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ABSTRACT

ARCHIT PARNAMI. Rethinking Few-Shot Learning For Speech, Continual
Learning And Privacy. (Under the direction of DR. MINWOO LEE)

The availability of large amounts of labeled training data is a major contributing

factor (and a bottleneck) to the recent progress in the field of Deep Learning. However,

collecting and labeling data is a time consuming and expensive process. Oftentimes,

the data cannot be collected due to privacy reasons or is just not available. This

has led to an emergence of research in Few-Shot Learning, a new sub-domain of

machine learning that focuses on building models that can learn from a few number

of training examples. The recent progress in few-shot learning has shown promising

results of achieving up to 90% accuracy on the task of 5-way image classification using

just five training examples per class. The success of few-shot learning, however, is

too much concentrated on image classification and the emergent field requires strict

scrutiny. For example, 1) its behavior on speech data is unknown; 2) the nature of

few-shot models to continually update when new category of data is witnessed remains

untested; and 3) finally the privacy issues surrounding the data used in the few-shot

model have been unaddressed. Therefore, this dissertation study develops few-shot

model for audio data (Few-Shot Keyword Spotting), explores how few-shot learning

models can continuously learn from the new incoming data (Few-Shot Continual

Learning), and discusses how privacy can be an inbuilt part of few-shot learning

(Privacy-Enhanced Few-Shot Learning).
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CHAPTER 1: INTRODUCTION

The last few years have been marked by exceptional progress in the field of AI. Much

of this progress can be attributed to recent advances in "deep learning" characterized

by learning large neural network models with multiple layers of representation. These

models have shown great performance in a variety of tasks with large amounts of

labeled data in Image Classification [3], Machine Translation [4] and Speech Modeling

[5]. However, these achievements have relied on the optimization of these deep, high-

capacity models that require many iterative updates across many labeled examples.

This type of optimization breaks down in the small data regime, where learning from

very few labeled examples.

In contrast, humans can quickly learn to solve a new problem from a few examples.

For instance, given a few photos of a stranger, a child can easily identify the same

person from a large number of photos [6]. This is due not only to the human mind’s

computational power but also to its ability to synthesize and learn new information

from previously learned information. For example, if a person has a skill for riding a

bicycle, that skill can prove helpful when learning to ride a motorcycle.

Recent years have seen a rise of research attempting to bridge this gap between

human-like learning and machine learning, which has given birth to this new sub-field

of machine learning known as Few-Shot Learning (FSL), i.e., the ability of machine

learning models to generalize from few training examples. When there is only one

example to learn from, FSL is also known as One-Shot Learning.

The practical issues including the cost of correctly labeled data, thus often scarce

or poorly labeled, motivate the development of FSL. Instead of collecting thousands

of labeled examples to attain a reasonable performance on a new task, FSL helps
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alleviate the data-gathering effort and reduce the computation costs and time spent

in training a model. Furthermore, in many fields, data is hard or impossible to

acquire due to reasons such as privacy and safety, for e.g. medical imaging, biometric

authentication etc. Models that generalize from a few examples would be able to

capture this type of data effectively.

Alleviating the large data challenge from deep learning, FSL has shown success in

many computer vision problems such as Character Recognition [7], Image Classifica-

tion [8], Object Detection [9], Image Retrieval [10], Object Tracking [11], Video Classi-

fication [12], Motion Prediction [13], Action Localization [14], Person Re-Identification

[15], and etc. In Natural Language Processing (NLP), FSL has been used for tasks

such as Text Parsing [16], Translation [17], Sentence Completion [18], User Intent

Classification [19] etc. FSL has also been useful in other domains, including, but

not limited to Drug Discovery [20], Network Architecture Search [21], and Robotics

[22, 23].

Despite its success in Computer Vision and recent developments in NLP, the adop-

tion in the speech domain lacks research. With the growing usage of personalized

voice assistants, it becomes important to address the large data requirement chal-

lenge involved in training voice models for the task of speaker identification or spoken

word recognition i.e., a problem widely known as keyword spotting. Secondly, the

static nature of few-shot models limits its application where the model needs to up-

date itself to recognize new classes in a continual learning fashion. Finally, few-shot

learning models are vulnerable to data privacy attacks when deployed in the cloud.

Therefore, in this dissertation, we enhance few-shot learning by proposing techniques

for its adaptability in the speech domain, continuity of learning, and data privacy.

The following summarizes these three problems and the proposed solution in the

context of few-shot learning (Fig. 1.1):
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Figure 1.1: Problems addressed in this work 1) Few-Shot Keyword Spotting, 2) Few-
Shot Continual Learning and 3) Privacy-Enhanced Few-Shot Learning

1. Few-Shot Keyword Spotting: Recognizing a particular command or a key-

word, keyword spotting has been widely used in many voice interfaces such as

Amazon’s Alexa and Google Home. In order to recognize a set of keywords,

most of the recent deep learning based approaches use a neural network trained

with a large number of samples to identify certain pre-defined keywords. This

restricts the system from recognizing new, user-defined keywords. Therefore,

our objective is to recognize new keywords without the need for large

training samples, hence we first formulate this problem as a few-shot keyword

spotting and approach it using metric learning. To enable this research, we also

synthesize and publish a Few-shot Google Speech Commands dataset. We then

propose a solution to the few-shot keyword spotting problem using temporal

and dilated convolutions on prototypical networks. Our comparative exper-

imental results demonstrate keyword spotting of new keywords using just a

small number of samples.
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2. Few-Shot Continual Learning: Like most machine learning models, few-

shot models are also static in nature, i.e., they are limited by their

ability to be updated with new information without forgetting old

information, a problem otherwise generally known as catastrophic forgetting

[24] in neural networks. Moreover, continual learning in a limited data regime is

much harder than traditional continual learning as learning new representations

from limited data is a challenging task in itself. Recent continual learning ap-

proaches for few-shot models then try to rectify this problem of not forgetting

old information by trying to fix the problem size and meta-learning a distri-

bution of few-shot continual learning tasks. This is an impractical assumption

as in real-time we wouldn’t likely ever know the amount of new information

that we are going to witness. Therefore, to solve this issue, in this research we

develop upon the idea of one-class classification to learn new classes just from a

few samples and then use an ensemble of one-class classifiers to solve the prob-

lem of few-shot continual learning. Our results show that upon incorporating

negative sampling in the learning process of one-class classifiers we can build

better few-shot models for continual learning.

3. Privacy-Enhanced Few-Shot Learning: Requiring less data for accurate

models, few-shot learning has shown robustness and generality in many appli-

cation domains. However, deploying few-shot models in untrusted en-

vironments may inflict privacy concerns, e.g., attacks or adversaries that

may breach the privacy of user-supplied data. Our work studies the privacy

enhancement for the few-shot learning in an untrusted environment, e.g., the

cloud, by establishing a novel privacy-preserved embedding space that preserves

the privacy of data and maintains the accuracy of the model. We examine the

impact of various image privacy methods such as blurring, pixelization, Gaus-

sian noise, and differentially private pixelization (DP-Pix) on few-shot image
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classification and propose a method that learns privacy-preserved representa-

tion through the joint loss. Our empirical results show how privacy-performance

trade-off can be negotiated for privacy-enhanced few-shot learning.



CHAPTER 2: BACKGROUND

In this chapter, we discuss the required background for understanding the idea be-

hind few-shot learning. We categorize the approaches to few-shot learning in Figure

2.1. Broadly, they are classified into meta-learning based methods and non-meta-

learning based methods (such as Transfer Learning). The meta-learning based ap-

proaches are further classified into metric-based, optimization-based and model-based

[25]. In this dissertation, our focus is on meta-learning based approaches, particularly

metric-based and optimization based methods. In Section 2.1, we give a formal in-

troduction to meta-learning; in Section 2.3.2, we discuss metric-based meta-learning

that is used in Chapter 3 and 4, and in Section 2.3.3, we discuss optimization-based

meta-learning used in Chapter 5.

2.1 Meta-Learning

Meta-Learning [26, 27] or Learning to Learn [28] has been the basic technique

which most few-shot learning algorithms employ. Motivated by human development

theory, meta-learning, a subfield of machine learning, focuses on learning priors from

previous experiences that can lead to efficient downstream learning of new tasks.

For instance, a simple learner learns a single classification task, but a meta-learner

gains an understanding of learning to solve a classification task by exposing itself to

multiple similar classification tasks. Hence when presented with a similar but new

task, the meta-learner could solve it quickly and better than a simple learner which

has no prior experience in solving the task. A meta-learning procedure generally

involves learning at two levels, within and across tasks. First, rapid learning occurs

within a task, for example, learning to accurately classify within a particular dataset.
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Figure 2.1: Approaches to FSL are categorized into Meta-Learning-based FSL
and Non-Meta-Learning-based FSL. The three main meta-learning approaches are:
metric-based, optimization-based and model-based meta-learning. Furthermore, vari-
ations of the FSL problem which use meta-learning are categorized as hybrid ap-
proaches.
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Next, this learning is guided by knowledge accrued more gradually across tasks, which

captures the way task structure varies across target domains [28, 29, 30]

Meta-Learning can be different from similar approaches such as transfer learning,

multi-task learning, or ensemble learning. In Transfer Learning [31], a model is trained

on a single task known as the source task in the source domain where the sufficient

training data is available. This trained model is then again retrained or finetuned on

another single task known as the target task in the target domain. The transfer of

knowledge occurs from the source task to the target task. Thus, the more similar the

two domains are the better it performs . Multi-Task Learning [32] involves learning

multiple tasks simultaneously. It starts from no prior experience and attempts to

optimize over solving multiple tasks at the same time. On the other hand, Ensemble

Learning [33] is the process by which multiple models, such as classifiers or experts,

are strategically generated and combined to solve a particular task. In contrast,

meta-learner first gathers experience across multiple similar tasks and then use that

experience to solve new tasks. Nonetheless, these techniques can be and often are

meaningfully combined with meta-learning systems. We provide the formal definition

for the meta-learning problem and explain it with an example.

2.1.1 Problem Definition

In a typical supervised learning setting, we are interested in a task T with a dataset

D = {(xk, yk)}nk=1 with n data samples. We usually split D into Dtrain and Dtest such

that:

Dtrain = {(xk, yk)}tk=1 (2.1)

and

Dtest = {(xk, yk)}nk=t+1, (2.2)
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where t denotes the number of training samples. We optimize parameters θ on the

training set Dtrain and evaluate its generalization performance on the test set Dtest.

Thus the learning problem here is to approximate the function f with parameters θ

as 1:

y ≈ f(x; θ) ∀(x, y) ∈ Dtest (2.3)

and

θ = argmin
θ

∑
(x,y)∈Dtrain

L(f(x, θ), y) (2.4)

where L is any loss function measuring the error between the prediction f(x, θ) and

the true label y.

In meta-learning, we have a distribution p(T ) of task T . A meta-learner learns

from a set of training tasks Ti
train∼ p(T ) and is evaluated on a set of testing tasks

Ti
test∼ p(T ). Each of these task has its own dataset Di where Di = {Dtrain

i ,Dtest
i }.

Let us denote the set of training tasks as Tmeta−train = {T1, T2, ....., Tn} and the set

of testing tasks as Tmeta−test = {Tn+1, Tn+2, ....., Tn+k}. Correspondingly, the training

dataset for the meta-learner will be Dmeta−train = {D1,D2, .....,Dn} and the testing

dataset will be Dmeta−test = {Dn+1,Dn+2, .....,Dn+k}.

The parameters θ of the meta-learner are optimized on Dmeta−train and its gener-

alization performance is tested on Dmeta−test. Then, the meta-learning problem is to

approximate the function f with parameters θ as:

y ≈ f(Dtrain
i , x; θ) ∀(x, y) ∈ Dtest

i (2.5)

and
1We omit sample subscript k for simplicity in the following discussion
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Di = {Dtrain
i ,Dtest

i } where Di ∈ Dmeta−test

i.e., Di is the dataset for a test task Ti sampled from Tmeta−test. Then the optimal

model parameters are obtained as:

θ = argmin
θ

∑
Di∈Dmeta−train

∑
(x,y)∈Dtest

i

L(f(Dtrain
i , x; θ), y). (2.6)

That is the meta-learner learns parameters θ such that given a task Ti ∼ p(T ), its

performance on its test data Dtest
i given its training data Dtrain

i would be optimal.

Figure 2.2 demonstrates a setup for example meta-learning problem.

Figure 2.2: Meta-learning example setup. Each task Ti is a binary classification task
with a training set Dtrain

i and test set Dtest
i . During meta-training, the labels for

samples in Dtest
i is known and the goal of meta-learner is to find optimal θ as per

equation 2.6. During meta-testing, new task with unseen categories is presented and
the labels are predicted as per equation 2.5 .
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2.1.2 Nomenclature

In meta-learning and few-shot learning literature, certain notations and terms are

used interchangeably. Table 2.1 lists these terms and their equivalent usage. Notation

A is more commonly used in optimization-based meta-learning literature (Section

2.3.3) while notation B is used when discussing metric-based meta-learning methods

(Section 2.3.2). Additionally, Table 2.2 lists the commonly used symbols in this

dissertation.

Table 2.1: Nomenclature

Notation A Term A Notation B Term B
Dtrain

i Training set for task Ti Si Support Set for task Ti
Dtest

i Test set for task Ti Qi Query Set for task Ti
Dmeta−train Meta-training set Dtrain Training Set
Dmeta−test Meta-testing set Dtest Test Set

2.2 Few-Shot Learning

Much of the recent progress in FSL has come through meta-learning. Therefore,

we first divide the approaches to FSL into two categories: meta-learning-based FSL

and non-meta-learning-based FSL. Also, most of these approaches that we are about

to discuss were developed with the perspective of solving the few-shot image classi-

fication problem. However, they are still applicable for solving other problems such

as regression, object detection, segmentation, online recommendation, reinforcement

learning, etc. We discuss the approaches to the few-shot image classification problem

in this section.

2.2.1 The Few-Shot Classification Problem

Consider the task T (defined in Section 2.1.1) as a classification task where x is

input and y is the output label. The objective is to approximate the function f (Eqn.

2.3) with parameters θ (Eqn. 2.4) . This is generally possible when we have sufficient

training data Dtrain (Eqn. 2.1) i.e., t is a large number. However, when t is small,
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Table 2.2: Commonly used symbols and their meaning

Symbol Meaning Context
Ti Task i
L Loss function
(xk, yk) Input-Output pair
fθ Model (function) with parameters θ
gθ1 Embedding function Sec. 2.3.2
dθ2 or d Distance function Sec. 2.3.2
gϕ Meta-Learning model with parameters ϕ Sec. 2.3.3
Pθ(y|x) Output probability of y for input x using model

parameters θ
kθ(x1, x2) Kernel function measuring similarity between two

vectors x1 and x2

Table 2.4

σ Softmax function
α, β Learning rates
w Weights
C Set of classes present in S
Sc Subset of S containing all elements (xk, yk) such

that yk = c
⊕ Concatenation operator Table 2.5
B Number of batches (Xb, Yb) sampled in inner-loop

for a randomly sampled task Ti
Table 2.6

I Number of tasks Ti sampled in inner-loop Table 2.6
J Number of outer-loop iterations Table 2.6

it becomes difficult to approximate the function f so that it has good generalization

performance over Dtest (Eqn. 2.2). This can be referred to as a few-shot classification

problem as the number of examples (shots) are too few to learn a good model.

Usually people define few-shot classification task as a standard M-way-K-shot

task [8, 18], where M is the number of classes and K is the number of examples per

class present inDtrain. Usually K is a small number (ex., 1,5,10) and |Dtrain| = M×K.

The performance is measured by a loss function L(ŷ, y) defined over the prediction

ŷ = f(x, θ) and the ground truth y.

The M-way-K-shot tasks are usually sampled from a larger dataset with classes

much higher in number than M. Table 2.3 lists such commonly used datasets for

conducting experiments for few-shot classification.
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Table 2.3: Common datasets used for Few-Shot Learning

Dataset Number
of classes

Samples
per class

Description

Omniglot [34] 1623 20 Handwritten characters
from different languages.

miniImageNet [18] 100 600 100 classes randomly sam-
pled from ImageNet.

FC100 [35] 100 600 Derived from CIFAR100.
tieredImageNet [36] 608 1280 (avg.) Like miniImageNet but en-

sures that there is a wider
degree of separation be-
tween training, validation
and test classes.

2.3 Meta-Learning-based Few-Shot Learning

The objective of meta-learning is to approximate the function f with parameters θ

such that the performance on any task Ti randomly sampled from the task distribution

p(T ) is optimal (Eqn. 2.5). We use this strategy for FSL such that the distribution

p(T ) is now a distribution of few-shot tasks and each task Ti is a few-shot task.

For example, consider the M-way-K-shot few-shot classification (FSC) task. During

training, we meta-learn a prior θ over a distribution of M-way-K-shot FSC tasks so

that at test time we can solve for a new M-way-K-shot FSC task.

Meta-Learning-based FSL can be classified into three approaches [25]: metric-

based, optimization-based and model-based. Further, various meta-learning-based

hybrid approaches were proposed to handle FSL problems such as cross-domain FSL,

generalized FSL, etc. We discuss the first two main approaches in the following section

and refer the reader to our work [37] for learning more about other approaches.

2.3.1 Main Approaches

Consider a task T with support set S and query set Q. Let f be a few-shot classi-

fication model with parameters θ. Then for (x, y) ∈ Q, the meta-learning approaches

to FSL can be differentiated in the way they model the posterior probability Pθ(y|x)

[25] (Table 2.4).
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Table 2.4: Meta-Learning Approaches

Metric-based Optimization-
based

Model-based

Key idea Metric Learning
[38]

Gradient Descent Memory; RNN

How Pθ(y|x)
is modeled? ∑

(xk,yk)∈S

kθ(x, xk)yk,
Pθ′ (y|x),

where θ
′ = gϕ(θ, S)

fθ(x, S).

Advantages Faster Inference. Flexible optimiza-
tion in dynamic en-
vironments.

Faster inference
with memory mod-
els.

Easy to deploy. Does not require
storing S in mem-
ory i.e, samples can
be discarded post-
optimization.

Eliminates the need
for defining a met-
ric or optimizing at
test.

Disadvantages Less adaptive to
optimization in
dynamic environ-
ments.

Optimization at in-
ference is undesir-
able for real-world
deployment.

Less efficient to
hold data in mem-
ory as S grows.

Computational
complexity grows
linearly with size of
S at test.

Prone to overfit-
ting.

Hard to design.

2.3.2 Metric-based Meta-Learning

Metric Learning [38] is the task of learning a distance function over data samples.

Consider two image-label pair (x1, y1) and (x2, y2) and a distance function d to mea-

sure the distance between two images. If we were to assign a label to a query image

x3, we could compute the two distances d(x1, x3) and d(x2, x3) and assign the label

corresponding to the image with a shorter distance, which is also the key idea in

nearest neighbors algorithms (k-NN). However, with high dimensional inputs such as

images, we typically use an embedding function g to transform the input to a lower

dimension before computing the distances:
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g : Rn → Rm where n >> m.

Therefore, the core idea behind metric-based few-shot learning is to leverage meta-

learning architecture to either learn an embedding function g(; θ1) (parameterized by

a neural network with parameters θ1) given a distance function d (such as euclidean

distance) or to learn both the embedding function g(; θ1) (with parameters θ1) and

the distance function d(; θ2) (usually parameterized by another neural network with

parameters θ2). This is illustrated in Figure 2.3 .

Figure 2.3: Example metric-based meta-learning setup for a 4-way-1-shot classifica-
tion task. The embedding function gθ1 outputs the embedding vectors for support
images (labeled) and the query image (unlabeled, denoted by ’?’). Distance function
dθ2 measures the distance between support and query vectors to output a similarity
score.
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Training proceeds by randomly sampling M-way-K-shot episodes from the training

set. Each episode has a support set and a query set. The average error computed

on query sets across multiple training few-shot episodes is used to update the pa-

rameters of the embedding function and the distance function (if any). Finally, new

M-way-K-shot episodes are sampled from the testing set to evaluate the performance

of the network. This episodic training paradigm is explained in Algorithm 1. Table

2.5 compares the recent metric-based meta-learning methods based on their charac-

teristics like embedding function, distance measure, and if the embedding function is

fixed for all tasks i.e., task-independent (T.I) or is adaptive (task-dependent).

Table 2.5: Metric-based Meta-Learning Methods

Method T.I gθ1 dθ2

Siamese Networks [39] Yes CNN L1
Matching Networks [18] Yes CNN + LSTM w/ attention Cosine Similarity
Prototypical Networks [40] Yes CNN Euclidean
Relation Networks [41] Yes CNN Learned by CNN
TADAM [35] No ResNet-12 Cosine/Euclidean
TapNet [42] No Resnet-12 Euclidean
CTM [43] No Any Any

2.3.2.1 Metric-based Few-Shot Learning Framework

We base our Few-Shot Keyword Spotting Framework (Fig. 3.2) and Few-shot Pri-

vate Image Classification Framework (Fig. 5.2) on Prototypical Networks [40] (Fig.

2.4).

The few-shot model is trained on a labeled dataset Dtrain and tested on Dtest. The

set of classes present in Dtrain and Dtest are disjoint. The test set has only a few labeled

samples per class. We follow an episodic training paradigm in which each episode the

model is trained to solve an N -way K-Shot few-shot task. Each episode e is created

by first sampling N categories from the training set and then sampling two sets of

examples from these categories: (1) the support set Se = {(si, yi)}N×K
i=1 containing

K examples for each of the N categories and (2) the query set Qe = {(qj, yj)}N×Q
j=1
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Algorithm 1: Episodic Training in Metric-based Meta-Learning Methods
(Adapted from [40])
Given: In dataset D, n is the number of examples, N is the set of classes,
Ntrain is the set of classes used for training, Ntest is the set of classes used for
testing, M < Ntrain is the number of classes per episode, K is the number of
support examples per class, Q is the number of query examples per class.
RandomSample(A,B) denotes a set of B elements chosen uniformly at
random from set A, |Ntrain|+ |Ntest| = |N | and Ntrain ∩Ntest = ∅.

Input: D = {(x1, y1), ..., (xn, yn)} where yi ∈ {1, ..., N}. Dc denotes the
subset of D containing all elements (xi, yi) such that yi = c.

Training: ▷M-way K-shot training episodes

while True do
▷1. Constructing Task

C ← RandomSample(Ntrain,M) ▷Sample M classes
S ← {} ▷Support set
Q← {} ▷Query set
for c in C do

Sc ← RandomSample(Dc, K) ▷Sample K support
Qc ← RandomSample(Dc \ Sc, Q) ▷Sample Q query
S ← S ∪ Sc

Q← Q ∪Qc

end

▷2. Learning Metric
for i← 1 to |S| do

(xs, ys)← S[i]
for j ← 1 to |Q| do

(xq, yq)← Q[j]
dij ← dθ2(gθ1(xs), gθ1(xq))) ▷Compute distances

end
end

Compute total loss L based on dij’s such that dij is minimum when yi = yj
and maximum otherwise.

Update parameters θ1 and θ2 on L.
end

Testing: Sample a random M-way K-shot episode but this time using the
classes from Ntest and evaluate its performance.
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Figure 2.4: Few-shot prototypes pc are computed as the mean of embedded support
examples for each class. The embedded query points are classified via a softmax over
distances to the class prototypes.

containing Q different examples from the same N categories. The episodic training

for few-shot task minimizes, for each episode, the loss of the prediction on samples in

the query set, given the support set. The model is a parameterized function and the

loss is the negative log likelihood of the true class of each query sample:

L(θ) = −
|Qe|∑
t=1

logPθ(yt | qt, Se), (2.7)

where (qt, yt) ∈ Qe and Se are, respectively, the sampled query and support set at

episode e and θ are the parameters of the model.

Prototypical networks make use of the support set to compute a centroid (pro-

totype) for each category (in the sampled episode) and query samples are classified

based on the distance to each prototype. The model is a CNN f : ℜnv → ℜnp ,

parameterized by θf , that learns a np-dimensional space where nv-dimensional input

samples of the same category are close and those of different categories are far apart.

For every episode e, each embedding prototype pc (of category c) is computed by

averaging the embeddings of all support samples of class c:

pc =
1

|Sc
e|

∑
(si,yi)∈Sc

e

f(si), (2.8)
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where Sc
e ⊂ Se is the subset of support examples belonging to class c. Given a distance

function d, the distance of the query qt to each of the class prototypes pc is calculated.

By taking a softmax [44] of the measured (negative) distances, the model produces a

distribution over the N categories in each episode:

P (y = c | qt, Se, θ) =
exp(−d(f(qt), pc))∑
n exp(−d(f(qt), pn))

, (2.9)

where metric d is a Euclidean distance and the parameters θ of the model are updated

with stochastic gradient descent by minimizing Equation (2.7). Once the training

finishes, the parameters θ of the network are frozen. Then, given any new few-shot

task, the category corresponding to the maximum P is the predicted category for the

input query qt.

2.3.3 Optimization-based Meta-Learning

Earlier in Section 2.2.1, we discussed that for a few-shot classification task T with

training data Dtrain (Eqn. 2.1) where the number of training examples t is small, it

is difficult to approximate f (Eqn. 2.3) with parameters θ (Eqn. 2.4) from scratch

using gradient-based optimization as it is not designed to cope with small number of

training samples and thus will lead to overfitting. This ponders the question, is there

any way to optimize on limited training data and still achieve good generalization

performance? Optimization-based meta-learning for FSL answers to this question.

Basically, leveraging the meta-learning architecture (Fig. 2.2) and episodic training

(Algorithm 1), optimization-based methods enable an optimization procedure to work

on limited training examples.

Learner and Meta-Learner

Optimization-based methods generally involves learning in two stages:

1. Learner: A learner model fθ is task-specific and trained for a given task. For

a given few-shot task, a stand-alone learner model trained from scratch using
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gradient descent (Eqn. 2.4) will not be able to generalize (Eqn. 2.3).

2. Meta-Learner: A meta-learner model gϕ is not task specific and is trained on a

distribution of tasks T ∼ p(T ) (Figure 2.2). Using episodic training, the meta-

learner learns (ϕ) to update the learner model’s parameters (θ) via training set

Dtrain,

θ∗ = gϕ(θ,Dtrain). (2.10)

The objective of the meta-learner model is to produce updated learner model

parameters θ∗ such that they are better than stand-alone learner model param-

eters θ.

During meta-training (notation A in Table 2.1), the optimization process involves

updating ϕ for the meta-learner and θ for individual training tasks. Once the meta-

training finishes, the prior knowledge is encompassed into ϕ and only θ is updated

for a test task (Eqn. 2.10).

Table 2.6 compares different optimization-based meta-learning methods based on

how they update learner’s parameters θ and meta-learner parameters ϕ. In all the

listed methods, learning happens in two-stages. Initially, in the outer-loop, the meta-

learner’s parameters ϕ are randomly initialized. Next, in the inner-loop the learner

parameters (θ) are updated/proposed by meta-learner (Eqn. 2.10). The learners’

training loss Ltrain is further used to obtain optimal parameters θ∗. Finally, in the

outer loop the cumulative test loss of learner obtained using θ∗ is used for updating

ϕ. In some cases learner’s initial parameters θ are also meta-learned along with ϕ.

This chapter is reused from our work Learning from Few Examples: A Summary of
Approaches to Few-Shot Learning [37] with permission from authors.
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Table 2.6: Optimization-based Meta-Learning Methods

Method Learner Meta-Learner

Repeat ∀b ∈ [1..B] Repeat ∀j ∈ [1..J ]
LSTM
Meta-
Learner
[45]

Lb ← L(f(Xb; θb−1), Yb)

θb ← g((∇θb−1
Lb,Lb);ϕj−1)

Ltest
j ← L(f(X; θB), Y )

ϕj ← ϕj−1 − α∇ϕj−1
Ltest

j

Repeat ∀i ∈ [1..I] Repeat ∀j ∈ [1..J ]
MAML [8]

Ltrain
i ← L(f(Dtrain

i ; θj−1))

θ∗i ← θj−1 − α∇θj−1
Ltrain

t

Ltest
i ← L(f(Dtest

i ; θ∗t ))

θj ← θj−1− β∇θj−1

I∑
i=1

Ltest
i

MTL [46]

Ltrain
i ← L(f(Dtrain

i ; [θj−1, ϕj−1,Θ]))

θ∗i ← θj−1 − α∇θj−1
Ltrain

i

Ltest
i ← L(f(Dtest

i ; θ∗i ))

θj ← θj−1− β∇θj−1

I∑
i=1

Ltest
i

ϕj ← ϕj−1−β∇ϕj−1

I∑
i=1

Ltest
i

LEO [47]
ϕj−1 = {ϕe, ϕr, ϕd, α}

zi ← g(Dtrain
i ; [ϕe, ϕr,Θ])

θi ← g(zi;ϕd)

Ltrain
i ← L(f(Dtrain

i ; θi))

z∗i ← zi − α∇ziLtrain
i

θ∗i ← g(z∗i ;ϕd)

Ltest
i ← L(f(Dtest

i ; θ∗i ))

ϕj ← ϕj−1−β∇ϕj−1

I∑
i=1

Ltest
i



CHAPTER 3: FEW-SHOT KEYWORD SPOTTING

3.1 Motivation

The underlying motivation for developing an approach that can learn from a few

samples of speech can be found in smart voice recognition devices which have found

their way in our everyday lives. Most smart devices these days have an inbuilt voice

recognition system which is mainly used for taking voice input from a user. This

requires the voice recognition system to detect specific words (keywords/commands),

popularly known as the Keyword Spotting (KWS) problem (Fig. 3.1). Most ap-

proaches use either Large Vocabulary Continuous Speech Recognition (LVCSR) based

models [48, 49] or lightweight deep neural network based models [50]. The former,

LVCSR demands a lot of resource and computation power and hence is deployed in

the cloud, raising privacy concerns and latency issues. The latter models are trained

with a set of pre-defined keywords to recognize using thousands of training examples.

However, with smart devices becoming more personalized, there is a growing need

for such systems 1) to recognize custom or new keywords on-device without having

to retrain the model and 2) to work in resource constrained environments such as

embedded systems. Therefore, in this research, we propose to address the problem of

learning from a few samples of speech keywords in resource constrained environments,

hereon referred to as Few-Shot Keyword Spotting (FS-KWS).

3.2 Related Works

Current approaches to KWS involve extracting audio features from the input key-

word and then passing it as input to a Deep Neural Network (DNN) for classification

[50, 51, 52, 53, 54]. Especially, the use of convolutional neural networks (CNNs) [55] in
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Figure 3.1: Two types of Speech Recognition: (a) Keyword Spotting and (b) Large
Vocabulary Continuous Speech Recognition

adjunction with Mel-frequency Cepstral Coefficients (MFCC) as speech features have

shown to produce remarkable results [50, 51, 54, 56, 57]. Some attempts [58] have

been made to solve FS-KWS using model-agnostic meta learning (MAML) [8], an op-

timization based approach to FSC. However, since KWS is deployed on small devices

with limited computation capability, an optimization based approach that requires

fine-tuning is not feasible. Hence, we approach FS-KWS using metric learning based

approach, specifically using Prototypical Networks [40] which can perform inference

in an end-to-end manner. The following summarizes our main contributions:

• We propose to enhance few-shot learning for the speech dataset by particularly

focusing on the problem of keyword spotting. In this direction, we propose a

keyword spotting system that can classify new keywords from limited samples

by a few-shot formulation of keyword spotting with metric learning.

• We propose a lightweight temporally dilated CNN architecture as a better em-

bedding function for encoding speech features for FS-KWS, which is also oper-
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able in resource constrained environments such as micro-controllers.

• We release a FS-KWS dataset synthesized from Google's Speech command

dataset [59]. To make it more challenging, we also incorporate background

noise and detection of silence and unknown (negative) keywords.

3.3 Few-Shot Keyword Spotting (FS-KWS) Framework

Consider a set S of user-defined keywords such that S = {(si, yi)}N×K
i where si is

a keyword sample (voice input) and yi is its label. The set S contains N keywords,

each keyword having K samples where K is a small number (for ex., 1,2,5). Then

given a user query q, the objective of FS-KWS system is to classify q into one of N

keyword classes. The user-defined keywords in S could be new i.e, never seen before

during the training of FS-KWS system. Yet, the system should be able to detect q,

given S. We base our FS-KWS framework (Figure 3.2) on Prototypical Networks as

defined in Section 2.3.2.1.

Figure 3.2: Few-Shot Keyword Spotting Pipeline

3.3.1 Audio Feature Extraction

In each episode, we first obtain Mel-frequency Cepstral Coefficients (MFCC) fea-

tures for all the examples in the support set and the query set which then act as

input to the embedding network as shown in Figure 3.2. Following [52], we extract
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40 MFCC features from a speech frame of length 40 ms and stride 20 ms (see Figure

3.3).

(a) Input Speech (b) MFCC Features

Figure 3.3: Example transformation of input speech to MFCC features

3.3.2 Embedding Network

[56] demonstrated improved performance on KWS with temporal convolutions by

reshaping the input MFCC features (Figure 3.4). Also, [57] have shown that dilated

convolutions are helpful in the processing of keyword signals. Therefore, we combine

both techniques by first reshaping the input MFCC features and then performing

temporal convolutions along with dilation. We modify the TC-ResNet8 [56] archi-

tecture to reduce the size of the kernel to 7 × 1 and use dilation of 1, 2, and 4 with

stride 1 in three ResNet blocks respectively. This proposed architecture TD-ResNet7

(Figure 3.5) is then used to embed the reshaped input MFCC features (Figure 3.4).

Figure 3.4: Reshaping MFCC features for time convolution.
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(a) Block (b) TD-ResNet7

Figure 3.5: The proposed dilated time convolutional neural network for embedding.

3.4 Few-Shot Google Speech Command Dataset

Google’s Speech Commands dataset [59] is used [52, 56] for keyword spotting prob-

lems. The dataset has a total of 35 keywords and contains multiple utterances of

each keyword by multiple speakers. Each utterance is stored as a one-second (or less)

WAVE format file, with the sample data encoded as linear 16-bit single-channel PCM

values, at a 16 kHz rate [59]. We curate a FS-KWS dataset from this dataset by

performing the following preprocessing steps:

1. Filtering: We filter out all the utterances which are less than one second. This

ensures the consistency of the output MFCC feature matrix obtained from each

audio file.

2. Grouping: To train our KWS system to detect if an input query is an unknown

keyword (not present in S), we group our keywords into two categories: Core

and Unknown. Keywords having more than 1000 speakers are considered as

core words and the rest are put in the category of unknown words.

3. Balancing: Next, we balance the dataset so that all keywords in a group have

the same number of samples. As a result, we have 30 core keywords each with
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Table 3.1: Keyword Statistics

Keywords Speakers Utterances
Min Max Mean

Core
down 1465 1 14 2.44
zero 1450 1 13 2.59
seven 1450 1 11 2.53
nine 1443 1 12 2.51
five 1442 1 19 2.58
yes 1422 1 20 2.6
four 1421 1 14 2.39
left 1416 1 12 2.47
stop 1413 1 22 2.52
six 1411 1 14 2.55
right 1409 1 15 2.45
on 1403 1 19 2.47
three 1401 1 11 2.43
off 1387 1 16 2.47
dog 1385 1 5 1.31
marvin 1378 1 6 1.33
one 1376 1 12 2.54
go 1372 1 12 2.53
no 1368 1 18 2.59
two 1367 1 15 2.58
eight 1358 1 15 2.53
house 1357 1 5 1.35
wow 1336 1 5 1.35
happy 1332 1 7 1.33
bird 1315 1 7 1.34
cat 1300 1 5 1.32
up 1291 1 17 2.53
sheila 1291 1 6 1.36
bed 1257 1 6 1.34
tree 1062 1 6 1.39

Unknown
visual 412 1 7 3.57
forward 397 1 10 3.66
backward 396 1 23 3.93
follow 387 1 11 3.76
learn 386 1 24 3.69

1062 samples and 5 unknown keywords each with 386 samples and where all

samples for a particular keyword come from a different speaker.
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4. Splitting: (a) Core Keywords. They are randomly split into 20, 5, and 5 sets

for training, validation, and testing respectively. Note that here the splits do

not have any classes (keywords) in common. (b) Unknown Keywords. They

are used for detecting negative inputs. Since we have only 5 keywords in an

unknown category, we utilize them in all three phases of training, validation,

and testing. For each keyword in the unknown category, 60% of its samples

are used in training, 20% for validation, and 20% for testing. Note that in this

case, all the training, validation, and test phases use the same 5 keywords as an

unknown class but the samples are still from different speakers.

5. Mixing Background Noise: The original speech commands dataset [59]

comes with a collection of sounds (6 WAVE files) that can be mixed with one-

second utterances of keywords to simulate background noise. Following [60]

implementation of mixing background noise, small snippets of these files are

chosen at random and mixed at a low volume into audio samples during train-

ing. The loudness is also chosen randomly, and controlled by a hyper-parameter

as a proportion where 0 is silence, and 1 is full volume. In our experiments,

we set the background volume to 0.1 and conduct experiments with both the

presence and absence of background noise.

6. Detecting Silence: Apart from core classes and unknown classes, we curate

another class silence to detect the absence of keywords. Again following [60] im-

plementation, we randomly sample 1000 one-second-long sections of data from

background sounds. Since there is never complete silence in real environments,

we have to supply examples with quiet and irrelevant audio. We conduct ex-

periments in both the presence and absence of samples from silence class.

We provide a script to synthesize this Few-Shot Speech Command dataset at our
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repository 1.

Figure 3.6: Training Cases demonstrated for 3-Way FS-KWS. (a) Core: In each task
Ti, 3 Core classes are randomly sampled from Dtrain. Then for each Core class Cn, s
support examples Cs

n and q query examples Cq
n are sampled (different from support

examples). For testing, a new task Tnew is constructed which contains new classes
Ci, Cj, Ck sampled from Dtest. (b) Core + Background: Here each keyword sample is
mixed with background noise. (c) Core + Optional: An optional class (O) is present
along with Core classes both during training and testing. (d) Core + Unknown
+ Background + Silence: Two optional classes i.e. Unknown (U) and Silence (S)
are present and also the samples are mixed with background noise. (Note: In our
experiments, the position of optional classes in (c) and (d) is random and not always
at the last position as presented in this figure)

3.5 Experiments

3.5.1 Training

To test the effectiveness of our approach, we divide our experiments in four cases

(Figure 3.6):

(a) Core - Pure Keyword Detection: Both during training and testing, the keyword
1https://github.com/ArchitParnami/Few-Shot-KWS

https://github.com/ArchitParnami/Few-Shot-KWS
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samples in the support (S) and query (Q) sets are from core keywords and

without any background noise.

(b) Core + Background: Same as (a), except the keyword samples are now mixed

with random background noise.

(c) Core + Optional: To account for scenarios when the input query is not from

any of the keywords present in the provided support set or when there is simply

no input, we train and test in presence of an optional class. This optional class

is unknown keywords when we want to detect negatives and is silence when we

want to detect the absence of any spoken keywords.

(d) Core + Unknown + Silence + Background: Samples from both the op-

tional classes i.e, Unknown and Silence are present and are also mixed with

background noise. This case simulates more realistic scenarios when input is

often mixed with background noise and could be an unknown word or just

silence.

In each of the above cases, we train and test in a N -way K-shot manner where N

refers to the number of core classes and K refers to the number of training examples

per class in each episode as explained in Section 2.3.2.1. In cases where an optional

class (Silence or Unknown) is used, we add K support examples for the optional class

in the support sets both during training and testing. We perform episodic training as

suggested in [40] and train all our models for 200 epochs where each epoch has 200

training episodes and 100 validation (test) episodes. We use SGD with Adam [61]

and an initial learning rate of 10−3 and cut the learning rate in half every 20 epochs.

We conduct experiments with N = {2, 4} and K = {1, 5} for all the mentioned cases.

The model is trained on the loss computed from 5 queries per class in each episode

and evaluated more strictly with 15 queries per class during testing.
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3.5.2 Baselines

As we formulate and propose a new FS-KWS problem, there is a lack of prior

research and a standard FS-KWS dataset. Thus, to show the effectiveness of the

proposed framework, we employ three different existing architectures as embedding

networks in our FS-KWS framework to examine the performance of the proposed

approach. Following are the baseline embedding networks:

• cnn_trad_fpool3 [50] was originally proposed for KWS problem. It has two

convolutional layers followed by a linear, a dense, and a softmax layer. We use

the output of the dense layer as network embeddings.

• C64 [40] is the original 4-layer CNN used in Prototypical Networks for doing

few-shot image classification on miniImageNet [18].

• TC-ResNet8 [56] has demonstrated great results on KWS. We remove the

last fully connected and softmax layer and use the remaining architecture as

our embedding network in FS-KWS framework.

3.5.3 Results

Table 3.2 lists the results for the three baselines and our proposed architecture on

experiments mentioned in Section 3.5.1. Given a new 2-way-5-shot KWS task with

keywords not seen during the training, our TD-ResNet7 model can classify an input

query with ∼94% accuracy with the proposed FW-KWS pipeline. This is not even

feasible with classical deep learning solutions without FS-KWS formulation.

The TD-ResNet7 architecture also outperforms all the existing baselines architec-

tures on all the test cases except in (b) Core + Background where the performance

of TC-ResNet8 on 2-way 5-shot KWS is slightly better but the difference is not sig-

nificant (p = 0.36 while ANOVA for others presents p ≪ 0.05). These results are

illustrated in Figure 3.7. As we increase the number of shots (samples per class), the
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(a) Core (b) Core + Background

(c) Core + Unknown (d) Core + Unknown + Background + Silence

Figure 3.7: Comparing test accuracy of embedding network architectures on 4-way
FS-KWS as we increase the number of support examples. The results are presented
for all the four cases mentioned in section 3.5.1

overall performance improves for all architectures, yet the TD-ResNet7 architecture

consistently outperforms other baselines. All the accuracy results are averaged over

100 test episodes and are reported with 95% confidence intervals.
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Table 3.2: Performance comparison of different embedding networks when plugged
into FS-KWS pipeline for 4 different cases.

Case Embedding
Network

2-way Acc. 4-way Acc.
1-shot 5-shot 1-shot 5-shot

core

cnn_trad_fpool3 69.23 ± 0.03 87.07 ± 0.02 48.83 ± 0.02 75.93 ± 0.01
C64 77.20 ± 0.03 89.97 ± 0.02 62.63 ± 0.02 80.48 ± 0.01

TC-ResNet8 82.70 ± 0.03 89.00 ± 0.02 69.47 ± 0.02 81.20 ± 0.01
TD-ResNet7 (ours) 85.43 ± 0.03 94.10 ± 0.01 75.22 ± 0.02 83.48 ± 0.02

core
+

background

cnn_trad_fpool3 69.53 ± 0.04 86.8 ± 0.02 43.3 ± 0.02 67.42 ± 0.01
C64 78.30 ± 0.03 90.03 ± 0.02 58.83 ± 0.02 80.52 ± 0.01

TC-ResNet8 77.40 ± 0.03 91.40 ± 0.02 64.23 ± 0.02 79.25 ± 0.01
TD-ResNet7 (ours) 82.23 ± 0.03 91.00 ± 0.02 71.58 ± 0.02 85.65 ± 0.01

core
+

unknown

cnn_trad_fpool3 58.33 ± 0.03 78.36 ± 0.02 50.15 ± 0.02 69.25 ± 0.01
C64 63.42 ± 0.03 78.47 ± 0.02 53.69 ± 0.02 76.43 ± 0.01

TC-ResNet8 68.84 ± 0.03 80.49 ± 0.02 59.08 ± 0.02 78.07 ± 0.01
TD-ResNet7 (ours) 77.24 ± 0.02 87.22 ± 0.01 70.45 ± 0.02 81.88 ± 0.01

core +
unknown +

background +
silence

cnn_trad_fpool3 67.43 ± 0.02 82.32 ± 0.01 53.51 ± 0.02 74.54 ± 0.01
C64 65.83 ± 0.02 81.15 ± 0.01 56.38 ± 0.01 73.20 ± 0.01

TC-ResNet8 78.63 ± 0.02 85.98 ± 0.01 63.37 ± 0.02 80.39 ± 0.01
TD-ResNet7 (ours) 82.77 ± 0.02 89.45 ± 0.01 69.34 ± 0.01 82.50 ± 0.01

3.6 Discussion

This work presents a solution for the keyword spotting problem using only limited

samples for each keyword. We demonstrate that using prototypical networks with

the proposed embedding model which uses temporal and dilated convolutions, can

produce significant results with only a few examples. We also synthesize and release

a Few-Shot Google Speech command dataset for future research on Few-Shot Keyword

Spotting.

This chapter is reused from our work Few-Shot Keyword Spotting with Prototypical
Networks [62] with permission from authors.



CHAPTER 4: FEW-SHOT CONTINUAL LEARNING

4.1 Motivation

To build truly intelligent systems, we need sustainable models that not only can

learn quickly from a small amount of training data but can also continually update

themselves when the new data is available. This idea is also referred to as Continual

Learning [63] (Fig. 4.1), lifelong or incremental learning. Despite the recent success

of neural network models in outperforming human-level performance in tasks such as

object recognition [64] and Atari games [65], the current models lack the ability to

adapt themselves to new information continuously, i.e., they are inherently static in

nature and hence incapable of expanding their function. This is because, when new

data is available, a neural network has to be trained again with new and old infor-

mation altogether. If solely trained with new information, the network will undergo

what is known as catastrophic forgetting [24] of old information. In recent years, sev-

eral techniques have been proposed to build continual learning models; however, very

few address the real time situation where the available data is limited. With limited

data, it becomes extraordinarily difficult to continually develop representations for

new data because deep learning models mainly rely on large amounts of training data

to remember information. Therefore, we propose to study and address the problem

of building continual learning models with limited data, a problem referred to as

Few-Shot Continual Learning.

4.2 Related Works

Previously, few attempts have been made in addressing continual learning with

limited data. [66, 67, 68] propose to address the problem using meta-learning. They
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Figure 4.1: Static vs Continual Learning

suggest formulating a distribution of few-shot continual learning tasks and meta-learn

representations to solve new few-shot continual learning tasks. These approaches

assume a fixed length task sequence, i.e., the number of classes to learn is

known before and is fixed. This is not a realistic assumption since, at the time of

model deployment, it is unlikely to know the number of classes beforehand in the

case of online continual learning. Therefore, our study does not limit the number

of classes that could be learned by leveraging the idea of one-class classification. To

summarize our contribution:

• We develop a method that can learn new classes continuously from a limited

number of data samples. The proposed method can have wide practical use in

diverse machine learning applications because of growing expense, labor, and

restrictions for data collection.

• The proposed method can enable ML practitioners to build sustainable models

which can retain new information without forgetting old information and hence

will save time and resources that usually go into retraining models.

• Using one-class classification for continual learning ensures that models can

theoretically learn a high number of classes and hence are more flexible and

adaptable to changing environments. We observe that simply using positive
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classes for training one-class classifiers is not sufficient for continual learning.

Therefore, we incorporate negative sampling for training one-class classifiers

and improve the joint class classification performance for continual learning.

Additionally, we develop a new method to generate negative samples so that few-

shot continual learning can be made possible without explicitly storing samples

from other classes to act as negatives when performing the negative sampling.

4.3 Few-Shot Continual Learning Framework

We address the problem of Few-Shot Continual Learning by leveraging meta-

learning and one-class classification. The proposed framework continuously learns

one-class classifiers where each classifier is a representative of a single positive class.

In this framework:

• Meta-learning addresses the issue of learning from limited data and

• Learning an ensemble of one-class classifiers avoids dealing with catastrophic

forgetting without restricting the number of classes to be learned.

Figure 4.2: Continually Learning Few-Shot One-Class Classifiers
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4.3.1 Training Few-Shot One-Class Classifier for Continual Learning

The pipeline for training is depicted in Figure 4.2. We describe each of the com-

ponents in the pipeline as follows:

1. Feature Extraction: A pretrained feature extractor f(ϕ), such as ResNet, is

used for generating feature embeddings of the class samples.

2. Meta-Learning Few-Shot One-Class Classifier: An initial classifier C(θ0)

that can be used for few-shot one-class classification can be learned using meta-

learning (See Algorithm 2) [69]. However, this initial classifier is not fine-tuned

for the detection of a specific class or category.

3. Few-Shot One-Class Optimizer: The optimizer finetunes or adapts the pa-

rameters of the initial few-shot one-class classifier (C(θ0)) using the samples of

the presented class to obtain a class specific classifier (C(θi)). This adaption is

quick and can be done using one or two gradient descent steps. This is because

the initial meta-learned parameters are close to optimal parameters in the the

hypothesis space [8] (See Fig. 4.3):

θi = θ0 − α
∂Li

∂θ0

where Li is the binary cross entropy loss of classifier C(θi) on class samples

(Xi, Yi).

4.3.2 Inference by Joint Classification

During inference (Figure 4.4), we first extract the features of the test image and

then pass it through each of few-shot one-class classifiers to obtain the positive class

score. The classifier with the highest positive class score represents the predicted

category.
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Figure 4.3: Model Agnostic Meta-Learning (MAML) optimizes for a representation
θ that can quickly adapt to new downstream tasks.

Figure 4.4: Inference by Joint Classification

4.4 Few-Shot Continual Image Classification Dataset

We use MiniImageNet [18] dataset for our experiments following the literature in

few-shot continual learning [66, 67, 68]. The dataset contains 100 general object

classes where each class has 600 color images. The images are resized to 84× 84 and

the dataset is split into 64 training, 16 validation, and 20 testing classes. Fig. 4.5

depicts how we split our dataset for training and evaluation of different experiments.
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Algorithm 2: Meta-training of OC-MAML (Frikha et al. [69])
Require: Str: Set of meta-training tasks
Require: α, β: Learning rates
Require: K,Q: Batch size for the inner and outer updates
Require: c: Class Imbalance Ratio (CIR) for the inner-updates
1: Randomly initialize θ0
2: while not done do
3: Sample batch of tasks Ti from Str; Ti = {Dtr, Dval}
4: for each sampled Ti do
5: Sample K examples B from Dtr such that CIR= c
6: Initialize θ

′
i = θ0

7: for number of adaptation steps do
8: Compute adapted parameters with gradient descent using B:

θ
′
i = θ

′
i − α∇θ

′
i
Ltr
Ti
(fθ′i

)

9: end for
10: Sample Q examples B

′ from Dval with CIR= 50%
11: Compute outer loop loss Lval

Ti
(fθ′i

) using B
′

12: end for
13: Update θ0: θ0 ← θ0 − β∇θ0

∑
Ti
Lval
Ti

(fθ′i
)

14: end while
15: return meta-learned parameters θ0

Figure 4.5: Dataset Split
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4.5 Experiments

4.5.1 Pre-training ResNet-12 for Feature Extraction

A ResNet-12 [3] is trained on 64 base classes by creating an 80/20 training and

validation split. It achieves a maximum accuracy of 75% of the classification task of

64 classes (Fig. 4.6). Then, the last classification layer is removed and the remaining

networks are used for feature extraction.

(a) Loss (b) Accuracy

Figure 4.6: Pre-training ResNet-12

4.5.2 Baseline Experiments

Before we jump into using meta-learning for training one-class classifiers, we sim-

ply train one-class classifiers from scratch (random initialization of weights) using

the feature embeddings obtained from pretrained ResNet-12. We train 16 one-class

classifiers for each of the 16 classes present in the meta-validation set. When training

one-class classifiers, there are a number of hyperparameters to experiment with (Table

4.1). Next, we can measure the performance of individual one-class classifier based on

these hyperparameters and we can also measure the joint classification performance

of all the classifiers on the task of classifying an input image from one of 16 classes

(results depicted in Fig. 4.8 as baseline).
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Table 4.1: Training Hyperparameters of a One-Class Classifier

Hyperparameter Description
K The number of positive class samples used for training

the one-class classifier
M The number of negative classes used to sample negative

training examples
N The number of epochs (adaptation steps) the classifier

is trained on
K/M Number of negative examples per negative class

4.5.3 Meta-Learning Experiments

A derivative of OC-MAML [69] is used for learning initial parameters of the one-

class classifier C(θ0). Our experiments differ by the fact that we make use

of negative samples to improve the performance of the one-class classifier.

Our meta-learning experiments are divided into following scenarios (Fig. 4.7).

1. Meta-seen: When query samples of negative class are drawn from the same

classes used in the support samples for the negative class.

2. Meta-unseen: When query samples of negative class are drawn from classes

not seen in the support set for negative class.

3. Meta-both: When query samples of negative class are drawn from both the

classes seen and the classes not seen in the support set for negative class.

4. Meta (no-neg) + FT (no-neg): The meta-learned initialization was obtained

without using negative samples in the support set (OC-MAML with c = 0).

The initialization is finetuned with support with only positive samples and no

negative samples when training the one-class classifier.

5. Meta (no-neg) + FT (neg): The meta-learned initialization (learned from

positive samples only) is finetuned with a support set having both positive and

negative samples.
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Figure 4.7: Meta-Learning Experiments. A and B represents two disjoint sets from
which negative examples are sampled. Yes → Sampled. No → Not Sampled.

4.5.4 Training Hyperparameters

We experiment with a multi-layer perceptron with the following architecture as

our one-class classifier: Linear (640, 320) → ReLU → Linear (320, 160) → ReLU

→ Linear (160, 1) → Sigmoid. During the training of meta-learning experiments,

we set the outer loop learning rate to 0.001 and the inner loop learning rate to 0.01.

The number of adaptation steps is 5 and the number of tasks in each episode is 8.

We train for 200 epochs and perform early stopping with patience 40. The number

of positive (K) (or negative training examples) used is 10. The number of negative

classes (M) used to sample negative examples is 5. For evaluation, we test 30 query

(Q) samples from a positive class and 30 from negative classes (split equally from

M classes). For baseline experiments, the learning rate is also 0.01. We present the

results with adaptation steps up to 40 (N) at the test.

4.5.5 Results

Fig. 4.8 presents the test accuracy results for the baseline and meta-learning ex-

periments discussed above. In Fig. 4.8 (a), we report the average test accuracy of

our one-class classifier (computed using 16 classes) on the y-axis with the number

of adaptation (fine-tuning) steps on the x-axis. The baseline approach which trains

each OCC from scratch using random initialization naturally does poorly. Whereas,

the meta-learning based approaches show better results in just a few adaption steps.

Moreover, we notice that our meta experiments (meta both and meta seen) which

involve meta-training with negative samples have higher test accuracy on average
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than OC-MAML [69] based methods (meta (no-neg)) which do not use negative sam-

ples during meta-training. Interestingly, OC-MAML when fine-tuned with negative

samples (meta (no neg) + FT (neg)), continues to do better than OC-MAML only

adapted with positive samples (meta (no neg) + FT (no neg)), as we increase the

number of adaptation steps. The meta-unseen method adapts slowly and matches

the OC-MAML (FT (neg)) performance at 40 adaptation steps. Overall, these results

indicate that on average meta-learning one-class classifiers with negative sampling

contributes to higher classification accuracy.

(a) Average OCC Accuracy (b) Joint Classification Accuracy

Figure 4.8: Test Accuracy Results

Next, we report the performance on few-shot continual learning in Fig. 4.8 (b).

As depicted in Fig. 4.2, we continuously train and add new one-class classifiers to

our collection when images from a new class are presented. Then, we measure the

performance of classification of the classifiers present in our collection by presenting

test images from each class (as depicted in Fig. 4.4). Fig. 4.8 (b) presents the

results for such scenario. On the x-axis, new classes are added, i.e., a new OCC is

trained and on the y-axis the joint classification accuracy is reported on all the classes

(OCC’s) witnessed so far. Each OCC is trained up to 40 adaptation steps using

10 positive samples and 10 negative samples (where applicable). We observe that

our meta-experiments (meta-unseen, meta-both, and meta-seen) which use negative
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sampling while meta-training, outperforms both the baseline and OC-MAML based

experiments on few-shot continual learning. Moreover, the meta-unseen method has

exceedingly better joint classification accuracy than the meta-seen and meta-both

methods. As before in Fig. 4.8 (a), our results in Fig. 4.8 (b) again demonstrate the

importance of using negative samples for meta-training one-class classifiers for the

downstream task of few-shot continual learning.

So far, our results have convinced us that using negative samples for training one-

class classifier is necessary for better few-shot continual learning. However, where

should we obtain these negative samples when training each of OCCs? In our exper-

iments, we assumed that samples from other classes can be stored in memory and

hence are available to act negatives for training the classifier at hand. Here we are in

violation of our true continual learning objective, i.e., to remember new information

without forgetting old information and without having access to old informa-

tion. Therefore, in the next section (Sec 4.6), we focus on eliminating the need for

storing samples and develop a method to generate negative samples so that continual

learning can be done without storing any positive class samples to act as negative

samples to other classes when training one-class classifiers.

4.6 Generating Negatives for Few-Shot One-Class Classification

4.6.1 Motivation

As observed in our results in the previous section (Sec. 4.5.5), using negative

samples for training one-class classifiers enables better joint classification performance

on few-shot continual learning. However, for continually learning new classes we don’t

have negative samples unless we store some positive samples for each learned class.

Hence resulting in ever expanding memory size. Our goal in this research is to perform

continual learning without explicitly storing any samples in the memory. Therefore to

this end, we propose a generative model that transforms positive samples into negative

samples for training the one-class classifier. After which both sets of samples can be
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discarded. In the following section, we detail our choice of the generative model.

4.6.2 The Generator: Negative Self-Attention Model

Attention models [70] have been commonly used for natural language processing

tasks [71]. There are many variations of attention models such as self-attention, global

and local attention. Particularly, self-attention models are responsible for finding out

the most important features in a given set of features. Our previous research [72]

has shown that self-attention model can be used to transform a given set of features

(embeddings) from one dimension to another. Motivated by our findings, we deploy

a modified self-attention model to transform embeddings from positive dimensions

to the embedding present in the dimension space of negative samples. We achieve

this by assigning higher weights to less important features and lower weights to more

important features, hence moving away from the features that make a sample positive.

Algorithm 3 describes the implementation for our negative self-attention model, which

takes positive class embeddings as input and outputs negative embeddings.

Algorithm 3: Negative Self-attention

Function NegativeSelfAttention(En×m, d)

Kn×d = affine(E, d) ▷Keys

Qn×d = affine(E, d) ▷Queries

logitsn×n = matmul(Q, transpose(K))

scoresn×n = 1 - Softmax(logits, dim=1) ▷Reversing Probability

valuesn×d = affine(E, d)

outputn×d = matmul(scores, values)

return output
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Figure 4.9: Adaptation Stage: Model adapts from meta-learned initialization using
positive class samples and correspondingly generated negative samples.

4.6.3 Using Negative Self-Attention Model for Training One-Class Classifier

Our objective is to learn good initial parameters (θmeta) for the one-class classifier

such that it can adapt from positives and generated negative samples quickly and

can solve the downstream classification task. To make this possible, we also need to

find initialization for generator parameters (λmeta) such that it can generate negative

embeddings from the positive embeddings of the given class. Once we have the

meta parameters (θmeta and λmeta), deploying a one-class classifier for a specific class

becomes a two stage process:

1) During the adaptation stage (Fig. 4.9), the positive class samples for a class are

fed into the generator model that outputs negative embedding. We then measure the

loss of classification using the meta parameters of the classifier. This loss is used to

update both the negative self-attention model and the classifier’s meta parameters to

obtain the finetuned parameters (θFT and λFT ). The idea is that the attention model

should generate negative samples good enough for the classifier to find a good decision

boundary in a few adaptation steps. 2) During the inference stage (Fig. 4.10), the

adapted model can be used for the classification of true positives and true negative

samples.
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Figure 4.10: Inference Stage: The fine-tune model is used for inference of true posi-
tives and true negatives.

4.6.4 Learning Meta-Parameters: Experiments

We approach generating negative samples using self-attention model by conducting

three strategic meta-learning experiments listed below:

1. meta-atten: In this experiment, we only learn the initialization parameters

θmeta and not λmeta.

2. meta-atten with MSE loss: Here again, we only learn the initialization pa-

rameters θmeta and not λmeta. But this time, we penalize the generator model by

adding the inverse of the Mean Squared Error (MSE) computed between the

generated negative embeddings and the positive embeddings to the clas-

sification loss, as a way to make them as far away as possible in the embedding

space.

3. meta-atten (G) with MSE loss: In this experiment, we meta-learn the ini-

tialization parameters for both the one-class classifier (θmeta) and the generator

model (λmeta) by computing the MSE between generated negative embed-

dings and true negative embeddings.

We discuss the above three experiments in detail in the following subsections.
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4.6.4.1 Learning θmeta

To learn the initialization parameters θmeta for the one-class classifier, we follow

the meta-training [8] procedure on our custom defined tasks as outlined below. We

first initialize θmeta randomly. Then, during the inner loop training (Fig. 4.11), we

sample a batch of tasks (m), where each task is aimed at learning a one-class classifier

for the given positive class embeddings and the generated negative embeddings from

the generator model (Sec 4.6.2). By calculating the loss of classification on the support

set (positive embeddings, generated negative embeddings), we update both classifier

parameters and the generator parameters. This process is repeated for n adaptation

steps for each task in the batch sampled in the outer loop i as follows:

θi0 = θmeta, (4.1)

θin = θin−1 − α
dLn−1

dθin−1

, (4.2)

λi
n = λi

n−1 − α
dLn−1

dλi
n−1

, (4.3)

where α is the inner loop learning rate.

In the outer loop (Fig. 4.12), the adapted parameters of each one-class classifier

(θn) are used to measure the classification performance on query set which contains

true unseen positive class examples and true unseen negative class examples. The

loss of classification is measured using binary cross entropy loss Ltest. The total loss

on the query sets is then used to update initial meta parameters θmeta:

Ltotal =
k=m∑
k=1

Lk
test, (4.4)

θi+1
0 = θi0 − β

dLtotal

dθi0
, (4.5)
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θmeta = θi+1
0 , (4.6)

where β is the outer loop learning rate.

Figure 4.11: Inner Loop Training
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Figure 4.12: Outer Loop Training

4.6.4.2 Learning θmeta with MSE loss

In this experiment, we follow the similar training process as discussed in Sec.

4.6.4.1, except that during the inner loop training, we account for the similarity

between the generated negative embeddings and the positive embeddings. Since we

want these two embeddings to be dissimilar, we measure the Mean Squared Error

(denoted by E) between them and add its inverse to classification loss (L) to get the

total loss (T ) in the inner loop. This is depicted in Fig. 4.13.
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Figure 4.13: Adding MSE in Inner Loop Training

The total loss (T ) is used to update the classifier and the generator parameters as

follows:

θi0 = θmeta, (4.7)

θin = θin−1 − α
dTn−1

dθin−1

, (4.8)

λi
n = λi

n−1 − α
dTn−1

dλi
n−1

. (4.9)

The outer loop training process is exactly the same as illustrated in Fig. 4.12 and,

therefore, θmeta is obtained using Eqn. (4.4), (4.5), and (4.6).

4.6.4.3 Learning θmeta and λmeta with MSE loss

In this experiment, we learn the initialization parameters θmeta for the one-class

classifier and λmeta for the negative self-attention model. We follow the similar train-

ing procedure on our custom defined tasks as discussed in Sec 4.6.4.1. The inner

loop training process is same, except that this time, we also initialize λ, similar to

Eqn (4.1) as

λi
0 = λmeta. (4.10)

Then, the inner loop training proceeds as per Eqn. (4.2) and (4.3).
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Figure 4.14: Outer Loop Training with MSE

In the outer loop (Fig. 4.14), the adapted parameters of each one-class classifier

(θn) are used to measure the classification performance on query set which contains

true unseen positive class examples and true unseen negative class examples. The

loss of classification is measured using binary cross entropy loss Ltest_bce. At the

same time, the adapted parameters of each generator model (λn) are used to measure

the quality of generated embeddings by calculating the mean squared error Ltest_mse

between the generated negative embeddings and true negative embeddings in

the query set. The total loss on the query sets is then used to update meta parameters

θmeta and λmeta:

Ltotal =
k=m∑
k=1

Lk
test_bce + Lk

test_mse, (4.11)
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θi+1
0 = θi0 − β

dLtotal

dθi0
, (4.12)

λi+1
0 = λi

0 − β
dLtotal

dλi
0

, (4.13)

θmeta = θi+1
0 , (4.14)

λmeta = λi+1
0 . (4.15)

4.6.5 Results

In this section, we present the results for the above meta-learning experiments (Sec.

4.6.4) conducted with generated negatives using the negative self-attention model in

comparison to the meta-learning experiments done with true negatives (Sec. 4.5.3)

for few-shot continual learning.

Figure 4.15: Average One-Class Classification Accuracy

Fig. 4.15 reports the average one-class classification accuracy of the 16 one-class

classifiers trained with 10 positive samples and 10 negative samples (where applica-

ble). We observe that all the meta-learned models trained with generated negatives

(in purple) adapt quickly (3 adaptation steps) and have higher average classification
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accuracy when compared to baseline (blue) and OC-MAML (meta (no neg)) based

models. Particularly, the meta model (meta-atten (G) w/ mse) which also learns

initialization for generator parameters (λmeta) performs best and even surpasses the

meta-models learned with true negatives (meta-unseen, meta-seen, and meta-both)

in 3 adaption steps. However, as expected, on further adaptation with generated neg-

atives, the meta-models (in purple) start to overfit and their performance (measured

on true negatives) declines. This behavior is similar to OC-MAML finetuned without

negative samples (meta (no neg) + FT (neg)).

Figure 4.16: Joint Classification Accuracy (MLP)

In Fig. 4.16, we compare the joint classification accuracy of meta-models trained

with generated negatives (in purple) vs those with true negatives (green) and no

negatives (red) for the task of few-shot continual learning. To best analyze the ca-

pability of meta-models that use generated negatives, we perform the comparison at

3 adaption steps. As in Fig. 4.15, we again observe that meta-models using gener-

ated negatives (in purple) perform much better than baseline (blue) and OC-MAML

based (in red) methods on the task of few-shot continual learning. Interestingly, our

meta-model trained with generated negatives (meta-atten (G) w /mse) matches upto
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the performance of models trained with true negatives (meta-both and meta-seen)

but tails the best performing model (meta-unseen).

4.7 Discussion

Our experiments in Sec. 4.5.5 show that the use of negative sampling for training

one-class classifiers is beneficial for the downstream task of few-shot continual learn-

ing. However, to continually learn such new one-class classifiers, one requires to store

samples of the classes witnessed so far to act as negatives to new classes. This defeats

the idea of retaining new information without explicitly storing any. Therefore, to

achieve our goal of performing continual learning without explicitly storing class sam-

ples, we devise a method to generate negative samples from the given class positives

to act as a proxy for true negatives. Our results show that this indeed results in

performance that is better than baseline and the OC-MAML classifiers which do not

make use of negative sampling and also closely match up to methods that use real

negatives. However, there still exists some gap between the performance of generated

negatives vs true negatives for the purpose of few-continual learning. So far we have

managed to close this gap by coming up with incrementally better meta models to

generate negatives. Continuing in this direction, future work will focus on finding

much better models to bridge the gap. Moreover, by having a fixed memory size and

allocating it to store a few positive class samples to act as negatives to other classes,

in addition to the generated negatives, will further help in making more realistic and

better few-shot continual learning models.



CHAPTER 5: PRIVACY-ENHANCED FEW-SHOT LEARNING

5.1 Motivation

There has been a widespread adoption of cloud-based machine learning platforms

recently, such as Amazon Sagemaker [73], Google AutoML [74], and Microsoft Azure

[75]. They allow companies and application developers to easily build and deploy

their AI applications as a Service (AIaaS). However, the users of AIaaS services may

encounter two major challenges. 1) Large Data Requirement: Deep Learning

models usually require large amounts of training data. This training data needs to

be uploaded to the cloud services for the developers to build their models, which

may be inconvenient and infeasible at times. 2) Data Privacy Concerns: Sharing

data with untrusted servers may pose threats to end-user privacy. For instance, a

biometric authentication application deployed in the cloud will expose user photos to

a third-party cloud service.

To address the large data requirement problem, there has been increasing research

on the approaches that require less amount of training data, popularly known as

Few-Shot Learning [76]. Specifically, metric-based few-shot classification methods

[18, 35, 40, 41, 42] learn to map images of unseen classes into distinct embeddings

that preserve the distance relation among them and then perform classification of

the input query image by the distance to the class embeddings. Recent works have

been able to achieve up to ∼90% accuracy on the challenging task of 5-way 5-shot

classification on the MiniImageNet dataset [77]. Despite the success and promises of

few-shot learning, it is imperative to address the data privacy concerns to protect

user-supplied sensitive data, e.g., when a metric-based few-shot model is deployed in

a cloud server (Fig. 5.1).
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Figure 5.1: Threats in a cloud-based few-shot model. 1) attacks on training data [1, 2]
and 2) exposure of sensitive dataset to untrusted cloud server for inference.

Several privacy-preserving approaches may be adopted in machine learning ap-

plications, including cryptography, differential privacy, and data obfuscation. Re-

cent works [78] adopted cryptographic techniques to protect the confidentiality of

data. For example, remote machine learning services can provide results on en-

crypted queries [78]; a range of primitives, such as Homomorphic Encryption, may

be adopted to manage the encrypted data. Despite promising results, crypto-based

methods inflict high computational overheads, creating challenges for practical de-

ployment. Furthermore, such solutions may breach privacy by disclosing the exact

computation results, and an adversary may utilize the model’s output to launch in-

ference attacks on training data [1, 2]. Differential privacy [79] has been adopted

to train machine learning models while providing indistinguishability guarantees for

individual records in the training set [80]. However, the strong privacy guarantees

tend to reduce the model performance and have shown disparate impacts on the un-

derrepresented classes [81]. In contrast, data obfuscation methods achieve privacy

protection without inflicting high computational costs, e.g., image blurring and pix-

elization. Obfuscation can be applied to protecting both training and testing data,

and can provide differential privacy guarantees at individual-level data [82].
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Figure 5.2: Few-Shot Private Image Classification in the Cloud: A denoising network
is first trained with non-user data and deployed in the cloud. Using a privacy pre-
serving method (2), a user can obfuscate clean training images (1) to obtain noisy
training images (3). These images are then sent to the cloud server where they are
first denoised and then encoded (4) to be stored as privacy-preserved embeddings on
the server (5). A user can obfuscate the clean test image (6) and query the server
using a noisy test image (8) to obtain a prediction (12).

This work focuses on the privacy of testing data (support+query) specifically for

few-shot learning. A few-shot model built for clean images exhibits poor performance

when tested with noisy/private image data. This is because meta-learning based few-

shot models do not work well with out-of-distribution tasks [8, 37, 40]. Therefore,

applying the obfuscation methods to the image data and simply using an off-the-

shelf pre-trained few-shot model leads to degradation in performance, as observed

in our experiments (Fig. 5.6 Baseline Model). Hence, it is imperative to study

privacy specifically in context of few-shot learning. To this end, we suggest a private

few-shot learning approach trained on noisy data samples as illustrated in Fig. 5.2.

Adopting an obfuscation mechanism on the local input data samples, a user transfers

privacy-encoded data to the cloud. The proposed jointly-trained, denoised embedding

network, the Denoising Network, constructs privacy-preserved latent space for robust

few-shot classification. To validate the proposed approach, we examine four privacy
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methods including traditional obfuscation methods such as Pixelization and Blurring,

which do not provide quantifiable privacy guarantees [83], and also Differentially

Private Pixelization (DP-Pix) [82] which provides differential privacy guarantees.

This study examines practical implications for a holistic private few-shot learn-

ing framework on an untrusted service platform, which has not been studied pre-

viously. Thus, our main contributions are: 1) first proposing a unified framework

for deploying few-shot learning models in the cloud while protecting the privacy of

user-supplied sensitive data and 2) thoroughly examining privacy methods on three

different datasets of varying difficulty, therefore 3) discovering and observing the ex-

istence of the effective privacy-preserved latent space for few-shot learning.

5.2 Related Works

Xie et al. [84] incorporate differential privacy into few-shot learning through adding

Gaussian noise into the model training process [80] to protect the privacy of training

data. [85, 86] have also provided a strong privacy protection guarantee in pairwise

learning for training data. On the other hand, [87] propose to use hashing to store

the embedding of the input images. Similar to cryptographic approaches [78], the

work [87] incurs high computational complexity to achieve accuracy. Differently, our

approach addresses the privacy of user data at source (i.e., the images are already

privatized before the server sees them) with strong privacy protection. To the best

of our knowledge, ours is the only approach that addresses privacy in the context of

few-shot metric learning for user-supplied training and testing data.

5.3 Privacy Methods

We study following methods to introduce privacy in images (depicted in Fig. 5.3).

5.3.1 Independent Gaussian Noise

Introducing some noise in an image is one way to distort information [88]. Kim

[89], first publicized the work on additive noise by the general expression Z = X + ϵ,
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Figure 5.3: Privacy Methods (Original image from CelebA dataset)

where X is the original data point, ϵ is the random variable (noise) with a distribution

ϵ ∼ N (0, σ2) and Z is the transformed data point, obtained by the addition of noise

ϵ to the input X.

Therefore, for an image with dimensions (H,W,C), we sample H ×W × C values

from a Gaussian (normal) distribution with mean (µ) zero and standard deviation σ of

the probability density function p(x) = 1√
2πσ2

exp− (x−µ)2

2σ2 . We use the implementation

from [90].

5.3.2 Common Image Obfuscation

Two widely used image obfuscation techniques are Pixelization and Blurring.

Pixelization [91] (also referred to as mosaicing) can be achieved by superposing a

rectangular grid of size b × b over the original image and averaging the color values

of the pixels within each grid cell.
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Blurring i.e., Gaussian blur, removes details from an image by convolving a 2D

Gaussian kernel with the image. Let the radius of blur be r, then the size of the 2D

kernel is given by (2r+1)× (2r+1). Then, the values in this 2D kernel are sampled

from the distribution:

G(x, y) =
1√
2πσ2

exp−(x2 + y2)

2σ2
, (5.1)

where (x, y) are the coordinates inside the 2D kernel with origin at the center and

the standard deviation σ is approximated from the radius r [92]. We use Pillow Image

Library [93] for the implementation.

5.3.3 Differentially Private Image Pixelization

Differential privacy (DP) is the state-of-the-art privacy paradigm for statistical

databases [79]. Differentially Private Pixelization (DP-Pix) [82] extends the DP no-

tion to image data publication. It introduces a concept of m-Neighborhood, where

two images (I1 and I2) are neighboring images if they differ by at most m pixels.

By differential privacy, content represented by up to m pixels can be protected. A

popular mechanism to achieve DP is the Laplace mechanism. However, the global

sensitivity of direct image perturbation would be very high i.e., ∆I = 255m, leading

to high perturbation error. The DP-Pix method first performs pixelization Pb (with

grid cells of b× b pixels) on the input image I, and then applies Laplace perturbation

to the pixelized image Pb(I), effectively reducing the sensitivity 255m
b2

. The following

equation summarizes the algorithm (P̃b) to achieve ϵ-differential privacy:

P̃b(I) = Pb(I) + Lp, (5.2)

where each value in Lp is randomly drawn from a Laplace distribution with mean

0 and scale 255m
b2ϵ

. The parameter ϵ > 0 specifies the level of DP guarantee, where

smaller values indicate stronger privacy. As DP is resistant to post-processing [79],
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any computation performed on the output of DP-Pix, i.e., the perturbed pixelized

images, would not affect the ϵ-DP guarantees. Our approach proposes a denoising

module for the obfuscated images by DP-Pix, improving the latent representation

without sacrificing DP guarantees.

5.4 Privacy Enhanced Few-shot Image Classification

To build a few-shot model that can preserve the privacy of the input images, we

can utilize any of the privacy methods discussed in the previous section. However,

doing so may degrade the few-shot classification performance tremendously. To avoid

this, we introduce a denoiser and train it jointly for few-shot classification using

meta-learning on noisy images (Fig. 5.2). Together, the denoiser and the embedding

network forms our Denoising Network. Combined with the properly chosen privacy

method, the Denoising Network aims to discover a privacy-preserved latent embedding

space (not denosing to recover the original image), where the privacy of input data

is be preserved and robustness and generality for few-shot classification are

maintained.

5.4.1 Denoiser

Zhang et al. [94] proposed a denoising convolutional neural network (DnCNN)

which uses residual learning to output Gaussian noise. Specifically, the input of the

network is a noisy observation such that y = x+ v where y is the input image, x be

the clean image, and v be the actual noise. The network learns the residual mapping

function R(y) ≈ v and predicts the clean image using x = y − R(y). The averaged

mean squared error between the predicted residue and actual noise is used as the loss

function to train this denoiser with parameters ϕ as

L(ϕ) = 1

2N

N∑
i=1

||R(yi;ϕ)− (yi − xi)||2. (5.3)
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Figure 5.4: DnCNN denoiser with 8 layers

We plug the DnCNN denoiser into our FS-PIC pipeline (Fig. 5.2) to estimate the clean

image before pixelization, blurring, Gaussian noise, and DP-Pix. The architecture for

the denoiser is depicted in Fig. 5.4.

5.4.2 Embedding Network

Partially denoised images from the denoiser D(ϕ) are fed to embedding network

E(θ) to obtain denoised embeddings, which then form the class prototypes. The

classification loss is measured using Eq. 2.7.

5.4.3 Denoising Network

The total loss for training the Denoising Network (Denoiser + Embedding Network)

is formulated as the sum of denoising loss and classification loss:

L = L(ϕ) + L(θ). (5.4)

The joint loss enforces the reduction of noise in input images while learning the

distinctive representations that maximize the few-shot classification accuracy. This

simple loss guides the embedding space towards privacy-preserved latent space with-

out losing its generality. For Prototypical Networks, the prototypes are expected to

be the centers of the privacy-preserved embeddings for each class. Although the sum

of losses can be weighted, our experiments observed that weighting did not signifi-

cantly impact the final accuracy of the few-shot image classification model as long as

the weighting coefficients are non-zero. We outline the episodic training process used

for building a FS-PIC model in Alg. 4 and describe the notations used in Table 5.1.
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Algorithm 4: FS-PIC model training
Input: D = {(x1, y1), ..., (xt, yt)} where yi ∈ {1, ...,M}. Dc denotes the subset
of D containing all elements (xi, yi) such that yi = c.

while True do
// Select a set of N classes
V ← RandomSample({1, ...,M}, N)
for c in V do

// Select support examples
Sc
e ← RandomSample(Dc, K)

// Select query examples
Qc

e ← RandomSample(Dc \ Sc
e, H)

// Add noise
Ŝc
e ← AddNoise(Sc

e, ϵ)
Q̂c

e ← AddNoise(Qc
e, ϵ)

end
// Form a set of all clean images
Se ← {S1

e , S
2
e , ...S

N
e }

Qe ← {Q1
e, Q

2
e, ...Q

N
e }

Xe ← {Se, Qe}
// Form a set of all noisy images
Ŝe ← {Ŝ1

e , Ŝ
2
e , ...Ŝ

N
e }

Q̂e ← {Q̂1
e, Q̂

2
e, ...Q̂

N
e }

X̂e ← {Ŝe, Q̂e}
// Apply the denoiser
X̄e ← G(X̂e; θ)
S̄e, Q̄e ← X̄e

// Calculate denoising loss
Ld ← MSE(X̄e, Xe)
// Compute class prototypes using denoised support examples
for c in V do

p̄c ←
1

K

∑
(x̄i,yi)∈S̄c

e

fϕ(x̄i)

end
Lc ← 0
for c in V do

for (x̄i, yi) in Q̄c
e do

Lc ← Lc +
1

NH
[d(fϕ(x̄i), p̄c) + log

∑
c′
exp(−d(fϕ(x̄i), p̄c))]

end
end
L ← Ld + Lc

ϕ← ϕ− αϕ
∂L
∂ϕ

θ ← θ − αθ
∂L
∂θ

end
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Table 5.1: Notations used in FS-PIC model training

Notation Description
t #examples in the training set
M #classes in the training set
N <= M #classes sampled per episode
K #support examples sampled per class
H #query examples sampled per class

5.5 Experiments

5.5.1 Datasets

• Omniglot [95] is a dataset of 1623 handwritten characters collected from 50

alphabets. Each character has 20 examples drawn by a different human subject.

We follow the same procedure as in [18] by resizing the gray-scale images to

28× 28 and augmenting the character classes with rotations in multiples of 90

degrees. Our training, validation, and testing split is of sizes 1028, 172, and 423

characters, respectively (or 4× with augmentation).

• CelebFaces Attributes Dataset (CelebA) [96] is a large-scale face at-

tributes dataset with more than 10K celebrity (classes) images. For the purpose

of our experiments, we select classes that have at least 30 samples. This gives

us 2360 classes in total, out of which 1510 are used for training, 378 for valida-

tion, and 427 for testing. We use aligned and cropped version of the dataset in

which images are of dimension 218(h)× 178(w). We center crop each image to

176× 176 and then resize to 84× 84.

• MiniImageNet [18] dataset contains 100 general object classes where each

class has 600 color images. The images are resized to 84× 84, and the dataset

is split into 64 training, 16 validation, and 20 testing classes following [40].
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5.5.2 Settings for Privacy Methods

We explore the following parameters for each privacy method. Gaussian Blur with

radius r = {1, 2, 3, 4, 5} is used for blurring images. A filter window of size b × b

where b = {2, 4, 6, 8, 10} is used for pixelization. The pixelated image is then resized

to match the model input dimensions. We perform experiments with Gaussian noise

ϵ ∼ N (µ, σ) with mean µ = 0 and standard deviation σ = {40, 80, 120, 160, 200}.

For DP-Pix, we fix ϵ = 3, m = 1 and vary pixelization parameter b with values

{2, 4, 6, 8, 10}.

5.5.3 Denoising Network

We use a lighter version of the DnCNN [94] model i.e., with 8 CNN layers instead

of 17, for first denoising the image and subsequently feeding the denoised image

into one of the following embedding networks. Conv-4 is a 4-layered convolutional

neural network with 64 filters in each layer originally proposed in [40] for few-shot

classification. ResNet-12 is a 12-layer CNN with 4 residual blocks. It has been

shown to have better classification accuracy on few-shot image classification tasks.

The architecture of the two embedding networks are detailed in Fig. 5.5.

5.5.4 Training and Evaluation

We train using N-way K-shot PIC tasks (Algorithm. 4) and use Adam optimizer

with learning rate αθ = αϕ = 0.001 with a decay of 0.5 every 20 epochs. Table 5.2 lists

the hyperparameters for the three datasets. The network is trained to minimize total

loss of denoiser and classifier (Eq. 5.4). We evaluate the performance by sampling 5-

way 5-shot PIC tasks (with same privacy settings) from the test sets and measure the

classification accuracy. The final results report the performance averaged over 1000

test episodes for the Omniglot dataset, and 600 test episodes for both MiniImageNet

and CelebA datasets. To measure the effectiveness of the proposed denoising em-

bedding space, we both train and evaluate each model’s performance in two settings:
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Figure 5.5: Encoders: a) Conv-4, b) Residual Block, c) ResNet-12

Table 5.2: Hyperparameters for Episodic Training

Omniglot CelebA MiniImageNet
Way 60 5 5
Shots 5 5 5
Query 5 5 15
Epochs 500 200 200
Patience 50 20 20
Episodes 100 100 100

1) without using the denoiser and 2) jointly training the denoiser with the

classifier i.e., the proposed Denoising Network.

5.5.5 Privacy Risk Evaluation

Privacy attacks on trained models such as model inversion[1] and membership

inference[2] are not applicable in our setting because the denoising and embedding

models are trained with publicly available classes (data) using meta-learning. The

user-supplied test data (support and query set) are obfuscated for privacy protection.

A practical privacy attack on obfuscated images is to infer the identities using exist-

ing facial recognition systems and public APIs, e.g., Rekognition. In this study, our
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goal is to investigate (1) the efficacy of the studied image obfuscation methods for

privacy protection and (2) whether the proposed denoising approach has effects on pri-

vacy. To simulate a powerful adversary, we apply the state-of-the-art face recognition

techniques, e.g., FaceNet with the Inception ResNet V1 network[97], on the CelebA

dataset; MTCNN [98] is applied to detect and resize the facial region in each input

image. Specifically, 1000 entities were randomly selected from the CelebA dataset.

For each entity, we randomly sampled 30 images, which were then partitioned be-

tween training and testing (20 : 10). Different versions of the test set were generated

by applying image obfuscation methods with various parameter values (denoted as

Noisy) and by applying the proposed Denoising Network (denoted as Denoised). We

fine-tuned the Inception network and trained an SVC classifier on the clean training

data. In Fig. 5.8, we report the accuracy on the noisy and denoised test sets, i.e.,

success of re-identification, with higher values indicating higher privacy risks.

5.6 Results

Table 5.3: Baseline test accuracy of 5-way 5-shot classification of clean images. Om-
niglot is not evaluated for ResNet-12 because of its already near 100% performance.

Omniglot CelebA MiniImageNet
Conv-4 0.99 0.90 0.61

ResNet-12 – 0.92 0.65

5.6.1 Task Difficulty

The average 5-way 5-shot classification accuracy of our baseline few-shot model

[40] trained on clean images and tested on clean images is 99% on Omniglot dataset,

91% on CelebA dataset, and 61% on MiniImageNet dataset using Conv-4 encoder

(Table 5.3). This shows the approximate level of difficulty of few-shot tasks for each

dataset i.e., Omniglot tasks are easy, tasks from CelebA have medium difficulty, and

MiniImageNet tasks are hard.
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Figure 5.6: Test accuracy (y-axis) of 5-way 5-shot private image classification tasks
sampled from Omniglot (top), CelebA (center) and MiniImageNet (bottom) datasets,
presented with different privacy settings (x-axis) when using Conv-4 as encoder.

5.6.2 Generalization

We compare results for few-shot private image classification using three models in

Fig. 5.6:

1. Baseline Few-Shot Model: When the few-shot model is trained on clean

images and is tested on noisy images.

2. Noisy Few-Shot Model Without Denoiser: When the baseline few-shot

model is trained on noisy images and is tested on noisy images with same privacy

settings.

3. Noisy Few-Shot Model With Denoiser: When the baseline few-shot
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Figure 5.7: % Gain vs SSIM for Conv-4

model is jointly trained with the denoiser on noisy images and is tested on noisy

images with same privacy settings (Algorithm 4).

In all cases, we observe that noisy few-shot models outperforms the baseline few-

shot model with wide gap. Also, in most cases, we note that adding a denoiser

improves the accuracy. To better observe the effectiveness of denoiser, in Fig. 5.7, we

quantify the improvement by calculating % Gain = accuracy with denoiser−accuracy without denoiser
accuracy without denoiser ×

100. We also quantify the change to the original image caused by the privacy method

(post denoising) by calculating Structural Similarity Index (SSIM) [99] between de-

noised image and original clean image, averaged over 100 test images for each dataset

and privacy parameter.

Blurring, Pixelization and Gaussian Noise: As we increase the value of pri-

vacy parameters, the SSIM decreases, suggesting the higher dissimilarity between the

denoised images and the original image (Fig 5.7). Despite the degradation caused by

the privacy method to the original image, we observe positive % Gains for all three

datasets. Specifically, on hard tasks (MiniImageNet), a gain of upto 15% in accuracy
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(r = 5) with the proposed Denoising Network, reaffirming the generality of the few-

shot learning. For easy (Omniglot) and medium (CelebA) tasks, where the baseline

accuracy is already high, a relatively small positive gain of up to 5% (σ = 200) is

reported.

DP-Pix: As we increase the size of pixelization window (b), the amount of Laplace

noise that we add to the image decreases (as defined by 255m
b2ϵ

); however, the image

quality decreases because of increasing pixelization. Therefore, we observe a trade-off

point where the accuracy first increases and then decreases as we increase b (Fig 5.6).

This trade-off is particularly observed for CelebA and MiniImageNet datasets. For

Omniglot dataset, the performance just decreases with increasing b because of the

low resolution images in the dataset. From Fig. 5.7, we observe that DP-Pix has

the lowest SSIM values when compared with other privacy methods causing the most

notable changes on the original image. Interestingly, we note that even with low SSIM

values, we find instances that exhibit moderate % gain i.e., at b = 2, 4, 6 indicating

the presence of privacy preserving denoising embeddings.

5.6.3 Empirical Privacy Risks

As described earlier, this experiment showcases the efficacy of image obfuscation

methods against a practical adversary who utilizes state-of-the-art face recognition

models trained on clean images. Furthermore, this experiment investigates whether

the proposed denoising network has effects on privacy protection empirically. To this

end, we vary the algorithmic parameters of the privacy methods and report the face

re-identification rates on both obfuscated and denoised images in Fig. 5.8. For the

clean test set sampled from CelebA, the re-identification accuracy is 68.12%.

Blurring: In Fig. 5.8a, the privacy risks are quite high with Gaussian kernel size

r = 1 for both blurred and denoised images. As we increase the radius r, the chance

of re-identifying the image decreases rapidly. We also observe that after denoising,

the blurred images are more likely to be re-identified. For instance, at r = 2, the
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(a) Blurring (b) Pixelization

(c) Additive Gaussian (d) DP-Pix (ϵ = 3)

Figure 5.8: Privacy Risk Evaluation with CelebA

re-identification rate is 7.34% for blurred images but 54.01% for denoised images.

Pixelization: As shown in Fig. 5.8b, small cell size in pixelization, e.g., b = 2, leads

to high face re-identification rates for both pixelized and denoised images. Increasing

b helps reduce the rate of face re-identification rapidly, e.g., from 53.73% to 4.82% for

pixelized images by increasing b from 2 to 6. Denoising slightly increases the privacy

risk, but the additional risk diminishes with larger b values and is much lower than

observed in blurring.

Additive Gaussian: Over the range of σ values studied in our experiments,

Additive Gaussian inflicts lower privacy risks with a small noise (σ = 40), compared
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to Blurring and Pixelization. As shown in Fig. 5.8c, increasing σ leads to a moderate

reduction in the privacy risk. For example, face re-identification rate is 5.11% at mid

noise level (σ = 120), reduced from 8.54% at low noise level (σ = 40). Denoising the

obfuscated images leads to a significant increase in the privacy risk at low σ values,

e.g., 33.55% higher in face re-identification rate when σ = 40.

DP-Pix Fig. 5.8d presents the re-identification results for images obfuscated with

DP-Pix as well as those denoised by our proposed approach. We observe low privacy

risks across all b values. Furthermore, performing denoising on DP-Pix obfuscated

images does not lead to significant higher privacy risks with any b value, as opposed to

other image obfuscation methods. While face re-identification rates are consistently

low, higher rates occur when b = 4 and 6. Recall that higher utility was observed

when b = 4 and 6 in Fig. 5.6. It has been reported in [82] that the quality of

obfuscated images may be optimized by tuning b value given the privacy requirement

ϵ, by balancing the approximation error by pixelization and the Laplace noise.

Figure 5.9: Qualitative Evaluation of Privacy Methods: The figure depicts the obfus-
cated images (Noisy) by the studied privacy methods at various parameters, as well
as the denoised output, with a sample input from CelebA.
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5.6.4 Qualitative Evaluation of Privacy Methods

Fig. 5.9 provides a qualitative evaluation on the obfuscated and denoised images

generated for a range of parameter values. MTCNN [98] was applied to a sample input

image of CelebA, to detect the facial region. Perceptually, the proposed denoiser may

improve the image quality upon the obfuscated images to various extents. However,

image quality does not always correlate with empirical privacy risks, i.e., face re-

identification with public models. In combination with Fig. 5.8, we observe that the

proposed denoising leads to various levels of privacy risk increment, while producing

higher quality images. For example, the results show higher privacy risk increment

for Blurring with r = 3 (23.33%), moderate increment for Pixelization b = 4 (10.14%)

and Additive Gaussian σ = 80 (7.96%), and little increment for DP-Pix b = 2. Fig. 5.9

confirms that the denoiser performance may vary depending on the image obfuscation

method, and that DP-Pix provides consistent privacy protection even with denoising.

5.6.5 Observation of the Privacy-Preserved Embedding Space

Fig. 5.11 shows the evolution of the embeddings in the process of privacy encoding

and privacy-preserved representation learning by presenting the t-SNE [100] visual-

ization of the clean, noisy, and denoised embeddings of randomly sampled 100 test

images from a total of 5 classes from the CelebA dataset. The embeddings are ob-

tained from the ResNet-12 encoder trained under different noise settings for 5-way

5-shot classification. We say the embeddings are clean when the input images have no

noise and the encoder is trained for few-shot classification of clean images. The noisy

embeddings are obtained by using the encoder trained for few-shot classification of

noisy images and without using the denoiser. The denoised embeddings are obtained

by the proposed Denoising Network (Fig. 5.2) i.e., the encoder trained in conjunction

with denoiser for few-shot classification on noisy images.

We report the results for a case when a few-shot method such as Prototypical
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Figure 5.10: The figure shows the results of applying different types of privacy meth-
ods i.e., Blurring, Pixelization, Additive Gaussian noise, and Differentially Private
noise to a sample from each of Omniglot, MiniImageNet and CelebA datasets. It
also shows the denoised output obtained from the DnCNN denoiser. We observe that
images protected with DP-Pix are hard to denoise when compared with Blurring,
Pixelization, and Gaussian noise.
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Figure 5.11: t-SNE Visualization

Networks can generate good clusters for the clean images (Fig. 5.11a), and observe

the impact on clustering with noisy images and subsequently when those images are

denoised. We notice that when the initial clusters are good, pixelization (Fig. 5.11c)

and blurring (Fig. 5.11e) will have little impact on the quality of the clusters even

with the high amount of noise. Therefore, pixelization and blurring maintain general-

ity (robust to noise) and are also vulnerable to re-identification. Gaussian noise (Fig.

5.11b) distorts the initial clusters more significantly, which can lead to lower few-shot

classification performance. Applying denoising to Gaussian noise improves the clus-

tering results, however still poses moderate privacy threat as seen in re-identification

experiments (Fig. 5.8c). Similarly, with DP-Pix (Fig. 5.11d), the original clusters

are also distorted upon obfuscation. But, when denoised with proposed Denoising

Network, we can observe better clustering performance. Because of DP-Pix’s privacy

guarantee and lowest re-identification rates, we can say that the obtained denoised

embeddings are privacy-protected i.e., the network finds the privacy-preserved em-

bedding space which maintains generality (robust to noise) and also preserves privacy.
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5.7 Discussion

In this work, we present a novel framework for training a few-shot private image

classification model, which aims to preserve the privacy of user-supplied training and

testing data. The framework makes it possible to deploy few-shot models in the cloud

without compromising users’ data privacy. We discuss and confirm that there exists

a privacy-preserved embedding space which has both stronger privacy and generaliza-

tion performance on few-shot classification. The proposed method provides privacy

guarantees while preventing severe degradation of the accuracy as confirmed by re-

sults on three different datasets of varying difficulty with several privacy methods.

Evaluation with re-identification attacks verifies the low empirical privacy risk of our

proposed method, especially with DP-Pix. While our study focuses on well-known

image obfuscation methods, future research may explore scenarios where users could

apply novel image obfuscation methods locally, i.e., different from those applied to

training data. Furthermore, our results motivate the future direction of searching

for a more effective privacy-preserved space for few-shot learning in other domains

such as speech [62]. Examination of other evaluation metrics for privacy-preserved

embedding space will promote the relevant future study. We release the code for our

experiments at https://github.com/ArchitParnami/Few-Shot-Privacy.

This chapter is reused from our work Privacy Enhancement for Cloud-Based Few-Shot
Learning [101] with permission from authors.

https://github.com/ArchitParnami/Few-Shot-Privacy


CHAPTER 6: CONCLUSION & FUTURE WORKS

This dissertation explores the practicality of few-shot models to be deployed for

domains other than images, such as speech by considering the problem of keyword

spotting as a use-case. Next, to be able to use few-shot models in the continual

learning settings where the information from new classes needs to be continually

accumulated without forgetting old information, a problem referred to as few-shot

continual learning is also discussed. Finally, it also raises the question of privacy when

deploying few-shot models in the cloud and suggests a solution in that direction. To

summarize, our contributions are directed towards the following problems:

• Few-Shot Keyword Spotting: In speech domain, keyword spotting is

used to detect specific keywords in human speech. Such systems are com-

monly used in smart embedded devices which do not use Large Vocabulary

Continuous Speech Recognition (LVCSR) due to either computation, latency

or privacy constraints. Traditionally, training keyword spotting models have

required thousands of user samples per keyword. Our work addresses this prob-

lem by developing a Few-Shot Keyword Spotting Framework, where few-shot

models can be trained using MFCC features to detect new keyword just from

2 samples per keyword. We present our results using Prototypical Networks as

an example few-shot model and also release a dataset for future research in this

direction.

• Few-Shot Continual Learning: Few-shot models are static in nature, i.e.,

trained to detect a certain number of classes, hence are not capable of growing

and learning new classes. On the contrary, the field of continual learning focuses
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on building model architectures that supports learning new information (classes)

without forgetting old information. However, most such approaches break down

in limited data regime. In our work, we propose an approach to perform few-

shot continual learning using an ensemble of one-class classifier that are trained

to work with few samples and also without theoretically restricting the number

of classes that could be learned and realizing the potential of few-shot models

to be deployed in more real time scenarios.

• Privacy Enhanced Few-Shot Learning: Few-shot learning models are

vulnerable to privacy attacks on user supplied training and testing data when

deployed in cloud. Incorporating privacy mechanisms on the out-of-box few-

shot models results in severe degradation of performance, hence impacting their

general adoption. Therefore, to make few-shot models practical for deployment,

and yet preserve the privacy of user data, we develop a novel framework for

training a few-shot private image classification models. Our proposed method

provides privacy guarantees while preventing severe degradation of the accuracy

as confirmed by results on three different datasets of varying difficulty with

several privacy methods.

Our work, so far has developed approaches to tackle problems like privacy, continual

learning and learning from limited speech, individually in the context of Few-shot

learning. Therefore, future work could involve testing and upgrading the proposed

approaches to work together at the intersection of the problem domains as discussed

below:

• Few-Shot Continual Keyword Spotting: The few-shot keyword spotting

model proposed in this dissertation is static in nature i.e., the model is only

able to detect limited number of keywords. However, in dynamic environments

such as voice assistants new keywords with few user samples need to be learned.
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This requires building models that can perform keyword spotting continuously

on new keywords such as [102, 103]. However, learning new keywords without

forgetting old keywords is still a challenge in limited data regime. Using the

techniques proposed in this dissertation for few-shot continual learning, a few-

shot continual keyword spotting model can be developed similarly.

• Privacy Enhancement for Few-Shot Keyword Spotting: In Chapter

5, we addressed privacy issues surrounding the deployment of few-shot image

classification models in a cloud-based environment. Specifically, we adopt addi-

tion of noise to images as means for finding privacy-preserved embedding space

for few-shot image classification. However, the question still remains on the

applicability of the proposed method on data domains other than images, such

as speech. Particularly, we would like to address whether similar noise addition

techniques can be used for preserving privacy of speech data when developing

few-shot keyword spotting models and how it affects their performance. Future

work in this direction will explore building privacy-preserved few-shot keyword

spotting models because privacy is always a concern in adoption of smart voice

assistants.

• Privacy Enhanced Few-Shot Continual Learning: Learning new infor-

mation without forgetting old information is a challenge for neural networks.

Moreover, being able to retain new information just from few samples is even

more harder task. Our work in Chapter 4, proposed a technique to overcome

this challenge up to a certain extent. Generally, as new knowledge is accumu-

lated, model performance declines. However, to build practical few-shot models

that not only are able to learn from few samples continuously but also preserve

the privacy of the user information is yet the hardest of the problems discussed

in this dissertation. Some preliminary work [104] has been done to address
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privacy in continual learning models with differential privacy. However, much

more research is required to make such models work with few examples. Future

work would thus begin with the integration of all three techniques proposed in

this dissertation and analyze their effect on the performance of few-shot models

for their practical usability.
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