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ABSTRACT

KATERINA IVANOV. Three essays on capital insurance and too Big to fail banks.
(Under the direction of DR. WEIDONG TIAN)

This research study presents an insurance framework of the bank capital by intro-

ducing a new type of capital, namely, an insurance capital. A bank pays the insurance

capital to an entity which injects a pre-determined payout of capital during the period

of systemic crisis. The pre-determined payout relies on the aggregative loss of a bank

sector, so this contract between the bank and the entity is a capital insurance con-

tract. In a rational equilibrium setting, the entity charges an appropriate premium

while the banks purchase an optimal amount of the insurance.

Chapter I presents a welfare analysis of several capital insurance programs in a ra-

tional expectation equilibrium setting. We first characterize explicitly the equilibrium

of each capital insurance program. Then, we demonstrate that a capital insurance

program based on the aggregate loss is better than the classical insurance when those

big financial institutions have similar expected loss exposures. By contrast, the clas-

sical insurance is more desirable when the bank’s individual risk is consistent with the

expected loss in a precise way. Our analysis shows that the capital insurance program

is a useful tool to hedge the systemic risk from the regulatory perspective.

As an extension, Chapter II demonstrates that, both the entity and the banks have

motivations to participate in this capital insurance program due to their increased

expected utilities (welfare) respectively. The total systemic risk ex post within the

capital insurance program is reduced and can be even removed eventually after re-
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peatedly entering the capital insurance program.

In Chapter III, we develop a rational expectation equilibrium of capital insurance to

identify too big to fail banks. We show that (1) too big to fail banks can be identified

by loss betas, a new systemic risk measure through this equilibrium analysis, of all

banks in the entire financial sector by an explicit algorithm; (2) the too big to fail

feature can be largely justified by a high level of loss beta; (3) the capital insurance

proposal benefits market participants and reduces the systemic risk; (4) the implicit

guarantee subsidy can be estimated within this equilibrium framework; and (5) the

capital insurance proposal can be used to resolve the moral hazard issue. The model

is further tested empirically to identify too big to fail banks during both pre-crisis and

pro-crisis periods. Implementing the proposed methodology, we document that the

too big to fail issue has been considerably reduced in the pro-crisis period. As a result,

we demonstrate that the capital insurance proposal could be a useful macro-regulation

innovation policy tool.
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CHAPTER 1: A WELFARE ANALYSIS OF CAPITAL INSURANCE

1.1 Introduction

This paper presents a welfare analysis of recently proposed capital insurance pro-

grams in a rational expectation equilibrium setting. The idea of the capital insurance

is motivated to resolve the “too big to fail” issues. As those “too big to fail” banks

or companies which are “financial in nature” (thereafter, banks) 1 expect the capital

injection from the central bank in time of financial distress, the banks might enact

in a risk-taking manner and put the central bank, regulator and all taxpayers in a

fragile financial position. In the capital insurance program (see Kashyap, Rajan and

Stein (2009)), the bank pays some amount as a premium or reserve to central bank

which, in turn, would inject funds to the banks in future financial failure. The capital

insurance program is motivated to protect taxpayers and economy as a whole at the

presence of big financial predicament. Our purpose is to study whether this capital

insurance idea works or not from its welfare perspective.

Capital insurance is very different from current capital regulation implemented

in BASEL II and BASEL III. It is also different from the Dodd-Frank Act which

posts several prudential standards and new stringent capital requirements to banks

1Under the standards set forth in section 113 of the Dodd-Frank Act,a bank holding company
or “nonbank financial company” poses a potential systemic risk if “material financial distress at the
company, or the nature, scope, size, scale, concentration, interconnectedness, or mix of the activities
of the company, could pose a threat to the financial stability of the United States.” Therefore, we
focus only on these companies with systemic risks (too big to fail).
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with systemic risks. According to the capital regulation requirement, the amount of

capital reserve or economical capital amount depends on the risk of loss portfolio and

the riskiness of the bank itself. The risker the bank, the higher the economical capital;

the economical capital is higher for a bank with weak credit situation than for the

strong counterpart while assuming the portfolio is identically the same. Therefore, the

economical capital idea depends on both the individual bank’s riskiness and individual

loss portfolio.

By contrast, the capital insurance, in essence, is an insurance contract, and the

capital insurance idea casts all banks together from the market level. On the one

side, the central bank is an insurer of the contract and receives an insurance premium

with the obligation to inject funds to save the bank in financial distress. On the

other side, the bank is an insured in this contract agreement. As the central bank

represents the taxpayer in this structure, the insurer of the contract is a taxpayer, and

the premium represents a special purpose tax in the sense described by Acharya et al

(2010). In contrast to the traditional insurance contract, the contract redemption is

contingent on the aggregate loss, and the insured event is contingent on the systematic

event in the economy.

The rational expected equilibrium of the capital insurance program is explained

as follows. The central bank issues insurance contracts to the banks, and the banks

purchase these contracts that are placed on the market. The central bank predicts

the correct optimal demand from the banks with a given premium structure, so the

central bank maximizes the welfare with the premium structure as characterized.

Consequently, both the demand (from the banks) and the supply (from the central
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bank) are determined uniquely in a rational expectation equilibrium.

In this paper, we assume the insurance contract payout has been placed on as pro-

posed by the capital insurance program. Therefore, we do not address the optimal

capital insurance design problem. Instead, we consider two capital insurance pro-

grams. In the first one, the insurance contract insures the aggregate loss of all banks.

In the second one, each bank buys insurance that depends on the aggregate loss of

all banks except for the insured bank’s own loss portfolio. For comparison purpose,

we further consider the situation when each bank purchases the insurance that relies

on its own loss portfolio. This is a “classical insurance” by terminology in this pa-

per, and it has the same indemnity as the traditional coinsurance contract. As the

premium structure depends on all loss portfolios of the banks, those loss portfolios

together affect each bank’s coinsurance demand. Therefore, the classical insurance in

our setting is different from the traditional coinsurance contract in equilibrium.

We demonstrate that many factors affect the welfare analysis and the chosen capital

insurance program. First, the proposed two capital insurance programs are distin-

guished from each other by the correlation structure. A low correlation environment

ensures a low welfare of the contract based on the aggregate loss except for individual

bank’s loss. Therefore, the aggregate insurance is better than the other one. In fact,

when each loss portfolio can be observed completely by all banks and the central bank,

and the bank does not manipulate the book loss, the aggregate insurance ensures a

higher welfare than another one in general.

Second, both the specific risk and the systematic risk components of the individual

loss are important ingredients to compare the classical insurance and the aggregate
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insurance contracts. These two components play a crucial role in the classical de-

mand analysis of the coinsurance contract (for a mean-variance insured), see Gollier

(2011). We demonstrate that the way how each bank’s specific risk and systematic

risk components behave together in the market has significant effect on the compar-

ison analysis. When a higher individual risk corresponds to a higher expected loss

per each volatility unit, we say that the market displays an ordering loss market.

Otherwise, the market is a disordering loss market.2 We show that the classical in-

surance works better in the ordering loss market, while the aggregate insurance is

more beneficial to the central bank in the disordering loss market. Hence, our result

is significantly disparate from the optimal sharing rules in a pure exchange market.3

The optimal insuring rule, in our equilibrium, relies on the aggregate loss portfolio in

a more complicated way. Literally, the way how the loss portfolios are connected to

each other implies different welfare outcome of the insurance program.

Third, the way how the systematic risk is distributed among each bank is also

captious for a comparative welfare analysis of the insurance contracts. If each bank

contributes equally or very close to each other in the total systematic risk, we show

that the aggregate insurance ensures a higher welfare. Therefore, it is a more desirable

insurance program than the classical insurance one. Wagner (2010) shows that the

diversification might enhance the systemic risk while it reduces each institution’s

individual probability of failure, so a full diversification is not always beneficial from

2Precisely, when a risk-adjusted covariance of loss portfolio is co-monotonic to the Sharpe ratio of
the loss portfolio, we say it is an ordering loss market. If these both sequences are counter-monotonic
to each other, we say the market is a disordering loss market. See Propositions 4,6 and 7 below.

3By Borch (1962), the optimal sharing rules must be increasing with respect to the aggregate
endowment. Our setting is different from Borch’s equilibrium setting in the presence of the central
bank.
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the systemic perspective. According to our result, the aggregate insurance offers a

solution in a full diversification situation to reduce the systemic risk.

The remainder of the chapter is organized as follows. Section 1.2 introduces the

setting and characterizes the equilibrium. Section 1.3 presents the comparison of

three types of capital insurance programs by the welfare analysis developed in the

equilibrium. Section 1.4 offers discussion and implications of our theoretical results.

Moreover, we explain how to implement the capital insurance program in practice and

how to identify the “too big to fail” banks from the regulatory perspective. Section

1.5 briefly describes conclusions of the conducted analysis, and all proofs are stated

in the Appendix A. Appendix B presents the equilibrium in a general situation and

identifies these “too big to fail” banks by using this capital insurance program.

1.2 The Model

There are N big banks indexed by i = 1, · · · , N in one-period economic world. Each

bank is endowed with a loss portfolio X1, · · · , XN , respectively. These loss portfolios

are defined on the same state space Ω, and all banks have the same beliefs on the

nature of state. This common belief is represented by one probability measure P on

the state space. However, these bank’s loss portfolios can be significantly different.

We assume that each bank is risk-averse, and the preference of risk is interpreted

by a utility function Ui(·). The bank’s initial wealth is given by W i
0 for each bank

i = 1, · · · , N, respectively.

There is a government entity such as Financial Stability Oversight Council (FSOC)

in Dodd-Frank Act or a central bank, which sells the insurance contract to each bank.
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Each bank is either voluntarily or enforced to purchase the insurance contract by

paying particular amount as a premium, and a fund commitment is guaranteed by

central bank in a bad business situation in the future. The premium amount can be

treated as a special tax purpose rate for each bank as suggested by Acharya et al

(2010). The fund commitment offered by the government entity is the indemnity of

the insurance. Alternatively, these insurance contracts can be issued by a reinsurance

company which is able to diversify the reinsurance risk. For simplicity, we name the

insurer as a regulator.

The prototype insurance structure has the indemnity Ii(X,Xi) that depends on the

individual book loss Xi and the aggregate loss X. The aggregate loss X =
∑N

i=1Xi.

This insurance contract is called a “capital insurance” as it depends on the aggregate

loss being realized in the future. The capital insurance contract is different from

the classical contracts in which Ii(X,Xi) is irrelevant to the aggregate loss X and,

instead, depends on the individual loss Xi. Following the classical insurance literature

(Arrow (1963) and Raviv (1979)), we assume that insurance premium is determined

by (1 + ρ)E[I(X,Xi)], where ρ is a load factor. For simplicity, we assume that the

loss factor is the same across the bank industry, but it is possible to consider a bank-

specific premium structure in the extended analysis. The loss factor is characterized

by the regulator in equilibrium that will be explained shortly.

Given a load factor ρ, each bank chooses the best available insurance contract to

maximize the expected utility (see Arrow (1963)):

E[Ui(W
i)] = E

[
Ui
(
W i

0 −Xi + Ii(X,Xi)− (1 + ρ)E[Ii(X,Xi)]
)]
. (1.1)
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The regulator is risk-neutral and receives the premium for each contract. The

welfare of the regulator is

W r =
∑
i

(1 + ρ)E [Ii(X,Xi)]−
∑
i

Ii(X,Xi)−
∑
i

c (Ii(X,Xi)) , (1.2)

where c (Ii(X,Xi)) represents the cost for the regulator to issue the contract Ii(X,Xi).

The cost can be fixed, a constant percentage of the indemnity, or can depend on a

drastic market event. To focus on the analysis of insurance program, we assume

that the cost structure is a constant for each bank. The regulator’s objective is to

determine the best premium structure given the optimal demand for each bank (with

any a given load structure ρ) as well as to maximize the expected welfare. Clearly,

the insurance I∗i (X,Xi) in equilibrium depends on both the demand (from all banks)

and the supply (from the regulator) and relies on the load factor ρ∗ proposed by the

regulator. We don’t distinguish between the welfare and the expected welfare when

there is no confusion in the rest of this paper.

In this paper, we focus on the following three capital insurance programs:

� Aggregate Insurance: Ii(X,Xi) = αiX, where αi ≥ 0.

� Classical Insurance: Ii(X,Xi) = αiXi, where αi ≥ 0.

� Aggregate-Cross Insurance: Ii(X,Xi) = αiX̂i, where X̂i =
∑

j 6=iXj is the total

loss except for the insured bank’s loss, and αi ≥ 0.

In each case, bank i chooses the best coinsurance parameter ai. The optimal a is

written as a(ρ) to highlight its dependence on the load factor. The first insurance

contract depends solely on the aggregate loss X, so it is called “aggregate insurance”.
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The coinsurance parameter αi represents the percentage of the aggregate loss that

is insured for the bank i. Clearly, this coinsurance parameter depends on how much

the individual bank’s loss risk contributes to the aggregate loss, as will be seen later.

The second insurance contract is a standard one, initiated by Arrow (1963) and

is termed as “classical insurance”. However, the premium structure in traditional

insurance contract is either given exogenously or depends on the specific loss portfolio

in equilibrium. Therefore, our classical insurance is different from those traditional

insurance contracts in a rational expectation equilibrium. The last insurance contract

is motivated differently. Because of the possibility of the bank’s manipulation of the

loss report on Xi, as discussed in Chiappori and SalaniÃl’ (2000) in a similar context,

there is a moral hazard issue in case Ii(X,Xi) is related to Xi. To resolve it, Kashyap

et al (2008) introduces the aggregate-cross insurance idea in which the bank insures

the total risks of all banks except for the bank’s itself risk. The aggregate-cross

insurance contract is inspired by the idea outlined in Kashyap et al (2008).

In what follows, we impose two assumptions to simplify the discussions.

Assumption I. Each bank is a mean-variance agent with the reciprocal of risk aver-

sion parameter γi > 0. We also assume zero (or constant) cost structure for each

contract. 4

Assumption II. There exists no asymmetric information between each bank and

the regulator. The loss portfolio Xi is equivalently identified by the bank and the

regulator, and both the bank and the regulator make decision based on the same

4We follow the same mean-variance setting as in Mace (1991), in which the aggregate uncertainty
insurance is considered, as we focus on the aggregate or systematic risk.
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interpretation of the loss portfolio.

We now move to present our equilibrium analysis on each capital insurance pro-

gram. We also examine how these loss portfolios affect each insurance contract as

well as the welfare. Moreover, we examine which insurance contract is desirable from

the perspectives of the regulator and the bank.

1.2.1 Aggregate Insurance

We characterize the equilibrium precisely for the aggregate insurance. We start

with the bank i’s rational decision by assuming that the insurance contract has been

placed on the market.

Optimal load factor for bank i can be characterized as follows. Bank i’s objective

is to find suitable coinsurance parameter αi to maximize

max
αi≥0

E[W i]− 1

2γi
V ar(W i), (1.3)

where W i = W i
0 − Xi + aiX − (1 + ρ)E[aiX] is the terminal wealth for the bank i.

Given the load factor ρ, the optimal ai for the bank i is5

ai,a(ρ) =
Cov(Xi, X)− ρE(X)γi

V ar(X)
, (1.4)

if Cov(Xi, X) − ρE(X)γi ≥ 0; otherwise, ai,a(ρ) = 0. The symbol “a” represents the

“aggregate insurance”. We use ai,a(ρ) to highlight the effect of the load factor ρ for

the bank i. Optimal load factor for regulator can be characterized as follows. The

regulator predicates the demand from the bank i as ai,a(ρ)X correctly for each bank

5It is easy to see that V ar(W i) = V ar(Xi) + a2iV ar(X)− 2aiCov(Xi, X). Then, ai,a(ρ) follows
from the first-order condition in (3.1).
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i = 1, · · · , N . Therefore, by plugging equation (1.4) into equation (1.5) and assuming

that Cov(Xi, X) ≥ ρE(X)γi, the equilibrium welfare is

E(W r) = ρE(X)− ρ2
∑
i

γiE(X)2

V ar(X)
. (1.5)

By using the formula (1.5) and its first-order condition, the best load factor is deter-

mined by the regulator as

ρ∗,a =
1

2
∑

i γi

V ar(X)

E(X)
. (1.6)

Consequently, under this premium structure, we obtain the following characterization

of the equilibrium.

Proposition 1.1 Assume for each i = 1, · · · , N ,

Cov(Xi, X)

V ar(X)
≥ 1

2

γi∑
i γi

. (1.7)

Then the optimal load factor ρ∗,a is given by (1.6), the welfare for the aggregate

insurance is

E(W ∗,a) =
1

4
∑

i γi
V ar(X), (1.8)

and the best coinsurance parameter for the bank i in this aggregate insurance contract

is

ai,a =
Cov(Xi, X)

V ar(X)
− 1

2

γi∑
i γi

. (1.9)

Proof: Under condition (1.7) and the choice of ρ∗,a by equation (1.6), we observe

that Cov(Xi, X) ≥ ργiE[X]. Therefore, ai,a(ρ) is given by equation (1.4), and the

equilibrium welfare is obtained in (1.5). Then, the equilibrium follows from the non-

standard first-order condition. A general solution is presented in Appendix C. �
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There are several remarkable points about the aggregate insurance by using Propo-

sition 1.1. First, the welfare estimated by the regulator depends on the variability

of the aggregate loss, the systematic risk. The higher the variability, the higher the

expected welfare. The smaller the variability, or alternatively, the more stable the

aggregate loss is, the smaller the welfare. More interestingly, the welfare does not

depend on the expected aggregate loss E[X]. Therefore, only the aggregative risk

variability contributes to the welfare. Hence, Proposition 2.1 supports the aggregate

insurance idea to reduce the systemic risk.

Second, the optimal coinsurance parameter ai,a for bank i is the difference between

the “beta”, Cov(Xi,X)
V ar(X)

6, and the individual risk aversion parameter γi comparing with

the total risk aversion among the banks
∑

i γi. The higher the beta, the larger ai,a; so

the bank i purchases insurance on a larger proportional on the systematic risk when we

replace the return by the loss variable in calculating returns. It is intuitively appealing

because higher beta implies larger contribution of the bank i to the systematic risk,

or the bank i has a higher systemic risk. To hedge the systemic risk, the bank needs

to insure a larger amount of the systematic risk. Moreover, the relationship between

the bank i’s risk aversion and the other bank’s risk preferences is also important for

the aggregate insurance. Higher γi∑
i γi

implies the less risk aversion of the bank i and,

thus, a smaller ai.

6It is the beta in the capital asset pricing model when the loss variable is replaced by the return
variable.
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Third, note that 7

∑
i

ai,a =
1

2
, (1.10)

the total aggregate insurance indemnity for regulator is
∑

i Ii(X,Xi) = 1
2
X. It states

that exactly half of the systematic risk is insured in this program. The number 1/2

comes from the mean-variance setting and does not have any specific meaning. But,

a crucial insight at this point is that the aggregate loss is not fully insured in this

equilibrium insurance market, which is similar to the classical result for the standard

coinsurance contract.

1.2.2 Classical Insurance

For comparative purpose, we next consider the classical insurance, Ii(X,Xi) =

aiXi. By the same idea, we characterize ai,c(ρ), ρ∗, and the welfare sequentially. The

equilibrium is summarized as follows.

Optimal load factor for bank i can be characterized as follows.

ai,c(ρ) = max

{
1− ρE(Xi)γi

V ar(Xi)
, 0

}
, (1.11)

where the symbol “c” represents the “classical insurance”. Optimal load factor for

regulator can be characterized as follows. Given the above optimal load factor ai,c(ρ),

and assuming
ρE(Xi)γi
V ar(Xi)

≤ 1, i = 1, · · · , N , the welfare is obtained as follows:

E(W r) = ρE(X)− ρ2
∑
i

γiE(Xi)
2

V ar(Xi)
. (1.12)

7Since X =
∑

iXi,
∑

i Cov(Xi, X) = V ar(X).
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Therefore, the optimal load factor from the regulator’s perspective is

ρ∗,c =
1

2

E(X)∑
i

γi(E(Xi))
2

V ar(Xi)

. (1.13)

We have the following result.

Proposition 1.2 Assume that for each i = 1, · · · , N ,

E(X)∑
i

γi(E(Xi))
2

V ar(Xi)

γiE(Xi)

V ar(Xi)
≤ 2. (1.14)

Then, the optimal load factor is determined in (1.13). The welfare of the classical

insurance is

E(W ∗,c) =
1

4

E(X)2∑
i

γiE(Xi)
2

V ar(Xi)

, (1.15)

and the best coinsurance parameter for the bank i in this classical insurance contract

is

ai,c = 1− 1

2

E(X)∑
i

γi(E(Xi))
2

V ar(Xi)

γiE(Xi)

V ar(Xi)
. (1.16)

Proof: Same as the proof of Proposition 1.1. �

According to Proposition 1.2, the welfare estimated by the regulator in the classical

insurance depends on both the expectation and the variance of individual loss as well

as the expectation of the aggregate loss, whereas the variability of the aggregate loss

doesn’t contribute to the estimated welfare directly. In fact, the correlation structure

of the loss portfolios (X1, · · · , Xn) is not involved in the insurance contract at all.

Therefore, the welfare depends only on the marginal distribution but not on the

joint distribution of loss portfolios. Obviously, this should be seen as a limitation of
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the classical insurance to address the systemic risk. We will compare the classical

insurance with the aggregate insurance in details in the next section.

It is interesting to look at the optimal coinsurance parameter αi for the bank i in

the classical insurance contract. While keeping the risks on other banks fixed, the

higher V ar(Xi), the higher αi. A larger insurance is required for a higher individual

risk. It is straightforward to verify that for large values of E[Xi], the optimal coinsur-

ance parameter is increasing with respect to the increase of E[Xi]. As the premium

structure depends on all loss portfolios {X1, · · · , Xn}, the risks of other banks affect

the classical insurance demand in this setting.8

1.2.3 Aggregate-Cross Insurance

At last, we consider the aggregate-cross insurance Ii(X,Xi) = αiX̂i. By definition,

it focuses on the insurance of all banks except the insured bank in the market. Optimal

load factor for bank i can be characterized as follows. It is easy to derive ai,ac(ρ) in

this situation as

ai,ac(ρ) = max

{
Cov(Xi, X̂i)− ρE(X̂i)γi

V ar(X̂i)
, 0

}
, (1.17)

where the symbol “ac” represents the “aggregate-cross insurance”.

Optimal load factor for regulator can be characterized as follows. By plugging

formula (1.17) into formula (1.5) and assuming that Cov(Xi, X̂i) ≥ ρE(X̂i)γi, we

have

8It is different from a traditional insurance contract on individual loss exposure. The load factor
for a traditional insurance contract is either given exogenously or depends on the specific loss vector in
equilibrium. The classical insurance in our setting, however, is characterized in a rational expectation
equilibrium with banks and a regulator.
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E(W r) = ρ
∑
i

E(X̂i)
Cov(Xi, X̂i)− ρE(X̂i)γi

V ar(X̂i)
, (1.18)

and

ρ∗,ac =
1

2

∑
i E(X̂i)

Cov(Xi, X̂i)

V ar(X̂i)∑
i

γiE(X̂i)
2

V ar(X̂i)

. (1.19)

Therefore, we obtain the following proposition which proof is similar to Proposition

1.1 and Proposition 1.2.

Proposition 1.3 Assume for each i = 1, · · · , N ,

∑
i E(X̂i)

Cov(Xi, X̂i)

V ar(X̂i)∑
i

γiE(X̂i)
2

V ar(X̂i)

E(X̂i)γi ≤ 2Cov(Xi, X̂i). (1.20)

Then, the welfare of the aggregate-cross insurance is

E(W ∗,ac) =
1

4

(∑
i E(X̂i)

Cov(Xi, X̂i)

V ar(X̂i)

)2

∑
i γi

E(X̂i)
2

V ar(X̂i)

, (1.21)

and the best coinsurance parameter for the bank i in this aggregate-cross insurance

contract is

ai,ac =
Cov(Xi, X̂i)

V ar(X̂i)
− 1

2

∑
i E(X̂i)

Cov(Xi, X̂i)

V ar(X̂i)∑
i

γiE(X̂i)
2

V ar(X̂i)

E(X̂i)γi

V ar(X̂i)
. (1.22)

By Proposition 1.3, the expected welfare in aggregate-cross insurance contract de-

pends positively on covariance between the individual bank’s lossXi and the aggregate

loss except for the insured bank’s loss, X̂i, for each bank i. The intuition is simple:
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higher correlation coefficient corr(Xi, X̂i) results in higher expected welfare from the

regulator’s prospective.

In contrast to the classical insurance, the aggregate-cross insurance depends on the

correlation structure of the loss portfolios. We see easily that when Xi and X̂i are

uncorrelated for each i, both the estimated welfare and the optimal coinsurance a for

bank i in this aggregate-cross insurance contract equal to zero. In particular, when all

banks’ loss portfolios are independent, there is no necessity to buy the aggregate-cross

insurance.

The next result illustrates the main insights of these three insurance contracts when

the loss risk factors are uncorrelated. We say one contract is preferred to another one

as long as the former has higher welfare than the later.

Proposition 1.4 Assume the loss portfolios are uncorrelated, i,e., Cov(Xi, Xj) =

0,∀i 6= j. Then, both the aggregate insurance and the classical insurance are preferred

to the aggregate-cross insurance. Moreover,

1. If the risk-adjusted variance vector
(
V ar(Xi)

γi

)
and the Sharpe ratio vector

(
E[Xi]√
V ar(Xi)

)
are co-monotonic,9 then the classical insurance is preferred to the aggregate in-

surance.

2. If the risk-adjusted variance vector
(
V ar(Xi)

γi

)
and the Sharpe ratio vector

(
E[Xi]√
V ar(Xi)

)
are counter-monotonic, and there exists one “too big to fail” bank in the sense

that E[X]2 is close to
∑

i E[Xi]
2, then the aggregate insurance is preferred to

9Given two vectors a = (a1, · · · , an), b = (b1, · · · , bn), a and b are counter-monotonic if (ai −
aj)(bi − bj) ≤ 0,∀i, j, and this inequality is strictly; a and b are co-monotonic if (ai − aj)(bi − bj) ≥
0,∀i, j, and one inequality is strictly.
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the classical insurance.

Proof: See Appendix A. �

There are several points in Proposition 1.4. First of all, the relationship between

the risk-adjusted variance and the Sharpe ratio across the banks plays a crucial role in

comparing the classical insurance and the aggregate insurance. As each Xi represents

the loss portfolio, we assume positive expected loss in our analysis. Its variance

V ar(Xi) represents the individual risk of the bank i. Similarly, we use the terminology

“Sharpe ratio” to represent the expected loss per each volatility unit. Both the risk-

adjusted variance V ar(Xi)
γi

and the Sharpe ratio represent two important factors to

characterize the loss risk for bank i.

Secondly, when these individual banks’ risk-adjusted variance has the same order as

the Sharpe ratio, i.e. a higher risk-adjusted variance is consistent with a higher Sharpe

ratio, we say that the risk-adjusted variance is co-monotonic to the Sharpe ratio. In

this case, the bank sector is in an ordering loss market because a higher expected loss

ensures a higher variance. Proposition 1.4 states that a classical insurance is a better

contract from the regulator’s perspective in the ordering loss market.

Thirdly, in the disordering loss market in which a higher risk-adjusted variance is

always linked to a smaller Sharpe ratio, at the presence of few banks with very large

expected loss, Proposition 1.4 ensures that aggregate insurance is more beneficial

insurance contract. To explain it, say bank 1 is big enough such that E[X1] >>

E[X2], · · · ,E[Xn]10. In this case, the bank 1’s expected loss is so big that the total

expected aggregate loss E[X] is close to E[X1], then E[X]2 is close enough to
∑

E[Xi]
2.

10We write x >> y to denote y/x→ 0.
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Therefore, the aggregate insurance issued to other banks with the small losses together

would benefit to the regulator.

We next move to the more interesting situation in which each loss contributes to

the systematic risk, so these loss portfolios are correlated.

1.3 Systematic Risk and Comparative Analysis

In this section, we examine closely which insurance contract should be preferred to

another one from the perspective of the regulator as well as the bank. For this purpose,

we assume the contribution of each bank to the market risk is given exogenously. It is

natural to examine the question in a one-factor model. A multi-factor model shares

the same insights as a one-factor model.

Suppose Xi = ηiY + εi, where εi is a white noise with zero mean and variance σ2
i .

Y represents a market (or systematic) risk factor, and each εi represents the specific

risk of bank i. The aggregate loss X =
∑

i ηiY +
∑

i εi = ηY + ε, where η =
∑n

i=1 ηi.

Write X̂i = η̂iY + ε̂i, where ε =
∑n

i=1 εi, η̂i =
∑n

j=1,j 6=i ηj, ε̂i =
∑n

j=1,j 6=i εj.

We first consider one special case for which specific risks equal to zero. By using

equations (1.8), (1.15), (1.21), we have the following result.

Proposition 1.5 If there is no specific risk in the market, then the welfare is equiv-

alent for all three types of insurance contracts. Precisely, if each σi = 0, then

E(W ∗,a) = E(W ∗,c) = E(W ∗,ac) =
V ar(Y )

4
∑

i γi
η2 > 0. (1.23)

In general, when the systematic risk factor is highly volatile, that is, V ar(Y ) is high,

then these three contracts offer the same welfare asymptotically. Precisely, when
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V ar(Y )→∞,11

E(W ∗,a) ∼ E(W ∗,c) ∼ E(W ∗,ac) ∼ V ar(Y )

4
∑

i γi
η2. (1.24)

Proof: See Appendix A. �

Proposition 1.5 states that if V ar(Y ) is extremely large relative to company’s spe-

cific risk, then from the regulator’s prospective the welfare of all three types of in-

surance contracts is almost identical and positively depends on both V ar(Y ) and the

aggregate contribution of all banks to the market risk,
∑

i ηi. Alternatively, when the

individual risks are immaterial comparing to the systematic risk, these three contracts

in essence provide the same welfare. Therefore, the capital insurance idea does not

work particularly well under some circumstances with extremely high systemic risk

factor or extremely small specific risks.

Proposition 1.6 If the risk-adjusted individual risk vector
(
V ar(Xi)

γi

)
is co-monotonic

to the Sharpe ratio vector

(
E[Xi]√
V ar(Xi)

)
, then the classical insurance is preferred to

the aggregate insurance in the sense that E[W ∗,a] < E[W ∗,c].

If the risk-adjusted individual risk vector
(
V ar(Xi)

γi

)
is counter-monotonic to the

Sharpe ratio vector

(
E[Xi]√
V ar(Xi)

)
, and the expected aggregate loss E[X] is large enough,

then the aggregate insurance is preferred to the classical insurance in the sense that

E[W ∗,c] < E[W ∗,a].

Proof: See Appendix A. �

Proposition 1.6 has the same insight as Proposition 1.4, but Proposition 1.6 holds

in a general correlated market environment. In the ordering loss market such that

11By two functions f ∼ g we mean that limV ar(Y )→∞
f
g = 1.
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a higher risk-adjusted variance corresponds to a Sharpe ratio, the classical insurance

works better. In the disordering loss market, however, the aggregate insurance con-

tract should be preferred to the classical one when the expected total risk E[X] is a

big concern. Indeed, both Proposition 1.4 and Proposition 1.6 demonstrate in differ-

ent market situations that aggregate insurance is a good design when the individual

risk and the Sharpe ratio display a negative relationship for each bank.

To finish this section, we compare the aggregate-cross insurance with the classical

insurance.

Proposition 1.7 If the expected losses across the banks are fairly close, the risk-

adjusted variance is co-monotonic to the Sharpe ratio, and the risk-adjusted corre-

lated variance ρ2i
V ar(Xi)

γ
is co-monotonic to the Sharpe ratio of its dual risk E[X̂i]√

V ar(X̂i)
,

where ρi is the correlation coefficient between Xi and X̂i for each i = 1, · · · , N , then

E[W ∗,ac] < E[W ∗,c].

Proof: See Appendix A. �

As shown in Proposition 1.6, the classical insurance is preferred to the aggregative

insurance when risk-adjusted variance is co-monotonic to the Sharpe ratio. Therefore,

Proposition 1.7 shows us that both the aggregative-type insurances (i.e. aggregate and

aggregate-cross insurance contracts) are not supportive under the situations described

in Proposition 1.7.

1.4 Discussions

Under what circumstance should the capital insurance programs be implemented

and how it should be implemented? In this section, we show several important insights
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based on our theoretical results.

1.4.1 Disordering Loss Market and Ordering Loss Market

According to Proposition 1.4 and Proposition 1.6, based on our welfare analysis, the

aggregate insurance contract should be insured by the regulator in the disordering loss

market. When the individual risk of loss V ar(Xi) is mismatched with the expected

loss per unit, the loss in each bank displays the disordering loss market.

There are two important situations in which the disordering loss market occurs.

The first situation is when the contribution to the aggregate loss of each back is fairly

close, and each bank has fairly close preference to the risk. In other words, when

the aggregate loss is almost equally distributed among the banks, it is a disordering

loss market. To see this, we assume γi = γ for all i. Clearly, the risk-adjusted

variance V ar(Xi)
γi

is counter-monotonic to E[Xi]√
V ar(Xi)

. Therefore, both Proposition 4 and

Proposition 6 ensure that aggregate insurance is better than the classical insurance

contract.

We describe the second situation in one-factor model. We argue that when the

individual risk mainly comes from the specific risk in each bank, this is another

example of the disordering loss market. Write Xi = ηiY + εi, i = 1, · · · , N . When

a higher individual risk V ar(Xi) corresponds to a higher V ar(εi)
V ar(Xi)

, the market can

be described as the “disordering loss market”. To demonstrate, we assume again

γi = γ for all i. Note that V ar(Xi)
E[Xi]2

= V ar(Y ) +
(
σi
ηi

)2
, and V ar(εi)

V ar(Xi)
is increasing with

respect to σi
ηi

. Then, under this assumption, V ar(Xi)
γi

is co-monotonic to V ar(Xi)
E[Xi]2

; thus

counter-monotonic to E[Xi]√
V ar(Xi)

, this is a disordering loss market. Hence, the aggregate
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insurance is a better insurance program when the specific risk plays a dominate role

inside the individual risk.

Table 1.1 demonstrates the first situation as described. There are 10 big banks

in the market, and each bank has the same expected loss as ηi = 0.1 for all i =

1, · · · , 10 . For simplicity, we assume that the variance of the systematic risk factor

Y equals to one, and each γi = 1. However, the specific risk in each bank varies from

10% to 40%. Table 1 displays the negative relationship between the risk-adjusted

variance and the Sharpe ratio of loss portfolio among these 10 banks. Therefore,

Table 1 shows one example of the disordering loss market, and we know that the

aggregate insurance is a preferred program by Proposition 6. Moreover, by numerical

computations, Cov(Xi,X)
V ar(X)

> 0.06 > 1
2N

for each i = 1, · · · , N . Hence, the equilibrium

of the aggregate insurance is given explicitly in Proposition 1.1.

The second situation is shown in Table 1.2, in which η
σ

is increasing with respect

to η. In this case, these banks have different expected loss, ranging from 0.1E[Y ]

to 0.55E[Y ]. As shown, there is a negative relationship between the risk-adjusted

variance and the Sharpe ratio of loss portfolio among these 10 banks; hence, Table 1.2

shows another example of the disordering loss market. By numerical computations,

Cov(Xi,X)
V ar(X)

> 0.08 > 1
2N

for each i = 1, · · · , N . Hence, the equilibrium of the aggregate

insurance is given explicitly in Proposition 1.1.

On the other hand, when the individual risk V ar(Xi) is opposite to the percentage

of the specific risk,
σ2
i

V ar(Xi)
, the classical insurance is better. In general, when a higher

systemic risk corresponds to a smaller specific risk, the classical insurance is better

than the aggregate insurance. Table 1.3 displays an example of the ordering loss
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market in which the classical insurance program should be preferred to the aggregate

insurance.

Through these examples we have shown that the specific risk is critical in comparing

those capital insurance programs. If the specific risks can be ignored, these three

insurance contracts offer similar welfare. Equivalently, when the systematic risk is

extremely large, it does not matter which capital insurance program should be issued,

as it is demonstrated by Proposition 1.5.

1.4.2 Low Correlation Market and High Correlation Market

The correlation structure affects the capital insurance program. On the one hand,

we have seen by Proposition 1.4 that aggregate-cross insurance is not a good choice in a

low-correlated market. A low correlation parameter comes from large specific risks. In

other words, if specific risks are sufficiently large enough comparing with the systemic

risk component, aggregate-cross insurance does not add welfare. On the other hand,

when the specific risks are very small, Proposition 1.5 ensures that aggregate-cross

insurance does not add welfare over the aggregate insurance either. Low specific risks

correspond to high (or even perfectly correlated) correlation coefficient among the loss

portfolios. Therefore, the aggregate-cross insurance does not work better in either a

low or a high correlation environment under Assumption I and Assumption II.

Actually, in the absence of asymmetric information, we argue that aggregate-cross

insurance does not work better than the aggregate insurance in general. To see this,

we assume that ηi is the same for all i, and σi is the same for all i. Then, each

pair of banks has the same correlation coefficient written as τ . By straightforward
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calculation, we have

E(W ∗,ac) = τ 2E(W ∗,a) = τ 2E(W ∗,c). (1.25)

Therefore, the lower the correlation coefficient τ , the smaller expected welfare of

the aggregate-cross insurance. Overall, E(W ∗,ac) < E(W ∗,a) = E(W ∗,c). When all

banks contribute to the systematic risk equally, and specific risks are also similar; the

aggregate-cross insurance is not as good as two other insurance programs.

1.4.3 Systemic Risk

There are many different interpretations about the systemic risk. Some authors

suggest to use the default probability of the whole financial system (see, for instance,

Pritsker (2012)). Other authors suggest to use the Shapley values to estimate the

systemic risk (see Bluhm et al (2013)).12 It is beyond the scope of this paper to

develop a systemic risk theory as we focus on the effect of the capital insurance.

Rather, we indicate that the aggregate insurance is a useful tool to deal with the

systemic risk by using two interpretations of the systemic risk.

First, we view systemic risk as the likelihood of the aggregate loss meets a threshold.

Precisely, the higher probability P (X ≥ L), the higher the systemic risk. In the

aggregate insurance, the post-aggregate insurance becomes

∑
Xi −

∑
αiX =

1

2
X. (1.26)

Clearly, the ex post aggregate loss is smaller than the ex ante aggregate loss X.

Therefore, the aggregate insurance, indeed, reduces the systemic risk.

12See Billio et al (2009), Eisenberg and Noe (2001), Choi and Douady (2012).
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Second, we consider the systemic risk for each individual bank in a one-factor

model. Before purchasing the aggregate insurance, the systematic risk contribution

of the bank i is ηi. We assume that γi is the same across the banks. Then, the

coinsurance percentage for the bank i is

αi ≥
ηiηV ar(Y )

η2V ar(Y ) + σ2
− 1

2N
. (1.27)

Hence, the contribution to the systematic risk of the bank i, after purchasing the

aggregate insurance, is

ηi − αiη ≤
ηiσ

2

η2V ar(Y ) + σ2
+

1

2

η

N
. (1.28)

When the number of banks, N , is large enough, or when the variability of the systemic

risk, V ar(Y ), is sufficiently large, we see that ηi − αiη < ηi. Therefore, the systemic

risk of each bank i is reduced after purchasing the aggregate insurance.

1.4.4 Identification and Implementation of Too Big to Fail Banks

Suppose the disordering loss market occurs; according to our theory, the aggregate

insurance program is a desired regulatory tool to solve the “too big to fail” issue.

Nevertheless, there are two fundamental questions to be solved as follows.

1. How to implement the aggregate insurance program? i.e., How to characterize

the equilibrium in a general situation?

2. How to distinguish the “too big to fail” banks that are enforced to purchase the

aggregate insurance from the other banks? Alternatively, how to identify those

“too big to fail” banks?
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We illustrate our solutions to these questions by an example, while a general solu-

tion is given in Appendix B.

To explain the answers to the questions above, we consider 15 banks, and the

loss portfolio of each bank follows a one-factor model. The systematic risk factor

is represented by Y with E[Y ] = V ar(Y ) = 1. Each bank has the same expected

loss 0.05E[Y ], but the specific risk varies differently. In fact, σi moves from 40% to

12%. Proposition 1.6 implies that the aggregate insurance is more desirable than the

classical insurance. It is also easy to see that Cov(Xi,X)
γi

is decreasing from i = 1 to

i = 15. However, as shown in Table 1.4, condition (1.7) in Proposition 1.1 is not always

satisfied. To be precise, for the last 5 banks, Cov(Xi,X)
V ar(X)

< 1
2N
, i = 11, 12, 13, 14, 15.

Appendix B presents a general solution of the equilibrium without condition 1.7.

The equilibrium problem and how to identify the “too big to fail” problem are solved

simultaneously. As the risk-adjusted covariance sequence Cov(Xi,X)
γi

is decreasing for

i = 1, · · · , N , we know that the sequence
∑i

j=1 Cov(Xj ,X)

2
∑i

j=1 γj
is decreasing for i = 1, · · · , N

as well. The first step is to find an unique number n such that

Cov(Xi, X)∑n
k=1Cov(Xk, X)

≥ γi
2
∑n

k=1 γk
, i = 1, · · · , n; (1.29)

and

Cov(Xi, X)∑n
k=1Cov(Xk, X)

<
γi

2
∑n

k=1 γk
, i = n+ 1, · · · , N. (1.30)

In this example, we find out n = 13 (see Table 1.5). Therefore, the first 13 banks, but

not the first 10 banks, are “too big to fail” banks that should be required to purchase

the aggregate insurance. The last two banks can be ignored in this aggregate insurance
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program. The second step is to determine the optimal load factor ρ∗ in the aggregate

insurance program, which is

ρ∗ =
1

E[X]

∑n
i=1Cov(Xi, X)

2
∑n

i=1 γi
= 0.081. (1.31)

At last, the optimal co-insurance parameters for the first 13 banks are

ai,a(ρ∗) =
Cov(Xi, X)− ρ∗γiE[X]

V ar(X)
, i = 1, · · · , 13. (1.32)

The last two banks do not buy the aggregate insurance as ai,a(ρ∗) = 0, i = 14, 15. The

equilibrium and relevant computation are displayed by Table 1.5. We observe that

the optimal co-insurance parameter decreases with respect to Cov(Xi,X)
γi

, a measure of

the systemic risk of these “too big to fail” banks.

1.5 Conclusion

In this paper, we present a welfare analysis of several capital insurance programs

in equilibrium. We show that aggregate insurance ensures a higher welfare if each

big bank has similar systematic risk. The classical insurance program, however, has

a higher welfare when the individual bank’s risk is positively related to the expected

loss per each volatility unit. In general, aggregate-cross insurance does not add more

welfare if there exists no asymmetric information concern. Overall, we demonstrate

that the capital insurance program is a useful regulatory tool to address the “too big

to fail” issue.
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Table 1.1: Example 1 of a disordering loss market

This table displays a disordering loss market when each bank has the same expected
loss in one-factor model. Therefore, the aggregate insurance is a better capital
insurance program by Prop 1.6. It can be checked that the condition in Prop 1.1
is satisfied, so the equilibrium of the aggregate insurance is given in Prop 1. We
assume γi = 1 for each i = 1, · · · , N . There are N = 10 banks.

Bank η σ Risk-adjusted Variance Sharpe ratio
1 0.1 0.40 0.170 0.243
2 0.1 0.35 0.133 0.275
3 0.1 0.30 0.100 0.316
4 0.1 0.26 0.078 0.359
5 0.1 0.23 0.063 0.399
6 0.1 0.20 0.050 0.447
7 0.1 0.18 0.042 0.486
8 0.1 0.15 0.033 0.555
9 0.1 0.12 0.024 0.640
10 0.1 0.10 0.020 0.707

Table 1.2: Example 2 of a disordering loss market

This table displays a disordering loss market when the percentage of specific risk
in the individual risk is increasing with respect to the individual risk. Therefore,
the aggregate insurance is a better insurance program than the classical insurance
program by Prop1.6. It can be checked that the condition in Prop 1.1 is satisfied, so
the equilibrium of the aggregate insurance is given in Prop 1.1. We assume γi = 1
for each i = 1, · · · , N . There are N = 10 banks.

Bank η σ Risk-adjusted Variance Sharpe ratio
1 0.10 0.200 0.050 0.447
2 0.15 0.315 0.122 0.430
3 0.20 0.440 0.234 0.414
4 0.25 0.575 0.393 0.399
5 0.30 0.720 0.608 0.385
6 0.35 0.875 0.888 0.371
7 0.40 1.040 1.242 0.359
8 0.45 1.215 1.679 0.347
9 0.50 1.400 2.210 0.336
10 0.55 1.595 2.847 0.326
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Table 1.3: An example of an ordering loss market

This table displays an ordering loss market when the percentage of specific risk
in the individual risk is decreasing with respect to the individual risk. Therefore,
the classical insurance is a better insurance program than the aggregate insurance
program by Prop1.6. We assume γi = 1 for each i = 1, · · · , N . There are N = 10
banks.

Bank η σ Risk-adjusted Variance Sharpe ratio
1 0.10 0.400 0.170 0.243
2 0.15 0.350 0.145 0.394
3 0.20 0.300 0.130 0.555
4 0.25 0.260 0.130 0.693
5 0.30 0.230 0.143 0.794
6 0.35 0.200 0.163 0.868
7 0.40 0.180 0.192 0.912
8 0.45 0.150 0.225 0.949
9 0.50 0.120 0.264 0.972
10 0.55 0.100 0.313 0.984

Table 1.4: Example 3 of a disordering loss market

This table displays a disordering loss market when each bank has the same expected
loss in a one-factor model. Therefore, the aggregate insurance is a better program
by Prop 1.6. However, the condition in Prop 1.1 is not satisfied as shown for i =
11, 12, · · · , 15. There are N = 15 banks, and each γi = 1.

Bank η σ Risk-adjusted Variance Sharpe ratio Cov(Xi,X)
V ar(X)

1 0.05 0.40 0.1625 0.124 0.1170
2 0.05 0.38 0.1469 0.130 0.1070
3 0.05 0.36 0.1321 0.138 0.0990
4 0.05 0.34 0.1181 0.145 0.0907
5 0.05 0.32 0.1049 0.154 0.0829
6 0.05 0.30 0.0925 0.164 0.0755
7 0.05 0.28 0.0809 0.176 0.0686
8 0.05 0.26 0.0701 0.189 0.0622
9 0.05 0.24 0.0601 0.204 0.0563
10 0.05 0.22 0.0509 0.222 0.0509
11 0.05 0.20 0.0425 0.243 0.0459
12 0.05 0.18 0.0349 0.268 0.0414
13 0.05 0.16 0.0281 0.298 0.0374
14 0.05 0.14 0.0221 0.336 0.0338
15 0.05 0.12 0.0169 0.385 0.0307
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Table 1.5: Implementation of example 3

This table displays the equilibrium of Example 3. We note that when i starts from

14, Cov(Xi,X)
γi

is strictly greater than
∑i

j=1 Cov(Xj ,X)

2
∑i

j=1 γj
. Then, the last two banks are

not “too big to fail”. The optimal load factor is ρ∗ = 8.1%.

Bank Cov(Xi,X)
γi

Cov(Xi,X)
V ar(X)

∑i
j=1 Cov(Xj ,X)

2
∑i

j=1 γj

1 0.1975 0.1170 0.09875 8.10 %
2 0.1819 0.1070 0.09485 7.18 %
3 0.1671 0.0990 0.09108 6.30 %
4 0.1531 0.0907 0.08745 5.47 %
5 0.1399 0.0829 0.08395 4.69 %
6 0.1275 0.0755 0.08058 3.95 %
7 0.1159 0.0686 0.07735 3.27 %
8 0.1051 0.0622 0.07425 2.63 %
9 0.0951 0.0563 0.07128 2.03 %
10 0.0859 0.0509 0.06845 1.49 %
11 0.0775 0.0459 0.06575 0.99 %
12 0.0699 0.0414 0.06318 0.54 %
13 0.0631 0.0374 0.06075 0.14 %
14 0.0571 0.0338 0.05845 0
15 0.0519 0.0307 0.05628 0



CHAPTER 2: THE BANK CAPITAL: AN INSURANCE PESPECTIVE

2.1 Introduction

One of the lessons learned from the financial crisis of 2007-2009 is that regulatory

supervision of financial institutions needs a major overhaul. The bail-out of Bear

Sterns and AIG, the desperate buyout of Merrill Lynch from Bank of America and

Washington Mutual from JP Morgan, the public assistance of Citigroup, Goldman

Sachs, Morgan Stanley and Bank of America as well as the freeze of the financial

system after Lehaman Brothers’ bankruptcy have indicated the increasing demand

for significant revision of the financial risk management. In particular, the massive

amount of explicit and implicit guarantees and outright infusion of taxpayers’ money

to cover the financial losses due to the excessive risk - taking behavior of financial

institutions have become a serious scrutiny. Many regulatory changes have been

implemented in the financial market. For instance, the Dodd-Frank Act has been

passed in the U. S. Congress, the Basel Committee has moved to strengthen the

bank regulation with BASEL III, and Volcker Rule has been adopted formally by

financial regulators to curb Bank-Risk hedging. At the same time, many researches

have conferred the “too big to fail” problem. (See Bluhm et al. 2013; Billio et al.

2009; Hansen, 2013; Pritsker, 2012.)

In this chapter, we discuss this “too big to fail” issue from the insurance perspective
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and focus on the guaranteed fund commitment to the financial institutions in an

adverse business situation. As those “too big to fail” banks or companies which are

“financial in nature” (thereafter, banks) expect the capital injection from the central

bank in time of financial distress, the banks might enact in a risk-taking manner

and put the central bank, regulator and all taxpayers in a fragile financial position.

Therefore, in the capital insurance program, which was first introduced briefly in

Kashyap, Rajan and Stein (2008) and studied extensively in Panttser and Tian (2013),

the banks are requested to pay some amount as a premium or reserve to an insurer,

say, a central bank, which in turn would inject guaranteed funds to the banks in a

future financial failure. As the insurer injects a “guarantee amount of capitals” to

strengthen a financial institution in a bad time either explicitly or implicitly, a major

insight of the capital insurance program is to ask for an upfront premium from the

financial institution for this kind of contingent guarantee.

By its nature, capital insurance is different from current capital regulation im-

plemented in BASEL II and BASEL III. It is also different from the Dodd-Frank

Act which posts several new prudential standards and stringent capital requirements

for banks with systemic risks. According to the capital regulation requirement, the

amount of capital reserve or economic capital amount depends on the risk of loss

portfolio and the riskiness of the bank itself. The risker the bank, the higher the

economic capital; the economic capital is higher for a bank with weak credit situation

than for the strong counterpart while assuming the portfolio is identically the same.

Hence, the economic capital idea depends on both the individual bank’s riskiness and

the individual loss portfolio.
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By contrast, the capital insurance, in essence, is an insurance contract, and the

capital insurance idea casts all banks in a bank sector together from the market level.

On the one side of the capital insurance program, the insurer of the contract receives

an insurance premium with the obligation to inject funds to save the bank in financial

distress. On the other side, each bank is an insured in this contract agreement. When

an insurer is a government entity (as we will argue later, they are reasonable insurer

candidates) and, thus, represents the taxpayer in this structure; the insurer of the

contract is a taxpayer, and the premium represents a special purpose tax in the sense

described by Acharya et al (2010). As a key distinction to the traditional insurance

contract, the contract redemption is contingent on the aggregate loss, and the insured

event is contingent on the systematic event in the economy. Therefore, the premium

amount in the capital insurance is different from conventional bank capitals, but

shares several common features with an insurance premium in the insurance market.

In this chapter, the capital insurance premium is viewed as an “insurance capital”,

and we examine several important economic elements of the insurance capital in

a rational expected equilibrium setting. The rational expected equilibrium of the

capital insurance program can be explained briefly as follows. The insurer issues

insurance contracts to the banks, and the banks purchase these contracts that are

placed on the market. The insurer predicts the correct optimal demand from the

banks with a given premium structure. Then, the insurer maximizes the welfare

with the premium structure as characterized. Consequently, both the demand (from

the banks) and the supply (from the insurer) are determined uniquely in a rational

expectation equilibrium.
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This chapter is organized as follows. In Section 1.2 we review current bank regula-

tions and the motivations of capital insurance program in a brief manner. In Section

1.3 we develop a theoretical framework of capital insurance. We first present a quick

review of the classical insurance literature that dated back to Arrow (1961), Borch

(1962) and Raviv (1978). Then, we present the rational equilibrium setting for a

general capital insurance program. In this chapter, a detailed analysis of capital in-

surance will be focused on one special type of capital insurance - aggregate (capital)

insurance, which is a coinsurance contract written on the aggregate loss.

Panttser and Tian (2013) consider several capital insurance problems and conduct

a comprehensive welfare analysis of these capital insurance programs. In particular,

Panttser and Tian (2013) demonstrate that aggregate insurance contributes the high-

est welfare (for the regulator) among these capital insurance problems under some

circumstances. So in this chapter, we focus on the aggregate insurance as one illus-

trative example. Section 1.4 presents the theory of Panttser and Tian (2013) for the

aggregate insurance. We show that regulator’s expected utility is always positive.

We also present an algorithm to identify “too big to fail” banks from the regulator’s

perspective within this capital insurance framework.

In Section 1.5, we demonstrate that purchasing capital insurance also rewards the

banks due to its increased expected utility. Moreover, we show that, after implement-

ing the capital insurance, the entire systemic risk is reduced significantly, and the ex

post systemic risk component, “ beta” 13, of each bank becomes stable. Furthermore,

13By borrowing a terminology of CAPM, a bank’s beta is defined as a ratio of the covariance
between this bank’s loss portfolio with the aggregate loss portfolio to the variance of the aggregate
loss portfolio.
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after repeatedly entering this capital insurance program, the systemic risk can be

removed virtually. Hence, this capital insurance idea reduces the systemic risk and

provides motivations for all market participants.

In Section 1.6, we come back to the “too big to fail” issues in more details. We

demonstrate that the beta vector is sufficient to identify “too big to fail” in the bank

sector. We show that“too big to fail”banks must have large systemic risk component;

however, some banks with relatively large systemic risk component are not necessarily

“too big to fail” from the capital insurance perspective, since other banks’ insurance

program might reduce the systemic risk substantially. Conclusions and comments are

provided at the end of the chapter. All proofs are stated in the Appendix C.

2.2 Bank Capital Requirement and Motivation

Bank capital requirement is a framework on how banks deal with their capitals.

From the regulatory perspective, a bank should hold a sufficient capital buffer to

absorb losses on some bad scenarios. If a large (in a systemic sense) bank defaults

or a bank-run event occurs, government intervention is plausible to several extents

through deposit insurance or a TRAP program.

The traditional risk-based view on capital requirement as proposed in BASEL II

depends on several capital ratios which are percentages of a bank’s capital to its risk-

weighted view. For instance, Tier 1 capital ratio is a percentage of Tier 1 capital to

the risk-weighted asset. Leverage ratio is a percentage of the Tier 1 capital to the

average total consolidated asset, and an equity ratio is the percentage of the equity

to the balance sheet asset. In each capital ratio category, minimal capital ratio has



36

to be satisfied in the traditional capital requirement.

The recent financial crisis has shown the inadequacy of the Basel approach in

strengthening the financial system because, in the bad time, it will become hard

for the bank to raise capital through equity issuance. When the quantity of “high-

quality” capital under Basel II fell, this risk-based capital has been proved unreliable

as a measure of risk. While a plausible approach, for instance, in Basel III, is to

increase those capital ratios to strengthen the balance sheet, the question how to

choose capitals to take consideration of all parties’ interest appropriately is still mainly

unresolved.

Recently, contingent capital (CC) has gained increasing endorsements among reg-

ulators, researchers, financial institutions and investors. Dodd-Frank Act has man-

dated a study on contingent capital. This new regulation proposal argues that prop-

erly structured contingent capital bonds provide incentive for financial institutions to

deal with serious financial difficulty before possible government intervention. Basel

Committee also considers the role of regulatory capital requirements of contingent

capital instruments, which can convert into common equity during financial distress

14. Among many CC proposals, the trigger events are often realized when the certain

bank-specific trigger indicator, such as the market price of common stock or some

risk-adjusted capital ratios, falls below a threshold. Systematic trigger indicators are

also advocated in some CC proposals. For the study of contingent capital we refer to

Coffee (2011), Sundaresan and Wang (2013) and Tian (2013). Other recent sugges-

14See, for instance, “Proposal to ensure the loss absorbency of regulatory capital at the point of
non-viability”, by Basel Committee on Banking Supervision, October 2010. In the Swiss Contingent
Capital Proposal, the total capital will be increased to 19 percent: 10 percent in Common Equity
Tier 1 and 9 percent in contingent capital.
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tions on bank capital requirement can be seen in Admati et al (2011), Hellwig (2009),

Zingales and Hart (2010) and many others.

Kashyap, Rajan and Stein (2008) propose an alternative approach, namely, capital

insurance. Its basic insight is simple. Since the bank has to increase capital require-

ment, say, from 8 percent to 10 percent, the bank needs additional $10 billion capital.

Instead of raising $10 billion in new equity, the bank is given another option through

an insurance mechanism. In this insurance mechanism, each bank acquires an insur-

ance policy that pays off $10 billion upon the occurrence of a systemic “event”. The

insurer in the insurance policy can be any investor such as pension fund or a sovereign

wealth fund, and the insurer receives the insurance premium from the bank. The in-

surer would put $10 billion into a custodial account, i.e. a “lock box”, which would

be returned to the issuer if there is no systemic event over the life of the policy.

There are some economic advantages behind this capital insurance idea. First,

since $10 billion goes into a custodial account, the bank manager has no full access to

these fund, so this idea can resolve some governance issues. In the case of the straight

equity issue, however, the $10 billion goes to the bank’s balance sheet. Second,

$10 billion is a state-contingent amount upon on an event, so it can align resources

with investment opportunities on a state-by-state basis. In this way, it resembles the

contingent capital in some features. As shown in Tian (2012), contingent capital offers

a reasonable investment tool, in particular, during bad business time. Hence, capital

insurance might have some appealing features to both the banks and the insurer (the

investor). Third and might be the most important point, the event can be designed

in a systemic sense, for instance, when the aggregate loss of the whole bank sector
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crosses a threshold. The last point is a key distinction between the capital insurance

and the classical insurance as will be seen shortly.

Before finishing this section, we point out several issues underlying the capital

insurance idea which are not addressed in Kashyap et al (2008)’s somewhat illustrative

framework. Just name a few, how to characterize the premium of the insurance policy?

whether it benefits to the bank upon the capital insurance implementation? if it is the

government entity instead of the private-sector investors to insure the policy, whether

it has social benefits? We next propose a framework of capital insurance and use it

to examine these questions related to capital insurance.

2.3 A Capital Insurance Framework

In this section, we propose a rational equilibrium framework of capital insurance

by building on some ideas in standard insurance literature. Within this framework,

we are able to answer the following two fundamental questions: how to determine the

premium for the capital insurance contract for the insurer and how to characterize

the optimal capital insurance for the banks. The answers to these questions lead

to a welfare analysis from both the insurer’s (in Section 1.4) and the banks’s (in

Section 1.5) perspectives. For this purpose, we start with a brief discussion of classical

insurance.
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2.3.1 Classical Insurance

We consider a standard one-period insurance contract, 15 in which the insurer

receives upfront premia from the insured at the initial time, and in exchange to these

premia, it is obligated to provide coverage at the end of the period. The aggregate

amount of loss portfolio for the insured in the future is denoted by X. Its initial wealth

W0 is composed of the collected premia and its own capital. Without background

(initial) risk, we often assume that W0 has no uncertainty while X does, even though

it is possible to extend the discussion on background risk in great length. At the

end of the period, its final wealth is determined by Ŵ = W0 − X if no insurance is

purchased. For our purpose of capital insurance later, the insurer is assumed to be

risk-neutral16.

Specifically, an insured purchases the insurance contract from an insurer by paying

an initial premium P . When X is observed and realized, an indemnity I(X) is

transferred from the insurer to the insured. Then the insured’s final wealth becomes

W = W0 − P − X + I(X). The indemnity I(X) is understood as a function of the

loss variable X. In classical insurance literature (see, for example, Arrow (1971) and

Raviv (1979)), the coverage I(X) is often assumed to be non-negative and not to

exceed the size of the loss. Standard examples of I(X) in the marketplace include

coinsurance I(X) = aX for 0 ≤ a ≤ 1, deductive I(X) = max{X − K, 0} with a

15For discussions on multi-period insurance market, we refer to Janssen and Karamychew (2005)
and Venezia and Levy (1983). It has been widely recognized that the welfare improvement is possible
only when the indemnity depends on the path of loss variables. Otherwise, there exists no essential
distinction between the one-period and the multi-period insurance contract.

16One justification of the risk-neutral assumption in the insurance literature is that many insurers
hold a well-diversified portfolio.
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deductible level K and a cap insurance I(X) = min{X,L} for a cap level L > 0.17

The insured can choose how many insurance contracts need to be purchased. For

instance, under some circumstance, the coinsurance coefficient a can be determined

while the premium structure is known. Gollier (2001) offers a lucid introduction to

insurance market in this regard.

In the insurance contract literature, the authors often impose a premium principle

in the form of

P = E[I(X) + C(I(X))], (2.1)

where the cost function C(.) is non-negative and satisfies C ′(·) > −1. Notice that this

premium principle underlies the fundamental risk pooling idea in insurance: a key

insight to deal with risk in the insurance market. To see it, assume the insurer issues

the insurance contract I(X), and there is sufficiently large number of insureds in the

insurance market with identical independent distribution (IID) loss X1, · · · , Xn, · · · .

Then the liability for the insurer becomes I(X1)+· · ·+I(Xn). The law of large number

ensures that

I(X1) + · · ·+ I(Xn)

n
→ E [I(X)] . (2.2)

Therefore, the risk for the insurer has been wiped out almost surely as long as there

is sufficiently large number of insureds, and these loss variables {X1, · · · , Xn, · · · }

of the insureds are IID. Figure 2.1 presents the framework of the classical insurance

market. Obviously, this independent distribution assumption does not hold anymore

17See Froot (2001) for many other insurance contracts in his clinal examination in a reinsurance
market and Froot et al (1993) on how those state-contingent contract used in the corporate risk
management.
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Figure 2.1: How classical insurance market works

for the bank sector in the presence of systemic risk. This is where capital insurance

emerges as an innovation to deal with the systemic risk. In the classical insurance

literature, there have been a large group of studies on the optimal design of the

insurance contract, from the perspective of either an insurer or an insured or in an

equilibrium framework. For instance, Arrow (1963) shows the deductible policy is

optimal when the premium depends on the expected payoff of the policy only. Raviv

(1979) extends Arrow’s analysis to the convex cost structure. Huberman, Mayers and

Smith (1983) introduce concave cost structure and find that deductible indemnity

might not be optimal. Bernard and Tian (2009, 2010) study the optimal insurance

design under risk management consideration. The optimal design problem has been

also well studied in the presence of moral hazard or adverse selection. See Rothschild

and Stiglitz (1976).
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2.3.2 A Model of Capital Insurance

In a banks sector, there are N banks indexed by i = 1, · · · , N . Each bank is

endowed with a loss portfolio, X1, · · · , XN , respectively. These loss portfolios are

generated from each bank’s business plan so they can be significantly different but

correlated by nature. For simplicity, these loss portfolios are defined on the same state

space Ω, and all banks have the same beliefs on the nature of state. This common

belief is represented by one probability measure P on the state space. We assume

that each bank is risk-averse, and its preference to risk is interpreted by a utility

function Ui(·). The bank’s initial wealth is given by W i
0 for each bank i. We assume

no background risk for each bank.

There is an issuer in the capital insurance contract. While Kashyap et al (2008)

suggest that investors in a private-sector might be the seller of the capital insurance,

we have a broad view at this point. Recalling the role of AIG as the last resort of

providing the credit default swap pre-crisis 18 and the fact that the government has

injected $ 182 billions dollars into AIG to save the financial system in jeopardy, we

argue that the private-sector market power might be not significant as one thought,

in particular, when a systemic risk is on a high level. Therefore, in addition to

investors, we suggest this insurer could be a government entity such as Financial

Stability Oversight Council (FSOC) in Dodd-Frank Act or a central bank, which sells

the insurance contract to each bank. Each bank is either voluntarily or enforced to

purchase the insurance contract by paying particular amount as a premium provided

18Credit default swap is an insurance contract written on the default event of a company or a
portfolio.
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the fund commitment is guaranteed by central bank in a bad business situation in

future. Since we will demonstrate that banks will be better off from the insurance

contract (in Section 1.5 below), the bank’s decision is evident as long as the market

performs well. If the government entity collects the premium from the banks, the

fund commitment offered by the government entity is the indemnity of the insurance,

then the premium amount can be treated as a special tax purpose rate for each bank

as suggested by Acharya and Pedersen (2010). Besides the investor or a government

entity, these insurance contracts can be also issued by a reinsurance company which

is able to diversify the reinsurance risk. In each case, the bank is always an insured

party and pays a premium to purchase a capital insurance. In the contrast to the

traditional bank capital, this premium doesn’t sit on the asset side on the bank’s

balance sheet. In our setting, we do not distinguish the role of seller in details and

just name the insurer as a regulator.

For any bank i, the prototype insurance structure has the indemnity, Ii(X,Xi), in

which both the individual book loss Xi and the aggregate loss X are involved together.

X represents the aggregate loss:
∑N

i=1Xi. We call this kind of insurance contract a

“capital insurance” as long as it depends on the aggregate loss being realized in the

future to some extent. Evidently, the capital insurance contract is different from

the classical contracts in last section, where Ii(X,Xi) is irrelevant to the aggregate

loss X and, instead, depends on the individual loss Xi.
19 Following the classical

insurance literature (Arrow, 1963; and Raviv, 1979), we make use of the following

19In Panttser and Tian (2013), they study the classical coinsurance contract in the same rational
equilibrium setting and compare whether capital insurance is better than the classical insurance.
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linear insurance premium for bank i:

Pi = (1 + ρ)E[I(X,Xi)], (2.3)

where ρ is a load factor. In other words, the cost function C(·) in the premium

principle displays a linear structure: C(t) = (1 + ρ)t. For simplicity, we also assume

that the loss factor is the same across the bank industry, but, it is possible to consider

a bank-specific premium structure in the extended analysis.

Given a load factor ρ, each bank chooses the best available insurance contract to

maximize the expected utility:

E[Ui(W̃
i)] ≡ E

[
Ui
(
W i

0 −Xi + Ii(X,Xi)− (1 + ρ)E[Ii(X,Xi)]
)]
. (2.4)

The regulator is risk-neutral and receives the premium for each contract. The

terminal wealth of the regulator is:

W r ≡
∑
i

(1 + ρ)E [Ii(X,Xi)]−
∑
i

Ii(X,Xi)−
∑
i

c (Ii(X,Xi)) , (2.5)

where c (Ii(X,Xi)) represents the cost for the regulator to issue the contract Ii(X,Xi).

This regulatory cost can be fixed, a constant percentage of the indemnity or depend

on a drastic market event. To focus on the analysis of insurance program, we assume

that the cost structure is a constant for each bank. The regulator’s objective is to

determine the best premium structure given the optimal demand for each bank (with

the load structure ρ) as well as to maximize the welfare (the expected utility). Clearly,

the final insurance contract I∗i (X,Xi) in equilibrium depends on both demand (from

all banks) and supply (from the regulator) and relies on the load factor ρ∗ proposed by
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Figure 2.2: How capital insurance market works

the regulator. Figure 2.2 displays the mechanism of the capital insurance market. To

explain the insight, we focus on one type of capital insurance contract in this chapter

- aggregate insurance: Ii(X,Xi) = aiX, where ai ≥ 0. The aggregate insurance is

a coinsurance contract written on the aggregate loss. Each bank i chooses the best

coinsurance coefficient ai for itself. The optimal coinsurance coefficient a will be

written as a(ρ) to highlight its dependence on the load factor. 20

2.4 Effects to Insurer

Similar to Panttser and Tian (2013), we first impose two assumptions in subsequent

discussions.

Assumption I. Each bank is a mean-variance agent with the reciprocal of risk aver-

sion parameter γi > 0. We also assume zero (or constant) cost structure for each

20We refer to Panttser and Tian (2013) for a welfare analysis of several capital insurance programs.
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contract.

Assumption I is fairly standard in literature, for instance, Mace (1991) addresses the

aggregate uncertainty insurance under the same assumption. Similarly, as our topic

is on the systemic risk, it is natural to follow the same assumptions on the insured’s

risk preference as in Mace (1991). Moreover, the cost structure is immaterial for the

regulator in estimating the social welfare, so a zero cost structure is also a reasonable

assumption.

Assumption II. There exists no asymmetric information between each bank and

the regulator. The loss portfolio Xi is equivalently identified by the bank and the

regulator, and both the bank and the regulator make decision based on the same

interpretation of the loss portfolio.

Comparing with Assumption I, Assumption II might be subject to confrontation

given its limitation. Asymmetric information or adverse selection are important issues

in studying insurance economics. In the original plan of Kashyap et al (2008), they do

suggest to use all losses except for the individual bank’s loss. Say, bank i purchases

an insurance whose indemnity depends on X −Xi =
∑

j 6=iXj
21. However, this kind

of design is still problematic, as Kashyap et al (2008) further argue that bank i can

still manipulate its loss portfolio Xi to affect X −Xi given the correlation structure

between Xi and other Xj; the systemic risk component for each bank does play a role

in the market. Since there is no easy way to deal with the asymmetric information

issue in capital insurance currently, Assumption II serves as a benchmark to a more

21This insurance contract is termed as an aggregate-cross insurance contract in Panttser and Tian
(2013).
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general discussion on capital insurance.

The next proposition precisely presents the equilibrium for the aggregate insurance

(Panttser and Tian (2003)).

Proposition 2.1 Assume for each i = 1, · · · , N ,

Cov(Xi, X)

V ar(X)
≥ 1

2

γi∑
i γi

. (2.6)

Then the optimal load factor ρ∗ is given by

ρ∗ =
1

2
∑

i γi

V ar(X)

E(X)
. (2.7)

The best coinsurance parameter for bank i in this aggregate insurance contract is

ai(ρ
∗) =

Cov(Xi, X)

V ar(X)
− 1

2

γi∑
i γi

. (2.8)

Finally, the welfare for the regulator is

E(W ∗) =
1

4
∑

i γi
V ar(X). (2.9)

From Proposition 2.1 (and subsequent discussions), bank i’s beta,

βi ≡
Cov(Xi, X)

V ar(X)
, (2.10)

plays an essential role in the equilibrium of capital insurance. As long as its beta

is greater than 1
2

γi∑
i γi

, the coinsurance coefficient is simply a difference between its

beta and 1
2

γi∑
i γi

. This result demonstrates that beta βi captures its systemic risk

component. To hedge the systemic risk for bank i, this capital insurance program

allows bank i to purchase an insurance with payout aiX.
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According to Proposition 2.1, the issuance of capital insurance benefits to the reg-

ulator because of a positive welfare. Moreover, the welfare estimated by the regulator

depends on the variability of the aggregate loss. The higher the variability, the higher

the welfare. The smaller the variability, or alternatively, the more stable the aggre-

gate loss is, the smaller the welfare. We will define the systemic risk as this variability

of the aggregate loss (see Definition 1 and its justifications below). Therefore, the

higher the systemic risk inside the bank sector, the better the social benefits. We also

note that the welfare does not depend on the expected aggregate loss E[X], only the

systemic risk contributes to the welfare.

If we look at the following decomposition of the systemic risk:

V ar(X) =
N∑
i=1

Cov(Xi, X), (2.11)

it is evident to see the contribution of each bank to the systemic risk, and the total

beta becomes 1:
N∑
i=1

βi =
N∑
i=1

Cov(Xi, X)

V ar(X)
= 1. (2.12)

Following from the last formula, we have

∑
i

ai(ρ
∗) =

1

2
, (2.13)

the total aggregate insurance indemnity for regulator is
∑

i Ii(X,Xi) = 1
2
X. It states

that exactly half of the aggregate loss is insured in this program. The number 1/2

comes from the mean-variance setting and might not have any specific meaning. But

a crucial insight at this point is that the aggregate loss is not fully insured in this

equilibrium insurance market, which is similar to the classical result for a standard
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coinsurance contract.

Proposition 2.1 motivates the following formal definition regarding to systemic risk

and insurance capital.

Definition 2.1 The systemic risk ex ante in the bank sector is the variance of the

aggregate loss, V ar(X), in the bank sector. The systemic risk component of bank

i is its beta βi. The premium for purchasing the capital insurance for the bank,

(1 + ρ∗)ai(ρ
∗)E[X], is an insurance capital of bank i.

We point out that other interpretations about the systemic risk are plausible in

literature. Some authors, such as Pritsker (2012), suggest to use the default proba-

bility of the whole financial system. Other authors suggest to use the Shapley values

to estimate the systemic risk (see Bluhm et al, 2013). See also Billio et al (2009),

Rochet (2009), Eisenberg and Noe (2001), Choi and Douady (2012) and Panttser and

Tian (2013). In this chapter, we confine ourself one important feature of the systemic

risk, that is, the variability of aggregate loss.

2.4.1 Extension and Too Big To Fail

Proposition 2.1 states that the bank needs to purchase capital insurance if all

banks have high systemic risks, or equivalently, their betas are large enough. What

if some banks have relatively smaller betas in the market? Can we simply remove

these banks with smaller betas and apply Proposition 2.1 for other banks to derive

the equilibrium? Whether these banks with large betas are exactly “too big to fail”

banks which should purchase capital insurance? Whether the expected utility of the

regulator is always positive? To answer these questions, we now extend our previous
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analysis into a general setting.

First, bank i’s objective is to find suitable coinsurance coefficient ai to maximize

max
ai≥0

E[W̃ i]− 1

2γi
V ar(W̃ i), (2.14)

where W̃ i = W i
0 − Xi + aiX − (1 + ρ)E[aiX] is the ex post terminal wealth for the

bank i after purchasing the capital insurance. Similarly, we use W i = W i
0 − Xi to

represent the ex ante wealth of bank i without buying any capital insurance. Given

a load factor ρ, by the first-order condition in (2.14), the optimal ai for the bank i is

ai(ρ) = max

{
Cov(Xi, X)− ρE(X)γi

V ar(X)
, 0

}
. (2.15)

Second, by plugging equation (2.15) into equation (2.5) and then by maximizing the

regulator’s expected utility, we obtain

ρ∗ = argmax{ρ≥0}ρ
N∑
i=1

max

{
Cov(Xi, X)− ρE(X)γi

V ar(X)
, 0

}
. (2.16)

So the optimal coinsurance coefficient for each bank i = 1, · · · , N is

ai(ρ
∗) = max

{
Cov(Xi, X)− ρ∗E(X)γi

V ar(X)
, 0

}
. (2.17)

Definition 2.2 Bank i is “too large to fail” in the sense of capital insurance if bank

i has to purchase capital insurance, that is, ai(ρ
∗) > 0.

It remains to derive an explicit expression of the load factor in equation (2.16). For

this purpose, we re-order the bank index and still use i = 1, · · · , N , such that

Cov(X1, X)

γ1
≥ Cov(X2, X)

γ2
≥ · · · ≥ Cov(XN , X)

γN
. (2.18)
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It follows that the sequence
∑i

j=1 Cov(Xj ,X)

2
∑i

j=1 γj
is decreasing for i = 1, 2, · · · , N . Hence,

there exists a unique number n, such that

Cov(Xi, X)

γi
>

∑i
k=1Cov(Xk, X)

2
∑i

k=1 γk
, i = 1, · · · , n (2.19)

and

Cov(Xi, X)

γi
≤
∑i

k=1Cov(Xk, X)

2
∑i

k=1 γk
, i = n+ 1, · · · , N. (2.20)

If for each i = 1, · · · , N , Cov(Xi,X)
γi

>
∑i

k=1 Cov(Xk,X)

2
∑i

k=1 γk
, we set n ≡ N .

We know that (see Panttser and Tian, 2013, Appendix B for detail) the optimal

load factor is

ρ∗ =
1

E[X]

∑n
i=1Cov(Xi, X)

2
∑n

i=1 γi
. (2.21)

The optimal coinsurance coefficient is

ai(ρ
∗) =

Cov(Xi, X)− ρ∗γiE[X]

V ar(X)
, i = 1, · · · , n; (2.22)

and ai(ρ
∗) = 0, for i = n + 1, · · · , N . Therefore, we have the following result to

identify “too big to fail” banks.

Proposition 2.2 In a bank sector with N banks with risk aversion parameters γi,

i = 1, · · · , N , we index these banks, i = 1, · · · , N, such that Cov(Xi, X) is decreasing,

or equivalently, its beta sequence βi is decreasing. Let n be the unique number, such

that

Cov(Xi, X)∑i
k=1Cov(Xk, X)

>
γi

2
∑i

k=1 γk
, i = 1, · · · , n, (2.23)

and

Cov(Xi, X)∑i
k=1Cov(Xk, X)

≤ γi

2
∑i

k=1 γk
, i = n+ 1, · · · , N. (2.24)



52

Then the first n banks are “too big to fail” banks which need to buy the capital

insurance ai(ρ
∗)X with premium (1 + ρ∗)ai(ρ

∗)E[X], where ρ∗ and ai(ρ
∗) are given in

equation (2.21) and equation (2.22), respectively. Other banks, i = n+ 1, · · · , N , do

not purchase capital insurance since they are not “too big to fail”.

The next result demonstrates that the welfare for the regulator is always non-

negative after the issuing the capital insurance. The proof is straightforward and

omitted.

Proposition 2.3 In a general aggregate capital insurance setting as above, the wel-

fare of the aggregate insurance for the regulator, E[W ∗], is

E[W ∗] =
1

4
∑n

i=1 γi

(
∑n

i=1Cov(Xi, X))2

V ar(X)
. (2.25)

2.5 Impacts on Banks

In the last section, we have seen that capital insurance indeed adds social benefits

if the insurer is a government entity, which is obligated to inject capital in a bad

business time. It is a good news for the regulators or government. As long as the

banks pay upfront premiums, the guarantee to inject funds to save those “too big to

fail”banks in a period of financial crisis will not cause taxpayer cry. Panttser and Tian

(2013) have studied extensively the welfare of several capital insurance programs. The

purpose of this section is to study its effect on the banks as issued.

We first demonstrate that the bank is also better off by purchasing the capital

insurance. To see it, recall that W̃ i and W i are the terminal wealths of bank i

with and without the capital insurance program, respectively. The next proposition
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ensures that the bank’s expected utility increases with a purchase of capital insurance

in equilibrium; hence, the banks are motivated to participate in the capital insurance

market.

Proposition 2.4 After purchasing the capital insurance, the expected utility of bank

i is increased by

1

2γiV ar(X)

{
Cov(Xi, X)− γi

2γ
V ar(X)

}2

,

where γ =
∑N

i=1 γi. For simplicity, we assume that the condition (2.6) in Proposition

2.1 holds, and this assumption can be relaxed by using Proposition 2.2.

According to Proposition 2.4, purchasing the capital insurance provides a higher

expected utility for the bank. So from a bank’s prospective, there is no side effect to

enter a capital insurance market. Moreover, the positive benefits to bank i depend

on both the systemic risk, V ar(X), and its beta, βi, monotonically and separably.

Precisely, the benefit is written as

1

2γi

(
βi −

γi
2γ

)2

V ar(X).

Therefore, the higher the systemic risk (aggregate variance), V ar(X), the higher the

benefit for bank i; the higher the difference between the beta and γi
2γ

, the higher the

benefit for bank i. By combining Proposition 2.1 and Proposition 2.2, V ar(X) is an

essential ingredient to address the benefits for both the regulator and the banks; and

both the regulator and the banks should demand capital insurance when the systemic

risk is large.
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How about the expected wealth of bank i after purchasing the capital insurance? As

insurance contract always provides negative expected value, it is not hard to imagine

that E[W̃ i] = E[W i]− ρaiE[X] < E[W i]. However, the bank’s portfolio becomes less

risky after purchasing the capital insurance. It is natural to see how much risk is

reduced with a unit of the expected value decreased. The following formula, whose

proof is given in Appendix B, describes the change of risk per unit of the expected

value changing:

V ar(W̃ i)− V ar(W i)

E[W̃ i]− E[W i]
= γi + 2γβi. (2.26)

Again this ratio is determined entirely by beta.

So far, we have demonstrated that beta plays a key role in the capital insurance

equilibrium. The next proposition is about the beta ex post and the systemic risk ex

post in the capital insurance market.

Proposition 2.5 Let X̃i ≡ Xi − aiX + (1 + ρ)aiE[X] be the loss portfolio of bank i

ex post in the capital insurance program, and Xi be the ex ante loss portfolio. The

ex post aggregate loss portfolio is X̃ =
∑N

i=1 X̃i. Then the systemic risk is reduced

by 75 percent since the ex post aggregate variance becomes

V ar(X̃) =
1

4
V ar(X). (2.27)

The ex post beta of bank i becomes a constant:

β̃i ≡
Cov(X̃i, X̃)

V ar(X̃)
=
γi
γ
. (2.28)

Proposition 2.5 has an important implication regarding the systemic risk. Let

us assume that bank i repeatedly purchases a capital insurance by following the
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above approach. As its ex post beta is γi
γ

, after the second time purchasing capital

insurance, applying Propositions 1-2, the benefit to the regulator is 1
4γ

1
4
V ar(X), the

benefit to bank i is 1
2γi

(
γi
2γ

)2
1
4
V ar(X), and the coinsurance coefficient is still γi

γ
.

After m times, the systemic risk becomes
(
1
4

)m
V ar(X), the benefit to the regulator

is 1
4γ

(
1
4

)m
V ar(X), the benefit to bank i is 1

2γi

(
γi
2γ

)2 (
1
4

)m
V ar(X). Hence, we have

the following result.

Proposition 2.6 After finitely many times of implementing the capital insurance,

the systemic risk can be reduced as much as possible. The capital insurance does

not benefit to neither the regulator nor the banks when the systemic risk is reduced

entirely.

2.6 Identify Too Big To Fail Banks

In this section, we illustrate one important application of the capital insurance,

that is, how to identify “too big to fail” banks.

According to Proposition 2.2, identifying“too big to fail”banks is more complicated

than to find banks with large beta. In fact, the set of banks with high betas, βi ≥ 1
2N

,

is not necessarily the same as the set of “too big to fail” banks characterized in

Proposition 2.2. We use several examples to illustrate the method in details.

In the first example, we consider 15 banks in a bank sector, and the loss portfolio of

each bank follows a one-factor model. Specifically, Xi = αiY + εi, i = 1, · · · , 15. The

systematic risk factor is represented by Y with E[Y ] = $1 billion and V ar(Y ) = 100%.

Each bank has the same expected loss 0.05E[Y ], but the specific risk (i.e., the variance

of εi) varies across the banks. We assume that σi moves from 40% to 12%, and
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each γi = 1. Clearly, Cov(Xi,X)
γi

decreases from i = 1 to i = 15. Moreover, except

for the last bank, all other banks’ betas are greater than 1
2N

. For the last bank,

Cov(Xi,X)
V ar(X)

< 1
2N

= 3.33%, i = 15.22

We now identify those “too big to fail” banks by using Proposition 2.2. We find

that the number n as defined in Proposition 2.2 is 13. Therefore, the first 13 banks

are “too big to fail” banks that should purchase the capital insurance. Even the 14th

bank has a large beta, 3.38 %, it does not need to buy a capital insurance because

its systemic risk is relatively small; and importantly, given the correlation structure

among these 15 banks, the capital insurance of the first 13 largest banks is helpful

to resolve the systemic risk issue raised from the 14th banks. We next calculate the

insurance capital for these first 13 banks. The optimal load factor ρ∗ in the aggregate

insurance is

ρ∗ =
1

E[X]

∑n
i=1Cov(Xi, X)

2
∑n

i=1 γi
= 8.1%. (2.29)

The computation results are given in Table 2.1 (this table slightly extends Table 5 in

Panttser and Tian, 2013).

Table 2.1 demonstrates that a bank with a larger beta (the 14th bank in this bank

sector) does not have to buy a capital insurance as it is not a “too big to fail” bank;

but, a “too big to fail” bank must have a large systemic risk component, ie., a high

beta factor. To demonstrate this subtle issue, we consider another example in which

the banks with larger betas are exactly the same as “too big to fail” banks.

In the second example, there exists N = 15 banks in the bank sector, and the loss

22In Panstter and Tian (2013), it is incorrectly stated that the last four banks do not satisfy the
condition in Proposition 2.1.
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portfolio follows a one factor model Xi = ηiY +εi, where ηi = 0.04+0.002∗(i−1), σi =

0.45 − 0.02 ∗ (i − 1), E[Y ] = 1 billion and V ar(Y ) = 50%, where σi is the standard

deviation of noise εi for i = 1, 2, · · · , 15. Clearly, the covariance vector Cov(Xi, X) is

decreasing with respect to i. As displayed in Table 2.2, the first 12 banks have larger

betas, βi >
1
2N
, i = 1, · · · , 12. We also find out that these 12 banks are exactly “too

big to fail”banks according to Proposition 2.2. The optimal load factor in equilibrium

is 8.1 %.

In Example 3, we do not assume any factor assumption on the loss portfolio. In-

stead, we assume that any two different banks’ loss portfolios have the same correla-

tion coefficient ρ in the bank sector with N banks. Assume that V ar(Xi) = k2iσ2 for

0 < k < 1. Then, V ar(Xi) is decreasing. Moreover, we assume that

(1− ρ)kN ≥ ρ(k + · · ·+ kN).

Thus, Cov(Xi, X) is decreasing for i = 1, · · · , N under this assumption. Table 2.3

demonstrates that “too big to fail” banks must have large betas, but the inverse

statement is not true. In fact, only the last bank has a small beta; however, only the

first three banks are “too big to fail”.

By example 3, we notice that the “too big to fail” theory in Proposition 2.2 depends

virtually on the beta vector of the banks. Proposition 2.2 can be interpreted slightly

different in terms of the banks’ beta vector, as follows.

Proposition 2.7 Given a bank sector with N banks with beta βi, i = 1, 2, · · · , N .

We assume that β1 ≥ β2 ≥ · · · ≥ βN , and each bank has the same risk aversion
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parameter. Let n be the unique number, such that

βi∑i
k=1 βk

>
1

2i
, i = 1, · · · , n;

βi∑i
k=1 βk

≤ 1

2i
, i = n+ 1, · · · , N. (2.30)

Then the“too big to fail”banks are exactly banks i = 1, · · · , n. Moreover, the optimal

coinsurance coefficient ai for bank i, i = 1, · · · , n, is

ai = βi −
1

2n

n∑
k=1

βk. (2.31)

However, these beta vectors are not enough to compute the insurance capital.

Proposition 2.7 ensures that the beta vectors of loss portfolio alone enable us to

identify “too big to fail” banks for the regulator and the coinsurance coefficient for

the banks. But these beta vectors are not enough to compute the insurance capital

charged by the regulator. Since (1 + ρ∗)E[X] = E[X] + 1
2n

∑n
i=1Cov(Xi, X), the

regulator also needs information about the expected aggregate loss E[X] and the

covariance Cov(Xi, X) for computing the insurance capital.

2.7 Conclusions

This chapter presents an insurance perspective to bank capital, namely, an insur-

ance capital. This insurance capital is a premium paid by the banks to an insurer of

a capital insurance contract, which is written on the aggregate loss in the entire bank

sector. By using a simple coinsurance-type insurance contract (aggregate insurance),

we demonstrate how the insurer and the banks trade in a rational equilibrium setting;

so the banks purchase appropriate capital insurance, and the insurer offers an appro-

priate premium level. We show that this capital insurance idea is largely promising to
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resolve the systemic risk management issue, because of the following results: (1) the

insurer is better off to issue the capital insurance; (2) banks are better off to increase

their expected utilities; (3) systemic risk is reduced significantly ex post; and (4) this

capital insurance program enables the regulator to identify which banks are “too big

to fail” and, therefore, should purchase the capital insurance contract.

However, our analysis in this chapter should be examined with cautions, more

being an introduction instead of a complete theory of the insurance capital. Our

numerical computation shows that the insurance capital might be too high comparing

with other bank capitals because it insures all loss aggressively. Since each bank has

its own hedging programs for the market portfolios, those capital insurance with

deductible indemnity on aggregate loss might be more appealing to the market: as

long as the aggregative loss hits a threshold, the insurance is triggered to be active

and the insurance payout for the bank is a proportion of the deductive. Specially,

Ii(X,Xi) = ai max{X−L, 0} for each bank, where L is a trigger level for the aggregate

loss, and ai is a coinsurance coefficient over the total deductible for bank i. Indeed,

Arrow (1973) demonstrates that such a deductible is optimal for the insured when

the premium is a linear function of the expected indemnity in the classical insurance

setting. Whether Arrow’s deductible theorem holds in the capital insurance setting?

What is the best possible insurance capital from the regulator’s perspective? We hope

this chapter serves a basis for future study on the insurance capital and sheds light

on the study of the systemic risk.
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Table 2.1: “Too big to fail” banks - example 1

This table displays a bank sector with 15 banks and identifies “too big to fail” banks
following the presented capital insurance approach. The loss portfolios follow a one-
factor model, Xi = ηiY + εi; E[Y ] = 1 billion and V ar(Y ) = 5%, and the standard
deviation of εi moves from 40% to 12 % equally from i = 1 to i = 15, while ηi moves
from 4% to 6.8% equally. We also assume that each γi is the same across the banks
and equals to 1. We note that when i = 13, 14, 15, Cov(Xi,X)

γi
is strictly greater than∑i

j=1 Cov(Xj ,X)

2
∑i

j=1 γj
. Then, the last two banks are not “too big to fail”. The optimal load

factor is ρ∗ = 8.1%. The expected total aggregate loss is ηE[Y ] = 0.81 billion.

Bank Cov(Xi,X)
γi

∑i
j=1 Cov(Xj ,X)

2
∑i

j=1 γj

Cov(Xi,X)
V ar(X)

ai (1 + ρ∗)ai

1 0.2106 0.1053 0.1226 8.46 % 9.14 %
2 0.1934 0.1010 0.1126 7.46 % 8.06 %
3 0.1770 0.0968 0.1031 6.50 % 7.03 %
4 0.1614 0.0928 0.0940 5.59 % 6.04 %
5 0.1466 0.0889 0.0854 4.73 % 5.11 %
6 0.1326 0.0851 0.0772 3.92 % 4.23 %
7 0.1194 0.0815 0.0695 3.15 % 3.40 %
8 0.1070 0.0780 0.0623 2.43 % 2.62 %
9 0.0954 0.0746 0.0556 1.75 % 1.89 %
10 0.0846 0.0714 0.0493 1.12 % 1.21 %
11 0.0746 0.0683 0.0435 0.54 % 0.59 %
12 0.0655 0.0653 0.0381 0.01 % 0.01 %
13 0.0571 0.0625 0.0332 0 0
14 0.0495 0.0598 0.0288 0 0
15 0.0427 0.0573 0.0248 0 0
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Table 2.2: “too big to fail” Banks - example 2

This table displays a bank sector with 15 banks and identifies “too big to fail” banks
following the presented capital insurance approach. The loss portfolios follow a one-
factor model, Xi = 0.05Y + εi; E[Y ] = 1 billion and V ar(Y ) = 100%, and the
standard deviation of εi moves from 40% to 12 % equally from i = 1 to i = 15. We
also assume that each γi is the same across the banks and equal to 1, for simplicity.

We note that when i = 14, 15, Cov(Xi,X)
γi

is strictly greater than
∑i

j=1 Cov(Xj ,X)

2
∑i

j=1 γj
.

Then, the last two banks are not “too big to fail”. The optimal load factor is
ρ∗ = 8.1%. The expected total aggregate loss is ηE[Y ] = 0.75 billion.

Bank Cov(Xi,X)
γi

Cov(Xi,X)
V ar(X)

∑i
j=1 Cov(Xj ,X)

2
∑i

j=1 γj
ai (1 + ρ∗)ai

1 0.1975 0.1170 0.09875 8.10 % 8.75 %
2 0.1819 0.1070 0.09485 7.18 % 7.76 %
3 0.1671 0.0990 0.09108 6.30 % 6.81 %
4 0.1531 0.0907 0.08745 5.47 % 5.91 %
5 0.1399 0.0829 0.08395 4.69 % 5.07 %
6 0.1275 0.0755 0.08058 3.95 % 4.27 %
7 0.1159 0.0686 0.07735 3.27 % 3.53 %
8 0.1051 0.0622 0.07425 2.63 % 2.84 %
9 0.0951 0.0563 0.07128 2.03 % 2.20 %
10 0.0859 0.0509 0.06845 1.49 % 1.61 %
11 0.0775 0.0459 0.06575 0.99 % 1.07 %
12 0.0699 0.0414 0.06318 0.54 % 0.59 %
13 0.0631 0.0374 0.06075 0.14 % 0. 15 %
14 0.0571 0.0338 0.05845 0 0
15 0.0519 0.0307 0.05628 0 0

Table 2.3: “Too big to fail” banks - example 3

This table displays a bank sector with 5 banks and identifies “too big to fail” banks
following the presented capital insurance approach. In this example, any two differ-
ent banks have the same parameter ρ = 10%, and V ar(Xi) = k2iσ2, where k = 0.8.
In this example, we see that “too big to fail” banks can be find out using beta vector
entirely.

Bank βi
βi∑i

k=1 βk
Coinsurance coefficient ai

1 0.4690 1 35.24 %
2 0.3206 0.4060 20.40%
3 0.2215 0.2191 10.49 %
4 0.1548 0.1328 3.82 %
5 0.1095 0.0859 0



CHAPTER 3: IDENTIFY TBTF BANKS AND CAPITAL INSURANCE

3.1 Introduction

We develop a new methodology to identify too big to fail (TBTF) banks23from

a regulatory perspective. Since the too big to fail issue is virtually linked to the

implicit guarantee subsidy24, this methodology also sheds a light on the assessment

of the implicit subsidy. We introduce a new systemic risk measure, loss beta, by

conducting an equilibrium analysis of TBTF banks and demonstrate that this loss

beta concept captures some essential economic elements of the TBTF issue.

The financial crisis 2007-2009 sparks substantial research interests in measuring

the systemic risk recently. Acharya et al (2012), Brownless and Engle (2011) docu-

ment that time-varying correlation structure play a crucial role in their systemic risk

measurements (See also v-lab webpage in New York University); and it is well docu-

mented that the time-varying correlation coefficients among big financial institutions

are broadly positives. Consequently, several approaches have been proposed to cast

the connectivity and correlative features among top banks in studying the systemic

risk, including Adrian and Brunnermeier (2010)’s CoVaR approach conditional on

23The term “too big to fail” is frequently interchanged with other terms such as “too important to
fail” (TITF), “too interconnected to fail” (TITF) or “global systemically important banks” (G-SIBs)
with might be slightly different contexts. A bank is deemed to be TBTF in this paper if the bank
has implicit government guarantee during a crisis.

24The implicit (guarantee) subsidy, or alternatively, capital surcharge, is often estimated by fund-
ing costs with and without the guarantee. See, for instance, IMF (2014) and Green/EFA group
report (2014). See also O’Hara and Shaw (1990) in the context of deposit insurance; and BCBS
(2013) for assessment methodology.
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financial institutions being in a state of financial distress; the network approach by

Acemoglu et al (2013); the default probability of the whole financial system devel-

oped by Shin (2008); the marginal expected shortfall measure approach in Acharya

(2009), Brownless and Engle (2011) and Acharya et al (2012), and the CDS premium

approach in Zhou, Huang and Zhu (2009). Hansen (2012) documents the challenge

to measure the systemic risk, and a comprehensive survey of systemic risk measures

is presented by Bisias et al (2012).25 None of these approaches, however, explores an

equilibrium mechanism in which banks and regulator interact with each other in their

best interests.

In this paper, we study a rational expectation equilibrium by suggesting that TBTF

banks have to pay insurance premium up front to exchange for its implicit guarantee

subsidy. Specifically, we view the agreement between the bank and the regulator (or

a government entity), which injects the guaranteed capital as an insurance contract

and we call it a capital insurance contract. In this framework, each bank predicts the

best insured amount whenever the pricing structure of the capital insurance is given

by the seller. On the other hand, the seller of the capital insurance fully predicts

each bank’s optimal insured amount, determines the optimal pricing structure, and

simultaneously identifies those banks which are willing to purchase this kind of capital

protection, henceforth, too big to fail banks. The idea of capital insurance to study

the systemic risk is first briefly proposed by Kashyap et al (2008). It is also resemble

to the special tax program proposed in Acharya et al (2010) in which the insurance

25Other notably papers include Allen and Gale (2000); Hellwig (2009); Lehar (2005); Battiston et
al (2012); Billio et al (2012); and Rochet (2009).
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premium is viewed as special tax for too big to fail.26

We characterize explicitly the equilibrium of the capital insurance market. By con-

ducting this equilibrium analysis, we demonstrate several positive effects of a capital

insurance proposal. Specifically, the social welfare for the regulator is shown to be

positive and the total systemic risk is reduced with the implementation of the capital

insurance market. Too big to fail banks are also beneficial by purchasing the capital

protection in the capital insurance market, and those banks with larger systemic risk

components enjoy more expected utility enhancing. Moreover, the capital insurance

market can be used by the regulator to reveal banks’ true loss portfolios and identify

TBTF banks correctly in the presence of moral hazard among banks and the regu-

lator. Overall, we demonstrate that the capital insurance proposal could be a useful

macro-regulation policy tool to address the TBTF issue.27

In deriving the capital insurance equilibrium, we introduce a new systemic risk

measure, loss beta, which is defined as a ratio of the covariance between a bank’s loss

portfolio with the aggregate loss portfolio in the entire bank sector to the variance

of the aggregate loss portfolio. We provide an algorithm to identify TBTF banks by

merely using loss betas of all banks. We show that not only banks with large loss

betas are TBTF; Conversely, TBTF banks must have large loss betas. Therefore, the

too big to fail feature is largely captured by the loss beta measure. We also implement

this approach by using several different capital insurance contracts in an empirical

26Therefore, the developed equilibrium in this article can be also viewed as an equilibrium of a
special tax program.

27Classical prudential regulation theory of banks is explained in Dewatripoint and Tirole (1994);
Hanson, Kashyap and Stein (2011). See also Aiyar, Calomiris and Wieladek (2014) for a compre-
hensive discussion on bank capital regulation.
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study. We find out that TBTF banks can be consistently identified with this approach

over the pre-cris and pro-cris period; and this empirical analysis suggests that the too

big to fail concern has been considerably reduced after the financial crisis.

This article merges two important strands of previous research: the financial in-

novation and the classical insurance literature. By viewing capital insurance as an

innovation in a capital market, we explore a similar framework examined in Allen and

Gale (1994) to characterize the equilibrium among a group of buyers and a seller in

the presence of one financial innovation. Further, we follow Harris and Raviv (1995)

to study the optimal payoff structure within a given specification form of the payoff

structure of financial innovation. On the other hand, treating the capital insurance as

an insurance contract between banks and regulator, we develop the model by drawn

on some essential insights in Borch (1962), Arrow (1964) and Ravi (1979). However,

it is worth noting that the presented framework itself is different from the classical

insurance setting in which the law of large numbers (risk-pooling principle) holds

under an independent assumption of the individual risk across a group of insureds.

Indeed, the failed risk-pooling principle with correlated underlying risks is a challenge

in measuring the systemic risk, and this paper suggests that capital insurance is useful

to address the correlated risk management problem.

Given its concentration on loss portfolios, our approach to the systemic risk leads

to starkly difference between our systemic risk measure with other systemic measures

that based on classical beta, downside beta or tail beta (Bawa and Lindenverg, 1977;

Hogan and Warren, 1974; Van Oordt and Zhou, 2014). For instance, Benoit et al

(2012) in a recent empirical study shows that from both theoretical and empirical
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perspective, the marginal expected shortfall measure introduced in Acharya (2009),

Brownless and Engle (2011), Acharya et al (2012) is largely explained by the classical

betas of banks; and the classical beta of financial institution captures the intercon-

nectedness in the financial sector to some degree but adds little to rank too big to fail

banks.

The article proceeds as follows. In Section 3.2 we present a theory of capital

insurance. In Section 3.3 we report our empirical analysis and illustrate some imple-

mentation issues. Section 3.4 concludes and all proofs are given in Appendix C.

3.2 Theory of Capital Insurance

3.2.1 Model Setup

There are N financial institutions, namely banks, indexed by i = 1, · · · , N , in

a financial sector. Each bank is endowed with a loss portfolio, X1, · · · , XN , respec-

tively. These loss portfolios are presumed to have systemic risk components and given

exogenously. There is a capital insurance market in which each bank decides to pur-

chase or not a capital insurance contract to hedge the systemic risk. The prototype

capital insurance contract’s payoff structure (or indemnity in insurance terminology)

is Ii(X,Xi) for bank i where X represents the aggregate loss, X =
∑N

i=1Xi, of the

financial sector.

We follow standard insurance literature (Arrow, 1963; and Raviv, 1979) to apply

a classical linear insurance premium principal. Specifically, the insurance premium

Pi for bank i to pay for is, Pi = (1 + ρ)E[I(X,Xi)], where ρ is a load factor that is

determined by the seller. It is convenient for now to assume a constant loss factor
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across the financial sector, and we explain in Section 3.3 how to investigate a bank-

specific premium structure in an extended analysis.

In this paper, we focus on the following capital insurance contract, Ii(X,Xi) = aiZ

for each bank i, where ai is a nonnegative coinsurance coefficient and Z = I(X) is an

arbitrarily specification of indemnity that relies on the aggregate loss. Bank i chooses

the best coinsurance coefficient ai, and the optimal coinsurance coefficient is written

as ai(ρ) to highlight its dependence on the load factor ρ.

Each bank i, i = 1, · · · , N , is risk-averse, and its risk preference is represented

entirely by the mean and the variance of the wealth with the reciprocal of risk aversion

parameter γi > 0.28 Given a load factor ρ, bank i solves an optimal portfolio problem

by choosing the best coinsurance coefficient:

max
{ai≥0}

{
E[W̃ i]− 1

2γ
V ar(W̃ i)

}
, (3.1)

where W̃ i = W i
0−Xi+aiZ−(1+ρ)E[aiZ] is the ex post terminal wealth for the bank

i after purchasing the capital insurance and W i
0 is the initial wealth of bank i. We

assume now there is no background risk in this section and we explain how to extend

our results into a situation with background risk in Section 3.3. Similarly, W i = W i
0−

Xi represents the ex ante wealth of bank i before buying capital insurance. Moreover,

we assume that each γi = γ for i = 1, · · · , N , so these banks are distinguished from

each other due primarily to their different loss portfolios.29

By the first order condition in (3.1), the optimal coinsurance coefficient for bank i

28Mace (1991) addresses the aggregate uncertainty insurance under the same assumption.
29It is easy to extend it into a general situation in which γi varies, and the main insights are

similar.
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is given by

ai(ρ) = max

{
Cov(Xi, Z)− ρE(Z)γ

V ar(Z)
, 0

}
. (3.2)

The seller of capital insurance contracts can be a private-sector, reinsurance com-

pany, a central bank or a government entity such as Financial Stability Oversight

Council (FSOC) in Dodd-Frank Act, which is universally named as a regulator. The

regulator is assumed to be risk-neutral and receives the insurance premium from each

capital insurance contract. Therefore, the terminal wealth of the regulator is

W r =
N∑
i=1

(1 + ρ)E [aiZ]−
N∑
i=1

aiZ −
N∑
i=1

c (aiZ) , (3.3)

where c (aiZ) denotes the cost for the regulator to issue the contract aiZ. This

regulatory cost c(·) can be a fixed cost, a constant percentage of the indemnity or

a general function of the indemnity. Without loss of generality and to focus on the

equilibrium analysis of TBTF, we assume that the regulatory cost is a constant for

each bank.30

Given the optimal demand for each bank (with a load factor ρ) in (3.2), the reg-

ulator is presumed to maximize the expected welfare E[W r] by determining the best

load factor ρ and the optimal insurance premium in (3.2). Specifically, by plugging

equation (3.2) into equation (3.3), the regulator’s optimal load factor is derived from

the following optimization problem:

max
{ρ>0}

ρ

N∑
i=1

max

(
Cov(Xi, Z)− ργE[Z]

V ar(Z)
, 0

)
(3.4)

and the optimal coinsurance coefficient for each bank i = 1, · · · , N is given by ai(ρ
∗),

30We refer to Huberman, Mayers and Mayers (1982) for other cost structures in insurance litera-
ture.
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where ρ∗ is the optimal load factor in (3.4). In the end, the capital insurance’s payoff

for each bank i, ai(ρ
∗)Z, relies on both demand (from all banks) and supply (from

the regulator) in a rational expectation equilibrium.

In light of the non-concavity feature of its objective function, the regulator’s op-

timization problem (3.4) is non-standard; thus, its solution cannot be easily charac-

terized by virtue of the first order condition. In Appendix C, we elaborately reduce

the optimization problem (3.4) to a set of standard optimization problems; and as a

consequence, solve the existence of the equilibrium.

Definition 3.1 With a capital insurance Z = I(X), the loss beta of bank i is

Cov(Xi,Z)
V ar(Z)

. Bank i is deemed to be TBTF, from the capital insurance Z = I(X) per-

spective, if its optimal coinsurance coefficient a(ρ∗) is positive. The capital insurance

premium, (1 + ρ∗)a(ρ∗)E[Z], is an insurance capital for bank i.

Clearly, the capital insurance premium offers an assessment of the implicit subsidy

from an insurance perspective.

3.2.2 Identifying TBTF Banks

By virtue of equation (3.2), bank i is too big to fail as long as its loss beta,

Cov(Xi, Z)/V ar(Z), is large enough such that

Cov(Xi, Z)

V ar(Z)
> ρ∗

(
γ

E[Z]

V ar(Z)

)
. (3.5)

But the optimal load factor ρ∗ in (3.5) is subject to determined endogenously. The

optimal load factor is solved by (3.4), and it depends on all loss portfolios information,

in particularly, all banks’ loss betas. Therefore, one individual bank’s loss beta is
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not sufficient to recognize whether it is too big to fail or not; rather, we have to

implement the methodology in the financial sector as a whole to identify all TBTF

banks simultaneously. Roughly speaking, a bank is TBTF only when its loss beta is

relatively large compared with other banks’ loss betas in the same financial sector.

Again, because of its non-standard feature, it is plausible to have multiple optimal

solutions in (3.4) and thus multiple equilibria in the capital insurance market. We

argue that this plausible multiple equilibria issue is not serious though31. Notice

that the higher the load factor is, the less banks are identified as TBTF and those

identified TBTF banks have to pay higher insurance premiums. In contrast, a smaller

load factor ensures a larger number of TBTF banks whereas each TBTF bank pays a

smaller insurance premium. Evidently, the regulator is willing to choose the smallest

load factor, among many solutions of ρ∗, to enlarge the number of TBTF banks under

monitoring even though the expected welfare for the regular is indifferent. Those

banks with higher systemic risk components also desire a smaller load factor because

of smaller insurance premiums. Only banks with relatively small loss betas have

benefited from a higher load factor, because these banks are otherwise characterized

as TBTF and forced to pay insurance premiums. For these reasons, it is reasonable to

choose the smallest load factor for the regulator in the presence of possible multiple

optimal solutions in problem (3.4).

As shown in Appendix C, the following simple algorithm identifies TBTF banks by

merely using of loss betas.

31However, the multiple equilibrium issue might be very severe in some economic contexts. See,
for instance, Diamond and Dybvig (1983), Sundaresan and Wang (2013).



71

Step 1. Let βi = Cov(Xi,Z)
V ar(Z)

, and reorder that β1 ≥ · · · ≥ βN > 0. We omit those

banks with negative or zero loss betas.

Step 2. Let τm = 1
2m

∑m
i=1 βi form = 1, · · · , N . Define τm = min {βm,max (βm+1, τm)}

for m = 1, · · · , N − 1 and τN = τN .

Step 3. Compute Bm = hm(τm) for each m = 1, · · · , N , where hm(τ) =∑m
i=1(βiτ − τ 2).

Step 4. Compute m∗ as argmax1≤m≤NBm, and choose the smallest m∗ if there

exist multiple solutions of m∗.

Step 5. Bank i is TBTF if and only if βi > τm∗ , for i = 1, · · · , N .

The next proposition shows that the bank with the highest loss beta must be a

TBTF bank.

Proposition 3.1 Among all banks in a financial sector, the bank with the highest

loss beta must be too big to fail.

By Proposition 3.1, there do exist TBTF banks in any financial sector. Therefore,

the capital insurance is of necessary from the regulatory perspective.

We provide several examples of identifying TBTF banks with the above algorithm.

Example 1. If each bank contributes equivalently to the systemic risk in the sense

that Cov(Xi,Z)
V ar(Z)

= c for any i = 1, · · · , N and a positive number c, then each bank is

TBTF and the optimal load factor is c
2γ

V ar(Z)
E[Z] . Moreover, the optimal coinsurance

coefficient for each bank is its half loss beta.
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Example 1 follows easily from Proposition 3.1, in which each bank has the same

loss beta; therefore, each bank is too big to fail. The optimal load factor and the

corresponding coinsurance coefficient can be calculated easily.

Example 2. Consider a financial sector with two banks, i = 1, 2, and assume that

Cov(X1, Z) ≥ Cov(X2, Z). Then each bank is TBTF if Cov(X1, Z) = Cov(X2, Z);

and only bank 1 is TBTF if, and only if the following condition holds.

1 <
Cov(X1, Z)

Cov(X2, Z)
≤ 1√

2− 1

The first case in Example 2 follows easily from Example 1. Assume that Cov(X2, Z) <

Cov(X1, Z). Then only the first bank is TBTF, by using the algorithm, if and only

if h2(τ 2) ≥ h1(τ 1). It is easy to verify that, the last inequality holds if and only if

Cov(X1,Z)
Cov(X2,Z)

≤ 1√
2−1 .

The next example is concerned with a financial system with more than 3 banks,

in which only one bank is TBTF if this bank’s loss beta significantly dominates all

other banks’ loss betas.

Example 3. Given a loss beta structure such that Cov(Xi,Z)
V ar(Z)

= cτ i−1 for each i =

1, · · · , N , a positive number c and a positive number τ ∈ (0, 1), only the first bank is

TBTF when τ is small enough. Moreover, the optimal load factor is ρ∗ = c
2γ

V ar(Z)
E[Z] .

Example 3 is interesting in its own right. Even though some banks contribute

positively to the systemic risk and banks are heavily correlated, those banks might

still not be TBTF banks, given the fact that by insuring the bank with the most

significant systemic risk exposure, other banks’ systemic risks can be insured to some

extent. Example 3 illustrates an essential insight of the capital insurance proposal,
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which in contrast with the network approach (Acemoglu et al, 2013) to the systemic

risk that connectedness amongst the banks play a key role.

3.2.3 Positive Social Values

The following result affirms a positive social value of the capital insurance market.

Proposition 3.2 With an immaterial regulatory cost, the expected welfare of the

capital insurance market for the regulator, E[W r], is always positive.

Generally speaking, the expected welfare for the regulator depends on many market

factors such as all banks’ loss betas in a financial sector. Under what circumstance

the social value is positively related to loss betas or negatively affected by the loss

betas? There is no clear-cut on a comparative analysis given the complexity of the

equilibrium. Remarkably, Proposition 3.2 demonstrates a positive effect of the capital

insurance market for all possible loss portfolios.

We next study the effect of the capital insurance market to TBTF banks. While

TBTF banks are identified by the regulator, an important question arises. Whether

these TBTF banks are willing to purchase capital insurance contracts on their inter-

ests? What happens if these TBTF banks do not purchase the capital insurance?

or even if they are forced to purchase the capital insurance by a regulator, are they

intend to manipulate the loss portfolio because the purchase decisions are against

their willingness? The next result resolves this potential conflict interest between the

regulator and TBTF banks.

Proposition 3.3 The expected utility of a TBTF bank is strictly increased after
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purchasing the capital insurance. Moreover, the higher the loss beta of a TBTF

bank, the higher the improved expected utility of the bank.

Not only are TBTF banks willing to purchase the capital insurance contracts, but

also the banks with higher loss betas have more ex post benefits, so those banks are

more motivated to participate in this capital insurance market. Both Proposition 3.2

and Proposition 3.3 together ensure Pareto improvement by implementing a capital

insurance market.

3.2.4 Aggregate Capital Insurance

In this section, we specialize the capital insurance - aggregate capital insurance -

by assuming that the indemnity, Z, is the aggregate loss. With the aggregate capital

insurance, we show that TBTF banks must have large loss betas, a somewhat converse

statement of Proposition 3.1.

The optimal coinsurance coefficient of the aggregate insurance for a TBTF bank i

is

ai(ρ
∗) =

Cov(Xi, X)

V ar(X)
− ρ∗ γE[X]

V ar(X)
, (3.6)

in which the second component on the right side of (3.6) is the same for all banks.

The first component is (by abuse of notation) its loss beta of the loss portfolio,

βi =
Cov(Xi, X)

V ar(X)
. (3.7)

We define concretely the systemic risk from both the market level and the individual

bank perspective in an aggregate capital insurance market.

Definition 3.2 The systemic risk ex ante in the bank sector is the variance, V ar(X),
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of the aggregate loss in the financial sector. The systemic risk component of bank i

is its loss beta, Cov(Xi,X)
V ar(X)

.

Proposition 3.4 The loss beta of a TBTF bank in the aggregate capital insurance

market must be greater than or equal to 1
2N

.

In Example 2, each bank has the same loss beta and belongs to TBTF banks,

so each loss beta βi = 1/N because the sum of all loss betas is 1. In spite of all

possible loss portfolios, Proposition 3.4 shows that all TBTF banks’s loss betas must

be bounded below by 1
2N

, a fairly tight distribution-freelower bound of loss betas for

all TBTF banks.

We turn next to the systemic risk. By using our systemic risk measurements, we

demonstrate that the systemic risk is indeed reduced in the entire financial sector by

the next result.

Proposition 3.5 In a positive correlated risk environment in the sense that Cov(Xi, Xj) ≥

0,∀i, j = 1, · · · , N , the total systemic risk in the financial sector is strictly reduced

after implementing the aggregate capital insurance.

3.2.5 Moral Hazard

We have so far assumed that the regulator recognizes all banks’ true loss portfolios

in the capital insurance market. However, the asymmetric information about loss

distributions between banks and the regulator could distort the insurance premium,

the optimal indemnity, and probably affect entirely the major insights of the capital

insurance market. The objective of this subsection is to examine the moral hazard
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issue between banks and the regulator. We show that the regulator is able to reveal

each bank’s true loss portfolio in the capital insurance market and to identity TBTF

banks correctly; the banks are also aware of regulator’s ability to recognize the true

loss portfolios. Hence, the true loss portfolios are reported in the presence of the

capital insurance market.

Precisely, each bank i’s true loss portfolio is denoted byXi, but this bank’s reporting

loss portfolio to the regulator is X̂i. We write X̂i = Xi+ εi, for i = 1, · · · , N and each

εi has mean 0 and variance σ2
i . We assume that these noise terms, ε1, · · · , εN , are in-

dependent from each other, Moreover, these noise terms are independent from banks’

true loss portfolios {X1, · · · , XN}. For regulator, the aggregate loss is X̂ ≡
∑N

i=1 X̂i,

but it might be not the true aggregate loss of the market due to the asymmetric

information on the loss distributions.

We consider two kinds of moral hazard. First, we assume that these banks know

the true loss portfolios each other but they collectively report “wrong” loss portfolios

to the regulator. This case is called a collective moral hazard (see Farhi and Tirole,

2012, in a similar context). Second, these banks do not know the true loss portfolios

each other. In other words, each bank misrepresents its loss portfolios to anyone else

to take information advantage in the capital insurance market. This case is termed as

a mutual moral hazard. In what follows, we show that the regulator is able to reveal

the true loss portfolios and identify TBTF banks with the help of the aggregate capital

insurance in these two cases, respectively.
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3.2.5.1 Collective Moral Hazard

Since bank i knows all true loss portfolios in this collective moral hazard situation,

bank i’s optimal coinsurance coefficient, if being positive with a given load factor ρ, is

determined by equation (3.6). Moreover, even though the true loss portfolio Xi and

the true aggregate loss portfolio X might be unknown to the regulator, the regulator

fully observes ai(ρ) for each i = 1, · · · , N from the capital insurance market. The

next proposition shows that, given the information set
{
ai(ρ), X̂i; i = 1, · · · , N

}
, the

regulator is able to identify σ2
i for each bank i.

Proposition 3.6 Given a load factor ρ with ai(ρ) > 0, i = 1, · · · , N , the variances

{σ2
1, · · · , σ2

N} can be derived uniquely by the data set
{
ai(ρ), X̂i; i = 1, · · · , N

}
.

As the regulator offers the capital insurance contracts with vary load factors, the

regulator is able to identify the variances, σ2
i , i = 1, · · · , N , of the error terms of

the loss portfolios. Notice that these banks are not necessarily to be TBTF since

the load factor might be not the optimal load factor though. However, knowing σ2
i ,

both the “true” covariance Cov(Xi, X) = Cov(X̂i, X̂) − σ2
i and the “true” variance

V ar(X) = V ar(X̂)−
∑N

i=1 σ
2
i are known. Therefore, the optimal load factor problem

of the regulator, that is, the problem (3.4), is reduced to be

max
{ρ>0}

ρ
N∑
i=1

max

(
Cov(X̂i, X̂)− σ2

i − ργE[X̂]

V ar(X̂)−
∑N

i=1 σ
2
i

, 0

)
. (3.8)

Problem (3.8) can be solved exactly as in solving problem (3.4). Thus, the regulator

is able to identify all TBTF banks correctly in this collective moral hazard situation.



78

3.2.5.2 Mutual Moral Hazard

In a mutual moral hazard situation, bank i is only aware of its own loss portfolio

Xi and “reported” loss portfolios X̂j, j 6= i, of all other banks. Then, from bank i’s

perspective, the aggregate loss portfolio is Xi +
∑

j 6=i X̂j, which is X̂ − εi. Conse-

quently, bank i’s terminal wealth in equation (3.1), after purchasing capital insurance,

is replaced by W i
0−Xi + ai(X̂ − εi)− (1 + ρ)E[ai(X̂ − εi)]. As a result, the first order

condition yields the optimal coinsurance coefficient for bank i,

ai(ρ) = max

{
Cov(Xi, X̂ − εi)− ργE[X̂ − εi]

V ar(X̂ − εi)
, 0

}
. (3.9)

Proposition 3.7 In a positive correlated risk environment in the sense that Cov(Xi, Xj) ≥

0,∀i, j = 1, · · · , N , the regulator is able to identify TBTF banks correctly in a mutual

moral hazard situation. Precisely, given a load factor ρ with ai(ρ) > 0, i = 1, · · · , N ,

the variances {σ2
1, · · · , σ2

N} can be derived uniquely by the data set
{
ai(ρ), X̂i; i = 1, · · · , N

}
.

Since the noises’ variances {σ2
i ; i = 1, · · · , N} can be solved by the regulator, the

regulator knows Cov(Xi, X̂−εi) = Cov(X̂i, X̂)−σ2
i and V ar(X̂−εi) = V ar(X̂)−σ2

i .

Then, the optimal load factor for the regulator is reduced to be

max
{ρ>0}

ρ

N∑
i=1

ai(ρ) ≡ ρ
N∑
i=1

max

(
Cov(X̂i, X̂)− σ2

i − ργE[X̂]

V ar(X̂)− σ2
i

, 0

)
. (3.10)

Again, Problem (3.10) can be solved similarly by a method explained in Appendix

C. Therefore, the regulator can identify all TBTF banks in this mutual moral hazard

situation.
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We have developed the equilibrium analysis of the capital insurance market and

shown the advantages of the proposed capital insurance market in several aspects

(Proposition 3.1 to Proposition 3.7). We also justify in theory that the loss betas

capture significant component of the systemic risk. We next illustrate how our theo-

retical results can be implemented empirically.

3.3 Empirical Analysis and Implementation

In this section, we first present an empirical analysis by following the methodology

in Section 2. We apply several capital insurance contracts to identify TBTF banks.

Then we discuss some implementation issues and make some comments to extend the

framework.

3.3.1 Data

In our empirical analysis, we identify TBTF banks over the period from 2004 to

2012 on the year by year basis. There are 14 big financial institutions during the

pre-financial crisis period from 2004 to 2008 in our sample. The institutions are in

groups of banks, insurance companies, investment firms and government sponsored

enterprises. They are: Freddie Mac, Fannie Mac, American International Group,

Merrill Lynch, Bank of America, Bear Sterns, Citigroup, Goldman Sachs, JP Morgan,

Lehman Brother, Metlife, Morgan Stanley, Wachovia and Wells Fargo. For simplic-

ity, we use the corresponding symbols “3FMCC*1000”, “3FNMA”, “AIG”, “BAC2”,

“BAC”, “BSC.1”, “C”, “GS”, “JPM”, “LEHMQ”, “MET”, “MS”, “WB” and “WFC” to

represent these 14 big financial institutions, respectively. Only 10 financial institu-

tions out of 14 left in the market after financial crisis, so we report TBTF banks
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from these ten banks over the pro-crisis period 2009-2012. We obtain information

on the bank characteristics such as total assets, total equity and number of shares

outstanding from Compustat and stock returns data from CRSP.

Similar to Adrian and Brunnermeier (2010), we compute the asset loss portfolio for

each financial institution i, i = 1, · · · , N . For this purpose, we define the following

variables:

� Lit: the leverage ratio of institution i at time t, the ratio of total asset value

over the total equity value;

� M i
t : the market capitalization of institution i at time t;

� Y i
t : the profit and loss of institution i at time t, that is, Y i

t ≡ Lit·M i
t−Lit−1·M i

t−1;

� X i
t : the loss portfolio of institution i at time t, that is, X i

t ≡ max{−Y i
t , 0}.

� Xt: the aggregate loss portfolio at time t, Xt =
∑

iX
i
t .

Since the number of banks in our sample changes before and after financial crisis, we

conduct our analysis for two sub-periods pre-crisis (2004-2008) and pro-crisis (2009-

2012) separably.

3.3.2 Identify TBTF Banks Empirically

In the following empirical analysis, we use two types of capital insurance contracts,

deductible insurance and cap insurance contracts, respectively. A deductible capital

insurance has a payoff structure Z = max{X − L, 0} where L is an exogenously

given deductible level. The deductible capital insurance is inspired by the classical

deductible insurance contract, which is optimal for the insured with a linear premium
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principle (Arrow, 1965). On the other hand, a cap contract with a payoff structure

Z = min{X,L} is shown to be optimal for insurer under some assumptions in Raviv

(1979), where L represents a capped level for the loss. Aggregate capital insurance

is a special deductible contract with zero deductible level or a special cap contract

with infinitely large cap level. For a robust purpose, we examine three different levels

of L including L = 0.1E[X], L = 0.2E[X] and L = 0.5E[X] in both deductible and

cap insurance contract, where E[X] is the expected aggregate loss portfolio across

all the banks in our sample. In total, six capital insurance contracts are used in

implementing the methodology.

Our identification of TBTF banks are presented in Table 3.1 - Table 3.9 on the

year by year basis.

Table 3.1 displays the procedure of identifying TBTF banks in 2004 with these

six different capital insurance contracts, in which TBTF banks are reported for both

deductible insurance and cap insurance contracts in red and blue colors, respectively.

We highlight m∗ and τm∗ for each contract. By using three deductible insurance

contracts, only “BAC” is identified as TBTF. However, there are additional three

TBTF banks, 3FNMA, AIG and MS, if cap insurance contracts are employed. In

a certain degree, it is not a surprise that there are more TBTF banks from a cap

insurance market than a deductible insurance market because a cap contract itself is

optimal from seller’s perspective (Raviv, 1979), and we observe similar patterns in

Table 3.2- Table 3.9 as well. Moreover, these four banks, BAC, 3FNMA, AIG and

MS, are TBTF banks in each cap insurance market, and they have the highest loss

betas even in each deductible market. It demonstrates that these four banks indeed
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have significant systemic risk exposures.

Identifying TBTF banks becomes more interesting and serious in 2005 than in 2004,

as reported in Table 3.2. In Table 3. 2, there are five TBTF banks, 3FNMA, AIG,

MS, BAC2 and JPM, in each deductible market. Notice that these five banks are

also TBTF banks in each cap insurance market, but the cap insurance market reveals

more TBTF banks in 2005. When the cap level is given by L = 0.1E[X], there are 10

TBTF banks in total; and there are seven TBTF banks when the cap level is higher

(L = 0.2E[X] or L = 0.5E[X]). In other words, five new banks are TBTF banks with

the first cap contract and two new banks are TBTF by using other cap insurance

contracts. As a summary, at least seven banks are deemed to be too big to fail from

the regulator’s perspective, by implementing the capital insurance market. In these

seven banks, 3FMNA, AIG, MS, BAC, BAC2, JPM and 3FMCCC*1000, two banks,

BAC and 3FMCC*1000, are not identified as TBTF banks in deductive insurance

market but both of them have large loss betas right next to those other five TBTF

banks in each deductible insurance market.

Table 3.3 displays TBTF banks in 2006. This table also demonstrates some impor-

tant differences between the deductible contract and the cap insurance contract. As

illustrated in Table 3.3, only one “WFC” is identified as TBTF in each deductible in-

surance market. On the right side of Table 3.3, however, there are many more TBTF

banks; there are 10, 9, and 8 TBTF banks in each cap insurance market with different

cap level, respectively. In each cap insurance market, WFC has the highest loss beta

so it is TBTF naturally (Proposition 3.1), but there are at least seven other banks

which are deemed to be TBTF banks in each cap insurance market. It is interesting



83

to check positions of LEHMQ in Table 3.3. LEHMQ is TBTF in each cap insurance

market. More importantly, LEHMQ has very high loss beta so as large systemic risk

exposure: it has the third largest loss beta persistently in each cap insurance market

and the second highest loss beta persistently in each deductible market. The latter

point is worth mentioning because LEHMQ is not identified as TBTF just because an-

other bank’s loss beta dominates all other banks’ loss betas (as explained in Example

3).

2007 is important in many aspects to understand the financial crisis because some

critical issues regarding the mortgage-backed securities and CDO market have been

emerged in the market. The identification of TBTF banks, reporting in Table 3.4, is

fairly consistent with the substantial systemic risk issue occurred in this year. First

of all, comparing with only one TBTF bank in 2006 in each deductible insurance

market, there are ten TBTF banks in 2007 when we make use of the same deductible

contracts. Second, these ten TBTF banks are fairly the same as TBTF banks from

the cap insurances perspective. Over the entire pre-crisis period, 2007 is the only

one year in which deductible markets and cap insurance markets identify TBTF most

consistently.

Owing to several dramatic market events in 2008, we have to be deliberate with

regard to the data analysis. Because of well known events happened on Bear Sterns

(BSC1), Lehman Brother (LEHMQ), Merrill Lynch (BAC2) and Wachovia (WB), the

loss portfolios of these four banks are under scrutiny. Moreover, because of significant

losses across the financial sector in 2008, some cap insurance contracts might not work

well in 2008 anymore. For instance, the variance of Z is almost zero when the cap
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level is set too low in 2008 such as L = 0.1E[X]. Therefore, the top cap insurance

market on the right side in Table 3.5 should be read with diligence because of some

negative loss betas. Still, we find that those TBTF banks in 2007 are either TBTF

banks or have high level loss betas in each capital insurance market in 2008. By

combining Table 3.4 and Table 3.5 together, the TBTF issue is so significant that

should be alarmed seriously for the regulator.

Over the post-crisis period (2009-2012), only ten banks left in the original financial

sector. The TBTF banks in 2009 are identified and reported in Table 3.6. As observed,

the TBTF issue is still very serious because there are four banks, “AIG”, “WFC”,

“JPM” and “BAC”, are deemed to be TBTF banks in each capital insurance market.

This is the second year (the first time is on 2007) when both deductible and cap

insurance market identify identical TBTF banks. This list of TBTF banks is clearly

intuitively appealing because “AIG” plays a crucial role in its CDS issuance and other

three are the largest three commercial banks in U.S.

The TBTF issue has been reduced considerably after 2009 according up to our

empirical analysis. As shown in Table 3.7-3.9, only GS is identified as TBTF between

2009-2012. This fact might result from our construction of asset loss portfolio, because

the leverage ratio is of essential in this construction and GS has relatively large

leverage ratio. Given its substantially large loss beta comparing with all other banks,

only the bank, GS, with the highest loss beta is TBTF (as illustrated in Example 3).

From the regulatory perspective, it shows some positive signs on the TBTF issues

but they should pay a closer attention to GS to reduce its leverage ratio.

Our empirical results can be summarized as follows.
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(1). Deductible capital insurance markets with different deductible levels identify

TBTF banks consistently in each year.

(2). Cap insurance markets with vary cap levels also identify TBTF banks fairly

consistently.

(3). In general, TBTF banks in deductible market are very likely TBTF banks in

cap insurance markets, but not vice versa. When a bank is deemed to be TBTF

bank in both deductible and cap insurance market, it should have large systemic

risk.

(4). The regulator should be alerted when both the deductible and the cap market

identify a large number of TBTF banks consistently (say in 2007 and 2009).

(5). When one bank has significantly large loss beta comparing with all other banks,

only this bank is TBTF according to our presented methodology. In this case,

other banks with large loss betas should be analyzed in diligent as well.

(6). The regulator should conduct the TBTF analysis by using several different cap-

ital contracts. The regulator should also be careful to construct loss portfolios

to analyze the systemic risk.

(7). The TBTF issues has been considerably reduced lately.

3.3.3 Implementation and Comments

In this section, we explain how the previous discussions can be modified or extended

in a more general setting. In particular, we discuss how to address the background
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risk. We also incorporate richer indemnity structure of the capital insurance as well

as the general specification of the load factor into the setting.

3.3.3.1 Background Risk

Essential to our methodology is the loss portfolio of each bank as input to identify

TBTF banks. Since the loss portfolio construction is related to its systemic risk

exposure, the background risk can not be ignored. For instance, when the mortgage-

based securities risk is a big concern as in 2007-2008, we can choose Xi to be the loss

portfolio concentrated on mortgage-based risk only. In this way, the initial wealth

with other possible risk exposures is not deterministic anymore.

Assume the time period starts from time t and all loss portfolios of banks are

realized at the next time period t + 1. Let Ft denote the information set at time

t which is observed by all banks and regulator. The wealth of bank i at time t is

Wi,t. Due to the background risk, Wi,t could be correlated with the loss portfolio

Xi,t+1. Let Xt+1 =
∑N

i=1Xi,t+1 denote the aggregate loss portfolio in the time period

[t, t+ 1], and the capital insurance contract proposed in this time period is a multiple

of Zt+1 ≡ I(Xt+1).

First of all, the bank i’s terminal wealth at time t + 1 is Wi,t+1 = Wi,t −Xi,t+1 +

ai,tZt+1− (1+ρt)Et[ai,tZt+1], where Et[·] denotes the conditional expectation operator

with respect to the information set Ft and ai,t is the optimal coinsurance coefficient

for bank i. Secondly, let Covt(·) denote the conditional covariance with respect to

the information set Ft. By standard method in Section 2, the optimal coinsurance
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parameter at time t for bank i is

ai,t(ρt) = max

{
Covt(Xi,t −Wi,t, Zt+1)− ρtEt[Zt+1]γ

V art(Zt+1)
, 0

}
. (3.11)

By comparing equation (3.2) with equation (3.11), it suffices to replace the loss portfo-

lio in equation (3.2) by the difference between the loss portfolio and the initial wealth

at time t. Thirdly, the regulator determines the best load factor, ρt, at time t, by

solving the conditional-based optimization problem

max
{ρt>0}

N∑
i=1

ρt max{Covt(Xi,t −Wi,t, Zt+1)− ρtEt[Zt+1]γ, 0}. (3.12)

Evidently, the last problem can be solved similarly at time t, given the information

set Ft.

3.3.3.2 Payoff Structure

While we develop the theory for a class of capital insurance contract, Ii(X,Xi) =

aiI(X), for some function forms of I(·), the payoff structure can be quite general.

Ii(X,Xi) can be designed in a way that both the aggregate loss X and the individual

loss portfolio Xi are involved for bank i, or Ii(X,Xi) even depends on the entire set

of loss portfolios, {X1, · · · , XN}. For instance, Ii(X,Xi) = ai(X −Xi), is a contract

proposed in Kashyap et al (2008) and studied in Panttser and Tian (2013). As another

example, we can consider a general version of the indemnity:

Ii(X,Xi) = aiI(b1X1 + · · ·+ bNXN), (3.13)

where the parameters b1, · · · , bN capture some firm-specific features of the banks and

I(·) is a specific functional form. Bank i chooses the coinsurance coefficient ai.
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It is worth mentioning that the methodology developed in Section 2 is different from

the classical insurance literature even for a classical coinsurance contract, Ii(X,Xi) =

aiXi. In classical insurance literature, the insureds’ loss portfolios are assumed to be

independent from each other, so the law of large number is applied. Panttser and Tian

(2013) develops an equilibrium analysis following the same methodology in Section 2

for classical coinsurance contracts at the presence of dependent structure among loss

portfolios.

3.3.3.3 Loss Factor

Finally, we consider the load factor in the form of ρi = ρ(θ,Xi) to incorporate the

firm-specific information such as size, credit risk, liquidity, and its complexity, where

θ is a set of parameters and ρi(θ,Xi) is used to compute the insurance premium for

bank i. The equilibrium analysis can be developed similarly. For instance, for the

capital insurance contract, Ii(X,Xi) = aiZ, bank’s i optimization problem is still the

same as in equation (3.1) and the optimal coinsurance coefficient is given by

ai(θ, ρ(θ,Xi)) = max

{
Cov(Xi, Z)− ρ(θ,Xi)E[Z]γ

V ar(Z)
, 0

}
. (3.14)

Therefore, the regulator’s optimization problem is

max
{θ,ρ(θ,Xi)>0}

N∑
i=1

ρ(θ,Xi) max{Cov(Xi, Z)− ρ(θ,Xi)E[Z]γ, 0}. (3.15)

The equilibrium is solved similarly to the optimization problem described in equa-

tion (3.4).
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3.4 Conclusions

This paper suggests a new methodology of studying systemic risk from an insurance

perspective. By developing an equilibrium analysis of the capital insurance, we show

that this capital insurance idea is promising to examine some systemic risk issues

because of the following results. (1) The insurer (say, a regulator) is better off to

issue the capital insurance and the systemic risk on the market level is reduced.

(2) Banks are better off to increase their expected utilities and their systemic risk

components are reduced ex post. (3) This capital insurance program enables the

regulator to identify which banks are deemed to be TBTF irrespective of absence of

moral hazard or not. (4) The TBTF issues can be mainly captured by a high level of

loss beta, a new systemic risk measure introduced in this equilibrium approach.

These reported results have some important policy implications and practical ap-

peals. The regulator can design several optimal capital insurance contracts and iden-

tifies TBTF banks. The insurance premium received by the regulator can be viewed

as a new type of capital - insurance capital, to protect the insured financial institu-

tions in the face of crisis. Finally, the insurance capital can be also used to assess the

implied guarantee subsidy for TBTF banks.
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[22] Chiappori, P. A. & SalaniÃl’, B. Testing for Asymmetric Information in In-
surance Market. Journal of Political Economy, 108 , 56-78.

[23] Choi, Y., & Douady, R. (2000). Financial Crisis Dynamics: Attempt to Define
a Market Instability Indicator. Quantitative Finance, 12, 1351-1365.

[24] Coffee, J. C. (2011). Systemic Risk After Dodd-Frank: Contingent Capital and
the Need for Regulatory Strategies Beyond Oversight, Columbia Law Review,
111, 795-847.

[25] Dewatripoint, M., & Tirole, J. (1994). The Prudentil Regulation of Banks.
Cambridge, MA: MIT Press.

[26] Diamond, D., & Dybvig, P. (1983). Bank Runs, Deposit Insurance and Liq-
uidity. Journal of Political Economy, 91, 401-419.

[27] Eisenberg L. & Noe, T. (2001). Systemic Risk in Financial Systems. Manage-
ment Science 47, 236-249.

[28] Farhi, E., & Torole, J. (2012). Collective Moral Hazard, Maturity Mistatch,
and Systemic Bailouts. American Economic Review, 102, 60-93.

[29] Froot, K. A. (2000). The Market for Catastrophe Risk: a Clinical Examina-
tion. Journal of Financial Economics, 60, 529-571.



115

[30] Froot, K. A., Scharfstein., D. S. & Stein, J. C. (1993). Risk Management: Co-
ordinating Corporate Investment and Financing Policies. Journal of Finance,
48, 1629-1658.

[31] Gollier, C. (2011). The Economics of Risk and Time. Cambridge, MA: MIT
Press.

[32] Greens, A. (2014). Implicit Subsidy in the EU Banking Sector. Proceedings
from Eastern Financial Association. Chicago, IL.

[33] Hansen, L. P. (2012). Challenges in Identifying and Measuring Systemic Risk.
Working Paper, University of Chicago.

[34] Hanson, S. G., Kashyap, A. K. & Stein, J. C. (2011). A Macroprudential
Approach to Financial Regulation. Journal of Economic Perspectives, 25, 3-
28.

[35] Harris, M., & Raviv, A. (1995). The Role of Games in Security Design. Review
of Financial Studies, 8, 327-367.

[36] Hellwig, M. F. (2009). Systemic Risk in the Financial Sector: An Analysis of
the Subprime-Mortgage Financial Crisis. De Economist, 157, 129-207.

[37] Hogan, W., & Warren, H. (1974). Toward the Development of an Equilib-
rium Capital-Market Model Based on Semivariance. Journal of Financial and
Quantitative Analysis, 9, 1-11.

[38] Huberman, G., Mayers, D. & Smith, C. (1983). Optimal Insurance Policy
Indemnity Schedules. Bell Journal of Economics, 14, 415-426.

[39] IMF Report (2014). How Big is the Implicit Subsidy for Banks Considered
Too Important To Fail?.

[40] Janssen, M., & Karamychew, V. (2009). Dynamic Insurance Contracts and
Adverse Selection. Journal of Risk and Insurance, 72, 45-59.

[41] Kashyap, A., Rajan, R. & Stein, J.C. (2008). Rethinking Capital Regulation.
Maintaining Stability in a Changing Financial System. Federal Reserve Bank
of Kansas City, 431-471.

[42] Lehar, A. (2005). Measuring Systemic Risk: A Risk Management Approach.
Journal of Banking and Finance, 29, 2577-2603.

[43] Mace, R. (1999). Full Insurance in the Presence of Aggregate Uncertainty.
Journal of Political Economy, 99, 928-956.

[44] Meyer, D., & Meyer, J. (1990). Changes in Background Risk and the Demand
for Insurance.” Geneva Papers on Risk and Insurance Theory, 23, 29-40.



116

[45] O’Hara, M., & Shaw, W. (1990). Deposit Insurance and Wealth Effects: The
Value of Being “Too Big To Fail”. Journal of Finance, 45, 1587-1660.

[46] Panttser, E., & Tian, W. (2013). A Welfare Analysis of Capital Insurance,
Risks, 1, 57-80.

[47] Pritsker, M. (2012). Enhanced Stress Testing and Financial Stability. Federal
Reserve Bank of Boston.

[48] Raviv, A. (1979). The Design of an Optimal Insurance Policy. American Eco-
nomic Review, 69, 84-96.

[49] Rochet, J. C. (2009). Regulating Systemic Institutions. Finnish Economic
Papers, 22, 35-46.

[50] Rothschild, M., & Stiglitz, J. (2005). Equilibrium in Competitative Insurance
Market: An Essay on the Economics of Imperfect Information. Quarterly Jour-
nal of Economics, 90, 629-650.

[51] Sundaresan, S., & Wang, Z. On the Design of Contingent Capital with a
Market Trigger. Journal of Finance, forthcoming.

[52] Tian, W. (2012). Contingent Capital As An Asset Class. Working Paper, Uni-
versity of North Carolina at Charlotte.

[53] Tian, W. (2013). Contingent Capital with Endogenous Trigger. Working Pa-
per, University of North Carolina at Charlotte.

[54] Van Oordt, M., & Zhou, C. (2014). Systemic Tail Risk. Journal of Financial
and Quantitative Analysis, forthcoming.

[55] Venezia, I., & Levy, H. (1983). Optimal Multi-Period Insurance Contracts.
Insurance: Mathematics and Economics, 2, 199-208.

[56] Wagner, W. (2010). Diversification at Financial Institutions and Systemic
Crises. Journal of Financial Intermedian, 19, 373-386.

[57] Zingales, L., & Hart, O. (2009) A New Capital Regulation For Financial In-
stitutions. Paper presented at the CEPR/ESI 13th Annual Conference on
Financial Supervision in an Uncertain World.

[58] Zhou, H., Huang, X., & Zhu, H. (2009). A Framework for Assessing the Sys-
temic Risk of Major Financial Institutions. Journal of Banking and Finance,
33, 2036-2049.



117

APPENDIX A: CHAPTER 1. PROOFS.

The proofs rely on the following simple lemma.

Lemma 1 Given positive numbers bi, ci, κi for each i = 1, · · · , n,

1. If the vector κ = (κi) is co-monotonic to the vector b
c

= ( bi
ci

), then∑n
i=1 biκi∑n
i=1 bi

>

∑n
i=1 ciκi∑n
i=1 ci

.

2. If the vector κ = (κi) is counter-monotonic to the vector b
c

= ( bi
ci

), then∑n
i=1 biκi∑n
i=1 bi

<

∑n
i=1 ciκi∑n
i=1 ci

.

Proof:
∑
biκi

∑
ci −

∑
bi
∑
ciκi =

∑
i,j biκicj −

∑
i,j bjciκi =

∑
i,j(bicj − bjci)κi =∑

i,j,i<j(bicj − bjci)(κi − κj) =
∑

i,j,i<j cicj

(
bi
ci
− bj

cj

)
(κi − κj). �

Given a vector a = (a1, · · · , an), we use V AR(a) =
∑
a2i − (

∑
ai)

2 to represent

the variability of the vector a. A small V AR(a) means that those components in

a are close to each other. Similarly, we write E[a] =
∑
ai. It is easy to see that

V AR(a) = 1
2

∑
(ai − aj)2.

Lemma 2 Given two sequences of positive numbers ai, bi, i = 1, 2, · · · , n,

� If those numbers a1, · · · , an are close enough in the sense that V AR(a) ≤

E[a]2V AR(b)/E[b]2 , then
∑
a2i∑
b2i
≤ (

∑
ai)

2

(
∑
bi)2

.

� If those numbers b1, · · · , bn are close enough in the sense that V AR(b) ≤ E[b]2V AR(a)/E[a]2,

then
∑
a2i∑
b2i
≥ (

∑
ai)

2

(
∑
bi)2

.

Proof: By straightforward calculation, we obtain

∑
a2i (
∑

bi)
2 − (

∑
ai)

2
∑

b2i =
1

2

{∑
i,j,k

(ai − aj)2b2k −
∑
i,j,k

a2i (bj − bk)2
}

=
∑

b2iV AR(a)−
∑

a2iV AR(b). (A-1)
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When the numbers ai are close enough, the first term in (A-1) is dominated by the

second term. This is the first case. It is the classical Cauchy-Schwartz inequality

when a1 = · · · = an. In the second case, the second term is close to zero. �

Proof of Proposition 1.4. Under the uncorrelated assumption, E[W ∗,a] =∑
V ar(Xi)
4
∑
γi

. As E[Xi] ≥ 0 for each i, we have E[W ∗,c] ≥
∑

E[Xi]
2

4
∑

i γiE[Xi]2/V ar(Xi)
. For each i 6=

j, if V ar(Xi)
γi

<
V ar(Xj)

γj
, then by the co-monotonic assumption, E[Xi]√

V ar(Xi)
≤ E[Xj ]√

V ar(Xj)
.

So, E[Xi]
2

V ar(Xi)
≤ E[Xj ]

2

V ar(Xj)
. Therefore,

V ar(Xi)

E[Xi]2
≥ V ar(Xj)

E[Xj]2
. (A-2)

It means that vectors
(
V ar(Xi)

γi

)
and

(
V ar(Xi)
E[Xi]2

)
are counter-monotonic. Then by

Lemma 1, we obtain (using bi = γi, ci = γiE[Xi]
2/V ar(Xi) and κi = V ar(Xi)/γi):∑

E[Xi]
2∑

i γiE[Xi]2/V ar(Xi)
>

∑
V ar(Xi)∑

γi
. (A-3)

We have proven the first part. As for the second part, assume that the risk-adjusted

variance is counter-monotonic to the Sharpe ratio vector. Then by the same idea, we

have that ∑
E[Xi]

2∑
i γiE[Xi]2/V ar(Xi)

<

∑
V ar(Xi)∑

γi
= E[W ∗,a]. (A-4)

Therefore, when E[X]2 is close to
∑

E[Xi]
2, we obtain that E[W ∗,c] ≤ E[W ∗,a]. The

proof is complete. �

Proof of Proposition 1.5. The welfare of each insurance contract in the one-

factor model is computed as follows.

E(W ∗,a) =
1

4

η2V ar(Y ) + σ2∑
i γi

. (A-5)

E(W ∗,c) =
1

4

η2∑
i γi

η2i
η2i V ar(Y ) + σ2

i

, (A-6)
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and

E(W ∗,ac) =
1

4

(∑
i η̂iE(Y )

αiη̂iV ar(Y )

η̂2i V ar(Y ) + σ̂2
i

)2

∑
i γi

η̂2iE(Y )2

η̂2i V ar(Y ) + σ̂2
i

=
1

4

(∑
i

αiη̂
2
i V ar(Y )

η̂2i V ar(Y ) + σ̂2
i

)2

∑
i γi

η̂2i
η̂2i V ar(Y ) + σ̂2

i

. (A-7)

Clearly, when the total σ2 = 0, the welfare is identical for all three types of contracts.

The second part follows from the same idea. �

Proof of Proposition 1.6.

First, note that η2 ≥
∑
η2i and the function f(x) ≡ x2V ar(Y )+σ2

x2
is decreasing with

respect to x. Then,

η2V ar(Y ) + σ2

η2
≤
∑

(η2i V ar(Y ) + σ2
i )∑

η2i
. (A-8)

To prove E[W ∗,a] < E[W ∗,c] under the co-monotonic condition, it suffices to show

that ∑
(η2i V ar(Y ) + σ2

i )∑
γi

<

∑
η2i∑

i γi
η2i

η2i V ar(Y ) + σ2
i

. (A-9)

In fact, by using the co-monotonic relationship between the risk-adjusted variance

and the Sharpe ratio, the risk-adjusted variance is counter-monotonic to the vector(
V ar(Xi)
E[Xi]2

E[Y ]2
)

. Note that E[Xi] = ηiE[Y ] and V ar(Xi) = η2i V ar(Y ) +σ2
i . Then, the

last inequality (A-9) follows from Lemma 1 for bi = γi, ci = γi
η2i

η2i V ar(Y ) + σ2
i

, and

κi = V ar(Xi)/γi.

If the risk-adjusted variance is counter-monotonic to the Sharpe ratio across the

banks, then by the same proof, we obtain:∑
(η2i V ar(Y ) + σ2

i )∑
γi

>

∑
η2i∑

i γi
η2i

η2i V ar(Y ) + σ2
i

. (A-10)

For a large positive number x, f ′(x) = −2σ2

x3
is close to zero, so the curve y = f(x) is

almost flat. Then, for a large E[X], the numbers η2V ar(Y )+σ2

η2
and

∑
(η2i V ar(Y )+σ2

i )∑
η2i

are
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so close enough that

η2V ar(Y ) + σ2

η2
∼
∑

(η2i V ar(Y ) + σ2
i )∑

η2i
>

∑
γi∑

i γi
η2i

η2i V ar(Y ) + σ2
i

.

Equivalently, E[W ∗,a] > E[W ∗,c]. �

Proof of Proposition 1.7. As the risk-adjusted variance is co-monotonic to the

Sharpe ratio across each bank, Lemma 1 yields that

1

4

∑
E[Xi]

2∑
γiE[Xi]2/V ar(Xi)

>
1

4

∑
V ar(Xi)∑

i γi
. (A-11)

By using Cauchy-Schwartz inequality, V ar(Xi)V ar(X̂i) ≥ Cov(Xi, X̂i)
2 for each i.

We obtain

1

4

∑
E[Xi]

2∑
γiE[Xi]2/V ar(Xi)

>
1

4

∑
Cov(Xi, X̂i)

2/V ar(X̂i)∑
i γi

. (A-12)

Note that Cov(Xi,X̂i)
2

V ar(X̂i)γi
= ρ2i

V ar(Xi)
γ

where ρi is the correlation coefficient between Xi

and X̂i. If the Sharpe ratio of the “dual” risk E[X̂i]√
V ar(X̂i)

is counter-monotonic to the

risk-adjusted correlated variance ρ2i
V ar(Xi)

γ
, then ρ2i

V ar(Xi)
γ

is co-monotonic to V ar(X̂i)

E[X̂i]2
.

Again by Lemma 1 (for bi = γi, ci = γi
E[X̂i]

2

V ar(X̂i)
and κi = ρ2i

V ar(Xi)
γ

), we have

∑
Cov(Xi, X̂i)

2/V ar(X̂i)∑
i γi

>

∑
E[X̂i]

2Cov(Xi,X̂i)
2

V ar(X̂i)2∑
γi

E[X̂i]2

V ar(X̂i)

. (A-13)

By combing (A-12) with (A-13) together, we obtain

∑
E[Xi]

2∑
γi

E[Xi]2

V ar(Xi)

>

∑
E[X̂i]

2Cov(Xi,X̂i)
2

V ar(X̂i)2∑
γi

E[X̂i]2

V ar(X̂i)

. (A-14)

Equivalently, ∑
E[Xi]

2∑
E[X̂i]2

Cov(Xi,X̂i)2

V ar(X̂i)2

>

∑
γi

E[Xi]
2

V ar(Xi)∑
γi

E[X̂i]2

V ar(X̂i)

. (A-15)
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When E[Xi] is distributed equally, or the expected losses are fairly close enough,

Lemma 2 ensures that

(
∑

E[Xi])
2(∑

E[X̂i]2
Cov(Xi,X̂i)

V ar(X̂i)

)2 > ∑
E[Xi]

2∑
E[X̂i]2

Cov(Xi,X̂i)2

V ar(X̂i)2

. (A-16)

Finally, by using (A-15) and (A-16) we obtain

(
∑

E[Xi])
2(∑

E[X̂i]2
Cov(Xi,X̂i)

V ar(X̂i)

)2 >
∑
γi

E[Xi]
2

V ar(Xi)∑
γi

E[X̂i]2

V ar(X̂i)

. (A-17)

By using Proposition 1.2and Proposition 1.3, we obtain that E[W ∗,c] > E[W ∗,ac]. �
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APPENDIX B: CHAPTER 2. PROOFS

Proof of Proposition 2.3: E[U(W̃ i)]− E[U(W i)] can be represented by

A ≡ −aiρE[X]− 1

2γi

{
a2iV ar(X)− 2aiCov(Xi, X)

}
.

By straightforward computation and the expression of ai in (2.8), we have

a2iV ar(X)− 2aiCov(Xi, X) = − 1

V ar(X)

{
Cov(Xi, X)2 − ρ2γ2i E[X]2

}
. (C-1)

Then by using the expression of ai(ρ
∗) again in aiρE[X], we have

A =
1

2γiV ar(X)
{Cov(Xi, X)− γiρE[X]}2 , (C-2)

which implies the formula in Proposition 3.3 by using the formula of the load factor

ρ∗. �

Proof of Equation (2.26): The difference between V ar(W̃ i) and V ar(W i),

V ar(W̃ i)− V ar(W i), is given by

− 1

V ar(X)

{
Cov(Xi, X)2 − ρ2E[X]2γ2i

}
.

Then we apply the formula of ai(ρ
∗) and ρ∗ to derive the formula (2.26). �

Proof of Proposition 2.5: Note that
∑

i ai(ρ
∗) = 1

2
. Then X̃ = 1

2
X + 1+ρ

2
E[X],

and the aggregate ex post variance, V ar(X̃), is 1
4
V ar(X). Next, we have

Cov(X̃i, X̃) = Cov(Xi − ai(ρ∗)X,
1

2
X) =

1

2
Cov(Xi, X)− 1

2
ai(ρ

∗)V ar(X)

=
1

4

γi
γ
V ar(X),

where the formula of ai(ρ
∗) in (2.8) is employed in the last equation. �
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APPENDIX C: CHAPTER 3. PROOFS

Solution of the Optimization Problem (3.4). We present a solution of the

optimization problem (3.4) and the equilibrium in a general situation with different

risk aversion parameters γi. We re-order the bank sector such that

Cov(X1, Z)

γ1V ar(Z)
≥ Cov(X2, Z)

γ2V ar(Z)
≥ · · · ≥ Cov(XN , Z)

γNV ar(Z)
.

Moreover, we assume that Cov(Xi, Z) > 0 for each bank i = 1, · · · , N , because

those banks with negative covariance Cov(Xi, Z) have no contribution to (3.4); thus,

those banks with negative or zero covariance Cov(Zi, Z) should be removed from this

setting.

Write f(ρ) =
∑N

i=1 max {Cov(Xi, Z)ρ− ρ2γiE[Z], 0}, and gm(ρ) =
∑m

i=1{Cov(Xi, Z)ρ−

ρ2γiE[Z]} for each m = 1, · · · , N . Let Am = maxρ∈Im gm(ρ), where

Im =



[
Cov(Xm+1,Z)
γm+1E[Z] , Cov(Xm,Z)

γmE[Z]

]
,m = 1, · · · , N − 1,

[
0, Cov(XN ,Z)

γNE[Z]

]
,m = N.

We first demonstrate that, noting that f(0) = 0,

max
ρ≥0

f(ρ) = max
1≤m≤N

Am. (D-1)

Therefore, the optimization problem (3.4) is reduced to a sequence of solving Am,

which in turn are solved by a set of standard optimization problem of gm(ρ).

On one hand, let ρ∗ be the one such that maxρ≥0 f(ρ) = f(ρ∗). If Cov(Xi, Z)ρ∗ ≥

(ρ∗)2γiE[Z] for all i = 1, · · · , N , we set m = N and then ρ∗ ∈ IN . Otherwise, there

exists a unique number m = 1, · · · , N − 1 such that

f(ρ∗) =
m∑
i=1

(
Cov(Xi, Z)ρ∗ − (ρ∗)2γiE[Z]

)
,
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and m is characterized by the following system of inequalities:
Cov(Xi, Z)ρ∗ − (ρ∗)2γiE[Z] > 0, for i = 1, · · · ,m

Cov(Xi, Z)ρ∗ − (ρ∗)2γiE[Z] ≤ 0, for i = m+ 1, · · · , N.
(D-2)

That is, ρ∗ ∈ Im. Hence, f(ρ∗) = gm(ρ∗) ≤ Am ≤ max1≤m≤N Am. On the other hand,

for any m = 1, · · · , N , it is evidently that

gm(ρ) ≤
m∑
i=1

max
(
Cov(Xi, Z)ρ− ρ2γiE[Z], 0

)
≤ f(ρ)

for any ρ ≥ 0. Hence, max1≤m≤N Am ≤ maxρ≥0 f(ρ). We have thus proved equation

(D-1). �

By virtute of (D-1), the equilibrium of the capital insurance market can be solved

by three steps as follows.

First. Compute Am and ρm ≡ argmaxρ∈Imgm(ρ) for each m = 1, · · · , N .

Let ρm = 1
2E[Z]

∑m
i=1 Cov(Xi,Z)∑m

i=1 γi
. Then, we can verify that, for m = 1, · · · , N − 1,

ρm = min

(
Cov(Xm, Z)

γmE[Z]
,max

(
Cov(Xm+1, Z)

γm+1E[Z]
, ρm

))
(D-3)

and

ρN = min

(
Cov(XN , Z)

γNE[Z]
, ρN

)
. (D-4)

Second. Compute max1≤m≤N Am and m∗ = argmax1≤m≤NAm.

It is possible to have multiple m∗ and thus multiple equilibrium, because of the

non-concavity feature of the objective function f(ρ) for the regulator. As explained

in Section 2, it is natural to choose the smallest one among {m∗} if there are more

than one optimal solutions.

Third. The optimal load factor ρ∗ = ρm∗ .

The bank i is TBTF if and only if ρ∗ < Cov(Xi,Z)
γiE[Z]

. For these too big to fail banks,

the premium or the insurance capital is (1 + ρ∗)ai(ρ
∗)E[Z].

Algorithm to identifying TBTF banks in terms of loss beta only:
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Assume that γi = γ for each i = 1, · · · , N . Then, Am = E[Z]γc2 maxτ∈Jm hm(τ),

where c = V ar(Z)
γE[Z] , Jm = [βm+1, βm] for m = 1, · · · , N − 1 and JN = [0, βN ]. The

algorithm to identify TBTF banks follows easily from the above characterization of

the equilibrium in a general situation.

Proof of Proposition 3.1:

Since g1(ρ) = Cov(X1, Z)ρ − ρ2γE[Z], g1

(
Cov(X1,Z)
γE[Z]

)
= 0. Therefore, the optimal

load factor ρ∗ must be strictly smaller than Cov(X1,Z)
γE[Z] = max

{
Cov(Xi,Z)
γE[Z] , i = 1, · · · , N

}
.

By definition 1, those banks with the highest loss beta are too big to fail. �

Proof of Proposition 3.2:

By exploring equation (D-1), it suffices to show that maxmAm > 0. Actually, when

Cov(X1,Z)
E[Z] > Cov(X2,Z)

E[Z] , we must have A1 > 0 since g1

(
Cov(X1,Z)
γE[Z]

)
= 0. Assuming

Cov(X1,Z)
E[Z] = Cov(X2,Z)

E[Z] , then A2 > 0 unless Cov(X3,Z)
E[Z] = Cov(X2,Z)

E[Z] . Continuing the

process we know that one of Am,m ∈ {1, · · · , N − 1}, must be positive unless each

Cov(Xi,Z)
E[Z] is the same positive number. In the last situation, it is easy to verify that

AN > 0. Therefore, maxρ>0 f(ρ) = maxρ≥0 f(ρ) > 0. �

Proof of Proposition 3.3:

Note that E[U(W̃ i)] − E[U(W i)] is −aiρE[Z] − 1
2γi
{a2iV ar(Z)− 2aiCov(Xi, Z)}.

For TBTF bank i, ai(ρ) = Cov(Xi,Z)−ρ∗γE[Z]
V ar(Z)

> 0. By straightforward computation, we

have

E[U(W̃ i)]− E[U(W i)] =
1

2γV ar(Z)
(Cov(Xi, Z)− ρ∗γE[Z])2

=
V ar(Z)

2γ

(
Cov(Xi, Z)

V ar(Z)
− ρ∗γ E(Z)

V ar(Z)

)2

> 0.

Moreover, assuming ai(ρ) > 0, the higher the loss beta, the higher the expected utility

enhance, E[U(W̃ i)]− E[U(W i)]. �

The proof of Proposition 3.4 relies on a simple combinational-type result as follows.

Lemma 3 Given N positive numbers such that b1 ≥ b2 ≥ · · · ≥ bN and
∑N

i=1 bi = 1.
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If there exists an integer i such that

bi∑i
k=1 bi

>
1

2i
, (D-5)

then bi >
1
2N

. Moreover, if “>” is replaced by ≥ in (D-5), then bi ≥ 1
2N

.

Proof: We prove the first part of this lemma while the proof for the second part is

the same.

We first consider the case when N is divided by i, that is, N = mi for a positive

integer m. Notice that
∑N

k=1 bk = 1. Since bk is decreasing for k = 1, · · · , N , we have

1 =
N∑
k=1

bk ≤ m
i∑

k=1

bk. (D-6)

Then
i∑

k=1

bk ≥
1

m
. (D-7)

Hence, by virtue of (D-5),

bi >
1

2i

i∑
k=1

bk ≥
1

2i

1

m
≥ 1

2N
. (D-8)

The lemma is proved if N can be divided by such an i.

If N can’t be divided by i, write N = mi + t for some 0 < t < i and m ≥ 1. We

use the decreasing property of bk again, we obtain

1 =
N∑
k=1

bk

= (b1 + · · ·+ bi) + · · ·+
(
b(m−1)i+1 + · · ·+ bmi

)
+ (bmi+1 + · · ·+ bmi+t)

≤ m (b1 + · · ·+ bi) + tbi.

Therefore,
i∑

k=1

bk ≥
1− tbi
m

, (D-9)
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then by using (D-5), we obtain

bi >
1

2i

1− tbi
m

, (D-10)

which yields (since N = mi+ t)

bi >
1

2mi+ t
>

1

2N
. (D-11)

This lemma is proved. �

Proof of Proposition 3.4:

By using the solution of Problem (3.4), there are two possibilities for the optimal

load factor ρ∗.

Case 1. ρ∗ = ρm for some m and ρm ≤ Cov(Xm,X)
γE[X]

.

In this case, ρm = V ar(X)
γE[X]

∑m
i=1 βi
2m

and Cov(Xm,X)
γE[X]

= V ar(X)
γE[X]

βm. Therefore, βm ≥∑m
i=1 βi
2m

. By using Lemma 1, we have βm ≥ 1
2N

.

Case 2. ρ∗ = Cov(Xm,X)
γE[X]

for some m ≥ 2.

In this case, by using the solution of the equilibrium, we have Cov(Xm,X)
γE[X]

≥ ρm−1.

Then we have

βm ≥
β1 + · · ·+ βm−1

2(m− 1)

which implies that

βm >
β1 + · · ·+ βm−1

2m− 1
.

The last inequality in turn is equivalent to

βm >
β1 + · · ·+ βm

2m
.

By using Lemma 1 again, βm > 1
2N

. �

Proof of Proposition 3.5:

Notice that after implementing the capital insurance, the loss portfolio is X̃i =
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−Xi + aiX − (1 + ρ∗)aiE[X] where ai = ai(ρ
∗) is the optimal coinsurance coefficient.

Thus, the aggregate loss portfolio becomes X̃ = −X+
∑N

i=1 aiX−(1+ρ∗)
∑N

i=1 aiE[X],

and the systemic risk V ar(X̃) = (1− a)2V ar(X), where a =
∑N

i=1 ai. To prove that

the total systemic risk is reduced, that is, V ar(X̃) < V ar(X), it suffices to show that

0 < a < 1. First, a > 0 because of existence of too big to fail by Proposition 3.1.

Second, by using the definition of ai and the fact that ρ∗ > 0 in (D-1), we have

a =
m∑
i=1

(
Cov(Xi, X)− ρ∗γE[X]

V ar(X)

)
=

m∑
i=1

βi − ρ∗γm
E[X]

V ar(X)

<
m∑
i=1

βi

where those banks i = 1, · · · ,m are too big to fail banks. The positive correlated

assumption yields that
∑m

i=1 βi ≤
∑N

i=1 βi = 1. �

The proof of Proposition 3.6 depends on the following Sherman-Morrison formula

in linear algebra.

Lemma 4 Suppose A is an invertible s×s matrix and u, v are s×1 vectors. Suppose

further that 1 + vTA−1u 6= 0. Then the matrix A+ uvT is invertible and

(A+ uvT )−1 = A−1 − A−1uvTA−1

1 + vTA−1u
. (D-12)

Proof of Proposition 3.6:

For each i = 1, · · · , N , we have

Cov(Xi, X)− ρE[X] = ai(ρ)V ar(X). (D-13)

Let

âi(ρ) =
Cov(X̂i, X̂)− ρE[X̂]

V ar(X̂)
. (D-14)

By assumption, it is easy to see Cov(X̂i, X̂) = Cov(Xi, X) + σ2
i and E[X] = E[X̂].

Replacing Cov(Xi, X) by Cov(X̂i, X̂) − σ2
i in equation (D-13) and using equation
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(D-14), we obtain

ai(ρ)V ar(X) = Cov(Xi, X)− ρE[X]

= Cov(X̂i, X̂)− ρE[X̂]− σ2
i

= âi(ρ)V ar(X̂)− σ2
i .

Again, by assumption, V ar(X̂) = V ar(X) +
∑N

i=1 σ
2
i . Then, for i = 1, · · · , N and let

σ2 =
∑N

i=1 σ
2
i , we have

ai(ρ)(V ar(X̂)− σ2) = âi(ρ)V ar(X̂)− σ2
i . (D-15)

Equivalently,

σ2
i − ai(ρ)σ2 = (âi(ρ)− ai(ρ))V ar(X̂). (D-16)

The coefficient matrix of the variance vector, (σ2
1, · · · , σ2

N)T , in the last equation is

1− a1(ρ) −a1(ρ) · · · −a1(ρ)

−a2(ρ) 1− a2(ρ) · · · −a2(ρ)

. . · · · .

. . · · · .

. . · · · .

−aN(ρ) −aN(ρ) · · · 1− aN(ρ)


which is written as I+uvT , where I is an identity matrix, u = (−a1(ρ), · · · ,−aN(ρ))T

and v = (1, 1, · · · , 1)T . Furthermore,

N∑
i=1

ai(ρ) = 1− ρN E[X]

V ar(X)
< 1,

we have 1 + vT I−1u = 1 −
∑N

i=1 ai(ρ) > 0. Then the Sherman-Morrison formula

(Lemma 2) ensures that the coefficient matrix I + uvT is invertible. Therefore, the

noises’ variance vector, (σ2
1, · · · , σ2

N)T , is uniquely determined by the set
{
ai(ρ), X̂i; i = 1, · · · , N

}
.

The proof is completed. �
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Proof of Proposition 3.7:

By assumption, Cov(X̂i, X̂) = Cov(Xi + εi, X +
∑N

i=1 εi) = Cov(Xi, X) + σ2
i , and

Cov(Xi, X̂ − εi) = Cov(Xi, X +
∑

j 6=i εj) = Cov(Xi, X). Then

Cov(Xi, X̂ − εi) = Cov(X̂i, X̂)− σ2
i . (D-17)

Moreover, V ar(X̂− εi) = V ar(X) +
∑

j 6=i σ
2
j = V ar(X̂)−σ2

i . Then, by the definition

of ai(ρ), we obtain

Cov(X̂i, X̂)− σ2
i − ργE[X̂ − εi] = ai(ρ)V ar(X̂ − εi). (D-18)

Therefore,

âi(ρ)V ar(X̂)− σ2
i = ai(ρ){V ar(X̂)− σ2

i }, (D-19)

in which we make use of equation (D-14). Hence, we have

σ2
i − ai(ρ)σ2

i = {âi(ρ)− ai(ρ)}V ar(X̂). (D-20)

To determine σ2
i uniquely, it thus suffices to show that ai(ρ) < 1 under assumption

on correlated risk environment. In fact, by definition of ai(ρ) and E[X] > 0, we have

ai(ρ)V ar(X̂ − εi) < Cov(Xi, X̂ − εi). Notice that Cov(Xi, Xj) ≥ 0 in a correlated

risk environment, then Cov(Xi, X) ≤ V ar(X) for each i = 1, · · · , N . Therefore,

Cov(Xi, X̂ − εi) = Cov(Xi, X) − σ2
i ≤ V ar(X) − σ2

i = V ar(X̂ − εi). Therefore, we

have proved that 0 < ai(ρ) < 1. �

Details of Example 3:

We claim that when τ is small enough such that

τm+1 ≤ 1

1 + 2(1− τ)(m+ 1)
,m = 0, 1, · · · , N − 1 (D-21)

and

τm ≤
√
m+ 1−

√
m√

m+ 1− τ
√
m
,m = 1, · · · , N − 1, (D-22)

then only the first bank is too big to fail. In fact, by formula (D-21), τm+1 ≤
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1+τ+···+τm
2(m+1)

. Hence, ρm = argmaxρ∈Imgm(ρ). Moreover, gm(ρm) = (1+τ+···+τm−1)2

4mc
for

a constant c which independent of m. The condition (D-22) ensures that gm(ρm) is

increasing with respect to m. Therefore, by (D-1), maxρ≥0 f(ρ) = g1(ρ1), and the

optimal load factor is ρ∗ = ρ1 = a
2E[Z] . �


	LIST OF FIGURES
	LIST OF TABLES
	A WELFARE ANALYSIS OF CAPITAL INSURANCE
	Introduction
	The Model
	Aggregate Insurance
	Classical Insurance
	Aggregate-Cross Insurance

	Systematic Risk and Comparative Analysis
	Discussions
	Disordering Loss Market and Ordering Loss Market
	Low Correlation Market and High Correlation Market
	Systemic Risk
	Identification and Implementation of Too Big to Fail Banks

	Conclusion

	THE BANK CAPITAL: AN INSURANCE PESPECTIVE
	Introduction
	Bank Capital Requirement and Motivation
	A Capital Insurance Framework
	Classical Insurance
	A Model of Capital Insurance

	Effects to Insurer
	Extension and Too Big To Fail

	Impacts on Banks
	Identify Too Big To Fail Banks
	Conclusions

	IDENTIFY TBTF BANKS AND CAPITAL INSURANCE
	Introduction
	Theory of Capital Insurance
	Model Setup
	Identifying TBTF Banks
	Positive Social Values
	Aggregate Capital Insurance
	Moral Hazard
	Collective Moral Hazard
	Mutual Moral Hazard


	Empirical Analysis and Implementation
	Data
	Identify TBTF Banks Empirically
	Implementation and Comments
	Background Risk
	Payoff Structure
	Loss Factor


	Conclusions

	REFERENCES
	APPENDIX A: CHAPTER 1. PROOFS.
	APPENDIX B: CHAPTER 2. PROOFS
	APPENDIX C: CHAPTER 3. PROOFS

