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ABSTRACT

AARON TRAUTMAN. Nutritive Knowledge based discovery: enhancing precision
nutrition hypothesis generation. . (Under the direction of DR. CORY BROUWER)

Diet-related diseases like obesity and type-2 diabetes are on the rise. Precision nu-

trition, a way to tailor dietary requirements for each individual, is heralded as a

solution to these problems. However, nutritional research is held within sparse,

siloed resources that rarely connect, which leads to significant barriers hindering

the progress of precision nutrition. Three knowledgebases were produced as a re-

sult of this work. The ABCkb 1.0 overcomes these barriers by linking 11 separate

resources in the path from plants to disease through molecular mechanisms. This

resource is built in Neo4j and provides a web-based interface available for browsing

(https://abckb.charlotte.edu). A second knowledgebase, ABCkb 2.0 connects micro-

biota information to diet and human health through the incorporation of text-mined

associations from full text articles. The final knowledgebase produced links long-covid

to dietary components through possible molecular mechanisms. These three knowl-

edgebases promote progress in precision nutrition to tackle the rise in diet-related

disease.
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CHAPTER 1: INTRODUCTION

Diet-related, noncommunicable diseases are rising in developing countries world-

wide. One of these diseases, Irritable Bowel Syndrome (IBS) a functional disorder

defined primarily by its symptoms, affects around 11% of the world’s population with

prevalence in America reaching as high as 20%[1]. Other diet-related noncommuni-

cable diseases including heart disease, type 2 diabetes (T2D), various respiratory dis-

eases, and some cancers contribute to 71% of all deaths worldwide[2]. Several studies

have revealed nutritive connections to these diseases which has driven many public-

policy decisions in an attempt to combat this rise[3, 4, 5]. However, many of these

studies have not established the molecular mechanisms contributing to these nutritive

connections. Further complicating understanding the connections is the interaction

of the human gut microbiome with dietary components which produce secondary and

tertiary metabolites that impose specific symptoms on host biology[6, 7]. This lack

of knowledge hinders the ability to define and characterize optimal human health.

1.1 Knowledge Based Discovery

Literature-based discovery was first described by Don Swanson after discovering

the molecular connections between Raynaud syndrome and fish oil in 1986[8]. He did

this by manually reading a corpus of abstracts on Raynaud syndrome, a disease that

affects blood flow to the extremities under extreme temperatures and stress. He dis-

covered the associated effects of Raynaud’s on blood viscosity, platelet aggregation,

and further read through corpii of abstracts on the associated topics. This lead to

the discovery of Fish Oil as a candidate therapeutic for the symptoms of Raynaud

syndrome[9]. This process, though tedious and time-consuming, is how scientific dis-
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covery usually occurs. Scientific discoveries are communicated through unstructured

literature, journal articles, and then rediscovered by readers. However, structured

resources like databases and queriable ontologies facilitate a more efficient method of

discovery.

Significant effort has been put into the development of resources to catalogue and

expedite scientific discovery. The National Center for Biotechnology Information

(NCBI) currently maintains a total of 39 databases [10]. The Nucleic Acids Research

journal from Oxford Academic hosts a repository of over 1,600 databases with their

categories and publishes an annual database report [11].

Often researchers develop databases surrounding an individual topic of study. Inter-

faces are subsequently developed to browse and query the contents of these databases.

To explore the contents, users perform searches and then download the results. Cross-

referencing these results with other resources, requires manual connection of these

resources. Difficulties arise when researchers attempt to cross-reference separate re-

sources that use unique identifiers specific to each resource. The same resources

generated to aid scientific discovery create a significant barrier to produce testable

hypotheses. The urgency of increasing and prevalent diet-related diseases combined

with limited knowledge of molecular mechanisms in the pathway of plants to hu-

man health, along with the significant barrier of a multiplicity of resources create an

interesting challenge to solve.

1.2 Nutritional Resources

Scientific resources are scattered throughout many platforms, and none fully cap-

ture the molecular mechanisms by which plants and plant compounds affect human

health [12]. NutriChem was developed by text-mining MEDLINE abstracts using a

naive bayesian classifier to identify pairs of plants, from NCBI Taxonomy database,

and human disease phenotypes [13]. More recently, NutriChem 2.0 has focused pri-

marily on drug-plant associations which can provide informative information on how
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efficacy of specific drugs may be affected by consumption of particular plants [14]. One

major drawback of the resulting database is the lack of chemical-gene associations,

a key component to determine known molecular mechanisms and develop nutritive

hypotheses. In addition, the database is no longer available from their web-browser,

a key feature of many biological databases (Figure 1.1).

Figure 1.1: Going through all of the available biological resources and databases
listed on the NAR, all of the links found on the page were examined for availability
and categorized as good, with a url response code of 200 or bad, with response codes
grouped by type.

One of the more comprehensive resources available is the Comparative Toxicoge-

nomics Database (CTD) [15]. The CTD provides users with manually curated asso-

ciations from chemicals, genes, pathways, and phenotypes. Apart from the time and
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resources required to develop manually curated connections, the main disadvantage of

utilizing this resource for nutritive research is the lack of plant-chemical associations.

Plant-chemical associations can be found in other databases, but are often highly

specialized to a specific plant or chemical group. The PhenolExplorer database cata-

logues plant polyphenol components with quantitative amounts [16]. However, Phe-

nolExplorer was last updated in 2016 and only contains phenolic compounds. Other

resources exist to categorize flavor components of food without the medical compo-

nents. As a general resource, FooDB provides many possible chemical components of

plants with quantitative information and mappings to external resources [17]. This

resource is frequently updated, however the quantitative chemical amounts are often

less informatively provided as a "trace amount."

1.3 Previous Knowledgebase Research

Manually connecting data from separate, isolated resources delays research in the

information gathering phase. Previous research from Richard Linchangco resulted in

a Knowledgebase (KB) which could provide nutrition research a path to develop new

evidence-based hypotheses aiding the discovery of molecular mechanisms between

dietary plants on human phenotypes through a path of Plant -> Chemical -> Gene

-> Pathway -> Phenotype [18]. The KB was created in Neo4j, a graph database

management system and contained nodes with labels: Organisms, Plants, Chemicals,

Genes, Pathways, and Phenotypes all extracted from a combination of resources.

Connections were extracted from both public resources and associations derived from

Natural Language Processing (NLP) of over 30 million abstracts from the MEDLINE

index. This KB was not without limitations.

One major drawback of this KB is the technical skill required to utilize it. Neo4j

uses Cypher Query Language to retrieve data within the graph database. Users

are required to create complex queries to extract data, and connect associations.

Additionally, the data contained within was quickly out of date with no way to extract,



5

transform, and load new, up-to-date data. Another issue with the KB design is the

large edge density of the graph database which significantly hindered graph traversal

and exploration. Edge density is simply the relative amount of edges, or connections,

between nodes. Significant effort was spent reducing predicates into more informative

edge labels which yielded some node pairs containing upwards of 20 edges. Graph

traversal time is dependent on both the amount of nodes, and connections. Thus,

queries from Plants to Phenotypes required significant computational resources to

complete, and an unreasonable amount of time (Figure 1.2).

The KB was also never published, never fully implemented, and contained data that

added little value to the original goal, providing molecular mechanisms from plants

to human health. Finally, as microbiome research has progressed, an additional piece

of nutritional research missing from the KB is the contribution from gut microbiota

on diet and human health.

1.4 Microbiome Research

The gut microbiome is formally defined as the collection of bacterial genomes con-

tained within the gut, while the term microbiota refers to the set of bacterial species

[19]. The two terms are used interchangeably, but it is worth noting the difference.

There is a rich history of microbiome research yielding knowledge of a functioning

bacterial community existing within healthy organisms[20, 21]. Escherichia coli was

found naturally occurring in the gut of infants in the 1800’s[22]. However, it wasn’t

until the 1960’s that the acceptance of a gut microbiome became more widespread[23].

Many microbiota have only recently been discovered due to their inability to grow in

culture. This is in part, due to the technological advancements in genome sequencing

over the past 20 years. These advancements have lead to cheaper sequencing costs,

greater depth and coverage, better assemblers, and the incorporation of microbiome

strategies into many biological analyses. Increases in the specificity of assays have

also led to taxinomic reclassification of known species like alistipes from bacteroides
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Figure 1.2: A query was run on the old ABCkb from Soybean (Glycine max ) to
Chemicals, Genes, Pathways, and Phenotypes on a 1 TB memory cluster at UNC
Charlotte. The time it took to produce the results was logged and the query to
phenotypes maxed out after a day, returning no results.

[24]. There are several microbiome pipelines available with strengths and weaknesses

alike.

1.4.1 Microbiome Pipelines

Researchers have many options when performing a gut microbiome study, most of

which borrow from traditional genomic analyses. 16S sequencing, the most preva-
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lent approach, quantifies a region of the 16S gene from bacterial taxa found in stool

samples [25]. Shotgun Whole Metagenomic Sequencing (WMS) is becoming more

common and attempts to reconstruct whole metagenomes from stool samples [26]. A

challenge with WMS is assembling multiple small genomes with many fragments of

random sizes. Another pipeline is metatranscriptomics which attempts to character-

ize all of the expressed genes within a sample [27]. This allows detection of active

community members, and may provide insights on how diet affects microbiota gene

expression.

1.4.1.1 16S Sequencing

16S sequencing targets ribosomal DNA of bacteria in a sample, is cost effective,

works with most sample types, and provides taxonomic classification into the family

level [28]. This is useful for detecting broad shifts in microbiota composition. The

16S gene contains nine hypervariable regions that can be amplified through simple

Polymerase Chain Reaction (PCR) methods, however the v4 region is often the tar-

get of these analyses [29]. Primers are generally universally applicable, as the 16S

gene is highly conserved which further decreases the costs of microbiome analyses.

In addition, Illumina sequencers are frequently chosen for sequencing amplified 16S

regions. However, 16S sequencing does not separate bacterial strains well, which is

necessary for a more detailed look at microbiota composition [30].

1.4.1.2 Whole Metagenome Sequencing

To quantify microbiome composition at a species-strain level, Whole Metagenome

Sequencing (WMS), also called shotgun sequencing, is used to capture all of the ge-

nomic data within a sample [30]. This method utilizes any high-throughput sequencer

with Illumina or Pac-Bio being the most common. Sequenced WMS reads are mapped

to a reference database to remove host contamination and identify strains and species

present within the sample [31]. Abundances are estimated from mapped reads that
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align to bacterial reference genomes in a greater resolution than 16S sequencing [30].

Limitations of shotgun sequencing include the generation of random DNA sequences

that are either too small to align with any confidence, or too low in quality [31]. Dif-

ferent versions of WMS attempt to capitalize on the resolution of this method while

adding additional strengths. Phase Genomics adds a Hi-C method in conjunction

with WMS to tagment DNA sequences which facilitates genome assembly after se-

quencing [32]. This tagmentation method aids in genome fragment reconstruction by

linking sequences that are close in proximity. Though sequencing costs have decreased

in recent years, WMS is still an expensive method for a large volume of samples [30].

1.4.2 Current State

Associations between specific gut microbiota and human phenotypic outcomes have

been established from these different methods. Increases in bifidobacteria in the hu-

man gut are associated with reductions in colorectal cancer [33]. Clear links between

Helicobacter pylori and stomach ulcers, which often leads to gastric cancer, have also

been established [34]. Given the discovery of gut disbiosis, an increase in pathogenic

bacteria, opportunistic bacteria, or decreases in beneficial bacteria, determining op-

timal gut microbial composition was a goal of the human microbiome project [35].

Controversially, no one specific microbiota composition has been identified to pro-

vide favorable phenotypic outcomes over another. Increased abundances of beneficial

microbiota, called probiotics, have been found to provide benefits to the host which

has led to an increasing interest in the discovery of interaction with dietary compo-

nents [36]. Strong interacting components driving microbiota variance include diet,

host gender, environment, geographical location, and ethnicity [37].

Some associations between phytochemicals and these beneficial gut microbiota have

been established which has led to the development of prebiotics. These are specific

nondigestible nutrients that are selectively fermented to facilitate the growth of pro-

biotic bacteria and can be supplied by diet[38]. For example, members of the genus
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Bifidobacterium commonly supplied in probiotic supplements are benefited by non-

digestible oligosaccharides that can be found in oats[39]. Both Avena sativa and

Bifidobacteria have been linked to a reduction in colon cancer[38, 40]. This raises

interesting questions for nutrition researchers. Are the phytochemical associations

produced from in vitro experiments fully representing the health benefits of plants?

How does the microbiome contribute to human health and what are the associations

from the foods we eat to the bacteria in our gut, and how does this all correspond

to human health? Experimental designs that exclude microbiota assays will simply

miss the full picture of health and the contributing factors. Therefore, providing re-

searchers with a tool to represent the associative effects of gut microbiota is crucial

to developing hypotheses and representing the overall contribution of diet on human

health.

1.4.3 Microbiome Resources

Mentioned previously, the Human Microbiome Project elucidated baseline species

present within the gut and other microbiomes [35]. There were two stages to the

project and all of the data is available for researchers to use. There are some ref-

erence databases publicly available for mapping assembled metagenomic reads and

taxonomic identification through a user-friendly portal [41]. There are currently two

databases that link microbiota to human phenotypes, Disbiome and gutMDisorder

[42, 43]. Disbiome, originally published in 2018, last updated in 2020 was produced

from researchers at Ghent University in Belgium. Associations were generated by

manually curating connections from microbiota to their effect (increase or decrease)

on a disease. In comparison, gutMDisorder was originally made available online in

2019, with no indication of a date last updated, from researchers at the Harbin Med-

ical University in China. These relationships between microbiota and food are also

manually curated and specify the host organism. Generating connections through

manual curation, as previously mentioned, is a difficult and time and resource con-
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suming task. Clearly, a better solution is necessary.

1.5 Data

The life sciences fields have generated massive quantities of data for both storage

and analysis [44]. Different types of data collections provide researchers with necessary

components to compare data sets or generate hypotheses. Repositories that contain

raw data provide researchers with data useful to test new analytic pipelines or compare

to new data. In contrast, analyzed data repositories allow researchers to query what

is currently known. There are three primary types of analyzed data repositories:

databases, ontologies, and structured vocabularies.

1.5.1 Databases

Many databases exist, spanning various parts of life sciences domains [11]. Some

databases contain raw data, others contain analyzed data. Some databases are made

with Relational Database Management systems, others in Graph Database systems.

Some are manually populated, others are populated automatically. Clearly, there is

no "one size fits all" solution to database solutions. Though biological databases are

not an exact science there are general recommended guidelines to follow [45]. Before

developing a biological database, there are important questions to answer: "What

questions are being answered," "How will the data be accessed," and "What is the

data model."

1.5.1.1 Criteria for database developers

Developers must determine the research questions before developing a database to

get a clear direction. The answer determines the data sources necessary to populate

the database, and gives researchers a starting point to decide if the data exists al-

ready, or needs to be generated through experimental procedures. Scope creep will

occur without a clear direction, which yields production delays or systems that are

unusable [45]. Though other questions may arise from exploring the data, and the
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database, it is crucial to keep to the original goal.

The question of how the database will be accessed is answered by understanding

for whom the database is developed. If the database is intended for other developers

with internet access, an instance running on a cloud web-server platform accessed

remotely is likely useful. This method may employ the use of docker to containerize

the database and add data protections where necessary. In contrast, if the database is

developed for individuals with limited computer science experience, an interface with

pre-programmed or "fill-in-the-blank" queries may be required. Other considerations

include: limited internet access, which may require a database hosted on a work-

station, restricted areas of the database, who will be contributing to the database,

and the data model. Determining the best database provider will be aided by all of

these considerations.

Additional criteria for developers stem from the data being used within the database

and the copyright claims which originators may hold. Not all public resources are

available for extraction and use in a separate resource without either proper attri-

bution or appropriate licenses. Databases with patient data require special care and

considerations which include data-masking, to remove personal identifiers, limiting

access, and hard drive encryption.

1.5.1.2 Database Management Systems

Relational Database Management Systems (RDBMS) use Structured Query Lan-

guage (SQL) as the management language which can be used to retrieve or alter

data within the database. Many platforms have been developed to use version spe-

cific SQL with the most common being: SQL Server, Oracle, MySQL, PostgreSQL,

and SQLite. Data within RDBMS are organized into tables with columns containing

attributes and rows with values. Relational algebra can be used to connect tables

and extract useful relationships. The most used function of SQL is the join which

operates on tables with shared attributes. While RDBMS are useful for modeling
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relational data, they are not well suited for modeling graphical networks. In cases

where RDBMS are utilized to store graph data, linking tables are created to join

multiple types of data and simulate a graphical network. As the network grows more

complex, the number of joins required grows further which increases query time com-

plexity. As a general rule, for each relationship, two joins are required. This can be

mitigated by creating specific linking tables to bypass intermediate steps and reduce

the number of joins. These tables must be recreated any time a table within the

network is updated, which requires time and computational resources dependent on

database complexity and size.

Graph Database Management Systems GDBMS use various forms of Query Lan-

guages to retrieve and alter data within the database. One of the earliest forms of

graph databases was in Resource Description Framework (RDF) written in XML and

navigated using SparQL. Commonly, RDF is used to describe web pages and knowl-

edge management systems. Popular GDBMS solutions are: Neo4j, RedisGraph, Ter-

minusDB, and AllegroGraph. Additionally, both Oracle database and SQL Server

provide enterprise level products to model graph relationships. Factors that affect

performance will be related to both the GDBMS solution used, and the data within.

Graph traversal is an O(N + E) computational problem where N is the number of

nodes and E, the number of edges. Thus, traversing a dense graph, a graph in which

the number of edges is significantly greater than the number of nodes, will require

significant computational resources and time.

1.5.2 Ontologies

The second form of data used is ontologies, which borrow from the branch of

philosophy and organize concepts into parent-child, hierarchical relationships. This

is the most strict type of data collection, as concepts can only exist in one place in the

tree. There are four primary features of ontologies: class and relationship identifiers,

a domain vocabulary, metadata and descriptions, and finally formal definition and
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axioms [46].

1.5.2.1 Class and Relationship Identifiers

Class and relationship identifiers allow for each node in the ontology to have a

unique ID that allows reference by other data sources. This allows connections to be

made across databases, which is useful when researchers desire to probe relationships

over multiple sources.

1.5.2.2 Domain Vocabulary and Metadata

Ontologies are often restricted to a specific domain, or part of, which requires a

specific vocabulary for each ontology in the form of labels. For instance, the Dis-

ease Ontology categorizes human diseases with phenotypic characteristics where the

Human Phenotype Ontology provides phenotypic abnormalities not found within the

Disease Ontology [47, 48]. A query for Colorectal cancer from the Disease Ontology

returns a node representing colorectal cancer with a definition and cross-references

to other databases and ontologies. In contrast, a query from the Human Phenotype

Ontology returns inheritance patterns and specific neoplasms related to colorectal

cancer with related genes. Similar labels or categories across ontologies are: name,

synonyms, and definition. The metadata and descriptions of an ontology represent

the form and style of data held within each class.

1.5.2.3 Formal Definition and Axioms

The fourth and final feature of an ontology, is the formal definition and axioms

which allow it to be analyzed or represented using graph networks. Typical formats

of ontologies include Web Ontology Language (OWL), OBO flat-file, and in some

cases JavaScript Object Notation. Given the domain restrictions of ontologies, trou-

bles arise when researchers refer to colon cancer and colorectal cancer interchangeably

in literature, two distinct classes within the Disease Ontology. The difficulty map-

ping which of the two results is being discussed can be aided by using structured
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vocabularies.

1.5.3 Structured Vocabularies

Medical Subject Headings (MeSH), a structured vocabulary maintained by the

NCBI, aides researchers with literature searches to match as many terms as pos-

sible [49]. Where ontologies are more restrictive, structured vocabularies are more

relaxed in the positioning of classes and relationships. The class Colonic Neoplasms,

or colon cancer, exists in multiple tree locations within MeSH where Disease Ontology

contains a singular tree location. Issues arise when graphically representing the data

or mass assignment of labels based on a tree location. For example the vocabulary

term "Metabolic Side Effects of Drugs and Substances" (D065606) is listed under

two root terms, "Chemically-Induced Disorders" and "Chemical Actions and Uses"

[49]. Both structured vocabularies and ontologies are useful for literature searches

and Natural Language Processing queries.

1.6 Natural Language Processing

Perhaps, one of the most difficult tasks in text-mining is extracting associations

from scientific literature. Natural language is flexible, which adds considerable dif-

ficulty to process. Simple concepts to extract from natural language are: subjects,

predicates and objects. Often these are referred to as a triple. In a graph model, a

subject and object are nodes, and the relationships are the edges that connect them.

A challenge for NLP tools is identifying the directionality of the triple. Due to the na-

ture of literature, position is not an adequate predictor of directionality. The phrase

"Bacillus subtilis affects diabetes" confers a different relationship than "Bacillus sub-

tilis is affected by diabetes." Other challenges include subject/object identification,

multi-sentence parsing and negative relationship identification. Many NLP methods

and tools exist that can aid researchers with extracting these triples, both open-source

and enterprise. Two tasks any NLP researcher will utilize are Information Retrieval
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and Information Extraction (Figure 1.3).

Figure 1.3: The two primary tasks of natural language processing are Information
Retrieval and Extraction.

1.6.1 Information Retrieval

The task of Information Retrieval is summarized as the process of returning relevant

documents based on an individual request. This task is often analogous to a google

search, which returns web-pages relevant to the entered search query. Pubmed papers

in the MEDLINE repository are tagged with MeSH terms that map to scientific

entities and related terms. This can help narrow down paper subsets on specific topic.

A query of "Bifidobacterium" quickly returns over 9,000 results where querying the

MEDLINE index with the related MeSH term reduces output papers. MeSH also
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gives researchers the ability to add subheadings with primary query terms to further

limit resulting documents. Ranking metrics can be employed to order results by

importance or relevance to the search query.

1.6.1.1 Ranking Algorithms

One popular algorithm utilized by Google and Twitter is called PageRank (PR),

which attempts to highlight more relevant pages with a search query[50]. This works

by weighting the rank of a page based on the pages that link to it using a random

walk to simulate a web surfer visiting pages. The simplified algorithm is defined in

equation 1.1 with the Page Rank PR for the selected page denoted u, PR for each page

linking to u denoted v, the set of links connecting to the page u denoted B(u), and the

sum total links on page v denoted L(v). There is also a damping factor added to the

equation to approximate the probability of randomly selecting another page within

the subset of pages. This algorithm works well for ranking pages, ordering nodes

within a graph, and in biological applications for ranking protein networks[51, 52].

PR(u) =
∑

v∈B(u)

PR(v)

L(v)
(1.1)

Another algorithm utilized for ranking web-pages is the Hyperlink-Induced Topic

Search HITS algorithm which calculates an authority score and a hub score [53]. The

authority score for a given link is calculated by summing the hub scores of pages that

point to it. In contrast, each hub score is calculated by summing authority scores of

pages that point to that hub. This algorithm is run at query time, which increases

the time required for the database to return results.

1.6.2 Information Extraction

Literature searches often return thousands of documents, an overwhelming number

for a single researcher to effectively probe before beginning research. Information

extraction techniques can be employed to help researchers examine a large corpus
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of documents and derive meaning or extract connected concepts. Popular methods

utilize Machine Learning methods, rule or dictionary based approaches, or hybrid

approaches.

1.6.2.1 Machine Learning Approach

ML or statistical methods mathematically predict the entities within and the re-

lationships they share. The problem is treated as a classification problem. Three

primary techniques used are: naive bayes, Support Vector Machines (SVM), and

Hidden Markov Models.

Naive bayesian classifiers, often called the bag of words approach, are used to clas-

sify an input text with a class from a fixed set of classes. This technique is beneficial

for classifying texts as belonging to a specific topic for example, distinguishing posi-

tive from negative. A pre-classified subset of training texts is required for the bayesian

approach. Unfamiliar or unseen terms in the training set will be ranked with a zero,

which require use of an additive algorithm to remove zero probabilities. This ap-

proach assumes word positions within the text are irrelevant to final scores, thus the

informal bag-of-words name. Additionally, it is assumed that probabilities of terms

within the text are independent. Both assumptions are not always true which leads

to problems with sentences containing opposite classes.

Support Vector Machines are a supervised learning approach and are commonly

used in NLP. They determine decision boundaries between vectors for text classifica-

tion. This requires natural language text to be transformed into a vector. Standard

practice is to select a maximum number of features in a training dataset, and vec-

torize Term Frequency, Inverse Document Frequency scores. This method builds

a target vocabulary that other texts can be weighted against to determine if the

threshold is high enough to cross the decision boundary. SVMs excel in classifying

high-dimensional data but require labelled and balanced training datasets to perform

effectively, which is a time-consuming task to manually develop when not available.
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An unsupervised approach can aid when supervised approaches are not optimal.

Hidden Markov Models are a common unsupervised learning method that observes

a predefined number of states, or observations, and computes sequence probabilities

of hidden information. This method utilizes the viterbi algorithm to decode these

hidden sequence probabilities. Assigning parts of speech tags given a sentence, or

input text with observed words, is a common NLP use-case. This is beneficial when

limited training data is available or with specialized vocabularies. However, HMMs

cannot provide assertions within text and must be combined with another method

such as a rule and dictionary approach.

1.6.2.2 Rule and Dictionary Approach

Dictionary approaches group terms into a singular value from curated synonym

lists [54]. These dictionaries can be applied on a corpus to highlight key terms within

a text and classify a text based on these terms or aid researchers view groupings of

terms. Pubtator is a common example that highlights chemicals, genes, pathways

and phenotypes in published abstracts from the MEDLINE index [55]. Rule based

approaches depend on user-chosen rules to classify texts or extract assertions. Ex-

tracting all nouns with verbs or verb phrases sandwiched in-between from assigned

POS tags in a corpus, is an example of this approach. This can be informative for

extracting assertions, however POS taggers must be carefully chosen based on the

corpus type and are not the best choice for scientific literature.

1.6.2.3 I2E

Few NLP tools are able to extract assertions from scientific literature. Open-source

tools trained on general datasets like the brown corpus work well with twitter and

other sources of general knowledge but are inadequate for use on scientific literature

or any body of knowledge with a highly-specialized vocabulary. I2E from Linguamat-

ics (https://www.linguamatics.com/products/i2e) has a long history of application
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in the life-sciences domain and focuses on extracting assertions using a rule and dic-

tionary approach. Assertions are extracted through queries from indexed datasets.

Queries are a model of how each individual assertion is represented in the literature.

These are useful on both labeled and unlabeled datasets. With labeled datasets,

precision, recall, and F measures are calculated to indicate accuracy of each query.

Unlabelled datasets require an iterative approach to examine the extracted assertions

and refine queries. I2E provides model queries trained on MEDLINE abstracts that

extract "class affects class" assertions. A "class" in I2E is a dictionary object that

is used by a query to locate terms in the literature under that object. For example,

all instances of Vaccinium corymbosum are found through the NCBI taxonomy node,

which contains synonyms American blueberry, highbush blueberry, and the preferred

term Vaccinium corymbosum. Users will select all terms under a specific node to iden-

tify all leaf terms and synonyms from a specific dictionary, if desired. Class matches

are provided confidence values using a proprietary disambiguation algorithm to filter

out ambiguous matches. Benefits of using I2E include, the Graphical User Interface

that is used to develop queries, quickly returned results from indexed datasets, use of

many ontologies without the need to convert from various file formats, and the ability

to link across separate data sources in published literature. Drawbacks include the

cost to purchase a license, and the learning curve to manage indexes and ontologies

into I2E specific language. Often, I2E users opt to have Linguamatics handle index

creation and ontology or class parsing into I2E specific formats.

1.7 Aims

Aim 1: Develop a knowledgebase on molecular mechanisms from plants to hu-

man health by connecting siloed, sparse data from public resources and text-mined

assertions.

Given the rise in noncommunicable diseases like heart disease and dia-

betes, an integrated resource is necessary. This resource should combine
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structured and unstructured resources to connect plants to human health

in a graph database. Another feature is an interface to aid users not skilled

in computational biology, browse resource contents. All of this should be

contained in an easy to use, easy to install, system that requires little

user input. This aim will further nutrition research towards personalized

solutions.

Aim 2: Incorporate microbiota effects on diet and human health into the knowl-

edgebase to identify key factors driving IBS

The compound effects of microbiota on diet are a required addition to the

integrated resource from Aim 1. These effects should include both the

effect of microbiota on phytochemicals, and the effect of phytochemicals

on microbiota. Given that microbiota data is not as prevalent in abstracts,

associations will be extracted from full-text articles to maximize discovery

of hidden relationships. Microbiota associations will also be extracted

from structured resources where available. This will provide nutritional

researchers a tool to examine dietary effects on microbiota and human

health.

Aim 3: Apply the knowledgebase and the methods of text-mining literature to

elucidate dietary effects on SARS-CoV-2 infections.

The SARS-CoV-2 pandemic quickly enveloped researchers, which yielded

a multitude of full-text preprint publications contained in a Coronavirus

specific literature set. These publications will be indexed in I2E and

mined to extract the Coronavirus and associated human genes. These

associations will be inserted into the knowledgebase and will be analyzed

to functionally group affected human genes and pathways. Finally, plant
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phytochemical connections linked to the molecular mechanisms of long-

COVID from coronavirus infections will be analyzed in the graph network.



CHAPTER 2: THE ALIMENT TO BODILY CONDITION KNOWLEDGEBASE

(ABCKB): A DATABASE CONNECTING PLANTS AND HUMAN HEALTH

Introduction

The growth of obesity worldwide correlates strongly with overconsumption of pro-

cessed foods [56].This has contributed to an increase in chronic diet-related diseases

like type 2 diabetes (T2D), heart disease, and some cancers [57]. Exercise and diets

high in fruit, vegetables, whole grains, and nuts have been linked with healthier out-

comes and reduce the risk of developing these diseases [58]. Unfortunately, the specific

mechanisms driving these associations are poorly understood. The Plant Pathways

Elucidation Project (P2EP) was a collaboration started to uncover the mechanisms

between plant-pathway products and human health [59]. Three questions drove this

collaboration: "What do plants make," "How do they make them," and "What is

their effect on human health?" The ABCkb was developed to capture the informa-

tion required to answer these questions and provide researchers with a tool to build

informed, nutritive hypotheses with molecular mechanisms as the linking factor be-

tween dietary plants and human health.

These questions closely align to the recently released "2020-2030 Strategic Plan

for NIH Nutrition Research.". This plan contains 4 strategic goals for further study

to move closer to a precision nutrition approach including foundational research into

"What do we eat and how does it affect us?" as well as understanding "How can we

improve the use of food as medicine?" A cornerstone for answering these questions

and the questions of the P2EP collaboration is an understanding of the mechanism

of action of how our diet affects our health.

However, manually capturing this information is a difficult, time-consuming task
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due to scattered bodies of scientific knowledge. Currently available resources con-

tain partial information to answer these questions, but they do not address mech-

anism of action. For example, the Comparative Toxicogenomics Database (CTD)

connects chemicals to human health through human genes by manually curating as-

sociations between chemicals, genes, pathways and phenotypes but excludes nutri-

tional data [15]. Specialized nutritional databases like FooDB (https://foodb.ca) and

Phenol-Explorer aid researchers in estimating quantity of phytochemical content, but

lack human phenotypic information [16]. NutriChem was developed to bridge the gap

between plant-based nutrition and human disease through the chemicals contained

in those plants, but does not contain gene-chemical associations, a key part of the

driving molecular mechanisms between diet and human health [13]. While a small

proportion of assertions are in available databases, others are hidden in published

research and can only be extracted through extensive reading or by natural language

processing (NLP) the literature. Given the rise in diet-related diseases, and the pur-

suit of personalized nutrition, an integrated resource to develop nutritive hypotheses

is necessary.

Main Text

We have developed the Aliment to Bodily Condition Knowledgebase (ABCkb) to

address the gap of connecting plant compounds to human indications through their

mechanism of action. The ABCkb integrates multiple resources for building informed

hypotheses with molecular mechanisms as the linking factor between dietary plants

and human health. To accomplish this, the ABCkb uses both structured and un-

structured data sources (Fig. 2.1). The structured resources are publicly accessible,

curated databases and the unstructured data is in the form of Medline abstracts.

Since this data, composed of entities and relationships or nodes and edges, composes

a graphical network, we extracted, transformed, and then loaded into a Neo4j graph

database. To help users begin discovering these nutritive connections, the knowledge-
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base is available on GitHub and a simplified online web interface.

Figure 2.1: The architectural diagram of our Knowledgebase shows the various tools
and resources utilized to generate the database.

Structured resource collection

Structured data from 11 resources (Fig. 2.2) produce five major node types (Plant,

Chemical, Gene, Pathway, Phenotype) in a Neo4j graph database. Connections, or

edges between these nodes are provided by both structured data, and unstructured

MEDLINE Abstracts through NLP. The ABCkb utilizes three types of structured

data sources: ontologies, structured vocabularies, and databases.

Figure 2.2: Data from each source is transformed into one of the 5 labels and may
provide external and internal references to nodes within the knowledgebase. The CTD
provides manually curated references between labels with no original node labels
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Ontologies and Structured Vocabularies

The ontologies and structured vocabularies create well-controlled edges between

chemicals, pathways, and phenotypes. The Chemical Entities of Biological Inter-

est provide chemical nodes and semantic connections (edges) between chemicals [60].

Genes are grouped into pathways from the Gene Ontology resource [61, 62]. Human

phenotypes are represented from three sources. The Disease Ontology categorizes

human diseases with phenotypic characteristics [47]. The Human Phenotype Ontol-

ogy provides phenotypic abnormalities not found within the Disease Ontology which

allows researchers to focus on specific phenotypic symptoms and the associated molec-

ular mechanisms [48]. Finally, the MONDO Disease Ontology was used to collapse

similar phenotype nodes from multiple sources using their source identifiers [63].

The Medical Subject Headings resource provided nodes and connections for all major

labels with the exception of Genes [49]. Additional plant, chemical, and phenotype

nodes were extracted from the National Agricultural Library Thesaurus [64]. Terms

from different ontologies or vocabularies with the same identifiers are collapsed into

the same node. All other nodes are left separate to retain their hierarchical relation-

ships.

Databases

Several databases were utilized to increase molecular mechanisms from plant to hu-

man disease in the ABCkb. The Comparative Toxicogenomics Database added over

7.4 million manually curated edges between chemicals, genes, pathways, and pheno-

type nodes [15]. We utilized three public databases from The National Center for

Biotechnology Information. All plants under the Embryophyta clade from the NCBI

Taxonomy database produced plant nodes and phylogenetic relationships between

plants [65, 66]. The Gene database provided gene names, types, and synonyms [67].

Finally, additional edges were added utilizing NCBI gene nodes and MONDO phe-
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notypes were extracted from the NCBI MedGen database [68]. The compendium

of structured data sources provide many of the node and edges connecting plants

to disease. However, unstructured literature contains informative relationships not

contained within these sources, leaving many gaps in our understanding.

Unstructured NLP collection

To uncover relationships in literature, elucidate molecular mechanisms, and answer

the three questions of the P2EP, we mined the literature using Linguamatics’ I2E NLP

text mining platform (https://www.linguamatics.com/products/i2e). This platform

utilizes ontologies and structured vocabularies to transform unstructured text into

structured assertions (nodes and edges).

Natural Language Processing of MEDLINE Abstracts

The I2E platform employs a graphical user interface for NLP query development,

where each query extracts a set of subjects, objects, and predicates, or relationships

from user-specified ontologies and structured vocabularies. From published abstracts,

and titles extracted from MEDLINE in May, 2019, NLP queries were developed with

I2E for each of the 4 steps (plant to chemical, chemical to gene, gene to pathway,

pathway to phenotype) with an additional query from genes to phenotypes. All I2E

assertions generated are provided to users of the ABCkb as source files and are parsed

when the graph database is built.

Statistics and application

Extracted public data sources generated over 957,000 nodes with over 11 million

edge relationships. NLP results from I2E queries make up 1.26 million of the overall

relationship count, of which 1.25 million relationships were novel, not from structured

public data sources. Figure 2.3 gives a visual presentation of (a) the relative number

of each node type and their source, (b) the edge relationships from each source and

(c) the relative comparison of edge relationship types between each type of node.
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This collection of nodes and edge relationships forming semantic triples, naturally

forms a biological network of knowledge that is best stored in a graph database

like Neo4j. Chaining these triples together in the ABCkb highlights connections be-

tween dietary plants and human phenotypes that would otherwise go unseen if left

in their original sources, particularly unstructured literature sources. The intention

of the knowledgebase is for information in the network to flow from plants to phe-

notypes/disease indications, however, assertions are maintained in both directions,

which allows for query flexibility of relationships between any nodes. Start and end

node types are not enforced which allows queries from any point, to any point. All

associations are kept along with references to the original source allowing the user to

evaluate potential inconsistencies using the original evidence. To explore the database

and discover connections, users have two choices. One, use the online interface (avail-

able at https://abckb.charlotte.edu). Otherwise, download from GitHub and build

the database on a local machine which can then be queried in the Neo4j interface,

or on the command line. A prebuilt data folder with the neo4j database is also

available [12].

The provided user-friendly interface aids users unfamiliar with Neo4j query lan-

guage (Cypher) to browse the contents within and examine nutritive connections

(Fig. 2.4). On the home page, users are provided a search box to enter in a search

term. This scans the nodes in the knowledgebase and returns results ranked by sim-

ilarity to search term. Users can select nodes and continue to build a query to any

end point within the knowledgebase (plant, chemical, gene, pathway, or phenotype).

Running the query scans the database for all paths to the selected end point and

returns them to the user, which are available to download. Additionally, a Cypher

query is available to users that can be used in the built in Neo4j interface or the

terminal for further exploration.
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Oat and Type 2 Diabetes

To demonstrate how the ABCkb connects dietary plants to separate human indi-

cations through molecular mechanisms, a graph was created in the ABCkb, through

the Neo4j browser, depicting the diet-disease network between Avena sativa, T2D,

and heart failure (Fig 2.5). Connections from the CTD indicate genes commonly

associated with cholesterol and heart failure. However, text-mining indicates that

consumption of oats affects cholesterol levels in the body, which is associated with

the gene HSD11B1 that affects lipid metabolic processes with both positive and neg-

ative impacts on the incidence of T2D. These relationships are due to the presence of

beta-glucan in oat grains. Consumption of beta-glucan-containing oat can help lower

LDL cholesterol [69]. The cholesterol lowering effects of oat can also be attributed to

the presence of certain lipids and proteins [70]. The proteins in oat with low lysine-

arginine and methionine-glycine ratios contribute to lower total cholesterol and LDL

cholesterol levels. Hypocholesterolemic properties of oat cannot simply be attributed

to one factor, but a combination of many, including oleic acid, vitamin E, and plant

sterols [70].

T2D patients frequently have abnormal levels of many different lipids, as well as

abnormal qualities to these lipids, for example, T2D patients experience normal or

slightly elevated LDL cholesterol with increased LDL oxidation and glycation [71].

Dyslipidemia in T2D patients is associated with cardiovascular disease [72, 73]. This

creates an elevated risk for cardiovascular diseases including atherosclerosis, and dis-

lipidemia may play a role in these risks [73]. In the graph, HSD11B1 is the human

gene connecting this relationship. HSD11B1 expression is increased in adipose tissues

of obese individuals [74]. Dysregulation of HSD11B1 is associated with an imbalance

of glucocorticoid in adipose tissues, glucose imbalance, and visceral fat accumula-

tion [75]. These factors contribute to metabolic syndrome, which puts patients at

a higher risk for cardiac diseases [76]. Various SNPs in HSD11B1 have associations
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with T2D, metabolic syndrome, and hypertension [77, 78, 79, 80].

Due to the established relationship between oat beta-glucans, cholesterol, and

weight, the connection to T2D is logical [69, 75]. Decreased weight, specifically vis-

ceral fat in the abdomen, would result in reduced expression of HSD11B1, which

would improve regulation of cortisol. Further examination of the oat - cholesterol

- HSD11B1 relationship could be very informative to both patients and doctors in

making more informed dietary choices and reducing the risk of developing T2D. This

example demonstrates the ABCkb ability to connect seemingly separate conditions

through the molecular mechanistic links within.

Discussion

The ABCkb integrates structured and unstructured resources in a network that

connects plants to human disease through molecular mechanisms. This reduces the

time required to manually connect these links through each individual resource. Addi-

tionally, knowledge discovery is aided by the development of a user-friendly interface.

All of these components provide precision nutrition a path to better understand the

mechanisms behind diet-related conditions. The ABCkb is available from the inter-

face (https://abckb.charlotte.edu).

Limitations

• Microbiota contributions to diet and human disease. Bacteria within the gut

are known to affect disease both through the production of metabolites and the

conversion of plant phytochemicals. In addition, gut bacteria are affected by

diet. Future implementations of the ABCkb will contain microbiota associations

to enhance precision nutrition hypotheses.

• Mining abstracts versus full text. Abstracts contain valuable associations, how-

ever associations full text articles would provide a greater number of associa-

tions.
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• Incorporating genomic data. Precision nutrition hypotheses and treatment

plans will depend on patient genomic data, to provide optimal dietary solu-

tions for each individual. Future versions of the ABCkb should incorporate

human genomic data.
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Figure 2.3: a. The pie chart shows primary labels indicated by color with named
secondary (source) labels, shaded and sized by proportion of total nodes in the knowl-
edgebase. b. The sum of relationship counts for each source is indicated by the bar
chart. c. Relative relationship counts indicated from node-node in rows, columns in a
bar chart in order by type (Internal Descriptor, External Connector, Cross Reference,
and Text Mined)
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Figure 2.4: There are 4 primary steps to browsing using the provided interface.
Once the query endpoint is selected and the user clicks submit, they have the option
of downloading all results as a csv, or viewing the Cypher query.
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Figure 2.5: This meta-path highlights the connectivity between oats, diabetes, and
heart failure through the gene HSD11B1 from the ABCkb.



CHAPTER 3: ADDITION OF MICROBIOTA DATA TO ABCKB FROM FULL

TEXT LITERATURE

Modeling diet to disease includes more than the phytochemicals from plants and

the human genes they affect upon ingestion. A community of micro-organisms ex-

ists within the digestive system of humans that maintains a symbiotic relationship,

though not always beneficial for the host. Two primary diseases associated with this

community, Irritable Bowel Syndrome (IBS) and Inflammatory Bowel Disease (IBD),

are both increasing in prevalence and diet related [81]. The term microbiota refers

to the collection of bacterial species within the gut, where the microbiome refers to

the collective genomic data present in the gut [19]. Specific microbiota have been

implicated in various digestive disorders, and the impact of microbiota on diet and

compounds descending the alimentary canal has been a topic of recent interest.

3.1 History of Microbiome Research

Historically, an abiotic existence was argued for by the majority of biologists as mi-

crobiota were thought to be solely drivers of diseases. This thought prevailed through

the 1950’s until researchers discovered bacteria present within healthy mice grown in

sterile conditions [20]. This, along with improvements in sequencing technologies, al-

lowed for the identification of bacteria present within the human gut and the discovery

that these bacteria exist in communities [19]. The shift in health research to include

microbiota resulted in the human microbiome project that set out to elucidate the

single microbiota formulation for optimal human health [35]. Controversially, no one,

single formulation is found to be the best but rather a conglomeration of abundances

provides protective benefits to the host. Increased abundances of opportunistic bac-
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teria result in digestive disorders due to the fermentation of sugars within the gut

and promotion of inflammatory molecules [82]. The goal of microbiome research is to

maximize the abundances of good bacteria, or probiotics. The levels of bacteria are

largely attributed to dietary components and compounds, called prebiotics.

3.1.1 Probiotics

Probiotics have risen in popularity in the 21st century. The widely accepted def-

inition of probiotics from the WHO is that they are "live strains of strictly selected

microorganisms which, when administered in adequate amounts, confer a health ben-

efit on the host" [83]. Often probiotic strains are specifically developed for use in

commercial products like supplements, fermented beverages, or yoghurts.

3.1.2 Prebiotics and diet

Prebiotic compounds encourage the growth of probiotic bacteria and are generally

fermented by probiotic bacteria. Common examples of prebiotics are inulin, resis-

tant starches, and dietary fibers [84]. These prebiotic compounds can be found in

supplements, or via natural sources. Complications arise in patients with IBS and

IBD that are advised to follow a low FODMaP (Fermentable Oligo, Di, Mono and

Polysaccharide) diet, which reduces digestive symptoms along with probiotic bacteria

[85]. As prebiotics impact probiotic abundances, so also does diet as a whole. Many

studies have found that microbiota communities are largely affected by diet, stronger

than genetic drivers often seen segregating by geographic regions [86, 87, 88]. This

is likely due to the availability of various foods in regions and cultural differences.

However regional cultural or otherwise defined, diet is largely constructed of chemical

components whether naturally derived or synthetically produced.

Therefore, we set out to provide a knowledgebase through which the effects of

diet on human health could be examined in conjunction with the various interactions

between specific bacterial taxa within the gut, and the phytochemicals contained in
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plant compounds.

3.2 Structured Data Sources

Few resources are available on the interaction between microbiota and human

health. Mentioned previously, the Human Microbiome Project provides raw data

to researchers, which can be used to compare to raw data from experimental condi-

tions, or reanalyzed to drive new insights[35]. However, no associations are provided

in a human readable format. Recently developed, the Disbiome database provides a

queriable resource to catalogue the interaction between microbiota and disease [42].

No molecular mechanisms are provided with Disbiome. There are no databases that

provide microbiota to diet, or dietary compounds, currently available. The NCBI

Taxonomy will provide bacteria nodes which will be used in NLP queries to generate

links between microbiota, diet, and human health.

3.3 Unstructured Data Sources

The majority of microbiota interactions are not held within structured data sources,

but rather in published, unstructured research. Therefore, a method is necessary to

extract and place those assertions into the ABCkb. Previously, we used I2E to extract

assertions for every step in the pathway from MEDLINE abstracts. Recent research

has highlighted the need to develop methods that can extract assertions from full text,

as additional assertions are not contained within the abstract [89, 90]. The addition

of microbiota data to the knowledgebase is a key component to determine how diet

affects human health and move towards a personalized solution to nutrition.

3.4 ABCkb 2.0 Methods

Using the ABCkb as a starting point, the microbiome information integrates with

the existing knowledgebase (Figure 3.3). The visualized schema shows the bi-

directionality of the microbiota on plant compounds, along with general assertions

provided from the ABCkb 1.0 linking diet and disease. The logic is simple. Often,
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links in literature are provided, much like the disbiome resource, where a bacteria

is linked with a disease. These links are generated through association studies and

molecular mechanisms are simply unknown. The ABCkb 2.0 will provide both the

general links (from bacteria to disease) and possible molecular mechanisms for those

diseases (from genes to disease). Researchers will be able to use this knowledgebase

to generate testable hypotheses about the unknown from what is known. However,

unlike the first iteration of the ABCkb, we will be extracting microbiome assertions

from full text articles.

3.4.1 Identifying Relevant Full-Text Articles

To identify a suitable subset of full-text articles for text mining, a query was devel-

oped that locates instances in PUBMED abstracts of microbiome, with related syn-

onyms from MeSH, NAL Thesaurus, and NCBI Taxonomy, and one of either Homo

sapiens, Ratticus norvegicus, and Mus musculus with their respective synonyms. The

sources that provided these matches with synonyms were the NAL Thesaurus, MeSH,

and the NCBI Taxonomy database. These three hosts were chosen for their relevance

to human health and to remove any non-related biological hosts. This query identi-

fied over 30,000 unique articles for full-text extraction from abstracts in MEDLINE

in May, 2019.

3.4.2 Extracting Full-Text Articles

Full text articles were extracted first through obtaining permission from the pub-

lishers. This process took approximately 6 months to complete. Permissions to ex-

tract and mine through 23,000 of the original 30,000 was acquired with the assistance

of the UNC Charlotte Library from current and updated license agreements. An au-

tomated paper scraper was developed to pull pdf, xml, and txt files from PUBMED

article identifiers. This tool is available from GitHub as a standalone resource.
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3.4.3 Text Mining Full-Text Articles

Extracting assertions from articles was performed with two primary functions, en-

tity recognition and relationship extraction. Entity recognition is the function of

recognizing specific entities (Plant, Chemical, Gene, Pathway, Phenotype, Bacte-

ria, Diet), which yield start and end nodes in the knowledgebase. I2E employs a

user-specified dictionary based approach to entity recognition. We utilized a set of

ontologies and structured vocabularies for this process (Figure 3.1). Each of these

sources were used in I2E queries to extract the 7 entity types (nodes) provided in the

knowledgebase.

Figure 3.1: There are a total of 8 sources used for entity recognition in I2E. These 8
sources provide all of the nodes in the Knowledgebase as indicated in the figure.

Bacterium in literature are often abbreviated for brevity which is a hurdle for

dictionary based text mining tools to overcome given the dictionary, in many cases,

does not contain the abbreviation. This is a result of multiple genera sharing the same

species name, in some cases an indication of function (Halolactibacillus halophilus and

Halobacillus halophilus).

The abbreviated bacterium identification hurdle was overcome by using, a com-

bined process of text mining with the rule/dictionary method in I2E to identify all

mentioned bacterium in the article, and a separate regular expressions query to iden-

tify abbreviated matches. Each abbreviated match in a single article is compared

to the set of bacterium mentioned for each article to map back to the original node
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identifier and thus extract the specific bacterium for each relationship. The addi-

tional specific entities were well-defined within the structured vocabularies used for

text-mining and did not require additional mappings.

Once the entities were categorized, relationship extraction was the next step. I2E

by Linguamatics provided 21 sentence models for extracting assertions, however, a

specified predicate ontology was used and iteratively refined to remove false pos-

itive results. Text-mining through full-text articles inherently adds noise through

additional text brought in and methods were employed to combat this. Reference

matches, though desirable in specific text-mining cases, were not immediately useful

to the goal of developing this knowledgebase, and a query was developed to negate

matches within the references section.

The microbiome queries were developed through an iterative process both for entity

recognition and relationship extraction (Figure 3.2). In the summer of 2018, we man-

ually categorized 100 assertions for validation of I2E queries. I2E queries were run

against the MEDLINE index and the full-text index and judged by measures of preci-

sion and accuracy. Manually we refined the queries until reaching a F-score threshold

of 85% for entity recognition and F2-score threshold of 85%. The F2 score was cho-

sen for a higher recall rate over precision given our focus of hypothesis generation, to

maximize possible connections between entities.

3.4.4 Building the ABCkb 2.0

After extracting Nodes and relationships from public sources, node and relation-

ship reduction steps were necessary. Duplicate nodes were limited by ensuring node

identifiers appeared only once, and collapsing nodes with matching names. To ensure

unique nodes present, all node id’s from all sources were compared to determine nodes

were not defined multiple times. Nodes were further reduced by iterating through the

types (Plant, Chemical, Gene, Pathway, Bacteria, Phenotype, Diet) and linking iden-

tifiers of a type with the same name into a new identifier. These new node ids are
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Figure 3.2: Iteratively developing I2E queries is a process of 1. Building a query,
2. Running the query against the document index, and 3. Validating the results
returning either to refine the query or export the results when reaching a satisfactory
threshold.

set up by combining "abckb-" with node type (e.g plant, chemical) and an auto-

incrementing id. All original source identifiers are retained as a property of the new

node along with name and synonyms converted to lowercase for convenience. Rela-

tionships originally matched to these original source ids were then remapped to the

new knowledgebase ids. All of these extracted, collapsed relationships from full-text

and the structured data sources were inserted into the knowledgebase to create the

ABCkb 2.0 (Figure 3.3). This tool will aid researchers to elucidate the molecular

mechanisms driving the health effects of the microbiome and diet.
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Figure 3.3: The schema for the ABCkb 2.0 showing connectivity between the addi-
tional microbiome portions and the ABCkb 1.0

3.5 Statistics and Browser

The ABCkb 2.0 contains 1,155,603 nodes and 7,338,259 relationships, a 60 percent

decrease in edges from the first version (table 3.1). This is due to the reduction

of similar nodes. Full text, text-mining yielded 625,975 hits, which produced 69,206

edges. Over 24,000 novel relationships were found solely in full-text articles and not

found in abstracts. This indicates that mining through the full text increased the
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amount of associations by a factor of 35 percent.

Table 3.1: The statistics showing the breakdown of node types between the two
knowledgebase versions.

Node Type ABCkb v1.0 ABCkb v2.0

Plant 237,350 222,087

Chemical 156,297 151,336

Gene 180,669 192,076

Pathway 28,654 28,759

Phenotype 54,769 43,428

Bacteria 0 517,888

Diet 0 29

The interface browser was updated to include the most recent version of the knowl-

edgebase as a separate browsable data source. Open-discovery queries are the only

available query type from the interface. The process begins with the user, entering in

a search term in the browser search-bar. This search bar queries a full-text index in

Neo4j on node names and node terms, or synonyms. This query produces tabulated

results, ranked on search term relevance and limited to the top 10 results to increase

efficiency. The user is able to select as many start points as desired and is prompted

to click through to the next page. After making selections, the user is prompted to

select an endpoint node type (Plant, Chemical, Gene, Bacteria, Pathway, Phenotype,

or Diet) where a query is run on pre-assembled paths from the initial node type. This

returns all of the possible paths in a table, the ability to download the results to a

csv file, and a query that can be used to generate those results in their own neo4j

interface.
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3.6 Application

3.6.1 Phytochemicals, microbiota, and phenotypes

Phytochemicals have long been touted as semi-magic pills for all kinds of mal-

adies, cancers, and diet-related diseases [91, 92]. For example, plants in the Brassica

family (broccoli, mustard, and brussels sprouts) contain glucosinolates, a type of

phytochemical linked with anti-cancer, antioxidant, and anti-inflammatory benefits

(Figure 3.4) [93]. However, there are aspects of this benefit that remain unknown,

namely the molecular mechanisms [94]. In the ABCkb (Figure 3.5), several genes

are linked with glucosinolates, one of which is the cytochrome p-450 gene, CYP4F3

[95]. This gene is one of three key branch points in the arachidonic acid metabolism

pathway [96]. Arachidonic acid is released due to stress, injury, and is also found

from dietary sources like red-meat, fish, eggs, and poultry [97, 98]. The cytochrome

p-450 mediated arachidonic acid pathway has been shown to produce cardioprotec-

tive epoxyeicosatrienoic acids[96]. Thus, consumption of glucosinolate-rich foods to

influence the breakdown of arachidonic acid through the cytochrome p-450 pathway

is of great nutritive importance.

However, glucosinolates like glucoraphanin are not activated unless they are trans-

formed by the enzyme myrosinase [99]. This enzyme is found in these Brassica vegeta-

bles in varying amounts, but their availability is affected by multiple factors including

cooking method, crop-breeding, and anatomical plant location [93]. Therefore, it is

likely that the actual amounts of bio-available sulforaphane from myrosinase activity

alone is lower than expected.

The level of bio-available glucosinolates is further complicated by the interaction

between the microbiome and phytochemicals. A search within the ABCkb was per-

formed between the chemical node, glucosinolates, and bacteria (Figure 3.6). Bifi-

dobacterium, a common probiotic genus, is shown in the ABCkb to affect glucosino-

lates. Bifidobacterium have a similar effect on glucosinolates like myrosinase but with
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a propensity to metabolize further[100]. Additionally, a bacterium recently linked to

digestive disorders, Alistipes putredinis is also shown to metabolize glucosinolates in

the gut from the ABCkb [101]. The Alistipes genus was only recently described in

2003 and had formerly been under the Bacteroides classification [24]. Abundances

of A. putredinis bacterium are correlated with ulcerative colitis disease activity and

several other phenotypic conditions [102].

To explore connections between A. putredinis and phenotypes, a knowledgebase

query was constructed in the ABCkb from Alistipes putredinis to phenotype (Figure

3.7). Connections from the Disbiome database indicate manually curated connections

from Alistipes to phenotype and text-mining revealed an additional connection to

obesity. This connection was from a study tracking weight loss patients over time

and found that Alistipes abundance is negatively correlated with obesity[103]. Given

the disbiome connection between A. putredinis and reduction of liver cirrhosis, the

link between this bacterium and obesity is logical. Non-Alcoholic Fatty Liver Disease

(NAFLD) is linked with incidences of obesity along with many metabolic disorders

like hypertension, type 2 diabetes, and hypertension [104].

What then would be the molecular mechanisms driving the interaction between A.

putredinis, obesity, and connected metabolic disorders such as cirrhosis of the liver?

The previously explored path between glucosinolates, the cytochrome P450 gene,

and arachidonic acid metabolism provides a possible explanation between this link.

Hydroxyeicosatetraenoic acids produced from the arachidonic acid metabolic pathway,

not the pathway attributed to glucosinolates is linked with obesity [105]. Therefore it

is plausible that gut microbiota perform the activation step, like myrosinase, necessary

to yield the protective benefits and explains the connection between A. putredinis and

obesity. This should be further explored.
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3.6.2 Resveratrol, Akkermansia, and diabetes

Abundances in the gut of bacterium in the Akkermansia genus have been linked

to many favorable health outcomes (Figure 3.8) [106]. Specifically metabolic-related

health outcomes, such as weight management and diabetes, are found to be inversely

linked to abundances of Akkermansia muciniphila[107]. This bacterium is gram-

negative, oval-shaped, and lives in the mucosal layer of the gut along with several

other places in the human body like the small intestine, human milk, and the mouth

[108]. Akkermansia degrades mucin within the gut and produces Short Chain Fatty

Acids (SCFAs), compounds often linked with gut health[109, 110]. While this may

sound negative, and was previously considered detrimental, it is in fact a positive,

normal process[111, 112]. One SFCA in particular, butyrate has been shown to

upregulate goblet cell mucin production in the gut through interaction with MUC

genes [113]. In addition, butyrate and other SFCAs are linked to the increase of

other beneficial bacteria in the gut, and the gut-brain axis[114, 115]. Therefore, it is

likely that increasing Akkermansia would subsequently increase SFCA production in

the gut which would lead to more mucin production, and ultimately a healthier gut

microflora. However, the molecular mechanism by which Akkermansia affects human

health is still an avenue of exploration. In the ABCkb, Akkermansia is linked to 54

different Phenotype nodes. Of those 54 nodes, 4 are related to diabetes and metabolic

disorders (Figure. 3.9). Links between Akkermansia and polyphenol-rich diets have

been established[116].

The foods that contain polyphenols include grapes, blueberries, coffee, tea, and

cocoa powder[117]. These foods with their polyphenolic compounds are attributed to

a host of health effects[118, 119]. In the ABCkb, Akkermansia is linked to 74 Chem-

icals, of which polyphenols are prevalent (Figure. 3.10). One specific polyphenol,

resveratrol found primarily in berries, is released in response to plant stressors like

pests and infections[120].
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Resveratrol is the primary compound that gives red wine its claimed health benefits.

In the ABCkb, resveratrol is linked to 3,866 genes, 93 more than the Comparative

Toxicogenomics Database has available [15]. There are 13 pathways related to glucose

and insulin with over 1500 genes between (Table 3.2).

Table 3.2: The pathways connected to resveratrol related to glucose and insulin with
the gene counts in-between.

Gene Count Pathway Name Pathway ID

899 Insulin Secretion GO:0030073

426 Glucose Metabolic Process GO:0006006

382 Glucose Import GO:0046323

295 Glucose Homeostasis GO:0042593

216 Gluconeogenesis GO:0006094

136 Insulin Receptor Signaling Pathway GO:0008286

24 Insulin Catabolic Process GO:1901143

23 Insulin Metabolic Process GO:1901142

18 Glucocorticoid Secretion GO:0035933

10 Insulin Processing GO:003070

10 Positive Regulation of Glucokinase Activity GO:0033133

6 Renal Glucose Absorption GO:0035623

4 Insulin Receptor Internalization GO:003816

The generalized links between diabetes and resveratrol may be fully explained by

the interaction between Akkermansia and resveratrol. This connection should be

further explored to elucidate the effect of dietary polyphenols on Akkermansia.

3.7 Discussion

Generating these connections manually through intense literature reviews adds

significant time burdens to overburdened researchers. This knowledgebase however
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provides the nutritive connections in papers in a graphical, browsable format, with

references for clear knowledge of where the associations are derived, and where to

go to explore the study that produced the association. In addition, the size of the

knowledgebase is a manageable 2.8 Gigabytes, over the 50 Gigabyte version original.

There are a few limitations to this knowledgebase and method of creation. The

first is the availability, and the significant time component of obtaining permissions to

mine through full text articles. During our quest to obtain access for full-text mining,

publishers often expressed concern that a knowledgebase like this would reduce the

number of journal readers. We propose that this knowledgebase and others like it

would in fact increase journal readers as they discover the nutritive connections within

articles and desire to probe further. Methods sections often house additional informa-

tion pertinent to experimental design not contained within the knowledgebase. The

ABCkb merely expedites the literature review process and can point to more relevant

results. Queries for Alistipes in the NCBI pubmed repository return several results

irrelevant to nutrition. Custom MeSH queries reduce the overall papers returned but

the researcher is left to read each one of the papers to find the associations within.

With a restriction of papers, there is a question of how much text is too much. In the

Alistipes to obesity example, the text-mining result was in fact found in a paper ex-

amining different methods for analyzing microbiome count data which referenced the

original study that we did not have access to text-mine [121]. In a case where not all

texts are available to mine through, assertions can be found from texts that reference

other texts. Future work could expand on this knowledgebase to rank associations

and articles of interest based on similar reference sections. Abstracts and references

are often freely browsable. Mining through abstracts to extract associations and then

following up with a ranking method to rank related articles could provide researchers

with additional articles to read for further information.

Another limitation to this knowledgebase is the method by which the results were
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obtained. Rule and dictionary approaches work well for mining through literature

sources where the dictionaries are well-defined, however microbiome literature is a

metaphorical wild-west. When bacteria are taxonomically reclassified, connecting old

bacteria names to the reclassified name is a significant challenge. In addition, bacteria

are referred to in some studies with an informal moniker to designate multiple strains.

Connecting these associations may be possible through some complicated regular

expression checking or a true machine learning approach may be required.

Finally the desire to probe drug compounds and their relation to the plant molec-

ular mechanism pathway has been expressed. Nutrichem 2.0 included drugs and

some of their effects in their database [14]. One common example is the ability for

grapefruit to reduce the efficacy of some heart medications [122]. Similar effects with

different drugs have been seen in people with varying microbiota abundances.

3.8 Conclusion

This knowledgebase, the ABCkb 2.0, further expands on the original knowledgebase

with the addition of microbiome connections and dietary connections. Text-mining

full-text articles extracted more associations than abstracts, but also requires more

strict filtering. Two knowledgebase analyses were produced to demonstrate the ef-

fectiveness of the ABCkb and the potential to generate testable hypotheses. Further

work on this should validate the associations within through physical assays.
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Figure 3.5: A graph from the ABCkb 2.0 showing the connectivity from glucosinolates
to genes. One gene in particular has been singled out, Cytochrome p-450.

Figure 3.6: A graph from the ABCkb 2.0 showing the connectivity from glucosinolates
to bacteria.
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Figure 3.7: A graph from the ABCkb 2.0 showing the connectivity from glucosinolates
to bacteria.
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Figure 3.9: A graph from the ABCkb 2.0 showing the connectivity from Akkermansia
to metabolic disorders and type 2 diabetes.
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Figure 3.10: A graph from the ABCkb 2.0 showing the connectivity from Akkerman-
sia to polyphenols.



CHAPTER 4: APPLICATION OF KNOWLEDGEBASED-DISCOVERY TO THE

SARS-CoV-2 PANDEMIC AND DEVELOPMENT OF THE COVID TO DIET KB

(CDkb)

Coronaviruses are prevalent in nature and are responsible for various respiratory

infections, many of which are non-life threatening [123]. They spread among bat

populations and the first significant coronavirus infection with a high mortality rate

was first identified in 2003 after it spread in a hotel [124]. This coronavirus was named

SARS-CoV-1 which stands for Severe Acute Respiratory Syndrome CoronaVirus 1.

It took a significant effort to achieve sequencing and many hours of work [125, 126].

Fortunately the spread of the virus was mitigated, however experts continued to study

the virus and the effect on the human body. In 2008 another coronavirus appeared

in the middle-east and was named MERS-CoV. Finally, in late 2019 a coronavirus

began to spread in the Wuhan province of China which reached pandemic proportions

within a few months [123]. Technological advances led to a quick identification of

the virus, and SARS-CoV-2 was the culprit. While our previous knowledgebases

have been applied to noncommunicable diseases caused by dietary or genetic factors,

communicable diseases of pandemic proportion will benefit from this method.

4.1 Background

Coronaviruses are positive-sense RNA genome, circular viruses that exist in abun-

dance in nature [123]. The SARS-CoV-2 genome is around 30 kb which makes it one

of the largest in the class of RNA viruses[124]. Covering the exterior of coronaviruses

is a lipid bilayer envelope with three protein types (membrane, envelope, and spike)

protruding out from the surface[127]. In SARS-CoV-2, viral infection is facilitated
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through the spike protein binding to ACE2 receptors on host cells[128]. Infection is

further enhanced through its host immune system evasive detection measures through

utilization of glycan molecules that coat the spike proteins[128]. This coating limits

host T-cell activation. While some general pathology was known prior to the pan-

demic, from other coronavirus studies, much of this information was discovered and

broadly communicated through preprint articles[129].

The acceptance of pre-print article servers and repositories is still somewhat con-

troversial [130]. Traditional scientists dislike pre-print articles due to the fact that

peer-review is the stage-gate that reduces the spread of bad science. The process of

review identifies and removes faulty experiment methods, unfounded results, and poor

writing, which overall increases the quality of published literature [131]. In contrast,

modern scientists argue that the large volume of papers being submitted for publica-

tion overwhelms the peer-review process and delays scientific progress. The process

can be expedited but that requires reviewers pre-selected for journal topics that are

in demand or of focus. It is argued that preprinted articles are able to be reviewed by

a wider panel of scientists in the community [132]. Additionally, peer-reviewing is not

as strict of a stage-gate as believed. A study found that articles can be passed through

peer-review using language generated from computational methods [133]. Pre-print

servers then exist to spread scientific information in an expedited manner while still

honoring the process of peer-review.

The utility of pre-print articles was seen early in the pandemic. An average of 39.5

pre-print articles were circulated per day during the pandemic and by 6 months, over

6,000 articles were available[134, 129]. An additional factor to consider in the flow

of information is the technological progress that has been made since the previous

coronaviruses. The sequence for SARS-CoV-2 was available much sooner than for

SARS-CoV-1, and MERS-CoV (Figure 4.1).

A weekly updated preprint repository was set up specifically for SARS-CoV-2 pa-
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Figure 4.1: A comparison between the three major coronavirus contagion sequence
availabilities and amount of genes linked to each individual pathogen by year, gener-
ated 6 months after the start of the pandemic.

pers, along with the peer-reviewed papers on the relative coronaviruses [135]. The

pre-printed articles in this repository also came with reviewer comments on the arti-

cles for researchers to identify any areas of concern and mitigate any false information.

All documents in the repository were provided in JavaScript Object Notation for con-

venient processing by text-mining tools. As the pandemic progressed, one symptom

seen in a notable portion of infected patients is a prolonged infection of SARS-CoV-2.

One of the challenging parts of the pandemic was the broad range of symptoms

present in infected individuals [127]. Some patients had symptoms similar to a cold,

where others presented more severe symptoms. Infections in many cases led to a con-

dition called COVID-pneumonia which resulted in patients requiring supplemental

oxygen. In severe circumstances patients had to be sedated and placed on a venti-

lator. Once patients conquered the initial infection, many were left with a condition
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called long-covid [136]. This condition persists for several months following the ini-

tial infection and presents with myalgia-like symptoms along with mild symptoms

present in the initial infection: anosmia, ageusia, and difficulty breathing. Survival

rates of SARS-CoV-2 infections were linked to noncommunicable patient comorbidi-

ties like type 2 diabetes (T2D), heart disease, and obesity[137]. These comorbidities

are all diet-related. Therefore, diet alteration and subsequent reduction of patient

comorbidities is of great interest. This knowledgebase was built to explore and build

hypotheses around the molecular mechanisms between pathogen and plant phyto-

chemical metabolic pathways.

4.2 Building the CDkb

The Covid to Diet knowledgebase (CDkb) was built from the original ABCkb 1.0

with the addition of associations from the CORD-19 dataset and drug information

from the drugbank database (Figure 4.2) [135, 138].

Figure 4.2: The process of creating the CDkb starts with the original knowledgebase
and adding drugbank information with text-mined information from the CORD-19
dataset.

4.2.1 Structured data sources

Data in the CDkb comes from the original 11 sources from the ABCkb 1.0 with

the addition of drug information. Though drugs are technically a subset of chemicals,



59

within this knowledgebase they are marked as a separate set of nodes. This allows for

more efficient queries for open-discovery with drugs as the starting point. Drugs from

the drugbank database were parsed and added to the knowledgebase with connections

to genes from the original ABCkb[138]. Then text mined associations from I2E were

added to the knowledgebase.

4.2.2 Natural Language Processing Relationships between Viruses and Human

genes

A subset of literature from the CORD-19 dataset updated in July, 2021 with

preprinted research, papers from Elsevier corpii and other Pubmed Central articles

was downloaded and converted from jsonified text to xml for indexing in I2E[135].

This conversion was done through a custom python script and extracted sections

where they were available within the original json header. When sections were un-

available, the text was labeled "general." The preprinted subset contained articles

with reviewer comments, which was not useful for our immediate use and increased

duplicate hits. To reduce unnecessary duplicate text-mined results, matches from the

files containing reviewer comments were negated by removing any Additionally, any

matches from methods and reference sections were negated. Articles were grouped

into batches and uploaded to the server with the I2E interface.

After indexing, text-mining queries from I2E from the "class affects class" subset

were run and refined to identify hits where SARS-CoV-1, SARS-CoV-2, or MERS-

CoV affect human genes. An ontology of predicates provided by Linguamatics was

used to link the Coronavirae to human genes in the literature. All of this information

was inserted into a Neo4j graph database in a Docker container (Figure 4.3).

4.2.3 Projecting genes on pathways

Pathview is a tool produced to visually display heatmap gene expression values

on KEGG pathways [139]. We used Pathview to map text-mined gene hits between
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strains to determine top pathways identified and visualize gene hits on pathway maps.

We also compared two methods: using the raw number of hits identified from text-

mining, as gene expression values, or calculating a modified TF/IDF score. Raw hit

scores are computed as the sum of gene hits per strain. Limitations of using raw hits

as a metric for comparing gene hits across strains is the obvious discrepancy in corpus

size given a short time-frame for papers on SARS-CoV-2 vs MERS-CoV and SARS-

CoV-1. A TF/IDF score is commonly used to mitigate this limitation. The TF/IDF

score is calculated from two separate values: Term Frequency, and Inverse Document

Frequency. TF(T,D) is calculated as the number of times the term (T) is found in a

document (D) 4.1. IDF(T) is calculated from taking the logarithm of the number of

documents N, divided by the sum of documents containing term (T) (4.2). These two

values are multiplied together to produce a score indicating importance, irrespective

of frequency. Pathview allows us to map identified genes in pathway maps from the

Kyoto Encylopedia of Genes and Genomes (KEGG) and visualize the strains together

to determine the most relevant pathways, given the preliminary research.

TF (T,D) = fT,D (4.1)

IDF (T ) = log
N

|{d ∈ D : T ∈ d}|
(4.2)

TFIDF = TF ∗ IDF (4.3)

4.2.4 Exploring nutritive associations

Nutritive associations built in the ABCkb provide a link from plants to their phe-

notypes. After mapping COVID-19 associations, we probed possible molecular mech-

anisms linked with viral infections, along with long-covid infections. Additionally,

dietary habits may exacerbate viral infections by up-regulating or down-regulating
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genes necessary for mounting an immune response. Dietary phytochemical connec-

tions were also explored to produce a knowledgebase analysis.

4.3 Results

4.3.1 Text-Mined Results

The I2E text-mining query extracted 232,595 associations between the three Coro-

naviruses and host factors (Genes). Text-mining revealed over 4,000 host factors

between these 3 coronaviruses with 1500 common host factors between SARS-CoV-1

and SARS-CoV-2 (Figure 4.4). This is over two-times the host factors mined from

SARS-CoV-2 and MERS-CoV. These associations were found in over 49,000 articles

with an average of 10 documents to each gene (Figure 4.5).

4.3.2 Knowledgebased discovering molecular mechanisms of long-covid

Long-COVID, or post-COVID syndrome is a range of symptoms experienced by pa-

tients four months beyond the initial SARS-CoV-2 infection[140]. The current range

of symptoms of post-covid symptoms includes many of the symptoms experienced

in the initial infection with additional mental and cognitive symptoms, along with

symptoms that increase with physical exertion[141]. A cursory glance at the liter-

ature reveals many pathways that may result in experiencing these symptoms after

infection.

There are several possible routes to generate a hypothesis around long-covid molec-

ular mechanisms. As the symptoms are broad and seemingly disconnected, we began

the knowledgebase search with known symptoms unique to long-covid (Figure 4.6.

This search revealed a set of 29 phenotypic nodes from 9 symptoms (Appendix Table

C.1). These phenotypic nodes alone are linked with 218 pathways and 36,369 gene

nodes. There are 1,453 genes in the intersection of the text-mined host factors linked

to SARS-CoV-2 in the CDkb and the genes connected with these 29 phenotypic nodes.

With the filtered genes from the knowledgebase, we performed a Pathview path-
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way analysis with the calculated TF*IDF scores from text-mining [139]. Using auto-

matic pathway selection which filters KEGG pathways to the most relevant pathways

between the 3 Coronaviridae types. This analysis produced three KEGG pathway

maps: Ubiquitin Mediated Proteolysis (Appendix Figure D.1), Protein Processing

in Endoplasmic Reticulum (Figure 4.7), and RIG-I-Like Receptor Signaling Pathway

(Appendix Figure D.2). Each map indicates the genes identified through text-mining

with the TF*IDF scores providing color. Additionally, gene blocks are segmented by

coronaviridae in order (left to right): SARS-CoV-1, SARS-CoV-2, MERS-CoV. One

specific pathway of interest from the Pathview analysis is the Endoplasmic Reticulum

Protein Processing pathway. This pathway is involved in protein folding within the

cell.

Synthesized proteins are exported through the Endoplasmic Reticulum (ER) for

cutting, folding, shaping and other modifications [142]. These modifications are fa-

cilitated by a set of molecular chaperones and enzymes that ensure correct protein

folding and export the protein to the golgi body for any additional post-translational

modifications [143]. The ER employs a series of accuracy checks before exporting

the protein which ensures that the protein has been folded, folded properly, or needs

to be degraded. ER stress is caused by a multiplicity of factors. Under stress, cas-

cading pathways lead to either the adjustment of ER processing, stimulation of en-

doribonuclease activity, attenuation of cell translation, or signaling apoptosis of the

cell [144]. From the Pathview analysis, there are several genes in these cascading

pathways highlighted under protein stress, which is expected given the mechanism of

viral production. Three genes of interest are eukaryotic translation initiation factor

2 alpha kinase 3 (PERK), endoplasmic reticulum to nucleus signaling 1 (IRE1), and

activating transcription factor 6 (ATF6).

Traditional myalgias include Chronic Widespread Pain (CWP) and Fibromyalgia

Syndrome FMS [145]. These are considered syndromes due to there being no clear dis-
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ease pathway identified and the broad spectrum of symptoms that are selectively ex-

perienced by patients. Many of the symptoms experienced by patients with myalgias

are also experienced in long-covid patients. In one study, myalgia patients have been

found to experience severe pain hypersensitivity which is linked to widespread pro-

duction of advanced oxidative protein products, formed in response to oxidative stress

that lead to cellular apoptosis [146]. One specific gene drawn out from that study

is the mitogen-activated protein kinase 8 (JNK) gene, highlighted in the graph and

downstream from the IRE1 mediated cascade. Links between myalgias, blood coagu-

lation pathways, and immunity pathways have also been shown [147]. Other evidence

shows that microclots are found in long-covid patients, which mirrors what is known

of apoptotic cells and the affect on procoagulation pathways[148, 149]. Therefore, it

is possible that a high level of infection, leading to ER stress and widespread apop-

tosis, facilitated by increased IRE1 gene activation, causes long-term symptomatic

periods for patients following SARS-CoV-2 infection. As syndromes like CWP and

FMS have no definitive test to confirm diagnoses, testing for increases in clotting

factors or microclots may provide a path forward for diagnosing patients.

4.3.3 Knowledgebased discovery of nutritional myalgia-like symptom mediation in

long-covid patients

Mediation and reduction of long-covid symptoms that mirror myalgia symptoms

often follows a course of Selective Serotonin Reuptake Inhibitor (SSRI) drugs in con-

junction with pain reduction drugs like Tylenol or Ibu-profen [150]. However there

may be nutritive pathways that alleviate the underlying molecular mechanisms driving

the experience of symptoms. Using the identified genes in the ER protein process-

ing pathway as initial start points, a knowledgebase query was developed to identify

possible nutriceutical phytochemicals.

There are over 1,700 phytochemicals linked to over 6,900 plants in the Covid to

Diet Knowledgebase. As the links between leafy green vegetables, and members of
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the brassica family, to heart health is well established, we started with those. Two of

the genes in this pathway that lead to apoptosis are linked with glucosinolates, and

sulforaphane (Figure 4.8). These compounds are found in vegetables in the brassica

family like Broccoli, Collard Greens, and Cabbage. Sulforaphane has been found

to affect seratonin release, which increases the strength of this connection [151]. If

widespread systemic cellular ER stress causes experience of myalgia symptoms in

long-covid patients, the CDkb indicates that increased consumption of glucosinolate

vegetables may provide relief through the mentioned molecular mechanisms. This

connection should be explored further.

4.4 Discussion

Knowledge based discovery has many application pathways. Here we demonstrated

one pathway using the ABCkb 1.0 with text-mining from preprinted articles to ex-

tract knowledge and produce a new knowledgebase, CDkb. From this, we provide

hypotheses around molecular mechanisms of possible nutriceutical phytochemicals to

alleviate myalgia symptoms in long-covid patients. We also explored using a com-

mon tool, Pathview, to filter out pathways and view gene hits between the three

coronaviridae strains. There are a few limitations to this approach.

This approach assumes all text-mined data is of the same quality. Mentioned

previously, one of the drawbacks of utilizing pre-print articles is that some erroneous

conclusions may come through, which would likely be identified in the peer-review

process. Those utilizing this method would need to fully understand where the data

was coming from, investigate, and deal with any spurious conclusions. Our weighting

metric allows us to calculate TF*IDF scores to mitigate any of these conclusions.

In addition, this method assumes that journals are willingly allowing text-mining

of their content. Acquiring text-mining permissions can be a significant challenge

to overcome, which may be a hurdle for future studies. If journals are unwilling to

allow full-text mining, asking permission from the author is a secondary method to
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consider.

Additional information that may prove useful is the incorporation of Single Nu-

cleotide Polymorphisms (SNP). These positions in patients have provided insights

otherwise unavailable through traditional experiment methods. Many of these SNPs

found in GWAS studies have been found in non-coding regions [152]. The collection

of SNP to disease data reveals a path for future nutriceutical studies to examine and

explain the molecular mechanisms behind complex diseases with no singular cause.

The CDkb does not incorporate this data as it was out of the scope of this research.

4.5 Conclusion

As the world grows more interconnected, pandemics will likely become more fre-

quent. By using preprinted articles with knowledgebased discovery, the coordinated

efforts of scientists around the globe can provide insights leading to faster hypothesis

generation, and hope for expedited discovery of new and better treatments.
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Figure 4.4: The intersection between 3 members of the family Coronaviridae and the
text-mined host factor interactions from CORD-19
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Figure 4.5: The distribution of documents to host factor identified through I2E
text-mining with an average of 10 documents per host factor.
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CHAPTER 5: Conclusions

There are three knowledgebases that have been generated as a result of this work.

The first knowledgebase developed, ABCkb 1.0 is a cleaned up, slimmed down, up-

dated version of the knowledgebase produced by Dr. Richard Linchangco [18]. Ad-

ditionally, a simple interface was created to browse the contents and perform open-

discovery without the use of Cypher Query Language. The second knowledgebase

(ABCkb 2.0) adds microbiome connections from full-text text-mining along with du-

plicate node collapsing from separate sources. Two applications of discovery are

provided, and the interface was updated to include the microbiome information. Fi-

nally, the third knowledgebase applies this method to a pathogen of pandemic propor-

tions and utilizes knowledge-discovery to provide possible links to alleviate long-covid

symptoms from dietary phytochemical sources. This knowledgebase is ready to be

deployed to a team of individuals and move from the theoretical exploratory phase,

to full-scale production.

5.1 Build a Support Team

The ABCkb is now large enough that it requires a multidisciplinary team to sup-

port the future development and use of the resource. There are several areas of

support that will be required. An IT support team, web developers, machine learn-

ing and linguistics specialists. Additionally it would greatly benefit the future of this

knowledgebase to partner with a nutrition lab, industrial or academic, for examining

produced nutritive connections.
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5.1.1 IT Support

This knowledgebase will require the support of IT professionals experienced in

managing large databases. On Amazon Web Services (AWS), this knowledgebase is

considered as a large storage bucket because of the size of the input data. Future

IT work on this resource should consider building a custom server for management

and migration away from AWS. Additionally, a hybrid approach between graph and

relational databases may provide a more performant resource.

5.1.2 Web Interface

The web interface built for this knowledgebase is a simple resource to browse the

data without users needing to learn a new query language. More work is left to do

on the interface. There are three primary considerations for the future interface: a

closed-discovery method, links to external resources, and graph building.

5.1.2.1 Closed-Discovery Browsing

Currently the only type of discovery supported by the interface is open-discovery.

This is defined as the process of graph exploration from a known start node to any

number of end nodes. This can be defined as a number of jumps, or to an end

type. The goal is primarily to explore the endpoints and the connections between.

In contrast, closed-discovery is primarily concerned with finding connections between

specific start and end nodes. The interface should support selection of a number of

end nodes and then provide the pathways in-between

5.1.2.2 External Resource Linking

As of now, the ABCkb 2.0 browser provides node names, but links are stored as

properties of the individual nodes. A fully-supported interface should provide links

to external resources for further knowledge discovery. This would enable researchers

to connect additional information from the connected resources and further elucidate

diet to disease molecular mechanisms.
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5.1.2.3 Visualization of Results

The future interface should support integrated graph building for visualization and

sharing of data. D3 is the Javascript library used by Neo4J in the provided GUI,

however this library can become problematic. Often the spring constant that gives

a bounce effect to nodes in a graph can crash a browser window and cause it to

become non-responsive as the number of nodes increases. This greatly hinders graph

exploration. Another option that should be explored is graphviz [153]. This library is

a well made graph application built in C with support for python, command-line, and

many other languages. Graphviz can create static graphs as necessary with custom

parameters. This would enhance the visibility of the ABCkb by enabling graph

sharing in publications, presentations, and posters. Visualization of search results is

necessary for the ABCkb to proceed into the next chapter.

5.1.3 Machine Learning and Linguistics

Currently, with the ABCkb 2.0, I2E is the sole generator of text-mined diet to

disease connections. I2E is a rule and dictionary based method that works well to

index and mine through large literature sources. However, as language changes, the

rules and dictionaries must also change. There are several Machine Learning mod-

eling options for generating these connections that should be explored. Researchers

using both supervised and unsupervised mathematical models have seen success in

vectorizing the text and discovering connections using these vectors, specifically in

chemical compound detection and property prediction [154, 155]. I2E indexes can

take a week or longer to complete and as science is constantly updated, one week is

a long time. The expediency of query results is negated by index time length.

5.2 Ranking Algorithm

Future work on the KB should improve the efficiency for researchers developing

testable hypotheses; therefore, a knowledgebase utilized for this purpose will only
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be as useful as the results returned by a query. Many implementations for ranking

graphs have been devised and utilized in other domains such as PageRank, HITS,

HeteSim, and HetERel [156, 50, 157]. These algorithms derive their strengths from

utilizing links with an assumption that an increase in links indicates an increase in

accuracy or relevance. A drawback of these methods is that citation counts do not

infer the accuracy of an article. For instance, according to the Web of Science, the

infamous redacted Andrew Wakefield MMR vaccine paper has been cited over 1,300

times and is ranked in the top 0.04% of papers published in 1998 when ordered by

number of citations. An algorithm may incorrectly judge the accuracy of relationships

extracted from this paper if based on the number of citations. There are several ways

to improve the output of a query including removing false positive matches, limiting

returned nodes, and ordering by importance or relevance.

5.2.1 Previous ranking methods

Significant work has been done in the past to produce algorithms calculating seman-

tic value of predicates between two nodes in the context of many domains. HeteSim

was developed as a measure to calculate similarity scores using a pairwise random

walk strategy based on the theory that relevant objects reference each other[157].

Richard Linchangco, who generated the original diet to disease KB, also developed

an algorithm to calculate an edge-adjusted relevance of heterogeneous objects, Het-

ERel, based on the same theory[18]. There are three steps to the HetERel algorithm.

The first is Kulczynski Product Edge Weight (KPEW) calculation, which calculates

the value of each predicate connected to each node extracted from text mining. Then

the object relationships are converted to weighted adjacency matrices, with KPEW

scores as weights, and are normalized across row vectors to produce Transition Prob-

ability Matrices (TPM). Finally a normalized score is calculated which provides a

metric for relevance between nodes. The formula to calculate a normalized HetERel

score is defined in equation 5.1 where a is the start node, c is the target node and
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UP (n, :) is the n’th row in the transition probability matrix. Though HetERel cal-

culates relevance between nodes within heterogeneous networks, it does not provide

ranking metrics for query results in the scope of hypothesis generation and must be

run at query time which increases the time and computational resource cost for each

user.

HetERel(a, c|P ) = UAB(a, :) ∗ UBC(c, :)
||UAB(a, :)||2 ∗ ||UBC(c, :)||2

(5.1)

5.3 Heuristically Evaluating Weighting Metrics

Successful implementation of a weighting metric will accomplish a few goals. As

previously mentioned, the metric will need to be calculated at knowledgebase build

time to reduce the time complexity of knowledgebase queries. In addition, a bounded

metric between 0 and 1 will expedite relationship weight calculation. Finally, a query

should reduce generic, vague, or arbitrary results. To determine if the metric is

successful, standard test queries should be utilized and run against current rank-

ing standards, the HetERel and HetESim metrics. Ideally, they should encompass

jumps of various lengths to ensure that the algorithm is successfully portable as the

knowledgebase grows and incorporates more data types.

5.3.1 Items for Algorithmic Consideration

5.3.1.1 Calculating Accuracy of Extracted Relationships

The accuracy of a text mined knowledgebase query depends on two factors, the ex-

tracted relationship from the source, and the accuracy of the source material. Eval-

uating the accuracy of extracted relationships through NLP queries are performed

through manual efforts or automatic systems. Limitations of manual evaluations in-

clude the subjectivity of what is classified a "good" result by each individual, user

background experience, and time[158]. Automatic methods derive their strength from

good training and test data sets. NLP is by nature a classification problem for which
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multiple forms of accuracy detection have been developed and utilized in other do-

mains. The standard accuracy measure for text mining queries is a F-measure, which

is the harmonic mean of precision and recall. Weighting precision and recall equally

however is not always an optimal solution. To remedy this, the F-measure can be

adjusted by a factor β to weight precision to recall accordingly to improve the eval-

uation of a NLP query as seen in equation 5.2. Let β > 1 for a higher emphasis on

recall, and β < 1 for an emphasis on precision.

Fβ = (1 + β) ∗ PPV ∗ TPR
(β ∗ PPV ) + TPR

(5.2)

With sample data shown in table 5.1, the calculated F1-measure is: 0.84, the F0.5-

measure is: 0.85, and the F2-measure is: 0.82. The threshold for an acceptable

F-measure is 0.85. Object identification, text mining nodes should place a greater

emphasis on precision and relationship extraction should place a greater emphasis on

recall. This will yield more overall relationships which can be filtered for quality later

on through a confidence value.

Table 5.1: Sample confusion matrix

Condition Positive Condition False

Predicted Positive 85 20

Predicted Negative 12 50

A confidence value for extracted relationships is traditionally defined in the con-

text of graphs as a weight. Identifying which weight is appropriate for the graph

can be performed heuristically by comparing current algorithms that have been ap-

plied in various domains. An important feature to consider is calculating weights at

knowledgebase build time rather than at query time, as mentioned previously. This

will greatly expedite hypothesis generation and increase the research value of the
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knowledgebase and will lead into the generation of a question answering system.

5.4 Question Answering Systems

The final stage of future development for the knowledgebase is a question-answer

system. The largest barrier to incorporating public databases in hypothesis generation

is learning each query language. Structured Query Language (SQL) databases are

the standard choice to house data. Access through an interface where users can

explore the database contents is a common method with prebuilt, fill-in-the-blank

queries. An example of this is the Comparative Toxicogenomics Database[15]. The

drawback to this method are the jumps required to connect diet with disease through

multiple resources. This poses two main problems, reproducibility and productivity.

Reproducibility is difficult to maintain when interacting with various interfaces, as

the underlying data changes which affects outputted query results. This has largely

been solved in other domains, namely computer science with version control, and

these solutions can be incorporated into an interface. The other issue is productivity,

which is ultimately affected by the need to jump from databases and resources to

generate a hypothesis from a research question. A well designed interface can solve

these problems by merging databases and developing a Query Development system

(QD) to write cypher queries, and lead to a Question Answering system (QandA).

The most common example of a QandA system is Watson from IBM which is an

open-domain QandA system[159]. Open-domain systems are intended to produce

answers to questions formed in Natural Language about any topic, in contrast to

closed-domain systems which provide answers to limited domains. Watson was de-

signed to take questions in Natural Language form, determine the entities requested,

and produce an answer. Both open and closed domain QandA systems rely on on-

tologies to detect requested entities, similar to the ontologies used for text mining in

I2E. Other examples of QandA systems include many of the personal assistants in

phones and call-center answering machines which have an additional layer of abstrac-
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tion to interpret vocal sounds. The first step in any QandA system is to interpret the

question asked. Limiting the system to answering questions in English narrows the

problem space.

5.4.1 Develop a Question Answering System

Two primary components of interpreting questions are answer type determina-

tion, and the type of entity asked, which Watson denotes Lexical Answer Type

(LAT)[160]. Determining the type of answer required is more complicated than

interrogating the initial word in the question and will require the use of a lexical

dictionary such as, WordNet. An open-source WordNet solution is available with

the Natural Language ToolKit in Python. Entity recognition is a large task in NLP

systems and requires the use of ontologies. Many of the ontologies utilized for text

mining should be used for this task. An additional step for interpreting questions is

entity recognition. AllenAI has several machine learning models available for entity

recognition [161]. The complete library is available in python and is open source

(https://github.com/allenai/allennlp).

5.4.2 Provide Answers

Answers should be produced by querying the KB utilizing the interpretation of each

question. Queries can either be prewritten with substitution from detected entities

or developed dynamically. A drawback to prewritten queries is the limitation to

answerable questions. In this case, the questions asked must fit into a limited range

of queries. In contrast, dynamically developed queries may prove more useful as the

KB expands to cover a wider range of data.

5.5 Conclusion

This work was motivated by a desire to provide molecular mechanisms and dis-

cover the bidirectional connections between microbiota and diet. There are many

directions available for the knowledgebase to expand and increase utility of the tool.
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One hindrance has been the lack of a testable use-case from hypothesis generation to

a clinical trial or bench-top study. Any further improvements to the knowledgebase

will require the collaboration of partners willing to participate in the analysis of the

generated hypotheses. In addition, the knowledgebase has grown to a point where

a multidisciplinary support team for maintaining and updating source information

is required. As the rates of non-communicable, diet-related diseases rise, the knowl-

edgebase will facilitate development of nutritive solutions with molecular mechanistic

explanations. This will lead to novel solutions that are nonsynthetic, natural, reduce

the medical burdens of patients suffering from these diseases, and improve the quality

of life for these patients.



81

REFERENCES

[1] C. Canavan, J. West, and T. Card, “The epidemiology of irritable bowel syn-
drome,” Clinical Epidemiology, vol. 6, pp. 71–80, Feb. 2014.

[2] World Health Organization, “Non communicable diseases,” Apr. 2021.

[3] H. Greenberg, “Diet and Non-Communicable 105 Diseases: An urgent need for
new paradigms,” p. 14.

[4] F. A. Olatona, O. O. Onabanjo, R. N. Ugbaja, K. E. Nnoaham, and D. A.
Adelekan, “Dietary habits and metabolic risk factors for non-communicable dis-
eases in a university undergraduate population,” Journal of Health, Population
and Nutrition, vol. 37, p. 21, Aug. 2018.

[5] J. Hunter-Adams and J. Battersby, “Health care providers’ perspectives of diet-
related non-communicable disease in South Africa,” BMC Public Health, vol. 20,
p. 262, Feb. 2020.

[6] A. Agus, K. Clement, and H. Sokol, “Gut microbiota-derived metabolites as
central regulators in metabolic disorders,” Gut, vol. 70, pp. 1174–1182, June
2021. Publisher: BMJ Publishing Group Section: Recent advances in basic
science.

[7] K. Oliphant and E. Allen-Vercoe, “Macronutrient metabolism by the human gut
microbiome: major fermentation by-products and their impact on host health,”
Microbiome, vol. 7, p. 91, June 2019.

[8] N. R. Smalheiser, “Rediscovering Don Swanson:The Past, Present and Future of
Literature-based Discovery,” Journal of Data and Information Science, vol. 2,
pp. 43–64, Dec. 2017.

[9] D. R. Swanson, “Fish Oil, Raynaud’s Syndrome, and Undiscovered Public
Knowledge,” Perspectives in Biology and Medicine, vol. 30, pp. 7–18, Jan. 2015.

[10] E. W. Sayers, J. Beck, E. E. Bolton, D. Bourexis, J. R. Brister, K. Canese,
D. C. Comeau, K. Funk, S. Kim, W. Klimke, A. Marchler-Bauer, M. Landrum,
S. Lathrop, Z. Lu, T. L. Madden, N. O’Leary, L. Phan, S. H. Rangwala, V. A.
Schneider, Y. Skripchenko, J. Wang, J. Ye, B. W. Trawick, K. D. Pruitt, and
S. T. Sherry, “Database resources of the National Center for Biotechnology
Information,” Nucleic Acids Research, vol. 49, pp. D10–D17, Jan. 2021.

[11] D. J. Rigden and X. M. Fernendez, “The 2021 Nucleic Acids Research database
issue and the online molecular biology database collection,” Nucleic Acids Re-
search, vol. 49, pp. D1–D9, Jan. 2021.



82

[12] A. Trautman, R. Linchangco, R. Walstead, J. J. Jay, and C. Brouwer, “The
Aliment to Bodily Condition knowledgebase (ABCkb): A database connecting
plants and human health,” tech. rep., Mar. 2021. Company: Cold Spring Harbor
Laboratory Distributor: Cold Spring Harbor Laboratory Label: Cold Spring
Harbor Laboratory Section: New Results Type: article.

[13] K. Jensen, G. Panagiotou, and I. Kouskoumvekaki, “NutriChem: a systems
chemical biology resource to explore the medicinal value of plant-based foods,”
Nucleic Acids Research, vol. 43, pp. D940–D945, Jan. 2015. Publisher: Oxford
Academic.

[14] Y. Ni, K. Jensen, I. Kouskoumvekaki, and G. Panagiotou, “NutriChem 2.0:
exploring the effect of plant-based foods on human health and drug effi-
cacy,” Database: The Journal of Biological Databases and Curation, vol. 2017,
p. bax044, June 2017.

[15] A. P. Davis, C. J. Grondin, R. J. Johnson, D. Sciaky, R. McMorran, J. Wiegers,
T. C. Wiegers, and C. J. Mattingly, “The Comparative Toxicogenomics
Database: update 2019,” Nucleic Acids Research, vol. 47, pp. D948–D954, Jan.
2019. Publisher: Oxford Academic.

[16] J. A. Rothwell, J. Perez-Jimenez, V. Neveu, A. Medina Remon, N. M’Hiri,
P. Garcia-Lobato, C. Manach, C. Knox, R. Eisner, D. S. Wishart, and A. Scal-
bert, “Phenol-Explorer 3.0: a major update of the Phenol-Explorer database
to incorporate data on the effects of food processing on polyphenol content,”
Database, vol. 2013, Jan. 2013.

[17] “FooDB.”

[18] R. V. Linchangco, The Semantics of Diet And Health: Knowledge Based Dis-
covery Through Data Integration, Text Mining, and Network Analysis. Ph.D.,
The University of North Carolina at Charlotte, United States – North Carolina,
2018.

[19] L. K. Ursell, J. L. Metcalf, L. W. Parfrey, and R. Knight, “Defining the Human
Microbiome,” Nutrition reviews, vol. 70, pp. S38–S44, Aug. 2012.

[20] S. L. Prescott, “History of medicine: Origin of the term microbiome and why it
matters,” Human Microbiome Journal, vol. 4, pp. 24–25, June 2017.

[21] R. I. Aminov, “A Brief History of the Antibiotic Era: Lessons Learned and
Challenges for the Future,” Frontiers in Microbiology, vol. 1, Dec. 2010.

[22] S. T. Shulman, H. C. Friedmann, and R. H. Sims, “Theodor Escherich: The First
Pediatric Infectious Diseases Physician?,” Clinical Infectious Diseases, vol. 45,
pp. 1025–1029, Oct. 2007.

[23] J. Lloyd-Price, G. Abu-Ali, and C. Huttenhower, “The healthy human micro-
biome,” Genome Medicine, vol. 8, Apr. 2016.



83

[24] M. Rautio, E. Eerola, M.-L. Väisänen-Tunkelrott, D. Molitoris, P. Lawson,
M. D. Collins, and H. Jousimies-Somer, “Reclassification of Bacteroides putre-
dinis (Weinberg et al., 1937) in a New Genus Alistipes gen. nov., as Alistipes
putredinis comb. nov., and Description of Alistipes finegoldii sp. nov., from Hu-
man Sources,” Systematic and Applied Microbiology, vol. 26, pp. 182–188, Jan.
2003.

[25] J. S. Johnson, D. J. Spakowicz, B.-Y. Hong, L. M. Petersen, P. Demkowicz,
L. Chen, S. R. Leopold, B. M. Hanson, H. O. Agresta, M. Gerstein, E. Soder-
gren, and G. M.Weinstock, “Evaluation of 16S rRNA gene sequencing for species
and strain-level microbiome analysis,” Nature Communications, vol. 10, p. 5029,
Nov. 2019.

[26] T. J. Sharpton, “An introduction to the analysis of shotgun metagenomic data,”
Frontiers in Plant Science, vol. 5, p. 209, June 2014.

[27] M. Shakya, C.-C. Lo, and P. S. G. Chain, “Advances and Challenges in Meta-
transcriptomic Analysis,” Frontiers in Genetics, vol. 10, p. 904, 2019.

[28] J. M. Janda and S. L. Abbott, “16S rRNA Gene Sequencing for Bacterial Iden-
tification in the Diagnostic Laboratory: Pluses, Perils, and Pitfalls,” Journal of
Clinical Microbiology, vol. 45, pp. 2761–2764, Sept. 2007. Publisher: American
Society for Microbiology.

[29] M. Pichler, O. K. Coskun, A. Ortega-Arbulu, N. Conci, G. Worheide, S. Vargas,
and W. D. Orsi, “A 16S rRNA gene sequencing and analysis protocol for the
Illumina MiniSeq platform,” MicrobiologyOpen, vol. 7, p. e00611, Mar. 2018.

[30] “16S Sequencing vs Shotgun Metagenomic Sequencing.”

[31] R. Bharti and D. G. Grimm, “Current challenges and best-practice protocols for
microbiome analysis,” Briefings in Bioinformatics, vol. 22, pp. 178–193, Jan.
2021.

[32] M. O. Press, A. H. Wiser, Z. N. Kronenberg, K. W. Langford, M. Shakya,
C.-C. Lo, K. A. Mueller, S. T. Sullivan, P. S. G. Chain, and I. Liachko, “Hi-C
deconvolution of a human gut microbiome yields high-quality draft genomes
and reveals plasmid-genome interactions,” tech. rep., Oct. 2017. Company:
Cold Spring Harbor Laboratory Distributor: Cold Spring Harbor Laboratory
Label: Cold Spring Harbor Laboratory Section: New Results Type: article.

[33] S. Bahmani, N. Azarpira, and E. Moazamian, “Anti-colon cancer activity of Bifi-
dobacterium metabolites on colon cancer cell line SW742,” The Turkish Journal
of Gastroenterology: The Official Journal of Turkish Society of Gastroenterol-
ogy, vol. 30, pp. 835–842, Sept. 2019.

[34] D. Y. Graham, “History of Helicobacter pylori, duodenal ulcer, gastric ulcer and
gastric cancer,” World Journal of Gastroenterology : WJG, vol. 20, pp. 5191–
5204, May 2014.



84

[35] P. J. Turnbaugh, R. E. Ley, M. Hamady, C. M. Fraser-Liggett, R. Knight, and
J. I. Gordon, “The Human Microbiome Project,” Nature, vol. 449, pp. 804–810,
Oct. 2007.

[36] P. Markowiak and K. Śliżewska, “Effects of Probiotics, Prebiotics, and Synbi-
otics on Human Health,” Nutrients, vol. 9, p. E1021, Sept. 2017.

[37] E. National Academies of Sciences, D. o. E. a. L. Studies, B. o. L. Sciences,
B. o. E. S. Toxicology, , and C. o. A. U. o. t. I. o. E.-C. I. w. t. H. Microbiome,
Microbiome Variation. National Academies Press (US), Dec. 2017. Publication
Title: Environmental Chemicals, the Human Microbiome, and Health Risk: A
Research Strategy.

[38] L. B. Bindels, N. M. Delzenne, P. D. Cani, and J. Walter, “Towards a more com-
prehensive concept for prebiotics,” Nature Reviews. Gastroenterology & Hepa-
tology, vol. 12, pp. 303–310, May 2015.

[39] C. Grootaert, J. A. Delcour, C. M. Courtin, W. F. Broekaert, W. Verstraete, and
T. Van de Wiele, “Microbial metabolism and prebiotic potency of arabinoxylan
oligosaccharides in the human intestine,” Trends in Food Science & Technology,
vol. 18, pp. 64–71, Feb. 2007.

[40] S. B. R. d. Prado, V. C. Castro-Alves, G. F. Ferreira, and J. P. Fabi, “Ingestion
of Non-digestible Carbohydrates From Plant-Source Foods and Decreased Risk
of Colorectal Cancer: A Review on the Biological Effects and the Mechanisms
of Action,” Frontiers in Nutrition, vol. 6, 2019. Publisher: Frontiers.

[41] H. H. Creasy, V. Felix, J. Aluvathingal, J. Crabtree, O. Ifeonu, J. Matsumura,
C. McCracken, L. Nickel, J. Orvis, M. Schor, M. Giglio, A. Mahurkar, and
O. White, “HMPDACC: a Human Microbiome Project Multi-omic data re-
source,” Nucleic Acids Research, vol. 49, pp. D734–D742, Jan. 2021.

[42] Y. Janssens, J. Nielandt, A. Bronselaer, N. Debunne, F. Verbeke, E. Wynen-
daele, F. Van Immerseel, Y.-P. Vandewynckel, G. De Tré, and B. De Spiegeleer,
“Disbiome database: linking the microbiome to disease,” BMC Microbiology,
vol. 18, p. 50, June 2018.

[43] L. Cheng, C. Qi, H. Zhuang, T. Fu, and X. Zhang, “gutMDisorder: a compre-
hensive database for dysbiosis of the gut microbiota in disorders and interven-
tions,” Nucleic Acids Research, vol. 48, pp. D554–D560, Jan. 2020.

[44] S. Leonelli, “The challenges of big data biology,” eLife, vol. 8.

[45] E. Birney and M. Clamp, “Biological database design and implementation,”
Briefings in Bioinformatics, vol. 5, pp. 31–38, Mar. 2004.

[46] R. Hoehndorf, P. N. Schofield, and G. V. Gkoutos, “The role of ontologies
in biological and biomedical research: a functional perspective,” Briefings in
Bioinformatics, vol. 16, pp. 1069–1080, Nov. 2015.



85

[47] L. M. Schriml, E. Mitraka, J. Munro, B. Tauber, M. Schor, L. Nickle, V. Felix,
L. Jeng, C. Bearer, R. Lichenstein, K. Bisordi, N. Campion, B. Hyman, D. Kur-
land, C. P. Oates, S. Kibbey, P. Sreekumar, C. Le, M. Giglio, and C. Greene,
“Human Disease Ontology 2018 update: classification, content and workflow
expansion,” Nucleic Acids Research, vol. 47, no. D1, pp. D955–D962, 2019.

[48] S. Kohler, L. Carmody, N. Vasilevsky, J. O. B. Jacobsen, D. Danis, J.-P. Gour-
dine, M. Gargano, N. L. Harris, N. Matentzoglu, J. A. McMurry, D. Osumi-
Sutherland, V. Cipriani, J. P. Balhoff, T. Conlin, H. Blau, G. Baynam,
R. Palmer, D. Gratian, H. Dawkins, M. Segal, A. C. Jansen, A. Muaz, W. H.
Chang, J. Bergerson, S. J. F. Laulederkind, Z. Yüksel, S. Beltran, A. F. Free-
man, P. I. Sergouniotis, D. Durkin, A. L. Storm, M. Hanauer, M. Brudno, S. M.
Bello, M. Sincan, K. Rageth, M. T. Wheeler, R. Oegema, H. Lourghi, M. G.
Della Rocca, R. Thompson, F. Castellanos, J. Priest, C. Cunningham-Rundles,
A. Hegde, R. C. Lovering, C. Hajek, A. Olry, L. Notarangelo, M. Similuk, X. A.
Zhang, D. Gomez-Andres, H. Lochmuller, H. Dollfus, S. Rosenzweig, S. Mar-
waha, A. Rath, K. Sullivan, C. Smith, J. D. Milner, D. Leroux, C. F. Boerkoel,
A. Klion, M. C. Carter, T. Groza, D. Smedley, M. A. Haendel, C. Mungall, and
P. N. Robinson, “Expansion of the Human Phenotype Ontology (HPO) knowl-
edge base and resources,” Nucleic Acids Research, vol. 47, pp. D1018–D1027,
Jan. 2019. Publisher: Oxford Academic.

[49] “Medical Subject Headings - Home Page.” Library Catalog: www.nlm.nih.gov
Publisher: U.S. National Library of Medicine.

[50] L. Page, S. Brin, R. Motwani, and T. Winograd, The PageRank Citation Rank-
ing: Bringing Order to the Web. 1998.

[51] E. J. Yates and L. C. Dixon, “PageRank as a method to rank biomedical lit-
erature by importance,” Source Code for Biology and Medicine, vol. 10, p. 16,
Dec. 2015.

[52] C. Engstrom, “PageRank in Evolving Networks and Applications of Graphs in
Natural Language Processing and Biology,” 2016.

[53] R. Mihalcea and P. Tarau, “TextRank: Bringing Order into Texts,” July 2004.

[54] S. Bolasco and P. Pavone, “Automatic Dictionary- and Rule-Based Systems
for Extracting Information from Text,” in Data Analysis and Classification
(F. Palumbo, C. N. Lauro, and M. J. Greenacre, eds.), Studies in Classification,
Data Analysis, and Knowledge Organization, (Berlin, Heidelberg), pp. 189–198,
Springer, 2010.

[55] C.-H. Wei, H.-Y. Kao, and Z. Lu, “PubTator: a web-based text mining tool for
assisting biocuration,” Nucleic Acids Research, vol. 41, pp. W518–W522, July
2013.



86

[56] J. Laster and L. A. Frame, “Beyond the Calories—Is the Problem in the Pro-
cessing?,” Current Treatment Options in Gastroenterology, vol. 17, pp. 577–586,
Dec. 2019.

[57] B. M. Popkin, “Global nutrition dynamics: the world is shifting rapidly toward a
diet linked with noncommunicable diseases,” The American Journal of Clinical
Nutrition, vol. 84, pp. 289–298, Aug. 2006. Publisher: Oxford Academic.

[58] M. B. Schulze, M. A. Martínez-González, T. T. Fung, A. H. Lichtenstein, and
N. G. Forouhi, “Food based dietary patterns and chronic disease prevention,”
BMJ, vol. 361, June 2018.

[59] R. W. Reid, C. R. Brouwer, E. W. Jackson, and M. A. Lila, “A need for a trans-
disciplinary environment: the Plant Pathways Elucidation Project,” Trends in
Plant Science, vol. 19, pp. 485–487, Aug. 2014. Publisher: Elsevier.

[60] J. Hastings, G. Owen, A. Dekker, M. Ennis, N. Kale, V. Muthukrishnan,
S. Turner, N. Swainston, P. Mendes, and C. Steinbeck, “ChEBI in 2016: Im-
proved services and an expanding collection of metabolites,” Nucleic Acids Re-
search, vol. 44, pp. D1214–D1219, Jan. 2016. Publisher: Oxford Academic.

[61] M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry,
A. P. Davis, K. Dolinski, S. S. Dwight, J. T. Eppig, M. A. Harris, D. P. Hill,
L. Issel-Tarver, A. Kasarskis, S. Lewis, J. C. Matese, J. E. Richardson, M. Ring-
wald, G. M. Rubin, and G. Sherlock, “Gene Ontology: tool for the unification
of biology,” Nature genetics, vol. 25, pp. 25–29, May 2000.

[62] The Gene Ontology Consortium, “The Gene Ontology Resource: 20 years and
still GOing strong,” Nucleic Acids Research, vol. 47, no. D1, pp. D330–D338,
2019.

[63] C. J. Mungall, J. A. McMurry, S. Kohler, J. P. Balhoff, C. Borromeo, M. Brush,
S. Carbon, T. Conlin, N. Dunn, M. Engelstad, E. Foster, J. P. Gourdine, J. O. B.
Jacobsen, D. Keith, B. Laraway, S. E. Lewis, J. NguyenXuan, K. Shefchek,
N. Vasilevsky, Z. Yuan, N. Washington, H. Hochheiser, T. Groza, D. Smedley,
P. N. Robinson, and M. A. Haendel, “The Monarch Initiative: an integrative
data and analytic platform connecting phenotypes to genotypes across species,”
Nucleic Acids Research, vol. 45, pp. D712–D722, Jan. 2017. Publisher: Oxford
Academic.

[64] “Agricultural Thesaurus and Glossary Home Page.”

[65] S. Federhen, “The NCBI Taxonomy database,” Nucleic Acids Research, vol. 40,
pp. D136–143, Jan. 2012.

[66] E. W. Sayers, M. Cavanaugh, K. Clark, J. Ostell, K. D. Pruitt, and I. Karsch-
Mizrachi, “GenBank,” Nucleic Acids Research, vol. 47, no. D1, pp. D94–D99,
2019.



87

[67] G. R. Brown, V. Hem, K. S. Katz, M. Ovetsky, C. Wallin, O. Ermolaeva,
I. Tolstoy, T. Tatusova, K. D. Pruitt, D. R. Maglott, and T. D. Murphy, “Gene:
a gene-centered information resource at NCBI,” Nucleic Acids Research, vol. 43,
pp. D36–D42, Jan. 2015.

[68] M. Halavi, D. Maglott, V. Gorelenkov, and W. Rubinstein, MedGen. National
Center for Biotechnology Information (US), Dec. 2018. Publication Title: The
NCBI Handbook [Internet]. 2nd edition.

[69] T. M. S. Wolever and D. R. a. R. Duss, “Oat B-Glucan Reduces Serum LDL
Cholesterol in Humans with Serum LDL Cholesterol < 160mg/dL,” May 2016.

[70] L. Guo, L.-T. Tong, L. Liu, K. Zhong, J. Qiu, and S. Zhou, “The cholesterol-
lowering effects of oat varieties based on their difference in the composition of
proteins and lipids,” Lipids in Health and Disease, vol. 13, Dec. 2014.

[71] B. Verges, “New insight into the pathophysiology of lipid abnormalities in type
2 diabetes,” Diabetes & Metabolism, vol. 31, pp. 429–439, Nov. 2005.

[72] D. R. Pokharel, D. Khadka, M. Sigdel, N. K. Yadav, S. Acharya, R. Kafle, R. M.
Sapkota, and T. Sigdel, “Prevalence and pattern of dyslipidemia in Nepalese
individuals with type 2 diabetes,” BMC research notes, vol. 10, p. 146, Apr.
2017.

[73] M. J. Shahwan, A. A. Jairoun, A. Farajallah, and S. Shanabli, “Prevalence of
dyslipidemia and factors affecting lipid profile in patients with type 2 diabetes,”
Diabetes & Metabolic Syndrome, vol. 13, pp. 2387–2392, Aug. 2019.

[74] S. K. Paulsen, S. B. Pedersen, S. Fisker, and B. Richelsen, “11Beta-HSD type
1 expression in human adipose tissue: impact of gender, obesity, and fat local-
ization,” Obesity (Silver Spring, Md.), vol. 15, pp. 1954–1960, Aug. 2007.

[75] C. Dammann, C. Stapelfeld, and E. Maser, “Expression and activity of the
cortisol-activating enzyme 11B-hydroxysteroid dehydrogenase type 1 is tissue
and species-specific,” Chemico-Biological Interactions, vol. 303, pp. 57–61, Apr.
2019.

[76] L. V. Turek, N. Leite, R. L. Rodrigues Souza, J. K. Lima, G. E. Milano, L. d. S.
Timossi, A. C. V. Osiecki, R. Osiecki, and L. F. Alle, “Gender-dependent asso-
ciation of HSD11B1 single nucleotide polymorphisms with glucose and HDL-C
levels,” Genetics and Molecular Biology, vol. 37, pp. 490–495, Sept. 2014.

[77] S. Nair, Y. H. Lee, R. S. Lindsay, B. R. Walker, P. A. Tataranni, C. Bogardus,
L. J. Baier, and P. A. Permana, “11beta-Hydroxysteroid dehydrogenase Type
1: genetic polymorphisms are associated with Type 2 diabetes in Pima Indians
independently of obesity and expression in adipocyte and muscle,” Diabetologia,
vol. 47, pp. 1088–1095, June 2004.



88

[78] A. Gambineri, F. Tomassoni, A. Munarini, R. H. Stimson, R. Mioni, U. Pagotto,
K. E. Chapman, R. Andrew, V. Mantovani, R. Pasquali, and B. R. Walker, “A
combination of polymorphisms in HSD11B1 associates with in vivo 11{beta}-
HSD1 activity and metabolic syndrome in women with and without polycystic
ovary syndrome,” European Journal of Endocrinology, vol. 165, pp. 283–292,
Aug. 2011.

[79] D. S. Freedman, B. A. Bowman, S. R. Srinivasan, G. S. Berenson, and J. D.
Otvos, “Distribution and correlates of high-density lipoprotein subclasses among
children and adolescents,” Metabolism: Clinical and Experimental, vol. 50,
pp. 370–376, Mar. 2001.

[80] D. C. Goff, R. B. D’Agostino, S. M. Haffner, and J. D. Otvos, “Insulin resistance
and adiposity influence lipoprotein size and subclass concentrations. Results
from the Insulin Resistance Atherosclerosis Study,” Metabolism: Clinical and
Experimental, vol. 54, pp. 264–270, Feb. 2005.

[81] R. Abdul Rani, R. A. Raja Ali, and Y. Y. Lee, “Irritable bowel syndrome and
inflammatory bowel disease overlap syndrome: pieces of the puzzle are falling
into place,” Intestinal Research, vol. 14, pp. 297–304, Oct. 2016.

[82] Z. D. Wallen, M. Appah, M. N. Dean, C. L. Sesler, S. A. Factor, E. Molho,
C. P. Zabetian, D. G. Standaert, and H. Payami, “Characterizing dysbiosis of
gut microbiome in PD: evidence for overabundance of opportunistic pathogens,”
npj Parkinson’s Disease, vol. 6, pp. 1–12, June 2020. Number: 1 Publisher:
Nature Publishing Group.

[83] D. R. Mack, “Probiotics,” Canadian Family Physician, vol. 51, pp. 1455–1457,
Nov. 2005.

[84] D. Davani-Davari, M. Negahdaripour, I. Karimzadeh, M. Seifan, M. Mohkam,
S. J. Masoumi, A. Berenjian, and Y. Ghasemi, “Prebiotics: Definition, Types,
Sources, Mechanisms, and Clinical Applications,” Foods, vol. 8, p. 92, Mar.
2019.

[85] E. P. Halmos, C. T. Christophersen, A. R. Bird, S. J. Shepherd, P. R. Gibson,
and J. G. Muir, “Diets that differ in their FODMAP content alter the colonic
luminal microenvironment,” Gut, vol. 64, pp. 93–100, Jan. 2015.

[86] R. K. Singh, H.-W. Chang, D. Yan, K. M. Lee, D. Ucmak, K. Wong, M. Abrouk,
B. Farahnik, M. Nakamura, T. H. Zhu, T. Bhutani, and W. Liao, “Influence of
diet on the gut microbiome and implications for human health,” Journal of
Translational Medicine, vol. 15, p. 73, Apr. 2017.

[87] S. Goertz, A. B. d. Menezes, R. J. Birtles, J. Fenn, A. E. Lowe, A. D. C.
MacColl, B. Poulin, S. Young, J. E. Bradley, and C. H. Taylor, “Geograph-
ical location influences the composition of the gut microbiota in wild house



89

mice (Mus musculus domesticus) at a fine spatial scale,” PLOS ONE, vol. 14,
p. e0222501, Sept. 2019. Publisher: Public Library of Science.

[88] V. K. Gupta, S. Paul, and C. Dutta, “Geography, Ethnicity or Subsistence-
Specific Variations in Human Microbiome Composition and Diversity,” Fron-
tiers in Microbiology, vol. 8, p. 1162, June 2017.

[89] D. Westergaard, H.-H. Staerfeldt, C. Tonsberg, L. J. Jensen, and S. Brunak,
“Text mining of 15 million full-text scientific articles,” bioRxiv, p. 162099, July
2017.

[90] D. Westergaard, H.-H. Stærfeldt, C. Tønsberg, L. J. Jensen, and S. Brunak,
“A comprehensive and quantitative comparison of text-mining in 15 million
full-text articles versus their corresponding abstracts,” PLOS Computational
Biology, vol. 14, p. e1005962, Feb. 2018. Publisher: Public Library of Science.

[91] F. Khan, M. M. R. Sarker, L. C. Ming, I. N. Mohamed, C. Zhao, B. Y. Sheikh,
H. F. Tsong, and M. A. Rashid, “Comprehensive Review on Phytochemicals,
Pharmacological and Clinical Potentials of Gymnema sylvestre,” Frontiers in
Pharmacology, vol. 10, 2019.

[92] R. Guan, Q. Van Le, H. Yang, D. Zhang, H. Gu, Y. Yang, C. Sonne, S. S. Lam,
J. Zhong, Z. Jianguang, R. Liu, and W. Peng, “A review of dietary phytochem-
icals and their relation to oxidative stress and human diseases,” Chemosphere,
vol. 271, p. 129499, May 2021.

[93] R. Verkerk, M. Schreiner, A. Krumbein, E. Ciska, B. Holst, I. Rowland,
R. De Schrijver, M. Hansen, C. Gerhäuser, R. Mithen, and M. Dekker, “Glucosi-
nolates in Brassica vegetables: the influence of the food supply chain on intake,
bioavailability and human health,” Molecular Nutrition & Food Research, vol. 53
Suppl 2, p. S219, Sept. 2009.

[94] A. Mazumder, A. Dwivedi, and J. du Plessis, “Sinigrin and Its Therapeutic
Benefits,” Molecules (Basel, Switzerland), vol. 21, p. 416, Mar. 2016.

[95] O. Vang, J. Mortensen, and O. Andersen, “Biochemical effects of dietary intake
of different broccoli samples. II. Multivariate analysis of contributions of specific
glucosinolates in modulating cytochrome P-450 and antioxidant defense enzyme
activities,” Metabolism: Clinical and Experimental, vol. 50, pp. 1130–1135, Oct.
2001.

[96] B. Wang, L. Wu, J. Chen, L. Dong, C. Chen, Z. Wen, J. Hu, I. Fleming,
and D. W. Wang, “Metabolism pathways of arachidonic acids: mechanisms
and potential therapeutic targets,” Signal Transduction and Targeted Ther-
apy, vol. 6, pp. 1–30, Feb. 2021. Bandiera_abtest: a Cc_license_type: cc_by
Cg_type: Nature Research Journals Number: 1 Primary_atype: Reviews Pub-
lisher: Nature Publishing Group Subject_term: Cancer;Cardiovascular diseases
Subject_term_id: cancer;cardiovascular-diseases.



90

[97] A. J. Higgins and P. Lees, “The acute inflammatory process, arachidonic acid
metabolism and the mode of action of anti-inflammatory drugs,” Equine Vet-
erinary Journal, vol. 16, pp. 163–175, May 1984.

[98] H. Tallima and R. El Ridi, “Arachidonic acid: Physiological roles and potential
health benefits – A review,” Journal of Advanced Research, vol. 11, pp. 33–41,
Nov. 2017.

[99] J. W. Fahey, W. D. Holtzclaw, S. L. Wehage, K. L. Wade, K. K. Stephen-
son, and P. Talalay, “Sulforaphane Bioavailability from Glucoraphanin-Rich
Broccoli: Control by Active Endogenous Myrosinase,” PLoS ONE, vol. 10,
p. e0140963, Nov. 2015.

[100] D.-L. Cheng, K. Hashimoto, and Y. Uda, “In vitro digestion of sinigrin and
glucotropaeolin by single strains of Bifidobacterium and identification of the
digestive products,” Food and Chemical Toxicology: An International Journal
Published for the British Industrial Biological Research Association, vol. 42,
pp. 351–357, Mar. 2004.

[101] B. J. Parker, P. A. Wearsch, A. C. M. Veloo, and A. Rodriguez-Palacios, “The
Genus Alistipes: Gut Bacteria With Emerging Implications to Inflammation,
Cancer, and Mental Health,” Frontiers in Immunology, vol. 11, 2020.

[102] K. Nomura, D. Ishikawa, K. Okahara, S. Ito, K. Haga, M. Takahashi,
A. Arakawa, T. Shibuya, T. Osada, K. Kuwahara-Arai, T. Kirikae, and A. Naga-
hara, “Bacteroidetes Species Are Correlated with Disease Activity in Ulcerative
Colitis,” Journal of Clinical Medicine, vol. 10, p. 1749, Apr. 2021.

[103] S. Louis, R.-M. Tappu, A. Damms-Machado, D. H. Huson, and S. C. Bischoff,
“Characterization of the Gut Microbial Community of Obese Patients Following
a Weight-Loss Intervention Using Whole Metagenome Shotgun Sequencing,”
PLoS ONE, vol. 11, p. e0149564, Feb. 2016.

[104] R. Sarwar, N. Pierce, and S. Koppe, “Obesity and nonalcoholic fatty liver dis-
ease: current perspectives,” Diabetes, Metabolic Syndrome and Obesity: Targets
and Therapy, vol. 11, pp. 533–542, Sept. 2018.

[105] C. A. Pickens, L. M. Sordillo, C. Zhang, and J. I. Fenton, “Obesity is positively
associated with arachidonic acid-derived 5- and 11-hydroxyeicosatetraenoic acid
(HETE),” Metabolism: Clinical and Experimental, vol. 70, pp. 177–191, May
2017.

[106] Y. Naito, K. Uchiyama, and T. Takagi, “A next-generation beneficial microbe:
Akkermansia muciniphila,” Journal of Clinical Biochemistry and Nutrition,
vol. 63, pp. 33–35, July 2018.

[107] M. C. Dao, A. Everard, J. Aron-Wisnewsky, N. Sokolovska, E. Prifti, E. O.
Verger, B. D. Kayser, F. Levenez, J. Chilloux, L. Hoyles, M.-O. Consortium,



91

M.-E. Dumas, S. W. Rizkalla, J. Doré, P. D. Cani, and K. Clément, “Akkerman-
sia muciniphila and improved metabolic health during a dietary intervention in
obesity: relationship with gut microbiome richness and ecology,” Gut, vol. 65,
pp. 426–436, Mar. 2016. Publisher: BMJ Publishing Group Section: Gut mi-
crobiota.

[108] S. Y. Geerlings, I. Kostopoulos, W. M. de Vos, and C. Belzer, “Akkermansia
muciniphila in the Human Gastrointestinal Tract: When, Where, and How?,”
Microorganisms, vol. 6, p. 75, July 2018.

[109] E. E. Blaak, E. E. Canfora, S. Theis, G. Frost, A. K. Groen, G. Mithieux,
A. Nauta, K. Scott, B. Stahl, J. van Harsselaar, R. van Tol, E. E. Vaughan,
and K. Verbeke, “Short chain fatty acids in human gut and metabolic health,”
Beneficial Microbes, vol. 11, pp. 411–455, Sept. 2020.

[110] M. Derrien, E. E. Vaughan, C. M. Plugge, and W. M. de Vos, “Akkermansia
muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium,”
International Journal of Systematic and Evolutionary Microbiology, vol. 54,
pp. 1469–1476, Sept. 2004.

[111] F. Van Herreweghen, K. De Paepe, H. Roume, F.-M. Kerckhof, and T. Van de
Wiele, “Mucin degradation niche as a driver of microbiome composition and
Akkermansia muciniphila abundance in a dynamic gut model is donor indepen-
dent,” FEMS Microbiology Ecology, vol. 94, p. fiy186, Dec. 2018.

[112] K. E. Norin, B. E. Gustafsson, B. S. Lindblad, and T. Midtvedt, “The estab-
lishment of some microflora associated biochemical characteristics in feces from
children during the first years of life,” Acta Paediatrica Scandinavica, vol. 74,
pp. 207–212, Mar. 1985.

[113] E. Gaudier, A. Jarry, H. M. Blottière, P. de Coppet, M. P. Buisine, J. P.
Aubert, C. Laboisse, C. Cherbut, and C. Hoebler, “Butyrate specifically mod-
ulates MUC gene expression in intestinal epithelial goblet cells deprived of glu-
cose,” American Journal of Physiology-Gastrointestinal and Liver Physiology,
vol. 287, pp. G1168–G1174, Dec. 2004. Publisher: American Physiological So-
ciety.

[114] J. A. Jiminez, T. C. Uwiera, D. W. Abbott, R. R. E. Uwiera, and G. D. In-
glis, “Butyrate Supplementation at High Concentrations Alters Enteric Bacte-
rial Communities and Reduces Intestinal Inflammation in Mice Infected with
Citrobacter rodentium,” mSphere, vol. 2, Aug. 2017.

[115] Y. P. Silva, A. Bernardi, and R. L. Frozza, “The Role of Short-Chain Fatty
Acids From Gut Microbiota in Gut-Brain Communication,” Frontiers in En-
docrinology, vol. 11, 2020.



92

[116] F. F. Anhê, G. Pilon, D. Roy, Y. Desjardins, E. Levy, and A. Marette, “Trig-
gering Akkermansia with dietary polyphenols: A new weapon to combat the
metabolic syndrome?,” Gut Microbes, vol. 7, no. 2, pp. 146–153, 2016.

[117] J. Pérez-Jiménez, V. Neveu, F. Vos, and A. Scalbert, “Identification of the 100
richest dietary sources of polyphenols: an application of the Phenol-Explorer
database,” European Journal of Clinical Nutrition, vol. 64, pp. S112–S120, Nov.
2010. Number: 3 Publisher: Nature Publishing Group.

[118] J. Joven, V. Micol, A. Segura-Carretero, C. Alonso-Villaverde, J. A. Menén-
dez, and Bioactive Food Components Platform, “Polyphenols and the modu-
lation of gene expression pathways: can we eat our way out of the danger of
chronic disease?,” Critical Reviews in Food Science and Nutrition, vol. 54, no. 8,
pp. 985–1001, 2014.

[119] H. Cory, S. Passarelli, J. Szeto, M. Tamez, and J. Mattei, “The Role of Polyphe-
nols in Human Health and Food Systems: A Mini-Review,” Frontiers in Nutri-
tion, vol. 5, p. 87, Sept. 2018.

[120] P. Jeandet, C. Clément, and S. Cordelier, “Regulation of resveratrol biosynthesis
in grapevine: new approaches for disease resistance?,” Journal of Experimental
Botany, vol. 70, pp. 375–378, Jan. 2019.

[121] X. Zhang, H. Mallick, Z. Tang, L. Zhang, X. Cui, A. K. Benson, and N. Yi,
“Negative binomial mixed models for analyzing microbiome count data,” BMC
bioinformatics, vol. 18, p. 4, Jan. 2017.

[122] D. G. Bailey and G. K. Dresser, “Interactions between grapefruit juice and car-
diovascular drugs,” American Journal of Cardiovascular Drugs: Drugs, Devices,
and Other Interventions, vol. 4, no. 5, pp. 281–297, 2004.

[123] P. V’kovski, A. Kratzel, S. Steiner, H. Stalder, and V. Thiel, “Coronavirus biol-
ogy and replication: implications for SARS-CoV-2,” Nature Reviews Microbiol-
ogy, vol. 19, pp. 155–170, Mar. 2021. Number: 3 Publisher: Nature Publishing
Group.

[124] M. Rastogi, N. Pandey, A. Shukla, and S. K. Singh, “SARS coronavirus 2: from
genome to infectome,” Respiratory Research, vol. 21, p. 318, Dec. 2020.

[125] M. A. Marra, S. J. M. Jones, C. R. Astell, R. A. Holt, A. Brooks-Wilson, Y. S. N.
Butterfield, J. Khattra, J. K. Asano, S. A. Barber, S. Y. Chan, A. Cloutier,
S. M. Coughlin, D. Freeman, N. Girn, O. L. Griffith, S. R. Leach, M. Mayo,
H. McDonald, S. B. Montgomery, P. K. Pandoh, A. S. Petrescu, A. G. Robert-
son, J. E. Schein, A. Siddiqui, D. E. Smailus, J. M. Stott, G. S. Yang, F. Plum-
mer, A. Andonov, H. Artsob, N. Bastien, K. Bernard, T. F. Booth, D. Bowness,
M. Czub, M. Drebot, L. Fernando, R. Flick, M. Garbutt, M. Gray, A. Grolla,
S. Jones, H. Feldmann, A. Meyers, A. Kabani, Y. Li, S. Normand, U. Stro-
her, G. A. Tipples, S. Tyler, R. Vogrig, D. Ward, B. Watson, R. C. Brunham,



93

M. Krajden, M. Petric, D. M. Skowronski, C. Upton, and R. L. Roper, “The
Genome sequence of the SARS-associated coronavirus,” Science (New York,
N.Y.), vol. 300, pp. 1399–1404, May 2003.

[126] “CDC Media Relations: Press Release.”

[127] K. Yuki, M. Fujiogi, and S. Koutsogiannaki, “COVID-19 pathophysiology: A
review,” Clinical Immunology (Orlando, Fla.), vol. 215, p. 108427, June 2020.

[128] M. Scudellari, “How the coronavirus infects cells — and why Delta is so
dangerous,” Nature, vol. 595, pp. 640–644, July 2021. Bandiera_abtest: a
Cg_type: News Feature Number: 7869 Publisher: Nature Publishing Group
Subject_term: SARS-CoV-2, Virology.

[129] N. Fraser, L. Brierley, G. Dey, J. K. Polka, M. Pálfy, F. Nanni, and J. A. Coates,
“The evolving role of preprints in the dissemination of COVID-19 research and
their impact on the science communication landscape,” PLOS Biology, vol. 19,
p. e3000959, Apr. 2021. Publisher: Public Library of Science.

[130] T. Sheldon, “Preprints could promote confusion and distortion,” Nature,
vol. 559, pp. 445–445, July 2018. Bandiera_abtest: a Cg_type: World View
Number: 7715 Publisher: Nature Publishing Group Subject_term: Publishing,
Society, Communication.

[131] C. F. D. Carneiro, V. G. S. Queiroz, T. C. Moulin, C. A. M. Carvalho, C. B.
Haas, D. Rayêe, D. E. Henshall, E. A. De-Souza, F. E. Amorim, F. Z. Boos,
G. D. Guercio, I. R. Costa, K. L. Hajdu, L. van Egmond, M. Modrák, P. B.
Tan, R. J. Abdill, S. J. Burgess, S. F. S. Guerra, V. T. Bortoluzzi, and O. B.
Amaral, “Comparing quality of reporting between preprints and peer-reviewed
articles in the biomedical literature,” Research Integrity and Peer Review, vol. 5,
p. 16, Dec. 2020.

[132] N. K. Fry, H. Marshall, and T. Mellins-Cohen, “In praise of preprints,” Microbial
Genomics, vol. 5, p. e000259, Apr. 2019.

[133] R. Van Noorden, “Publishers withdraw more than 120 gibberish papers,” Na-
ture, Feb. 2014. Publisher: Nature Publishing Group.

[134] L. Brierley, “Lessons from the influx of preprints during the early COVID-19
pandemic,” The Lancet Planetary Health, vol. 5, pp. e115–e117, Mar. 2021.
Publisher: Elsevier.

[135] L. Lu Wang, K. Lo, Y. Chandrasekhar, R. Reas, J. Yang, D. Eide, K. Funk,
R. Kinney, Z. Liu, W. Merrill, P. Mooney, D. Murdick, D. Rishi, J. Sheehan,
Z. Shen, B. Stilson, A. D. Wade, K. Wang, C. Wilhelm, B. Xie, D. Raymond,
D. S. Weld, O. Etzioni, and S. Kohlmeier, “CORD-19: The Covid-19 Open
Research Dataset,” ArXiv, p. arXiv:2004.10706v2, Apr. 2020.



94

[136] H. C. Maltezou, A. Pavli, and A. Tsakris, “Post-COVID Syndrome: An Insight
on Its Pathogenesis,” Vaccines, vol. 9, p. 497, May 2021.

[137] I. Djaharuddin, S. Munawwarah, A. Nurulita, M. Ilyas, N. A. Tabri, and N. Li-
hawa, “Comorbidities and mortality in COVID-19 patients,” Gaceta Sanitaria,
vol. 35 Suppl 2, pp. S530–S532, 2021.

[138] D. S. Wishart, C. Knox, A. C. Guo, D. Cheng, S. Shrivastava, D. Tzur, B. Gau-
tam, and M. Hassanali, “DrugBank: a knowledgebase for drugs, drug actions
and drug targets,” Nucleic Acids Research, vol. 36, pp. D901–906, Jan. 2008.

[139] W. Luo and C. Brouwer, “Pathview: an R/Bioconductor package for pathway-
based data integration and visualization,” Bioinformatics, vol. 29, pp. 1830–
1831, July 2013.

[140] A. Raveendran, R. Jayadevan, and S. Sashidharan, “Long COVID: An
overview,” Diabetes & Metabolic Syndrome, vol. 15, no. 3, pp. 869–875, 2021.

[141] O. L. Aiyegbusi, S. E. Hughes, G. Turner, S. C. Rivera, C. McMullan, J. S.
Chandan, S. Haroon, G. Price, E. H. Davies, K. Nirantharakumar, E. Sapey,
and M. J. Calvert, “Symptoms, complications and management of long COVID:
a review,” Journal of the Royal Society of Medicine, vol. 114, pp. 428–442, Sept.
2021.

[142] F. J. Stevens and Y. Argon, “Protein folding in the ER,” Seminars in Cell &
Developmental Biology, vol. 10, pp. 443–454, Oct. 1999.

[143] I. Braakman and D. N. Hebert, “Protein Folding in the Endoplasmic Reticu-
lum,” Cold Spring Harbor Perspectives in Biology, vol. 5, p. a013201, May 2013.
Company: Cold Spring Harbor Laboratory Press Distributor: Cold Spring Har-
bor Laboratory Press Institution: Cold Spring Harbor Laboratory Press Label:
Cold Spring Harbor Laboratory Press Publisher: Cold Spring Harbor Lab.

[144] C. J. Adams, M. C. Kopp, N. Larburu, P. R. Nowak, and M. M. U. Ali, “Struc-
ture and Molecular Mechanism of ER Stress Signaling by the Unfolded Protein
Response Signal Activator IRE1,” Frontiers in Molecular Biosciences, vol. 6,
2019.

[145] P. Olausson, B. Gerdle, N. Ghafouri, D. Sjöström, E. Blixt, and B. Ghafouri,
“Protein alterations in women with chronic widespread pain – An explorative
proteomic study of the trapezius muscle,” Scientific Reports, vol. 5, p. 11894,
July 2015. Number: 1 Publisher: Nature Publishing Group.

[146] R. Ding, B. Sun, Z. Liu, X. Yao, H. Wang, X. Shen, H. Jiang, and J. Chen,
“Advanced Oxidative Protein Products Cause Pain Hypersensitivity in Rats by
Inducing Dorsal Root Ganglion Neurons Apoptosis via NADPH Oxidase 4/c-
Jun N-terminal Kinase Pathways,” Frontiers in Molecular Neuroscience, vol. 10,
2017.



95

[147] K. Wåhlén, B. Ghafouri, N. Ghafouri, and B. Gerdle, “Plasma Protein Pat-
tern Correlates With Pain Intensity and Psychological Distress in Women With
Chronic Widespread Pain,” Frontiers in Psychology, vol. 9, p. 2400, Nov. 2018.

[148] A. Yang, F. Chen, C. He, J. Zhou, Y. Lu, J. Dai, R. B. Birge, and Y. Wu,
“The Procoagulant Activity of Apoptotic Cells Is Mediated by Interaction with
Factor XII,” Frontiers in Immunology, vol. 8, p. 1188, Sept. 2017.

[149] E. Pretorius, M. Vlok, C. Venter, J. A. Bezuidenhout, G. J. Laubscher,
J. Steenkamp, and D. B. Kell, “Persistent clotting protein pathology in Long
COVID/Post-Acute Sequelae of COVID-19 (PASC) is accompanied by in-
creased levels of antiplasmin,” Cardiovascular Diabetology, vol. 20, p. 172, Aug.
2021.

[150] T. Oskotsky, I. Marić, A. Tang, B. Oskotsky, R. J. Wong, N. Aghaeepour,
M. Sirota, and D. K. Stevenson, “Mortality Risk Among Patients With COVID-
19 Prescribed Selective Serotonin Reuptake Inhibitor Antidepressants,” JAMA
Network Open, vol. 4, p. e2133090, Nov. 2021.

[151] L. Mastrangelo, A. Cassidy, F. Mulholland, W. Wang, and Y. Bao, “Serotonin
receptors, novel targets of sulforaphane identified by proteomic analysis in Caco-
2 cells,” Cancer Research, vol. 68, pp. 5487–5491, July 2008.

[152] E. Cano-Gamez and G. Trynka, “From GWAS to Function: Using Functional
Genomics to Identify the Mechanisms Underlying Complex Diseases,” Frontiers
in Genetics, vol. 11, 2020.

[153] J. Ellson, E. R. Gansner, E. Koutsofios, S. C. North, and G. Woodhull,
“Graphviz and Dynagraph — Static and Dynamic Graph Drawing Tools,” in
Graph Drawing Software (M. Jünger and P. Mutzel, eds.), pp. 127–148, Berlin,
Heidelberg: Springer, 2004.

[154] M. Galushka, C. Swain, F. Browne, M. D. Mulvenna, R. Bond, and D. Gray,
“Prediction of chemical compounds properties using a deep learning model,”
Neural Computing and Applications, vol. 33, pp. 13345–13366, Oct. 2021.

[155] S. Jaeger, S. Fulle, and S. Turk, “Mol2vec: Unsupervised Machine Learning Ap-
proach with Chemical Intuition,” Journal of Chemical Information and Model-
ing, vol. 58, pp. 27–35, Jan. 2018.

[156] J. M. Kleinberg, R. Kumar, P. Raghavan, S. Rajagopalan, and A. S. Tomkins,
“The Web as a Graph: Measurements, Models, and Methods,” in Comput-
ing and Combinatorics (T. Asano, H. Imai, D. T. Lee, S.-i. Nakano, and
T. Tokuyama, eds.), Lecture Notes in Computer Science, (Berlin, Heidelberg),
pp. 1–17, Springer, 1999.

[157] C. Shi, X. Kong, Y. Huang, P. S. Yu, and B. Wu, “HeteSim: A General Frame-
work for Relevance Measure in Heterogeneous Networks,” arXiv:1309.7393 [cs],
Sept. 2013. arXiv: 1309.7393.



96

[158] A. Clark, C. Fox, and S. Lappin, eds., The handbook of computational linguistics
and natural language processing. Blackwell handbooks in linguistics, Chichester,
West Sussex ; Malden, MA: Wiley-Blackwell, 2010. OCLC: ocn500823419.

[159] D. Ferrucci, A. Levas, S. Bagchi, D. Gondek, and E. T. Mueller, “Watson:
Beyond Jeopardy!,” Artificial Intelligence, vol. 199-200, pp. 93–105, June 2013.

[160] C. Derici, K. Celik, E. Kutbay, Y. Aydin, T. Gungor, A. Ozgur, and G. Kar-
tal, “Question Analysis for a Closed Domain Question Answering System,” in
Computational Linguistics and Intelligent Text Processing (A. Gelbukh, ed.),
vol. 9042, pp. 468–482, Cham: Springer International Publishing, 2015.

[161] M. Gardner, J. Grus, M. Neumann, O. Tafjord, P. Dasigi, N. Liu, M. Pe-
ters, M. Schmitz, and L. Zettlemoyer, “AllenNLP: A Deep Semantic Natu-
ral Language Processing Platform,” arXiv:1803.07640 [cs], May 2018. arXiv:
1803.07640.



97

APPENDIX A: KB Code

This project utilizes Python heavily to Extract, Transform, and Load source data.

Linguamatics queries were developed to mine through abstracts and full-text articles.

Docker was used to build and run instances of the Knowledgebase and interface. This

allows for standardizing systems regardless of user hardware. All code written for this

project can be found at the following url: https://github.com/atrautm1/Dissertation.

https://github.com/atrautm1/Dissertation
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APPENDIX B: Research Timeline

Table B.1: The timeline for all research aims.

Aim Task Est. Duration (days)

1.1 Develop a method to Auto Download Source Data 90

1.2 Update source data 120

1.3 Containerize the knowledgebase 90

1.4 Load Data into KB 60

1.5 Develop an interface for exploration 60

2.1 Identify relevant Full Text (FT) articles 30

2.2 Acquire permissions for text mining FT articles 45

2.3 Download FT articles 45

2.4 Index FT articles in I2E 45

2.5 Develop Text Mining Queries 90

2.6 Source structured microbiome data 90

2.6 Connect ABCkb 2.0 to interface 90

3.1 Get quarantined 60

3.2 Download Cord-19 subset 45

3.3 Index Cord-19 subset 45

3.4 Develop Text mining queries 45

3.5 Connect text mined data to ABCkb 30

3.5 Pathview analysis 30
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APPENDIX C: CDkb Long-Covid Nodes

Table C.1: These are the phenotype nodes from the CDkb that are connected with 9
common symptoms of long-covid.

Source ID Node Name Long Covid Symptom

D005221 Fatigue Fatigue

HP:0012378 Fatigue Fatigue

D005222 Mental Fatigue Fatigue

HP:0012432 Chronic fatigue Fatigue

DOID:8544 chronic fatigue syndrome Fatigue

NAL:918 cough Cough

D003371 Cough Cough

HP:0012735 Cough Cough

HP:0031246 Nonproductive cough Cough

D004417 Dyspnea Dyspnea

NAL:919 Dyspnea Dyspnea

HP:0002829 Arthralgia Arthralgia

D018771 Arthralgia Arthralgia

D002637 Chest Pain Chest Pain

HP:0100749 Chest Pain Chest Pain

NAL:204102 memory disorders Memory Disorders

HP:0002354 Memory impairment Memory Disorders

D008569 Memory Disorders Memory Disorders

HP:0000458 Anosmia Anosmia

MONDO:0010528 anosmia (disease) Anosmia

HP:0012247 Specific anosmia Anosmia

Continued on next page
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Table C.1 – continued from previous page

Source ID Node Name Long Covid Symptom

HP:0010633 Partial anosmia Anosmia

HP:0041051 Ageusia Ageusia

HP:0031249 Parageusia Ageusia

D004408 Dysgeusia Ageusia

D000370 Ageusia Ageusia

D004244 Dizziness Dizziness

D012678 Sensation Disorders Dizziness

HP:0002321 Vertigo Dizziness
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APPENDIX D: Pathview Pathway Analysis with 3 Coronaviridae and Text-mining

Figure D.1: The hits from the pathview analysis with TF*IDF scores providing
color values with the 3 coronaviridae. Colored gene boxes from left to right are:
SARS-CoV-1,SARS-CoV-2,MERS-CoV
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