking the non-secure world from initiate

DMA transfers to change the key logic. The master AXI port connected to the IP

does not propagate any requests issued from a non-secure processor. The hardware

backed mechanisms ensure that if the non-secure system software is exploited to access

system resources, the IPs configuration and key is still protected.



CHAPTER 5: CONCLUSIONS

In this work we propose a framework for obfuscation of IPs using state of the art

logic locking techniques. The framework demonstrates an automated flow that takes

RTL files of the design and supports different insertion algorithms. The results are

demonstrated on ISCAS 85 benchmarks and shown to produce secure locked netlist

with 50% Hamming Distance across outputs when incorrect keys are applied. This

work additionally proposes and demonstrates a novel logic locking scheme for FPGA

platforms where key logic is placed into partially reconfigurable areas of the FPGA.

The logic locking scheme provides a mechanism that enables key updates for the

locked IP during runtime and is not too costly as it meets all timing requirements.

Furthermore, we propose and demonstrate a novel secure key provisioning system for

the partially reconfigurable IP. The design ensures hardware based isolation of the IP

and a TEE for secure deployment and configuration of the key.



CHAPTER 6: FUTURE WORK

The logic locking framework proposed in this thesis intends to automate the process

of obfuscating RTL files with support for many insertion algorithms. Currently the

framework supports fault analysis based insertion and SARLock. Future work on the

framework can support new insertion algorithms such a Strong Logic Locking (SLL

or Stripped Functionality Logic Locking (SFLL). This work proposes using XOR and

XNOR gates as the key logic to be placed in reconfigurable partitions. Potential

future research can include the design of more complex key logic such as Boolean

one-hit functions for placement in reconfigurable partitions. Tools for the synthe-

sis of “relocatable” partial bitstreams where partial bitstreams can be programmed

on many different reconfigurable partitions of the device have been integrated with

Xilinx’s Vivado development environment. Future work can also focus on using relo-

catable partial bitstreams to simplify the bitstream generation process since the same

reconfigurable modules are shared between reconfigurable partitions.
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