
IMPLEMENTING AND CHARACTERIZING A QUANTUM DIVIDE AND
CONQUER VARIATIONAL QUANTUM ALGORITHM

by

Alexander Gray

A thesis submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Master of Science in

Applied Physics

Charlotte

2022

Approved by:

Dr. Donald Jacobs

Dr. Tino Hofmann

Dr. Yong Zhang

ii

©2022
Alexander Gray

ALL RIGHTS RESERVED

iii

ABSTRACT

ALEXANDER GRAY. Implementing and Characterizing a Quantum Divide and
Conquer Variational Quantum Algorithm. (Under the direction of DR. DONALD

JACOBS)

The current landscape of quantum computing devices consists of Noisy Intermediate-

Scale Quantum (NISQ) devices, which contain around 100 or less qubits and are not

fault-tolerant or error correcting. Due to the physical limitations of these devices,

algorithms must be developed with short circuit depths and which are stable to the

noise inherent to quantum measurements. A broad class of quantum computing al-

gorithms called Variational Quantum Algorithms (VQAs), which leverage a classical

computer for parameter optimization of a problem-related cost function, fit these

criteria and serve as the basis for many NISQ-era algorithms. In this work, we

develop a VQA based on a newly discovered set of operators called Divide And Con-

quer Operators (DACOs), which is termed the DACO-VQA. Using these operators,

unitary parameter-dependent quantum gates can be constructed which, when con-

secutively applied on an initial Hadamard state, continually cut the Hilbert space in

half, leading to a single pure state bit string in the end. This property is leveraged in

the DACO-VQA to restrict the search to consecutive halves of the problem-Hilbert

space, reducing the range of measurement sampling. The DACO-VQA also utilizes

a cost function based on a partition function of the empirically measured energies

of the states generated by the quantum computer. In this work we discuss the de-

velopment of the DACO-VQA structure and its operators, as well as completeness

of the operator pool chosen for the DACO-VQA, entangling capability of the quan-

tum circuits utilized, and benchmark the performance of the algorithm for certain

problem-Hamiltonians.

iv

ACKNOWLEDGEMENTS

I would like to thank the members of my committee for their patience and flexibility

throughout the process of this thesis. In particular, I am grateful to Drs. Tino

Hofmann and Yong Zhang for their understanding and willingness to adapt to the

roadblocks which have appeared along the way. Most of all, I want to thank Dr.

Donald Jacobs for his dedication to ensuring my success throughout my time at UNC

Charlotte. Without the countless hours Dr. Jacobs has spent with me over the years,

whether discussing the wonders of physics or sharing anecdotes about research and

life, I would not be where I am today.

v

TABLE OF CONTENTS

LIST OF TABLES vii

LIST OF FIGURES viii

LIST OF ABBREVIATIONS x

CHAPTER 1: INTRODUCTION 1

1.1. Quantum Computing and Quantum Algorithms 2

1.2. Variational Quantum Algorithms 4

1.2.1. Ansatz 5

1.2.2. Cost Function 8

1.2.3. Optimizer 9

1.3. Operator Pool Completeness 10

1.4. Ansatz Entangling Capability 12

CHAPTER 2: DIVIDE AND CONQUER ALGORITHM 18

2.1. Operators 18

2.1.1. Operator Completeness 21

2.1.2. Associated Operators 21

2.2. Ansatz 24

2.2.1. Replicas 27

2.3. Cost Function and Classical Optimizer 28

CHAPTER 3: RESULTS 30

3.1. Completeness 30

3.2. Entangling Capability 32

vi

3.3. Algorithm Performance 33

CHAPTER 4: CONCLUSIONS 41

REFERENCES 44

vii

LIST OF TABLES

TABLE 3.1: Completeness of various operator pools. ✗ indicates an in-
complete pool, ✓ indicates a complete pool.

31

viii

LIST OF FIGURES

FIGURE 1.1: Diagrammatic representation of the VQA process. Here,
|ψ0⟩ represents the initial parameter-independent state, which is
passed through the unitary gates U(θi) to generate the ansatz |θ⟩.
Then, the cost function C(θ) is calculated and optimized over, and
the process is repeated.

5

FIGURE 1.2: Average entanglement for a random complex-valued vec-
tor, where each component is of the form a + bi, with a, b sampled
uniformly between −1 and 1. The value of entanglement begins to
saturate to Q ≈ 0.44 at around 8 qubits.

14

FIGURE 1.3: Average entanglement for a random complex-valued vector,
with components of the form Reiθ. In both cases, θ was uniformly
sampled between −π/2 and +π/2. The blue line shows R sampled
using a Gaussian distribution, with µ = 0 and σ = 0.5. The red line
shows R sampled uniformly between −1 and 1. In both cases, the
entanglement saturates to its maximum value of 1 after 9 qubits.

15

FIGURE 1.4: Average entanglement for a random complex-valued vector,
with components of the form a + bi, where a, b were both sampled
from a Gaussian distribution. In all cases, µ = 0. The blue line
indicates σ = 0.1, the red line σ = 0.5, and the green line σ = 0.9.

16

FIGURE 2.1: Completeness (rank of the overlap matrix M) for the Di

operators vs the number of qubits. The blue line indicates r(M) for
Di, while the red line plots 2q − 1, which is the minimum required
value of r(M) to obtain completeness.

22

FIGURE 3.1: A comparison of the entangling capability of the EDC and
CDE orderings. CDE corresponds to the blue line, EDC corresponds
to the red line. The results are plotted from 2 to 10 qubits, with
10000 parameter samples taken per qubit. The dashed lines are the
lines of fit for the data points starting at q = 3.

32

FIGURE 3.2: (a) Log of the average oversampling ratio for 100 samples
for En = n2. Blue dots indicate the oversampling data points, the
dashed red line indicates the line of fit for the data at q > 10, and
the black line indicates the crossover point for quantum advantage.
(b) Standard deviation of κ over all sampled values.

34

ix

FIGURE 3.3: (a) Log of the average oversampling ratio for 100 samples
for the Gaussian-distributed energy spectrum with µ = 1, σ = 2.
Blue dots indicate the oversampling data points, the dashed red line
indicates the line of fit for the data at q > 10, and the black line
indicates the crossover point for quantum advantage. (b) Standard
deviation of κ over all sampled values.

35

FIGURE 3.4: (a) Log of the average oversampling ratio for 100 samples
for En = −1/n2. Blue dots indicate the oversampling data points,
the dashed red line indicates the line of fit for the data at q > 10, and
the black line indicates the crossover point for quantum advantage.
(b) Standard deviation of κ over all sampled values.

35

FIGURE 3.5: Log of the average oversampling ratio (over 100 samples)
for the En = −1/n2 spectrum with q ranging from 5 to 8, and r up
to n = q + r = 13. The blue dots are q = 5, red are q = 6, green are
q = 7, and cyan are q = 8.

37

FIGURE 3.6: Entanglement of the ansätze generated by the quantum
computer for each round of the algorithm at each θ value. In this case,
the energy spectrum was En = n2. Each line in the plot represents
one of the 32 θ values.

38

FIGURE 3.7: Entanglement of the ansätze generated by the quantum
computer for each round of the algorithm at each θ value. In this
case, the energy spectrum was Gaussian-distributed energies. Each
line in the plot represents one of the 32 θ values.

39

FIGURE 3.8: Entanglement of the ansätze generated by the quantum
computer for each round of the algorithm at each θ value. In this
case, the energy spectrum was En = −1/n2. Each line in the plot
represents one of the 32 θ values.

40

x

LIST OF ABBREVIATIONS

DACO Divide And Conquer Operator.

DACO-VQA Divide And Conquer Operator-Variational Quantum Algorithm.

NISQ Noisy Intermediate-Scale Quantum.

QEC Quantum Error Correcting.

qubit quantum bit.

VQA Variational Quantum Algorithm.

CHAPTER 1: INTRODUCTION

Quantum computing promises a massive improvement in the computational power

of computers, including the ability to solve classically intractable problems [1]. Many

algorithmic and experimental developments have been made in pursuit of realizing

this computational advantage, however, at present there are numerous experimental

difficulties limiting the practical application of many quantum computing algorithms.

In the near-term, only the so-called Noisy Intermediate-Scale Quantum (NISQ) [2] de-

vices can be practically utilized. NISQ devices typically contain less than 100 qubits

and consist of operations which are not Quantum Error Correcting (QEC) [3, 4]. In

addition, it is estimated that it will take decades to develop the hardware necessary to

implement fault tolerant QEC algorithms, hence, in order for quantum computing to

become useful presently, algorithms with short circuit-depths which are sufficiently

stable to noise must be developed. One promising candidate has been Variational

Quantum Algorithms (VQAs) – hybrid quantum-classical algorithms which leverage

a classical computer for parameter optimization – which are discussed in detail in sec-

tion 1.2 [5]. The focus of this work was to develop a VQA utilizing newly found Divide

And Conquer Operators (DACOs), which have several appealing properties for effi-

cient implementation in a VQA. The algorithm utilizing these operators was termed

the Divide And Conquer Operator-Variational Quantum Algorithm (DACO-VQA).

The aim of this report is to detail the intellectual development of these operators and

the VQA structures which were constructed from them, as well as characterizing the

properties which make them appealing. We begin with a fundamental discussion of

quantum computing algorithms [6].

2

1.1 Quantum Computing and Quantum Algorithms

The essential difference between classical and quantum computers is their funda-

mental unit of information. Classical computers utilize bits, which have two possible

states: 0 or 1. Quantum computers utilize quantum-bits (qubits), which are quantum

states which can be in an arbitrary linear combination of two states: |ψ⟩ = α |0⟩+β |1⟩.

For example, for a single 1 half spin particle, the two states can be the spin-down state

|↓⟩ → |0⟩ and the spin-up state |↑⟩ → |1⟩. An arbitrary state of this system is a linear

combination of the two orthogonal basis states, and hence furnishes a qubit. Upon

measurement, the qubit obtains one of the two classical bit values |0⟩ or |1⟩, how-

ever, through utilizing superposition and entanglement, quantum computers are able

to perform computations impossible with classical computers. To do so, they utilize

gates which are composed of quantum operators. In order to simplify the notation

of quantum computing gates, a “computational basis” is adopted, where |0⟩ ≡ [1, 0]T

and |1⟩ ≡ [0, 1]T, so that |ψ⟩ = α |0⟩ + β |1⟩ = [α, β]T. As an example of a quantum

computing gate, we can construct the classically-familiar NOT gate X as:

X =

0 1

1 0

 , (1.1)

so that

X |ψ⟩ =

0 1

1 0


α
β

 =

β
α

 =⇒ X |0⟩ = |1⟩ . (1.2)

Other single-qubit operators can be constructed similarly, and in the computational

basis they can all be represented by unitary 2× 2 matrices.

We can extend to multiple qubits by taking tensor products of single qubit states.

For example, we can denote the 3-qubit state |ijk⟩ where i, j, k ∈ {0, 1}, as |ijk⟩ ≡

|i⟩ ⊗ |j⟩ ⊗ |k⟩. For a 2 qubit system, we can label the states in the computational

3

basis as follows:

|00⟩ ≡



1

0

0

0


, |01⟩ ≡



0

1

0

0


, |10⟩ ≡



0

0

1

0


, |11⟩ ≡



0

0

0

1


. (1.3)

One of the most important multi-qubit gates is the controlled-NOT (CNOT) gate,

which targets the second qubit with a NOT gate when the first qubit is 1, and leaves

the second qubit unchanged when the first qubit is 0:

CNOT =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


. (1.4)

The action of this gate on each of the two-qubit states is CNOT |00⟩ = |00⟩, CNOT |01⟩ =

|01⟩, CNOT = |10⟩ = |11⟩, and CNOT |11⟩ = |10⟩. Any multi-qubit gate can be rep-

resented as some combination of single-qubit gates and CNOT gates.

Now, to build a quantum computing algorithm, multiple gates are combined in

sequence, through which an initial state is passed to produce a desired final state.

Throughout the propagation of the state through the quantum computer, measure-

ments of the quantum state may also be taken. This combination of gates and mea-

surements forms a quantum circuit. As a trivial example of a quantum circuit, we

can take the initial state |ψ⟩ = α |0⟩+β |1⟩ and pass it through a NOT gate to obtain

X |ψ⟩ = β |0⟩ + α |1⟩. Then, following this, perform a measurement on the state

collapsing it to either |0⟩ or |1⟩ with probability |β|2 and |α|2 respectively. While this

example is simple, all quantum circuits follow this general structure, and complexity

can be added by including parameter dependencies, interactions between multiple

4

states, and more intricate quantum gates.

Now that the basic ideas of quantum computing have been developed, along with

quantum circuits and their mathematical representation, we can move on to describing

the quantum circuits of interest to this work: variational quantum algorithms.

1.2 Variational Quantum Algorithms

Variational quantum algorithms are a type of quantum computing algorithm which

utilize a quantum computer to generate a parameter-dependent state and to estimate

the value of a cost function, and a classical computer for parameter optimization of

the cost function. They are particularly promising in the realm of NISQ devices, as

they can leverage the power of a classical optimizer to limit the number of qubits

required. VQA methods involve a cycle of state-propagation, cost function measure-

ment, and parameter optimization. Once optimized, a new state is generated with the

previously found parameter values and the process is repeated until the desired final

state is obtained. This process is illustrated in Fig. 1.1. Since each round is influenced

by the parameter optimization of previous rounds, these methods are learning-based,

making them ideal for hardware-efficient [7] quantum algorithms, which are general

algorithms applicable to a wide range of problems and are thus not problem-specific

(more detailed definitions for these terms will be provided in the following sections).

A wide variety of VQAs have been developed for various applications, ranging from

solving combinatorial optimization problems to simulating quantum mechanical sys-

tems. VQAs’ advantages in providing NISQ-era quantum computing algorithms, as

well as their demonstrated success in solving real problems, makes them ideal candi-

dates for developing near term quantum computing algorithms. Every VQA consists

of three main components: the ansatz (a parameter-dependent initial state of the

quantum computer), cost function (a criterion related to the problem to be solved),

and classical optimizer (utilized to optimize the cost function over the parameter

space). The next sections will explain each of these components in detail.

5

Figure 1.1: Diagrammatic representation of the VQA process. Here, |ψ0⟩ represents
the initial parameter-independent state, which is passed through the unitary gates
U(θi) to generate the ansatz |θ⟩. Then, the cost function C(θ) is calculated and
optimized over, and the process is repeated.

1.2.1 Ansatz

The ansatz is the parameter-dependent initial state of the VQA. Typically, the

ansatz is generated by acting on some parameter-independent initial state with a series

of parameter-dependent unitary gates. Often, the initial parameter-independent state

is a Hadamard state, which is a linear combination of all multi-qubit states in the

computational basis with each basis state weighted equally:

|s⟩ → |H⟩ = 1√
2n

∑
z

|z⟩ , (1.5)

where the sum is over all bit strings z (computational basis states), n is the number

of qubits, 2n is the total number of distinct bit strings, |s⟩ is the standard notation

for an initial parameter-independent state, and |H⟩ denotes the Hadamard state. To

generate the ansatz, this initial state is passed through parameter-dependent opera-

tors:

|θ⟩ ≡ UN(θN) · · ·U2(θ2)U1(θ1) |s⟩ . (1.6)

where the state |θ⟩ is the ansatz. The choice of ansatz, and thus the choice of opera-

6

tors U(θ), depends on the VQA and the problem to be solved. Ansätze which contain

operators independent of the problem to be solved are called hardware-efficient an-

sätze. Since these ansätze are problem-independent, they are less resource intensive

on the quantum computer, have shallower circuit depth, and are applicable to a wider

range of problems. Ansätze which contain operators derived from the problem to be

solved (such as those utilizing the problem-Hamiltonian) are called problem-specific

ansätze. These typically incorporate the cost function in some way, and thus depend

on the specific problem to be solved [8, 9]. For example, in solving for the electronic

states of small molecules, fermionic creation and annihilation operators can be built

into the ansatz, making it problem-specific. Since these ansätze can typically only be

used in the context of the problem they were designed for, they are less widely appli-

cable. They are, however, very good at solving the problems they are designed for,

making them advantageous in some contexts. There are numerous ways to generate

both problem-specific and hardware-efficient ansätze, and both were explored in this

work.

One important example of an ansatz relevant to this work is the quantum alter-

nating operator ansatz. This ansatz structure was first developed in the context of

solving combinatorial optimization problems in an algorithm called the Quantum Ap-

proximate Optimization Algorithm (QAOA) [10]. Both the structure of this ansatz

and the specific operators utilized in QAOA are relevant to this work, as they inspired

the structure of the DACO-VQA as well as its operator pool. We will now dicsuss

QAOA in detail, and describe its connection to this thesis.

QAOA is an algorithm which was developed for solving combinatorial optimization

problems by mapping the combinatorial problem into an objective function

C(z) =
m∑

α=1

Cα(z), (1.7)

where z is a bit string and Cα is a localized objective function with Cα(z) = 1 if the

7

bit string z satisfies some condition α, and Cα(z) = 0 otherwise. The optimization

procedure involves getting C as close to its maximum as possible (thus satisfying the

most conditions α). With C(z) a diagonal operator in the computational basis, we

define the unitary operators

U(C, γ) = e−iγC =
m∏

α=1

e−iγCα . (1.8)

Since the operators are diagonal in the computational basis, they commute with one

another, and the sum in the exponential can be written as a product of exponential

factors as shown. Next, we define the operator B as the sum of all single-qubit X

operators (with the notation Xj indicating that the j-th qubit is targeted with a

single-qubit X gate):

B =
n∑

j=1

Xj, (1.9)

from which the unitary operator U(B, β) is defined as

U(B, β) = e−iβB =
n∏

j=1

e−iβXj . (1.10)

The initial parameter-independent state used to construct the ansatz is the Hadamard

state |H⟩ described above. We define 2p parameters by γ1, ..., γp ≡ γ and β1, ..., βp ≡

β. Then, the ansatz is constructed as

|γ,β⟩ = U(B, βp)U(C, γp) · · ·U(B, β1)U(C, γ1) |H⟩ . (1.11)

With the ansatz and objective function defined, we can construct the cost function

as

Fp(γ,β) = ⟨γ,β|C |γ,β⟩ , (1.12)

8

where the updated parameters are obtained from

Mp ≡ max
γ,β

Fp(γ,β), (1.13)

such that

(γn+1,βn+1) = argMp(γn,βn). (1.14)

As the integer p → ∞, Mp → maxz C(z), and so Fp furnishes a good cost function

for these types of problems. Note that since the ansatz depends on the objective

function C(z), it is a problem-specific ansatz. This algorithm works very well for

specific combinatorial optimization problems and does well in reducing circuit depth,

but in general has problems with over-sampling the Hilbert space. However, this

method of ansatz construction can be generalized with different operators replacing

Xj and thus B and U(B,β), as will be seen with the DACO constructions [11]. In the

broader context of quantum alternating operator ansätze, the operator B is known

as the mixing Hamiltonian, as it has nothing to do with the specific problem to be

solved, and serves only to mix the problem Hamiltonian (in the case of QAOA, C(z))

throughout the ansatz. The original inspiration for the operator pool used in the

DACO-VQA was finding a better set of operators to serve as the mixing Hamiltonian.

1.2.2 Cost Function

The cost function encodes the problem to be solved into the quantum computer as

a function of the tunable parameters θ, and is denoted by C(θ). In general, the cost

function is a function of input states |ψi⟩, observables (measurements) of those states

Oi, and the parameter-dependent gates U(θ):

C(θ) = f({|ψi⟩}, {Oi}, U(θ)). (1.15)

9

In many contexts, problems can be mapped into a Hamiltonian H, and the cost

function is taken as the expectation value of the Hamiltonian with respect to the

ansatz:

C(θ) = ⟨θ|H |θ⟩ . (1.16)

Typically for cost functions of this form, the solution to the problem is represented

by the ground state of the system. Thus, the classical optimizer finds minima of this

expectation value, generates a new ansatz with the updated parameter values, then

repeats the process until some threshold criterion is met. Some cost functions utilize

gradients of this expectation value within the quantum computer, rather than solely

relying on the classical optimizer for finding minima.

For cost functions of the form of Eq. 1.16, the process of calculating the cost func-

tion for a given set of parameters in a physical quantum computer involves actually

measuring the state quantum mechanically. As such, there is inherent uncertainty

built into its evaluation. Dealing with this inherent uncertainty is at the forefront

of quantum computing research, and is termed the measurement problem [12]. De-

spite this, many recently developed quantum computing algorithms assume infinite

precision in the evaluation of these expectation value cost functions. However, since

this work is focused on developing practical algorithms for the NISQ-era of quantum

computing, which does not assume infinitely precise, fault-tolerant quantum com-

puters, all cost function measurements will be realistically simulated, and theoretical

averaging will not be employed.

1.2.3 Optimizer

The final component of a VQA is the classical optimizer which is used to tune the

parameters θ. There are two classes of classical optimizers, those which involve gradi-

ent descent, and those which do not. The choice of classical optimizer usually depends

10

on the problem being solved by the quantum computer, as different optimizers have

advantages over others in specific contexts. This idea is reinforced by the no free lunch

theorems [13, 14], which state that no optimizer has an advantage over any other

when averaged over all possible problems (at least in the context of combinatorial

optimization). Early in this work, several classical optimizers were identified for po-

tential implementation in the DACO-VQA structure [15, 16, 17, 18, 19, 20, 21, 22, 23].

Ultimately, however, we developed our own classical optimizer based on random-walk

diffusion processes.

It is worth noting that the selection of a classical optimizer typically depends on

the cost function landscape. Landscapes which have many local minima scattered

about do not lend well to gradient-descent optimizers, as they have a tendency to

get stuck in local minima. As such, gradient free methods are generally preferable

in hardware-efficient algorithms, as the cost function landscape varies from problem

to problem. However, if a problem-specific algorithm is utilized, then there is a

possibility that an ansatz can be generated which acts as a funnel with a single global

minimum. In this case, gradient-descent optimizers may prove faster [24]. Evaluating

gradients in a quantum computer also amplifies noise from measurements, since taking

the gradient of a noisy function increases the noise. In the context of the DACO-

VQA, numerous numerical simulations have shown no significant changes to the cost

function landscape based on adding problem-specific ansatz gates, so our gradient-

free diffusion optimizer has proved sufficiently effective independent of the ansatz

structure.

1.3 Operator Pool Completeness

An important feature of many quantum computing algorithms is operator pool

completeness. This is a property that ensures any state in the problem-Hilbert space

can be accessed by some combination of operators in the pool. This property is

important since the operators must be able to reach the ground state, a state which

11

is not known a priori, and thus is an arbitrary state in the Hilbert space. The notion

of completeness was first introduced in the context of ADAPT-VQE, an adaptive

VQA which iteratively builds the ansatz one operator at a time [25], [26].

Given some operator pool, we want to characterize whether the operators can reach

any state in the Hilbert space. This is done by ensuring that the vectors generated

by the operators {Ai} and their commutators {Ci} form a complete basis, with the

vectors taking the form Ci |ψ⟩. We define the overlap matrix

Mij = ⟨ψ|C†
iCj |ψ⟩ , (1.17)

with |ψ⟩ an arbitrary real state. If the rank of Mij, satisfies r(M) ≥ 2n − 1, where

2n is the size of the Hilbert space, the operator pool is complete. The rank must be

at least 2n − 1 rather than 2n since one of the parameters is fixed by normalization,

so that there are only 2n “free” parameters. The reason for including commutators of

the original pool is due to the Baker-Campbell-Hausdorff formula:

eXeY = eZ =⇒ Z = X + Y +
1

2
[X, Y] +

1

12
([X, [X, Y]]− [Y, [X, Y]]) + · · · . (1.18)

Since the ansatz consists of multiple applications of unitary operators of the form

e−iθA, the states implicitly include the commutators in the exponent. It should also

be noted that in the overlap matrix in Eq. 1.17, despite the specification that ψ

is real-valued, if r(M) ≥ 2n − 1 the operator pool is complete for complex-valued

vectors as well. This is true by complexification, which states that any basis for a real

vector space V can also serve as a basis for a complex vector space V C , where V C is

generated by extending scalar multiplication to include the imaginary unit [27].

Ensuring a complete operator pool led to an expansion of the original DACO pool

and significantly impacted the structure of the ansatz in the DACO-VQA. As such,

12

completeness will be discussed more extensively in a later chapter.

1.4 Ansatz Entangling Capability

Another relevant feature of quantum algorithms is the entangling capability of

their operator pool. In order for destructive interference to take effect throughout

the quantum computer, leading to convergence to the ground state, the parameter-

dependent ansätze must be generated with high levels of entanglement. As such, it is

important to understand the ability of a given operator pool to generate entanglement.

A method of quantifying the entangling capability of a parameter-dependent ansatz

was described in Ref. [28] based on Meyer-Wallach entanglement of quantum states

[29]. The method begins by defining a linear map on an n-bit string (with n the

number of qubits):

tj(b) |b1...bn⟩ = δbbj

∣∣∣b1...b̂j...bn〉 , (1.19)

where b̂j denotes the absence of the j-th bit, and bi ∈ {0, 1}. The result of this map

is either an (n− 1)-bit string or 0. As an example, we have

t3(0) |0010⟩ = δ01 |0010⟩ = 0, (1.20)

and

t3(1) |0010⟩ =
∣∣001̂0〉 = |000⟩ . (1.21)

Next, we define a distance measure between two bit strings |u⟩ =
∑

i ui |i⟩, |v⟩ =∑
i vi |i⟩ by

D(|u⟩ , |v⟩) = 1

2

∑
i,j

|uivj − ujvi|2, (1.22)

where the factor of 1/2 is to avoid double counting. This distance measure is es-

13

sentially the magnitude of the wedge product of the vectors |u⟩ and |v⟩. Now, the

entanglement of a given vector |ψ⟩ is given by

Q(|ψ⟩) = 4

n

n∑
j=1

D(tj(0) |ψ⟩ , tj(1) |ψ⟩). (1.23)

This measure has the property that 0 ≤ Q ≤ 1, and that Q(|ψ⟩) = 0 if and only if |ψ⟩

is a product state, with Q(|ψ⟩) = 1 corresponding to a maximally entangled state.

This measure of entanglement is equivalent to the average linear entropy of all single

qubit reduced states [30].

With the entanglement measure defined, we can now define the entangling capabil-

ity of an operator pool as the average entanglement over a set of randomly sampled

parameter values:

Ent =
1

|S|
∑
θi∈S

Q(|θi⟩), (1.24)

where |θ⟩ is the parameter-dependent ansatz, S = {θi} is the set of sampled param-

eter values, and the sum is over the set of parameter samples. The entanglement

of different ansätze will be presented in the results section. Presently, we provide

results for the entanglement of randomly generated complex-valued vectors over 1000

samples as a benchmark, for several different types of random vector. This is done

by plotting the average entanglement of the randomized vectors against 1/q, where q

is the number of qubits. This selection for the x-axis was chosen so the trend toward

q → ∞ (1/q → 0) can be more easily seen. The results are shown in Figs. 1.2, 1.3,

1.4.

The entanglement in Figs. 1.3 and 1.4, with Fig. 1.3 corresponding to random

vectors with components of the form Reiθ and Fig. 1.4 corresponding to random

vectors with components of the form a+ bi with a, b sampled from Gaussian distribu-

tions, both saturate to a value of around 1 when approaching 9 qubits. This means

14

Figure 1.2: Average entanglement for a random complex-valued vector, where each
component is of the form a+ bi, with a, b sampled uniformly between −1 and 1. The
value of entanglement begins to saturate to Q ≈ 0.44 at around 8 qubits.

15

Figure 1.3: Average entanglement for a random complex-valued vector, with compo-
nents of the form Reiθ. In both cases, θ was uniformly sampled between −π/2 and
+π/2. The blue line shows R sampled using a Gaussian distribution, with µ = 0 and
σ = 0.5. The red line shows R sampled uniformly between −1 and 1. In both cases,
the entanglement saturates to its maximum value of 1 after 9 qubits.

16

Figure 1.4: Average entanglement for a random complex-valued vector, with compo-
nents of the form a+ bi, where a, b were both sampled from a Gaussian distribution.
In all cases, µ = 0. The blue line indicates σ = 0.1, the red line σ = 0.5, and the
green line σ = 0.9.

17

that vectors randomly generated in this way quickly become maximally entangled.

In contrast, when the randomly generated vector has components of the form a+ bi

with a, b randomly sampled from a uniform distribution, the entanglement begins

to saturate to a value of around 0.44 near 9 qubits, as illustrated in Fig. 1.2. The

entanglement measure for uniformly random vectors more closely resembles the en-

tanglement measure observed for various operator pools, as they were not found to

saturate rapidly to maximally entangled states.

CHAPTER 2: DIVIDE AND CONQUER ALGORITHM

This chapter serves as an overview of the operators central to this work. It will

cover their structure, properties, and implementation in the VQA.

2.1 Operators

The operators which are the centerpiece of this work are the Divide and Conquer

Operators, which are operators consisting of tensor products of Pauli matrices. For

an n-qubit system, we define n DACOs as follows:

D1 = Y XX · · ·XXX,

D2 = ZY X · · ·XXX,

D3 = ZZY · · ·XXX,
...

Di = ZZZ · · ·XXX,
...

Dn−2 = ZZZ · · ·Y XX,

Dn−1 = ZZZ · · ·ZY X,

Dn = ZZZ · · ·ZZY,

(2.1)

where AB ≡ A ⊗ B. Using these operators, we can build unitary, parameter-

dependent operators as

Ui(δi) ≡ e−iδiDi . (2.2)

These operators can be used to generate a hardware-efficient ansatz

19

|δ⟩ ≡ Un(δn) · · ·U1(δ1) |H⟩ , (2.3)

or can be combined with operators built from the Hamiltonian to generate a problem-

specific ansatz in various ways. Since there are only n operators for an n-qubit system,

these operators provide a low circuit depth option for generating ansätze, making

them ideal for NISQ-era quantum computing algorithms.

These operators have the property that, given an initial Hadamard state |H⟩, any

pure state (a single bit string rather than a superposition of bit strings) can be reached

through the application of the n operators Ui(δi) with δi taking either the value −π/4

or +π/4. For example, for a 4-qubit system, we have that

e−i(−π/4)D4e−i(+π/4)D3e−i(−π/4)D2e−i(−π/4)D1 |H⟩ = [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]T ,

(2.4)

which is a pure state in the computational basis. Each of the 2n combinations of

(δ1, δ2, δ3, δ4) = (±π/4,±π/4,±π/4,±π/4) corresponds uniquely to one of the 2n

pure states. The action of U1(δ1 = ±π/4) on the Hadamard state turns either the

first 2n/2 entries to 0 or the last 2n/2 to 0, in a sense splitting the state in half. This

is shown explicitly for n = 4 below:

U(δ1 = +π/4) |H⟩ = 1√
23
[0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1]T,

U(δ1 = −π/4) |H⟩ = 1√
23
[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]T.

(2.5)

The second operator has a similar effect, sending half of the remaining 1 entries to 0.

The application of all n operators sequentially sends half of the remaining 1 entries

to 0, leaving only one nonzero entry and thus obtaining a pure state. This property

of the operators “splitting” the initial Hadamard state into consecutive halves of 1’s

20

and 0’s is the reason for the name Divide and Conquer Operators, as the operators

divide up the entries consecutively until a final pure state is obtained.

In general, operators such as the DACOs consisting of tensor products of Pauli ma-

trices are called Pauli strings. Pauli strings have two important properties: they all

square to the identity matrix (operators with this property are called involutory), and

they are all sparse. These two properties in combination are incredibly important in

constructing an efficient classical simulation of a quantum algorithm. Sparsity allows

for a sparse representation of the matrices to be stored in the computer. Specifically,

the Pauli strings have one nonzero entry in each column, meaning for a Pauli string

with matrix size N ×N , only 2N numbers need to be stored by the computer rather

than N2. For each of the N nonzero matrix elements, one number specifies the value

of the matrix element, and one number specifies the column/row it falls in. This

significantly reduces the space required to store the operators while simulating the

VQA on a classical computer, and also allows for much faster matrix multiplication

throughout the simulation. Sparsity on its own, however, is not enough to accom-

plish this increase in classical computational efficiency. The operators must also be

involutory. This is due to exponentiation of the operators to generate the unitary

quantum gates. In general, it is not true that a sparse matrix, when exponentiated,

remains sparse. However, for an involutory operator A, we have that

e−iθA = cos(θ)I − i sin(θ)A. (2.6)

This can be seen by Taylor expanding the exponential. Since the operator A is

involutory, the even power terms are all equal to the identity matrix I, and their

coefficients can be grouped together to form the cos(θ) term. The odd power terms

are all equal to A, and their coefficients can be grouped similarly to form the −i sin(θ)

term. Thus, since the identity matrix and A are both sparse and e−iθA is a linear

combination of these two matrices, e−iθA also has a sparse representation, and can

21

thus be efficiently stored in a computer.

2.1.1 Operator Completeness

For the DACOs outlined above to be usable generally, they must form a complete

operator pool. This was tested numerically by calculating the rank of the overlap

matrix (Eq. 1.17) for a large number of randomly generated real vectors |ψ⟩. De-

spite the compelling divide and conquer properties of these operators on their own,

numerical results indicate that the DACOs do not form a complete operator pool.

These results are illustrated in Fig. 2.1 by plotting the rank of the overlap matrix

generated by the DACOs against the number of qubits. Since the DACOs were not

complete on their own, a primary goal of this work was to identify a supplementary

operator pool which would serve to “complete” the pool. Two such sets of operators

were found, and will be discussed in the next subsection.

2.1.2 Associated Operators

Since the DACOs failed to form a complete operator pool on their own, two sup-

plementary sets of operators were identified which, when added to the original pool,

led to the completeness criterion being satisfied. These secondary sets of operators

are termed associated DACOs, and their construction was inspired by the structure

of general spin operators in quantum mechanics:

S = sin(θ) (cos(ϕ)X + sin(ϕ)Y) + cos(θ)Z, (2.7)

where X, Y , Z are the typical Pauli spin matrices. Since the original set of DACOs

contain a single Y operator each, the two secondary sets of operators were constructed

by replacing the Y operators with X and Z operators, with Ci denoting the “X”

operators, and Ei denoting the “Z” operators. Specifically, the new operators were

defined as:

22

Figure 2.1: Completeness (rank of the overlap matrix M) for the Di operators vs the
number of qubits. The blue line indicates r(M) for Di, while the red line plots 2q−1,
which is the minimum required value of r(M) to obtain completeness.

23

C1 = XXX · · ·XXX,

C2 = ZXX · · ·XXX,

C3 = ZZX · · ·XXX,
...

Ci = ZZZ · · ·XXX,
...

Cn−2 = ZZZ · · ·XXX,

Cn−1 = ZZZ · · ·ZXX,

Cn = ZZZ · · ·ZZX,

(2.8)

and

E1 = ZXX · · ·XXX,

E2 = ZZX · · ·XXX,

E3 = ZZZ · · ·XXX,
...

Ei = ZZZ · · ·XXX,
...

En−2 = ZZZ · · ·ZXX,

En−1 = ZZZ · · ·ZZX,

En = ZZZ · · ·ZZZ.

(2.9)

These operators were originally used to construct a mixing Hamiltonian B for use in

the quantum alternating operator ansatz as follows:

Bk(θk, ϕk) = sin(θk) (cos(ϕk)Ck + sin(ϕk)Dk) + cos(θk)Ek. (2.10)

24

Early in this work, however, this ansatz was found to have inferior performance when

compared to a different ansatz which will be explained in the next subsection.

Another useful aspect of these associated operators was their ability to distribute

phase throughout the ansatz in the quantum computer. On their own, the DACOs

were able to effectively cut the Hilbert space in half, but were not able to distribute

phase throughout the remaining states to generate the destructive interference neces-

sary to converge to the ground state of the system (this property seems to be related

to completeness of the operator pool, though no systematic study was conducted to

verify this). The associated operators, however, successfully moved phase around the

states in the Hilbert space, leading to convergence to the ground state throughout

the VQA procedure. As such, these operators became a mainstay in different ansatz

structures which were explored, and many variations were developed which could

utilize these operators.

2.2 Ansatz

The original ansatz structure explored was a quantum alternating operator ansatz

utilizing the operator defined in Eq. 2.10 as the mixing Hamiltonian:

|β,γ|θ,ϕ⟩ =
n∏

k=1

e−iβkB(θk,ϕk)e−iγkHC |H⟩ , (2.11)

with n the number of qubits and HC the problem Hamiltonian. This ansatz was

implemented with a modified version of the diffusion optimizer, which drove the

values of θk and ϕk to π/2, γk to 0, and βk to ±π/4. This meant that by the end of

the VQA procedure, the ansatz would be driven to a pure state, since

Bk(π/2, π/2) = sin(π/2) (cos(π/2)Ck + sin(π/2)Dk) + cos(π/2)Ek = Dk, (2.12)

implies that the only operators remaining are the original DACOs with angles δ =

25

±π/4. Since the problem Hamiltonian is designed specifically so that the ground state

is a pure state in the computational basis (since it is an energy eigenstate), the idea

was to let the optimizer explore the Hilbert space freely, then drive toward a pure

state once specific criteria had been met by implementing dynamic biases. While in

general this ansatz led to convergence to the ground state, its sampling of the Hilbert

space was larger than subsequently developed ansätze, and so was dropped in favor

of the better ansatz structures.

The second iteration of the ansatz structure was inspired by a Trotter-decomposition

of the quantum alternating operator ansatz with mixing Hamiltonian B(θ, ϕ). Given

a unitary operator eA+B where A, B are operators, the Trotter-decomposition is de-

fined as

eA+B = lim
n→∞

(
eA/neB/n

)n
. (2.13)

If a finite number of products are taken, rather than taking the limiting case n→ ∞,

we have

eA+B ≈
(
eA/NeB/N

)N
, (2.14)

where N is called the Trotter number. The new ansatz structure is essentially a

Trotter-decomposition of the original alternating ansatz with a Trotter number of 1:

|ϵ, δ,γ,θ⟩ =
n∏

k=1

e−iϵkEke−iδkDke−iγkCke−iθkHC |H⟩ , (2.15)

where ϵ, δ, γ are the tunable parameters for the DACOs and associated DACOs, and

θ is now the tunable parameter controlling the problem Hamiltonian. The ordering

of the product of operators in this ansatz turned out to be an important feature,

with e−iϵkEke−iδkDke−iγkCk and e−iγkCke−iδkDke−iϵkEk the only orderings which led to

consistent convergence to the ground state. Of the two, the first ordering (called the

26

EDC ordering) performed slightly better than the second (CDE). As such, EDC is

referred to as the canonical ordering of operators. Interestingly, a quantification of

the entangling capability of each of these orderings corresponded to their success in

converging to the ground state. These observations will be discussed in greater detail

in the results chapter.

The final iteration of the DACO-VQA ansatz is a modifed version of the ansatz in

Eq. 2.15. This ansatz makes deliberate use of the divide and conquer property of the

DACOs to restrict the Hilbert space search. The ansatz works in stages, sequentially

reducing the search space by applying consecutive DACOs in the fashion of Eq. 2.4.

During the i-th stage, two searches are run in parallel, one corresponding to the “top”

states (Ui(δi) with δi = −π/4) and one to the “bottom” states (Ui(δi) with δi = +π/4).

At the end of the stage, whichever search yielded the better score is chosen (based

on the cost function to be discussed), and the next DACO – Ui+1(δi+1 = ±π/4) – is

applied and the process is repeated. The ansatz is constructed as follows:

|ϵ, δ, γ, θ⟩ =

[
n∏

k=1

e−iϵkEke−iδkDke−iγkCk

]
e−iθHC

S∏
m=1

e−iδ0,mDm |H⟩ , (2.16)

where S is the current stage and δ0,m = ±π/4. The ansatz is structured so that the

DACOs (up to the current stage S) hit the Hadamard state |H⟩ first to restrict the

search to consecutive halves of the Hilbert space. Following the restriction, the state

is hit with the Hamiltonian unitary, then the set of operators with parameters to be

optimized over. Since only a finite number of measurements are taken throughout the

VQA procedure, restricting the search to consecutive halves of the Hilbert space can

drastically reduce the total number of samples needed to converge to the ground state

of the system when compared to other VQAs. In addition, the product of operators

contained in the brackets can be swapped with other VQA ansatz structures. As long

27

as the ansatz structure included in the brackets keeps the states contained to their

respective halves of the Hilbert space, they can be implemented into the DACO-VQA

structure. This notion of containing the states to their respective sections of the

Hilbert space according to the initial DACOs was termed confinement. All combi-

nations of U(ϵ), U(δ), and U(γ) maintain confinement, as well as the operators in

the original QAOA ansatz structure. Future work will be dedicated to implementing

other ansatz structures in the overall DACO-VQA structure, and characterizing their

performance against the ansatz above.

Another important feature of this ansatz is the Hamiltonian parameter θ. Instead

of letting θ be a variational parameter to be optimized over, a finite sampling of θ

values is taken, cycling between 0 and 2π. In the current iteration of the algorithm,

there are 32 samples taken, meaning θ takes on values which are integer multiples of

2π/32 = π/16. The different θ values only occur in the measurement process, and are

not used to influence subsequent rounds of the DACO-VQA. They are only contained

in the ansatz to utilize the Hamiltonian and provide higher resolution during the

measurement process, as will be discussed in section 2.3.

2.2.1 Replicas

The final feature of the ansatz which was explored in this work is the concept of

replicas. Replicas were inspired by parallelization, and serve to repeat the Hamilto-

nian in the ansatz to effectively run the same system multiple times simultaneously

within the quantum computer. To generate an ansatz with R replicas, we take the

tensor product of the R × R identity matrix with the q-qubit problem-Hamiltonian

HC :

H = IR×R ⊗HC . (2.17)

For example, with R = 2 we have

28

H = I2×2 ⊗HC =

HC 0

0 HC

 , (2.18)

repeating the Hamiltonian twice. To implement this physically, we must include r

new qubits to generate the replicas, where 2r = R. Thus, the total number of qubits

required to simulate a q-qubit problem with R replicas is n = q + r. The size of

the Hilbert space for the original Hamiltonian HC is Q = 2q, and once replicas are

introduced, the new Hilbert space size becomes N = 2n = 2q+r = QR. When this

idea was originally posed, the hope was to gain advantage by having the different

replicas interact with one another to drive the overall energy of the ansatz down,

approaching the ground state, which would ideally outweigh the cost of adding more

qubits to the system. However, in practice the replicas do not appear to be interacting

to drive the overall energy down, and there does not seem to be any improvement in

the performance of the algorithm when replicas are added, which will be discussed

in more detail in the results section. As a concept, replicas are still interesting, and

propositions to gain the needed interaction between replicas will be proposed in the

conclusions section as future work.

2.3 Cost Function and Classical Optimizer

The cost function and classical optimizer employed in the DACO-VQA are used

in conjunction to drive the states produced by the quantum computer to the de-

sired ground state of the system. The classical optimizer uses a diffusion process

to randomly generate new parameter values for the quantum computer to produce

corresponding states. For each new set of parameters, the cost function determines

whether the corresponding state is approaching the ground state of the system. If

the value of the cost function improves, the classical optimizer adaptively changes the

step size of the diffusion to keep pushing toward the ground state of the system. If

the value of the cost function worsens, the classical optimizer will instead continue to

29

explore the parameter space without driving toward any specific parameter values.

For each round of the VQA process, a finite set of M energy measurements, denoted

by {Ei}, are taken of the quantum state generated by the quantum computer per θ

value to be used in the evaluation of the cost function. This leads to a total of 32M

measurements per round of the VQA, since there are 32 samples of θ per round.

Utilizing the measured energies {Ei}, there are two criteria which constitute the cost

function. The first is the minimum energy of the current set of energies Emin =

min {Ei}, and the second is a score based on the average of the partition function of

the energies Zavg = (1/M)
∑

i e
−(Ei−Ēmin)/kT and a progress variable progE = (Ēmax−

⟨E⟩)/(Ēmax − Ēmin). Here kT is an adaptive parameter with units of energy, Ēmin

and Ēmax are the lowest and highest energies measured across all previous rounds

respectively, and ⟨E⟩ is the average of the energies {Ei}. The score is specifically

defined as

score =
Zavg + progE

2
. (2.19)

Both Zavg and progE range between 0 and 1, so the score is also restricted to between

0 and 1. Within the score, progE serves to drive the average energy of the states down

in the earlier stages of the algorithm while the search is still mostly unconstrained,

while Zavg penalizes clustering of high energy states which is useful in later stages

of the algorithm. Throughout the VQA process, a newly generated set of angles is

accepted if either Emin < Ēmin or if score > scorebest, where scorebest is the highest

score recorded across all rounds of the VQA. If neither criteria is satisfied, the new

set of angles is rejected, and the classical optimizer selects new angles based on the

diffusion process described above. Once the score exceeds 0.99, the process ends and

the solution is obtained.

CHAPTER 3: RESULTS

Here, we present the various results obtained for different features of the DACO-

VQA procedure. We begin with operator pool completeness since this is a prerequisite

to obtaining convergence to ground states in a VQA process. We then discuss entan-

gling capability of different operator orderings in the ansatz of Eq. 2.16 to motivate

the final choice of operator ordering. Finally, we discuss the overall performance of

the DACO-VQA algorithm, as well as the effect of adding replicas to the system.

3.1 Completeness

As discussed above, completeness of a VQA operator pool is a necessary condi-

tion to obtain consistent convergence to the ground state of the problem-Hamiltonian

HC . As such, characterizing the completeness of different operator pools was a ma-

jor initial focus of this work. The results presented here show the completeness of

various combinations of the DACOs and associated DACOs, as well as for a special

combination of associated operators.

Specifically, based on the definition of the Ci and Ei operators, one can see that

the set of Ci and Ei are identical, with the exception of C1 and En, since for every

index i, Ei = Ci+1. This means that for an operator pool consisting of both Ci and

Ei, the pool size is only n+1 rather than 2n. However, in the context of the DACO-

VQA, this is not an interesting feature, since if the ansatz is constructed from only

Ci and Ei without Di, convergence to the ground state was not obtained. However,

in the context of adaptive VQAs which iteratively build the ansatz one operator at

a time, there is a potential for these operators to be utilized, reducing resources

required for the quantum computer to function. In the original adaptive-VQA which

31

Table 3.1: Completeness of various operator pools. ✗ indicates an incomplete pool,
✓ indicates a complete pool.

Operators {Ci} {Di} {Ei} {Ci}+ {Di} {Di}+ {Ei} {Ci}+ En

Completeness ✗ ✗ ✗ ✓ ✓ ✓

was developed to solve for the ground state of fermionic systems, the operator pools

required had a minimal size of 2n − 2, which is larger than n + 1. However, in this

context the operators in the pool were required to contain an odd number of Y Pauli

operators in their Pauli strings to physically correspond to fermionic creation and

annihilation operators. This means that Ci and Ei could not be directly implemented

in a fermionic adaptive-VQA, but it is still possible that they could be implemented

in a different adaptive-VQA, which may be explored in future work.

The completeness results were obtained for up to q = 9 qubits by calculating r(M)

for the following operator pools: {Ci}, {Di}, {Ei}, {Ci} + {Di}, {Di} + {Ei}, and

{Ci} + En. The notation {Ci} + {Di} indicates that the pool is comprised of all Ci

and Di operators, and {Ci} + En is the set of Ci operators and Ei operators, where

only En was included for the reasons outlined above. The pool was deemed complete

if r(M) ≥ 2q − 1 for every value of q up to q = 9. The results are summarized in

Table 3.1.

The results indicate that for any pool including Di, the minimal pool size required

for completeness is 2n, regardless of which other associated operators are added to

the pool. Unsurprisingly, any individual set of operators on their own do not form a

complete pool. In addition, ansätze which use all 3 sets of operators are automatically

complete, because once a pool is complete, adding more operators has no effect on

r(M) (it cannot decrease or increase the rank).

32

3.2 Entangling Capability

The entangling capability of many different orderings of DACOs and associated

operators were considered. However, since only the orderings EDC and CDE (defined

above) led to consistent convergence to the ground state, only they are presented

in this section. The entangling capability of each of these operator orderings in the

DACO-VQA ansatz was calculated for up to 10 qubits, with 10000 parameters samples

averaged over for each qubit value. The results of these numerical simulations are

plotted in Fig. 3.1.

Figure 3.1: A comparison of the entangling capability of the EDC and CDE orderings.
CDE corresponds to the blue line, EDC corresponds to the red line. The results are
plotted from 2 to 10 qubits, with 10000 parameter samples taken per qubit. The
dashed lines are the lines of fit for the data points starting at q = 3.

The y-intercepts for the lines of fit occur at 0.8752 for the EDC ordering, and 0.8742

33

for the CDE ordering, indicating that EDC always maintains the higher entangling

capability up to q → ∞. If there is a concrete connection between entangling ca-

pability and the oversampling rate of the Hilbert space, this indicates that the EDC

ordering maintains the advantage over CDE for all possible numbers of qubits.

3.3 Algorithm Performance

In this section, we characterize the performance of the algorithm for various problem-

Hamiltonians. The specific energy spectra used were the hydrogen atom En = −1/n2,

Gaussian-distributed energies with µ = 1 and σ = 2, and En = n2. En = −1/n2 rep-

resents an extreme case where the ground state energy is significantly separated from

clustered high energy states. En = n2 represents another extreme case where the high

energy states become increasingly distant from one another with increasing n. The

Gaussian case represents a middle ground, with the low and high energy states all

relatively close to one another, and where there is not a significant gap between the

minimum energy and the first excited state.

In order to characterize the performance of the algorithm, we track the ratio of

total measurements to the size of the Hilbert space, with the ratio denoted by κ. If

κ > 1, the Hilbert space was oversampled, meaning more measurements were taken

than there are states in the Hilbert space. For quantum advantage to occur in the

context of a VQA, the number of total measurements must be less than the size of

the Hilbert space, indicating an oversampling ratio κ < 1. Note that we must have

κ > 0, otherwise the number of measurements could be negative which is impossible.

The following results show the log of the average oversampling ratio sampled 100

times per qubit (log10 ⟨κ⟩), plotted against the number of qubits for each of the

Hamiltonians listed above. For these simulations, the number of measurements taken

per round per θ angle is 32, indicating a total of 32 × 32 = 1024 measurements per

round. Because of this, for less than 10 qubits, the Hilbert space will necessarily be

oversampled. For this reason, lines of fit are plotted only for the points where q > 10,

34

(a) (b)

Figure 3.2: (a) Log of the average oversampling ratio for 100 samples for En = n2.
Blue dots indicate the oversampling data points, the dashed red line indicates the
line of fit for the data at q > 10, and the black line indicates the crossover point for
quantum advantage. (b) Standard deviation of κ over all sampled values.

so that the actual quantum effects are dominating the optimization, rather than the

sheer number of measurements. The energy spectrum En = n2 is plotted in Fig. 3.2,

the Gaussian-distributed energies in Fig. 3.3, and the En = −1/n2 spectrum in Fig.

3.4.

The first important observation is that there is not much difference in the over-

sampling rate for the different Hamiltonians. In particular, the En = n2 and the

Gaussian-distributed energy spectra share the most similarities. For these two spec-

tra, the average oversampling is almost identical, whereas for the En = −1/n2 spec-

tra, the oversampling rate is slightly higher. For example, at 13 qubits, the average

oversampling for En = n2 and the Gaussian distributed energies are ⟨κ⟩ = 10.042

and ⟨κ⟩ = 10.032 respectively, while the average oversampling for En = −1/n2 is

⟨κ⟩ = 14.20. In addition, the standard deviations of κ for En = −1/n2 vary more

across different qubits than for the other two spectra (in this case the standard devi-

ation is much less smooth), as illustrated in the figures. In all cases, however, both

the oversampling rate and standard deviations drop rapidly as the number of qubits

increases. This decrease in oversampling is promising, and the red dashed lines in the

35

(a) (b)

Figure 3.3: (a) Log of the average oversampling ratio for 100 samples for the Gaussian-
distributed energy spectrum with µ = 1, σ = 2. Blue dots indicate the oversampling
data points, the dashed red line indicates the line of fit for the data at q > 10, and
the black line indicates the crossover point for quantum advantage. (b) Standard
deviation of κ over all sampled values.

(a) (b)

Figure 3.4: (a) Log of the average oversampling ratio for 100 samples for En = −1/n2.
Blue dots indicate the oversampling data points, the dashed red line indicates the
line of fit for the data at q > 10, and the black line indicates the crossover point for
quantum advantage. (b) Standard deviation of κ over all sampled values.

36

plots indicate the projection of the oversampling rate to q → ∞, with the crossover

between the red and black lines indicating where the Hilbert space would be under-

sampled. In all three cases, this crossover points occurs around q = 33. At face-value,

this would indicate that for this algorithm, quantum advantage would be obtained

beyond 33 qubits. However, simulating systems with 33 qubits is beyond the bounds

of our current computational resources, so this regime cannot currently be probed

unless the efficiency of the algorithm is drastically increased. In addition, it is not

clear that for larger qubits the same trend will be followed. It is entirely possible that

as the number of qubits increases, other mechanisms will begin to take effect that

disrupt this trend, thus still requiring oversampling of the Hilbert space to reach the

ground state. Despite this, the sampling rate for this algorithm is promisingly low,

and so it is worth dedicating future work to attempting to explore this high-qubit

regime.

We also explored the oversampling ratio for different Hamiltonians as the number

of replicas (section 2.2.1) was varied. As outlined above, the initial motivation for

including replicas of the Hamiltonian was to improve the sampling rate by “paral-

lelizing” the Hamiltonian. It was hoped that increasing the number of replicas of the

Hamiltonian in the VQA ansatz would lead to better algorithm performance. How-

ever, the replicas turned out to have no effect on the performance. This is illustrated

in Fig. 3.5 by plotting the oversampling rate vs r, where R = 2r is the number of

replicas, for between 5 and 8 qubits. While there are slight fluctuations in the over-

sampling rate for different numbers of replicas, they are effectively identical for the

same number of qubits, thus including replicas does not influence performance of the

algorithm.

37

Figure 3.5: Log of the average oversampling ratio (over 100 samples) for the En =
−1/n2 spectrum with q ranging from 5 to 8, and r up to n = q + r = 13. The blue
dots are q = 5, red are q = 6, green are q = 7, and cyan are q = 8.

Finally, we present the entanglement of the ansätze as they are generated through-

out the VQA process. These results show the entanglement of the ansatz generated in

each round of the DACO-VQA at each of the 32 θ values for the three Hamiltonians

described above. These plots demonstrate how at the beginning of the DACO-VQA

process, while the parameter space is being freely explored, highly entangled states

are generated. As the process continues, the entanglement is slowly reduced to 0 as

the classical optimizer and cost function drive toward the ground state of the system

(a product state with no entanglement). It should be noted that for the En = n2 and

Gaussian-distributed energy spectra, there is significantly more variation of the entan-

glement throughout the VQA process when compared to En = −1/n2. Considering

38

Figure 3.6: Entanglement of the ansätze generated by the quantum computer for
each round of the algorithm at each θ value. In this case, the energy spectrum was
En = n2. Each line in the plot represents one of the 32 θ values.

the oversampling rates for the energy spectra, this further indicates that entangle-

ment plays a role in algorithm performance, as here more variation in entanglement

corresponds to better algorithm performance. Despite this correlation, differences in

performance are slight, and a more thorough study must be conducted to make any

definitive statements on the relation between oversampling and ansatz entanglement.

39

Figure 3.7: Entanglement of the ansätze generated by the quantum computer for
each round of the algorithm at each θ value. In this case, the energy spectrum was
Gaussian-distributed energies. Each line in the plot represents one of the 32 θ values.

40

Figure 3.8: Entanglement of the ansätze generated by the quantum computer for
each round of the algorithm at each θ value. In this case, the energy spectrum was
En = −1/n2. Each line in the plot represents one of the 32 θ values.

CHAPTER 4: CONCLUSIONS

The overall objective of this work was to implement the Divide and Conquer Op-

erators in a VQA which leverages their unique halving property, as well as making

use of their sparsity and their being involutory. To do so, issues relating to the com-

pleteness of the operator pool had to be understood and addressed. To this end, we

established the incompleteness of the DACO pool, while developing two supplemen-

tary sets of operators to “complete” the pool. The structure of these new associated

operators led to multiple new frameworks for the VQA ansatz to be implemented in

the DACO-VQA. The performance of each of these ansätze were compared, and a

final ansatz was selected which specifically leverages the halving property of the DA-

COs. In addition, the final DACO-VQA ansatz can be combined with other operator

ansätze, provided confinement is satisfied.

Next, the entangling capability of different ansätze was considered, and a corre-

spondence was found with higher entangling capability and lower sampling of the

Hilbert space. This connection was also supported by tracking the entanglement of

the states generated by the quantum computer over the rounds of the VQA. Despite

this, no direct relation between entangling capability and Hilbert space sampling has

been identified, so future work will be dedicated to exploring this connection more

deeply.

Finally, the performance of the algorithm was characterized for different Hamilto-

nians. The DACO-VQA appears to be rather robust to different Hamiltonians, but

seems to favor spectra which have clustered low energy states, rather than spectra

with a large gap separating the ground state and first excited state. These differences,

however, are minimal, and the algorithm proved successful across the board. Despite

42

the success of the algorithm in identifying ground states of various Hamiltonian sys-

tems, the algorithm still oversamples the Hilbert space. This is less of a problem

than it seems, as no known VQA is able to undersample the Hilbert space while

consistently identifying the ground state of the system (and many algorithms employ

theoretical averaging, skirting the measurement problem altogether). Our results also

indicate that there may be a regime in which the algorithm undersamples the Hilbert

space, but reaching this regime is computational difficult, and it is not clear whether

the observed trend of decreasing sampling will continue through to larger numbers of

qubits. We also observed that with the current implementation of replicas, there is

no effect on the performance of the algorithm.

With all of these findings in mind, there is a large body of future work which can

be conducted. First, the connection between entangling capability of ansätze and

performance of the VQA can be explored to identify whether or not the seeming

correlation is coincidence. The role of entanglement is obviously important, but

exactly how it influences the success of VQAs is a mystery. Shedding light into this

will prove valuable not only to the DACO-VQA, but to the broader field of VQAs as

well.

Beyond this, the concept of replicas is still worth pursuing, despite their lack of

success in this implementation. The possibility of parallelizing quantum computa-

tions with limited increases in the number of qubits required is incredibly promising,

provided replicas can be introduced with interactions. In line with this, future work

will be dedicated to identifying different ways to generate replicas in the quantum

computer.

Another possibility for improving algorithmic performance is Trotterization. Trot-

terization of a VQA ansatz essentially generates multiple new parameter values to op-

timize over, allowing more freedom to explore the Hilbert space to locate the ground

state. Previous work has shown that Trotterizing the original QAOA ansatz led to an

43

improvement in the performance of the algorithm, so Trotterizing the DACO-VQA

ansatz is worth pursuing.

Lastly, given the ability of the DACO-VQA ansatz to integrate with other an-

sätze (provided confinement is satisfied), it could be highly beneficial to implement

other successful VQA ansätze by integrating them with the DACO-VQA ansatz.

Given the low Hilbert space sampling observed with the “canonical” ansatz order-

ing implemented in this work, it is possible that other ansatz structures will lead to

undersampling of the Hilbert space.

44

REFERENCES

[1] F. Arute, K. Arya, R. Babbush, D. Bacon, J. Bardin, R. Barends, R. Biswas,
S. Boixo, F. Brandao, D. Buell, B. Burkett, Y. Chen, J. Chen, B. Chiaro,
R. Collins, W. Courtney, A. Dunsworth, E. Farhi, B. Foxen, A. Fowler, C. M.
Gidney, M. Giustina, R. Graff, K. Guerin, S. Habegger, M. Harrigan, M. Hart-
mann, A. Ho, M. R. Hoffmann, T. Huang, T. Humble, S. Isakov, E. Jeffrey,
Z. Jiang, D. Kafri, K. Kechedzhi, J. Kelly, P. Klimov, S. Knysh, A. Korotkov,
F. Kostritsa, D. Landhuis, M. Lindmark, E. Lucero, D. Lyakh, S. MandrÃ ,
J. R. McClean, M. McEwen, A. Megrant, X. Mi, K. Michielsen, M. Mohseni,
J. Mutus, O. Naaman, M. Neeley, C. Neill, M. Y. Niu, E. Ostby, A. Petukhov,
J. Platt, C. Quintana, E. G. Rieffel, P. Roushan, N. Rubin, D. Sank, K. J.
Satzinger, V. Smelyanskiy, K. J. Sung, M. Trevithick, A. Vainsencher, B. Vil-
lalonga, T. White, Z. J. Yao, P. Yeh, A. Zalcman, H. Neven, and J. Martinis,
“Quantum supremacy using a programmable superconducting processor,” Na-
ture, vol. 574, p. 505â510, 2019.

[2] K. Bharti, A. Cervera-Lierta, T. H. Kyaw, T. Haug, S. Alperin-Lea, A. Anand,
M. Degroote, H. Heimonen, J. S. Kottmann, T. Menke, et al., “Noisy
intermediate-scale quantum algorithms,” Reviews of Modern Physics, vol. 94,
no. 1, p. 015004, 2022.

[3] J. Preskill, “Quantum Computing in the NISQ era and beyond,” Quantum, vol. 2,
p. 79, 2018.

[4] A. J., A. Adedoyin, J. Ambrosiano, P. Anisimov, A. BÃ€rtschi, W. Casper,
G. Chennupati, C. Coffrin, H. Djidjev, D. Gunter, S. Karra, N. Lemons,
S. Lin, A. Malyzhenkov, D. Mascarenas, S. Mniszewski, B. Nadiga, D. O’Malley,
D. Oyen, S. Pakin, L. Prasad, R. Roberts, P. Romero, N. Santhi, N. Sinitsyn,
P. J. Swart, J. G. Wendelberger, B. Yoon, R. Zamora, W. Zhu, S. Eidenbenz,
P. J. Coles, M. Vuffray, and A. Y. Lokhov, “Quantum algorithm implementations
for beginners,” 2018.

[5] M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo, K. Fujii, J. R.
McClean, K. Mitarai, X. Yuan, L. Cincio, et al., “Variational quantum algo-
rithms,” Nature Reviews Physics, vol. 3, no. 9, pp. 625–644, 2021.

[6] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Informa-
tion. Cambridge: Cambridge University Press, 2000.

[7] A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J. M. Chow, and
J. M. Gambetta, “Hardware-efficient variational quantum eigensolver for small
molecules and quantum magnets,” Nature, vol. 549, no. 7671, pp. 242–246, 2017.

[8] A. G. Taube and R. J. Bartlett, “New perspectives on unitary coupled-cluster
theory,” International journal of quantum chemistry, vol. 106, no. 15, pp. 3393–
3401, 2006.

45

[9] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love,
A. Aspuru-Guzik, and J. L. Oâbrien, “A variational eigenvalue solver on a pho-
tonic quantum processor,” Nature communications, vol. 5, no. 1, pp. 1–7, 2014.

[10] E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate optimization
algorithm,” arXiv preprint arXiv:1411.4028, 2014.

[11] S. Hadfield, Z. Wang, B. Oâgorman, E. G. Rieffel, D. Venturelli, and R. Biswas,
“From the quantum approximate optimization algorithm to a quantum alternat-
ing operator ansatz,” Algorithms, vol. 12, no. 2, p. 34, 2019.

[12] C. Zalka, “Simulating quantum systems on a quantum computer,” Proceedings:
Mathematical, Physical and Engineering Sciences, vol. 454, no. 1969, pp. 313–
322, 1998.

[13] D. H. Wolpert and W. G. Macready, “No free lunch theorems for optimization,”
IEEE transactions on evolutionary computation, vol. 1, no. 1, pp. 67–82, 1997.

[14] D. H. Wolpert, W. G. Macready, et al., “No free lunch theorems for search,” tech.
rep., Technical Report SFI-TR-95-02-010, Santa Fe Institute, 1995.

[15] M. J. Powell, “A direct search optimization method that models the objective
and constraint functions by linear interpolation,” in Advances in optimization
and numerical analysis, pp. 51–67, Springer, 1994.

[16] J. A. Nelder and R. Mead, “A simplex method for function minimization,” The
computer journal, vol. 7, no. 4, pp. 308–313, 1965.

[17] M. J. Powell, “An efficient method for finding the minimum of a function of
several variables without calculating derivatives,” The computer journal, vol. 7,
no. 2, pp. 155–162, 1964.

[18] J. C. Spall et al., “Multivariate stochastic approximation using a simultaneous
perturbation gradient approximation,” IEEE transactions on automatic control,
vol. 37, no. 3, pp. 332–341, 1992.

[19] R. Fletcher, “A new approach to variable metric algorithms,” The computer jour-
nal, vol. 13, no. 3, pp. 317–322, 1970.

[20] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu, “A limited memory algorithm for
bound constrained optimization,” SIAM Journal on scientific computing, vol. 16,
no. 5, pp. 1190–1208, 1995.

[21] M. R. Hestenes and E. Stiefel, “Methods of conjugate gradients for solving,”
Journal of research of the National Bureau of Standards, vol. 49, no. 6, p. 409,
1952.

[22] P. T. Boggs and J. W. Tolle, “Sequential quadratic programming,” Acta numer-
ica, vol. 4, pp. 1–51, 1995.

46

[23] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[24] A. Pellow-Jarman, I. Sinayskiy, A. Pillay, and F. Petruccione, “A comparison of
various classical optimizers for a variational quantum linear solver,” Quantum
Information Processing, vol. 20, no. 6, pp. 1–14, 2021.

[25] H. R. Grimsley, S. E. Economou, E. Barnes, and N. J. Mayhall, “An adaptive
variational algorithm for exact molecular simulations on a quantum computer,”
Nature communications, vol. 10, no. 1, pp. 1–9, 2019.

[26] H. L. Tang, V. Shkolnikov, G. S. Barron, H. R. Grimsley, N. J. Mayhall,
E. Barnes, and S. E. Economou, “qubit-adapt-vqe: An adaptive algorithm for
constructing hardware-efficient ansätze on a quantum processor,” PRX Quan-
tum, vol. 2, no. 2, p. 020310, 2021.

[27] P. R. Halmos, Finite-dimensional vector spaces. Courier Dover Publications,
2017.

[28] S. Sim, P. D. Johnson, and A. Aspuru-Guzik, “Expressibility and entangling
capability of parameterized quantum circuits for hybrid quantum-classical algo-
rithms,” Advanced Quantum Technologies, vol. 2, no. 12, p. 1900070, 2019.

[29] D. A. Meyer and N. R. Wallach, “Global entanglement in multiparticle systems,”
Journal of Mathematical Physics, vol. 43, no. 9, pp. 4273–4278, 2002.

[30] G. K. Brennen, “An observable measure of entanglement for pure states of multi-
qubit systems,” arXiv preprint quant-ph/0305094, 2003.

