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ABSTRACT

ASHLEY ROWE. Limit Cycles in Two Dimensional Systems of Ordinary
Differential Equations. (Under the direction of DR. DOUGLAS SHAFER)

This thesis concerns cycles, i.e., topological ovals, in the phase portraits of sys-

tems of first order ordinary differential equations in the plane, with an emphasis on

limit cycles, cycles that are isolated from all other cycles. These are of fundamental

importance because when asymptotically stable they correspond to limiting periodic

behavior in the underlying system of differential equations. We treat basic theorems,

with their proofs, concerning existence, non-existence, and unicity of cycles, and cul-

minate with a general theorem guaranteeing existence of an asymptotically stable

limit cycle in the phase portrait of systems of first order equations that correspond

to differential equations of the form ẍ+ f(x)ẋ+ g(x) = 0. The thesis includes exam-

ples that illustrate the theorems, including the historically important Volterra-Lotka

family and the van der Pol oscillator.
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CHAPTER 1: INTRODUCTION

1.1 A General Summary

This thesis is dedicated to the study of limit cycles in two-dimensional systems

of ordinary differential equations and is expository in nature. The study of limit

cycles was first researched by French mathematician and physicist, Henri Poincaré.

In this thesis, we will look at limit cycles as isolated, closed trajectories in the phase

space. These trajectories have at least one other trajectory that spirals onto it as time

approaches either infinity or negative infinity. Limit cycles are important because they

model self-sustained oscillations such as heart beats, vibrations in bridges, and many

other real world situations. In this paper we will study how a limit cycle is formed,

theorems regarding existence and non-existence, and some real world problems where

we can see these cycles. While this thesis will only cover a small portion of the theory

of limit cycles, there are whole books devoted solely to limit cycles (e.g., [16]). Some

areas that we will not cover in this theorem, but are still important in the study of

limit cycles include the creation and annihilation of cycles in parametrized families

of systems of ordinary differential equations.

1.2 Existence and Uniqueness

There are many different existence and uniqueness theorems concerning solutions

of initial value problems associated with first order ordinary differential equations.



2

These theorems all have varying hypothesis and conclusions. While the existence and

uniqueness theorem that will be used below is far from the most general of these, it

is adequate for our purposes in this thesis.

Theorem 1. Suppose E ∈ Rn is an open set and f : E → Rn is a Cr mapping, r ≥ 1

Then for any x0 ∈ E, the initial value problem (IVP)

ẋ = f(x)

x(0) = x0

(1)

has a solution on some open interval I containing 0, and any two such solutions agree

on their common domain.

For the purpose of this thesis, let Φ(t, x0) denote the unique solution of (1) on its

maximum interval of existence I about t = 0. In fact, Φ is defined and is Cr in both

variables on a neighborhood of (0, x0) ∈ R× Rn.

If in components the function f is f = (f1, ..., fn) then naturally associated to

system (1) is the smooth vector field

X = f1
∂

∂x1

+ ...+ fn
∂

∂xn
(2)

on E. Then the solution curves of (1) are flow lines of X: the vector placed by X

at a point x0 = Φ(0, x0) is the tangent vector Φ′(0, x0) at x0 of the solution curve

t → Φ(t, x0) of (1). In the sequel we will use the same notation f = (f1, ..., fn) for

both the mapping in (1) and the corresponding vector field (2). Although many of

the concepts discussed in this thesis hold for arbitrary n, henceforth we restrict to the

case n = 2: two-dimensional systems. Such systems have wide applicability, yet are
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especially amenable to study because orbits, as defined in Definition 1 which follows

next, locally divide space.

In the following definition it is understood that values of t are restricted to the

maximum interval of existence I of the solution through p.

Definition 1. In the context of Theorem 1, let p ∈ E. The orbit of (1) through p

is the set O(p) = {Φ(t, p) : t ∈ I}. The positive semi-orbit of (1) through p is the

set O+(p) = {Φ(t, p) : t ≥ 0}. The negative semi-orbit or (1) through p is the set

O−(p) = {Φ(t, p) : t ≤ 0}.

Definition 2. A point x0 ∈ Rn is called a critical point of ẋ = f(x) if f(x0) = 0.

If we consider the geometric representation of a velocity vector field, then a critical

point is one where the velocity vector is zero. Thus, the point itself is a trajectory.

That is, if x0 is a critical point of ẋ = f(x) and Φt : E → Rn is the flow of the

differential equation ẋ = f(x), then Φt(x0) = x0 for all t ∈ R. A critical point x0 of

(1) is called a fixed point of the flow.

1.3 Phase Portrait

There are a few things we should note about Theorem 1 before we get started.

First of all, we can see that Rn can be decomposed as a union of disjoint solution

curves. For by the theorem any two solution curves must either agree everywhere or

are disjoint from one another. When we assemble all of these solution curves together

to form a union of disjoint curves, it forms the entire space E ⊂ R2. Lastly, we can

conclude that, based on the theorem, each solution curve is, topologically, either a

point, line, or an oval. These facts lead to the following fundamental definition.
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Definition 3. The phase portrait of a system of ordinary differential equations with

x ∈ R2 is the set of all solution curves in the phase space R2.

In Theorem 1 the mapping f will also be viewed as a vector field on R2. To get a

rough idea of the nature of the phase portrait, we will first construct a direction field.

A direction field is a popular method for displaying the general behavior of solution

curves because it does not require a person to actually solve the differential equation.

The direction field is a graph in which each point on the graph contains a line segment

that corresponds with the tangent line of the solution. The line segment has an arrow

placed at each point by f to show the direction of the tangent. In Figure 1 we see

the direction field for the following example:

Example 1. Let E = R2, f(x, y) = (2x,−3y). Thus,

ẋ = 2x

ẏ = −3y.

(3)

In Figure 1 we see the direction field of equation (3). Since the ẋ and ẏ are uncoupled

we can solve each ode separately. Suppose that at time t = 0 the solution is at the

point (x0, y0). The unique solution of the IVP is Φ(t, (x0, y0)) = (x0e
2t, y0e

−3t) and

I((x0, y0)) = R. Choosing various specific starting points (x0, y0) we obtain Figure 2.

Similar to the direction field, a phase portrait is a visual representation of the

solutions of a system of differential equations. By choosing various points of the

phase plane as initial points we will then obtain a rough idea of the phase portrait of

the system. To understand the phase portrait, one must first look at the flow of an

ordinary differential equation. For this, we will use the parameters set up previously
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Figure 1: The Directional Field of Example 1

in Theorem 1. When (x0, y0) is fixed, Φ(t, (x0, y0)) gives a curve in domain f ⊂ R2.

All of these curves are the phase portrait.

Example 2. An example that illustrates the phase portrait well is the damped, un-

forced pendulum. In physics, the formula for the motion of the pendulum is derived

from Newton’s Second Law of Motion. Using this law, one obtains the second order

ordinary differential equation given by (4) below, where m is the mass of the pen-

dulum bob, c is the coefficient of friction, which is assumed proportional to linear

velocity of the bob, ` is the length of the arm of the pendulum, assumed to be rigid

and of negligible mass, and θ is the angle that the pendulum arm makes with the

vertical (see Figure 3):

m`2θ̈ + c`θ̇ +mg` sin θ = 0 (4)

where c ≥ 0, and m > 0. We can simplify (4) by making C = c
m`

and K = g
`

where
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Figure 2: The Phase Portrait of Example 1

C ≥ 0 and K > 0. Thus,

θ̈ + Cθ̇ +K sin θ = 0. (5)

Now let us make this into a system of first order equations by introducing a second

dependent variable ω defined by ω = θ̇. Then
θ̇ = ω

ω̇ = −Cω −K sin θ

C ≥ 0, K > 0 (6)

The fixed points are easily found by setting the right hand sides in (6) equal to zero.

Hence,

θ̇ = ω = 0⇔ ω = 0
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Figure 3: The Damped, Unforced Pendulum for Example 2

in which case

ω̇ = −K sin θ = 0⇔ θ = nπ, n ∈ Z.

Now, consider the total energy function. The total energy function can be written as

E = Potential Energy (PE) + Kinetic Energy (KE) and is

E = PE +KE = mgh+
1

2
mv2

Using the ideas illustrated in Figure 3, we obtain

E = mgh+
1

2
mv2 = mg`(1− cos θ) +

1

2
m`2ω2

Now, take the derivative with respect to t,

dE

dt
= (mg` sin θ)(θ̇) + (m`2ω)(ω̇).
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Figure 4: The Phase Portrait for Example 2

By equation (6),

dE

dt
= (mg` sin θ)(ω) + (m`2ω)(−Cω −K sin θ)

Substituting back in C = c
m`

and K = g
`
, we get

dE

dt
= (mg` sin θ)(ω) + (m`2ω)(− c

m`
ω − g

`
sin θ)

= ωmg` sin θ − clω2 − ωmg` sin θ

= −c`ω2

In the idealized frictionless situation c = 0, in which case dE
dt

= 0. In this case, the

total energy is constant in time, hence trajectories lie in level curves of E. These level

curves can be found algebraically. Using f to place arrows on the level curves, we

obtain Figure 4, which illustrates the phase portrait of system (6) in the frictionless

case c = 0.

The mathematical system (6) models the behavior of the physical system. Even

though the mathematical system cannot be explicitly solved in closed form, the phase
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portrait gives a full understanding of the behavior of this physical system in this

special (ideal) case.

1.4 Periodic Solutions

By referencing back to the pendulum example, we can see the existence of orbits

that are ovals or closed orbits. These closed orbits are representative of periodic

motion in the idealized physical system.

Definition 4. Suppose that x = Φ(t) is a solution of the equation ẋ = f(x), x ∈ E ⊂

R2 and suppose there exists a positive number T such that Φ(t + T ) = Φ(t) for all

t ∈ R. Then Φ(t) is called a periodic solution of the equation with period T. Periodic

solutions are also known as periodic orbits or cycles.

Remark 1. If Φ(t) has period T , then by Definition 4 Φ(t+T ) = Φ(t). Thus Φ(t+2T ) =

Φ(t + T + T ) = Φ(t + T ) = Φ(t). Thus, if Φ(t) has period T , it also has period

nT, n ≥ 1.

Example 3. (Volterra-Lotka Model) The Volterra-Lotka Model is a predator-prey

equation derived by Alfred Lotka and Vito Volterra independently. Volterra derived

system (7) to model observed oscillatory levels of fish catches in the Adriatic Sea in

1925. The notion came from a marine biologist, Umberto D’Ancona, who would later

become his son-in-law. D’Ancona noticed that the percentage of predatory fish had

increased during World War I. Just slightly prior to Volterra’s findings, Alfred Lotka

independently formulated the same system of equations in 1920 to explain oscillatory

behavior of the concentrations of two chemicals in a chemical reaction. Lotka later

presented the same system in a biological context in 1926.
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The system fails to consider any outside factors that may affect the predator and

prey population. Thus, it is not entirely accurate in the real world and has never

been successfully applied to any real-world data. For this reason, the system is of

historical rather than practical importance. Attempts to develop it into a working

model were an impetus to continued research in mathematical modelling of biological

phenomena.

This system was formulated to describe the pattern of predators and prey and their

effects on one another. The system derived by Lotka and Volterra can be written as

ẋ = x(a− by)

ẏ = y(dx− c)
(7)

with x, y ≥ 0 and a, b, c, d positive constants. Here, x denotes the population density

of the prey. Likewise, y denotes the population density of the predator. In the prey

equation, we can see that in the absence of predators, y(0) = 0, the density of the

prey grows at a constant rate a. Similarly, in the absence of prey, x(0) = 0, the density

of the predators decrease at a constant rate. However, in the presence of prey, the

predators increase at a rate proportional to the density of the prey. To obtain a

representation of the solutions of (7) for x > 0, y > 0, and y 6= a
b
, by the chain rule

we can write (7) as

dy

dx
=
y(dx− c)
x(a− by)

.
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Separating variables and integrating∫
a− by
y

dy =

∫
dx− c
x

dx

a log y − by = dx− c log x+K

dx− c log x− by + a log y = −K

so, the function

H : {(x, y) : x > 0 and y > 0} ⊂ R2 → R

defined by

H(x, y) = dx− c log x− by + a log y

is constant on orbits of (7). We can see that the coordinate axes are invariant and

by putting it all together we are able to draw the phase portrait (see Figure 5).

Looking at the phase portrait of Figure 5 we can deduce a few key ideas that will

help us to better understand the system. In this graph, the x-axis is representative

of the prey while the y-axis represents the predator volume (as stated above). In

the phase portrait we can easily see exactly two critical points: the origin, and a

unique critical point in the open first quadrant: ( c
d
, a
b
). Also, notice that every other

trajectory in the open first quadrant is an oval surrounding the critical point. Because

this critical point is surrounded by cycles, it is referred to as a “center”.

While this example is an idealized model, it does seem to match actual real world

behavior to an extent. This is due to the fact that the populations that Lotka and

Volterra were modeling actually do show periodic behavior like that of the mathe-

matical system. A numerical plot of x and y as functions of t for a specific choice of
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Figure 5: The Phase Portrait for the Volterra-Lotka System

the parameters a, b, c, and d is shown in Figure 6.
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Figure 6: The Volterra-Lotka Model Predator Prey Graph



CHAPTER 2: BASIC IDEAS

2.1 Limit Cycles

In the 19th century, the great French mathematician Henri Poincaré made ground-

breaking strides in the geometric analysis of systems of ordinary differential equations

in two variables. With his study of systems of first order differential equations on

the plane, Poincaré identified as of fundamental importance the existence of periodic

orbits in phase portraits that are isolated from all other periodic orbits. He termed

these orbits “cycles limites” [9], work extended fifteen years later by Ivar Bendixson

[1].

Definition 5. A limit cycle is a cycle γ that is isolated from all other cycles in the

sense that there exists a neighborhood U of γ which does not wholly contain any

cycle besides γ.

Theorem 2. For real analytic systems, every cycle is either a limit cycle or a cycle in

a “period annulus:” a band of concentric cycles that full up an annulus.

An example of the second case is the open first quadrant punctured at the critical

point in the Volterra-Lotka system, Figure 5.

Proof of Theorem 2. The key idea in the proof, which goes back to Poincaré, is to

construct a “local section” Σ of the flow at any point p on the cycle. This is a line

segment through p that is perpendicular to f(p) and so short that f is not tangent
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Figure 7: P Defined by a Neighborhood U of p

to Σ at any point. By means of the Implicit Function Theorem a “first return map”

P is defined from a neighborhood U of p in Σ into Σ, as shown in Figure 7. It is

real analytic, hence so is the difference map d = P − idΣ. Cycles near p, at which d

vanishes, are in one-to-one correspondence with zeros of d. Since d is analytic, if its

zero at p is not isolated then d ≡ 0.

We will need the following standard terminology. For simplicity, we make the

non-essential assumption that the maximal interval of existence is R.

Definition 6. In the context of Theorem 1, for x0 ∈ E, the alpha limit set of x0 and

the omega limit set of x0 are

α(x0) = {x : ∃tk,monotonic, tk → −∞ such that Φ(tk, x0)→ x} (8)
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Figure 8: Examples of Stability for Definition 7

ω(x0) = {x : ∃tk,monotonic, tk →∞ such that Φ(tk, x0)→ x} (9)

Every point in the α-limit set of x0 is called an α-limit point of x0, and analogously

for points in ω(x0).

The following facts concerning α- and ω-limit sets will be needed.

Proposition 4. (a) If O+(p) (respectively O−(p)) is confined to a compact set K, then

the omega limit set ω(p) (respectively the alpha limit set α(p)) is non-empty (and is

a subset of K).

(b) ω(ω(p)) ⊂ ω(p) and α(α(p)) ⊂ α(p).

Poincaré proved that a limit cycle γ is the α- or ω-limit set of every point in a

neighborhood of γ in the interior of γ (respectively, the exterior of γ) regarded as

a simple closed point-set curve (see Theorem 3 below). This allows the following

definition.

Definition 7. A limit cycle is termed stable if it is the ω-limit set of every point near

it. A limit cycle is termed unstable if it is the α-limit set of every point near it.

Lastly, a limit cycle is termed semi-stable if it is neither the α or ω limit set of every

point near it (see Figure 8).

Stable limit cycles are of fundamental significance in systems of ordinary differential
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equations that model real world phenomena because they correspond to periodic

motion to which all nearby initial starting configurations tend asymptotically in future

time. That is, these correspond to the periodic behavior of the system of the system

to which all nearby starting configurations tend as time increases without bound.

Proving the existence and non-existence of limit cycles in real systems and locating

them when they exist is a difficult problem. The following simple example is given in

Perko [8]. It is an artificial example of a system that contains a limit cycle.

Example 5. Consider the system

ẋ = −y + x(1− x2 − y2)

ẏ = x+ y(1− x2 − y2).

(10)

Using the easily derived relationship between polar and rectangular coordinates rṙ =

xẋ+ yẏ and r2θ̇ = xẏ − yẋ, we have that in polar coordinates (10) is

ṙ = r(1− r2)

θ̇ = 1

(11)

Since ṙ = 0 at r = 0, the origin is a critical point of the system. Since ṙ = 0 at every

point for which r = 1, the unit circle is an invariant set for the flow, and since it

contains no critical point, it is a closed orbit. Furthermore, for 0 < r < 1 we see that

the flow spirals outward since ṙ > 0. Likewise, for r > 1 we see that the flow spirals

inward since ṙ < 0 for all r > 1. Thus, the unit circle is a stable limit cycle.



CHAPTER 3: EXISTENCE AND NON-EXISTENCE OF LIMIT CYCLES

Let us first look at the phase portraits for examples that we have already done.

You’ll notice that in all of our examples, every cycle goes around a critical point of

the system. This is a result that is true in general, and is proved using the theory of

index of critical points and of vector fields along simple closed curves, which we will

now develop.

3.1 Index

In our discussion of index, our arguments will be for the most part intuitive to a

large degree, avoiding technicalities.

We will make the following assumptions throughout this section: We suppose we

are in the situation of Theorem 1: E ⊂ R2 is an open set and f : E → R2 is a Cr

mapping, r ≥ 1, which will be viewed as a vector field on E. Cycles and critical

points are those of the system ẋ = f(x), x ∈ E.

We will need the following general result. A closed curve (i.e., a point-set that

is the topological image of the unit circle) is simple if it does not self-intersect. In

particular, every cycle is a simple closed curve.

Theorem 3 (Jordan Curve Theorem). The complement of a simple closed curve C

in the plane is the union of two disjoint, open, path-connected sets, one of them

bounded, the other unbounded. The bounded component of the complement is called
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the interior of C, denoted Int(C); the unbounded component of the complement is

called the exterior of C, denoted Ext(C).

Remark 2. The Jordan Curve Theorem is not true on every surface. For example,

the Jordan Curve Theorem fails to hold true on a torus.

We alert the reader to the fact that for the next few paragraphs (as far as Theorem

5, below) the simple closed curves under discussion are arbitrary curves in E, and

need not be cycles of the system ẋ = f(x).

In order to avoid extended discussion using limit arguments based on the continuity

of f , we will loosen our terminology and refer to a closed curve like that shown in

Figure 12, defined as C1 followed by arc L followed by −C2 followed by −L as a simple

closed curve (where in a detailed argument in place of L we would have two very close

and oppositely oriented parallel arcs and take a limit as they become arbitrarily close

as point-sets).

Definition 8. The index of a simple closed curve C with respect to a continuous vector

field f which is defined and non-zero everywhere on C ⊂ E is the number If (C) of

complete counterclockwise revolutions of f as C is traversed one time counterclock-

wise.

Remark 3. If C is traversed clockwise, then the number of complete counterclockwise

revolutions of f is −If (C). We denote the clockwise traversal of C by −C, and thus

we have If (−C) = −If (C).

Proposition 6. If f(p) 6= 0 then for a sufficiently small circle C centered at p, If (C) =

0.
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Figure 9: A Sufficiently Small Circle Centered at p in Proposition 6

Proof. By continuity of f there exists a neighborhood U of p such that at any point

q in U the angle formed by the vectors f(p) and f(q) is less than (say) π
6
. Then for

any circle C ⊂ U and centered at p it is clear that f(q) makes zero revolutions as the

point q traverses C once completely.

Proposition 7. Suppose that for a simple closed curve C, f is defined and non-zero

on C ∪ Int(C). Then If (C) = 0.

Proof. For a directed arc L, let ∆f (L) denote the change in the angle that f makes

when L is traversed from one end to the other. In analogy with Remark 3, ∆f (−L) =

−∆f (L). Consider Figure 10, in which an arc L1 in Int(C) joins two points on C,

forming two simple closed curves C1 and C2 as shown, each composed of L and an arc

in C. Giving a counterclockwise orientation to each of C1 and C2 orients L1 twice,

but in opposite directions.

Clearly If (C) = If (C1) + If (C2) by the cancellation in traversing L1 in each direc-

tion. If we were to add a second arc L2 similarly, but crossing L1 at a single point,
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Figure 10: Adding an Arc L1 to a Cycle

four simple closed curves would be formed. We can continue to add more and more

arcs, resulting in an increasing number of smaller and smaller curves.

Figure 11 shows 20 small simple closed curves C1, ..., C20, and similarly since f is

non-zero in Int(C), If (Cj) is defined for 1 ≤ j ≤ 20 and If (C) = If (C1)+...+If (C20).

Since there are no critical points in Int(C) this process can be continued until all the

small simple closed curves Cj are so small that Proposition 6 applies to each one,

hence If (Cj) = 0 for all values of Cj, hence If (C) =
∑
If (Cj) =

∑
0 = 0.

Corollary 8. If C1 and C2 are Jordan curves contained in E with C2 ⊂ Int(C1),

f(p) 6= 0 for p ∈ C2 ∪ [Ext(C2) ∩ Int(C1)] ∪ C1, then If (C2) = If (C1).

In other words, if C2 can expand out towards C1 without crossing a single critical

point of f , then the index of C2 will be equal to the index of C1.

Proof. To prove Corollary 8, refer to Figure 12. Choose a smooth arc L in Int(C1)∩

Ext(C2) oriented from C1 to C2. We will start on the curve C1. Follow this curve

all the way around until it reaches L then follow L down to C2. Next, follow −C2

around until it reaches L. Lastly, we will follow −L until it reaches C1 to form a
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Figure 11: Multiple Arcs Added to a Cycle

closed curve. Now, by Remark 3 and Proposition 7

0 = If (C)

= If (C1) + ∆f (L1) + If (−C2) + ∆f (−L1)

= If (C1) + ∆f (L1)− If (C2)−∆f (L1)

= If (C1)− If (C2)

This implies then that If (C1) = If (C2).

Corollary 8 allows the following definition:

Definition 9. For any p ∈ E, the index of p with respect to f is If (p) = If (C) for any

simple closed curve that contains no critical point of f on it or on its interior, except

possibly for p.
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Figure 12: Adding an Arc L1 to Two Cycles

Figure 13: Examples of the Index for Four Critical Points

By Proposition 6, the index of any regular point p (point at which f 6= 0) is

zero. The indices of four critical points of distinct “topological type” are shown in

Figure 13. The following result will also be needed, but its proof is technical and not

enlightening so we will omit it here.

Theorem 4 (Umlaufsatz). If γ is a cycle of f , hence a simple closed curve, and is

positively oriented, then If (γ) = +1.
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Figure 14: The Index of a Circle C

In reference to the Umlaufsatz (Theorem 4), refer to Figures 14, 15, and 16. Each

figure shows a simple closed curve that is positively oriented. In Figure 14 it is obvious

that the index of the circle is +1. In Figure 15, it becomes slightly more difficult to

see that the index is +1. However, it is still very clear. In Figure 16, it becomes

much more difficult to determine the index. While it is still reasonable to determine

its index by sight alone, it is not as obvious as the other two that its index is also +1.

We now state and prove the main result of this section, the most important appli-

cation of the theory of index to cycles of systems of the form (1) on the plane.

Theorem 5. If γ is a cycle of ẋ = f(x) and f is defined on γ∪Int(γ), then there must

exist a critical point of f in Int(γ).

Proof. Reverse all vectors by replacing f by −f if necessary so that γ is positively
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Figure 15: The Index of a Simple Closed Curve C

oriented. Contrary to what we wish to show, suppose that there are no critical points

in Int(γ). Then by Proposition 7 the index If (γ) is zero. However, by Theorem 4,

If (γ) must be +1. Thus, we have a contradiction and have proved that there is at

least one critical point in Int(γ).

A slight extension of Theorem 5 is the following

Theorem 6. If the number of critical points of f in Int(γ) is finite then their indices

sum to 1.

Proof. The idea of the proof is contained in Figure 17, shown in the case that there

are three critical points in Int(γ). Since they are finite in number, they can be

isolated from one another by three small positively oriented circles C1, C2, and C3, as
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Figure 16: The Index of a Simple Closed Curve C

shown. The circles in turn can be joined by two oriented arcs L12 and L23, as shown.

Reversing the flow if necessary so that γ is positively oriented, the index of the curve

made up of the shrinking down of γ onto C1∪L12∪C2∪L23∪C3 is that of γ, namely

+1, but is also
∑
If (Cj), since the contributions of L12 and L23 cancel, since they

are traversed twice in opposite directions.

3.2 Poincaré-Bendixson Theorem

One of the most important theorems in the theory of cycles of systems of the form

(1) on the plane is the following.

Theorem 7. (Poincaré-Bendixson Theorem) Suppose that:

1) R is a closed, bounded subset of the plane;

2) ẋ = f(x) is a continuously differentiable vector field on an open set containing R;

3) p is a point in R such that O+(p) ⊂ R.

Then the ω-limit set of p is non-empty by Proposition 4 and either contains a critical

point (in R) or is a closed orbit (confined to R). Similarly for the alpha limit set if
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Figure 17: The Image of The Proof of Theorem 6

O−(p) ⊂ R.

Remark 4. If the system of (1) is real analytic, then the closed orbit in question must

be a limit cycle, since by Theorem 2 a picture like Figure 18, or a sequence of cycles

isolated from one another collapsing onto a particular cycle, is impossible for real

analytic systems.

Proof. The proof of the Poincaré-Bendixson Theorem depends in an essential way

on the Jordan Curve Theorem (Theorem 3) and the Flowbox Theorem (which states

that the flow in a neighborhood of a regular point is smoothly equivalent to the flow

of the system ẋ ≡ 1, ẏ ≡ 0). A sketch of the proof is as follows. If ω(p) contains

a critical point then there is nothing to show. Otherwise, since by Proposition 4 (a)

ω(p) 6= ∅, we select any point q ∈ ω(p), erect a section Σ of the flow at q and build
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Figure 18: A Band of Cycles Inside of C

a flowbox on it. Then there must exist a sequence of times tk → ∞ monotonically

such that pk = Φ(tk, p) is a sequence in Σ that tends monotonically to q. For as

Figure 19 suggests (the rigorous derivation is much more elaborate) the solution arc

{Φ(t, p) : tk ≤ t ≤ tk+1} together with the segment [pk, pk+1] of Σ form a simple closed

curve C, and O+(pk+1) is on the same side (either Int(C) or Ext(C)) as q, and that

side is positively invariant. Certainly O+(q) ⊂ R, else continuity of solutions in initial

conditions and convergence of the sequence (pk) to q would imply that O+(p) 6⊂ R,

which is false.

But then, by Proposition 4 (a), ω(q) 6= ∅, so we may select any q′ ∈ ω(q) ⊂ ω(p)

(Proposition 4 (b)) and erect a section Σ′ of the flow at q′ and build a flowbox on it.

There is a sequence t′j → +∞ monotonically such that qj = Φ(t′j, q) ∈ Σ′ tends
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Figure 19: The Shaded Positively Invariant Side of C

monotonically to q′.

If qj = q′ for any j then q is a periodic point (i.e., the orbit O(q) is a cycle),

as required. Otherwise, fixing any j ∈ Z+, let C ′ denote the simple closed curve

formed by the solution arc {Φ(t, qj) : t′j ≤ t ≤ t′j+1} and the segment [qj, qj+1] of Σ′

(see Figure 20). Let Side1(C ′) be the positively invariant side of C ′ (either Int(C ′)

or Ext(C ′), it does not matter for the argument which); O+(qj+1) ⊂ Side1(C ′) but

q ∈ Side2(C ′). Choose k so large that pk is so close to q that (recalling that qj+1 =

Φ(t′j+1, q)) Φ(t′j+1, pk) is in the flowbox enclosing q′, which implies that O+(pk) must

enter Side1(C ′) along with O+(qj+1). But then Φ(t, p) ∈ Side1(C ′) for t > tk+t′j+1+1,

which means it cannot again approach q, which is false.

We remark in passing that there are versions of the Poincaré-Bendixson Theorem
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Figure 20: The Shaded Positively Invariant Side of C ′

with more detailed conclusions, in particular concerning the nature of ω(p) when it

contains a critical point. The version presented here addresses all the issues needed

insofar as applicability to the existence of limit cycles is concerned.

We also note that all these versions hold true for vector fields on the 2-sphere S2,

on which the Jordan Curve Theorem is also valid (except, of course, for boundedness

and unboundedness to distinguish components of the complement of C), but do not

hold for surfaces in general. For example, for the irrational flow on the 2-torus T 2,

obtained from the system ẋ ≡ 1, ẏ ≡ m, m irrational, on R2 by identifying opposite

sides of the unit square, for any p ∈ T 2, ω(p) is all of T 2.

3.3 Poincaré Annular Region Theorem

The following theorem is of great practical use in proving existence of closed orbits.



31

Theorem 8. (Poincaré Annular Region Theorem) Suppose A is the diffeomorphic

image of the annulus

{(x, y) : 1 ≤ x2 + y2 ≤ 2}

and that f is a C1 vector field on a neighborhood of A with the following properties:

(1) f points into A (respectively, out of A) at every point of the boundary ∂A of A;

and

(2) f has no critical points in A.

Then ẋ = f(x) has a cycle that is wholly contained in the interior of A.

Proof. Suppose that A and f are as in Theorem 8 and fix p ∈ ∂A. By Theorem 7,

ω(p) 6= ∅ and either contains a critical point or is a closed orbit. However, by the

hypothesis, there is no critical point in A. Hence, ω(p) must be a closed orbit in

A.

Note that by Theorem 5 the closed orbit guaranteed by Theorem 8 to exist must

“go around the hole” in A.

3.4 Bendixson’s Criterion

Bendixson’s Criterion is a key tool for proving the non-existence of closed orbits in

particular systems. It was formulated by Swedish mathematician Ivar Bendixson in

1901.

Definition 10. A set E ⊂ R2 is simply connected if every simple closed curve in E

can be shrunk in E to a point in E.

Theorem 9. Suppose E ⊂ R2 is a simply connected open set and f : E → R2 is a Cr
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mapping, r ≥ 1. If div(f) := ∂f
∂x

+ ∂f
∂y

: E → R is of one sign in E, and not identically

zero on E, then there are no cycles of ẋ = f(x) that are wholly contained in E.

Proof. Theorem 9 is a corollary of the somewhat more general version of the same

result, Dulac’s Criterion, Theorem 10, which we will prove below.

Example 9. The system

ẋ = y2 − x

ẏ = x2 − y3

has two singularities, a hyperbolic saddle at (1, 1) and a non-hyperbolic singularity

at (0, 0). The behavior on the isoclines makes it look like there are no cycles. In fact,

div(f(x, y)) =
∂

∂x
(y2 − x) +

∂

∂y
(x2 − y3) = −1− 3y2 ≤ −1 < 0.

By Bendixson’s Criterion, there cannot be a cycle.

3.5 Dulac’s Criterion

An extension of Bendixson’s Criterion is Dulac’s Criterion. Since Bendixson’s

Criterion was formulated before Dulac’s Criterion we stated Bendixson’s Criterion

first.

Theorem 10. Suppose E ⊂ R2 is a simply connected open set, f : E → R2 and

B : E → R are Cr, r ≥ 1, and div(Bf) 6≡ 0 and is of one sign on E. Then no closed

orbit of ẋ = f(x) lies wholly within E.

Proof. Suppose E, f, and B are as stated except for any conditions on div(Bf), and

let γ be a closed orbit of ẋ = f(x) in E which we may assume without loss of generality
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is positively oriented as a solution curve of ẋ = f(x). Writing f = (p, q),

I =

∫ ∫
Int(γ)

div(Bf) dA

=

∫ ∫
Int(γ)

∂

∂x
(Bp) +

∂

∂y
(Bq) dA

=

∫ ∫
Int(γ)

∂

∂x
(Bp)− ∂

∂y
(−Bq) dA

Using Green’s Theorem,
∫
C
Pdx+Qdy =

∫ ∫
int(C)

Qx − Py dA,

I =

∫
γ

−Bqdx+Bpdy

Parametrizing γ by any solution of (1), γ = (x(t), y(t)) on [0, T ], dx = ẋ(t)dt =

p(x(t), y(t))dt and dy = ẏ(t)dt = q(x(t), y(t))dt, hence

I =

∫ T

0

(−Bqp)(x(t), y(t)) + (Bpq)(x(t), y(t))dt

=

∫ T

0

0 dt

= 0.

Therefore, either div(Bf) ≡ 0 on E or div(Bf) changes sign on E.

Example 10. Consider the system

ẋ = 1− y2

ẏ = xy + y3

We can check that the only singularities are hyperbolic nodes or foci located at

(−1,±1). They are in fact foci (see Perko’s Example 5 in Section 4.1 [8]). Since y

factors out of the ẏ equation, the x-axis y = 0 is an invariant line. Thus, any cycle

must either lie wholly in the upper half plane y > 0 or wholly in the lower half plane
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y < 0 and enclose one of the singularities. To try to prove non-existence of any closed

orbits we will first try Bendixson’s Criterion. We compute

div(f(x, y)) =
∂

∂x
(1− y2) +

∂

∂y
(xy + y3) = 0 + x+ 3y2

which vanishes along the curve x = −3y2. Thus, Bendixson’s Criterion is inconclusive.

Next, let us look for a Dulac function of the form B(x, y) = yp. We compute

div(Bf) =
∂

∂x
(yp − yp+2) +

∂

∂y
(xyp+1 + yp+3)

= 0 + (p+ 1)xyp + (p+ 3)yp+2

= yp[(p+ 1)x+ (p+ 3)y2]

which vanishes along y = 0 (for p > 0) and along the curve Cp: x = −p+3
p+1

y2 (for

p 6= −1).

If Ep is the shaded region of Figure 21 then by Dulac’s Criterion there is no cycle

within Ep throughout which div(Bf) is of one sign. However, the upper half plane is

equal to {(x, y) : y > 0} = ∪p>−1Ep. Hence, there is no cycle in the upper half plane.

Similarly there is none in the lower half plane. Hence, none at all.

Example 11. Now, consider the system

ẋ = 2xy

ẏ = 2xy − x2 + y2 + 1

The y-axis x = 0 is invariant. The critical points satisfy ẋ = 0. Hence x = 0 or y = 0.

If x = 0 then ẋ = y2 + 1 > 0. Thus there are no critical points there. However, if

y = 0, then ẏ = 1− x2. Now the only critical points are (−1, 0) and (1, 0) which are

a hyperbolic sink and source, respectively.
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Figure 21: The Graph of The Dulac Function for Example 10

In the paper [3], it was necessary to show that there were no closed orbits. If there

is a closed orbit then it must lie either completely within the right half plane x > 0

or completely within the left half plane x < 0. We will begin by trying to apply

Bendixson’s Criterion:

divf(x, y) =
∂

∂x
(2xy) +

∂

∂y
(2xy − x2 + y2 + 1)

= 2y + 2x+ 2y

= 2(x+ 2y)

which vanishes along the line x + 2y = 0 or y = −1
2
x. Thus, it is inconclusive since

it excludes “small” cycles surrounding the critical points, but not “large” ones.
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Now, let us consider B(x, y) = 2x−2 which exists on R2\{(x, y) : x = 0}. It satisfies

div(Bf) =
∂

∂x
(4x−1y) +

∂

∂y
(4x−1y − 2 + 2x−2y2 + 2x−2)

= −4x−2y + 4x−1 + 4x−2y

= 4x−1

which is not identically zero and is of one sign on the right half plane (x > 0).

Hence, there are no cycles wholly contained in the right half plane. Similarly it is not

identically zero and is of one sign on the left half plane. Thus, there are no cycles

wholly contained in the left half plane. Therefore, there are no cycles at all.

A Dulac function and the ideas in Bendixson’s Criterion can also be used to prove

the following extension of Theorem 8, which will be applied to the van der Pol oscil-

lator.

Theorem 11. If in the context of the Poincaré Annular Region Theorem, Theorem 8,

there exists a C ′ function B : Int(A) → R such that div(Bf) is not identically zero

on any open subset of Int(A) and is of one sign on Int(A), then the cycle in A is

unique.

Proof. Suppose γ1 and γ2 are two cycles in A, which by hypothesis (2) in Theorem

8 and Theorem 5 must both surround the bounded subset of the complement of A,

hence be nested, say with γ2 ⊂ Int(γ1), and with the annular region A′ that they

bound a subset of A. Let C1 and C2 be the positively oriented simply closed curves

that γ1 and γ2 form as point-sets (ignoring their orientation induced by the flow), and

let L be a smooth oriented arc in A′ joining C1 and C2 so the situation is as shown in

Figure 12. Consider the simple closed curve C
def
= C1 + L+ (−C2) + (−L). Applying
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the same computations as were done in the proof of Dulac’s Criterion, Theorem 10,

we find that either div(Bf) ≡ 0 on the open set A′ in A or div(Bf) changes sign on

A′ ⊂ A.



CHAPTER 4: CYCLES IN AN IMPORTANT FAMILY

4.1 Liénard Systems

Systems of the form

ẍ+ f(x)ẋ+ g(x) = 0 (12)

were studied in the context of the existence of limit cycles in 1928 by French physicist

Alfred Marie Liénard. They are now known as Liénard systems. In this section we

will state and prove a theorem guaranteeing the existence of a stable limit cycle in

the phase portrait of the system of two first order ordinary differential equations

corresponding to (12), thereby yielding existence of asymptotically stable periodic

solutions of (12).

In order to not break the flow of the proof of Liénard’s Theorem we state and prove

here a lemma that will be needed later.

Lemma 12. If, in the context of Theorem 1, a compact set K ⊂ E is simply connected

and contains no critical point, then for any point p ∈ K both O+(p) and O−(p) exit

K (i.e., O+(p) 6⊂ K and O−(p) 6⊂ K).

Proof. Suppose, contrary to what we wish to show, that O+(p) ⊂ K, which, because

it is compact, is closed and bounded. By the Poincaré-Bendixson Theorem, Theorem

7, ω(p) either contains a critical point or is a closed orbit (contained in K). The

former case is impossible, by the hypothesis that there is no critical point in K. But
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the latter case is also impossible, for if γ were a closed orbit in K, then because K is

simply connected f is defined on γ ∪ Int(γ). Hence, by Theorem 5 there would be a

critical point in Int(γ) ⊂ K, contradicting the hypothesis that K contains no critical

point. Thus, O+(p) 6⊂ K, as was to be shown. The conclusion for O−(p) follows

simply by reversing the flow.

Theorem 12. (Liénard’s Theorem) Given ẍ+ f(x)ẋ+ g(x) = 0, suppose

• f and g are Cr, r ≥ 1,

• xg(x) > 0 for x 6= 0,

• f is such that the function F defined by F (x) =
∫ x

0
f(u)du has two properties:

1) There exists constants α < 0 < β such that

a) F (x) > 0 if α < x < 0

b) F (x) < 0 if 0 < x < β.

2) a) limx→−∞ F (x) = −∞,

b)limx→∞ F (x) = +∞.

Then the phase portrait of (12) contains a closed orbit.

Remark 5. By the Fundamental Theorem of Calculus, F is differentiable with F ′ = f .

Proof of Theorem 12. From Equation (12), we get

−g(x) = ẍ+ f(x)ẋ =
d

dt
[ẋ+ F (x)]

Rather than making (12) into an equivalent system the usual way (namely, introduc-

ing y = ẋ), we are lead to define the function F (x) =
∫ x

0
f(s)ds of the statement of
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the theorem and introduce the new variable y = ẋ+ F (x). Thus,

−g(x) =
d

dt
[ẋ+ F (x)] =

d

dt
y = ẏ

Hence, we get

ẋ = y − F (x)

ẏ = −g(x)

(13)

which is equivalent to (12). Since (12) and (13) are equivalent, it is enough to find a

closed orbit in the phase portrait of (13).

Since xg(x) > 0 for x 6= 0, g(x) > 0 if x > 0 and g(x) < 0 if x < 0, hence by

continuity of g, g(x) = 0 if and only if x = 0. Since F (0) = 0, (x, y) = (0, 0) is the

unique critical point of (13). Now introduce, in analogy with the pendulum example,

an “energy” function:

V (x, y) =
1

2
y2 +G(x), (14)

where G(x) =
∫ x

0
g(u)du. Recall that g is continuously differentiable implying that

G(x) exists and is differentiable with G′(x) = g(x). But then, by the properties of

the function g(x) just described, G(x) is strictly decreasing for x < 0 and is strictly

increasing for x > 0. Since G(0) = 0, it follows immediately from the definition of

V (x, y) that it has a global minimum at (x, y) = (0, 0) with value V (0, 0) = 0. Hence

the level curves of V are ovals that enclose the level “curve” V −1(0) = {(0, 0)} (see

Figure 22).

For any trajectory (x(t), y(t)) of (13) a function of t is defined by V (x(t), y(t)).
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Figure 22: The Ovals That Enclose The Level Curve V −1(0)

Then
d

dt
[V (x(t), y(t))] = G′(x(t))ẋ(t) + y(t)ẏ(t)

= g(x)(y − F (x)) + y(−g(x))

= −g(x(t))F (x(t)).

This indicates that at any point (x, y) the instantaneous rate of change in V along

the trajectory through (x, y) is

V̇ (x, y)
def
= −g(x)F (x) (15)

Since, as already noted, g(x) has the sign of non-zero x, by the first hypothesis on

F (x)

V̇ (x, y) > 0 on {(x, y) : α < x < β and x 6= 0}

Thus, on a neighborhood of (0, 0), V̇ (x, y) ≥ 0. Hence, for some sufficiently small

V0 > 0, the flow of (13) is from the interior to the exterior of the oval V −1(V0) (see

Figure 23).

We want to show that if y1 > 0 is sufficiently large, then the positive semi-orbit

O+(0, y1) intersects the negative y-axis and does so at a point (0, y2) that is closer to
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Figure 23: The Flow From The Interior to The Exterior of V −1(V0)

the origin that (0, y1) is. We will do this by showing that V (0, y2) = 1
2
(y2)2 is smaller

than V (0, y1) = 1
2
(y1)2, which we do by studying the integral of V̇ along O+(0, y1)

from (0, y1) to (0, y2).

It is clear that

ẋ = 0 along y = F (x)

ẏ = 0 along x = 0

and that these two curves divide the plane into four regions with directions of flow as

indicated in Figure 24.

Since F takes negative values on the interval (0, β) but limx→∞ F (x) = +∞, by

the Intermediate Value Theorem for any y1 > 0 the horizontal line through the point

(0, y1) must intersect the graph of y = F (x) at a point whose abscissa is positive.
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Figure 24: The Four Regions of The Plane With Directional Flow

Clearly it first does so at a point at which the function F is increasing. Thus the region

S shown in Figure 25 is formed, with direction field on the boundary as indicated.

But then, by Lemma 12, since the orbit through (0, y1) immediately enters S, the

positive semi-orbit O+(0, y1) through (0, y1) must leave S, and can do so only at a

point on the graph of y = F (x), hence it must intersect the graph of y = F (x) at

some point (a, b) with a > 0, as shown in Figure 29.

Claim 1:

Let (a, b) be any point on the curve y = F (x), with a > 0. Then the forward orbit

through (a, b), which we denote by O+(a, b), has non-empty intersection with the

negative y-axis.

To prove the claim, let R denote the open region {(x, y) : 0 < x < a and y < F (x)}
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Figure 25: The Region S With Direction Field on The Boundary

as shown in Figure 26. The positive orbit O+(a, b) immediately enters R, throughout

which ẋ = y − F (x) < 0 and ẏ = −g(x) < 0. Let ` denote the horizontal line with

equation y = min{F (x) : x > 0} − 1, which divides R into two regions R+ and R−,

as shown in Figure 27.

By Lemma 12, O+(a, b) must exit the region R+. There are two cases: either

(i) O+(a, b) ∩ (R ∩ `) = ∅, or

(ii) O+(a, b) ∩ (R ∩ `) 6= ∅.

If case (i) holds, so that O+(a, b) does not exit R+ across the segment R ∩ `, then it

must exit across the negative y-axis, so the proof of this case is complete.

Suppose (ii) holds, so that O+(a, b) intersects the segment R ∩ ` at some point

(a1, b1), hence immediately enters region R−. Since ` has equation y = min{F (u) :
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Figure 26: The Open Region {(x, y) : 0 < x < a and y < F (x)}

u > 0} − 1, at any point (x, y) ∈ R−, y < min{F (u) : u > 0} − 1 ≤ F (x) − 1, so

F (x) − y > 1. But then the slope of the line tangent to the trajectory through the

point (x, y) satisfies

dy

dx
=
ẏ

ẋ
=
−g(x)

y − F (x)
=

g(x)

F (x)− y
<
g(x)

1
= g(x)

since g(x) is positive in R. But then at any point (a2, b2) ∈ O+(a1, b1) ∩ R− (see

Figure 28), integrating in the direction of increasing x,

b1 − b2 =

∫ a1

a2

(dy
dx

)
dx <

∫ a1

a2

g(x)dx = G(a1)−G(a2) < G(a1)

since G(a2) > 0, or b2 > b1 −G(a1). That is, as long as O+(a1, b1) remains in R−, it

is above the line `′ with equation y = b1 − G(a1), hence cannot leave the portion of
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Figure 27: Line ` Divides R Into Regions R+ and R−

R− between the lines ` and `′ except at a point on the negative y-axis. See Figure 28.

But by Lemma 12, O+(a1, b1) must exit the region of R− between ` and `′, finishing

the proof of the claim for case (ii). This shows that the point (0, y2), the intersection

of O+(0, y1) with the negative y-axis, exists.

We note that exactly the same kind of reasoning used to prove Claim 1 establishes:

Claim 2: Let (a, b) be as in Claim 1. Then O−(a, b) has non-empty intersection with

the positive y-axis.

We must now show that for y1 > 0 sufficiently large, V (0, y1) − V (0, y2) > 0. As

y1 > 0 increases without bound, certainly V (0, y1) > 0 increases without bound.

Thus if y2 < 0 does not tend to −∞ but is bounded below, then V (0, y2) > 0 is

bounded above, and the desired inequality V (0, y1) − V (0, y2) > 0 must eventually
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Figure 28: The Point (a2, b2) in the Region O+(a1, b1) ∩R−

hold. Thus we proceed under the assumption that y2 → −∞ as y1 →∞.

Since limx→∞ F (x) = +∞ there exists a number γ > 0 such that F (x) > 1 for

all x > γ. It follows from Claim 2 that for all sufficiently large y1 > 0, O+(0, y1)

intersects the vertical line x = γ before meeting the vertical isocline y = F (x), and

by Claim 1 that O+(0, y1) intersects x = γ a second time after it crosses y = F (x)

(see Figure 29).

The portions of O+(0, y1) in the vertical strip 0 ≤ x ≤ γ are the graphs of functions

(for O+(0, y1) has no vertical tangents except where it crosses y = F (x)). So we may

write

y = yU(x) [U for ”upper”]

y = yL(x) [L for ”lower”].
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Figure 29: For y1 Sufficiently Large

Let the coordinates of the points at which O+(0, y1) intersects the line x = γ be

first (γ,Γ+), then (γ,Γ−).

Let the times that O+(0, y1) is at its two intersections with x = γ be

T+ : (γ,Γ+) = Φ(T+, (0, y1))

T− : (γ,Γ−) = Φ(T−, (0, y1)).

Let the time that O+(0, y1) is at the point (0, y2) be T : (0, y2) = Φ(T, (0, y1)). Now

compute V (0, y2)− V (0, y1) by integrating d
dt

[V (Φ(t, (0, y1)))] from t = 0 to t = T :

V (0, y2)− V (0, y1) = V (Φ(T, (0, y1)))− V (Φ(0, (0, y1)))

=

∫ T

0

V̇ (Φ(t, (0, y1)))dt

=

∫ T

0

−g(x(t))F (x(t))dt
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by (15), where we have written Φ(t, (0, y1)) = (x(t), y(t)). We now split the integral

into three parts, according to the division of the solution arc by the points (γ,Γ+)

and (γ,Γ−). For the first and third arcs we write dx = x′(t)dt = (y(t)− F (x(t))dt so

that dt = dx
y−F (x)

, thus obtaining

V (0, y2)− V (0, y1) =

∫ γ

0

−g(x)F (x)

yU(x)− F (x)
dx−

∫ γ

0

−g(x)F (x)

yL(x)− F (x)
dx

+

∫ T−

T+

−g(x(t))F (x(t))dt

(16)

where the minus sign in the second term arises from the direction of flow along the

third arc opposing the direction of increasing x. Now consider the behavior of the sum

as y1 increases without bound. Independently of the value of y1, the numerators in

the first two summands are the same, unchanging continuous function on the closed

and bounded interval [0, γ], hence are bounded. The denominators both tend to zero

with increasing y1, the one in the second summand because we have been able to

restrict to the assumption that y2 → −∞ as y1 → +∞. Thus the sum of the first

two summands tends to zero as y1 increases without bound. For the third summand

in (16) we will manipulate differentials in ẏ = dy
dt

= −g(x) to write the third integral

as ∫ T−

T+

−g(x(t))F (x(t))dt =

∫ Γ−

Γ+

F (x)dy

= −
∫ Γ+

Γ−

F (x)dy,

(17)

using the fact that x is a function of y on this arc of O+(0, y1). But for x-values on

this solution arc, F (x) ≥ 1, hence by (17) we conclude that
∫ T−
T+
−g(x(t))F (x(t))dt ≤

−(Γ+ − Γ−). But from Figure 29 it is clear that (Γ+ − Γ−) → +∞ as y1 → +∞,

hence the third summand in (17) tends to −∞, and we conclude from (17) that for
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Figure 30: For |y2| Sufficiently Large

y1 > 0 sufficiently large, V (0, y2)− V (0, y1) < 0.

The same line of reasoning shows that O+(0, y2) meets the positive y-axis at a point

(0, y3), and for |y2| sufficiently large, |y2| > y3, making Figure 30 correct. Thus the

situation is as shown in Figure 31, where the small oval surrounding (0, 0) is that

of Figure 23, across which the flow is from the interior to the exterior. The closed

region U bounded by this small oval and the closed curve form by the solution arc

from (0, y1) to (0, y3) together with the subinterval [y3, y1] in the y-axis is a compact,

positively invariant set that contains no critical point. Select any point (0, ȳ) with

y3 < ȳ < y1. O+(0, ȳ) immediately enters and permanently remains in U , hence by

the Poincaré-Bendixson Theorem (Theorem 7) the ω-limit set of (0, ȳ) is a closed

orbit in U , since it does not contain a critical point, and the theorem is proved.
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Figure 31: The Derived Region U

A number of variations of Liénard’s Theorem have been proved over the years.

Here we state just one, without proof, which has much more restrictive hypothesis

than Theorem 12, but yields uniqueness of the cycle.

Theorem 13. Given ẍ+ f(x)ẋ+ g(x) = 0, suppose f and g are Cr, r ≥ 1, and that

1) xg(x) > 0 for x 6= 0

2) g(x) = −g(−x), f(x) = f(−x)

and that for some b > 0, F (x) =
∫ x

0
f(s)ds satisfies

a) F (x) < 0 if 0 < x < b

b) F (x) > 0 if x > b, and

3) F (x) is monotone increasing for x > b and F (x)→∞ as x→∞

Then (12) has a unique nontrivial periodic solution.
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Figure 32: The van der Pol Triode Circuit

4.2 van der Pol Oscillator

While there are many different Liénard equations, one of the most important ones

was formulated by Dutch physicist Balthasar van der Pol in 1927 to describe oscil-

lations in a radio circuit. He experimented with these oscillations in a vacuum tube

triode circuit as in Figure 32. This equation is of great historical importance because

it is the first mathematical model of a real world system exhibiting a limit cycle. It is

also a “self-sustained” oscillation because the energy that is put in is not oscillatory.

The second order ordinary differential equation derived by van der Pol, now called

the van der Pol equation, is as follows:

ẍ+ µ(x2 − 1)ẋ+ x = 0. (18)

For the system that van der Pol was modelling, µ > 0. It is clear that x plays the

role of a restoring force while µ(x2− 1)ẋ plays the role of a dampening force. We can

see that if |x| < 1 then energy is being supplied to the system, (amplification by the

triode tube), whereas, if |x| > 1 then energy is being dissipated (resistance).
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It is easy to see that the van der Pol equation satisfies the hypothesis of Theorem

12, hence has at least one stable limit cycle in its phase portrait. We will prove

that the cycle in the van der Pol System is unique. We could merely point out

that (18) satisfies the hypothesis of Theorem 13, but will instead demonstrate the

use of Theorem 11, which we have proved. To do so we transform (18) into a two-

dimensional first order system by the standard introduction of a second dependent

variable y = ẋ, thus obtaining

ẋ = y

ẏ = −x− µ(x2 − 1)y.

(19)

If r is the radial polar coordinate, then

rṙ = xẋ+ yẏ = −µ(x2 − 1)y2.

Thus, ṙ > 0 everywhere along the strip −1 < x < 1, except along the y-axis, and in

particular the flow is everywhere outward across the unit circle x2 + y2 = 1, except

possibly at the two points (−1, 0) and (1, 0), at which points the vector X(x, y)

corresponding to (19) is vertical. However, as Figure 33 shows, if O+(1, 0) does not

immediately exit the unit disk, then an application of Lemma 12 to the negative

semi-orbit of points on the boundary of the region S thus formed by O+(1, 0), the

unit circle, and the line y = −ȳ for small ȳ > 0 yields a contradiction. Similarly for

O+(−1, 0). Now consider the annular region A = {(x, y) : x2 + y2 > 1}, in which any

cycle of (19) must lie and on which the Dulac function B(x, y) = (x2 + y2 − 1)−
1
2
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Figure 33: The Region S Formed by O+(1, 0)

(discovered by Leonid Cherkas in the 1990’s) exists and is differentiable. We compute

div(BX) =
∂

∂x
[y(x2 + y2 − 1)−

1
2 ] +

∂

∂y
[(−x− µ(x2 − 1)y)(x2 + y2 − 1)−

1
2 ]

= −1

2
y(x2 + y2 − 1)−

3
2 2x− µ(x2 − 1)(x2 + y2 − 1)−

1
2

− 1

2
(−x− µ(x2 − 1)y)(x2 + y2 − 1)−

3
2 2y

= (x2 + y2 − 1)−
3
2 [−xy − µ(x2 − 1)(x2 + y2 − 1)− (−xy − µ(x2 − 1)y2)]

= (x2 + y2 − 1)−
3
2 [−µ(x2 − 1)(x2 − 1)]

= −µ(x2 − 1)2(x2 + y2 − 1)−
3
2

which is not identically zero on any open subset of A and is of one sign on A. Thus

by Theorem 11 the cycle of the van der Pol system that is guaranteed to exist by

Liénard’s Theorem (Theorem 12) is a unique limit cycle.
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Figure 34: The Phase Portrait of the van der Pol Equation for µ = 1

Now, to understand what the phase portrait for this equation looks like, let us take

equation (18) and integrate numerically for µ = 1. Figure 34 plots several solutions

in the phase plane, which we see tend to the limit cycle. As µ increases, the limit

cycle changes from a more circular cycle into a longer, more stretched out cycle. In

Figure 34 we can see the beginning of this stretch, Figure 35 displays the nature of

the graph of x(t) for µ > 0 large. In this graph, we can see why these oscillations are

termed “relaxation oscillations”. The graph “relaxes” after each jump in the graph

before jumping once again.
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Figure 35: The van der Pol Relaxation Oscillation for x = x(t)
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