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ABSTRACT

MASOUMEH SHEIKHI KIASARI. Distance Based Linear Regression Model And
Its Application To Microbiome Association Studies. (Under the direction of DR.

SHAOYU LI)

In the past few decades, pairwise distance based statistical methods have been

developed to identify spatial and/or temporal clusters of disease, study the associa-

tion between the dissimilarity of ecological communities and distance in geographical

locations. With emergence of high-throughput technologies, pairwise distance base

methods are widely used in the analysis of genetics and genomics data, especially

when the data structure fails the fundamental assumptions of classical multivariate

analysis, including independency and normality. However, much of existing knowl-

edge has been around non-parametric or semi-parametric estimations usually employ-

ing permutation techniques to assess statistical significance, which are known to be

computationally expensive and sensitive to the choice of permutation.

Majority of this thesis focuses on linear regression of pairwise distance matrices.

We consider the pairwise correlation structure between the distances and investigate

the large sample properties of the ordinary least squares estimator of the model

coefficients. Extensive simulations are conducted to evaluate the performance of our

method with finite sample size.

Another major component of the thesis is the human microbiome data analysis. We

analyze the integrative Human Microbiome Project (iHMP) data set of composition of

microbial communities in the digestive tracts of humans by using multiple statistical

methods, including our proposed method. The results are presented and interpreted.

Existing challenges and future works are also discussed.
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CHAPTER 1: DISTANCE–BASED MULTIVARIATE ANALYSIS

1.1 Background

Non-standard structured, high dimensional multivariate data are now emerging in

many modern research fields, including neuroimaging, ecology, genomics, and human

microbiome studies. It is of great interest to study the functional relationship between

these multivariate variables and some status of the cohort. It could be the association

between two groups of multivariate variables, such as the relationship between the

ecological system and spatial location; or the association between multivariate de-

pendent variable and a univariate independent variable and vice versa. For example

the association between the expression level of multiple genes in a molecular func-

tional pathway and a disease outcome. Classical multivariate analysis tools become

infeasible because either the massively structured data fail the basic assumptions or

how they cluster together between groups of interest in some research field. Power-

ful statistical tools like multivariate analysis of variance (MANOVA) are based on

assumptions of independence, multivariate normal distribution and homogeneity of

covariance [1, 2]. But many data sets do not conform with these assumptions. Take

for example ecological data where number of each species is considered a variable.

Abundance of individual species are usually highly aggregated and skewed and non-

normally distributed. Also it is common that the number of spices is larger than the
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sample size (i.e. small n and large p problem) [3, 4]. These major challenges lead to

two avenue of statistical methodologies for the kind of multivariate data analysis.

1.2 Distance based linear correlation

1.2.1 Mantel test

Mantel test was primarily introduced to identify time–space clustering of disease.

The methods was motivated by a biomedical research problem to identify clustering

of leukemia patients in location and time [5]. Assume in a study a sample of n

observations are recorded and can be represented as two subset of variables Xn×p

and Yn×q. The interpersonal differences in X and Y , DX = [d
X

ij ]1≤i<j≤n and DY =

[d
Y

ij]1≤i<j≤n are constructed by using suitable dissimilarity measurements sX and sY

as shown in Figure 1.1. Let Xi = [xi1, xi2, · · · , xin] and Xj = [xj1, xj2, · · · , xjn] be the

i-th and j-th rows of X, then dXij = sX(Xi, Xj) for some distance measure sX(·, ·).

Similarly, the pairwise distance matrix for Y is constructed. Because the distance
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𝑋

Figure 1.1: Constructing the lower triangular matrix of pairwise distances

matrices are symmetric, only element in the lower triangular matrix are used and the

test statistic is

Z(DX , DY ) =
∑ ∑

(1≤i<j≤n)

d
X

ijd
Y

ij (1.1)

A permutation procedure was proposed to obtain the empirical distribution of
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Z values. However, the scale of Z will varies from problem to problem; hence, a

normalized version of Mantel test statistic is

r(DX , DY ) =
∑ ∑

1≤i<j≤n

(d
X

ij − d̄X)(d
Y

ij − d̄Y )

var(dX)1/2var(dY )1/2
(1.2)

where d̄X =
(
n
2

)−1∑∑
1≤i<j≤n d

X
ij is the sample mean of lower triangular distance

matrix (d̄Y is similarly defined). The resulting statistic r is analogous to the Pearson

correlation coefficient [6, 7]. A permutation based procedure is employed to assess

the statistical significance by following steps: 1. compute the observed value of the

statistic r = r(DX , DY ) using Equation 1.2. 2. Permute rows and corresponding

columns of the distance matrix simultaneously as seen in Figure 1.2 to preserve the

symmetry of the structure and construct D∗X . 3. Compute the Mantel statistic

r∗ = r(D∗X , DY ) for all n! possible permutations or a large random set of permutations

for large data sets, say B = 999 for a precision level 0.001.

Permutation

Simultaneous permutation of rows and 
columns to preserve symmetry.

𝐷! 𝐷!∗

Figure 1.2: Permuting rows and columns jointly to preserve symmetric structure of
distance matrix.

4. Calculate empirical p-value by comparing the observed r value with the r∗’s under

permutations. For a test involving upper-tail, under the null hypothesis of r ≤ 0, the

empirical p-value of the test is the proportion of the r∗’s greater than the observed

Mantel statistic r, p-value=#(r∗>r)+1
#(r∗)+1

. For a test involving lower-tail, under the null
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hypothesis of r ≥ 0, the empirical p-value of the test is the proportion of the r∗’s less

than the observed Mantel statistic r, p-value=#(r∗<r)+1
#(r∗)+1

. For a two-tailed test that is

under the null hypothesis of r = 0, the empirical p-value of the test is the proportion of

the |r∗|’s greater than |r|, p-value=#(|r∗|>|r|)+1
#(r∗)+1

where |.| is the absolute value function.

1.2.2 Partial Mantel test

Partial Mantel test is an extension of Mantel test to three distance matrices that

computes partial correlations between the two distance matrices while controlling for

the effect of a third distance matrix [7,8]. Given the observed data X, Y and Z, the

partial Mantel r statistic is

r(DX , DY ;DZ) =
r(DX , DY )− r(DX , DZ)r(DY , DZ)√

1− r(DX , DZ)2
√

1− r(DY , DZ)2
(1.3)

where r(DX , DY ) is the simple Mantel statistic calculated by Equation 1.2. Once

r(DX , DY ), r(DX , DZ) and r(DY , DZ) are computed then r = r(DX , DY ;DZ) can be

calculated using Equation 1.3. To test hypotheses concerning r, one can perform fol-

lowing steps. Construct D∗X by random matrix permutation and evaluate r(D∗X , DY )

and r(D∗X , DZ). Then the partial correlation statistic under permutation, r∗, is the

value of r(D∗X , DY ;DZ) computed by Equation 1.3. Repeat the procedure for a large

number of times (or possibly for all n! permutations for small data). The empirical

p-value of the test is evaluated same way as simple Mantel test.

1.3 Multiple regression on distance matrices

Multiple regression on distance matrices (MRM) is an extension of partial Man-

tel analysis, for modeling between multiple pair-wise distance matrices [9]. Besides

Yn×q and Xn×p , additional variables can be included, for example, Zn×k. Instead of

modeling the linear relationship between the original data, MRM aims to model the



5

Symmetric

	𝑑12
𝑑1	3 𝑑2	3
⋮

𝑑1	𝑛 ⋯ 𝑑𝑛 − 1	𝑛

Unfold distance matrix to 
vector

𝑑!"
𝑑!	$
𝑑"	$
𝑑!	%
𝑑"	%
𝑑$	%
	
⋮
	

𝑑 &'! & 		&(&'!)" ×!

Figure 1.3: Unfolding a distance matrix to a vector

relationship between the pairwise distance matrices, DY , DX and DZ . Because all

are symmetric matrices, the lower triangle of each matrix is vectorized (Figure 1.3),

and a linear regression model is fitted.

d
Y

ij = β0 + β1d
X

ij + β2d
Z

ij + εij, 1 ≤ i < j ≤ n. (1.4)

Unknown coefficients of the model are estimated by ordinary least squares. How-

ever, the asymptotic distribution of the t-test for the significance of the parameters

for linear regression model on independent observations is not feasible because obvi-

ously, the pairwise distances are correlated. A permutation based procedure is also

suggested to assess the significance of the test: The dependent distance matrix is

permuted while holding the explanatory distance matrices unchanged. Let β̂∗i be the

estimated regression coefficients in a permutation. Under the null hypothesis βi = 0,

empirical p-value is the proportion of β̂∗i ’s larger in absolute value than observed β̂i,

p-value=#(|β̂∗i |>|β̂i|)+1

#(β̂∗i )+1
, for all possible or a large sample of permutations.

1.4 Distance based multivariate analysis of variance

1.4.1 Background

Powerful multivariate statistical methods, such as the classical multivariate anal-

ysis of variance (MANOVA), have existed for decades [10–15]. However, in some
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applications, the data structure fails the fundamental assumptions of these methods.

For example, abundances of species in a community take discrete values, rare species

contribute lots of zeros to the data set and there are more variables than sample

size. Especially, when the dimension of the variable p is greater than sample size

n, the sample variance covariance matrix becomes singular, so traditional tools, in-

cluding Hottelling’s T 2 [10] and Wilks’ Lambda test [11] cannot be used. There are

two ways to solve this issue, either using the generalized inverse [16] or distribution

approximation [17] of Dempster trace criterion [18,19] for one and two sample cases.

Gower [20,21], Gower and Legendre [22], and Gower and Krzanowski [23] investigated

the connection between sample variance and distance, specifically, for Euclidean dis-

tance,
∑n

i=1(xi − x̄)2 = 1
n

∑n
i<j(xi − xj)2. They proposed to extend all the necessary

features of MANOVA to the dissimilarity matrix, for example, decompose the total

variance to be between-group and within-group by using the dissimilarity matrix. The

idea has been carried on and motivated various following works on pairwise distance

matrix, among them, the PERMANOVA [4] gains the most attention due to its use

in recent microbiome studies.

1.4.2 Permutational MANOVA

Permutational Multivariate Analysis of Variance (PERMANOVA) [4] is a non–

parametric analogue to traditional MANOVA procedure obtained by partitioning the

lower triangle of a distance matrix into between-group distances and within-group

distances (Figure 1.4). Let N = an be the total number of observations, where a is

the number of groups, and n is the number of observations in each group. Let dij be

the distance between sample units i and j. The total sum of squares is defined as

SST =
1

N

∑ ∑
(1≤i<j≤N)

d2ij
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Figure 1.4: Partitioning a distance matrix into groups. In the right panel, red triangles
represent within-group and the white rectangle represents the between-group.

and within-group or residual sum of squares is

SSW =
1

n

∑ ∑
(1≤i<j≤N)

d2ijI(observations i and j are in same group),

where I(·) is the indicator function. The between-group sum of squares is defined as

SSA = SST − SSW .

A pseudo F-ratio test statistic is computed by

F =
SSA/(a− 1)

SSW/(N − a)

Anderson and Walsh [24] state PERMANOVA assumes exchangeabililty, that is joint

conditional distribution p(X1, X2, · · · , Xn|Yi = yi, for all i) is invariant under per-

mutation of the sample units among the groups [25]. The null hypothesis tested by

PERMANOVA is H0: centroids of groups as defined in space of chosen resemblance

measure are equivalent for all groups. They later explain that, if H0 were true, cen-

troids of each group is within same distance to the overall centroid (Figure 1.5) [24,26].
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Figure 1.5: Schematic diagram of geometric partitioning for PERMANOVA, shown
for g=3 groups of n=10 sampling units per group in two-dimensional (bivariate, p=
2) Euclidean space. First published: https://doi.org/10.1002/9781118445112.
stat07841

Empirical p-value is obtained via permutation. For each permutation the test

statistic F ∗ is calculated and the empirical p-value is computed using p-value=#(F ∗≥F )+1
#(F ∗)+1

.

1.5 Limitations of currently published methods

Variations of Mantel test are usually used in spatial correlation analysis, for example

the study of geographical genetic divergence in botanical science. However, Mantel

test suffers lack of power for spatially autocorrelated data [27]. Spatial autocorrelation

is the term used to describe the presence of systematic spatial variation in a variable.

Positive spatial autocorrelation is the tendency for areas or sites that are close together

to have similar values [28]. Inflated Type-I error and relatively low power appears to

be a general feature of the Mantel test [29–31].

PERMANOVA is routinely used in numerical ecology to test for the location dif-

ferences in microbial communities. It has been discussed that PERMANOVA fails to

detect a significant between-group difference unless it is present in taxa (units of any

rank i.e. kingdom, phylum, class, order, family, genus and species, designating an

https://doi.org/10.1002/9781118445112.stat07841
https://doi.org/10.1002/9781118445112.stat07841
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organism or a group of organisms) with high variance [32]. Moreover, PERMANOVA

is prone to inflated Type-I error in presence of heteroscedasticity [33,34].

Franckowiak et al. in [35] examined the ability of model selection criteria based on

Akaike’s information criterion (AIC) or its small-sample correction (AICc) and the

Bayesian information criterion (BIC), to reliably rank candidate models when applied

with MRM while varying the sample size; and, strongly discouraged the continued

application of AIC, AICc and BIC for model selection with MRM.

A possible explanation of challenges summarized above could be misusing naive

permutation testing. The concept of permutation relies on exchangeability and simple

permutation could lead to inflated Type-I error or low power [36, 37], particularly,

in presence of nuisance effect, unequal variances, correlations, skewness, or unequal

sample sizes in two groups [38,39].



CHAPTER 2: HUMAN MICROBIOME AND INFLAMMATORY BOWEL

DISEASES

2.1 Introduction

"What is the human microbiome?" has troubled researchers [40] since Lederberg’s

coinage of "microbiome" in 2001 [41]. Researchers have confused how to exactly

define the human microbiome and interchangeably used terminologies "microbiota"

and "microbiome". The term microbiota is referred to the microbial taxa associated

with humans to signify the communities of microorganisms within a specific environ-

ment [42]. The term microbiome is defined as the collection of the microbial taxa or

microbes and their genes [40], [43], that is the entire microbial communities. Depend-

ing on the collection of microbes, i.e. the body site in which those microorganisms

inhabit in, researchers use specific terms such as gut microbiome, skin microbiome or

oral microbiome.

Most sources cite the number of human cells as 1013 or 1014, and a recent study

reported 3.7× 1013 human cells in a reference human [44]. Estimates for the number

of microbial cells in the body are usually 1014 − 1015 [45], [46] which suggests a ratio

of 10 : 1 microbial cells to human cells. However, more recent studies suggest the

ratio to be much closer to 1 : 1 [47]. Growing evidence suggests that gut microbiota

may be an important factor in the pathogenesis of a variety of diseases including
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inflammatory [48].

Inflammatory Bowel Disease (IBD) is a broad term that describes conditions char-

acterized by chronic inflammation of the gastrointestinal tract. The two most common

inflammatory bowel diseases are ulcerative colitis (UC) and Crohn’s disease (CD).

Inflammation affects the entire digestive tract in Crohn’s disease and only the large

intestine (also called the colon) in ulcerative colitis. In 2015, more than 3.5 million

people worldwide were diagnosed with IBD (either Crohn’s disease or ulcerative col-

itis) [49]. Dysbiosis of the gut microbiota, an alteration of the microbial community

structure associated with disease, has been consistently observed in patients with IBD.

Although the dysbiosis may simply be a result of the inflammatory process [33], it

may play a role in the pathogenesis of disease where there is an increase in potentially

harmful bacterial and a reduction in more protective bacterial species [50].

2.2 The human microbiome project

The National Institutes of Health (NIH) Human Microbiome Project (HMP, https:

//hmpdacc.org) was carried out over ten years and two phases to provide resources,

methods, and discoveries that link interactions between humans and their micro-

biomes to health–related outcomes. The second phase of the HMP, the Integrative

HMP (iHMP or HMP2) [51], was designed to explore host-microbiome interplay,

including immunity, metabolism, and dynamic molecular activity, to gain a more

holistic view of host-microbe interactions over time [52]. The iHMP projects in-

cluded three studies that followed the dynamics of human health and disease during

conditions with known microbiome interactions: (1) Pregnancy and preterm birth

(PTB) [53], (2) Inflammatory bowel diseases (IBD) [54] and (3) Stressors that affect

individuals with prediabetes [55]. A collection of commentary and research publica-

tions from across Nature journals and related publications from HMP2 can be found

at https://www.nature.com/collections/fiabfcjbfj, and a rich multi-omic data

resource at http://www.ihmpdcc.org.

https://hmpdacc.org
https://hmpdacc.org
https://www.nature.com/collections/fiabfcjbfj
http://www.ihmpdcc.org
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2.3 HMP2 Study: gut microbiome and inflammatory bowel diseases

The Inflammatory Bowel Disease Multi’omics Database (IBDMDB) project fol-

lowed 130 individuals from five clinical centres over the course of one year each as

part of HMP2 (see Table 2.1). Integrated longitudinal molecular profiles of micro-

bial and host activity were generated by analyzing 1,785 stool samples (self-collected

and sent by mail every two weeks), 651 intestinal biopsies (collected colonoscopically

at baseline), and 529 quarterly blood samples [52]. Multiple molecular profiles were

generated from the same sets of samples, including stool metagenomes, metatran-

scriptomes, metaproteomes, viromes, metabolomes, host exomes, epigenomes, tran-

scriptomes, and serological profiles, among others, allowing concurrent changes to be

observed in multiple types of host and microbial molecular and clinical activity over

time. Protocols and results from the study, further information about its infrastruc-

ture, and both raw and processed data products are available through the IBDMDB

data portal http://ibdmdb.org, from the HMP2 Data Coordination Center (DCC;

http://ihmpdcc.org). [54, 56–60]

Table 2.1: Number of Subjects by Category in HMP2 study of inflammatory bowel
diseases (IBD). nonIBD: not diagnosed with IBD or control group; CD: diagnosed
with Crohn’s disease; UC: diagnosed with ulcerative colitis.

Disease Gender Child School-age Adult Senior Total

nonIBD female 3 5 4 0 12
male 3 2 9 1 15

CD female 3 8 20 1 32
male 5 15 13 0 33

UC female 2 3 14 1 21
male 1 9 7 1 17

Total 17 42 67 4 130

http://ibdmdb.org
http://ihmpdcc.org
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2.4 Metagenomes: profiling and statistical analyses

National Human Genome Research Institute (NHGRI, https://www.genome.gov/

genetics-glossary/Metagenomics) defines metagenomics as the study of a collec-

tion of genetic material (genomes) from a mixed community of organisms. Metage-

nomics usually refers to the study of microbial communities. The genome is the entire

set of genetic instructions found in a cell. Metagenomics is usually used in the study

of microbial communities where one can’t separate one microbe from another.

As a part of HMP2, the composition of microbial communities of stool samples were

profiled from metagenomic shotgun sequencing data and MetaPhlAn (Metagenomic

Phylogenetic Analysis) [61]. Processing microbiome data generates a matrix that

relates feature abundance (taxa or genes) to samples. The microbiome data are

highly dimensional, often representing thousands of different taxa, and sparse and

zeros inflated matrix [62]. Stool samples were collected over the course of one year

and metagenomic profiles were generated and classified at seven taxonomic ranks—

that is the relative level of a group of organisms (a taxon) in a taxonomic hierarchy,

species, genus, family, order, class, phylum and kingdom. At kingdom level, Bacteria

make up for over 99% of detected microorganisms. The bacteria detected in adult

participants was classified as 12 phyla which includes 581 species (see Table 2.2).

Table 2.2: Kingdom: Bacteria, Age-group: Adults

Rank count
Phylum 12

Class 25
Order 41
Family 76
Genus 187
Species 581

Attributes such as species richness, evenness and diversity can be used to compare

community compositions. Species richness is the number of different species commu-

nity. Species evenness is a description of the distribution of abundance across the

https://www.genome.gov/genetics-glossary/Metagenomics
https://www.genome.gov/genetics-glossary/Metagenomics
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species in a community. Species diversity is usually described by an index that in-

cludes both richness and evenness of the species. Global taxonomic richness is affected

by variation in three components: within-community, or alpha diversity, between-

community, or beta diversity, and between-region, or gamma diversity [63–70].

2.5 Alpha diversity and evenness

Shannon’s diversity index is commonly used in ecology as a measure of alpha diver-

sity. It’s based on the Shannon’s entropy formula, H
Shannon

= −
∑S

i=1 pi ln pi where

pi = n
N

is the proportion of the number of individual species i found (n) divided by

the total number of individuals found (N) and S is the number of different species.

Pielou’s evenness index [71] is defined by E
Pielou

=
H

Shannon

lnS
.

Figure 2.1 shows the distribution of Shannon indices for each cohort. Kruskal-

Wallis [72] rank sum test of differences in mean values of Shannon indices as shown

on the plot (χ2
2 = 41.08, p-value ≈ 0) as well as Pielou indices (χ2

2 = 9.72, p-

value=0.0078).
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Figure 2.1: Distribution of Shannon’s diversity index and Pielou’s evenness index
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2.6 Beta diversity

Common indices of beta diversity include Bray-Curtis, Unifrac distance. Bray-

Curtis distance [73], is a commonly used distance measure (beta diversity) in micro-

biome data, BCij = 1 − 2Cij

Si+Sj
, where Si is the total number of species counted in

sample i, Sj is the total number of species counted in sample j, and, Cij is the sum

of only the lesser counts for each species found in both samples.

UniFrac and Weighted UniFrac distances [74–77] are other measures of beta diver-

sity that compute differences between microbial communities based on phylogenetic

information. UniFrac measures the phylogenetic distance between sets of taxa in a

phylogenetic tree as the fraction of the branch length of the tree that leads to de-

scendants from either one environment or the other, but not both. Weighted UniFrac

accounts for abundance of observed organisms whereas unweighted UniFrac only con-

siders their presence or absence. A schematic diagram of UniFrac calculations is

shown in Figure 2.2

Figure 2.2: Schematic diagram of UniFrac calculations. First published: https:
//doi.org/10.1038/ismej.2009.97

https://doi.org/10.1038/ismej.2009.97
https://doi.org/10.1038/ismej.2009.97
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2.6.1 Visualization of beta diversity

A well-known tool to visualize beta diversity is principal coordinates analysis. Prin-

cipal coordinates analysis (PCoA) is a metric multidimensional scaling method based

on projection, which uses spectral decomposition to approximate a matrix of dis-

tances/dissimilarities by the distances between a set of points in few dimensions [78].

PCoA is equivalent to principal component analysis (PCA) when euclidean distances

are used. Plots of first two axes of PCoA accompanied by 95% student’s-t confi-

dence ellipses were generated and displayed in Figure 2.3a using Bray-Curtis distance

measure and in Figure 2.3b using Weighted UniFrac distance method at species level.
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Figure 2.3: Plots of first two axes of PCoA accompanied by 95% student’s-t confidence
ellipses; Samples are from adult participants at kingdom level bacteria.

Weighted Unifrac distance method seems to separate CD and UC cases from healthy

controls better than Bray-Curtis method. Using Weighted Unifrac 70% of variation

is explained by first two axes. In contrast, using Bray-Curtis distance only 25.5% of

variation is explained by first to axes and all samples overlapped.
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2.6.2 Analysis of beta diversity using PERMANOVA

A PERMANOVA was performed using three groups: CD and UC cases and nonIBD

controls using Bray-Curtis distance (see Table 2.3) and Weighted UniFrac distance

(see Table 2.4).

Table 2.3: PERMANOVA output using Bray-Curtis based on 9999 permutations;
terms added sequentially.

Df Sums of Sqs Mean Sqs F.Model Pr(>F)
CD 1 1.981 1.9808 6.5911 0.0001
UC 1 3.822 3.8223 12.7185 0.0001
Residuals 779 234.114 0.3005
Total 781 239.918

Table 2.4: PERMANOVA output using WUnifrac based on 9999 permutations; terms
added sequentially.

Df Sums of Sqs Mean Sqs F.Model Pr(>F)
CD 1 0.742 0.74246 8.3305 0.0001
UC 1 0.580 0.57972 6.5045 0.002
Residuals 779 69.429 0.08913
Total 781 70.751

2.6.3 Analysis of beta diversity using Mantel test

We first tried to identify core and rare taxa. Table 2.5 shows the prevalence (num-

ber of samples representing the taxon) of the phyla of gut bacteria. Firmicutes and

bacteroidetes are present in almost all samples whereas spirochaetes, chlamydiae or

cyanobacteria appear in less than 1% of samples. Figure 2.4 shows the relative abun-

dance of bacteria at phylum level for adults in three groups, diagnosed with Crohn’s

disease (CD), ulcerative colitis (UC) or healthy controls (nonIBD). On average, bac-

teroidetes and firmicutes make up for 95% of phylum level of gut bacteria.
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Table 2.5: Abundances and relative abundances of the phyla of gut bacteria

Abundance Relative abundance
Firmicutes 1602 1.00

Bacteroidetes 1572 0.98
Proteobacteria 1499 0.93
Actinobacteria 1440 0.90

Verrucomicrobia 502 0.31
Fusobacteria 76 0.05
Synergistetes 45 0.03
Lentisphaerae 17 0.01

Candidatus Melainabacteria 12 0.01
Spirochaetes 5 0.00
Chlamydiae 2 0.00

Cyanobacteria 1 0.00
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Figure 2.4: Abundance of phyla of gut bacteria for adults with CD (n = 355), nonIBD
(n = 196) and UC (n = 231)

Intuitively, box plots of relative abundances and distance measurements are pre-

sented in Figure 2.5 and Figure 2.6. Since there were over 500 distinct species with

high sparsity, box plots were generated at phylum level for a better resolution. Fig-

ure 2.5 displays the relative abundance of phyla grouped by UC and CD cases and

nonIBD controls within adults participated in HMP2 study. Bacteroidetes and firmi-

cutes, proteobacteria, actinobacteria and verrucomicrobia have the highest relative

abundances (core taxa) and therefore of interest to be investigated. Figure 2.6 dis-

plays the distances/dissimilarities of each phylum labeled by between and within co-

horts. Bacteroidetes and firmicutes distance measurements present higher interquar-
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tile range while proteobacteria, actinobacteria and verrucomicrobia distances are

heavily skewed.
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Figure 2.5: Box plots of relative abundance of gut microbiome of adults at phylum
level for UC and CD cases and nonIBD controls.
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Figure 2.6: Box plots lay out the distribution of pairwise distances of gut microbiome
of adults at phylum level, labeled by between and within cohorts.

Mantel test (Table 2.6) was used to investigate whether lower dissimilarities of

species with phylum level bacteroidetes and firmicutes correspond to lower (or higher)

dissimilarities of species with phylum level proteobacteria, actinobacteria and verru-
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comicrobia for each group. The null hypothesis for “pval1” is that the Mantel r

statistic will be equal to or smaller than zero, i.e. negative correlation. Conversely,

the null hypothesis for “pval2” is that the Mantel r statistic is equal to or greater than

zero, i.e. positive correlation. The null hypothesis for “pval3” is that the Mantel r

statistic is equal to zero, i.e. no correlation.

Table 2.6: Mantel r-statistic and p-values: “pval1” under H0 : r ≤ 0; “pval2” under
Ha : r ≥ 0; “pval3” when H0 : r = 0; accompanied by lower and upper limits of 95%
CI

Mantel r pval1 pval2 pval3 llim.2.5% ulim.97.5%

within CD 0.0423 0.0086 0.9915 0.0106 0.0282 0.0572

within UC 0.0688 0.0008 0.9993 0.0008 0.0479 0.0863

within nonIBD 0.0991 0.0001 1.0000 0.0001 0.0851 0.1128

We learn that dissimilarities of species with phylum level bacteroidetes and fir-

micutes are positively correlated to dissimilarities of species with phylum level pro-

teobacteria, actinobacteria and verrucomicrobia for each cohort. It is of interest

to study the biological relationships and interactions of species grouped as above.

Smaller Mantel r for UC and CD cases might be a biological signal that needs further

investigations.

2.6.4 Analysis of beta diversity using MRM

For application of MRM on this data set, distances at species level were computed

and labeled as withing and between UC, CD and nonIBD groups. Considering the
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within nonIBD distances as reference group, the MRM model is

dij = β0 + β1IWithin CD

+ β2IBetween CD and UC

+ β3IBetween CD and nonIBD

+ β4I Within UC

+ β5IBetween nonIBD and UC + εij

(2.1)

where I(·) is the indicator function. MRM coefficients and p-values based on 9999

permutations are summarized for choice of distance Bray-Curtis in Table 2.7a and for

Weighted UniFrac in Table 2.7b.

Table 2.7: MRM coefficients and p-values using 9999 permutations

Distance pval
Intercept 0.7061 1.0000

Within CD 0.0622 0.0001
CD–UC 0.0742 0.0001

CD–nonIBD 0.0552 0.0001
Within UC 0.0699 0.0002

nonIBD–UC 0.0632 0.0001
(a) Bray-Curtis

Distance pval
Intercept 0.3174 0.9972

Within CD 0.0525 0.0295
CD–UC 0.0571 0.0118

CD–nonIBD 0.0390 0.0017
Within UC 0.0531 0.0460

nonIBD–UC 0.0367 0.0076
(b) WUnifrac

Differences on the p-values obtained on different distances indicate that MRM may

suffer inflated Type-I error rate when Bray-Curtis distance is used.



CHAPTER 3: A DISTANCE-BASED LINEAR REGRESSION MODEL

3.1 Introduction

3.1.1 Statistical model and parameter estimation

Suppose that we have n independent data draws denoted as (xi,yi), i = 1, 2, · · · , n,

where xi ∈ Rp and yi ∈ Rq. Pairwise distances or dissimilarities between all com-

binations of n objects of {yi}ni=1 are constructed and denoted as DY = [yij]1≤i<j≤n.

Let K ≤ p be the number of sub-groups of explanatory variables, that is xi =

(x
(1)
i , · · · ,x(K)

i )′, then for each sub-group distance matrices are constructed and de-

noted as D(1)
x = [x

(1)
ij ]1≤i<j≤n, . . . , D

(K)
x = [x

(K)
ij ]1≤i<j≤n, respectively. Depending on

the application, the pairwise distance measurements may reflect distance in species

abundances, geographical location, and genetic distance using compound or individ-

ual distance measure. The pairwise distance transforms the original independent

observations (xi,yi), i = 1, 2, · · · , n, to correlated pairwise distances, which are de-

noted as yij = sy(yi,yj) and x
(K)
ij = sk(x

(k)
i ,x

(k)
j ), k = 1, 2, · · · , K and 1 ≤ i < j ≤ n.

We then model the relationship between yij and xk,ij’s via the following regression

model:

yij = x′ijβ + εij, 1 ≤ i < j ≤ n, (3.1)

here, xij = [1, x
(1)
ij , · · · , x

(K)
ij ]′ and the vector of coefficients β = [β0, β1, · · · , βK ]′.
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A least squares estimator of the regression coefficients β can be derived as in classic

linear regression model for independent observations, by minimizing the following sum

of squares:

Un(β) =
1(
n
2

) ∑
1≤i<j≤n

(yij − x′ijβ)2 =
1(
n
2

)(Y −Xβ)′(Y −Xβ), (3.2)

where

Y = [y12, y13, · · · , y1n, y23, · · · , y(n−1)n]′

and

X = [x12,x13, · · · ,x1n,x23, · · · ,x(n−1)n]′.

The ordinary least squares estimator of β is β̂ = (X ′X)−1X ′Y . This is the multivari-

ate regression model (MRM) of pairwise distances [9] that we reviewed in Chapter

1. The model was motivated by ecological studies and is more flexible in terms of

incorporating multiple distance matrices.

Although the parameter estimation is straightforward, the large sample properties

of the estimators are different from the classical linear regression model because yij’s

are clearly correlated. Lichstein [9] applied a permutation based procedure to test

the significance of every individual model coefficient. However, a well known pitfall of

permutation method is that it is computationally expensive because the model needs

to be re-fitted for a large number of times. Especially in large scale studies, such

as microbiome genome-wide association studies, the association between microbiome

community and genetic markers may require tens of thousands of tests. Moreover,

multiple testing corrections are always required, which means the result of a test can

be called significant if empirical p-value is smaller than 10−6. In that case, at least 106

permutations are needed for each test . Therefore, we investigated the large sample

properties of model coefficients including asymptotic consistency and normality of
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the least squares estimator of MRM in the following section. Based on the derived

theoretical results, a computationally much efficient inference procedure is developed.

3.1.2 Large sample theory

Un(β) = 1

(n
2)

∑
1≤i<j≤n(yij − x′ijβ)2 forms a second-order U-statistic. Large sample

properties of U-statistics were used to drive the theoretical distribution of β̂. [79–82]

Theorem 1 (Asymptotic consistency). Assuming Θ is compact, if E(ε2ij) < ∞,

then the least squares estimator defined by minimizing Un(β), β̂, is consistent for

β0 = arg minβ E(Un(β)).

Proof. Since Un(β) is a second order U-statistic, by the strong law of large numbers for

U-statistic, Un(β)→ E(Un(β)) almost surely. Moreover, β0 is the unique minimizer

of U(β) = E(Un(β)) [79, 80, 83]. Then the consistency can be derived by following

the argument for consistency of M-estimators.

Theorem 2 (Asymptotic Normality). If β̂ is consistent for β0 and E(h2) <∞, then

β̂ is asymptotically normal,

√
n(β̂ − β0)→ N(0,Σ), (3.3)

where

Σ = 4H−10 V0H
−1
0

with

H−10 = E(xijx
′
ij)

and

V0 = V ar(E[xij(yij − x′ijβ0)|xi,yi]).
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Proof. Define a normalized score function:

Qn(β) =
√
n
∂Un(β)

∂β
= −
√
n(
n
2

) ∑
1≤i<j≤n

xij(yij−x′ijβ) = −
√
n(
n
2

) ∑
1≤i<j≤n

h(xi, yi,xj, yj;β)

(3.4)

Since β̂ is a consistent estimator, Taylor series expansion of Qn(β̂) at β0:

Qn(β̂) = Qn(β0) +
∂Qn(β0)

∂β
(β̂ − β0) + op(1) (3.5)

therefore,
√
n(β̂ − β0) = −H−1n Qn(β0) + op(1) (3.6)

where Hn = 1

(n
2)
X ′X.

According to the theories of second order U-statistics [83],

Qn(β0) = Q̂n(β0) + op(1) (3.7)

where

Q̂n(β0) =
n∑
i=1

E(Qn(β0)|yi,xi)

= −
n∑
i=1

√
n

(
n

2

)−1 ∑
1≤i<j≤n

E[xij(yij − x′ijβ0)|yi,xi]

= −
√
n

(
n

2

)−1 n∑
i=1

{(n− 1

1

)
E[xij(yij − x′ijβ0)|yi,xi]

}
= − 2√

n

n∑
i=1

r(yi,xi,β0).

(3.8)

Therefore,
√
n(β̂ − β0) = −H−1n

2√
n

n∑
i=1

r(yi,xi,β0) + op(1). (3.9)
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Since r(yi,xi) are i.i.d, by the central limit theorem,

2√
n

n∑
i=1

r(yi,xi,β0)→ N(0, 4V0) (3.10)

where V0 = var(r(yi,xi)).

By the law of large number, Hn → E(xijx
′
ij) ≡ H0. The Slutsky theorem implies

that
√
n(β̂ − β)→ N(0, 4H−10 V0H

−1
0 ). (3.11)

3.1.3 Estimating the covariance matrix and hypothesis testing

We estimate the conditional expectation r(yi,xi,β0) by

r̂(yi,xi,β0) ≡
(
n− 1

1

)−1∑
j 6=i

xij(yij − x′ijβ̂) (3.12)

then,

1

n

n∑
i=1

r̂(yi,xi,β0) =

(
n

2

)−1 ∑
1≤i<j≤n

xij(yij − x′ijβ̂) = −Qn(β̂)/
√
n = 0. (3.13)

Therefor

V̂n ≡
1

n

n∑
i=1

r̂(yi, xi, β̂)r̂(yi, xi, β̂)′ (3.14)

is an unbiased consistent estimator of V0 [83].
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3.1.4 Hypothesis testing

Hypothesis testing is an essential component of statistical inference because it is

often of practical interest to test if a certain covariate is significantly associated with

the response variable. This testing problem can be accommodated by considering

the form: H0 : βk = 0 vs H1 : βk 6= 0, if the coefficient of the k-th covariate in

the regression model is zero. Since we have derived the asymptotic normality of the

least squares estimator of β, we may use a Wald type test statistic Tk = β̂k
se(β̂k)

. The

p-value of the test can be calculated by using the normal approximation based on the

asymptotic normality of each β̂k.

3.2 Simulation studies

In this section, we aim to assess the accuracy of estimation as well as investigate the

finite sample performance of our proposed testing procedure by conducting extensive

simulation studies. We considered six different scenarios to evaluate the performance

of our method from multiple perspectives. Simulations’ set-up and results of each

scenario are detailed in the following sub-sections.
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3.2.1 Simulation for assessing the accuracy of estimation

Scenario I: In this simulation, we mimic genetic association studies and generate

genotype data of 20 single nucleotide polymorphisms (SNPs) as detailed in Figure 3.1.

Each genotype gi is a sequence of 20 elements gik ∈ {0, 1, 2} where i = 1, · · ·n, and

k = 1, · · · , 20, with the multinomial distribution,

gi ∼ multinomial(p = (maf 2
i , 2mafi(1−mafi), (1−mafi)2)).

Here, mafi is short for minor allele frequency of the i-th, which is the frequency

at which the rare allele occurs in diploid human genome. Three different values

of mafs are considered (maf = 0.1, 0.3, 0.5) in this simulation. We calculate the

genomic distance between individual i and j by xij =
∑20

k=1 |gik − gjk|, and simulate

observations of the response variable via the following model: yij = 0.2xij +εij, where

εij = εi − εj for each εi ∼ N(0, σ2).

SNP1 SNP2 SNP3 SNP4 SNP5 SNP6 SNP7 SNP8 SNP9 SNP10 

(0) AA Pr=𝑚𝑚𝑚𝑚𝑓𝑓2
(1) Aa Pr=2 ∙ 𝑚𝑚𝑚𝑚𝑚𝑚(1 − 𝑚𝑚𝑚𝑚𝑚𝑚) 
(2) aa Pr=(1 − 𝑚𝑚𝑚𝑚𝑓𝑓)2

g       2       2      2       2      2      1       2      2      2      0 

Figure 3.1: An intuitive illustration of a gene with 10 SNPs constructed using alleles
AA, Aa and aa.

Based on 1000 replications, we summarize the Mean Estimates that is the means of

coefficients estimates, the Mean Standard Error (MSE), which is the mean of asymp-

totic standard errors of parameter estimations, the Empirical Standard Deviation

(ESD), which is the sample standard deviation of the estimates and the confidence

interval coverage probability (CI CP), which is the proportion of confidence intervals

covering true parameter. These summary statistics of the simulation are represented

in Table 3.1. When sample size increases, the coefficients estimates approach the

true parameters. Means of asymptotic standard errors are almost always equivalent

to sample standard deviations of estimates and 95% Confidence interval coverage

proportions are about 0.95.
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Table 3.1: A summary of simulations based on Scenario I under the assumption
that pairwise distance matrices of response and independent variables have a linear
relationship.

σ maf n
Mean Estimates MSE ESD 95% CI CP

β̂0 β̂1 β̂0 β̂1 β̂0 β̂1 β̂0 β̂1
50 -0.00 0.20 0.02 0.00 0.02 0.00 0.95 0.95

0.1 100 0.00 0.20 0.02 0.00 0.02 0.00 0.95 0.94
200 0.00 0.20 0.01 0.00 0.01 0.00 0.94 0.93

50 -0.00 0.20 0.02 0.00 0.02 0.00 0.96 0.95
0.05 0.3 100 -0.00 0.20 0.02 0.00 0.02 0.00 0.95 0.95

200 -0.00 0.20 0.01 0.00 0.01 0.00 0.95 0.95

50 -0.00 0.20 0.03 0.00 0.03 0.00 0.96 0.95
0.5 100 -0.00 0.20 0.02 0.00 0.02 0.00 0.94 0.95

200 -0.00 0.20 0.01 0.00 0.01 0.00 0.96 0.96
50 -0.00 0.20 0.21 0.03 0.23 0.03 0.92 0.93

0.1 100 -0.01 0.20 0.15 0.02 0.15 0.02 0.94 0.94
200 -0.00 0.20 0.11 0.01 0.11 0.01 0.96 0.95

50 0.01 0.20 0.24 0.02 0.24 0.02 0.94 0.94
0.5 0.3 100 -0.00 0.20 0.17 0.01 0.16 0.01 0.95 0.96

200 0.00 0.20 0.12 0.01 0.12 0.01 0.94 0.94

50 0.01 0.20 0.26 0.02 0.25 0.02 0.95 0.95
0.5 100 -0.00 0.20 0.18 0.01 0.18 0.01 0.94 0.95

200 -0.00 0.20 0.13 0.01 0.12 0.01 0.95 0.95
50 -0.00 0.20 0.42 0.05 0.44 0.06 0.94 0.94

0.1 100 0.03 0.20 0.31 0.04 0.30 0.04 0.95 0.95
200 0.00 0.20 0.22 0.03 0.21 0.03 0.95 0.94

50 -0.01 0.20 0.48 0.03 0.48 0.03 0.94 0.94
1 0.3 100 0.00 0.20 0.33 0.02 0.33 0.02 0.95 0.95

200 0.00 0.20 0.23 0.02 0.24 0.02 0.95 0.94

50 0.02 0.20 0.52 0.03 0.52 0.03 0.94 0.95
0.5 100 0.00 0.20 0.36 0.02 0.36 0.02 0.95 0.95

200 -0.00 0.20 0.25 0.02 0.26 0.02 0.94 0.95
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Scenario II: Similar to Scenario I, this simulation was set up to imitate the genome

structure of a human gene. In this case each genotype gi is a sequence of 20 elements

gik ∈ {0, 1, 2} where i = 1, · · ·n, and k = 1, · · · , 20, with the frequency distribution

of MTR gene [84]. A covariate zi was introduced to the model that is uniformly dis-

tributed on (0, 1) and an error term εi was drawn from normal distribution N(0, .52).

We use the true model: yij = β0 + β1xij + β2zij + εij, where, β = (0, 1, 1)′ and

xij =
∑p

k=1 |gik − gjk|/(2p) (normalized Manhattan distance), zij = (z2i + z2j )
1/2 and

εij = εi − εj. Based on 1000 replications, we summarized the Empirical Bias, MSE,

ESD, and 95% CI CP in Table 3.2.

We can see that with all the considered sample sizes, the empirical mean biases

are small, and estimated standard errors are close to the mean standard errors. Be-

sides, as sample size increases, mean bias decreases and mean of standard errors

approaches sample standard deviation of estimates, and the coverage probability of

95% confidence intervals are about the nominal level. The results suggest that when

the underlying model between the pairwise distance matrices is linear, our proposed

estimators are consistent.

Table 3.2: A summary of simulations based on Scenario II under the assumption that
pairwise distances are linearly related through a multiple linear regression model.

n
Empirical Bias MSE ESD 95% CI CP

β̂1 β̂2 β̂1 β̂2 β̂1 β̂2 β̂1 β̂2

50 0.0015 -0.001 0.365 0.095 0.363 0.088 0.95 0.95
200 -0.007 -0.001 0.176 0.041 0.174 0.041 0.95 0.95
400 -0.005 -0.0004 0.124 0.028 0.125 0.028 0.95 0.96

3.2.2 Simulations for hypothesis testing

In our first two simulation scenarios, we make assumptions on having a true linear

relationship between the distance matrices. Note that the distance-based methods

are also widely used in association studies about the relationship between the orig-
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inal data, that is, between X and Y . A considerable amount of literature has been

published on the large sample theory of U-statistics and equivalency of distance covari-

ances and kernel functions embedded in kernel machine regression. A kernel machine

regression is a test of association between the original X and Y through a kernel

function [79, 81, 84–99]. A question to ask is "Can the pairwise distance based lin-

ear regression model capture the underlying association of response and explanatory

variables?" That is to say if there is a true association between the original variables,

will the association retain between pairwise distance matrices?

Assume (xi,yi), i = 1, 2, · · · , n, are n independent observations where xi ∈ Rp and

yi ∈ Rq. To test an association like yi = β0 + f(xi) + εi we set up the null hypothesis

H0 : f(·) = 0. A useful type of test is a score test. Let

U = (Y − Ȳ)′K(Y − Ȳ)

= tr[(Y − Ȳ)′K(Y − Ȳ)]

= tr[K(Y − Ȳ)′(Y − Ȳ)]

= tr

[
K

(
I − 1n1′n

n

)
YY′

(
I − 1n1′n

n

)]
= tr [KHYY′H]

where Ȳ denotes a matrix of same dimensions of Y induced by column-wise means of

Y embedded in each column, H =
(
I − 1n1′n

n

)
and the kernel function K = [kij]n×n =

[k(xi,xj)]n×n is a matrix of similarity or dissimilarity measures. The outer product

YY′ are replaced with any symmetric distance matrix DY [90]. Let yij and xij be

the (i, j)-th elements of DY and DX, respectively. For yij = α0 +α1xij + εij, a choice

of DX (possibly any center-normalized distance matrix) and a kernel K = [kij]n×n

satisfying (a) 0 ≤ kij ≤ 1 and (b) xij = 1 − kij implies yij = α∗0 + α∗1kij + εij. Let
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Uα =
∑

1≤i<j≤n kij(yij − d̄Y ), then

Uα =
1

2

∑
1≤i,j≤n

kij(yij − d̄Y )

=
1

2

( ∑
1≤i,j≤n

kij · yij − d̄Y
∑

1≤i,j≤n

kij

)

≡ U

2
− d̄Y

2

∑
1≤i,j≤n

kij.

Consequently, Uα ∼ N(0, 4V0) and the original hypothesis H0 : f(·) = 0 can be re-

duced to H0 : α∗1 = 0.

Scenario III: This setup pertains to simulation study of kernel machine regression

(KMR) by Hua and Ghosh [90]. Assuming Y = c ∗ h(X) + Z ′β + ε as true model

when h(·) is either f1(·) = g(·) or f2(·) = sign(g)|g(·)|1/2 and

g(Xi) = 1 +

p∑
k=1

Xikηk +

p∑
k=2

Xi1Xikγk

with η1 = 0.4, η2 = · · · = ηp = 0.7, γ2 = · · · = γp = 0.2. Quantifier c specified

the departure from H0 denoted as effect size. X1×p was generated similar to Sce-

nario II and covariate Z from standard bivariate normal distribution. The regression

coefficients β =(1, 1) and ε’s were drawn from standard normal, student’s tdf=3 or

χ2
1 − 1 distributions—subtract 1 from χ2

1 to achieve a mean of 0. For each sample,

we first adjusted the effect of covariate using ordinary least squares regression and

defined Ỹ = Y − Z ′β̂. In this case, the distance based linear regression model in

Equation 3.1 is ỹij = β0 + β1xij + εij, where xij is the pairwise Manhattan distance.

Note that when c = 0, it corresponds to the null hypothesis of no effect of X. We set

significance level α = 0.05 to check the Type-I error. To examine power, different c

values were considered for f1 (c = 0.1, 0.2, 0.3, 0.4, 0.5) and f2 (c = 0.6, 1.2, 1.8, 2.4,
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3) respectively. Quantifiers were assigned different range of values because the magni-

tudes of f1 and f2 are different. Results are shown in Table 3.3. Empirical size is the

proportion of null hypothesis rejected when null hypothesis was true and empirical

power is the proportion of null hypothesis rejected when null hypothesis was in fact

false. For both size and power of the test, the level of significance was set to α = 0.05.

Empirical Type-I error for all combinations of n, f, c lies within (-0.012,0.009) of 0.05

by which we learn false positive rate is not inflated. Empirical power is small for

sample size n = 50 even with highest effect size and rapidly increases as sample size

increases. Empirical power gradually increases as effect size increases.

Table 3.3: Y = c∗fj(X) +Z ′β+ ε; No sign of inflated false positive rate is observed.
Power of test is sensitive to both sample and effect size.

Empirical size Empirical power

h ε n c 0 0.1 0.2 0.3 0.4 0.5

50 0.055 0.06 0.104 0.19 0.297 0.409
f1 N(0, 1) 200 0.058 0.065 0.351 0.76 0.918 0.981

400 0.054 0.121 0.667 0.972 0.998 1

50 0.038 0.055 0.061 0.103 0.183 0.225
f1 tdf=3 200 0.054 0.049 0.115 0.301 0.563 0.735

400 0.048 0.056 0.192 0.525 0.78 0.95

50 0.05 0.054 0.081 0.144 0.188 0.287
f1 χ2

1 − 1 200 0.054 0.052 0.152 0.415 0.694 0.841
400 0.059 0.085 0.275 0.709 0.988 0.988

c 0 0.6 1.2 1.8 2.4 3

50 0.047 0.066 0.1 0.134 0.206 0.304
f2 N(0, 1) 200 0.057 0.065 0.226 0.568 0.748 0.892

400 0.057 0.095 0.437 0.887 0.983 0.998

Scenario IV: Following the line of Scenario III, for multivariate outcome, k = 1, 2

and 3, data were generated from the model Yk = c ∗ hk(X) +Z ′βk + εk where X1×p

was generated using a frequency distribution of SNPs on the SLC17A1 gene [90] with

p = 9 SNPs. Z randomly sampled from bivariate normal distribution with means

µ=(0.2, 0.4)′ and identity variance-covariance matrix, and εk has a multivariate nor-
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mal distribution MVNormal(0,Σ). Two choices for the effects of hk were considered.

First, the sparse effect, where h1 = c(x1 +x2 +x3 +x1x4x5−x6/3−x7x8/2+(1−x9)),

for c = 0, 0.1, 0.2 and h2 = h3 = 0. Second, the common effect, where h∗1 = h1 + cx3

, and h2 = h3 = cx3 with a = 0, 0.1, 0.2. The variance–covariance matrix Σ was

designed to have an independent structure (Σ = Σ1) and a more dependent structure

(Σ = Σ2) as follows. Similar to scenario III, effect of covariate was adjusted using

least squares regression, Ỹ = Y − Z ′β̂. Then, the distance based linear regression

model was carried out using theoretical model ỹij = β0+β1xij+εij. Results are shown

in Table 3.4.

Σ1 =


0.95 0 0

0 0.86 0

0 0 0.89

 and Σ2 =


0.95 0.57 0.43

0.57 0.86 0.24

0.43 0.24 0.89


Table 3.4: Multivariate Outcome Yk = c ∗ hk(X) + Z ′βk + εk; Inflated rate of false
negative is observed due to complex structure of true model.

Empirical size Empirical power

h Σ n c 0 0.1 0.2

50 0.041 0.044 0.088
(h1, 0, 0) Σ1 200 0.046 0.065 0.213

400 0.052 0.087 0.452

50 0.044 0.038 0.067
(h1, 0, 0) Σ2 200 0.051 0.048 0.273

400 0.048 0.077 0.476

c 0 0.1 .2

50 0.046 0.05 0.098
(h∗1, h2, h3) Σ1 200 0.042 0.073 0.331

400 0.054 0.119 0.633

50 0.05 0.043 0.08
(h∗1, h2, h3) Σ2 200 0.056 0.064 0.341

400 0.044 0.081 0.572
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Scenario V: The aim of this simulation study is to investigate the performance of

DBLR in the world of compositional data. The structure of a data set X is referred

as compositional when sample points comply with unit-sum constraint. Take for

example the ecological community data where the relative abundance of microbial

organisms per observation sums to one.

Aitchison [100] proposed to relax the unit-sum constraint by performing statistical

analysis through log ratios. Among various forms of log-ratio transformations, the

centered log-ratio transformation has attractive features and has been widely used.

Based on [101], compositional data X was generated given X(k)
ij = W

(k)
ij /

∑p
l=1W

(k)
il ,

i = 1, . . . , nk, j = 1, . . . , p, k = 1, 2 and W
(k)
nk×p = (W

(k)
1 , . . . ,W

(k)
nk )′ denoting the

matrices of unobserved bases. Let Z(k)
i = (Z

(k)
i1 , . . . , Z

(k)
ip ) be the log basis vectors,

where Z(k)
ij = log(W (k)

ij ). For the observed compositional data X(k) (k = 1, 2), the cen-

tered log-ratio matrices Y (k)’s are defined by Y (k)
ij = log{X(k)

ij /g(X
(k)
i )}, i = 1, . . . , nk,

j = 1, . . . , p, k = 1, 2, where g(x) = (
∏p

j=1 xj)
1/p denotes the geometric mean of a

vector x. Defining G = Ip − p−11p1′p, this relation can be expressed as matrix form

Y
(k)
j = G log(X

(k)
j ). According to scale-invariance property of the centered log-ratios,

X
(k)
j can be replaced by W (k)

j and obtain Y (k)
j = GZ

(k)
j .

Simulation setup: Log basis vectors were generated from multivariate normal

distribution, Z(k)
i ∼ MVNp(µk,Ω) (k = 1, 2 and i = 1 . . . n). The components of µ1

were drawn from a uniform distribution U(0, 10). Null and alternative hypothesis are

considered as

H0 : µ2 = µ1 vs. Ha : µ2j = µ1j − δjω1/2
jj

(
log p
n

)1/2

, j = 1, · · · , n

Then W (k) and X(k) were generated through the transformations W (k)
ij = exp(Z

(k)
ij )

andX(k)
ij = W

(k)
ij /

∑p
l=1W

(k)
il . Signal vector δ has support of size s = 0, b0.05pc, b0.1pc

or b0.5pc, p=50, 100, 200. Non-zero elements of δ were drawn from Unif [−2
√

2, 2
√

2]

with index chosen uniformly from {1, . . . , p}. For covariance matrix, Ω was defined

Ω = D1/2AD1/2, where D is a diagonal matrix with entries drawn from Unif(1, 3)
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and A has non-zero entries ajj = 1 and aj−1,j = aj+1,j = −0.5.

Analysis: To assess the differential composition of two groups, first centered log-ratio

transformation was applied to observations, Yj = clr(Xj) and then distance matrix

DY was constructed for response variable. An indicator function was used to label

elements of response as either within (w) or between groups (b). Using DBLR model

yij = β0I(samples i and j in group 1) + β1I(at least one sample from group 2) + εij,

and tested for H0 : β1 = 0 vs H1 : β1 6= 0. Rejection of test concludes that there is shift

in composition of group 2 regarding the composition of group 1; however it does not

infer that dispersion of group 2 is different from group 1. See Table 3.5 for empirical

size and power of tests. Note that the two groups have same size n1 = n2 = 100 and

significance level α = 0.05.

Table 3.5: Empirical Size and Power of tests concerning the differential composition
of groups. False positive rate if less than 1% and power increases as n or p increases.

s p = 50 p = 100 p = 200
0 0.004 0.006 0.004

b0.05pc 0.018 0.07 0.299
b0.1pc 0.108 0.383 0.84
b0.5pc 0.992 1 1

In continuation, two samples were generated in similar manner except Z(1)
i and

Z
(2)
i correlated and generated from a 2p-dimensional joint distribution with mean

µ∗ = (µ
(k)T
1 , µ

(k)T
2 )′ and variance-covariance matrix

Ω∗ =

 1 0.3

0.3 1

⊗ Ω.

DBLR was fitted similar to the previous part and results are summarized in Table 3.6.

Empirical power follows the same trend as before. Moreover, power of the tests show
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less sensitivity to magnitude of p compared to uncorrelated design.

Table 3.6: Empirical Power for Samples with correlated mean structure.

s p = 50 p = 100 p = 200

b0.05pc 0.031 0.168 0.407
b0.1pc 0.29 0.712 0.985
b0.5pc 1 1 1

Scenario VI: In scope of analysis of differential composition, data was simu-

lated to imitate community microbiome. Two groups of samples were generated with

identical or differential mean relative abundance, incorporating a negative binomial

distribution with fixed parameters [102], that is

xi ∼ NB
(
xi

∣∣∣µi, θi) =
Γ (xi + θi)

Γ (θi)xi!
·
(

θi
µi + θ

)θi
·
(

µi
µi + θi

)xi
, (3.15)

where µi and φi = 1
θ
are the mean and the dispersion parameter, respectively, and

Γ(·) is the gamma function. In the microbiome setting, µij is considered as a product

of the mean relative abundances ρj =
∑n

i=1 xij∑n
i=1

∑p
j=1 xij

of taxon j and the library size

si =
∑p

j=1 xij of sample i, that is µij = ρjsi. Library sizes were estimated using

random subsets of taxonomic profiles of stool samples in HMP1 with replacement.

Parameters ρ and θ were set to vectors of fixed values. Two groups of taxa (p = 250)

tables with equal number of observations (n1 = n2 = 50, 100, 200) were simulated

under the assumptions: (I) no differential abundance, i.e. fold changes were set to 1,

(II) differential abundance by multiplying a fraction (true positive rate TPR = 0.25,

05, 0.75) of means and a fold change (FC = 1.5, 3, 5). Bray-Curtis distance [73],

BCij = 1 − 2Cij

Si+Sj
, is a commonly used distance measure in ecological data, where

Si is the total number of specimens counted on site i, Sj is the total number of

specimens counted on site j, and, Cij is the sum of only the lesser counts for each

specimen found on both sites. Bray-Curtis distances were computed and labeled as
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within group 1, within group 2 and between groups. Considering the between-group

distances as reference group, the DBLR model is

BCij = β0 + β1Iwithin group 1 + β2Iwithin group 2 + εij, (3.16)

where I(·) is the indicator function. When βi > 0 it can be interpreted as signal of

additional variation of samples within that group to the mean distances of samples

between two groups. When βi < 0 it implies mean distances of samples within

that group have less dissimilarities compared to their dissimilarities to other sample.

However, an individual test cannot differentiate the cause whether it’s due to a shift of

centroid and/or scales of dispersion of groups. This might be investigated by multiple

testing adjustment, testing the ratio of β1
β2
, etc. Results are summarized in Table 3.7

and distribution of regression parameter estimates are visualized in Figure 3.2. There

is no sign of inflated Type-I error. Empirical power seem to be more sensitive to

sample size and less sensitive to TPR or FC. Power is low when n = 50 for any

combination of TPR and FC. One might consider sample size estimation and power

analysis.
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Table 3.7: Summary of simulations for testing a difference of composition of micro-
biome of two groups. There is no sign of inflated Type-I error. Empirical power seem
to be more sensitive to sample size and less sensitive to TPR or FC.

n1, n2
Mean MSE ESD P(p < 0.05)

β̂0 β̂1 β̂2 β̂1 β̂2 β̂1 β̂2 β̂1 β̂2

FC=1

50 0.837 -0.000 0.000 0.006 0.006 0.006 0.006 0.047 0.049
100 0.837 -0.000 0.000 0.004 0.004 0.004 0.004 0.048 0.046
200 0.836 0.000 -0.000 0.003 0.003 0.003 0.003 0.053 0.053

TPR=0.25
FC=1.5

50 0.847 -0.011 -0.013 0.006 0.006 0.007 0.008 0.374 0.501
100 0.848 -0.011 -0.013 0.004 0.005 0.005 0.007 0.670 0.742
200 0.848 -0.011 -0.012 0.003 0.003 0.004 0.006 0.921 0.872

TPR=0.25
FC=3

50 0.847 -0.011 -0.013 0.006 0.007 0.007 0.009 0.370 0.502
100 0.848 -0.011 -0.013 0.004 0.005 0.005 0.007 0.689 0.742
200 0.848 -0.011 -0.013 0.003 0.003 0.004 0.006 0.916 0.879

TPR=0.25
FC=5

50 0.848 -0.011 -0.013 0.006 0.007 0.007 0.008 0.397 0.476
100 0.847 -0.011 -0.013 0.004 0.005 0.005 0.007 0.689 0.728
200 0.848 -0.011 -0.013 0.003 0.003 0.004 0.006 0.911 0.893

TPR=0.5
FC=1.5

50 0.850 -0.013 -0.015 0.006 0.007 0.007 0.008 0.529 0.596
100 0.849 -0.013 -0.014 0.004 0.005 0.005 0.006 0.800 0.843
200 0.849 -0.013 -0.015 0.003 0.003 0.004 0.005 0.956 0.971

TPR=0.5
FC=3

50 0.849 -0.013 -0.015 0.006 0.006 0.007 0.008 0.485 0.609
100 0.849 -0.013 -0.015 0.004 0.005 0.005 0.006 0.819 0.871
200 0.849 -0.013 -0.015 0.003 0.003 0.004 0.005 0.946 0.973

TPR=0.5
FC=5

50 0.850 -0.013 -0.014 0.006 0.006 0.007 0.008 0.517 0.590
100 0.849 -0.013 -0.015 0.004 0.005 0.005 0.006 0.786 0.859
200 0.849 -0.013 -0.015 0.003 0.003 0.004 0.005 0.964 0.966

TPR=0.75
FC=1.5

50 0.850 -0.013 -0.015 0.006 0.007 0.007 0.007 0.525 0.584
100 0.849 -0.013 -0.015 0.004 0.005 0.005 0.006 0.800 0.859
200 0.849 -0.013 -0.015 0.003 0.003 0.004 0.005 0.952 0.980

TPR=0.75
FC=3

50 0.849 -0.013 -0.014 0.006 0.006 0.007 0.008 0.531 0.578
100 0.849 -0.013 -0.015 0.004 0.005 0.005 0.006 0.800 0.858
200 0.849 -0.013 -0.015 0.003 0.003 0.004 0.005 0.948 0.974

TPR=0.75
FC=5

50 0.850 -0.013 -0.015 0.006 0.007 0.007 0.008 0.501 0.616
100 0.849 -0.013 -0.015 0.004 0.005 0.005 0.006 0.801 0.866
200 0.849 -0.013 -0.015 0.003 0.003 0.004 0.005 0.945 0.964
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(b) Groups 1 and 2 independently simulated from when TPR·(100)% of relative mean abun-
dance of group 2 is different from group 1 by multiplying a fold changes FC.

Figure 3.2: Box plots with added violin plots for visualizing the distribution of re-
gression coefficients.
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3.2.3 Comparison: run time and empirical power

In this section we illustrate run time of different methods. We used scenario VI

and computed run time for different sample sizes and number of permutations. The

R code was run on a personal computer with Apple M1 chip and R version 4.1.1. A

Heat map plot labeled with the run times in seconds is displayed in Figure 3.3. We

used functions adonis {vegan} for PERMANOVA and MRM {ecodist} for MRM. For

each combination of sample size, method and number of permutations, a simulation

run time can be approximated by multiplying the number of iterations and each run

time added up over all combinations.

Run time (s)
PERMANOVA, nperm=99999 14.161 41.698 168.96
PERMANOVA, nperm=9999 1.189 4.337 15.069
PERMANOVA, nperm=999 2.309 2.309 2.309
PERMANOVA, nperm=99 0.017 0.039 0.091
MRM, nperm=99999 3.445 13.838 55.198
MRM, nperm=9999 0.356 1.387 5.549
MRM, nperm=999 0.039 0.147 0.598
MRM, nperm=99 0.006 0.024 0.094
DBLR 0.004 0.007 0.021

100 200 400
n

M
et

ho
d

Figure 3.3: Values denote the run time in seconds for each method, number of per-
mutations and sample size.

To compare the Empirical power of to methods MRM and DBLR, we used the

setup of scenario III. Function f1 and error terms drawn from Norm(0, 1) and t3 were

used in this simulation. Results are summarized in Table 3.8.
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Table 3.8: See scenario III where Y = c ∗ f1(X) + Z ′β + ε; REsults based on 1000
iterations and 999 permeation for MRM model.

Pr(p.value<0.05)

c 0 0.1 0.3 0.5

ε n DBLR MRM DBLR MRM DBLR MRM DBLR MRM

N(0, 1)

50 0.06 0.06 0.05 0.07 0.21 0.36 0.41 0.59

200 0.06 0.05 0.08 0.11 0.78 0.87 0.98 0.99

400 0.04 0.04 0.10 0.13 0.98 0.99 1.00 1.00

t3

50 0.05 0.04 0.04 0.05 0.11 0.17 0.25 0.39

200 0.05 0.05 0.06 0.06 0.32 0.37 0.73 0.79

400 0.05 0.06 0.05 0.07 0.55 0.56 0.94 0.95

DBLR and MRM have same performance in terms of size and power. In both

methods, power increases as sample size increases. This simulation was run on high

performance computing cluster, hpc, utilizing 32 CPUs. The total run time for DBLR

was about 500 seconds (less than 10 minutes), whereas the total run time for MRM

(nperm=999) exceeded 6600 seconds (about 2 hours).
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3.3 Real data example

Analyses in this section pertains to HMP2 data introduced in Chapter 2. As

previously studied using intensive simulations in Chapter 3, distance based linear

regression can serve as a tool to generate hypotheses about the community data

composition. Distances at species level were computed and labeled as within and

between UC, CD and nonIBD groups. Considering the within nonIBD distances as

reference group, the DBLR model is

dij = β0 + β1IWithin CD

+ β2IBetween CD and UC

+ β3IBetween CD and nonIBD

+ β4I Within UC

+ β5IBetween nonIBD and UC + εij,

(3.17)

where I(·) is the indicator function. The intercept parameter here is interpreted as

mean distance of microbial composition of samples within the nonIBD group. Each

other parameter is the difference of mean distances of other groups and nonIBD.

Coefficient estimates, asymptotic standard errors and observed significance are sum-

marized in Table 3.9 and Table 3.10. It’s possible that DBLR has inflated Type-I

error when Bray-Curtis distance method is used.
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Table 3.9: DBLR summary of estimations based on Bray-Curtis distances of adult’s
gut microbiome species. Standard errors were computed via DBLR covariance esti-
mation method.

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.7061 0.0091 77.5403 0.0000

Within CD 0.0622 0.0135 4.6172 0.0000

Between CD and UC 0.0742 0.0116 6.4048 0.0000

Between CD and nonIBD 0.0552 0.0075 7.3336 0.0000

Within UC 0.0699 0.0133 5.2431 0.0000

Between nonIBD and UC 0.0632 0.0075 8.4236 0.0000

Table 3.10: DBLR summary of estimations based on WUnif distances of adult’s gut
microbiome species. Standard errors were computed via DBLR covariance estimation
method.

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.3174 0.0102 30.9843 0.0000

Within.CD 0.0525 0.0198 2.6473 0.0081

Between.CD.and.UC 0.0571 0.0160 3.5708 0.0004

Between.CD.and.nonIBD 0.0390 0.0097 4.0165 0.0001

Within.UC 0.0531 0.0198 2.6821 0.0073

Between.nonIBD.and.UC 0.0367 0.0099 3.7044 0.0002

For convenience, Table 2.7a and Table 2.7b are re-displayed here as Table 3.11 and

Table 3.12.
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Table 3.11: MRM coefficients and p-values with 9999 permutations when Bray-Curtis
distance is used.

Distance pval

Int 0.7061 1.0000

Within.CD 0.0622 0.0001

Between.CD.and.UC 0.0742 0.0001

Between.CD.and.nonIBD 0.0552 0.0001

Within.UC 0.0699 0.0002

Between.nonIBD.and.UC 0.0632 0.0001

Table 3.12: MRM coefficients and p-values with 9999 permutations when WUnifrac
distance is used.

Distance pval

Int 0.3174 0.9972

Within.CD 0.0525 0.0295

Between.CD.and.UC 0.0571 0.0118

Between.CD.and.nonIBD 0.0390 0.0017

Within.UC 0.0531 0.0460

Between.nonIBD.and.UC 0.0367 0.0076

As it is expected, the coefficients estimates are identical. However, the p-values are

different due to different methods of evaluating observed significance in MRM and

DBLR. Both methods are sensitive to the choice of distance measure. It seems that

the use of Bray-Curtis distance my cause lower p-values that might be a sign of high

false positive rate.
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3.4 List of R packages

A list of R packages that we often used for simulation and data analysis is shown

in Table 3.13.

Table 3.13: List of R packages

Data preparation dplyr 1.0.7, reshape2 1.4.4, tidyr 1.1.4, stringr 1.4.0

Parallel computation parallel, doParallel 1.0.16, foreach 1.5.1

Distance construction vegan 2.5-7, ecodist 2.0.7, usedist 0.4.0

Microbiome data tools microbiome 1.14.0, HMP 2.0.1, phyloseq 1.36.0, Summa-

rizedExperiment 1.22.0, curatedMetagenomicData 3.0.10,

SimSeq 1.4.0

Distributions combinat 0.0-8, mvtnorm 1.1-3, dirmult 0.1.3-4

Graphics ggplot2 3.3.5, ggpubr 0.4.0, gridExtra 2.3, latex2exp 0.5.0,

lefser 1.2.0, plotly 4.10.0

Documentation kableExtra 1.3.4, knitr 1.36, markdown 1.1, rmark-

down 2.11, xtable 1.8-4



CHAPTER 4: DISCUSSION

As mentioned in Chapter 1, pairwise distance based statistical methods have been

developed to study the functional relationship between these multivariate variables

such as ecological community composition data. These methods fall into different cat-

egories such as distance based linear correlation association test (e.g. Mantel test),

multiple regression on distance matrices (e.g. MRM), distance based multivariate

analysis of variance (e.g. PERMANOVA). However, a substantial amount of research

argue that these methods suffer from inflated Type-I error and lack of power due to

naive application of permutation testing.

In Chapter 2, after a brief review of what “microbiome” is, we borrowed the metage-

nomic data from iHMP study and implemented some preliminary analysis and ex-

emplified the applications of distance based multivariate techniques in microbiome

data analysis, including alpha and beta diversity and further analysis of beta diver-

sity using Mantel test, PERMANOVA and MRM. This demonstrates the complexity

of properly finding the relationships between diseases due to differential composition

of microbiome, for example the minor abundances of rare microbiota causing noise

in analysis. The diversity of the microbiome is of utmost interest due to the high

fluctuation in the measurement of the raw data. The measurements of community

diversity, alpha and beta diversity primarily, once again present an opportunity to

evaluate popular ratification methods used in real data of this kind. From the analy-
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ses performed no presented method offered a robust accuracy in the inference between

disease groups and control healthy group in the cohorts. Metagenomics literature is

still heavily interested in new methods to analyze this new kind of high dimensional

data reliably, as clear inference and extrapolation of important variable features be-

tween groups is not always achievable.

In Chapter 3, we proposed a distance based linear regression model (DBLR) that

is a linear regression on distance matrices. Estimates of parameters of DBLR are

no different from ordinary least squares regression, but p-values are rather computed

using our proposed method of estimation of variance-covariance matrix on a large

sample theory basis. This leverages high performance computing maximally to reduce

the intensive permutation computations in exchange for a parametric assumption to

assess the data. The performance of this model was assessed through simulation

studies and finished by an example of application of DBLR on HMP metagenomic

data set. A thousand of duplicates of each size data set was evaluated for sensitivity.

Our method substantially reduces the needed computing power, since it does not

rely on permutation. However, one of the challenges in our method is sensitivity to

sample size considering asymptotic convergence of distribution. The classical issue in

all large variable data sets is observations of possible combinations describing classi-

fications within the data. Practically this is very important as not all measurements

in metagenomics have small variance or are precisely reproducible due to the nature

of the method. Thus evaluating multiple sample sizes was of utmost importance. In

this section the connection between pairwise distance regression and regression model

for raw data was explained by equivalency of kernel machine regression and kernel

distance covariance. Overall high accuracy was obtained in most tests performed

here, typically over 0.9 percent. This method has shown a predilection to operate

well as relatively low observations per variable, as well as being able to operate over

multiple variants of the data set.
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This method offers a unique way to evaluate large data. It would be of interest

to expand this evaluation to new questions. Research questions that could be asked

include the relationship between group centroids and dispersion, multiple testing ad-

justment, classification and model selection, study design and sample size determi-

nation. In reducing the data set to measurements of data between centroids and

dispersion of the measured variables often allows for easier feature importance ex-

traction. But the DBLR method could be applied to extremely large variable data

sets such as metagenomics or proteomics where widely used methods fail to refine any

accurate inference from the data. The adjustments to multiple testing would assist

in multi-class containing data sets. This becomes of interest when trying to relate

features of importance between geographical groups or in finely differentiated dis-

eases, such as mental disorders. While large popularity of machine learning methods

has taken over many big data applications, the computational intensity required to

deploy and train these methods is often due to the internal evaluation of the highly

dimensional data sets. Many machine learning methods could benefit from methods

such as DBLR by incorporating it into a prepossessing or post processing step. As is

the case with most methods of data inference or manipulation, clear understandings

of how the operation affects the data must be clear. Overall, the work here demon-

strates the need for tractable methods of analysis in large data sets. As the age of

informatics expands large dimensional and hierarchical data sets will become more

normal. Need of manageable methods to extract important features of the data sets

will become invaluable, especially when considered the ruse if personalized medicine

and subjective kinds of classifications.
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