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ABSTRACT

ABHINAV MOHANTY. Vulnerability Assessment and Policy Enforcement for Hybrid
Mobile Applications. (Under the direction of DR. MEERA SRIDHAR, CHAIR)

Hybrid mobile apps are becoming increasingly popular for building cross-platform mobile

applications, where the core business code of apps is written using web technologies, such as

HTML, JavaScript (JS), and Cascading Style Sheets (CSS). This technology allows mobile

apps to be write-once-run-anywhere, saving substantial time and resources required to develop

different apps for different mobile platforms, such as Android and iOS. Hybrid mobile apps

are also a lucrative solution for IoT vendors, to assist them in the time-constrained race for

market share and provide a quick solution to design cross-platform companion IoT mobile

apps to accompany the IoT devices.

However, the fusion of web technologies with the mobile platform also exposes mobile apps

to web attacks. Moreover, the inclusion of JavaScript, a powerful and complex scripting

language, is dangerous since there is no mechanism to determine the origin (party) of the

code to control access. Existing solutions are either limited to a particular platform (e.g.,

Android) or a specific hybrid framework (e.g., Cordova) or only protect the device resources

and disregard the sensitive elements in the web environment. Furthermore, most solutions

require modification of the base platform.

The main objective of this dissertation is to provide a comprehensive security solution

for hybrid mobile apps. This is achieved through three thrusts—(i) building a flexible,

fine-grained, principal-based policy enforcement framework for hybrid mobile apps, capable

of protecting against a large class of attacks, retroactively, and without modifying underlying

operating systems or development frameworks; (ii) building an automated security assessment

framework for hybrid smart home companion apps that can be used by developers or

third-parties to assess hybrid apps for preexisting security issues; and (iii) finally, building

a web-based framework that can be used to teach advance cybersecurity skills including



iv

concepts of hybrid app security.
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CHAPTER 1: INTRODUCTION

Hybrid mobile apps are cross-platform mobile applications developed using web technologies.

The app developer uses HTML and JavaScript to write the core business code of the app and

uses CSS (Cascading Style Sheets) to design and style the app [2]. Hybrid app development

frameworks automatically package the core code within a native app container for a particular

mobile platform, such as Android and iOS. This technology allows mobile apps to be write-

once-run-anywhere, which saves substantial time and resources to develop different versions

of the same app for different mobile platforms. Hybrid apps execute inside an app embedded

web browser since they use web technologies.

The advent of near desktop-quality processors in smartphones and smartphone RAM

ranging from 6 GB to 12 GB [3], mobile OSes becoming more robust than earlier, and

improvements in the performance of JavaScript engines have significantly reduced the per-

formance gap between native and hybrid mobile apps. In past years, hybrid mobile apps

suffered numerous issues, such as substandard performance compared to native apps, lack of

UI design features supported by native app development platforms, a limited set of tools for

app development, and poor user-experience [4, 5]. Apache Cordova and PhoneGap were the

most popular frameworks for building hybrid mobile apps. However, in the past few years,

apart from the continual development of Cordova and PhoneGap, several new hybrid app

development frameworks have emerged. A few popular and recent hybrid app development

frameworks include React Native [6], Ionic [7], Framework7 [8], Flutter [9], Onsen UI [10],

NativeScript [11], Xamarin [12], and Mobile Angular UI [13]. Ionic’s 2020 survey of over

1,700 enterprise developers, architects, and IT leaders indicates that the hybrid approach

to developing mobile apps is rapidly gaining ground over native apps [14]. According to

the survey, only 7% of surveyed developers exclusively developed native apps in 2020. The
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survey also highlights that in an enterprise setting, web developers are developing majority of

mobile apps using cross-platform tools (74% correspondents), rather than dedicated mobile

developers (17% correspondents) [14].

Like native mobile apps, hybrid apps require access to native OS APIs to access device

resources, such as geolocation, contacts, SMS, Bluetooth, camera, NFC, Wireless, File System,

device motion and orientation, and Gallery. In the case of Android, these are Java APIs and

in the case of iOS, Objective-C/Swift APIs. Hybrid app development frameworks provide

plugins (also known as bridges)—a combination of web APIs and native APIs, to facilitate

this requirement. Using these plugins, the developer can access native functionality, with the

low-level OS-specific details abstracted away.

Unfortunately, web content, especially JavaScript, a powerful scripting language, and the

complexity of the hybrid software stack tend to introduce subtle security holes that drastically

increase the attack surface and exacerbate the security issues in hybrid apps. Plugins allow

malicious web entities to access device-level resources; the advent of IoT further increases the

attack surface by allowing web content in IoT companion mobile apps to access and control

consumer-facing IoT devices. Numerous previous works demonstrate that the inclusion of

web content renders hybrid apps vulnerable to various web attacks, such as code-injection,

XSS, SQL injection, fracking, data-exfiltration, and malvertisements.

Existing mobile OS permission models (iOS and Android) are too coarse-grained and only

implement an allow/disallow permission model to prevent the misuse of the plugins. However,

once a user grants an app permission to access a device resource, the OS cannot track or

control how the web content uses the device resource. As an example, let us consider a

weather app that is hybrid and free to use. The app requires access to geolocation (device

resource) to display the weather at the user’s current location. Let us assume the app is

overprivileged (requests more permissions than required) and also requests access to the SMS

device resource; over-privilege is a common scenario in mobile apps [15, 16, 17]. Once the

user grants the requested permissions to the app, the app can track the user’s location in
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real-time and use the SMS channel to stealthily exfiltrate this sensitive information and send

it to an attacker-controlled server.

Existing JavaScript security solutions [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31]

cannot be easily adapted to reduce this attack surface because even though the plugins have

a significant JavaScript component, they also have a Java component acting as a bridge

between the JavaScript code and underlying OS APIs, making them different from standard

JavaScript web APIs. Numerous device-related channels, such as SMS, Email or Contacts,

cannot be protected by these solutions without significant modifications to the solution.

Previous solutions that protect hybrid mobile apps are either limited to a particular platform

(e.g., Android) [32, 17, 33, 34] or a specific hybrid framework (e.g. Cordova) [16, 35, 36,

37, 38] or only protect the device resources and disregard the sensitive elements in the web

environment [39], such as web APIs of the Document Object Model (DOM) [40]. Moreover,

most of the solutions require the modification of the base platform [39, 32, 17, 33, 34]. Ideally,

a defense solution should provide retroactive protection, be independent of the underlying

OS or the hybrid app development framework, and protect access to both—device resources

and sensitive DOM objects. None of the existing solutions incorporate all these capabilities.

Additionally, there is exponential growth in the production of Internet-of-Things (IoT)

devices, such as smart–wearables, TVs, assistant speakers, household appliances, and other

consumers electronic devices [41, 42]. The rapid increase in the number of such IoT devices

parallels with a certain time-constrained race among the IoT manufacturers for market share.

Since companion accompany most of these IoT devices, hybrid apps provide a lucrative

opportunity to IoT manufacturers to get ahead in this time-constrained race by saving the

substantial time required to develop different apps for different platforms. Currently, only

a few works focus on securing IoT companion apps [43, 44, 45, 46, 47, 48], and none of the

existing works do a security assessment of hybrid companion apps or provide any security

solution for these apps.

Finally, as IoT devices and their companion apps grow exponentially in number, and
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significantly add to the cyber attack surface, cybersecurity education in mobile app security

and IoT security in becoming critical for increasing awareness and improving the workforce.

Currently, several gaps require filling in advanced cybersecurity education [49]. For instance,

addressing the severe lack of gender and ethnic diversity in the cybersecurity industry is

desperately required to meet the growing demand and foster innovation and creativity in

problem solving [50, 51, 52, 53]. In order to address these issues, it is important to deliver

cybersecurity educational content in an engaging, inclusive way [54].

The main objective of our dissertation is to provide a comprehensive security

framework for hybrid mobile apps. We achieve this by building a flexible, fine-

grained, principal-based policy enforcement framework for hybrid mobile apps,

capable of protecting against a large class of attacks, retroactively, and without

modifying underlying operating systems or development frameworks. We also

build an automated security assessment framework for hybrid apps that can be

used by developers or third-parties to assess hybrid apps for preexisting security

issues. Finally, we build a web-based framework that can be used to teach

advance cybersecurity skills including concepts of hybrid mobile app security in

an interactive, engaging, and inclusive way.

Figure 1.1: Three thrusts of our dissertation

Figure 1.1 demonstrates the three thrusts of our dissertation:

1. In the first thrust (Chapter 3 and 4), we design HybridGuard [55, 56], a robust security

enforcement framework for hybrid mobile apps that allows developers (at the app

development stage) or any third party (retroactively) to enforce a wide-range of principal
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based fine-grained security policies to mitigate attacks originating from JavaScript

included by the developer. We ensure that our solution provides retroactive protection,

is independent of the underlying OS or the hybrid app development framework, and

protects access to both—device resources and sensitive DOM objects. We also design

a simple policy enforcing language that allows developers and third-parties to specify

principal-based fine-grained policies to be enforced on hybrid mobile apps. We test

HybridGuard’s compatibility with other hybrid app development frameworks and

present the results. We evaluate HybridGuard on real-world apps, and also conduct

performance and overhead evaluation. Finally, we also provide the end-user with the

capability to customize any policy.

2. In the second thrust (Chapter 5), we design HybriDiagnostics [57], an automated

vulnerability-assessment framework that identifies eleven preexisting security issues

in hybrid mobile apps. At the heart of HybriDiagnostics is an analysis engine that

identifies misconfigured policies (including Content Security Policy, and whitelist), usage

of inline scripts, unsafe eval() usage, unsafe HTML and JQuery APIs and attributes,

unencrypted storage, usage of vulnerable Cordova SDKs, and others. The results of the

analyses are documented in a security assessment report.

3. In the third thrust (Chapter 6), we design Criminal Investigations, a gamified, scalable

web-based framework for teaching and assessing cybersecurity skills. We envision

Criminal Investigations packaged as a series of stackable cybersecurity activities covering

topics from the field of hybrid mobile app security and IoT firmware security. Criminal

Investigations promotes student engagement and learning by incorporating gamification

concepts such as storytelling, experience points, just-in-time learning content delivery

and checkpoints into activity design.
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1.1 Research Questions

In this section, we present some of the investigative research questions that motivated this

dissertation work. Each research question is accompanied by a chapter number, which is the

chapter where the respective research question is answered in detail. We also summarize the

answers to these questions in §7 (CONCLUSIONS).

1. What types of cyberattacks can originate from the inclusion of third-party JavaScript

in hybrid mobile apps? [Chapter 3]

2. To what extent do security mechanisms built into the mobile OS, or provided by the

embedded browser, or provided by the hybrid app frameworks provide security for

hybrid apps from cyber attacks originating from the inclusion of third-party content in

hybrid apps? [Chapter 2]

3. What are the most prevalent security issues in hybrid mobile apps? [Chapter 5]

4. Can in-lined reference monitoring provide an elegant solution for protecting against

attacks on user privacy in hybrid mobile apps (especially privacy attacks originating

from third-party JavaScript)? [Chapter 3 and 4]

5. What are the challenges of designing a secure IRM framework in the cross-domain

platform (HTML, CSS, JavaScript) of hybrid mobile apps? [Chapter 3]

6. What are the classes of security policies that can be enforced by such an IRM framework?

[Chapter 3 and 4]

7. How should the policy specification language or platform be designed to also allow

users to define the policy? [Chapter 4]

8. What is the impact on performance of an app after integrating the IRM framework

and enforcing policies? [Chapter 4]
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9. Which hybrid app development frameworks should we target the IRM framework to be

compatible with? [Chapter 4]

10. How can security issues in smarthome companion hybrid mobile apps be exploited to

attack a smart home ecosystem? [Chapter 5]

11. Does gamification help in improving student engagement and learning in advanced

cybersecurity topics? [Chapter 6]

• Does using a narrative increases the student’s interest in the activity and capture

their attention?

• Does earning experience points (XP) for solving activity challenges motivate the

student to perform well in the activity?

• Does the design of the activity, i.e., colors, fonts, and placement of UI elements

follow accessibility principles?

1.2 Publications

Parts of this dissertation have published in various venues. This list includes:

1. HybriDiagnostics: Evaluating Security Issues in Hybrid SmartHome Companion Apps.

Abhinav Mohanty, Meera Sridhar. In IEEE Workshop on the Internet of Safe Things.

April, 2021. Submitted to the Journal Computers & Security.

2. HybriDiagnostics: Evaluating Security Issues in Hybrid SmartHome Companion Apps.

Abhinav Mohanty, Meera Sridhar. In IEEE Workshop on the Internet of Safe Things.

May, 2021.

3. A multi-party, fine-grained permission and policy enforcement framework for hybrid

mobile applications. Phu H Phung, Rakesh SV Reddy, Steven Cap, Anthony Pierce,

Abhinav Mohanty, Meera Sridhar. In the Journal of Computer Security, Volume 28,

Issue 3, 375–404. April, 2020.
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4. Hybridguard: A principal-based permission and fine-grained policy enforcement frame-

work for web-based mobile applications. Phu H. Phung, Abhinav Mohanty, Rahul

Rachapalli, Meera Sridhar. In Proceedings of Mobile Security Technologies (MOST),

147–156. May, 2017.

5. POSTER: Criminal Investigations: An Interactive Experience to Improve Student

Engagement and Achievement in Cybersecurity courses. Abhinav Mohanty, Pooja

Murarisetty, Ngoc Diep Nguyen, Julio César Bahamon, Harini Ramaprasad, Meera

Sridhar. Poster presented in the 52nd ACM Technical Symposium on Computer Science

Education (SIGCSE), 1276–1276. March, 2021.

6. POSTER: Class-sourced Penetration Testing of IoT Devices. Abhinav Mohanty, Parag

Mhatre, Meera Sridhar. Poster presented in the IEEE Workshop on the Internet of

Safe Things. May, 2020.

7. POSTER: Hybridguard: A principal-based permission and fine-grained policy enforce-

ment framework for web-based mobile applications. Phu H. Phung, Abhinav Mohanty,

Rahul Rachapalli, Meera Sridhar. Poster presented in The Network and Distributed

System Security Symposium (NDSS). February, 2018.

1.3 Roadmap

The rest of the dissertation is organized as follows. Chapter 2 presents background and

discusses the related work. Chapter 3 and Chapter 4 present HybridGuard, our security

enforcement framework, discusses the different types of policies that the developer can enforce,

framework’s implementation, and evaluation. Chapter 5 presents HybriDiagnostics, our

automated vulnerability assessment framework that can identify preexisting security issues in

hybrid companion apps. Chapter 6 presents Criminal Investigations, our gamified, interactive,

and scalable web-based framework for teaching cybersecurity skills, and Chapter 7 concludes

by summarizing the answers to the research questions mentioned in §1.1.



CHAPTER 2: BACKGROUND & RELATED WORK

In this section, we discuss the differences between native and hybrid apps, the Apache

Cordova hybrid app development framework and other frameworks that extend Cordova,

basic security options available to the hybrid app developer, and present a brief background

on the typical smarthome ecosystem where companion apps play a crucial role.

2.1 Native vs. Hybrid Mobile Apps

Figure 2.1: Architecture of hybrid mobile apps.

Native apps target a specific operating system or platform and use platform-specific

programming language for development, e.g., Java or Kotlin for Android, and Objective-C

or Swift for iOS [58]. Native apps use the underlying platform’s SDKs to directly access

device resources such as geolocation, contacts, camera, microphone, media, SMS, and call
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functionality. Native apps also render the app UI using native UI components, i.e., interfaces,

classes, and methods that belong to the platform’s SDK, instead of using web technologies.

This tight coupling with the underlying OS makes native apps perform better than hybrid

apps in resource access speed and UI transitions [59]. However, native apps have high

development and maintenance costs since they require a larger budget if the vendor requires

developing the same app for multiple platforms. This increase in cost occurs since developing

native apps for different platforms requires knowledge of different software stacks. Native

apps developed for Apple iOS will not work on Android OS and vice-versa.

Fig. 2.1 describes the basic architecture of a hybrid mobile app. As mentioned in §5.1,

unlike native apps, hybrid companion apps use web technologies for development, and the

hybrid app development framework provides plugins—a combination of web APIs and native

APIs, for the web content to communicate with security-sensitive resource device resources,

such as geolocation, microphone, camera, contact list, file, media, storage, and others. These

device resources are security-sensitive since they are susceptible to cyberattacks that breach

user’s privacy [60]. The embedded web browser renders the web content, including local web

code, remote web code located on the app’s web server, or third-party web code such as ad

syndicator scripts or other external JavaScript code. The embedded browser in Android OS

is WebView [61] and in iOS it is WKWebview [62]. We will focus on WebView since our

research focuses on apps for the Android platform.

2.2 Apache Cordova and Extended Frameworks

Apache Cordova is an open-source hybrid app development framework, initially released in

2009 [63]. Contributors to the Apache Cordova project maintain a set of core plugins [64] that

allow the app to access basic device resources. Several third-party plugins provide additional

support to developers. For instance, cordova-plugin-chrome-apps-proxy is a third-party

plugin that allows setting a proxy for HTTP or HTTPS, and FTP traffic generated within

the app [65].

Over the past years, numerous hybrid app development frameworks such as Phonegap, Ionic
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Framework, Monaca, Onsen UI, and Framework7 have been built with Apache Cordova’s

foundation. These frameworks rely on the Cordova SDK for device resource access but

provide developers with numerous UI components, platform-specific styling, and various

additional features to make the app appear as close to being native as possible [66]. Since

these frameworks are an extension of Apache Cordova, as mentioned in §5.1, we refer to apps

built using these frameworks as Cordova-based apps.

2.3 Basic Security Available to Hybrid App Developers

In this section, we discuss the basic security measures readily available for the hybrid

app developer. These security measures include Same-Origin Policy (SOP) [67], which the

embedded web browser enforces automatically, Content Security Policy (CSP) [68], which the

browser enforces but requires developer configurations, and Domain allow listing [69], which

the app development framework enforces and requires developer configuration. Domain allow

listing is available to all Cordova-based frameworks via a plugin.

Same-Origin Policy (SOP). An origin comprises scheme, host, and port number of a

URL [67]; two URLs have the same origin if they have the same scheme, host, and port

number (if specified). SOP is a web security policy enforced by the web browser that restricts

how a document or script loaded from one origin can interact with a resource from another

origin. In hybrid mobile apps, the embedded browser is responsible for enforcing SOP. As an

example, let us assume a user is tricked into visiting https://yourbank.malicioussite.com

instead of https://yourbank.com. On the malicious website, the attacker uses an iframe

to load the actual bank website https://yourbank.com, where the user proceeds to login

legitimately. Once the user is logged in, a simple JS (shown in Listing 2.1) on the malicious

website can access the DOM elements of https://yourbank.com loaded in the iframe, such

as the user’s account balance.

1 var balance = frames.bank\_frame.document.getElementByID("accountbalance").value;

Listing 2.1: Simple JS to access DOM element of document loaded in iframe
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This JS code accesses the iframe element (named bank_frame), through that the doc-

ument loaded inside this iframe, and through that it accesses the HTML element named

accountbalance, and gets its value. This JS can be extended to forge requests that can also

surreptitiously transfer the user’s balance. SOP prevents such cross-site requests from being

executed.

Content Security Policy (CSP). Content Security Policy (CSP) is a native web browser

capability that helps mitigate certain injection attacks, such as XSS, data-exfiltration, and

clickjacking [68]. CSP allows the developer to specify which dynamic resource requests (such

as image, script, media, and others) can originate via WebView; it also allows the developer

to specify the location or domain (web or local) from where to load each resource. CSP allows

15 non-mandatory directives (e.g., default-src, script-src, style-src, etc.[68]) that assist the

developer in specifying the allow list of locations/domains. For each directive, a developer

may use the wildcard (*) to allow loading of the specific resource from any location/domain.

The most common way of enforcing CSP in a standard web app is through the HTTP

Content-Security-Policy response header. However, in hybrid mobile apps, the developer

applies a CSP at the page-level [70], typically using a meta tag.

Domain allow listing. Domain allow listing is a security model that controls the app’s

access to external domains over which the app has no control [69, 70]. Apache Cordova

provides a configurable allow list via a plugin, cordova-plugin-whitelist [71], to define

external domains that an app can access. The current Cordova allow list plugin provides

three separate allow lists—Navigation, Intent, and Network Request allow list [69]. Cordova

adds the allow list plugin by default to a new project, and the allow list can be configured in

the Cordova configuration file, i.e., config.xml. New apps, by default, allow access to any

URL, i.e., they use a allow-all wildcard (*).
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Figure 2.2: IoT SmartHome Ecosystem

2.4 The Smarthome Ecosystem

As seen in Fig. 2.2, in a smarthome ecosystem, many IoT devices are controlled via

companion apps installed on a smartphone. The devices typically range from home appliances

such as lights, coffee machines, refrigerators, television to devices that secure a smarthome,

such as smart locks, IP cameras, and various other alarm systems. Companion apps for these

devices can be native or hybrid. The remainder of this section provides more background on

hybrid apps.

2.5 Related Work

In this section we discuss the related work for our dissertation. Subsections 2.5.1, 2.5.2,

and 2.5.3 discuss related work relevant to Chapters 3 and 4. Subsection 2.5.1 discusses works

in the literature that protect against malicious third-party JavaScript. Subsection 2.5.2

discusses various works in the literature that define and enforce fine-grained policies for

mobile apps. Subsection 2.5.3 discusses works in the field of hybrid mobile app security.

Subsection 2.5.4 discusses works in the field that secure IoT companion apps, which is relevant

to Chapter 5. Subsection 2.5.5 discusses works in the field of gamification, computer science

education in general, and IoT software security education.
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2.5.1 Third-party JavaScript Isolation

Numerous solutions in the literature provide protection against malicious third-party

JavaScript [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29]. However, the existing solutions do

not capture phone-related attack channels, such as SMS, Wi-Fi, Bluetooth, Contacts, NFC,

etc. Due to this, adapting these solutions to the hybrid mobile app environment is not a

trivial task and requires significant modification to the existing proposals.

JaTE [20] supports the isolation of third-party JavaScript with labels using Proxy in

ECMAScript 6. However, JaTE does not provide support for mobile app-based permission.

Approaches like Adsafe [18] can be applicable; however, one must extend it with JavaScript

bridge APIs, and this approach requires third-party JavaScript to be written in a JavaScript

subset, particular to Adsafe. ConScript [24] requires browsers to be modified to enforce

security policies. This approach limits the deployment of the protection as it requires

modification of the underlying OS.

Adjail [22] and Webjail [27] use iframess to isolate third-party content and provide a mech-

anism for cross-platform interaction. However, these works cannot protect against attacks on

JS plugins/bridges included in hybrid mobile apps since they are accessible by any JavaScript

code allowed to load in the app. ScriptProtect [28] automatically strips third-party JavaScript

code from the ability to conduct unsafe string-to-code conversions effectively removing the

root cause of Client-Side XSS without affecting the legitimate code. JSSignature [29] provides

a method to bring digital signatures to third-party JavaScript inclusion where all included

JavaScript resources are checked against the integrity, authentication, and non-repudiation

risks before the execution. NodeSentry [72] provides a policy infrastructure that allows

the combining of common web hardening techniques and measures, common and custom

access control policies on interactions between libraries and their environment, including any

dependent library. However, none of these solutions protect against unauthorized plugin

accesses in hybrid mobile apps.
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2.5.2 Fine-grained Policy Enforcement in Mobile Apps

There are various efforts to define and enforce fine-grained policies for mobile apps in

general. For example, ConSpec [73] is an automata-based policy specification. ConSpec can

specify and enforce both user policies, e.g., users may want to limit the number of SMSs sent

from an app, and application contracts, i.e., policies that govern an app’s security-relevant

behaviors. However, ConSpec targets type-safe byte-code languages only and cannot monitor

or enforce policies on JavaScript, a language that is not type-safe. LoPSiL [74] is another

policy specification language that can specify and enforce location-dependent security and

privacy policies for mobile apps. A sample privacy-based access-control policy in LoPSiL is

constraining an app’s ability to read location data at specific times.

There are other mechanisms to enforce fine-grained policies for mobile apps; however, they

are specific to the Android platform and require the modification of the Android OS. For

example, AppGuard [75] is capable of enforcing user-customizable policies on untrusted apps

by modifying the apps. AppGuard can enforce fine-grained policies such as the possibility of

specifying a set of servers an app is allowed to contact over the Internet. Secure Application

INTeraction (Saint) [76] is another access-control system that can enforce both installation

time permission granting policies and run time inter-application communication policies.

FlaskDroid [77] is another security framework that works simultaneously on both Android’s

middleware and kernel layers to enforce access-control policies. Apex [78] introduces a

user-centric policy specification by extending Android permission with run time constraints

with only two parameters: the number of times, and the time of the day.

Another web access monitoring mechanism can monitor all web access via WebView on

Android [79]. In addition, this mechanism does not require any modification of the Android

Framework and the Linux kernel, and can be introduced by just replacing WebView with a

modified version. However, it cannot protect against attacks that originate from developer

included third-party JavaScript.
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2.5.3 Hybrid Mobile Application Security

2.5.3.1 Access Control Systems/Frameworks

Many proposals introduce access control mechanisms for hybrid mobile apps. PhoneWrap [80]

enforces fine-grained ticket-based security policies on hybrid mobile apps. These ticket-based

policies ensure a bounded number of resource accesses based on the user’s interaction with the

app. Resource accesses through JavaScript interfaces are wrapped by a library, inspired by

the “self-protecting JavaScript” approach [26]. However, PhoneWrap excludes a multi-party

scenario and cannot enforce separate policies for different origins as proposed in our work.

POWERGATE [39] allows developers to define origin-based access control, however, POW-

ERGATE only protects native objects and relies on the web-browser to protect DOM objects.

Also, its implementation requires modification of the underlying OS. Another work introduces

a context-aware permission control system for hybrid mobile apps [81]. This system aims to

enforce information flow policies to prevent potential data leakage.

Draco [32] provides a declarative policy language for developers to define fine-grained

access control policies for multiple origins, for web code running on Android in-app browsers.

It also introduces the Draco Runtime System (DRS) to enforce these policies at runtime.

Another fine-grained access control mechanism for Android hybrid mobile apps implements

frame-level access control [33]. RestrictedPath [34] allows developers to define intended API

paths of their apps and subsequently monitors all API invocations. The monitoring will

determine whether an app deviates from its intended path [34], thus enforcing access-control.

MinPerm [17] automatically identifies over-privileged permissions by comparing permissions

declared by the developer and permissions actually required by the app. However, all these

approaches are specific to Android and thus, require the modification of the Android base

system.

Georgiev et al. introduce the term fracking for the generic class of vulnerabilities that allow

untrusted web content to access device resources [37]. They propose NOFRAK, an access

control mechanism that enforces a security policy, “NoBridge”—an app can load third-party
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content, but this content cannot access device resources. This approach is a highly coarse-

grained mechanism as it only allows/disallows a third-party JS to access device resources. It

cannot enforce fine-grained policies, such as, allow limited access (only read access), or put

a bound on the number of accesses. AlJarrah et al. propose an access-control mechanism

that restricts access to only required device resources per page, to minimize the attack

surface [16]. However, this solution is only applicable to multi-page hybrid mobile apps. The

same researchers also propose a behavior-based approach to generating fine-grained security

configurations to implement the least privilege principle automatically [35]. In another work,

CordovaConfig [82], they implement a web-based tool prototype that provides automated

interactive support for configuring hybrid apps. Kudo et al. [38] introduce a novel attack

technique termed as app-repackaging, where an attacker repackages hybrid apps with malicious

code intended to steal sensitive user data stealthily. They introduce a run-time access control

mechanism to restrict access to the device resources. However, all these approaches modify

the underlying Cordova library to implement the solution.

Yang et al. [83] identify a new security issue in postMessage in hybrid mobile apps. The

work demonstrates that origin information of a message in is not respected or even lost during

the message delivery. This issue allows adversaries to inject malicious code into WebView to

passively monitor messages. These messages may contain sensitive information, or actively

send messages to arbitrary receivers and access their internal functionalities and data. The

authors term this issue as Origin-Stripping Vulnerability (OSV) and develop a tool called

OSV-Hunter to detect such vulnerabilities. They also develop a defense tool to mitigate OSV

by implementing three new postMessage APIs, called OSV-Free. However, OSV-Free cannot

protect against fracking attacks or allow the developer to enforce principal based fine-grained

policies on device resources.

2.5.3.2 Detecting & Preventing Code-Injection

Several solutions focus on detecting code-injection attacks in hybrid mobile apps. Jin et al.

introduce the possibility of code-injection attacks in hybrid mobile apps through non-web
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channels, such as SMS, Contact List, Calendar, NFC, camera and even Wi-FI SSID, that are

specific to smartphones [1]. DroidCIA [84] extends the previously mentioned work, i.e., [1] to

introduce a new code-injection channel, where a malicious script can be injected by using

the HTML5 textbox element along with document.getElementByID(“TagID”).value [84].

Xiao et al. introduce a new type of code injection attack that encodes the injected JavaScript

code in a human-unreadable format [85]. The authors use machine learning algorithms

to detect vulnerable apps and also suggest an improved access control model that uses a

combination of page-based and frame-based techniques. Yan et al. present a new deep

learning network, Hybrid Deep Learning Network (HDLN), and use it to detect code-injection

attacks [86].

Another work proposes an approach to detecting code-injection in hybrid mobile apps

by monitoring the execution of apps, and generating runtime-behavior state machine is

based on the execution contexts. Any deviation from the original behavior state machines

aid in detecting the code-injection [87]. SCANCIF [88] is a static analysis tool identifying

sensitive plugin APIs based on tags that can inject malicious code. The work also analyzes

information flow based on modeling contexts of callback functions passed in function calls.

BRIDGETAINT [89] is a novel bi-directional dynamic taint tracking method that can

detect bridge security issues in hybrid apps. BRIDGEINSPECTOR [89] is a tool based

on BRIDGETAINT that detects cross-language privacy leaks and code-injection attacks in

hybrid apps.

In summary, all thes works mentioned above detect and prevent code-injection attacks

that can execute malicious code at runtime. However, hybrid app developers can prevent

such code-injection attacks by disallowing inline scripts in CSP.

2.5.3.3 Security Analysis and Surveys

There are a few studies that provide an overview of security mechanisms and analyze the

vulnerabilities in hybrid mobile apps. In [90], the authors reveal that 28% of one million

web-based mobile apps have at least one vulnerability. If exploited, these vulnerabilities
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can cause serious cyber-attacks. [91] studies over a thousand Cordova apps downloaded

from Google Play and gives a statistical overview of the adoption of Cordova security best

practices and mechanisms, such as usage of allow list or the occurrence of eval(), among

others. Another study of 2111 hybrid mobile apps analyzes configurations and permissions

usage patterns [36]. In that work, the authors provide systematization of hybrid mobile

apps configuration model. It shows the evidence of configuration misuse and tendency of

developers to use default settings and possible reasons for misconfigurations.

In [92], the authors summarize the statistics of the prevalece of hybrid apps, most

widely used cross-platform tools, based on the analysis of around 15,000 hybrid apps.

BridgeScope [93], investigates JavaScript bridge security issues, such as evading security

checks in WebView event handlers, in Android hybrid apps. HybriDroid [94], a static analysis

framework for Android hybrid apps, investigates bugs originating from the interoperability

of Android Java and JavaScript in Android hybrid mobile apps. Hybrid-scanner [95] is

another tool that tracks and analyzes the internal behavior of hybrid mobile apps. Using

Hybrid-scanner, the authors found that almost 40% of security-sensitive APIs in hybrid

mobile apps are invoked by third-party libraries, e.g., advertisement libraries. Apart from

revealing numerous security issues in hybrid mobile apps, none of the works implement any

defense solution.

A comprehensive survey [96] assesses the cross-platform mobile app development academic

body of knowledge with a particular emphasis on core concepts that include user experience,

device features, performance, and security. Their findings illustrate that the state of research

demands for empirical verification of an array of unbacked claims, and that a particular focus

on qualitative user-oriented research is essential.

2.5.4 IoT companion mobile app security

Not a lot of work in IoT security focuses on exploitability of IoT devices through their

companion mobile apps or to make them more secure. A static source code analysis of 499

SmartThings apps (SmartApps) and 132 device handlers, with the help of carefully crafted
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test cases reveals that 55% of these apps are overprivileged [43]. The study reveals that

once installed, a SmartApp is granted full access to a device even if it requires only limited

access to the device. The study also reveals that the SmartThings event subsystem, which

devices use to communicate asynchronously with SmartApps via events, does not sufficiently

protect events that carry sensitive information such as lock codes. The researchers use four

proof-of-concept attacks to secretly planted door lock codes, steal existing door lock codes,

disable vacation mode of the home, and induce a fake fire alarm [43]. IoTFUZZER [48] is

a novel fuzzing framework that aims at finding memory corruption vulnerabilities in IoT

devices without access to their firmware images. IoTFUZZER was evaluated on 17 real-world

IoT devices running on different protocols, and successfully identified 15 memory corruption

vulnerabilities in these devices (including 8 previously unknown ones). IotSan [97], another

novel practical system uses model checking as a building block to reveal interaction-level

flaws by identifying events that can lead the system to unsafe states. IotSan automatically

translates IoT apps into a format amenable to model checking. An attribution mechanism

helps in identifying problematic and potentially malicious apps. Evaluation of IotSan on the

Samsung SmartThings platform reveals that after testing 76 manually configured systems,

IotSan detects 147 vulnerabilities. SOTERIA [45], is another static analysis system for

validating whether an IoT app or IoT environment (collection of apps working in concert)

adheres to identified safety, security, and functional properties. Evaluation of SOTERIA on

65 SmartThings market apps through 35 properties and find nine individual apps violate ten

properties. Evaluating SOTERIA on MALIOT, a novel open-source test suite containing

17 apps, revealed 20 unique violations [45]. Another work that analyzes communication

between IoT devices and their companion mobile apps reveals that the communication

between an IoT device and its app is often not properly encrypted and authenticated and

these issues enable the construction of exploits to remotely control the devices [47]. To

confirm the vulnerabilities found, the paper also presents exploits against five popular IoT

devices from Amazon by using a combination of static and dynamic analyses. The work
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also discusses defense strategies that developers can adapt to address the lessons from our

work [47]. Another work presents a platform that does cross analysis of IoT companion

mobile apps to infer components that are reused across multiple devices and use this data

to discover vulnerability in IoT devices [46]. Using a suite of program analysis techniques

included in the platform, a large-scale analysis is performed on 4,700 devices. The study

highlights the sharing of vulnerable components across the smart home IoT devices (e.g.,

shared vulnerable protocol, backend services, device rebranding), and leads to the discovery

of 324 devices from 73 different vendors that are likely to be vulnerable to a set of security

issues [46]. Another work proposes a modeling methodology to study home-based IoT devices

and evaluate their security based on component analysis that includes the IoT device, the

companion mobile app, the cloud endpoints, and the associated communication channels [44].

The study systematizes the research literature for home-based IoT devices to understand

attack techniques, proposed mitigation, and stakeholder responsibilities. The study also

evaluates the systematization on 45 home-based IoT devices that are available on the market

today and provide an overview of their security properties across the IoT components.The

study also establishes a portal where researchers, vendors, and power-users can contribute to

new device evaluations and to reproduce the results using the published dataset and proposed

methodology [44].

2.5.5 Gamification and Education

2.5.5.1 Gamification

Gamification is not a new concept in cybersecurity education and training and has been

applied in different areas of the field [98, 99, 100, 101]. Numerous works establish the benefits

of gamification in making cybersecurity education more engaging and enjoyable (cf., [102]).

However, not a lot of works focus on gamification of activities that teach and assess skills

required to reverse engineer and analyze IoT firmware. Ashgar et al. discuss an approach to

teach reverse engineering in a classroom environment but their focus is on reversing the app

code for a mobile app [103]. With Criminal Investigations, we focus on reverse engineering
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and analysis of IoT firmware, which is very different than reverse engineering a mobile app.

Gamified activities have been shown to increase student engagement and learning [104].

An example of such a gamified activity is a set of "wargames" created by the OverTheWire

community [105]. Watson et al. [106] found that once students reach a certain level of

engagement into a gamified activity, they are likely to continue to optional, ungraded levels.

We utilize game design principles to ensure the delivery of experiences that are meaningful

and engaging [107]. A key aspect of this approach is the idea of games posing a challenge

to the players; for example, the need to overcome an obstacle or manage a key resource to

successfully achieve the game’s objectives [108]. Furthermore, well-designed games often

tell compelling stories and enable the audience to be active participants in an interactive

experience [109, 108, 107]. Games typically also include sophisticated rule systems and

rewards mechanisms, designed to promote specific activities and discourage or prevent

others [110, 107]. We leverage these characteristics of game design to create a framework

that enables the delivery of engaging experiences. Players are presented with scenarios

built around specific learning objectives, supported by hands-on activities conducted in an

interactive environment [109, 111], to emphasize key concepts or essential skills.

2.5.5.2 Education

Over the last several years, there has been a large body of research on pedagogical

strategies to help students develop higher-order thinking skills [112], to improve student

engagement and to support inclusivity. A central idea that helps achieve these goals is active

learning [113, 114, 115]. Gamification is one approach to improve student engagement and

increase motivation [104, 106]. Manifestations of active learning may be found in team-based

learning [116, 117], the Flipped Classroom [118, 119, 120, 121], and Process-Oriented Guided

Inquiry Learning (POGIL) [122, 123, 124, 125, 126, 127, 128].
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2.5.6 Hybrid Mobile App Security Education

Related work in hybrid mobile app security education (such as advanced attacks and

defenses) is sparse at the time of writing. The closest related work to ours is a webinar that

discusses security issues in hybrid apps, such as complexity of the JavaScript language, i.e.,

not type-safe, highly dynamic, etc., inclusion of large third-party libraries and modules and

complexities in cross-language analysis [129].

2.5.6.1 IoT Software Security Education

The closest works to ours in IoT security are two advanced IoT security training course/-

workshops that include firmware—extraction, emulation and analysis, and building exploits

for ARM and MIPS architectures [130, 131]. Another training course/workshop covers broader

topics, such as secure architecture, infrastructure, policies, mobile and cloud vulnerabilities

and briefly touches upon firmware analysis [132]. However, we plan to incorporate activities

in Criminal Investigations that teach how to use Address Sanitizer [133] and American Fuzzy

Lop (AFL) [134] to identify vulnerabilities in IoT firmware and writing advanced exploits

for ARM and x86 that can bypass memory protections. Other vendors such as Udemy [135]

and EdX [136] explore limited introductory IoT security topics [137, 138], such as identifying

and analyzing IoT security and privacy risks, understanding conceptual designs for secure

hardware and software, knowledge of security architectures, etc. However, these do not

address IoT firmware security and neither are they gamified.

Chothia introduces a classroom course that focuses on basic end-to-end penetration

testing techniques for IoT devices and includes a basic IoT firmware security (simple buffer

overflows) module [139]. In contrast, our course will discuss firmware analysis and security

in depth, including firmware extraction, reversing, analysis and fuzzing, using tools such as

AddressSanitizer to identify memory-corruption vulnerabilities and writing advanced exploits

that can bypass memory-level protections.



CHAPTER 3: HYBRIDGUARD: A PRINCIPAL-BASED PERMISSION AND

FINE-GRAINED POLICY ENFORCEMENT FRAMEWORK FOR HYBRID MOBILE

APPLICATIONS1

3.1 Introduction

In this work, we present HybridGuard [55], a novel policy enforcement framework based

on inlined reference monitors (IRMs) [140] that can enforce principal-based, stateful policies,

on multiple origins without modifying the hybrid frameworks or mobile platforms. In

HybridGuard, hybrid app developers can specify principal-based permissions, and define

fine-grained, and stateful policies that can mitigate a significant class of attacks caused

by potentially malicious JavaScript code included from third-party domains, including ads

running inside the app. HybridGuard also provides template policy patterns and allows app

developers to specify fine-grained policies for multiple principals. HybridGuard is implemented

in JavaScript; therefore, it can be easily adapted for other hybrid frameworks or mobile

platforms without modification of these frameworks or platforms. We present attack scenarios

and report experimental results to demonstrate how HybridGuard can thwart attacks against

hybrid mobile apps. The main contributions of our work include:

• A robust IRM framework for hybrid mobile app developers to specify and enforce useful

security policies to protect the users from potential cyber-attacks.

• A novel principal-based permission access control and fine-grained security policy

specification for hybrid mobile apps.

• A wide-range of security policy patterns that can be enforced in hybrid mobile apps to
1This chapter includes previously published ([55]) joint work with Phu Phung, Rahul Rachapalli, and

Meera Sridhar
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prevent real-world attacks.

• A small-scale experimental evaluation of our proposed framework on Android and iOS

platforms.

Roadmap. The rest of this chapter is organized as follows. Section 3.2 discusses our

threat model for HybridGuard and presents running attack scenarios for this chapter and

Chapter 4. Section 3.3 provides an overview of HybridGuard and the different types of

policies that HybridGuard can implement. Section 3.4 provides details about HybridGuard’s

implementation. Section 3.5 provides details about the policy classes that HybridGuard can

enforce. Section 3.6 provides details on HybridGuard’s evaluation, and §3.7 concludes.

3.2 Threat Model and Running Examples

In this work, we consider scenarios where hybrid mobile apps are developed by trusted and

legitimate developers and therefore, are trusted by users. We consider two threat models in

this work:

• Threat Model 1: This threat model is used in our HybridGuard works (Chapters 3

and 4) and assumes that a hybrid mobile app developer includes CSP in the app

to protect against code injection attacks. The in-scope threats originate from third-

party JavaScript code included from a source allow listed in the CSP. The third-party

JavaScript code could be 1. benign but under the control of an attacker through web

application attacks, such as SQL injection, or a network attack on the third-party

server; 2. malicious by intentions; it lures developers by its appealing functionalities.

• Threat Model 2: This threat model is used in our work on securing IoT companion

mobile apps (Chapter 5) and assumes that IoT companion mobile apps are vulnerable to

web-attacks, such as code-injection attacks, XSS, CSRF, SQLi, Sensitive Data Exposure

and Broken Authentication & Session Management.
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3.2.1 Running Attack Scenarios

Abusing device resources. Consider a hybrid mobile app that requires access to SMS and

Contacts. By default, after a user grants the required permissions (could be at installation or

run time), any JS code running inside the application has access to these device resources

[141]. As seen in Figure 3.1(a), if a allow listed third-party JS code is infected with malicious

code controlled by an attacker, the malicious code can access all the granted resources. For

example, the malicious code can send bulk spam SMS messages to the user’s contacts or

random numbers.

Figure 3.1: Abusing Device Resources & Sensitive Information Leakage

Malvertising and sensitive information leakage. Most free apps display in-app ads [142]

to generate revenue through clicks and referrals. Due to CSP, a developer needs to explicitly

add the ad network’s URL to the allow list to display ads in the app. These ad services

have an extensive screening process of supplied ads; however, the process is not airtight [143]

since there have been many malvertising [144] incidents in the past [145, 146, 147]. Malicious

ads have made to users’ devices by either slipping through the screening process or by

compromising the ad network. In a hybrid mobile app, the ads are fetched by including an

ad network provided JS in the app code, usually the landing HTML page (home page) of the
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app. Figure 3.1(b), if this JS is malicious, it can read the user’s sensitive information that

may be available on the host page, such as media, sensitive files or other personal information.

Although, CSP disallows information to be sent to any external domain not in the allow list,

malicious JS code in an app with access to SMS and Email APIs, can use these channels to

exfiltrate the stolen sensitive information.

Overusage of Resources. As seen in Figure 3.1(a), a rogue third-party JavaScript with

unlimited access to granted device resources, such as geolocation, can constantly monitor the

current location of a user in real-time by hooking the navigator.geolocation.watchPosition()

API and exfiltrating this data to the attacker. This attack scenario does not only breach the

privacy of the user but also puts the physical safety of the user at risk.

UI redress attacks. UI redress attacks are also known as clickjacking on the web or

touchjacking/tapjacking on smartphones [148, 149]. Malicious code can manipulate the DOM

of the host page, including the creation of new elements or the modification of existing ones.

As seen in Figure 3.2(b), leveraging this ability, malicious JS code in a hybrid app can launch

such attacks by creating an invisible interface, such as an invisible iframe on top of the app

interface. Here, the attacker tricks a user into tapping a button or link on another page loaded

in the iframe, assisting the attacker in ‘hijacking’ clicks to perform actions on behalf of the

user, on the page loaded into the iframe. This scenario can also lead to drive-by-download

attacks.

3.3 Overview

Figure 3.3 gives an overview of the entire toolchain. In the first step, the APK is reverse

engineered using apktool [150] to obtain the app source code. In the second step, the rewriter

injects HybridGuard into the main HTML file of the app, usually index.html, and includes

both HybridGuard (JS file) and the policy specification file (JSON file) in the www directory

of the unpacked APK. Finally, the original files of APK combined with HybridGuard and

the policy file are repacked using apktool to produce a safe APK. HybridGuard enforces the
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Figure 3.2: Overusage of Resources & UI Redress attacks

Figure 3.3: HybridGuard Overview

policies at app runtime.

Note, in Figure 3.3 HybridGuard contains various components that include:

1. an API to load the JS files that the developer requires to include in the app (More

Details in §3.3.1);

2. a monitor that mediates all security relevant events that originate from the include JS

(More Details in §3.3.2);

3. a policy engine that is consulted by the monitor to check the policy to allow/disallow



29

the event, and the policies specified by the developer (More Details in §3.3.3).

The rest of Section 3.3 provides an overview of the three components mentioned above, and

the policy enforcement approach. A detailed description of our implementation is presented

in Section 3.4.

3.3.1 An API to load JavaScript Code

As seen in Figure 3.3, HybridGuard provides the developer with a new API to load JS (*.js)

files. This interface allows hybrid mobile app developers to assign a principal to each JS file

that needs to be included in the app, which is the basis for policy definition and enforcement.

Instead of using the traditional HTML <script> element to include JS, the developer uses

HybridGuard’s API to include the required JS into the app code. The developer can also

include local JS files under a named principal (trusted principal) to define fine-grained security

policies. An important goal of HybridGuard is to ensure attribution of the JS code with the

assigned principal while the JS code is in execution.

JS code is executed in the sequence of inclusion in the main page of the app, i.e., in order

of appearance and “run-to-completion” [151]. However, at runtime, additional JS code can

be generated and executed on the fly. This code may be either generated dynamically by

different JS code or can be code embedded into event handlers. Therefore, HybridGuard

must monitor the principals even during context changes due to dynamic code generation

and event triggers. In hybrid mobile apps, there can be a trusted principal (local code) and

multiple third-party principals. We use a local principal stack to track the various principals

at runtime. Whenever JS code is executed, its principal is pushed onto the stack. When

the code terminates, the principal is popped from the stack. HybridGuard explicitly tracks

dynamic code generation and event handlers, and executes them under the same principal

that generates the code. HybridGuard ensures that the code is attributed to the correct

principal and the appropriate policy is enforced. HybridGuard keeps track of the principal at

runtime to ensure appropriate enforcement of the defined policies.
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3.3.2 API Mediation

HybridGuard’s monitor component (Figure 3.3) intercepts security-relevant API calls

including access to the device resources and the DOM elements. Security-relevant API calls

originating from JS code (local or third-party) are marked with the principal assigned at

load-time, and intercepted by the monitor to verify access based on the defined policies.

HybridGuard intercepts these API calls by wrapping them and checking the policy to

determine if a call is allowed or not. The monitor refers to the policy engine to decide whether

to grant or deny the API call based on the specified policies.

HybridGuard’s API to load JS, monitor and policy engine are implemented in one single

JS file. This file is included using a <script> tag in the main page, right after the framework’s

plugin APIs JS file, such as cordova.js for Apache Cordova framework. When executed,

HybridGuard mediates all guarded “plugin” APIs and DOM APIs. HybridGuard loads the

required JS code, including both local and remote code. This code also includes third-party

JS code that could be potentially malicious. Loading the JS code through HybridGuard’s

interface guarantees that this code cannot access any resource via the original APIs but only

via the mediated/wrapped APIs. This allows HybridGuard to control code execution based

on defined policies.

3.3.3 Principal-based, Fine-grained Security Policies

The current permission model on both Android and iOS is too coarse-grained and only

allows/disallows access to any device resource. Moreover, once a permission is granted, there

is no control over how the app uses that permission. HybridGuard allows developers to define

fine-grained security policies for multiple principals/third-parties using the policy specification

file (Figure 3.3 Step 3). Based on the specified policies, HybridGuard controls access to

device resources and other security-relevant APIs. HybridGuard is capable of enforcing any

access control or safety policy that can be expressed as a security automaton [152], as shown

in Figure 3.4.
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Figure 3.4: A simple security policy expressed as a security automaton

For policy design and specification, we use JavaScript Object Notation (JSON) [153] since

the key-value pair structure and lightweightedness of the language makes it a pertinent choice.

As shown in Listing 3.1, policies are specified in a single file (.json), and supplied to the

policy engine. Using HybridGuard a developer can enforce principal-based permissions at the

API level, i.e., a level deeper into the device resource. HybridGuard complements the existing

OS permission model by introducing access qualifiers such as read, write and create, instead

of just allow/disallow. Besides these access qualifiers, HybridGuard allows the developer to

create an allow list to limit resource access to certain predefined principals. Developers can

also set principal-based access-bounds to limit access to a specific device resource based on a

set bound. As an example, Listing 3.1 line 12 depicts allow list usage, where the value of the

key (’numbers’) is a allow list of contact numbers an app is allowed to send an SMS to.

1 {"resources": [{

2 "name": "sms",

3 "permissions": [{

4 "principal": "local",

5 "read": "true",

6 "write": "true"

7 },

8 {

9 "principal": "trusted.com",



32

10 "read": "true"

11 }]

12 "numbers": ["1234567890", "5682241205", "2254813544"]

13 //...

14 }

Listing 3.1: Principal-based policy specification

HybridGuard is capable of enforcing fine-grained stateful policies that can be further

categorized as resource-bounds, allow list, history-based and custom policies.

3.4 Implementation

Figure 3.5: HybridGuard’s components and policy enforcement

Figure 3.5 depicts different components of HybridGuard and their interactions with

each other to enforce the specified policies. As seen in Figure 3.5, a JS (.js file) that

requires monitoring, is included in the app using the loadJSwithPrincipal() API provided

by HybridGuard, and as singed a named principal. Subsequently, as seen in Figure 3.5 Step

1, any invocation of security-sensitive APIs, originating from the monitored JS code (marked

with the assigned principal), is mediated by the monitor. In Step 2, the monitor consults

the policy engine to ensure that the specified security policies are satisfied. In Step 3, the
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policy engine consults the policy specification file to identify if a certain principal is allowed

to access the security-sensitive API. If there is no policy violation, in step 4, the policy engine

notifies the monitor to allow access. In step 5, the monitor allows the invocation and forwards

the call security-sensitive API. Now, we provide technical details of each component and the

policy enforcement mechanism.

3.4.1 Custom Script Execution with Principal

The origin of JS code in hybrid mobile apps is not propagated, therefore, the app developer

cannot enforce policies based on the real origin of the included JS [32]. To overcome this obsta-

cle, we design a new JS API loadJSwithPrincipal(p, url) (included in HybridGuard) that re-

places the conventional method of script inclusion. The app developer can use this API to load

and execute a JS file, local or remote, described in the url argument under a principal p. For

example, instead of using <script src="http://example.com/ad.js"></script> to load the

external JS from example.com, the app developer uses loadJSwithPrincipal(..) to include

the code under a named principal “example.com” as loadJSwithPrincipal("example.com",

"http://example.com/ad.js");.

We adapt a previous approach to implement the loadJSwithPrincipal API [19]. Different

from the previous approach, we use Cross-Origin Resource Sharing (CORS) [154] request

to retrieve the content of the JS file in a string. We can retrieve both local or cross-domain

remote files in the same way using CORS request, using the XMLHttpRequest object. Then,

we create a new Function object with the retrieved JS content. Then, we push the assigned

principal p to a local protected stack (implemented as an array), execute the function, and

pop the principal off the stack after the execution is complete.

3.4.2 JavaScript APIs Mediation

An essential feature of HybridGuard is the capability to monitor JS APIs, which includes

DOM APIs and JS plugin APIs. This is achieved by wrapping APIs that require monitoring,

so that invocations of the original APIs are mediated by the wrapper APIs. The wrapper
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APIs are part of the monitoring code, and invoke the policy engine to determine whether to

allow/disallow the invocation. This approach is inherited from prior work [26], and depicted in

Fig. 3.5. We have advanced the previous work by implementing mediation for JS plugin APIs

and principal-based permission access control, which does not exist in the state-of-the-art

JavaScript security solutions.

1 function(){
2 var original = sms.send;
3 sms.send = function () {
4 if(PolicyCheck(getTopofPrincipalStack(),"sms","send",arguments)){
5 original.apply(this, arguments);
6 }else{
7 throw new Error(’sms.send is disallowed’);
8 }
9 }

10 }();

Listing 3.2: Illustration of mediation of API sms.send within an anonymous function.

One challenge in this approach is to ensure complete mediation of security relevant events,

i.e., ensure that the monitored JS code cannot access the guarded APIs directly but only

through the monitor. For DOM APIs, this is achieved by capturing all possible aliases of

the guarded APIs through their prototype inheritance chain [155]. There have been several

known JS vulnerabilities that can be exploited in JS interception approaches [24, 156]. We

apply the secure wrapper implementation [156] in the literature to ensure that our monitor

code is tamper-proof from known JS vulnerabilities and potentially malicious code.

For JS plugin APIs, there can be several different APIs provided by various plugins to

access a device resource. Since the plugins are included in the app by the developer, he/she

knows the specific APIs to intercept and enforce policies on. Each JS plugin API typically

uses an internal function call to interact with the native API. For example, in Cordova,

exec is the internal function to interact with Java API. To ensure that JS code loaded by

our framework cannot interact with the native APIs directly, we also intercept this internal

function.
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3.4.2.1 Principal Propagation in Event Handlers and Dynamic Code Generation

Similar to native mobile apps, hybrid mobile apps heavily rely on events such as user’s

touch to trigger code execution. HybridGuard captures and intercepts these event channels,

such as addEventListener and attachEvent, to wrap the handler functions so that when

the event is fired, e.g., a button is touched, the handler function is executed under the same

principal as the parent code. This allows to enforce the same policy for that handler function

as well. This approach is illustrated in Listing 3.3

1 var eventguard = function(args, proceed) {
2 var principal = getTopofPrincipalStack();
3 var listener = args[1]; //the handler function
4 args[1] = function(){
5 //wrap the handler function to be executed
6 //with the same principal
7 return execWithPrincipal(principal,listener);
8 };
9 return proceed();//register the event handler

10 };
11 intercept(Element.prototype, ’addEventListener’, eventguard);
12 intercept(Node.prototype, ’addEventListener’, eventguard);

Listing 3.3: Principal Tracking for event handler

The same approach is applied for code generation on the fly through DOM APIs, such

as document.write, Node.insertBefore(..). Since inline JavaScript code in HTML is not

allowed by CSP by default, we only need to ensure that new script nodes created by existing

JavaScript will be executed under the same principal as the script that created it.

3.4.3 Policy Management and Enforcement

As illustrated in Fig. 3.5, an invocation to a guarded API will be dispatched together with

its principal to the corresponding monitor. The monitor then consults the policy manager;

based on policy definition, the policy manager will decide whether to proceed the invocation.

As briefly outlined in the previous section, our framework supports principal-based permission

and stateful policies. We design and implement the policy specification for HybridGuard as

follows.
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1 {"resources": [{
2 "name": "contacts",
3 "permissions": [{
4 "principal": "local",
5 "read": "true",
6 "write": "true"
7 },
8 {
9 "principal": "trusted.com",

10 "read": "true"
11 }]
12 //...
13 }

Listing 3.4: A principal-based permission example

3.4.3.1 Principal-based Permission

We use JavaScript Object Notation (JSON) to specify principal-based permission for the

device resource access (including DOM and JavaScript bridge APIs) by any JavaScript code

running inside the app. The device resources are specified as an array of objects inside the

JSON file, and each device resource object has an array of permission objects of its own. The

permissions to access the device resources are defined by a principal. For each resource, the

app developer can specify which principal is allowed to access (read or write) which APIs.

For instance, Listing 3.4 illustrates an example of principal-based permission that allows the

local code (loaded with principal “local”) to read and write on the contact resource, while

allows JavaScript code from “trusted.com” read-only permission. JavaScript code loaded

with other principals is denied access to this resource by default in this example.

This JSON specification can be defined and stored in a local variable within the monitor

code, however, to separate policy definition from the code, we store it in a local JSON file

and load it using XMLHttpRequest to perform principal-based permission check for the

policy manager.
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1 var principal_permission_check = function(principal,resource,action){
2 if(json_permission==undefined)
3 json_permission = get_json_permission();
4 for(i=0;i<json_permission.resources.length;i++){
5 if(json_permission.resources[i].name == resource.toString()){
6 for(j=0;j<json_permission.resources[i].permissions.length;j++){
7 if(json_permission.resources[i].permissions[j].principal == principal){ if(json_permission.

resources[i].permissions[j].[action] == true){
8 return true;
9 }

10 else{
11 return false;
12 }
13 //....
14 return;
15 }

Listing 3.5: Function to check permissions (Partial Code)

3.4.3.2 Custom and Fine-grained Security Policy Enforcement

The principal-based permission model can enforce policies to allow or disallow access

to a resource; however, it cannot capture and prevent potential malicious actions, such

as sensitive information leakage or UI attacks, as we discussed in the motivating attack

examples. In addition to the principal-based permission check, HybridGuard also allows the

developer to define custom and fine-grained policies such as allow list specification, stateful,

and history-based policies. These policies can also be generalized in a specification; however,

we leave this for future work. In this framework, these custom policies can be defined in

JavaScript code. For example, to prevent a potential information leakage, the developer can

define a policy that “after a principal reads the contact list (assume that the principal is

allowed to read the contact list in principal-based permission), it is not allowed to send any

SMS”. This policy is illustrated in Listing 3.6. We note that this policy is also principal-based :

the principal violating the aforementioned example policy is denied to send SMS, but other

principals such the first-party code can still be allowed to send SMS.
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3.4.4 Security Analysis

As discussed earlier, potential code injections and information leakage attacks by the

web channels can be eliminated by the standard CSP in hybrid mobile apps. HybridGuard

provides an extra layer of protection on JavaScript code that is allowed by CSP. As required by

default CSP, each JavaScript code must be defined in a .js file, either first-party or third-party

code. HybridGuard provides a new JavaScript API to obtain the content of these .js files

and executes them under a principal. This requires HybridGuard’s code to run before other

first-party or third-party code in the app so that it has the highest priority to control the

behavior of the loaded code. As described in the implementation, HybridGuard’s code and

security states are protected within an anonymous function, which is inaccessible to external

code. Access to JSON policy specification file is prohibited from unauthorized principals,

enforced by the monitor. Therefore, the integrity of HybridGuard is guaranteed. Adapting

known techniques from prior work [156], HybridGuard ensures the complete mediation of

JavaScript web APIs by systematically discovering and mediating all their possible aliases

and channels generating JavaScript code on the fly. For JavaScript bridge APIs provided

by hybrid frameworks, we have to manually identify the possible channels for each API to

ensure it is completed wrapped. Since HybridGuard can control the behavior of the loaded

code, any unauthorized access can be detected and prevented.

3.5 Fine-Grained Security Policies

As discussed earlier, in addition to principal-based permission specification, HybridGuard

allows hybrid app developers to define more fine-grained security policies. Implemented as a

in-lined reference monitor framework, HybridGuard supports fine-grained security policies

that satisfy safety property of execution, i.e., prevent bad things from happening. The app

developer knows the functionality of the app, which resources will request permission from

the user, and even the confidential information in the webpage of the hybrid app. When

including third-party code, the developer can, therefore, define permission for each party
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through a principal. In this section, we present some useful policy patterns that the hybrid

app developer can leverage to protect the end-users.

1 var contact_read_policy = function(args, proceed) {
2 var p = getTopofPrincipalStack();
3 if(!principal_permission_check(p,"contacts", "read"))
4 return; //no permission for this principal
5 toggle(contact_read);// update the contact read history
6 if(!bound_check(p, "contact", "read") return;
7 return proceed();//allow the invocation
8 };
9 var sms_send_policy = function(args, proceed) {

10 var p = getTopofPrincipalStack();
11 if(!principal_permission_check(p,"sms", "send"))
12 return; //no permission for this principal
13 if(contact_read) return;
14 if(!bound_check(p, "sms", "send") return;
15 if (!allowlist_check(p, "sms", "send", args[1])) return;
16 return proceed();//allow the invocation
17 };
18 intercept(sms, ’send’, sms_send_policy);
19 intercept(navigator.contacts, ’find’, contact_read_policy);

Listing 3.6: Example of “no SMS send after reading contact list”

Resource Bounds Policy. In past, mobile apps in general have been susceptible to overuse

and abuse of resources, and during our experiments we encountered numerous apps that

request more permissions than required. Consider an app that sends greetings to your contacts

on their birthdays. Disallowing access to a resource (Contacts in this case) will break the

app’s functionality and is not a feasible policy. In such a scenario, the developer of the app

might want to implement a certain policy that limits the number of accesses to the resource

to a finite value, to prevent any third-party script included in the app from abusing this

resource.

HybridGuard provides the option of limiting the number of resource accesses per principal

for any specified resource. As shown in Listing 3.6, using the bound_check(principal,

resource, action) API provided by HybridGuard, a developer can ensure that access is

disallowed if the bound limit is reached. The bound-limit is specified as part of the policy

specification.
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Allow List policy. In the same app mentioned above, a developer might want to restrict

the app to send text messages to a certain list of numbers (resource-based allow list). In

another scenario, a developer might simply want to restrict a principal to access only a certain

list of resources (principal-based allow list). As Shown in Listing 3.6, HybridGuard provides

the developer with the allowlist_check(principal, resource, action, args) API, using which

the developer can ensure that these specific restrictions are met. The allow list is specified as

part of the policy specification.

History-based policy. Some policies cannot be expressed as just static permissions or

access control rules. To prevent exfiltration of sensitive user data, the developer might want

to enforce a policy that disallows access to potential data-exfiltration channels, such as SMS,

Email, or any form of network access—if an untrusted principal has accessed a sensitive

device resource, such as Geolocation. HybridGuard allows the developer to define and track

principal-based local security states to enable the runtime enforcement of such stateful and

fine-grained policies. Fig. 3.4 depicts a simple history-based policy.

Custom policy. Since our framework is written in JavaScript, the developer can express

numerous custom policies that can not be specified using the above mentioned policy classes.

For example, a developer might want to enforce a policy where any third-party JS is not

allowed to create an invisible iframe.

3.6 Experimental Results

In this section, we present the results of our experimental evaluation. The core code of Hy-

bridGuard is a JS program enclosed inside an anonymous function (function(){ /* code */})();

to protect the code and its security states. The monitor and policy engine are combined within

this anonymous function comprising of ~800 lines of JavaScript code. To deploy HybridGuard

in a hybrid mobile app, the developer needs to copy this library together with the JSON

polcy specification file to the www folder of the app, then include it in the main HTML

page (<script src="HybridGuard.js"></script>) right after the core JavaScript library of

the hybrid app (cordova.js in the case of Cordova app). As discussed earlier, to include a JS
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file (local or remote) the developer can use our API loadJSwithPrincipal(principal,url); to

load and execute code under a principal, instead of including these files using the conventional

<script> tag. This loading code can be implemented in a separated JS file after <script

src="HybridGuard.js"></script>) or can be placed at the end of "HybridGuard.js" file

outside the anonymous function. After assigning principals for different JS files, the developer

can edit the JSON policy specification file to define fine-grained permission for each principal.

To evaluate the effectiveness of HybridGuard, we have tested it with a self-developed hybrid

mobile app and a few real-world Android apps from Google Play.

3.6.1 Testing on self-developed hybrid mobile app

We use Cordova framework (version 5.3.3) to develop the testing app. We include sev-

eral resource plugins listed in Table 3.1, such as SMS, email, contacts, camera, geoloca-

tion, accelerometer, File System and develop their functionality in local JavaScript files,

and load them with “local” principal using loadJSwithPrincipal("local",<js-file>);. We

also host similar JavaScript files remotely and load them with “remote” principal using

loadJSwithPrincipal("remote",<remote-js>);. We specify the principal-based permission

in the JSON file to allow/disallow access to the resource by a principal. We have performed

several minor modifications in the policy code to make it consistent with the plugins and

policies. All policies introduced in the previous section have been implemented. We use

Cordova to build the app for both Android and iOS platforms. For Android, we deploy the

app directly to real devices Nexus 5X and Nexus 6P running on the Android 7.1.1 (Nougat).

For iOS, we use Xcode (version 7.2.1) to build and deploy the app to an iPhone 6s Plus iOS 9.2

simulator. We use debug messages to observe if the principal propagation is tracked correctly.

The permissions to the device resources are checked at runtime correctly based on principal.

Fine-grained policies such as information flow and history based policies are soundly enforced.

We note that Cordova has been used for our testing, however, since HybridGuard is developed

in JavaScript, it can be easily adapted and applied to other hybrid mobile frameworks with

some trivial modifications in the enforcement and policy code.
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Table 3.1: List of Policies Enforced on Plugins

Resource PlugIn and Resource object Method Policy Enforced

Files cordova-plugin-file
Object: window.requestFileSystem requestFileSystem Allow List

History-based Policy

Camera cordova-plugin-camera
Object: navigator.camera\end{tabular} getPicture No Send after read

Contacts cordova-plugin-contacts
Object: navigator.contacts find

Allow List
History-based Policy
Resource bounds policy

Accelerometer cordova-plugin-device-motion
Object: navigator.accelerometer

getCurrentAcceleration
watchAcceleration Allow List Enforcement

SMS cordova-sms-plugin
Object: sms send

Allow List
History-based Policy
Resource bounds policy

Geo Location cordova-plugin-geolocation
Object: navigator.geolocation

getCurrentPosition
watchPosition

History-based Policy
Resource bounds policy

Video Recording cordova-plugin-media-capture
Object: navigator.device.capture

captureVideo
captureImage Allow List

Secure Storage cordova-plugin-secure-storage
Object: cordova.plugins.SecureStorage

SecureStorage
SecureStorage.get
SecureStorage.set

History-based Policy
Allow List

3.6.2 Testing on real-world Android hybrid apps

We have performed a small-scale evaluation on real-world Android hybrid apps by manually

downloading a few Android apps from apkpure.com, that are hybrid and also available

on Google Play. We use apktool (https://github.com/iBotPeaches/Apktool), a reverse

engineering tool for APKs, to decode resources to nearly original form (use e.g., apktool

decode -f -s apkFile.apk). We include the framework library, i.e., HybridGuard.js and the

policy specificaiton (JSON file) to the www folder, and modify the main page to include the

library and load the core scripts. Similarly, in the testing app, we do some minor modification

in policy code to adapt the APIs. After this modification to the www folder, we rebuild

the app using the apktool (use e.g., apktool build modifiedApkFolder/). The app is then

signed using jarsigner (jarsigner -verbose -keystore your.keystore modifiedApkFile.apk)

and is installed on the device.

We have downloaded ten hybrid mobile app APKs and modified them by manually including

HybridGuard as described above. A few apps that have been tested successfully are Parked

Car Locator, Web Ratio, Remote SMS Control, Graded, Fan React, My Car Navigator.

https://github.com/iBotPeaches/Apktool
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These applications access various system resources like Camera, Geo Location, Accelerometer,

Contacts, or File System. Policies like limiting the access to resources or send messages and

location details only to allow listed sources, blocking SMS and email sending as soon as a

content from a file is read have been enforced. The tested apps with enforceable security

policies are listed in Table 3.2.

Table 3.2: List of tested hybrid mobile apps

Application Name Resources Accessed Policies
Parked Car Locator Geo Location Allow List Enforcement

My Car Navigator Geo Location
Accelerometer

Allow List Enforcement
Resource bounds policy

Fan React Contacts
SMS

Allow List Enforcement
History-based Policy
Resource Bounds Policy

Graded
SMS
Contacts
File System

Allow List Enforcement
History-based Policy
Resource Bounds Policy

Remote SMS Control
SMS
Contacts
File System

Resource bounds Policy
Allow List Enforcement
History-based Policy

Web Ratio Contacts
File System

Allow List
History-based Policy
Resource Bounds Policy

3.6.3 Performance

Tests to identify app performance and overhead after injecting HybridGuard into the app

have not been performed yet. However, while manually testing the app, we did not notice any

significant performance issues or delays in app processing. Prior work on similar JS interception

reports that the overhead of these implementations is not significant [19, 20, 25, 24, 26].

3.7 Conclusion

We present the design and implementation of HybridGuard, a robust framework to

specify and enforce principal-based fine-grained security policies to guard against attacks in

hybrid mobile apps originating from third-party JavaScript. Our enforcement framework is

platform independent as it is developed in JavaScript; thus it can be deployed on various

mobile platforms and hybrid development frameworks without modifying them. We have
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demonstrated the implementation of the policy engine and specification of the principal-based

and fine-grained policies. We specify a wide range security policies that the app developer can

use to mitigate potential attacks. We have conducted experiments to evaluate the framework

and policies on real hybrid apps and mobile devices.

Our in-scope threats come from potential malicious third-party JavaScript code in a hybrid

app that a developer explicitly includes; therefore, our framework relies on developers on

defining security policies. In practice, the app users might be in a right position to define

desired security policies to protect themselves. In future work, we also plan to extend the

policy system so that the app users can specify their policies on a hybrid app. We also plan

to construct a testbed of hybrid apps and an ontology of possible attacks so that we can

conduct a large-scale evaluation of real-world hybrid apps and effective security policies.



CHAPTER 4: EXTENSION—HYBRIDGUARD: A MULTI-PARTY, FINE-GRAINED

PERMISSION AND POLICY ENFORCEMENT FRAMEWORK FOR HYBRID MOBILE

APPLICATIONS1

4.1 Introduction

In the previous chapter we introduce a novel policy enforcement framework for hybrid mobile

apps. The proposed framework can enforce principal-based, stateful policies, on multiple

origins without modifying the hybrid frameworks or mobile platforms. We demonstrate how

our policy enforcement framework can detect and prevent potential malicious behavior to

protect the security and privacy of users. In this chapter, we discuss new efforts towards

improving HybridGuard’s design and implementation and conducting a more comprehensive

set of experiments [56].

4.1.1 Changes to Design and Implementation

We revise the policy specification to allow the storage of runtime parameters consistently

in a file, rather than in memory as in the previous design. This allows changes, such as

revoke a granted permission or user customization of the parameters after app installation.

We update the enforcement code accordingly so that it reflects the new design. We discuss

updates to the fine-grained permissions and policy model under §4.2. We discuss updates to

the implementation according to the new design in §4.3.

We also introduce a list of new policy templates based on the new design of the policy

language. These policy templates are novel contributions to the literature and we expect

these new templates will have significant impact on the research community and also on the

industry. These templates are not only applicable for hybrid mobile apps, but they can also
1This chapter includes previously published ([56]) joint work with Phu Phung, Rakesh Reddy, Steven Cap,

Anthony Pierce, and Meera Sridhar
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be adapted and deployed to in-lined reference monitor implementations in similar domains ,

such as web or cyber-physical systems. We further elaborate this in §4.4.

4.1.2 New Experiments

We perform significant new experiments and report new results in the following parts:

1. Compatibility. We implement a base test app and build it using different development

frameworks for two major platforms—Android and iOS. We test the revised design and

implementation and report the results, which demonstrate that HybridGuard can be

easily integrated with these frameworks and platforms to enforce policies.

2. Real-world apps evaluation. We evaluate the usability of the framework by inte-

grating it with already available real-world Android apps by reverse-engineering the

code and injecting HybridGuard to enforce policies. We evaluate HybridGuard on

40 real-world Android hybrid apps downloaded from several app stores and perform

our tests on a real Android device. Combined with the evaluation from the previous

chapters, HybridGuard has been evaluated with 50 real-world Android hybrid mobile

apps that demonstrate the successful integration of our framework.

3. Performance. We execute the app variants and measured the time difference posed

by our framework, between original apps and policy enforced apps. We report these

performance results as a new contribution to this work.

The experiments and results are discussed in §4.5.

We have made significant extensions to our previous work [55] with the following new

contributions:

• We extend the specification of multi-party permissions and policies to support user-

centric usage control to protect users’ privacy. We present practical permission and

policy patterns that developers can deploy in hybrid mobile apps to prevent potential

real-world attacks and privacy violations.
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• We implement a proof-of-concept prototype that stores the pre-defined policy templates

permanently in local storage. This approach ensures that policy states can be updated

persistently. It also supports the customization of policies, i.e., end-users can personalize

the policy parameters at the installation or runtime.

• We perform significant evaluations and report practical experimental results on various

aspects. Our framework is platform-agnostic, since it is compatible with various hybrid

app development frameworks and two major mobile platforms (Android and iOS). We

show that practical policies can soundly prevent attack scenarios while posing lightweight

overhead. We demonstrate that our framework is also applicable to real-world hybrid

mobile apps.

Roadmap. The rest of the chapter is organized as follows. Section 4.2 discusses our policy

specification design and updates to the specification design from our preliminary work [55].

Section 4.3 provides details about the updated policy manager. Section 4.4 discusses the

new policy classes that HybridGuard can enforce, and §4.5 provides details about the new

evaluation.

4.2 Updated specification of multi-party, fine-grained permissions and policies

In this subsection, we describe the policy specification design and illustrate how to apply

these policies in realistic scenarios. Our goal is to specify rules on how JavaScript code from

different parties interact with device resources and users’ sensitive information. To this end,

our policy specification supports two types of policies as described below.

4.2.1 Multi-party and context-aware permissions

We extend the permission model in mobile architecture. Our new permission scheme allows

developers to define and enforce context-aware permissions for each party on a single granted

permission. For each resource access or action, i.e., granted permission, developers can define

which party can access/perform action on that resource under a label “principal”. We support

not only allowed or denied for each principal per resource, but also provide access qualifiers
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such as read, write, and create. We also support context-aware properties such as allow

list and bound in this permission specification. Our specification ensures that a granted

permission must be monitored at runtime so that it will not compromise the security of the

app and the privacy of the user by any party. Our novel permission model overcomes the

limitations of “all-or-nothing” conventional permission in mobile that open the possibilities

for attacks as discussed in §3.2.1.

We use JavaScript Object Notation (JSON) to specify our multi-party and context-aware

permissions. We express each device resource in an array element inside a JSON file, each of

which has an array of permission objects, identified by a principal (the label for a party). For

each resource, developers can specify which principal can be allowed with further runtime

constraints. For instance, Listing 4.1 illustrates an example of multi-party permission that

allows the local code (loaded with principal “trusted.com”) to read and write on the contact

resource with several restrictions, while allowing JavaScript code from “untrusted.com” read-

only permission. JavaScript code loaded with other principals is denied access to this resource

by default in this example. This specification is an extended version of our preliminary

work [55], where more restrictions are defined. In particular, as shown in the example in

Listing 4.1, a granted permission is restricted to runtime constraints such as the number

of access times, duration, block list, or allow list. We elaborate these new constraints as

templates in §4.4. The motivation of this specification is to allow users to change the principal

restrictions to enable a more customized fine-grained policy tailored to them.

1 {"resources": [{
2 "name": "contacts",
3 "permissions": [{
4 "principal": "trust.com",
5 "read": "true",
6 "write": "true",
7 "maxUseLimit" : "..",
8 "currentUseLimit": "..",
9 "maxTimeLimit" : "..",

10 "currentTimeLimit": "..",
11 "longitude": "..",
12 "latitude": "..",
13 "distanceAround": "..",
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14 "blacklist" : ["..","..",..]
15 },
16 {
17 "principal": "untrusted.com",
18 "read": "true",
19 "write": "false"
20 }]
21 //...
22 }

Listing 4.1: An abbreviated example of fine-grained permissions and policies for two
origins

4.2.2 Updated stateful and Fine-grained Security Policies

Multi-party and context-aware permission can enforce policies that control code from a

source to access a granted resource. However, permission-based policies cannot capture and

prevent potential malicious actions such as sensitive information leakage or UI attacks, as we

discussed in the motivating attack examples. In addition to the multi-party permission check,

our framework also allows developers to define custom and fine-grained policies such as allow

list specification, stateful, and history-based policies. In this framework, we use JavaScript

code to define these custom policies. For example, to prevent potential information leakage,

developers can define a policy that “after a principal reads the contact list (assume that the

principal is allowed to read the contact list in principal-based permission), it is not allowed

to send any SMS”. Listing 4.5 illustrates this type of policy. We note that this policy is also

based on multi-party: the principal violating the aforementioned example policy is denied to

send SMS, but other principals such as the first-party code can still be allowed to send SMS.

Privacy-based and custom policies. Since our fine-grained policy specification can

capture potential malicious actions at runtime, our framework can be used to protect the

privacy of users. Since HybridGuard is developed in JavaScript, developers can express any

custom policies that cannot be generalized in rules. In §4.4, we provide a wide-range of policy

templates in the structure of multi-party permissions presented previously. Depending on a

specific app and its third-party code, developers can use all or select parts of the template to

deploy in the hybrid app at the development stage so that the policy can be enforced and
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customized by users at runtime.

4.3 Updated Policy Management and Enforcement

In our previous prototype implementation [55], we store the specification in a local JSON

file within the app, and load it using XMLHttpRequest into a JSON object to perform

principal-based permission checks. In this extended specification (cf., §4.2), we need to keep

and update runtime parameters, e.g., the number of accesses, therefore, this JSON object

needs to be updated and synchronized consistently. To this end, we revise the previous

implementation by loading the policy template, provided at the development stage, and store

it within a data directory of the app for the first time. Storing in a data directory allows the

file can be updated as all files within an app at the installation time are read-only. The first

step is to check if the file is already present in the data directory. If it does not exist, we

load the original JSON template file and store it in the new location. Otherwise, we use that

existing file for policy checking and updating. Pseudo-code (for brevity as the real code is in

an asynchronous version with more processing steps) in Listing 4.2 illustrates this process.

1 function loadPolicy() {
2 var dirEntry = getDataDirectory();
3 var policy = dirEntry.getFile("policy.json");
4 if(!policy){
5 policy=loadPolicyTemplate();
6 }
7 return parsePolicy(policy);
8 }

Listing 4.2: Pseudo-code (for brevity) to load internal policy specification

Let us consider a scenario when a user installs a hybrid app that integrates our framework.

As a norm, the user needs to grant permissions requested by the app. With our framework,

ideally, the user can define more fine-grained restrictions or customized policies such as

“revoke a granted permission for an origin in the app”. Also, the user should be able to

customize some policy parameters to protect her own privacy. Our current implementation

allows users to customize policies by editing the file content directly at runtime as we store

the policy specification in a data directory. However, understanding and defining policies
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in JSON specification is not an easy task, especially for layman users. In the future, we

plan to map this policy specification into user interfaces so that end-users can easily edit the

parameters at the installation phase or runtime.

4.3.1 Updated Policy Manager

Figure 4.1: HybridGuard’s components and policy enforcement

HybridGuard’s monitor intercepts API calls accessing a resource, as depicted in Fig. 4.1.

Therefore, for each API invocation, the monitor invokes the Policy Manager to check the

policies to allow or disallow that API. The monitor code maps an API call to an action

defined in the policy specification so that the Policy Manager can perform the check to return

the decision.

There are two layers of checking for this Policy Manager module. An API call is allowed

and executed if it passes both of these two layers of checking. The first layer is to check

the multi-party and context-aware permission in the JSON object cached in memory. We

synchronize this cached object with the policy specification file stored in the data directory to

ensure that all policy states are updated persistently. Our framework also performs the same

synchronization mechanism when the end-user customizes existing policies on the fly. For

example, when the user disallows a resource for an origin by editing the policy file content,

the new content is loaded into the JSON cached object. With this synchronization, we
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ensure that the runtime monitor enforces the newly updated policy when the app invokes a

corresponding API call.

For each policy pattern (cf. §4.4) defined in the JSON specification, we implement a

corresponding function to look-up the permission based on the resource and principal (the

caller) and check the policy parameters based on the context. The Policy Manager module

also updates runtime parameters, such as the number of times when an API call is allowed

and executed.

The second layer of checking is the custom policies defined purely in JavaScript. The

implementation of these checks is dependent on each policy category. In the next section, we

introduce the policy patterns and templates, together with its implementation details that

support this Policy Manager module.

4.4 Updated Policy Patterns and Templates

Implemented as a reference monitor, our framework supports fine-grained security policies

satisfying safety property of execution, i.e., preventing bad things from happening as it is

implemented as a reference monitor. These fine-grained policies can be leveraged to protect

the privacy of users. In this section, we present a wide range of policy templates that

developers can use to deploy in hybrid apps at the development stage, depending on the

functionality of the app. These policy categories cannot be expressed in current coarse-grain

permission models, and are novel compared to our previous work [55]. Table 4.1 elaborates

how these policy templates can be deployed and enforced for common device resources.

These devices resources include bridge APIs, i.e., plugins provided by a hybrid development

framework, and native objects shared by developers as discussed in §3.3. An API comprises

a resource object and a method in the corresponding columns in Table 4.1. For example,

the API to send SMS messages comprises the object “sms” (from the plugin “cordova-sms-

plugin” provided by Cordova-based frameworks) and the method “send”. As illustrated in

the table, this API, i.e., sms.send, can be enforced with four different policy categories,

including volume bound, duration usage, history-based, and location-based, as described
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Table 4.1: List of Policies Enforced on Plugins

Resource PlugIn and Resource object Method Policy Can Be
Enforced

Files cordova-plugin-file
Object: window.requestFileSystem requestFileSystem

Volume-bound
Duration usage
Allow List/blacklist
History-based

Camera cordova-plugin-camera
Object: navigator.camera getPicture

Volume bound
Location-based
History-based

Contacts cordova-plugin-contacts
Object: navigator.contacts find

Volume bound
Allow List/Blacklist
History-based

Accelerometer cordova-plugin-device-motion
Object: navigator.accelerometer

getCurrentAcceleration
watchAcceleration

Duration usage
Location-based

SMS cordova-sms-plugin
Object: sms send

Volume-bound
Allow List/blacklist
History-based
Location-based

Geolocation cordova-plugin-geolocation
Object: navigator.geolocation

getCurrentPosition
watchPosition

Volume-bound
Duration usage
History-based
Location-based

Video Recording cordova-plugin-media-capture
Object: navigator.device.capture

captureVideo
captureImage

Duration usage
History-based
Location-based

Secure Storage cordova-plugin-secure-storage
Object: cordova.plugins.SecureStorage

get
set

Volume-bound
Duration usage
Allow List/blacklist
History-based

in the following subsections. Listing 4.3 shows an example of volume bound policy for this

sms.send API on two principals. we illustrate an example of the sms.send API interception

in Listing 3.2, where the PolicyCheck function is a part of the Policy Manager module to

handle these policy templates, as described in §4.3.1.

4.4.1 Configurable context-aware permission-based policies

In this subsection, we introduce fine-grained policies based on permissions, which developers

can deploy at the development stage; however, end-users can personalize this at the installation

stage or runtime.

4.4.1.1 Volume bound policy

Many mobile apps abuse device resources by frequently invoking the device resources, such

as reading the contact list a hundred times, as demonstrated in the litureture [80]. In some
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scenarios, a user might want to limit the volume of resource usage, such as the number of

SMS messages an app can send per day.

Our specification supports such a volume bound policy within a time unit. In our current

specification, we support “day” as the time unit; however, it can be extended to support

other time units, such as an hour, or a week. We define this policy using the “maxUseLimit”

property of the policy specification. To enforce this policy category for a device resource over

a principal, developers need to keep and set the value for the field "maxUseLimit" : ".." in

the JSON specification, together with the field "currentUseLimit": "" with an empty value

as illustrated in Listing 4.1 (Line 7–8). Developers can use this pattern to define policies for

any device resource as listed in Table 4.1. For example, developers may want to enforce a

fine-grained restriction over a granted “geolocation” permission that allows local code to read

it at most 5 times per day, and limits the code from “google.com” to read at most once per

day. Such a policy can be specified for two different principals (“local”, and “google.com”)

over a single resource “geolocation”, as illustrated in Listing 4.3. We note that, by default

in our enforcement mechanism, any code without principal information will be disallowed

access to resources even if its the user granted the permission.

1 {"resources": [{
2 "name": "sms",
3 "permissions": [{
4 "principal": "local",
5 "read": "true",
6 "maxUseLimit" : "5",
7 "currentUseLimit": ""
8 },
9 {"principal": "google.com",

10 "read": "true",
11 "maxUseLimit" : "1",
12 "currentUseLimit": ""
13 }]
14 //...
15 }

Listing 4.3: An example of volume bound policy
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4.4.1.2 Duration usage policy

Mobile users might want to limit the duration that a device resource, such as accelerometer,

geolocation, or video recording, can be used to save energy or to protect user’s privacy. Our

policy specification supports this policy category with “maxTimeLimit” property for each

principal. Similar to the previous category, our current prototype implementation supports

the duration per day and the time unit in minute, although these are extensible. Similarly,

developers need to keep and set the value for the field "maxTimeLimit" : ".." in the JSON

specification, together with the field "currentTimeLimit": "" with an empty value. The

policy specification illustrated in Listing 4.4 allows the local code to access the geolocation

for 10 minutes and limits the code from “google.com” to 1 minute.

1 {"resources": [{
2 "name": "geolocation",
3 "permissions": [{
4 "principal": "local",
5 "watch": "true",
6 "maxTimeLimit" : "10",
7 "currentTimeLimit": ""
8 },
9 {"principal": "google.com",

10 "watch": "true",
11 "maxTimeLimit" : "1",
12 "currentTimeLimit": ""
13 }]
14 //...
15 }

Listing 4.4: An example of duration usage policy

4.4.1.3 Location-based policy

Some policies might be related to location, i.e., allowing a device resource access at

particular places. For example, users might want to allow sending SMS messages only while

the device is in domestic. We support this policy category with a coordinate (“latitude”

and “longtitude” property) and a distance (“distanceAround” property) as illustrated in

Listing 4.1.
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4.4.1.4 Block List/Allow List Policy

In some scenarios, a principal is allowed to invoke an API with parameters. For example, to

send an SMS message, the code needs to call sms.send with the number to be sent together

with other parameters. Users might want to allow (allow list) or disallow (block list) a

principal to send SMS to a limited list of receivers. To support this, we provide “allowlist”

and “blocklist” properties in the specification as shown in Listing 4.1 that developers can

deploy and end-users can customize the list.

4.4.2 Custom Fine-grained Policies

Implemented in JavaScript, HybridGuard can enforce fine-grained policies expressed in

JavaScript code that can be defined by developers at the development phase. We present

history-based policy and generic web-based policy templates that can prevent potential

attacks.

4.4.2.1 History-based Policies

A common attack by malicious JavaScript is to read sensitive user data and send it to

the attacker through different channels, such as the src attribute of the <img> HTML tag.

Although CSP can prevent some of these channels so that the leakage can be limited, there

are other channels specific to a mobile device that are not captured by CSP, such as SMS,

and email. Developers can prevent this potential information leakage by monitoring the

access to sensitive information and preventing access to certain APIs that are not captured

by CSP. For example, developers can define a policy “no SMS sending after contact list is

read” by intercepting the contact read action and toggle the contact read flag, which can be

checked in the policy for SMS send–if the flag is toggled, the SMS send action is disallowed.

This whole policy is defined in Listing 4.5.

4.4.3 Web-based Security Policies

There are several other potentially malicious behaviors of third-party JavaScript code,

such as manipulating the DOM and create UI attacks, such as touchjacking (e.g., by creating

an invisible iframe) or launch a phishing attack. Using HybridGuard, in addition to the
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1 var contact_read_policy = function(args, proceed) {
2 var p = getTopofPrincipalStack();
3 if(!principal_permission_check(p,"contacts", "read"))
4 return; //no permission for this principal
5 toggle(contact_read);// update the contact read history
6 if(!bound_check(p, "contact", "read") return;
7 return proceed();//allow the invocation
8 };
9 var sms_send_policy = function(args, proceed) {

10 var p = getTopofPrincipalStack();
11 if(!principal_permission_check(p,"sms", "send"))
12 return; //no permission for this principal
13 if(contact_read) return;
14 if(!bound_check(p, "sms", "send") return;
15 if (!allowlist_check(p, "sms", "send", args[1])) return;
16 return proceed();//allow the invocation
17 };
18 intercept(sms, ’send’, sms_send_policy);
19 intercept(navigator.contacts, ’find’, contact_read_policy);

Listing 4.5: Example of “no SMS send after reading contact list”

supported policies presented above, the app developer can implement any custom policies

in JavaScript when intercepting HTML5/DOM APIs and JavaScript bridge APIs. In the

touchjacking example, the developer can enforce a policy that disables the creation of an

invisible iframe.

4.5 Evaluation

In this section, we report the evaluation of the proposed framework including the experi-

ments and results on the functionality, compatibility on different hybrid app frameworks, mo-

bile platforms, and real-world hybrid apps, the performance and overhead, and its security. We

release our prototype and experimental results on https://github.com/sridhar-research-lab/

hybridguard-2019.

4.5.1 Compatibility

We evaluate the compatibility of our framework in two settings: a test suite and existing

hybrid apps on an app store. First, we develop a test suite of variants of a hybrid app in

multiple hybrid development platforms with standard bridge APIs to access device resources.

We deploy our framework on these app variants to evaluate how our framework works in these

https://github.com/sridhar-research-lab/hybridguard-2019
https://github.com/sridhar-research-lab/hybridguard-2019
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settings. In the second evaluation setting, we want to test how our framework is compatible

with existing hybrid apps in the wild. To this end, we use Android real-world hybrid apps

since we can reverse engineer Android apps to inject code and rebuild the apps. We describe

the experiments and their results below.

4.5.1.1 Test suite

We first develop a base hybrid app using four different hybrid app development frameworks,

including Cordova v6.2.3, Framework7 v1.6.4, Onsen UI v2.4.2, and Intel XDK v3987. To test

the functionality, we include corresponding plugins, including SMS, email, contacts, camera,

geolocation, accelerometer, and file system in each framework. We list these resources and

their corresponding APIs in the first and second column of Table 4.1. This inclusion is to

ensure that the base app can use common device resources. We write JavaScript code in a .js

file and include it locally into the app to use the plugins to access the device resources. We

also host the .js file remotely and include the remote script into the app as a third-party code.

We use each framework to build a variant of the app for both Android and iOS platforms

and deploy them to real devices.

Before integrating our framework to the app variants, we build and deploy them to physical

devices to ensure that the apps are functional on these devices. For Android, we deploy the

app variants directly to a Google Pixel XL device with Android 7.1. For iOS, we use Xcode 9

to build and deploy the app variants to an iPhone 7 Plus device with iOS 10.0.1. We test

these eight variants of the app on the two devices. As the Onsen UI variant does not work

on the iOS device, we deploy and test them on an iOS 10.0.1 emulator. In all of these testing

environments, the app functionally works as expected, and all of the device resources can be

accessed properly for both local and remote scripts.

To evaluate the compatibility of our framework, we modify each original app variant to

deploy the framework. We first customize the policy template for each app variant and store

it in a JSON file within each app folder together with the framework library .js file. We

specify the multi-party permission in the JSON file to allow/disallow some access to the
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resource by a principal. For simplification but still, in general, we define two parties with

two principal labels for this permission. We have performed several minor modifications in

the policy code to make it consistent with the plugins and policies. We have implemented

all policies introduced in the previous section. We then revise the main HTML code of

the variants to include the framework library, and replace the existing script inclusion, i.e.,

<script src=".."></script> by the loadJSwithPrincipal function provided in our framework

to load the JavaScript code with a principal, for both of the local and remote scripts. For

example, the original code loading of <script src="http://remote.com/code.js"></script>

will be replaced by:

<script>loadJSwithPrincipal("remote.com","http://remote.com/code.js"); </script>.

For this compatibility evaluation, we define policies to monitor and log the execution. This

evaluation is to test if the apps integrated with our framework work as in their original

versions. We then rebuild the app variants and deploy to the devices again to test the

functionality. We turn on debug messages so that we can observe all the execution logs from

our framework. The logs demonstrate that our enforcement code intercepts and monitors all

the calls to the device resources. Also, the principals of the code (based on the source) are

identified correctly for both local and remote scripts. The functionality of the app variants is

preserved. Among the app variants, we note that there is a minor issue in Framework7 on

both Android and iOS devices, that the principals are not tracked in the same order. However,

access to the resources are functional and monitored by the policies. Fig 4.2 illustrates this

compatibility evaluation. As we can see from the figure, our framework is compatible with

every framework on the two major mobile platforms, Android, and iOS.

4.5.1.2 Real-world Android hybrid apps

By design, developers need to integrate our framework at the development stage to define

and enforce policies. However, to evaluate the compatibility and usability of our framework,

we integrate our framework into existing real-world hybrid apps. As Android apps allow

us to reverse-engineer the code, we select the Android platform to test our framework. We
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Cordova Framework7 OnsenUI Intel XDK
Android iOS Android iOS Android iOS 

Emulator
Android iOS

Figure 4.2: Compatibility crossing frameworks and platforms of the modified app with
HybridGuard embedded

first collect real-world Android-based hybrid mobile apps by downloading these apps in .apk

files from a third-party app store (https://apkpure.com/) using a scripting program. We

filter the apps to select hybrid mobile apps for our evaluation. We use the apktool tool

(https://github.com/iBotPeaches/Apktool) to reverse-engineer the hybrid app APK files.

This step helps in obtaining the entire web code and resources of the hybrid apps. We write

a simple scripting program to identify apps that access device resources such as camera,

geolocation, accelerometer, contacts, filesystem, or storage through included JavaScript files.

Before integrating our framework, we rebuild these apps back to APK files to install and

run on an Android device. To do this, we use the apktool tool to rebuild and then self-sign

the apps with our own generated keys (we use the jarsigner tool to do this). Using these

preparation steps, we select 40 Android hybrid mobile apps that both include JavaScript

files to access device resources and function correctly after the repackaging process without

modifying the app code.

Next, we integrate our framework into these apps, following a similar step as done for the

test suite described above. In particular, we copy the framework library (the HybridGuard.js

file) and permission JSON file to the www folder within each app’s folder. We use the same

general JSON permission for every app and define several fine-grained policies for testing.

The classes of policies implemented include resource-bounds (e.g., Access to SMS resource

only five times a day), history-based (e.g., No network access after accessing geolocation)

and white-list policies (e.g., Only specific principals can write to contacts). We include the

framework script into the main HTML file (usually the index.html file) and modify the script

https://apkpure.com/
https://github.com/iBotPeaches/Apktool
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inclusions using our loading interface. We rebuild these modified apps again and install them

on the same Android device to test. We successfully test on the 40 Android hybrid mobile

apps, demonstrating that the apps modified with our framework preserve the developer’s

intended functionality. Also, our execution logs show that our framework suppresses the

calls to security-sensitive APIs that violate any policy. These results evidence that our

framework is not only compatible with real-world hybrid apps, but also soundly enforce the

defined policies for these apps. We publish this dataset, including the original APK files, the

modified app folders with our framework, and the modified APK files on https://github.com/

sridhar-research-lab/hybridguard-2019/tree/master/evaluation/realAndroidapps.

4.5.2 Fine-grained policy enforcement

In the second round of evaluation, we revise the policies for the app variants in our test suite

to evaluate whether our framework can soundly enforce these policies. Our test policies do not

only log the execution but also to monitor the behaviors of the execution with fine-grained

policies as provided in the templates presented in the previous section. These policy templates

include multi-party and context-aware permissions in the JSON specification that can prevent

the attack scenarios of abusing device resources, as identified in §3.2.1. We also define custom

fine-grained policies in JavaScript. These custom policies are to prevent potential attacks

such as malvertisements and sensitive information leakage as well as UI redress attacks, as

also discussed in §3.2.1. To test the effectiveness of our policy enforcement framework, we

modify the script code to intentionally violate the policies at some points and rebuild and

deploy the apps. Experiments and logs confirm that the accesses to resources are functional

until the policies are violated, demonstrating our framework enforces the defined policies

correctly. For example, we enforce a volume bound policy that allows the maximum of 5

times of SMS sending as illustrated in Listing 4.3. Our test code repeatedly calls the SMS

sending API in every ten seconds to send an SMS message. The first five messages were

successfully sent from the app and received on another phone. After that, our framework

stops the execution of this SMS API and alerts a message, as shown on the left of Fig. 4.3.

https://github.com/sridhar-research-lab/hybridguard-2019/tree/master/evaluation/realAndroidapps
https://github.com/sridhar-research-lab/hybridguard-2019/tree/master/evaluation/realAndroidapps
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The other test cases in Fig. 4.3 illustrate the correct enforcement of other policy categories,

including duration usage, and location-based, respectively.

Figure 4.3: Policy enforcement evaluation on different policy categories

4.5.3 Performance

We evaluate our framework performance by measuring the runtime overhead posed by our

policy enforcement mechanism. Typically, the runtime overhead of web-based systems like

hybrid mobile apps can be measured by both in JavaScript operations, i.e., micro-benchmarks

and the load or render time, macro-benchmarks [157, 26]. We measure the load time of an

app with and without our framework. We do not notice any slowdown as the load time of

the original app and the modified app with our framework are almost identical. This result

can be explained by the fact that JavaScript code in e.g., hybrid apps is mostly event-based,

and asynchronous2. For this reason, we are interested in evaluating the micro-benchmarks of

operations that do not depend on triggered events, including getting the current position,

acceleration, and direction. To this end, we modify the code in original app variants to

execute these operations 1000 runs, to achieve high precision, and measure the time before

and after the runs. For each case, we run the apps on the two devices with ten trials to get

the averaged numbers.

We then integrate our framework in these apps with three different policies, including usage
2See: https://developer.mozilla.org/en-US/docs/Web/JavaScript/EventLoop
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limit, the number of times per day, and the duration of execution time (cf., §4.4). We set

very high limits in these policies to ensure that no violation will happen. Thus the operations

are just executed as usual. We do the same measurements as in the original apps to get the

corresponding averaged numbers. We report the overhead by showing the slowdown ratio over

1000 runs between the average execution time of each operation test with the HybridGuard-

integrated app and that of the original app for each combination of a development framework

and mobile platform. Table 4.2 shows these slowdown ratio numbers for each operation on

the combination of three development frameworks (Cordova, Framework7, OnsenUI) and two

mobile platforms (Android and iOS). Although our framework is compatible with Intel XDK

as demonstrated in §4.5.1.1, the time measurement over 1000 runs on the app based on this

framework, both the original and modified app, was inconsistent in 10 trials. Therefore, we

exclude the Intel XDK framework in performance evaluation results.

Overall, our experimental results evidenced that our HybridGuard framework only poses

a small additional runtime overhead on 1000 runs, as shown in Table 4.2. However, there

are no common patterns for the overhead of each operation crossing various frameworks and

devices posed by our framework. In particular, for the acceleration operation, our framework

has almost no overhead, crossing the three tested hybrid development frameworks and two

mobile platforms. For the get current position operation, we see that the overhead of our

framework for this operation is quite small for Android. At the same time, they vary in iOS

for different hybrid development frameworks. For the get direction operation, our framework

poses nearly no overhead for the app variants in iOS with Cordova and OnseiUI frameworks,

a small overhead for all apps in Android, but surprisingly high overhead for Framework7 app

in iOS. Interestingly, we have observed that each app execution time in each Android and iOS

device is a significant difference. For example, our framework overhead on the acceleration

operation is almost the same for Android and iOS, crossing hybrid framework, as shown in

Table 4.2. However, the execution times in each platform are vastly different, as visualized in

Fig. 4.4.
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Table 4.2: The slowdown ratio over 1000 runs of typical device resource operations. Numbers
in each cell represent the slowdown ratio of an operation on a development framework
(including Cordova, Framework7, OnsenUI) and mobile platform (including Android and
iOS).

Resources/APIs Cordova Framework7 OnsenUI
Android iOS Android iOS Android iOS

Current Position 2.03 2.89 1.37 2.01 1.44 4.22
Acceleration 1.04 1.07 1.16 1.00 1.13 1.03
Get Direction 4.59 1.14 1.09 5.97 1.85 1.08

Figure 4.4: Overhead of the acceleration operation posed by our framework crossing develop-
ment frameworks and two mobile platforms.

4.5.4 Security Analysis

As discussed earlier, potential code injections and information leakage attacks by the

web channels can be eliminated by the standard Content Security Policy (CSP) in hybrid

mobile apps. Our framework provides an extra layer of protection on JavaScript code that

is allowed by CSP. As required by default CSP, developers have to define each JavaScript

code in a .js file, either for first-party or third-party code. HybridGuard provides a new

JavaScript API to obtain the content of these .js files and execute them under a principal.

This approach requires the code to run before other first-party or third-party code in the

app so that our library has the highest priority to control the behaviors of the loaded code.

This mechanism ensures that our enforcement code is tamper-proof. As described in the
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implementation section, we protect the enforcement code and security states of our framework

within an anonymous function, which is inaccessible from outside code. Access to JSON

policy specification files is prohibited from unauthorized principals, enforced by the monitor.

Therefore, the integrity of our framework is guaranteed. We ensure the complete mediation

of JavaScript web APIs by systematically exploring and mediating all their possible aliases

and channels generating JavaScript code on the fly. This protection is a known technique

from prior work [156]. For JavaScript bridge APIs provided by hybrid frameworks, we have

to manually identify the possible channels for each API to ensure it is completely wrapped.

As we can control the behaviors of the loaded code, any unauthorized access can be detected

and prevented.



CHAPTER 5: HYBRIDIAGNOSTICS: AN AUTOMATED VULNERABILITY
ASSESSMENT FRAMEWORK FOR HYBRID SMART HOME COMPANION APPS1

5.1 Introduction

An essential part of the IoT SmartHome ecosystem is the IoT companion mobile app,

or briefly, companion app, which allows a user to control the IoT device while at home or

remotely [158]. For example, fitness companion apps interact with fitness bands to monitor a

user’s heart rate and other vitals, hotels are piloting smart doors that replace key cards with

companion apps, companion apps control automated garage doors, and air conditioning or

alarm systems in a smart home can be controlled through a companion app. In addition to

completely controlling the IoT device, in most cases, the companion app can also perform

high-privilege functions, such as updating the device firmware or changing security codes on

specific IoT devices, such as smartlocks. Multiple past incidents and works show that device

and companion app security currently does not exert a significant influence on product or

infrastructure design [159, 160, 161, 162]. What exacerbates the problem is that most IoT

vendors are not software companies and therefore lack comprehensive training in cybersecurity

or even foundational software engineering best-practices [162]. Even if vendors choose to

outsource companion app development, their options are limited to either freelancers or small

to mid-size companies with no dedicated security team [163, 164].

Companion apps are readily available to anyone through major app stores such as Google

Play, Apple App Store, and other third-party app stores. The ubiquity of these apps makes

them a lucrative target for cyber attackers that are readily trying to identify new vectors

for exploiting IoT devices and smartphone users. Past works prove that most companion

apps contain at least one potential vulnerability that can be exploited to launch serious

cyberattacks against the user or the device [161, 165, 47, 46, 48].
1This chapter includes previously submitted ([57]) joint work with Meera Sridhar
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In this work, we present HybriDiagnostics, a vulnerability assessment framework that

identifies preexisting security issues in companion apps developed for Android using hybrid 2

mobile app development frameworks. Hybrid mobile apps are currently a popular technology

that uses HTML, JavaScript, and CSS for their core business logic and UI and executes in the

embedded web browser. A few popular hybrid app development frameworks include Apache

Cordova [66], React Native [6], Ionic [7], Framework7 [8], Flutter [9], Phonegap [166], Onsen

UI [10], and NativeScript [11]. The hybrid app development technology allows mobile apps

to be write-once-run-anywhere, saving substantial time and resources required to develop

separate apps for different mobile platforms.

We use HybriDiagnostics to survey 102 real-world Android-based hybrid companion apps

to identify preexisting security issues, including exposure to web attacks, misconfiguration of

security measures during app development, usage of outdated SDKs, and unsafe usage of DOM

elements. Each security issue contributes to expanding pathways to exploit the IoT device and

user’s privacy. We explore how these companion app security issues affect the IoT ecosystem

and demonstrate the consequences through either real-world case studies or synthetic but

plausible scenarios. For this work, we focus on apps developed using Apache Cordova, Ionic,

Monaca, OnsenUI, Phonegap, and Framework7. These frameworks are widely used by the

developer community and share the same software stack and architecture [66, 167, 14, 168].

For simplicity, we refer to apps developed using any of these six frameworks as Cordova-based

apps in the rest of the paper.

Our main contributions in this work include—

• we present HybriDiagnostics, a vulnerability assessment framework that can identify

preexisting security issues in hybrid companion apps;

• we discuss eleven security issues in hybrid companion apps developed using Apache

Cordova, Ionic, Monaca, OnsenUI, Phonegap, and Framework7;
2The terms hybrid and web-based are used interchangeably to refer to apps developed using cross-platform

tools such as Apache Cordova. We refer to such apps as hybrid apps in the rest of the paper.
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Figure 5.1: HybriDiagnostics Overview

• we analyze 102 real-world hybrid companion apps to identify the presence of preexisting

security issues. For each security issue, we present an analysis of the issue conducted

on our companion app dataset, results, and either a proof-of-concept attack (PoC) or a

synthetic attack scenario. The PoC or the synthetic attack scenario demonstrates how

these security issues can be exploited in a smarthome environment; and

• we discuss select mitigation techniques and tools to avoid the presented security issues

and reduce the attack surface of hybrid companion apps.

Roadmap. The rest of this chapter is organized as follows. Section 5.2 provides an overview

of HybriDiagnostics, its Analysis Engine, our dataset for analysis and experiments, and a

brief background on how we construct PoC attacks and synthetic attack scenarios. Section 5.3

discusses each of the eleven security issues in detail and presents the results of our analysis for

each security issue accompanied by a relevant PoC or a synthetic attack scenario. Section 5.4

discusses select mitigation tools and techniques that developers can use to avoid each security

issue while developing a hybrid companion app, and §5.5 concludes.

5.2 Overview

In this section, we provide an overview of HybriDiagnostics. We describe the Analysis

Engine, the heart of the HybriDiagnostics toolchain, and we provide information about the

dataset used for the analysis and discuss the types of attack scenarios presented in this work.

5.2.1 HybriDiagnostics Toolchain

Fig. 5.1 provides an overview of HybriDiagnostics. Identifying a given app as a hybrid

is a major initial task that HybriDiagnostics requires to complete before beginning the

hybrid companion app analysis. To identify whether a given app is hybrid, we extend the
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work done by Ali et al. to characterize hybrid apps according to the used app development

framework [169]. In that work, the authors inspect the classes.dex file and search for

references to specific Java classes associated with the respective frameworks. However, this

work has two limitations. First, the work is limited to PhoneGap, Appcelerator Titanium,

and Adobe Air. Second, the approach cannot identify whether an app is hybrid in the case of

an obfuscated APK. We overcome both limitations in our hybrid app identification process.

In Step 1 , HybriDiagnostics uses apktool[150] to reverse-engineer a given APK and

obtain the packaged resources, including the classes.dex, a Dalvik executable that references

classes and methods used within an app. In Step 2 , HybriDiagnostics uses dexdump [170]

to disassemble the DEX file into human-readable format. In Step 3 , HybriDiagnostics uses

findstr, a Windows OS utility, to search the dexdump output for <Class-Descriptor> strings,

and extract fully-qualified class names of all compiled classes. HybriDiagnostics stores the

extracted class names in a text file for further analysis. In Step 4 , HybriDiagnostics searches

the generated text file using simple pattern matching (using grep) for references to specific

Java classes associated with the respective app development frameworks. HybriDiagnostics

overcomes the first limitation of Ali et al.’s work by including all Cordova-based frameworks

(Apache Cordova, Ionic, Monaca, OnsenUI, Phonegap, and Framework7) and React Native in

the identification process. A few classes that HybriDiagnostics uses to identify different frame-

works include org.apache.cordova for Apache Cordova, com.facebook.react for Facebook

React Native, and org.framework.ionic for Ionic. HybriDiagnostics acquires the knowledge

of which unique classes to search for in a given app to identify the app development framework

by reverse-engineering and analyzing demo apps available on each hybrid app development

framework’s websites. In the case of an obfuscated APK, HybriDiagnostics overcomes the

second limitation of Ali et al.’s work by scanning the decompiled APK directory and searching

for cordova.js, which indicates that the app is Cordova-based since the file is present in

all Cordova-based hybrid APKs. HybriDiagnostics does further UI analysis on the HTML

code of these apps to identify the usage of framework-specific scripts and tags. For example,
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Figure 5.2: HybriDiagnostics Analysis Engine

Ionic apps use framework-specific elements, such as <IonButton> in HTML code. In Step

5 , if HybriDiagnostics identifies the app as native, then HybriDiagnostics takes no further

action; if HybriDiagnostics identifies the app as a hybrid, it sends the app to the Analysis

Engine (Fig. 5.2). In Step 6 , the Analysis Engine analyzes the, is the heart of the toolchain,

and assesses the hybrid companion app APK for preexisting security issues, and generates a

vulnerability assessment highlighting the security issues (Step 7 ).

5.2.2 Analysis Engine

Figure 5.3: Vulnerability Assessment Report

As shown in Fig. 5.2, the Analyses Engine comprises several components that perform the

security analysis presented in §5.3. Each component is labeled with a number corresponding

to the security issue number reported in §5.3. Components 1 , 2 , 3 , 5 , 10 receive the

app’s web code as input and analyze the CSP, inline JavaScript usage, eval() usage, and
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unencrypted storage usage, respectively. Component 4 receives the app’s web code and a list

of unsafe DOM APIs as input and identifies the usage of unsafe DOM APIs in the web code.

Component 6 receives the cordova.js and a list of vulnerable Cordova SDKs as input and

identifies if an app uses a vulnerable Cordova SDK. Component 7 receives the config.xml

as input and analyzes the allow list usage. Component 11 receives the Apktool.yml as

input and extracts the Android target SDK. Component 8 receives classes.dex file as

input and converts it into a JAR file using the tool dex2jar. Then, component 8 user

another tool jadx to extract the Java source code from the JAR file. Then, component 8

extracts the WebView configurations from the Java source code and analyzes them. Once

HybriDiagnostics finishes analyzing the given app (APK), it generates a report in a format

seen in Fig. 5.3.

5.2.3 Dataset

Figure 5.4: App Categorization (2082 apps)

Our dataset consists of 2082 real-world Android-based companion apps (hybrid and native),

shared with us by Wang et al. and downloaded from Google Play Store before April

2019. From that dataset, HybriDiagnostics identifies 102 Cordova-based companion apps.

HybriDiagnostics uses fresh copies of Cordova-based real-world companion apps, downloaded

in April 2021, for the security analysis presented in Section 5.3. The identified apps include

65 Apache Cordova apps, 34 Ionic apps, two Onsen UI apps, and one Framework7 app.

HybriDiagnostics does not encounter the usage of Phonegap. For the analysis presented

in §5.3.8, Attacks on WebView, HybriDiagnostics considers the entire dataset (2082 apps),
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since a large percentage of the apps in the dataset use WebView.

Additionally, HybriDiagnostics identifies 54 React Native apps. However, for the security

analysis in Section 5.3, HybriDiagnostics excludes React Native apps since these apps have a

different software stack and architecture from conventional hybrid apps [171]—React Native

apps use JSX [172] for writing business logic, a syntax extension to JavaScript, over HTML,

JavaScript, and CSS. React Native uses native Android APIs to render the UI instead of

rendering the UI in WebView. JSX is immune to traditional injection attacks that are a

major attack vector for conventional hybrid apps [173].

5.2.4 PoC Attacks & Synthetic Attack Scenarios

In our work, we combine PoC attacks and synthetic attack scenarios to demonstrate the

exploitability of the security issues in hybrid companion apps in a smarthome ecosystem. We

conduct the discussed PoC exploits in a controlled setting—we install the apps on a Google

Pixel test smartphone running Android 10 OS and storing no actual user data; we store the

remote web page used for the PoC exploit discussed in §5.3.6 on a server that is under our

control. We choose the PowerBrick Alarm app by Micron Security [174] for our PoC exploits

since HybriDiagnostics identifies this app for the most number of security issues amongst

all the apps in our dataset. For §5.3.6 (Vulnerable Cordova SDKs), we choose the Smart

Home Security app for Nedis devices [175], since despite numerous other security issues, the

PowerBrick Alarm app uses a Cordova SDK with no reported vulnerability. The synthetic

attack scenarios that we discuss feature different real-world apps and can eventuate in a

smarthome ecosystem if an attacker exploits the identified security issues.

5.3 Analysis of Security Issues in Hybrid Companion App Dataset

In this section, we present an analysis of preexisting security issues in 102 Cordova-based

smarthome companion apps. Each subsection explains the security issue, discusses the

HybriDiagnostics analysis and results, and presents either a PoC attack or a synthetic attack

scenario demonstrating the impact of the security issue in a smarthome ecosystem.

We do not analyze standard JavaScript libraries included in the app, and only focus on
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security issues introduced in first-party (developer-written) app code. For identifying standard

JavaScript libraries to exclude from the analysis, we follow the approach in Niakanlahiji et

al.’s work [176], which uses Context Triggered Piecewise Hashes (CTPH). CTPH, also known

as fuzzy hashes is a standard in identifying similar files since its algorithm matches sequences

of identical bytes in the same order [177]. Even though the bytes between these sequences

can differ in both content and length, CTPH is still efficient in identifying similar files. We

compute the CTPH value for various versions of the top 200 libraries listed by the cdnjs

website. In our analysis, before analyzing any JavaScript file, we compute its CTPH value

and compare it with the previously generated list of CTPH values to ensure the file under

examination is not part of any well-known library.

5.3.1 Default, missing, or misconfigured CSP

Security Issue #1: Cordova provides a default CSP with every project; however, the

default CSP allows the usage of inline JavaScript and the eval() function, which are well-

known to render the app vulnerable to injection attacks [178, 179]. In the case of a default

CSP, any injected JavaScript code would execute in the app’s context and would have the

same privileges as the app [56], exposing the IoT device and the smartphone to dangerous

attacks [161].

HybriDiagnostics parses the web code in a given APK to extract the CSP configuration

and categorizes the app’s CSP into three categories—

• default—the CSP allows inline JavaScript and eval() and does not specify the loca-

tion/domain of dynamic resources;

• missing—the app does not include a CSP; this often happens because impractical

deadlines, business requirements, and shortage of resources prevent developers from

implementing an efficient CSP, and they resort to simply deleting the CSP [180];

• misconfigured—while it is possible to have a deep level of control over the policy, errors

in the definition of directives may lead to unexpected consequences. Prior research
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works ([181, 182]) and blog posts ([183, 184, 185]) detail various CSP misconfigurations

and its bypasses. Some misconfigurations include using the wildcard for directives, or

partial configurations such as defining a script-src but leaving out style-src or object-

src. An attacker can use a Flash object to inject JavaScript code into the app and

bypass the CSP[186]. Misconfiguration can render the CSP ineffective and vulnerable

to injection attacks.

HybriDiagnostics parses all the HTML files of a given app to extract the CSP configurations.

Then, it uses the tool CSP Evaluator [187], a Google Open Source project, to evaluate if

the CSP is misconfigured. CSP Evaluator, a tool based on a large-scale study conducted

by Weichselbaum et al. [181], determines if given CSP serves as a strong mitigation against

injection attacks such as cross-site scripting. It can identify subtle bypasses that undermine the

CSP configuration. We note that since HybriDiagnostics uses CSP Evaluator to evaluate if a

CSP is misconfigured, the analysis results depend on the completeness of the misconfigurations

that CSP Evaluator can identify.

Results: Out of the 102 Cordova-based apps, only 32 apps implement a CSP, implying that

developers of 70 apps chose to delete the CSP. Out of the 32 apps that implement a CSP, ten

have a default CSP, and 22 apps have a misconfigured CSP.

1 <meta http-equiv="Content-Security-Policy" content="default-src ’self’ data: gap: https://
ssl.gstatic.com ’unsafe-eval’; style-src ’self’ ’unsafe-inline’; media-src *">

Figure 5.5: Default CSP in Cordova apps

Proof-of-Concept Attack: For this PoC, we use the PowerBrick Alarm app by Micron

Security Innovation [188]. The app facilitates local and remote control of multiple alarm

systems—fire, medical, and home, and allows IP camera control.

HybriDiagnostics identifies that the app does not implement a CSP. We black-box test the

app for XSS by brute-forcing all UI input fields using payloads from the OWASP XSS Filter

Evasion Cheat Sheet [189]. We discover the app is vulnerable to XSS via the alarm name
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field. We inject JavaScript code into the app via the name field; since the injected code has

the same privileges as the app, we can access sensitive device resources, including camera,

location, contacts, and internet. We can successfully track a user’s geolocation and send it to

a server under our control. We are also able to disable the set alarms.

5.3.2 Inline JavaScript

Security Issue #2: Developers can include JavaScript in an HTML page via two methods:

(i) External JavaScript—store the JavaScript code in an external file and include it in the

HTML page using the src attribute of the <script> tag;

(ii) Inline JavaScript—embed the JavaScript code directly into the HTML page using the

<script> tag but no src attribute; using a javascript: URL, or inline event handlers,

such as onmouseclick and onfocus.

Cybersecurity experts recommend against using inline JavaScript since it requires using the

‘unsafe-inline’ CSP directive, which exposes the app to injection attacks [178]. However,

previous works that survey traditional web apps show that a substantial majority of CSP-

enabled web apps resort to adding the ‘unsafe-inline’ directive ([181, 190]). This practice

occurs since moving inline JavaScript to external files requires re-structuring the entire app,

which is a non-trivial task and downgrades the app’s performance due to the synchronous

loading of numerous external scripts [191].

HybriDiagnostics parses the HTML files of a given app and identifies the usage of inline

script elements by searching for <script> tags without a src attribute, javascript: URLs,

and event handlers.

Results: Out of 102 Cordova-based apps in our dataset, 71 apps use inline JavaScript. Out

of the 71 apps, only 24 apps implement a CSP; however, all 24 apps use the ‘unsafe-inline’

directive.

Synthetic Attack Scenario: For this attack scenario, we consider the i4Home [192] app

from our dataset. The app controls and monitors the i4Home Wireless Security Alarm System.
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The app implements a CSP but allows the execution of inline scripts. Allowing execution

of inline JavaScript can render the app vulnerable to XSS, which can be exploited to take

complete control of the IoT device [161]. The i4Home app has a feature to name different

rooms in a smarthome via the Room Name field. Let us assume there is no input validation

on this field. If an attacker injects malicious JavaScript code into the app via the field, it

executes instantly since the app allows the execution of inline JavaScript. Since the code

executes in the app’s context, it will have the same privileges as the app itself. The malicious

code can access and exfiltrate sensitive user data and can disable the smarthome alarm

system.

5.3.3 Unsafe eval()

Security Issue #3: The eval() function takes a String input and executes it as JavaScript

code [179]. Using eval() is dangerous and not recommended since it exposes hybrid companion

apps to injection attacks [179]. The eval() function also requires using the ‘unsafe-eval’ CSP

directive since a CSP without this directive prohibits the use of eval(). Adding the ‘unsafe-

eval’ directive results in a less efficient CSP, as explained in subsection 5.3.1. Additionally,

eval() executes in global scope and has access to the entire app code [193].

For this analysis, HybriDiagnostics only considers developer-written code in the app and

excludes other standard JavaScript frameworks/libraries included in the app. HybriDiagnos-

tics parses the HTML and JavaScript files of the app code and identifies apps that use eval()

to evaluate expressions.

We note that eval() usage is strictly a vulnerability only if data flows to the eval() call

from an untrusted input. We leave automating this data flow analysis to future work. For

the synthetic attack scenario presented, we manually analyze the app code to identify that

the app does not validate untrusted input. Then, we further analyze the app to identify that

eval() accepts untrusted input that can be modified by the attacker (Fig. 5.6).

Results: Out of the 102 Cordova-based apps in our dataset, 50 apps use eval() in the app

code.
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Figure 5.6: eval() usage in Smart Home Security app

Synthetic Attack Scenario: For this scenario, we consider the Smart Home Security app

used in §5.3.6. HybriDiagnostics identifies that the app uses eval() at multiple locations in

the app code. Fig. 5.6 shows an instance of eval() usage in the app. A manual code analysis

reveals that itemid in Fig. 5.6 stores a user supplied value. Let us assume the app does not

adequately sanitize the user supplied value before storing it in itemid. An attacker can inject

malicious JavaScript code into itemid that disables the home alarm system. Since eval()

considers anything passed to it as code, it executes the malicious JavaScript code instantly

jeopardizing the user’s safety.

5.3.4 unsafe DOM APIs

Security Issue #4: To display content in hybrid companion apps, developers use Document

Object Model (DOM) APIs and attributes, and jQuery APIs including document.write(), in-

nerText, innerHTML, outerHTML, and html(). APIs that consider the passed parameters

as data (String) and not code are safe APIs, and APIs that consider the passed parameters

as code and execute it are unsafe APIs [1]. If a developer requires dynamically generating

HTML elements on the app page, the developer resorts to using the unsafe APIs. However,

while using unsafe APIs, a developer should validate any untrusted input, i.e., input not under

the developer’s control, before processing it. Untrusted input can originate at the client-side,

i.e., user input, and can also originate at the server-side, for instance, non-validated input

from a database. Section 5.4.4 provides more details on validating user input.

For the analysis, HybriDiagnostics scans the HTML files of a given app to identify usage

of unsafe APIs to display app content.



78

Table 5.1: APIs and attributes used for displaying data [1]

DOM APIs and
Attributes

Safe or
Unsafe JQuery APIs Safe or

Unsafe
document.write() Unsafe html() Unsafe
document.writeln() Unsafe append() Unsafe
innerHTML Unsafe prepend() Unsafe
outerHTML Unsafe before() Unsafe
innerText Safe after() Unsafe
outerText Safe replaceAll() Unsafe
textContent Safe replaceWith() Unsafe
value Safe text() Safe

val() Safe

Results: Out of 102 Cordova-based apps in our dataset, 84 apps use unsafe APIs to display

the app’s content.

Proof-of-Concept Attack: For this attack, we consider the PowerBrick Alarm app again

(see §5.3.1). As shown previously, this app is vulnerable to an XSS attack via the alarm

name field. HybriDiagnostics identifies that the app uses jQuery API html() to display the

alarm name in the app. The html() API takes the user-supplied alarm name as input and

displays it in the app. However, the app does not validate this input and executes any code

passed to the html() API.

5.3.5 Unencrypted storage

Security Issue #5: It is common for mobile apps to store user and app data on the device’s

local storage. Developers using Cordova-based frameworks can either use core web APIs, such

as window.localStorage, for storing data on the device’s local storage, or use plugins such

as cordova-sqlite-storage [194]. However, these commonly used storage APIs and plugins

do not encrypt the data before storing it and are hence insecure. According to OWASP’s

Top 10 mobile risks list, unencrypted storage of critical user and app data such as API keys

continues to prevail [195].

Any person with physical access to the device or malicious code injected into the app

can trivially access unencrypted data on local storage. A few community-developed plugins

are available at the developers’ disposal using Cordova-based frameworks to store data on
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local storage securely. These plugins include cordova-plugin-secure-storage [196], cordova-

sqlcipher-adapter [197], and com-intel-security-cordova-plugin [198] (not supported by

Intel anymore, but still available to use). These plugins encrypt the data before storing it

and provide data security.

HybriDiagnostics parses the web code of a given app and identifies the usage of both

insecure and secure API and plugins for storing data.

Results: Out of the 102 apps in our dataset, 92 apps use insecure APIs and plugins for

storing data. Only 10 apps use secure storage APIs. All 10 apps use the cordova-plugin-

secure-storage plugin to achieve this. A few apps in our dataset that do not encrypt data

before storing include Arnido Smart Home, Wemo by Belkin, and Panoramic 360Â◦ CCTV

Bulb Camera.

Synthetic Attack Scenario: For this attack scenario, we consider the app Arnido Smart

Home [199] that stores unencrypted data on local storage. This app controls various

smarthome devices, such as electrical appliances, smart lights, alarm systems, and smart

locks, through a single app. Let us assume the app stores a sensitive API token in local

storage and uses it for authentication while sending any command to the smart lock. Since

the app implements a misconfigured CSP and allows inline scripts, an XSS attack can be

used to steal this API token. If an attacker acquires this token, they can change the lock

code on the smart lock and physically access the smart home when the user is not around.

5.3.6 Vulnerable Cordova SDKs

Security Issue #6: Since Cordova’s initial release in 2009, it has undergone numerous

performance and security-enhancing changes. Despite the updates being critical to the

app’s security, numerous apps still use old and vulnerable SDKs and expose themselves to

cyberattacks. An example vulnerability affecting Cordova SDK before version 3.7.2 and 4.x

before 4.0.2 allow remote attackers to send data to arbitrary applications via an Android

Intent [200], bypass the allow list, and connect to arbitrary servers using JavaScript to open

network socket connections through Webview. This vulnerability allows an attacker to change
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the vulnerable app’s start page via a crafted intent: type URL [201]. Another vulnerability

affecting cordova-plugin-inappbrowser allows an attacker to execute arbitrary JavaScript

in the main application’s Webview [202].

For this analysis, we build a comprehensive list of reported Cordova SDK vulnerabilities

(shown in Table 5.2, using the MITRE CVE (Common Vulnerability Enumeration) database

and security advisories by the Cordova team [203, 204]. The first column of the table is

the CVE—a unique ID assigned to each publicly disclosed computer security flaw [205]; the

second column is the CWE (Common Weakness Enumeration) and it’s associated ID—a

community-developed list of software and hardware weakness types. It serves as a baseline

for weakness identification, mitigation, and prevention efforts [206]; the third column is the

Common Vulnerability Scoring System (CVSS) [207] score for the vulnerability—a numerical

score provided by the organization Forum of Incident Response and Security Teams (FIRST)

reflecting the severity of the vulnerability [207]; and the fourth column is the affected Cordova

version. HybriDiagnostics extracts the Cordova SDK version from cordova.js (Cordova

library file) from the given app. HybriDiagnostics checks the identified Cordova SDK version

against the list of reported vulnerabilities that we built to identify whether the given app

uses a vulnerable Cordova SDK.

Results: Out of the 102 Cordova-based apps, 38 apps use vulnerable SDKs. Some of the

apps that use older SDKs with reported vulnerabilities include Wemo by Belkin, Smart Home

Security, and Daikin Envi Thermostat.

Proof-of-Concept Attack: For this scenario, we consider the app Smart Home Secu-

rity [208] by omguardec2, available on Google Play Store, with over 10,000 installs. App

features include surveillance of the home, energy usage monitoring, controlling devices such

as power switch, motion detector, door contact, and the security alarm system. Despite being

a smarthome security app with a large customer base, the app was last updated in October

2017 and uses Cordova library version 3.6.4, launched in September 2014.

The app is affected by a reported vulnerability in the CordovaActivty [209] class, the main
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Figure 5.7: Cordova Android SDKs used in IoT companion hybrid mobile apps in our dataset

Android Activity [210] of the Cordova application. The vulnerability allows remote attackers

to modify undefined Cordova preferences (app configuration variables) such as Fullscreen,

DisallowOverscroll, Orientation, InAppBrowserStorageEnabled, SplashScreen, etc., via

a crafted intent: type URL embedded in an attacker-controlled web page or an app [201, 211].

Successful exploitation of the vulnerability requires two prerequisite conditions to be met:

1. at least one of the app’s components (Class) extends the CordovaActivity class; and

2. at least one of the Cordova-supported preferences (except LogLevel and ErrorUrl) is

not defined in config.xml. Assuming the above two conditions are satisfied, the app can

be exploited by tricking the user into either opening an attacker-controlled web page in the

phone browser or installing an attacker-controlled app containing maliciously crafted intent

URLs. To conduct the exploit, we first manually analyze the app code to ensure that both

prerequisite conditions are fulfilled. We then set up a remote web page that contains malicious

code to tamper with the app’s preferences via intent: type URLs. Then, we open this web

page in Google Chrome on the test smartphone. We can tamper with the app’s appearance,
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Table 5.2: Apache Cordova Vulnerabilities

CVE ID CWE
ID Score Cordova

Version
CVE-2017-3160 200 5.8 <6.1.2
CVE-2016-6799 532 5 <=5.2.2
CVE-2015-8320 200 5 <3.7.0
CVE-2015-5256 264 4.3 <4.1.0
CVE-2015-5208 20 4.3 <4.0.0
CVE-2015-5207 284 7.5 <4.0.0

CVE-2015-1835 20 2.6 <3.7.2 and
4.x before 4.0.2

CVE-2014-3502 200 4.3 <3.5.1
CVE-2014-3501 254 4.3 <3.5.1
CVE-2014-3500 17 6.4 <3.5.1
CVE-2014-1884 264 7.5 <= 3.3.0
CVE-2014-1882 264 7.5 <= 3.3.0
CVE-2014-1881 264 7.5 <= 3.3.0
CVE-2012-6637 20 7.5 <= 3.3.0

inject pop-ups and text, inject splash screens, and crash the app, causing denial-of-service.

We can achieve this even without the app running.

5.3.7 Default or misconfigured Allow List

Security Issue #7: For this analysis, HybriDiagnostics categorizes a given app into two

categories—

• default—network requests can be made to any origin (<access origin=“*”>), and the

app can use any Android intent type URL to ask the system to open the respective

system app. Intent [200] is a messaging object used to request an action from another

app; intent type URLs allow this through WebView;

• misconfigured—Cordova recommends to securely configure all three allow list types to

allow access to specific network domains and sub-domains, limit the allowed intents

according to the app requirements, and using a CSP over Network Request Allow List

since a CSP allows more fine-grained control over the network requests an app can

make. Cordova also specifies that the Navigation Allow List takes precedence over the

Intent Allow List. We build a list of ambiguities and errors in the allow list definition
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to identify allow list misconfigurations. For instance, a wildcard for Navigation Allow

List (<allow-navigation href=“*” />) renders the Intent Allow List ineffective since it

implicitly captures all intents. Another instance can be defining the Navigation Allow

List as <allow-navigation href=“https://*/*” />, in which case WebView can be

navigated to any URL starting with https.

A default or misconfigured allow list leaves the app vulnerable to a variety of attacks,

such as phishing [212], drive-by-downloads [213], and data-exfiltration. For this analysis,

HybriDiagnostics first extracts the allow list configurations from config.xml and compares it

to the list of misconfigurations to identify a misconfigured allow list. For Network Allow List,

if an app defines a CSP, we consider the Network Allow List as ambiguous and report it.

Results: Out of the 102 Cordova-based apps, 43 apps have a default allow list, and 58 apps

have a misconfigured allow list. Only one app (Home Alerts—works with Nest) implements a

policy with all the three allow lists distinctly defined.

Figure 5.8: Allow List configuration (partial) of Home Alerts—Works with Nest app

Proof-of-Concept Attack: For this attack, we consider PowerBrick Alarm app used

in §5.3.1. The app provides the user with an option to sign in using a Facebook account.

The app has a misconfigured allow list policy with wildcards used for all three allow lists,

allowing any injected code to redirect the WebView to any URL.

As shown in Fig. 5.9, we leverage the previously discovered XSS vulnerability in the app

(see §5.3.1) and create a PoC phishing web page that simulates the Facebook login page. In

step 1 , the attacker injects JavaScript code in the app to redirect the WebView to the

phishing web page. In step 2 , the injected code navigates the WebView to the phishing
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Figure 5.9: Missing allow list leads to credential compromise

web page. In step 3 , once the user enters their credentials and clicks the Log In button,

the attacker receives the login credentials.

1 <img src=x onerror=‘‘window.location(’https://attacker.com’)’’>
2

Figure 5.10: JS payload to exploit mis-configured allow list using XSS

5.3.8 Webview Attacks

Security Issue #8: Even though the integration of WebView in companion apps allows

developers to build mobile apps using web technologies, it exposes apps to several attacks,

demonstrated in both academic works [214, 215, 216], as well as blog posts [217, 218, 219].

According to Checkmarx [220], the top four insecure coding practices while implementing

WebView, which lead to most attacks, are—

1. Loading arbitrary third-party content—an app that displays third-party content in

WebView is potentially harmful since WebView runs as a single process and any

malicious content in WebView has the same privileges as the app itself [217, 218].

2. Loading content over http (non-encrypted)—as discussed in the presented attack sce-

nario, loading content over http exposes the app to a potential man-in-the-middle [221]

attack.
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3. Enabling execution of JavaScript in WebView—by default, the OS disables JavaScript

execution in WebView. The developer can enable JavaScript execution by using the

setJavaScriptEnabled() function, however, cybersecurity experts recommend preserv-

ing the default behavior if the app does not require client-side scripting. Disabling

JavaScript execution in JavaScript ensures the app is resilient to code-injection attacks.

4. Enabling access to local file storage—the function setAllowFileAccess() can be used

to enable WebView’s access to local file storage. However, if the app does not properly

validate input, enabling access to local file storage can lead to unauthorized file access

via a file traversal attack [217].

For this analysis, HybriDiagnostics scans Java source-code files of a given app to identify

the discussed insecure coding practices in WebView’s implementation. Additionally, we

identify several apps that pass String parameters instead of the actual URL to the loadUrl()

function of WebView class. As mentioned in §5.3.3, since we leave dataflow analysis for

future work, we cannot confirm whether each String parameter is a URL. The results do

not include such apps. Therefore, the number of apps that load content over HTTP or pass

JavaScript code to the loadUrl() function could be higher than we currently report.

Results: Out of 2082 apps in our dataset, HybriDiagnostics identifies that 1019 apps use

WebView; 125 apps useWebView to load local content (file:// URL); 565 apps use loadUrl()

function of the WebView class to execute JavaScript; 808 apps have JavaScript enabled in

WebView; 111 apps load content over http; and 232 apps that enable WebView’s access to

local storage of the device.

Synthetic Attack Scenario: We consider the app My Leviton [222] by Leviton Manu-

facturing Co., Inc. The app can control electrical appliances connected to smart switches

manufactured by the same vendor. The app loads content over http in WebView, which

exposes the app to a potential man-in-the-middle attack (see Fig. 5.11 for the synthetic attack

scenario).
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Figure 5.11: Exploiting misconfigured WebView

For this attack scenario, let us assume the firmware on a connected smart light bulb

updates via the companion app, a common practice among IoT devices [223]. In step 1 , the

app requests a vendor-controlled remote server for the firmware update URL. The attacker

intercepts this request (step 2 ) and serves a malicious response (step 3 ) containing a

crafted firmware update URL. Since the app loads content over http, unlike https, the

content is unencrypted (plain-text) and the attacker can easily modify it. In step 4 , the

phone accesses the malicious firmware update URL, and in step 5 downloads the firmware.

In step 6 , the firmware is sent to the smart light bulb. Once the malware enters the light

bulb, it can do malicious activities such as increasing the voltage and causing the light bulb

to explode and injure the user, switching the light bulb on and off without the user’s intent,

or spreading to other devices on the same network.

5.3.9 Broken Same-origin Policy

Security Issue #9: In hybrid companion apps, since local app code adds Cordova plugins

to WebView (in Android), they have no web origin in WebView’s context. Therefore, any

web content, benign or malicious, loaded into the WebView from any origin can directly

invoke the Cordova plugins added to the app. Hence, any malicious JavaScript loaded into

the WebView can access device resources via the Cordova plugins and exfiltrate private user

data; SOP fails to protect against such attacks.
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Figure 5.12: Broken SOP in hybrid mobile apps

Results: HybriDiagnostics identifies all 102 Cordova-based apps in our dataset as affected

by this security issue.

Synthetic Attack Scenario: We consider the Smart Home Security app again (see §5.3.6).

As in the case of most free apps, this app displays in-app ads to generate revenue through

clicks and referrals [142].

For this attack scenario (see Fig. 5.12) , let us assume the app includes an ad syndicator

script to display in-app ads. In step 1 , the attacker compromises the attack network by

exploiting a known vulnerability in the ad server. Then, in step 2 the attacker modifies

the ad syndicator script to access the device resources. In step 3 , the malicious ad script

accesses the user’s sensitive information and stealthily exfiltrates security-sensitive user data

to external servers using the SMS and email device resources.

5.3.10 iframes

Security Issue #10: An iframe is an inline frame or a rectangular region in an HTML

document to embed (display inside) a separate document [224]. A common usage of iframes

is embedding videos or displaying ads inside an HTML document. The developer can add an

iframe to a web page either—

(i) statically—using the <iframe> HTML tag. Here, the src attribute of the <iframe> tag

defines the URL of the document to embed; or
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(ii) dynamically—using JavaScript’s document.createElement() method (see Listing 5.1,

Line 1), which takes as a parameter the HTML element’s name that the developer

wants to create dynamically. The developer can specify the URL of the document to

embed in the iframe using the dot (.) notation (object property accessor) to define the

src property of the iframe object (Line 3).

1 var iframe = document.createElement(‘iframe’);
2 var html = ‘<body>Foo</body>’;
3 iframe.src = ‘data:text/html;charset=utf−8,’ + encodeURI(html);
4 document.body.appendChild(iframe);

Listing 5.1: Adding iframe to a web page dynamically

In standard web applications, an iframe displays content from the specified URL, but

SOP prevents any script in the parent page from accessing the framed page’s contents and

vice-versa. SOP enforces this behavior to protect the parent page’s integrity and isolate

potentially malicious documents from compromising the user’s privacy.

In hybrid apps, to display content in an iframe in WebView, the developer requires adding

the URL of the document to embed in the iframe, to the Navigation allow list. Without

adding the URL to the allow list, Cordova does not allow the content to load in WebView

since the iframe is now a part of WebView and the Navigation allow list applies to all

content in WebView, including iframes. Content served in the iframe from the allow listed

URL has the same privileges as the app itself, hence, can access the Cordova plugins [225].

SOP cannot block this access because once the developer adds the required plugins to the

app, the plugins become part of the app’s local (on-device) code and have no web origin.

Therefore, malicious content served in an iframe can access security-sensitive resources via

plugins added to the app code. For instance, if a developer adds a third-party ad network to

the Navigation allow list and serves an ad in an iframe, a malicious ad from the ad network

can access security-sensitive device resources via the Cordova plugins.

HybriDiagnostics scans the given app’s HTML files to identify iframe usage by search-

ing for the <iframe> tag in the HTML code. Then, HybriDiagnostics extracts the value



89

of the src attribute of the <iframe> tag, i.e., URL of the embedded content, for further

analysis. For dynamic iframes, HybriDiagnostics scans a given app’s JavaScript code,

excluding standard JavaScript frameworks and libraries, and searches for instances of

document.createElement(’iframe’). If HybriDiagnostics finds any such instances, it ex-

tracts the iframe’s URI by further scanning the code and searching for the line of code that

sets the value of object.src (see Listing 5.1, Line 3). We then manually analyze the extracted

URI to determine whether the content served by the iframe is under a third-party’s control

and also identify the third-party.

Results: Out of the 102 Cordova-based apps, six apps use iframes to display content.

Manual analysis of these seven apps shows that only one app, Rogers Smart Home Monitoring

app, embeds content in an iframe that is not under the control of the vendor. The app

embeds a video from vimeo.com.

Synthetic Attack Scenario: For this scenario, we consider the Rogers Smart Home

Monitoring [226] app in our dataset. The app’s features include surveillance, energy usage

monitoring, controlling devices such as smart lights, smart switches, smart locks, IP cameras,

and alarm systems. The app uses an iframe tag to embed third-party JavaScript from

https://www.tagmanager.google.com. Let us assume an attacker compromises the third-party

server and modifies the content served in the iframe. The malicious code can then access

device resources via Cordova plugins since SOP does not protect plugin access. The attacker

can access and exfiltrate sensitive user data. Additionally, if the app stores the lock codes for

the smart locks in local storage, the attacker can also access that, compromising user safety.

5.3.11 Outdated/vulnerable Android SDKs

Security Issue #11: Android OS and SDKs receive regular updates to enhance functionality

and patch existing vulnerabilities [227]. Both Google and third-party security researchers

identify numerous security issues and vulnerabilities in Android components each month,

therefore Google releases monthly security patches and recommends (and constantly reminds)

app developers to update app SDKs [228]. Even if a smartphone runs the latest Android OS

https://www.tagmanager.google.com
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Table 5.3: Vulnerabilities affecting each Android SDK in our dataset

Android
Version API # CVEs

Avg.
CVSS
Score

Top 2
CWEs

Android 2.3.3 10 19 6.95 Information Exposure,Permission and Access Control
Android 3.0 11 15 7.34 Permission and Access Control, Information Exposure
Android 3.1 12 14 6.9 Permission and Access Control, Improper input-validation
Android 3.2 13 13 7.1 Permission and Access Control, Information Exposure
Android 4.0 14 46 4.65 Information Exposure, Permission and Access Control
Android 4.0.3 15 231 7.33 Permission and Access Control, Information Exposure
Android 4.1 16 21 9.41 Memory Corruption
Android 4.2 17 229 7.33 Permission and Access Control, Information Exposure
Android 4.3 18 230 7.35 Permission and Access Control, Information Exposure
Android 4.4 19 216 7.25 Permission and Access Control, Information Exposure
Android 5.0 21 304 7.26 Permission and Access Control, Information Exposure
Android 5.1 22 367 7.46 Memory Corruption, Permission and Access Control
Android 6.0 23 627 7.2 Information Exposure, Memory Corruption
Android 7.0 24 667 7.16 Information Exposure, Permission and Access Control
Android 7.1 25 229 7.23 Information Exposure, Memory Corruption
Android 8.0 26 382 6.95 Information Exposure, Out-of-Bounds Write
Android 8.1 27 254 6.94 Out-of-Bounds Write, Out-of-Bounds Read
Android 9.0 28 148 6.73 Out-of-Bounds Write, Out-of-Bounds Read
Android 10.0 29 266 4.82 Out-of-Bounds Read, Out-of-Bounds Write

version, if an app uses outdated SDKs with API-level vulnerabilities, it is still exploitable [227].

However, even the monthly security patches do not guarantee that every Android phone

gets the patch as soon as the patch’s release. The reason for this is that Google releases

security patches for Android Open Source Project (AOSP), the stock Android OS project.

However, other Android phone manufacturers such as Samsung, Sony, LG, and Motorola

customize the AOSP by adding additional features and functionality and prepare their own

custom Android OS. These manufacturers have to integrate the released security patches into

their version of Android OS and release them as system updates [229]. Some manufacturers

release more frequent and timely security patch updates for their phones; however there can

exist long patch lags [229]—if it is not a Google phone (such as the current Pixel), it can be

months before phones receive security updates [228].

Additionally, Google recently announced the end of support for Android OS 7.0 (SDK

version 24) and lower, which also includes end of security patches for these SDKs [230].

With both Google and the phone manufacturers not releasing security patches for SDKs

24 and lower, soon attackers can exploit zero-day vulnerabilities in these SDKs to launch
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cyberattacks against users. At the time of writing this paper, Google also requires all new

apps to target SDK 29 and app updates to target SDK version 28 [231]. As mentioned in

§5.2.3, since we re-download fresh copies of our hybrid companion app analysis dataset in

September 2020, we can conclude that apps that target SDK versions lower than 28 (less

than Google’s requirement) in our dataset are not updated by the developer. We conduct a

two-fold analysis here—

• Part A—we use HybriDiagnostics to identify the Android SDK version distribution in

our entire dataset of 2082 apps (native and hybrid). The SDK distribution provides

us with a general idea of the amount of effort IoT code producers put in updating the

apps.

• Part B—for any given hybrid companion APK, HybriDiagnostics classifies the APK as

vulnerable in the security assessment report if it targets Android SDK version 24 or

lower. HybriDiagnostics does this because SDKs lower than 24 will not receive security

patches anymore and are vulnerable to zero-day attacks. HybriDiagnostics also adds a

security warning to the vulnerability assessment report of a given APK if a given APK

does not meet Google Play’s API requirements and targets an SDK version higher than

24 but lower than 28.

To identify the target SDK version, our first approach is to get the required information

from AndroidManifest.xml [232]. Every Android app project must have an AndroidMan-

ifest.xml file (with precisely that name) at the root of the project source. The mani-

fest file describes essential information about an app to the Android build tools (part of

SDK), the Android OS, and Google Play. A manifest file can contain several elements

that include <application> [233], <uses-permission> [234], <uses-sdk> [235], and others.

Google Play relies on the <uses-sdk> attribute in the app manifest, to filter an app for

devices that do not meet its platform version requirements. The <uses-sdk> element has

three important attributes—android:minSdkVersion, android:targetSdkVersion, and an-
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droid:maxSdkVersion. However, declaring the <uses-sdk> is not mandatory. While parsing

the AndroidManifest.xml [232] to identify the target SDK version, we discover that nu-

merous apps do not declare this information in the manifest file. We resolve this issue

by extracting this information from another file, Apktool.yml, generated during the APK

reverse engineering process by apktool (see Fig. 5.2 11 ).

Results: For Part A, Fig. 5.13 shows the distribution of the different Android SDK versions in

our dataset, represented as a pie chart. Only one app out of 2082 apps targets the current SDK

version. Additionally, Table 5.3 shows (terms CVE, CVSS, and CWE have been discussed in

§2.2)—(i) the various versions of Android SDKs in our dataset of 2082 apps; (ii) number of

vulnerabilities affecting each SDK (obtained from MITRE’s CVE database [205]); (iii) Average

CVSS score. We average the CVSS score of all the vulnerabilities associated with an SDK

version; and (iv) top two CWE categories affecting each SDK version.

For Part B, out of the 102 Cordova-based apps, HybriDiagnostics identifies 59 apps that

target Android SDK 24 or lower. For the second part of the analysis, HybriDiagnostics

identifies 43 apps that target Android SDK versions higher than 24 but lower than 28. A

few hybrid companion apps that HybriDiagnostics identifies as vulnerable include Intelligent

Home Center, Home Alerts—works with Nest, Blossom Smart Watering, and Daikin ENVi

Thermostat.

Synthetic Attack Scenario: For this scenario, we consider the app Blossom—Smart

Watering [236] in our dataset. The app controls a smart watering system and targets Android

SDK version 19. The app features a Profile page where a user can upload a display picture in

various formats such as JPEG and BMP. Since the image is uploaded as a stream of bytes,

the Android SDK features an image parsing library that parses the image bytes to re-form

the image.

Let us assume an attacker discovers a buffer overflow [237] vulnerability in the component

of the image parsing library that parses JPEG images. Since the app uses SDK version 19

now, it will not receive a vulnerability patch. By uploading a specially crafted JPEG file to
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Figure 5.13: Target Android SDKs (1893 apps)

the app, the attacker can trigger the buffer overflow vulnerability and potentially execute

arbitrary code on the user’s smartphone. The injected malicious code can control the smart

watering system, resulting in a lot of water wastage that can be hefty on the user’s pocket.

More severe consequences include the malicious code can access arbitrary memory locations

allocated to other apps running on the device and exfiltrate security-sensitive data, or obtain

root access to control the device [238, 239] completely.

5.4 Selected Mitigations

In this section, we discuss tools and techniques that hybrid app developers can use to

mitigate the security issues presented in §5.3. Table 5.4 summarizes the mitigation techniques

discussed. Each row of the table is divided into four columns—the number assigned to the

security issue (see §5.3), security issue (see §5.3), select mitigations, and a reference for

additional details on each mitigation. Each subsection briefly describes the security issue

then discusses the appropriate mitigation technique that the developer can implement to

avoid the security issue.
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Table 5.4: Select mitigation for the presented security issues

# Security Issue Mitigations Reference
1 Misconfigured CSP Chrome Dev Tools & CSP Evaluator [240, 187]
2 Inline JavaScript Hash or Nonce [68]
3 Unsafe eval() window.Function [241]
4 Unsafe DOM APIs Input Sanitizers [242, 243, 244]
5 Unencrypted Storage Encrypted Storage [196, 197, 198]
6 Vulnerable Cordova SDK Updating Cordova SDKs [245]
7 Misconfigured Allow List Secure Allow List [69]
8 Misconfigured WebView Secure Configuration of WebView [246]
9 Broken SOP HybridGuard [37, 56]
10 iframe no iframe, HybridGuard [225]
11 Old Android SDK Update Android SDKs [227]

Figure 5.14: Inspecting a hybrid companion app using Chrome Dev Tools

5.4.1 Chrome Dev Tools and CSP Evaluator (Security Issue #1)

As discussed in §5.3.1, in hybrid apps, the default or a misconfigured CSP exposes an app

to injection attacks. To prevent this security issue, a developer can do the following—

• Chrome Dev Tools—the Google Chrome browser provides a simple but effective way to

identify CSP violations in hybrid apps [240]. To debug an app using Chrome Dev Tools,

the developer can either use the Android Studio emulator or a real device (Android

OS) to run the app. In the case of a real device, the device requires a connection to

the machine running Google Chrome via USB. Once the app is running, as seen in

Fig. 5.14, the developer can open the URL chrome://inspect/#devices in Chrome to

access the app debug page. The developer can debug the app and see CSP violation by
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Figure 5.15: Identifying CSP violation using Chrome Dev Tools

clicking the inspect button, which opens a new window with the app screen on one

side and Chrome Dev Tools on the other. The developer does require to browses the

app and try different app features to trigger the CSP violations. Fig. 5.15 shows an

example CSP violation in the Chrome Dev Tools Console tab.

• CSP Evaluator—as previously mentioned in §5.3.1, CSP Evaluator [187] allows de-

velopers to check if a CSP serves as a strong mitigation against injection attacks. It

assists developers in identifying subtle CSP bypasses [186, 183] which render the policy

ineffective, discussed in §5.3.1.

5.4.2 Hash and Nonce (Security Issue #2)

1 <script>alert("Hello World!");</script>

Listing 5.2: A simple script

As discussed in §5.3.2, ideally, developers should avoid using inline scripts since it requires

adding the ‘unsafe-inline’ directive to the CSP. Besides allowing execution of inline JavaScript,

the ‘unsafe-inline’ directive allows any injected script to execute in the browser, exposing

the app to injection attacks. However, moving inline JavaScript to external files in an already

existing app is not a trivial task and breaks the app structure [191]. CSP provides two

features to safely include inline JavaScript in an app, which the developer can use [68]—

• Hash—for each inline JavaScript code block used in the app, compute its hash value

and add it to the CSP. Adding the hash value of the inline JavaScript code block to

the CSP restricts the execution of inline JavaScript to only those specific code blocks,

disallowing execution of any injected JavaScript, hence, preventing injection attacks [68].
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Listing 5.2 shows a simple script that the developer can hash and add to the CSP

(Listing 5.3).

1 <meta http−equiv="Content-Security-Policy" content="default-src ’self’; script-src ’self’ ’
sha256-vtOwtCfiL2B+TrRWnLTdfTIr7KTaqohZywH93jHLSGw=’">

2

Listing 5.3: Adding script hash to CSP

• Nonce—in the case where the inline code block contains dynamically generated data,

the hash value of the block can change. For instance, in Listing 5.5 Line 3, value of

id is dynamic and the code block receives the value at runtime. Each distinct value

of id results in a different hash value of the entire code block. As an alternative, the

developer can instead use a nonce, a dynamically generated random string independent

of the content of the inline JavaScript code block. The developer will need to add

the nonce to both the CSP (Listing 5.4) and the inline code block (Listing 5.5) [247].

Before the browser executes any inline JavaScript, it will compare the nonce of that

specific inline code block with the nonce in the CSP, and only allow the execution to

proceed if both nonce values are equal.

1 <meta http−equiv="Content-Security-Policy" content="default-src ’self’; script-src ’self’ ’nonce-
VVJJcG9ydHMuY29tIGlzIHRoZSBiZXN0’;">

Listing 5.4: Adding a nonce to CSP

1 <script nonce="VVJJcG9ydHMuY29tIGlzIHRoZSBiZXN0">
2 function toggleComments(id) {
3 $(’#’ + id + ’ .commentsContainer’).toggle(500);
4 }
5 </script>

Listing 5.5: A simple script with nonce

5.4.3 Using Function (Security Issue#3)

As discussed in §5.3.3, using eval() is dangerous and not recommended since it executes

in the app’s global scope and evaluates any expression passed to it as parameter exposing
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hybrid companion apps to injection attacks [179]. As per the Mozilla Developer Network

(MDN) Web Docs [193] and the Cordova Security Guide [225], developers should never use

eval() in app code. The MDN Web Docs’ eval() function documentation displays a warning

regarding its usage that can be seen in Fig. 5.16.

Figure 5.16: Warning against using eval() on MDN Web Docs

To avoid this security issue, the developer can use the JavaScript Function [241] object

instead of using eval(). A function() definition in JavaScript is a Function object and can

be used to evaluate expressions, similar to eval(). Additionally, a function() executes in a

local scope and poses less danger to the entire app. As seen in Listing 5.6, if an attacker

controls the value of id, they can execute malicious code in the global scope. However, in

case of a function() (Listing 5.7), the malicious code is limited to the local scope of the

function and reduces the attack surface.

1 eval(id + "is the employee ID")

Listing 5.6: Using eval() to evaluate an expression

1 function testID(id){
2 return (id + "is the employee ID")
3 }

Listing 5.7: Using function() to evaluate an expression

5.4.4 Input Validators and Output Sanitizers (Security Issue #4)

Section 5.3.4 discusses DOM and jQuery APIs and attributes that consider any input they

receive as code and are vulnerable to injection attacks. In order to prevent this security issue,

the developer should display app content using safe APIs (Table 5.1) that are immune to

injection attacks since they consider all inputs passed to them as data [1]. However, it is

common to use unsafe APIs (Table 5.1) and dynamically generate HTML elements on an

app page. Therefore, while using unsafe APIs, the developer should do the following—
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• Validate input—before processing any untrusted input, the developer should validate

the input to ensure only correctly formatted data enter the app. As discussed in §5.3.4,

untrusted input can be user input at client-side, and non-validated input from a

database at server-side. Some examples of input validation tests include—“The input

PIN should be four characters in length and consists only of numbers”, “Name is a

required field”,“Please enter the phone number in the valid format (xxx-xxx-xxxx)”,

“Please enter the email address in the valid format (xxxx@xxxx.com)”, and “The password

entered requires to be between 8 and 30 characters, contain one uppercase letter, one

symbol, and a number.” The developer should always validate at server-side since it is

trivial to bypass client-side validation tests [248] using application level proxies, such as

Burp Suite [249]. A few validator libraries that the developer can use include Yup [250]

and validator.js [242].

• Sanitize output—before displaying any content on the app page, to prevent code

injection attacks a developer should remove or escape—ignore the special purpose of a

character or series of characters specific to a programming language [251]—any illegal

characters i.e., any characters that the browser can consider as code and execute [252].

A few sample sanitizers for HTML and JavaScript include sanitize-html [253], HTML

Sanitizer API [243], and Closure-Library [244].

5.4.5 Encrypted Storage (Security Issue #5)

As discussed in §5.3.5, commonly used storage plugins do not encrypt the data before

storing it and are hence insecure. To prevent this security issue, the developer should use

Cordova plugins that encrypt data before storing and securely store data in the device’s

local storage. A few community-developed plugins are available at the disposal of the hybrid

mobile app developer, including cordova-plugin-secure-storage [196], cordova-sqlcipher-ad-

apter [197], and com-intel-security-cordova-plugin [198]. The com-intel-security-cordova-

plugin plugin is not supported by Intel anymore, however, meaning any developmental bugs

in the plugin would have to be either patched by the developer or the Apache Cordova
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developer’s community [254].

5.4.6 Updating Cordova SDKs (Security Issue #6)

As discussed in §5.3.6, numerous apps still use old and vulnerable SDKs and expose

themselves to cyberattacks. To prevent this security issue, as per the Apache Cordova team’s

recommendation, the developer should regularly update an app’s Cordova SDKs since new

versions carry important security fixes. Most updates provide critical capabilities that can

improve the overall security of the app [245]. For example, Cordova version 5.1.1 introduced

the capability of adding a CSP to Cordova apps.

5.4.7 Secure Allow List configuration (Security Issue #7)

As discussed in §5.3.7, Cordova apps can be configured with three types of allow lists—

Navigation, Intent, and Network Request. A default or misconfigured allow list leaves the app

vulnerable to a variety of attacks, such as phishing, drive-by-download, and data-exfiltration.

Cordova provides a comprehensive guide on configuring all three type of allow lists to make a

hybrid companion app secure [69]. The developer should note that the Cordova Allow List

guide recommends using a CSP over Network Request Allow List, since a CSP allows more

fine-grained control over the network requests an app can make. The Network Request Allow

List still exists since older versions of WebView do not support CSP.

5.4.8 Secure WebView configuration (Security Issue #8)

As discussed in §5.3.8, insecure coding practices while implementing WebView can expose

the app to several attacks. To prevent this security issue, while using WebView a developer

can do the following—

• load all content over HTTPS by using a recognized authority’s TLS [255] or SSL [255]

certificate to protect user’s security-sensitive information while it is in transit. The

certificate also authenticates the developer’s or IoT vendor’s identity to ensure the user

is interacting with a legitimate app;

• if the app does not require access to local file storage, disable the access;
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• prevent unauthorized redirects of the WebView by overriding the shouldOverrideUrl-

Loading() [256] function of the WebViewClient class. As shown in Fig. 5.17, the

shouldOverrideUrlLoading() function allows a developer to intercept any new URL

load request in the current WebView and perform some action. This method can

prevent phishing attacks by disallowing unauthorized redirects.

Figure 5.17: shouldOverrideUrlLoading() to stop unauthorized redirects

5.4.9 NOFRAK (Security Issue #9)

As discussed in §5.3.9, since Cordova plugins reside locally on the device they have no web

origin and are not protected by the SOP. Any web content, benign or malicious, loaded into

the WebView can directly invoke the plugins to access security-sensitive information. Despite

this being a major security issue, only one work in the literature, NOFRAK [37], proposes a

solution for this issue. NOFRAK extends origin-based access control to the plugins by using

capability tokens to authorize access to the plugins. Any web content that tries to access

the Cordova plugins must be authenticated by these capability tokens. However, none of the

Cordova-based frameworks implement NOFRAK and the security issue still exists.

5.4.10 No iframes (Security Issue #10)

As discussed in §5.3.10, in hybrid apps content served in the iframe from an allow listed

URL has the same privileges as the app itself and can access the Cordova plugins [225].

Therefore, if an attacker controls the served content and serves malicious code, the malicious

code can access and exfiltrate sensitive device resources via plugins. To avoid this security

issue, as per the Cordova Security guide, the developer should avoid using iframes in app

code unless they completely control the server that serves content to the iframe [225].
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5.4.11 Updating Android SDKs (Security Issue #11)

As discussed in §5.3.11, every new Android version significantly enhances the security of

the Android SDK as well [227]. Old SDKs can contain unpatched vulnerabilities and expose

the app to cyber attacks. To prevent this security issue and to utilize the newer SDK’s

security enhancements, the developer requires explicitly declaring app support for the newer

SDK through the targetSdkVersion attribute of AndroidManifest.xml. To enhance the

security of the apps on Google Play Store, beginning November 2020, Google requires any

new app uploads to Play Store to target Android 10 (API level 29) or higher, and any app

updates to target Android 9 (API level 28) or higher [227].

5.4.12 HybridGuard

HybridGuard [56] is a policy enforcement framework that allows developers to define and

enforce flexible permissions and fine-grained policies for different origins (parties) within

a hybrid app. As an inline reference monitor [257] implemented in the web environment,

HybridGuard can enforce policies at runtime to control the behavior of the JavaScript code

and prevent potential attacks and resource abuses. The JavaScript code can be local script

files, code from different parties such as Google AdMob for advertisements, or malicious code

injected into the app via code-injection attacks. The multi-party permission and fine-grained

policy enforcement mechanism advance the current “all-or-nothing” permission model in

mobile platforms and complement basic security features provided by the hybrid framework

and the embedded web browser. HybridGuard leverages JSON (JavaScript Object Notation),

a textual structural specification, to design multi-party and usage control permissions. The

authors implement the reference monitor and policy enforcement code in JavaScript as a

single file, independent from the policy specification.

The developer can include the HybridGuard JavaScript file and the policy specification

JSON into the app with minimal instrumentation of the original index.html page of the

app. HybridGuard requires developers to mark JavaScript code from each party under a

label (principal) and include it into the app using HybridGuard. By doing so, HybridGuard
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can precisely monitor the code from each party and enforce policies at runtime. Using

HybridGuard’s policy specification the developer can define default and generic policies that

can prevent frequent potential attacks such as attack scenarios discussed in §5.3.9 and §5.3.10.

Since a developer can create a allow list of parties for each device resource, any injected code

cannot access any Cordova plugin API because it does not belong to any party. For instance,

the developer can allow google.com access to geolocation but restrict any other party from

accessing geolocation or any other device resources. Some policy classes that HybridGuard

can enforce include—

• Volume Bound Policy—e.g., google.com can read the geolocation only once a day.

• Usage Duration Policy—e.g., google.com can access the geolocation for only a minute.

• History-based policy—e.g., google.com cannot access SMS or email after accessing

geolocation.

• Location-based Policy—e.g., google.com can only access location if the device is at

home.

• Allow and Block List Policy—e.g., only google.com can access geolocation (allow list);

google.com cannot access geolocation (block list).

• Web-based policies—e.g., creation of iframe is not allowed.

5.5 Conclusion

We present HybriDiagnostics, a vulnerability assessment framework that identifies eleven

preexisting security issues in the companion apps of IoT devices built using hybrid mobile app

development frameworks. We use HybriDiagnostics to analyze 102 real-world Cordova-based

apps to identify the presence of security issues. We present an analysis of the issue conducted

on our companion app dataset, results, and either a PoC attack or a synthetic attack scenario

for each issue. The results show that, for several important parameters, poorly chosen defaults,

improper usage of security built-ins, and improper security configurations render IoT devices
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vulnerable to cyberattacks. We also provide select mitigation techniques and tools to assist

IoT code producers in identifying and fixing these existent security issues.

In future work, we plan to add dataflow analysis capability to HybriDiagnostics to auto-

matically identify if eval() function used in an app is vulnerable to code injection attacks.

Dataflow analysis can also help in identifying whether the String parameters passed to the

loadURL() function of WebView are HTTP URLs or JavaScript code. We also plan to add

the functionality to automatically identify whether content loaded in an iframe belongs to a

third-party and identify the third-party itself.



CHAPTER 6: CRIMINAL INVESTIGATIONS: AN INTERACTIVE EXPERIENCE TO
IMPROVE STUDENT ENGAGEMENT AND ACHIEVEMENT IN CYBERSECURITY

COURSES1

6.1 Introduction

As more organizations and governments make digital transformation a priority, the adoption

of IoT technology increases. The number of IoT devices grew from 7 billion in 2018 to 31

billion in 2020 [258]. As IoT becomes widely popular, attacks become equally widespread.

According to Nokia’s threat intelligence report, internet-connected, or IoT, devices now make

up roughly 33% of all the infected devices [259]. With the increasing number of attacks

related to IoT devices, IoT security education gains importance for awareness and improving

the workforce. There are several gaps to be filled in advanced cybersecurity education

in order to strengthen the nation’s cybersecurity workforce [49]. For example, there is a

severe lack of gender and ethnic diversity in the cybersecurity industry, something that is

desperately needed to meet the growing demand and foster innovation and creativity in

problem solving [50, 51, 52, 53]. Addressing the above security issues requires delivering IoT

security educational content engagingly and inclusively.

Prior work suggests that gamification [260], the application of game-design elements

and game principles in non-game contexts, in classroom activities, is likely to increase

student engagement and enhance learning [104]. Games in cybersecurity education enhance

engagement, promote active learning in delivering education content, inspire interest in

computer security, and motivate participants to explore further the field (cf., [102]). To

our knowledge, Criminal Investigations is the first framework that incorporates gamification

principles, universal design, and inclusivity to teach and assess advanced IoT software security

topics.
1This chapter includes joint work with Pooja Murarisetty, Diep Nguyen, Julio Bahamon, Harini

Ramaprasad, and Meera Sridhar
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In this paper, we introduce Criminal Investigations, a gamified, scalable web-based frame-

work for teaching and assessing Internet-of-Things (IoT) security skills. We envision Criminal

Investigations as a consolidated package of stackable IoT security activities, each activity

teaching students skills critical for the next. Starting with an introduction to essential IoT

firmware components through an IoT firmware reverse engineering and analysis activity,

Criminal Investigations will span activities related to vulnerability discovery and trivial

and advanced firmware attacks. We present a prototype Criminal Investigations, with a

fully-deployed first activity “Reverse Engineering and Analyzing IoT Firmware”.

Criminal Investigations features several game design and development principles, including:

(i) a narrative or story, (ii) knowledge checkpoints [261], (iii) rewards such as experience points

(XP) [107, 262], and (iv) challenge [108]. Criminal Investigations includes a Practice Mode

to allow students to solve ungraded module challenges and a Test mode that presents more

difficult challenges and a graded quiz. Criminal Investigations also reinforces key concepts via

just-in-time learning content delivery while the student is engaged in the activity. Criminal

Investigations uses React [6] for the front-end and Python for the back-end and is deployed as

a web application on Amazon Web Services (AWS) cloud. For the “Reverse Engineering and

Analyzing IoT Firmware” activity, we provide the student with an IoT firmware image and a

virtual environment (virtual machine image) with the necessary analysis tools pre-installed.

The goal of the activity is to reverse-engineer the firmware using the tool binwalk [263],

and identify information such as the type and version of the firmware kernel, the type and

version of the firmware bootloader, compression schemes used, the hardware architecture,

and others. Identifying this information is the foundation of firmware security analysis. It is

used in decompressing firmware data, identifying pre-existing vulnerabilities, and creating

proof-of-concept exploits to demonstrate the consequences of the vulnerabilities.

We design the “Reverse Engineering and Analyzing IoT Firmware” activity as a narrative

featuring a detective and a college professor, addressed to a student (who is completing the

activity) from the cybersecurity department regarding an ongoing investigation of compro-
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mised IoT devices on campus. As part of the investigation, the campus police has seized a

suspect’s laptop in the case. The narrative leads the student helping the detectives through

the analysis of the firmware files found on the laptop, which will help identify details about

the compromised devices. Before beginning the activity, the student must read the learning

content and pass a Knowledge Checkpoint quiz that assesses the student’s preparation to

attempt the activity. Auditing the learning content and reaching the Knowledge Checkpoint

is critical since the information from the readings is required to solve the activity challenges.

We report on preliminary feedback on Criminal Investigations, obtained through a small-scale

pilot study.

The main contributions of this paper are—

• the design, development, and deployment of Criminal Investigations, a gamified, scalable

web-based framework for teaching and assessing IoT firmware security skills;

• Criminal Investigations’s fully deployed first activity “Reverse Engineering and Analyzing

IoT Firmware”;

• results from a small-scale pilot study that obtains feedback on the benefits of Criminal

Investigations, including increased engagement, learning, and excitement.

Roadmap Section 6.2 presents the pedagogical goals and strategies that support the

design of Criminal Investigations. Section 6.3 discusses the high-level design of Criminal

Investigations. Section 6.4 outlines details about the prototype activity. Section 6.5 discusses

the development and deployment of the framework and the first activity. Section 6.6 presents

the feedback received from the small-scale pilot study. Section 2.5 briefly discusses related

work. Section 6.7 presents our conclusions and discusses future work.

6.2 Pedagogical Goals and Strategies

We now outline our primary educational goals and present the strategies that we employ

to meet these goals.
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6.2.1 Educational Goals

G1: Promote student learning and engagement. The role of a teacher is no longer

that of the primary source of information, rather a facilitator who helps students develop

and hone higher-order cognitive skills [112]. The focus is on engaging students in discussions

or activities, helping them think critically, and enabling them to be lifelong learners. We aim

to incorporate strategies to improve student learning and their engagement with the course

material, each other, and instructors.

G2: Motivate students to explore advanced topics in cybersecurity. The threat

of cyberattacks to national security is real, and currently, there is a national shortage of

skilled cybersecurity workforce [50, 49]. We aim to motivate students to develop an interest

in advanced cybersecurity topics such as IoT security and maintain and grow this interest in

the years ahead. Such an interest can potentially lead them into a successful career in a field

that is always going to be in high demand.

G3: Promote inclusivity, accessibility and broader dissemination. Bringing multiple

perspectives through a diverse workforce is a driving force to inspire creativity and innovation

in a field like cybersecurity [52] where new types of security vulnerabilities and attacks arise

all too frequently. There is an unfortunate lack of diversity in the cybersecurity workforce [53]

and the cybersecurity higher-education pipeline. We aim to make advanced cybersecurity

topics accessible to a diverse and broad body of students.

6.2.2 Strategies to achieve Educational Goals

Our primary strategy to increase student engagement and learning (G1) and to motivate

students to explore advanced topics in cybersecurity (G2) is to employ an interactive, gamified

approach to teach and assess IoT security. Past works show that gamification increases

student engagement and motivation [104, 106].

To promote inclusivity, accessibility, and broader dissemination (G3), we (1) design

Criminal Investigations as a web-based application that is available online and easily accessible

through any web browser; (2) incorporate diverse examples and avoid stereotypes that are
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prevalent in the field of cybersecurity within our narrative; (3) make our best attempt to

adhere to guidelines for universal design in our user interface (e.g., choice of font sizes, styles

and color scheme).

6.3 Design

The key idea behind the design of Criminal Investigations is to promote student learning and

engagement in topics related to IoT security by incorporating elements of gamification [104]

into hands-on activities. Criminal Investigations presents activity in the form of a narrative

(Fig. 6.1) to improve student engagement and incorporates knowledge checkpoints (Fig. 6.2) to

assess student preparedness for the activity. Criminal Investigations awards eXperience Points

(XP) to students at various checkpoints throughout the activity to keep them motivated.

Criminal Investigations features just-in-time learning content delivery to reinforce key concepts

during an ongoing activity. Criminal Investigations also has a Practice Mode to provide

students with opportunities to sharpen the knowledge and skills required to complete the

activities successfully. We provide students with a virtual machine image, pre-packaged with

all software and tools required to solve challenges in a particular hands-on activity. For ease

of accessibility, we deploy Criminal Investigations as a browser-based framework hosted in a

cloud environment.

Figure 6.1: Activity as a narrative
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Figure 6.2: Knowledge Checkpoint in Criminal Investigations

6.3.1 Activity Gamification

For activities, we refer to previous works that establish the success of gamification concepts

in Computer Science education [106, 104]. The key idea behind gamification is to understand

which mechanics keep gamers motivated to come back to play and apply those constructs to

non-game environments to encourage similar engagement. The goals in designing Criminal

Investigations are to increase student engagement in IoT security education while also

making the content accessible to a diverse audience. Based on prior research that establishes

interaction as an essential element in making games and activities engaging, a key focus in

our design is to ensure interactivity [108, 107]. We achieve this by transforming a traditional

course assignment into a narrative-based interactive activity that incorporates gamification

concepts such as experience points (XP) and checkpoints.

6.3.2 Game Modes

As shown in Fig. 6.3, the framework supports two separate modes—Practice and Test.

Figure 6.3: Main screen for Criminal Investigations
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6.3.2.1 Practice Mode

The purpose of the Practice Mode is to allow students to get accustomed to the activ-

ity’s environment and practice the skills required to complete the activity, with inputs or

configurations chosen specifically for practice mode. Students have unlimited attempts in

the Practice Mode. However, Practice Mode does not allow the student to save progress.

Therefore, any page refresh ends in progress loss.

6.3.2.2 Test Mode

The student uses the Test Mode to complete an activity as part of a graded assessment

within the course. The Test Mode can be configured to limit students to a specific number of

attempts (e.g., two attempts) for the activity as desired by the instructor. Since the Test

Mode has a limited number of attempts, a student first requires to Knowledge Checkpoint quiz

to ensure that they are adequately prepared to start the activity. The Knowledge Checkpoint

has a minimum point (XP) threshold that the student must achieve before progressing to the

activity.

6.3.3 Just-in-Time learning content delivery

Criminal Investigations is envisioned to complement learning content such as lecture videos,

readings, and tutorials rather than being a replacement. As seen in Fig 6.4, we incorporate

snippets of learning content right into the narrative and activity to reinforce key concepts.

6.3.4 Ease of Access

Criminal Investigations is an interactive web-based application developed using React

JS [6] for the user interface or front-end, Python Flask [264] library for the backend, and

MongoDB [265] as the backend database. We provide all the tools and files required to

complete a given activity as part of a pre-built virtual machine (VM) image. Criminal

Investigations is easily accessible from any web browser, with the landing screen shown in

Fig. 6.5.

Upon clicking START, the student is prompted to enter their ID and password. Once

Criminal Investigations verifies the student’s enrollment in the course, the student can access
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Figure 6.4: Just-in-Time learning

Figure 6.5: Landing screen for Criminal Investigations

the application’s main screen, shown in Fig. 6.3.

6.4 Prototype Activity: Reverse Engineering and Analyzing IoT Firmware

In this activity, the student’s goal is to reverse engineer an IoT firmware image using

binwalk [263] and extract and identify various components of the firmware. The student

must identify firmware components that include compression schemes used for the filesystem

or elsewhere, kernel, bootloader, filesystem, user apps, web apps, and CPU—endianness,

architecture, and processor type (32-bit/64-bit). Identifying these components is critical for

further analyzing the firmware image and diagnosing pre-existing security issues. For example,

if the firmware uses an outdated kernel or bootloader containing pre-existing vulnerabilities,

an attacker can exploit these vulnerabilities to hijack the IoT device. Information such as

CPU architecture and its type and endianness assists in constructing proof-of-concept exploits

since every architecture type has a different set of instructions, opcodes syntax, count, and
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types of registers.

In this activity, we incorporate the various design features that we discussed in Section 6.3:

Narrative Style As seen in Fig 6.1, the activity begins with an introductory narrative

featuring a detective and a college professor, addressed to a student (who is completing

the activity), regarding an ongoing investigation of compromised IoT devices on campus.

An unknown entity has compromised specific university IoT devices, and as part of the

investigation, the campus police have seized the laptop of a suspect in the case. The laptop

contains firmware files that the police believe are from the compromised IoT devices, and the

cybersecurity department has to assist the police department in analyzing the files. Once the

introductory dialog ends, the student can choose to proceed or come back later to begin the

core activity.

Practice and Test Mode We provide the student with the firmware image and the

necessary tools to complete the activity. The student can access the prototype activity in

both the Practice and Test Modes. As mentioned earlier, the Practice Mode allows the student

to familiarize themselves with the activity environment and the tools and files provided. The

Test Mode starts with a Knowledge Checkpoint quiz. Once the student achieves a pre-defined

threshold in this quiz, they can access the core activity components, where they are required

to reverse engineer and analyze the assigned firmware and answer questions based on the

analysis to help solve the case.

Reward System To keep the student motivated throughout the activity, Criminal Inves-

tigations provides instant feedback in the form of encouraging dialog and XP for correct

answers.

Activity Requirements As seen in Fig. 6.6, the student needs to complete nine activity

tasks, one at a time. The tasks are non-sequential and accompanied by a small summary

and security relevance of the requirement. To fulfill a requirement, the student must perform

a particular analysis task, such as finding the compression scheme used to compress the
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firmware file system and answer an analysis-based question.

Virtual Environment We provide the student with a virtual machine (VM) image that has

binwalk and its dependencies pre-installed and accessible from the terminal. For the pilot

study, we thoroughly test the VM after installing binwalk before exporting it using the Open

Virtualization Format (OVF) [266]. We also create a snapshot [267] of the VM to restore the

system to its original state with binwalk installed. The VM image was accessible through

Google Drive. The size of the associated Virtual Machine Disk (VMDK) was 3.76 Gigabytes.

Figure 6.6: A sample view of Criminal Investigations

6.5 Implementation and Deployment

Criminal Investigations’s implementation and deployment included three major aspects:

1. Designing and developing the front-end, i.e., user interface (UI) for the framework using

React JS (open-source JavaScript library) [6].

2. Designing and developing the backend using Python’s Flask library [264] in combination

with MongoDB [265] for the database.

3. Deploying a prototype of Criminal Investigations to Amazon Web Services (AWS) to

conduct a pilot study.
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6.5.1 Implementation

Front-end We implement the UI of Criminal Investigations using React JS [6], a JavaScript

library for building responsive and stateful UI components. React follows a component-based

approach to provide modularity and re-usability. We develop components of a web page,

such as header, navigation bar, sidebar, footer, and others, individually and then combined

them to form different views. Instead of following the traditional concept of a multi-page

web app, we use simple views for each state in the activity, and React efficiently updates

only the required components when the data changes.

Quiz component For skill assessment, Criminal Investigations incorporates a multi-

question Knowledge Checkpoint quiz and a single-question quiz as part of each of the nine

requirements. To create the quizzes, we used the react-quiz-component [268], an open-source

React component that simulates a simple quiz engine. We modify the quiz component to suit

our requirements. We store the quizzes as JavaScript Object Notation (JSON) objects [153].

Database Since we store the quizzes and narrative dialogs as JSON objects, we chose

MongoDB [265] as our datastore due to the ease of storing and retrieving JSON objects from

MongoDB.

Backend We developed our framework’s backend using the Python Flask library [264].

Currently, the backend is responsible for packaging and delivering the UI and connecting with

the MongoDB database. Additionally, we use the backend for storing and retrieving student

data from the database and verify the student’s enrollment in the course before allowing

them to access the activity.

Accessibility The UI design follows university design and accessibility guidelines to allow

users of diverse abilities to navigate, understand, and use the UI. There is a high color contrast

ratio between the colors used in the UI for better readability. The layout and typography

are also compliant with accessibility principles. There is a deliberate delay when rendering

dialogs to help the student easily follow the story, accompanied by a default scroll to the
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bottom to make it easier for the student to find the location of the current task.

Engagement and Motivation As seen in Fig. 6.7, both the Test Mode and Practice

Mode have a status bar at the top that displays the amount of XP the student has acquired.

To keep the student motivated, the XP updates immediately after the student completes a

task. After completing each requirement, the student receives a congratulatory message to

reinforce the gamification principle of rewards.

Figure 6.7: Test Mode for Criminal Investigations

6.5.2 Deployment

We deploy our current prototype of Criminal Investigations on Amazon Web Services (AWS)

t2.micro EC2 machine that runs Ubuntu 18.04 LTS. Criminal Investigations is accessible via

a temporary domain (not disclosed for anonymity). We deploy the React front-end and the

Flask backend as two micro-services using Docker containers. We use NGINX, an open-source

web server, which besides serving the static files of Criminal Investigations, also listens to

HTTP/HTTPS incoming traffic and transfers client requests to the backend service. It also

redirects the traffic from HTTP to HTTPS.

6.6 Pilot Study

We conducted a small-scale pilot study with a group of ten Computer Science students

to obtain preliminary reactions and feedback on our Criminal Investigations prototype. We

Students were asked to complete a course module on Reverse Engineering and Analyzing IoT

Firmware, which included short pre- and post-surveys, learning content, the gamified activity

detailed in Section 6.4, a final quiz and an anonymous student feedback survey specifically

to get feedback on the activity and the framework design. A few of the students indicated

that they had a little prior experience in firmware security or security in general, but most
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indicated that they did not.

The student survey asked for feedback and suggestions on the following—

• User Interface accessibility—color contrast, text size, layout, navigation;

• Narrative and instructions—clarity of dialogs and instructions, speed between dialogs

within the narrative, clarity of game-play rules;

• User experience—time spent on completing the setup and activity, whether the activity

was engaging, whether the narrative and XP motivated them to do well in the activity

and whether the activity helped reinforce the topics covered in the module.

While all participants completed the course module, activity, and quizzes, only seven out of

the ten participants responded to the anonymous survey. We summarize the overall reactions

and feedback below.

User Interface accessibility A majority of the respondents indicated that they were either

very satisfied or satisfied with the User Interface accessibility aspects of color contrast, text

size and navigation. However, some respondents expressed the need for improvement in the

layout (i.e., placement of some of our interactive elements).

Narrative and instructions Respondents indicated satisfaction with the clarity of game-play

rules and the dialogs and instructions within the narrative itself. However, some indicated

the need for more precise instructions for the setup of the virtual environment needed for the

prototype activity.

User experience A majority of the respondents were able to complete the module and

activity within the expected time of 1 to 2 hours. However, some students took longer due to

installation issues. All respondents indicated that the activity was engaging, and they were

motivated by XP (or just the ability to earn points in general). All except one respondent

also indicated that doing the activity reinforced the learning content introduced in our course

module.
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Overall, the feedback we obtained from the pilot study is very encouraging and gives us

valuable suggestions for improvement of the Criminal Investigations framework.

6.7 Conclusion and Future Work

In this work, we present Criminal Investigations, an interactive, gamified framework for

teaching and assessing IoT security skills. Our goal is to provide the students with a more

enjoyable and engaging environment to learn these skills. Our prototype implementation of

Criminal Investigations features an introductory "Reverse Engineering and Analyzing IoT

Firmware" activity. The results of a small-scale pilot study indicate that the framework is

engaging and accessible.

In the Spring 2021 semester, we plan to deploy our prototype Criminal Investigations

activity (after addressing and incorporating a few suggestions that we received from the

small-scale pilot study) in multiple sections of a junior level undergraduate course teaching

Operating Systems and Networking concepts (reaching approximately 300 students) and

in a section of a junior or senior-level introductory Game Design and Development course

(reaching approximately 75 students).

In future research and development, we plan to add several enhancements to our framework,

including activities with increasing levels of complexity and progression requirements, the

ability for students to earn incentives and unlock challenge levels based on earned XP,

and increase in randomization and adaptivity of the activities using concepts of Artificial

Intelligence.



CHAPTER 7: CONCLUSION

In this dissertation, we propose a robust and comprehensive security solution for securing

hybrid mobile apps. Our dissertation consists of three main thrusts—(i) policy enforcemen-

t—our policy enforcement framework can enforce fine-grained policies in hybrid apps to

protect against attacks that originate from third-party JavaScript included by the developer

and code-injection attacks; (ii) vulnerability assessment—our vulnerability assessment frame-

work can identify subtle security issues in hybrid companion apps at the development stage

itself; and (iii) cybersecurity education framework—our cybersecurity education framework

can be used to teach the concepts of hybrid app and IoT firmware security and assist in

strengthening the foundation of the cybersecurity workforce.

7.1 Hybridguard: A multi-party, fine-grained permission and policy enforcement
framework for hybrid mobile applications

In Chapter 3 and Chapter 4, we present HybridGuard, a principal-based, fine-grained policy

enforcement framework for hybrid mobile apps that allows developers to enforce stateful

policies to mitigate attacks originating from third-party JavaScript code and code-injection

attacks. HybridGuard is platform agnostic; therefore, it can be deployed for apps developed

using hybrid app platforms on both Android and iOS. HybridGuard can also enforce a

broad class of policies that the app developer can use to mitigate attacks that can breach

a user’s privacy and exploit the smartphone. We thoroughly evaluate HybridGuard using

real-world hybrid apps and evaluate its compatibility with various hybrid app development

frameworks. We ensure the integrity of HybridGuard by enclosing the implementation in

an anonymous JavaScript function. We protect the integrity of the policy specification by

prohibiting unauthorized access, enforcing it with HybridGuard’s monitor. We also ensure

complete mediation of security-sensitive APIs by systematically exploring and mediating all

possible aliases and channels that can generate dynamic JavaScript code. Finally, we also
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provide the end-user with the capability to customize the policies to their requirements.

7.2 HybriDiagnostics: An automated vulnerability assessment framework for hybrid smart
home companion apps

In Chapter 5, we present HybriDiagnostics, an automated security assessment tool for hybrid

companion apps that can assist developers in mitigating subtle preexisting security issues that

can lead to user privacy compromise in smart home ecosystems. HybriDiagnostics can identify

misconfigured policies (including Content Security Policy and whitelist), usage of inline scripts,

unsafe eval() usage, unsafe HTML and JQuery APIs and attributes, unencrypted storage,

usage of vulnerable Cordova SDKs, and others. We evaluate HybriDiagnostics using 102

real-world Cordova-based smart home companion apps and present our results. For each

security issue, we also provide a PoC attack or a synthetic attack scenario to show how each

security issue can be exploited in a smart home ecosystem and its consequences. We also

provide select mitigation techniques and tools that the developer can use to mitigation the

security issues and reduce the attack surface.

7.3 Criminal investigations: An interactive experience to improve student engagement and
achievement in cybersecurity courses

In Chapter 6, we present Criminal Investigations, an interactive, gamified, scalable web-

based framework for teaching and assessing cybersecurity skills. Criminal Investigations

provides students with a more engaging and enjoyable environment to learn cybersecurity

skills. Criminal Investigations’s prototype implementation features an introductory "Reverse

Engineering and Analyzing IoT Firmware" activity. We envision Criminal Investigations as

a set of stackable activities that teach basic and advanced cybersecurity skills. We plan to

augment Criminal Investigations with a series of activities including topics from hybrid app

security, IoT firmware security, and others. We also present the results of a small-scale pilot

study that indicates the framework is engaging and accessible.

7.4 Summary

Here we summarize the answers to the research questions mentioned in §1.1.

1. What types of cyberattacks can originate from the inclusion of third-party JavaScript
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in hybrid mobile apps? [Chapter 3]

The in-scope threats originate from third-party JavaScript code included from a source

(domain) allow listed in the CSP. The third-party JavaScript code could be benign but

under the control of an attacker through web application attacks, such as SQL injection,

or a network attack on the third-party server; malicious by intentions. Some attacks

include abusing device resources, sensitive information leakage through malvertisement,

overuse of resources, and UI redress attacks. In §3.2.1 we provide detailed scenarios of

attacks that can originate from third-party JavaScript included in a hybrid app by the

developer.

2. To what extent do security mechanisms built into the mobile OS, or provided by the

embedded browser, or provided by the hybrid app frameworks provide security for

hybrid apps from cyber attacks originating from the inclusion of third-party content in

hybrid apps? [Chapter 2]

The existing security enforcement mechanisms for hybrid mobile apps consist of an

inadvertently patched together model, with separate security for the native and web

components. Attackers exploit gaps in this model, and abuse bridge code to access

device resources. Hybrid mobile apps use the same permission model as the native OS

to allow access to device resources. Users can grant permissions at run-time to access

device resource, such as geolocation, Email, and so on. However, once the permission

has been granted, there is no way to control how the app uses these permissions. Unlike

traditional web apps, in hybrid mobile apps the origin of the JS code is not propagated

and allows any JS code included in the app to access any device resource the app has

permission to access. This also makes it impossible to enforce policies based on the real

origin of the API invocations.

Some hybrid frameworks provide plugins to implement an allow list of domains that can

be accessed from the app. However, scripts included by the developer, such as ad scripts,
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have to be allow listed and can become malicious at a later stage. Content security

policy is another native browser capability that gives the developer more fine-grained

control what content and what domains an app can access. But this also has the same

drawback as domain allow listing. Developer added scripts still need to be added to

the CSP. Same Origin Policy is also enforced by the browser, and limits interaction

between JS code and the app based on the origin. It also does not work in hybrid apps

as the JS bridges are added to the browser by local code and have no web origin as far

as the browser is concerned. This allows malicious web content to directly invoke these

bridges.

Our research shows that the built-in security mechanisms do not provide sufficient

security and can be trivially bypassed by an attacker as demonstrated in §3.2.1.

3. What are the most prevalent security issues in hybrid mobile apps? [Chapter 5]

Apart from malicious third-party JavaScript, we identify eleven security issues that are

prevalent in hybrid mobile apps. To identify these security issues we use the results of

our research, and read numerous research papers, blog posts, and articles related to

hybrid mobile app security. Specifically—

(a) our analysis of hybrid apps while designing HybridGuard (policy enforcement

framework) reveals security issues such as broken SOP, missing CSP, and usage of

inline scripts;

(b) we refer to the Cordova Security Guide and security advisories by the Cordova

team to identify a few security issues such as usage of iframes, misconfigured allow

lists, and unencrypted storage;

(c) by reading numerous blog posts and research papers we select security issues such

as outdated libraries and SDKs, unsafe DOM APIs, and WebView-based attacks.

Once we identify the most prevalent security issues, we analyze a dataset of 102 real-

world smart home companion apps to identify the presence of these pre-existing security
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issues. The result of our analyses is as follows:

(a) Content Security Policy—out of the 102 Cordova-based apps, only 32 apps imple-

ment a CSP, implying that developers of 70 apps chose to delete the CSP. Out of

the 32 apps that implement a CSP, ten have a default CSP, and 22 apps have a

misconfigured CSP.

(b) Usage of inline JavaScript—out of 102 Cordova-based apps in our dataset, 71 apps

use inline JavaScript.

(c) Usage of eval() in app code—out of the 102 Cordova-based apps in our dataset,

50 apps use eval() in the app code.

(d) Usage of unsafe DOM APIs—out of 102 Cordova-based apps in our dataset, 84

apps use unsafe APIs to display the app’s content.

(e) Usage of unencrypted storage—out of the 102 apps in our dataset, 92 apps use

insecure APIs and plugins for storing data.

(f) Usage of vulnerable Cordova SDKs—out of the 102 Cordova-based apps, 38 apps

use vulnerable SDKs.

(g) Default or misconfigured allow list—out of the 102 Cordova-based apps, 43 apps

have a default allow list, and 58 apps have a misconfigured allow list.

(h) WebView Attacks—Out of 2082 apps in our entire dataset, 1019 apps use We-

bView; 125 apps use WebView to load local content; 565 apps use loadUrl()

function of the WebView class to execute JavaScript; 808 apps have JavaScript

enabled in WebView; 111 apps load content over http; and 232 apps that enable

WebView’s access to local storage of the device.

Additional details are provided in §5.2.4 of the dissertation.

4. What are the challenges of designing a secure IRM framework in the cross-domain

platform (HTML, CSS, JavaScript) of hybrid mobile apps? [Chapter 3]
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There are three main challenges that we need to overcome to design a secure IRM

framework:

(a) Complete Mediation—our framework should be able to identify and intercept all

security relevant events, such as calls to any security-sensitive API. We achieve

this by wrapping all the security-sensitive APIs and ensuring that the original

APIs can only be accessed through our wrapper APIs.

(b) Attribution—our framework should be able to accurately identify the origin of

the security-sensitive event. In the case of a call to a security-sensitive API, our

framework should be able to identify the calling party or origin. We achieve this by

loading any external JavaScript using our framework’s API rather than using the

<script> tag, and labeling each external JavaScript. During any call to a security-

sensitive API, the corresponding label (also known as principal) of the external

JavaScript is pushed onto a local shadow stack. Then the policy engine determines

if the calling external JavaScript is allowed to access the security-sensitive API.

Once the execution is over, the principal or the label is popped off the stack.

(c) Tamper Proofing—our framework should be able to maintain its own integrity

and should be resistant to any tampering by the attackers. We ensure tamper

proofing by designing our framework as a single JavaScript file and leveraging

the concept of lexical scoping in JavaScript, i.e., enclosing the entire code in an

anonymous function. This prevents any external content from being able to access

our framework’s code, hence, maintaining its integrity.

Additional details can be found in §3.3 and §3.4 of the dissertation.

5. Can in-lined reference monitoring provide an elegant solution for protecting against

attacks on user’s privacy in hybrid mobile apps (especially privacy attacks originating

from third-party JavaScript)? [Chapter 3 and 4]
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Our experiments demonstrate that our IRM framework is capable of providing retroac-

tive protection against attacks originating from third-party JavaScript by enforcing

principal-based fine-grained policies. Our IRM framework provides protection without

modifying the underlying operating system or the hybrid app development frameworks.

Compared to traditional reference monitors that reside outside the program to be mon-

itored, an in-lined reference monitor resides inside the untrusted code and has access to

all program states and requires less context switching. We design our framework as a

single JavaScript file that can be added to the app code and packaged with the APK to

provide runtime protection. We evaluate our IRM framework based on three critical

aspects of security described in the question above.

Our IRM framework extends the OS permission model that can only allow/disallow

access to a resource by introducing access qualifiers such as read, write and create.

Using IRMs we can enforce multi-principal policies for each resource. An example

policy that can be enforced is to “disallow access to SMS.send() API if an untrusted

principal has accessed geolocation”. To evaluate the compatibility and usability of

our framework, we integrate our framework into existing real-world hybrid apps. To

evaluate whether our framework can soundly enforce these policies, our test policies

not only log API execution but also monitor the behavior of the execution with context

to the fine-grained policies as provided as templates presented in §4.4. These policy

templates include multi-party and context-aware permissions in the JSON specification

that can prevent the attack scenarios of abusing device resources, as identified in §3.2.1.

Some other examples of policies include:

• allow access to geolocation only while at home (implemented using latitude and

longitude coordinates);

• allow access to geolocation only for fifteen minutes ;

• allow sending of SMS to only specific contacts from the contact list ; and
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• disallow creation of invisible iframes.

6. What are the classes of security policies that can be enforced by such an IRM framework?

[Chapter 3 and 4]

Our IRM framework is capable of enforcing a wide class of fine-grained security policies.

Some of the policy classes that can be enforced by HybridGuard include:

(a) Volume Bound Policy—restrict access to a resource to a specific number. We

also provide an additional time unit parameter with this policy that specifies the

amount of time until the count resets. For example, the geolocation API can only

be accessed 10 times in a day.

(b) Duration Usage Policy—allow access to a resource only for a particular amount of

time. For example, geolocation API can only be accessed for an hour.

(c) Location-based Policy—allow access to a resource only from a particular loca-

tion. For example, geolocation API can only be accessed from the user’s home

coordinates.

(d) History-based Policy—policies that take into account the sequence of events. For

example, once the geolocation API is accessed, the internet cannot be accessed by

the calling party.

(e) Block Lists and Allow Lists—a specific set of principals can either access a resource

or cannot access it.

(f) Web-Security Policies—restrict the creation of certain DOM elements. For example,

restrict creation of invisible iframes to prevent phishing and clickjacking attacks.

(g) Custom fine-grained policies—developers can also create custom policies by modi-

fying/using the provided templates. For example, once a third-party script accesses

the gallery, it should not be able to access any device resource that can be used to

exfiltrate user’s images or videos.
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Additional information about policy patterns and templates can be found in §4.4 of the

dissertation.

7. How should the policy specification language or platform be designed to also allow

users to define the policy? [Chapter 4]

We design the policy specification as a key-value pair, and choose JSON for the policy

specification. We choose JSON since its lightweight and compatible with JavaScript. In

the initial design of our IRM framework we store the policy specification as part of the

app code, i.e., the JSON policy specification file is stored as part of the APK. However,

after carefully rethinking the IRM design, we now store the JSON policy specification

file in the device’s local storage instead of storing it as part of the app code. This design

modification allows the users to customize the policies at their end. Additional details

about the policy specification and storage can be found in §4.3 of the dissertation.

8. What is the impact on performance of an app after integrating the IRM framework

and enforcing policies? [Chapter 4]

We test the impact on performance on both Android and iOS. We evaluate our framework

performance by measuring the runtime overhead posed by our policy enforcement

mechanism. We measure the load time of an app with and without our framework.

We do not notice any slowdown as the load time of the original app and the modified

app with our framework are identical. This result can be explained by the fact that

JavaScript code in hybrid apps is mostly event-based, and asynchronous. For this

reason, we evaluate micro-benchmarks of operations that do not depend on triggered

events, including getting the current position, acceleration, and direction. We modify

the code in original app variants to execute these operations 1000 runs, to achieve high

precision, and measure the time before and after the runs. For each case, we run the

apps on the two devices (Android and iOS) with ten trials to get the averaged numbers.

The details about the performance evaluation and results can be found in §4.5.3 of the
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dissertation.

9. Which hybrid app development frameworks should we target the IRM framework to be

compatible with? [Chapter 4]

We evaluate our IRM framework for compatibility with Apache Cordova, Phonegap,

Ionic, Framework7, Onsen UI, and Intel XDK. Our framework is compatible with all

these hybrid app development frameworks. For the evaluation, we develop a test suite

of apps using different hybrid app development frameworks, and also evaluate using

real-world apps. Additional details can be found in §4.5.1 of the dissertation.

10. How can security issues in smarthome companion hybrid mobile apps be exploited to

attack a smart home ecosystem? [Chapter 5]

With the help of proof-of-concept attacks and synthetic attack scenarios we demonstrate

how these existing security issues can be exploited to launch serious cyber attacks.

(a) Stealing sensitive user data such as location information, photos, contacts, and

other security-sensitive data.

(b) Disabling alarm systems in a smart home.

(c) Changing temperature of a thermostat.

(d) Disable IP cameras

(e) Access unencrypted storage to steal sensitive API keys to send commands to

smarthome devices

(f) Cause denial of service by injecting splash screens, pop ups and crashing the app

(g) Phishing attack to steal login credentials

(h) Switch on the irrigation system without the user’s knowledge and cause monetary

damage

11. Does gamification help in improving student engagement and learning in advanced

cybersecurity topics? [Chapter 6]
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• Does using a narrative increases the student’s interest in the activity and capture

their attention?

• Does earning experience points (XP) for solving activity challenges motivate the

student to perform well in the activity?

• Does the design of the activity, i.e., colors, fonts, and placement of UI elements

follow accessibility principles?

We design a text-based gamified activity to teach and assess reverse-engineering and

firmware analysis skills in upper-division undergraduate cybersecurity courses. The

activity incorporates elements of game design such as storytelling, experience points (XP)

and just-in-time learning content delivery to increase student engagement, interaction,

and learning. The activity is implemented as an easily accessible web-based application,

deployed in a cloud-based environment. We conducted an initial small pilot study of

ten students to get feedback on some of the gamification elements incorporated in the

activity and also about the over all activity. We received positive feedback from the

students in terms of increasing engagement and interaction. We also received some

critical feedback to improve the activity instructions, and placement of some of the UI

elements. We incorporated‘ the feedback and conduct another medium-sized study of

300 students. Our study shows that an interactive and gamified framework can increase

engagement and interest of students in learning advanced cybersecurity skills.
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