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ABSTRACT

PETER MIKAEL HASSING. The mechanics and control of robotic systems
exploiting viscous phenomena for planar locomotion. (Under the direction of DR.

SCOTT KELLY)

Viscous phenomena can be used to aid in the locomotion and control of robotic

systems. With the aid of Lagrangian reduction techniques, it is shown that dissipa-

tion can be used to model nonholonomic, holonomic, and kinematically constrained

systems. This is shown theoretically, analytically, and numerically for a class of

robotic systems. Using techniques from geometric mechanics, control problems for

novel planar robots that incorporate nonholonomic constraints, dissipation, and geo-

metric phase are explored. A robotic fish is introduced, and experiments demonstrate

it can harvest energy from fluid vortices to assist in propulsion, consistent with ge-

ometric models in the literature. Experimental fluid vortices are also generated and

characterized with the aid of particle image velocimetry.
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CHAPTER 1: INTRODUCTION

Mechanics is the paradise of the mathematical sciences, because by means of it one

comes to the fruits of mathematics.

Leonardo da Vinci

1.1 Previous Work

Deepening understanding of mechanical systems is as important today as it was

when the kinematics of motion were formalized in Galilei (1638), the motions of the

planets were quantified in Kepler (1609), and the laws of motion were forumulated

in Newton (1687). Much of the mathematics used today were developed in an effort

to understand more about the mechanical nature of the universe. Because mechanics

sits at the confluence of applied mathematics and engineering, its study often serves

as the beginning for many rich mathematical theories into the foundations of the

engineering sciences. The mathematical fervor affixed to the field lends to its richness

and depth and allows for new developments in a field as old as the scientific method

itself.

The mathematical discipline of differential geometry was pioneered in the works

Gauss (1822, 1827, 1844), and Monge (1785a, 1785b) (see Struik (1933) for a historical

overview). This discipline applied calculus to curves, surfaces, and other topological

entities. In Lie (1891), the author developed continuous symmetry groups to account

for the intuitive notion that an object’s velocity was the same whether in a local
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frame or a global frame. In Noether (1918), the author recognized these symmetries

as inherent in Lagrangian systems and linked them to conservation laws. All these

ideas were eventually tied together into the modern-day field of geometric mechanics

(see Holm (2009), and Marsden and Ratiu (1998) for a thorough introductions to the

field).

The topic of reduction for Lagrangian systems was approached in Routh (1884).

In his work, he demonstrated that for systems with cyclic variables, the Lagrangian

could be rewritten in a way that eliminated the cyclic variables. This was feasible

because the the conjugate momenta corresponding to cyclic variables were conserved

quantities. Routh’s procedure worked well for systems with an Abelian symmetry

group. The reduction method for the non-Abelian case was developed much more

recently, with its origins in the work of Smale (1970), Marsden and Weinstein (1974),

and Meyer (1973). In Marsden and Scheurle (1993a) and Marsden et al. (1990),

the Lagrangian version of symplectic reduction explored in Marsden and Weinstein

(1974) was derived. The work in Smale (1970), Abraham and Marsden (1978), and

Kummer (1981) constructed a “mechanical connection” that maps tangent vectors

of a system’s internal configuration variables to the frame velocities on the reduced

space. In Bloch et al. (1996), the authors extended reduction techniques to systems

with nonholonomic constraints. Nonholonomic constraints, or simply, nonintegrable

constraints, were studied extensively in Chaplygin (1911,1949), Cartan (1928), and

were seen as fundamental objects in the field of analytical mechanics. Thus, their

treatment in the context of Lagrangian reduction was seen as a natural and important

topic. In Kelly and Murray (1996), the authors researched reduction for unconstrained
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dissipative systems.

Techniques from differential geometry extend themselves well into the field of fluid

mechanics. In Arnol’d (1966), the author addressed the evolution of an inviscid,

incompressible fluid as a problem in geometric mechanics. In Marsden and Weinstein

(1983), they revisited inviscid flow in the context of Hamiltonian reduction. See

Arnol’d and Khesin (1998) for an exposition on the topic. The dynamics and stability

of a rigid vehicle immersed in an irrotational field was studied in Leonard and Marsden

(1996). In Ozcazanc (1994), the dynamical interaction of a finite vortical fluid and a

free rigid container was studied. Coupled motion of vortices and planar rigid bodies

were studied in Koiller (1987).

Techniques from differential geometry also extend themselves well into the field of

control theory. The marriage of the fields is the subject area known as geometric

control theory. Its development was driven by the realization that tools from differ-

ential geometry and Lie theory could be used to extend linear control theory into a

nonlinear setting. The surveys of Brockett (1983c) and Brockett (2014) give a de-

tailed account of the growth of the field. Significant work has since been carried out

to apply geometric control techniques to a variety of robotics problems. In Kelly and

Murray (1994), the authors calculated a mechanical connection for a two- wheeled

kinematic robot. They gave a geometric interpretation of a theorem formalized in

Chow (1949), and then applied it to the controllability analysis of a four-wheeled cart

robot. They used the geometric phase of an inchworm robot to optimize gaits for

locomotion. It was in Marsden et al. (1990) that geometric phase was introduced

for coupled planar rigid bodies. In Bloch et al. (1996), a robotic snakeboard with
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nonholonomic constraints was analyzed. Dissipation and drift was added to the snake-

board in Ostrowski (1998). Since the system possessed drift, a unique controllability

analysis, developed in Sussman (1987), was necessary in analyzing the controllability

of the system. In Osborne and Zenkov (2005), the authors worked out a problem that

explored the modeling and steering of a nonholonomic system using a moving mass.

The authors of Kelly et al. (2011) and Kelly et al. (2012) analyzed an underactuated

nonholonomic system with a rotating mass.

The theoretical treatment of biological aquatic locomotion has seen much attention

from the academic community. Works such as Lighthill (1975), Wu (1971), and New-

man and Wu (1974) have made theoretical contributions across the full spectrum of

aquatic locomotion. They discuss the energy efficiency, stealth, and maneuverability

observed in such locomotion. The efficiency gains that fish can attain by swimming in

schools was hypothesized in Belyayev (1969). The authors of Hemelrijk et al. (2014)

studied fish swimming and schooling computationally, and noted the collective gains

in efficiency that fish attain when swimming in schools. Treating the subject of fish

swimming from a geometric perspective, and building on the previously mentioned

work that involved coupled rigid bodies and fluid vortices, the authors in Kelly and

Murray (1998) integrated Lagrangian reduction techniques into a theory of aquatic

robotic locomotion. They used this theory to develop models and control strategies

for a fish-like swimming robotic system. In Kelly et al. (2012), the authors built

on this work and incorporated an oscillating Joukowski foil to represent the shape

of a carangiform fish. They used this model in a series of simulations to evaluate

open-loop and closed-loop control strategies for turning, propulsion, and wake vortex
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energy harvesting.

Fish swimming is not just a topic that has been treated theoretically; it has been

treated experimentally as well. Robotic versions of fish have been explored signifi-

cantly in the literature. In Triantafyllou (1995), researchers developed one of the first

such robots, RoboTuna. In Kelly (1998), the author worked on a set of experiments to

complement his theoretical treatment of fish swimming. Other robotic incarnations

of swimming fish have been documented in Kumph (1998), Morgansen (2007), and

Hirata (2000). Robotic experiments involving an array of oscillating hydrofoils were

carried out in Kelly and Xiong (2005) to study the effects of hydrodynamic coupling

on schooling locomotion. Fish robots have recently seen applications in pollutant

detection in Aron (2012), and with the Office of Naval Research for potential military

uses in Ruffo (2010). Such successes motivate the continued study of these robotic

systems.

To experimentally capture the effects of vortex wake on a swimming machine, one

has to first generate fluid vorticies. The literature contains many studies on the

experimental generation of such fluid vortex structures. These vortex structures are

frequently analyzed with the aid of particle image velocimetry (PIV) techniques, as

seen in Dazin et al. (2006), Richard et al. (2008), Cuypers et al. (2007). Experimental

generation of standing fluid vortices has not been well documented though. However,

in Forgoston et al. (2013), the authors developed an experimental test bed that could

generate similar fluid flows, as seen in double-gyre wind-driven flows, to study the

underlying manifold and Lagrangian coherent structure (LCS) one might observe in

the ocean. These underlying structures coincided with minimum energy and time
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optimal paths for autonomous underwater vehicles in the ocean. The fluid flow was

characterized using PIV. The goal of their experimental work was similar to the

simulation work of Kelly et al. (2012). Both studies address developing energy-

optimal paths through fluid systems that exploit the underlying fluid structures for

gains in energy efficiency.

1.2 Overview of Contributions

With its depth and richness, geometric mechanics can prove daunting for a new

student to learn the tools of the field. Thus, a focused approach is used to provide

a thorough introduction to Lagrangian reduction for unconstrained, dissipative, and

nonholonomically constrained Lagrangian systems. Doing so provides the student

with the essential tools necessary for analyzing these mechanical systems. Example

problems are provided, with a detailed description of the calculations necessary to

analyze the systems on a geometric level.

Often times in engineering problems, it is useful to model algebraic constraints as

dissipation, and to model dissipation as algebraic constraints. When modeling sys-

tems with algebraic constraints, a common problem arises when constraints become

extremely redundant. For example, in the case of a rigid door with three hinges, a

natural temptation would be to place three rotational algebraic constraints on the

door, one for each hinge. However, doing so creates a redundancy in constraints that

does not make sense in the analysis of the system. In this simple example, one rota-

tional constraint would be sufficient. However, in very complex mechanical systems,

possibly with hundreds or thousands of components, identifying these redundancies
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can be exhaustive if not nearly impossible for an analyst. In these cases, the Mo-

tionSolve 12.0 User’s Guide (2013) mentions that it is common practice to replace

the algebraic constraints with dissipative elements, then set the dissipation very high

(MotionSolve is a software package for simulating multi-body, dynamic systems).

Doing so mimics the behavior of the constraints, possibly saving enormous amounts

of time for an engineer while yielding nearly identical results. The inverse of this

technique is common as well. Constraints are often used to model dissipation. For

example, in Georgiou et al. (2015), Arman et al. (2006), Yang et al. (2013), Tang et

al. (2014), the authors carry out numerical simulations of common composite testing

procedures. Often, the procedures require a composite panel to be held in position by

a set of clamps or vices. The clamps are assumed to be tight enough that frictional

forces prevent sliding of the test panel. Given this assumption, the authors model a

simple boundary condition that sets translation to zero along the sliding direction.

This leads to sufficiently accurate results for their studies. The aforementioned tech-

niques provide motivation to pursue a rigorous mathematical study to ascertain the

validity of modeling algebraic constraints as dissipative entities and vice versa. The

study is carried out with tools from geometric mechanics, and ultimately puts the

assumptions of the techniques on a solid mathematical footing.

Another significant benefit of geometric mechanics is that Lagrangian reduction

techniques can aid in the control design of systems. Given that many of the tools

were discovered and formalized in the last four decades, the treatment of a variety of

new problems can prove useful in expanding the applicability and understanding the

limitations of the techniques, thus ultimately developing tools’ maturity and building
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confidence in them. It also allows new insights into the existing canon of control

problems encountered in the literature. A class of original example problems are used

to demonstrate these techniques. In addition to Lagrangian reduction, this study

includes novel techniques necessary for analyzing each unique problem. Thus, the

class of systems that can be analyzed with the tools is expanded.

In this work, a robotic hydrofoild is constructed and used to study the fluid me-

chanics underpinning the motion of a fish. The machine is unique in that it was

developed in conjunction with a series of simulations developed in Kelly and Pu-

jari (2010). The simulations were conducted to study the fluid vortex interactions

observed in a Joukowski foil that closely resembles the vortex shedding seen in the

caudal fin of swimming fish. The idealized fluid vortices observed in the simulation

are replicated experimentally. A machine that can experimentally create nearly irro-

tational fluid vortices is designed and fabricated. These fluid vortices are analyzed

with the aid of PIV to characterize their flow properties. The characterization of the

vortices ensures they are similar to the simulated vortices.

Given the created vortices, a simple technique allows the robot to extract energy

from fluid vortices to attain dramatic gains in efficiency. The observed phenomenon

provides evidence of a hydromechanical purpose to aspects of the swimming behavior

of schooling fish.



CHAPTER 2: MATHEMATICAL PRELIMINARIES

In this chapter, mathematical definitions and descriptions pertinent to the analysis

performed in this thesis are introduced. For those uninitiated in many of the topics

in topology and differential geometry, this chapter includes an overview.

2.1 Manifolds, Vector Fields, and Functions

Definition 2.1.1. Given a set M , a coordinate chart on M is a subset U ⊂ M

together with a bijection

φ ∶ U → φ(U) ⊂ R
n. (1)

Figure 1: A chart on S2 that locally looks like R2.

Definition 2.1.2. A set M is a differentiable manifold that can be written as the

union of a collection of compatible coordinate charts.
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Examples of manifolds include the straight line in R1 or the surface of a sphere given

in S2. For the sphere, the lines of latitude and longitude help define the points on the

manifold.

Figure 2: A configuration manifold formed by using the Cartesian product.

Definition 2.1.3. A function is a smooth mapping between manifolds M and N ,

f ∶M → N ∶ x→ y

Thus, the familiar notion of a function from calculus, f(x), can be interpreted as a

manifold comprised of all possible values of f(x), mapped from a manifold comprised

of all possible values of x. Both of these manifolds can be considered a single manifold

using the Cartesian product of manifolds:

M ×M = (X,Y ) ∶X,Y ∈M. (2)

Example 2.1.1.

An example is a 2D wheel rolling along the x axis. The angle of the wheel is
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specified as φ. The angle φ is a coordinate in a particular choice of chart that covers

some, but not all, of the 1D circular manifold M , such that φ ∈ M . The set of all

possible values of its position on the x axis can be considered a manifold G, such

that x ∈ G. G is taken as the 1D real number line R. As discussed in later sections,

it can sometimes be helpful and informative to consider these two sets on the same

topological space or manifold. Using the Cartesian product, such a manifold can be

formed, such that Q = M ×G. This manifold consists of all possible configurations

of the angle and position and is referred to as the configuration manifold. The angle

and position can be considered coordinates, q on the configuration manifold, Q, as

represented in Figure 2. Next, q is parameterized by time t, such that q(t). Then a

vector space is defined for q̇, called the tangent space:

Definition 2.1.4. : Given a point on x ∈ M , the tangent space TxM is defined as

the set of mappings

V ∶ C inf(q) → R (3)

on M whose domain includes a neighborhood of x, satisfying
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1. v(αf + βg) = α(vf) + β(V g),
α, β ∈ R, f, g ∈ C inf(x), (4)

2. v(fg)(x) = (vf)g(x) + f(x)(vg),
f, g ∈ C inf(x),
(v1 + v2)f = V1f + V2f,

(αV )f = α(V f). (5)

The set of all equivalence classes of curves passing through the point p of a manifold

is said to be its tangent space there:

Tx(M) ≡ [c]x,∀c(t) ∈,M with c(0) = x. (6)

Figure 3: The tangent space.

Points in q ∈ Q can be related to points in its tangent space by a vector field X.

Definition 2.1.5. Let Q be a manifold and T (Q) its tangent space. A vector field,
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X, is a manifold map from Q to T (Q) such that, for every p ∈ Q, the vector field

at the point q gives a point in the tangent space attached to the manifold there

X(q) ∈ Tq(Q).

Figure 4: A vector field.

For the wheel, x and φ are related by x = rφ. This is the function map, f ∶M → G.

Again, to learn more about how this system evolves through time, a tangent map for

the system is constructed.

Definition 2.1.6. Given a function map f ∶ M → N , with x ∈ M and [c]x ∈ TxM ,

such that f ○ c is a curve at f(x), then Tf ∶ TM → TN is called the tangent map

of f , where Tf([c])x) = [f ○ c]f(x).

Thus, the tangent map for the wheel is ẋ = rφ̇.

In this work, directional derivatives help describe the motion of the systems. This

motion has a geometric description as well, but first differential forms and natural

pairings must be defined.

Definition 2.1.7. Given any linear vector space V , its dual vector space V ∗ con-

sists of linear maps from V to R or covectors.
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The differential of f at q is given as

df(q) ∶ TqM → R. (7)

The differential df of a function f is known as a differential form.

Differential forms will play a key role in defining constrained momentum maps and

constrained vector spaces in later chapters.

Definition 2.1.8. X(M) represents smooth vector fields on M ; then an element

α ∈ X∗(M) is called a one form on M . To each point q ∈ M , it assigns a map

α(q) ∶ TqM → R. A two form Ω on M assigns a skew-symmetric bilinear map

Ω(q) ∶ TqM × TqM → R to each point.

Definition 2.1.9. The natural pairing is the map

⟨⋅, ⋅⟩ ∶ T ∗q M × TqM → R (8)

such that ⟨α1dq1 + . . . + αndqn, V ′ ∂∂q + . . . + V n ∂
∂qn ⟩ = α1V 1 + α2V 2 + . . . αnV n.

The natural pairing ⟨df(q), V ⟩ thus defines the directional derivative.

That T ∗Q and TQ are duals has been established, but how is a particular element

of TQ identified with T ∗Q? The answer is the inner product.

Definition 2.1.10. The inner product is the map

⟪⋅, ⋅⟫ ∶ TqM × TqM → R, (9)

and must be positive definite, symmetric, and bilinear.
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Given u, v,w ∈ TQ and α ∈ T ∗Q,

⟨α,w⟩ = ⟪v,w⟫. (10)

The following example recaps the definitions used to describe this 2D wheel.

Example 2.1.2.

The constraint x = rφ defines a function f ∶ M → R, with tangent map Tf . The

differential of this system, dx ∶ TM → R, defines the dual space T ∗M and is also

a one form. Thus, the following expression is defined: ⟪v,w⟫ = ⟨α,w⟩, where v =
∂
∂x + ∂

∂φ ∈ TQ, w = ∂
∂x + ∂

∂φ ∈ TQ, and α = mdx + Jdφ ∈ T ∗Q, with m and J as mass

and moment of inertia.

2.2 Lie Groups and Lie Algebras

This section addresses ideas and concepts from abstract algebra and group theory

that form the foundation for approaching dynamical systems in this work. The focus

is on developments in the field by Sophus Lie in the late 1800s. Lie discovered

that continuous transformation groups or Lie groups could be better understood by

“linearizing” them and studying the corresponding generating vector fields, called

infinitesimal generators. These generators are subject to a linearized version of the

group law, the commutator bracket, and have the structure of a Lie algebra.

First, a group is simply an algebraic system with one operation. The operation

considered for these groups is multiplication. It is necessary to understand how group

multiplication can be abstracted to manifolds and aid in the analysis of systems like
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the 2D wheel.

Definition 2.2.1. A Lie group is a manifold G on which a smooth group operation

is defined, where ∀f, g, h ∈ G satisfy the following four conditions:

1. Closure; ∀ a, b ∈ G, the result of the operation a ⋅ b, is also in G.

2. Associativity; ∀ a, b, and c ∈ G, (a ⋅ b) ⋅ c = a ⋅ (b ⋅ c).
3. Identity Element; ∃ e ∈ G such that ea = ae = a.

4. Inverse Element; ∃ g−1 such that gg−1 = g−1g = e.

A broad classification of Lie groups describes different types of symmetries. Some

simple Lie groups often encountered in dynamical systems include the 1D translation

general linear group GL(1) and the 2D rotation special orthogonal group SO(2).
The above Lie group definition does not contain a commutative condition, thus

there is a need to clarify the order by which the group operation occurs.

Definition 2.2.2. For g, h ∈ G, left translation by h corresponds to the map

Lh ∶ g ↦ hg.

Definition 2.2.3. For g, h, ∈ G, right translation by h corresponds to the map

Rh ∶ g ↦ gh.

The same maps apply in tangent spaces, with a slight change in notation.

With v ∈ TgG,

hv = TgLhv ∈ ThgG and vh = TgRhv ∈ TghG.
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Figure 5: Group translation.

Again, back to the 2D wheel example:

Example 2.2.1. In this system, x can be identified as the set of nonzero real numbers

with the multiplication operation. This corresponds to the matrix Lie group GL(1),
where the space of 1× 1 matrices M(1,R) is identified with R. The group identity is

1.

Group translations map group elements onto group elements. The configuration

manifold Q, thus far, has been comprised of Lie group elements and non group ele-

ments. The question is how group operations effect Q.

Definition 2.2.4. A (smooth) left action of a Lie group G on manifold M is a

smooth mapping Φ ∶ G ×M →M such that

1. Φ(e, x) = x for all x ∈M ;

2. Φ(g,Φ(h, x)) = Φ(gh, x) for all g, h ∈ G and x ∈M ;

3. For every g ∈ G, the map Φg ∶ M → M , defined by Φg(x) ∶= Φ(g, x) is a

diffeomorphism.
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Definition 2.2.5. Properties of group actions The action Φ ∶ G ×M → M of a

group G on a manifold is said to be

1. transistive if, for every x, y ∈M , there exists a g ∈ G such that gx = y;

2. free if it has no isotropic points; that is, gx = x implies g = e;

3. faithful (or effective) if, for all g ∈ G such that g ≠ e, there exists x ∈M such

that gx ≠ x; and

4. proper if, whenever the sequences xn and gn, xn converge in M , the sequence

gn has a convergent subsequence in G.

Figure 6: The group action.

Definition 2.2.6. The lifted action is the map TΦg ∶ TqQ → TΦ(q)Q ∶ (q, v) ↦
(Φg(q), TqΦg(v)) for all g ∈ G and q ∈ Q. For left translation on G, TΦg has the

coordinate form:

TqΦh(q̇) =
⎛⎜⎜⎜⎝
TgLhġ

ṡ

⎞⎟⎟⎟⎠
=
⎛⎜⎜⎜⎝
hġ

ṡ

⎞⎟⎟⎟⎠
. (11)

Thus, for the wheel, the group action of GL(1) on Q is such that
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Φg(q) =
⎛⎜⎜⎜⎝
a1 + x

φ

⎞⎟⎟⎟⎠
, (12)

where a1 ∈ GL(1), with lifted action

TqΦg(q̇) =
⎛⎜⎜⎜⎝

ẋ

φ̇

⎞⎟⎟⎟⎠
. (13)

Given a Lie group action, one must understand how a point x ∈ M can be moved

by all possible elements in G.

Definition 2.2.7. (Orbits) G acts on M . For a given point x ∈M , the subset

Orb(x) ∶= gx ∶ g ∈ G ⊆M (14)

is called the group orbit through x.

Figure 7: Group orbit.

As noted, the group operations are not necessarily commutative. Commonly, the

vector fields of the systems will also not be commutative. To measure how non-

commutative the vector fields are, the following definition applies:
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Definition 2.2.8. A Jacobi Lie bracket is the operation [⋅, ⋅] ∶ X(M) × X(M) →
X(M) defined by

[X,Y ]f =XY f − Y Xf, (15)

X,Y ∈ X(M).

In this work, the Jacobi Lie bracket [X,Y ] is often denoted by adXY .

Figure 8: The flow interpretation of the Lie bracket.

Group operations are especially useful because they allow for a system treated on

a body fixed coordinate frame to be translated to a global frame. Vector fields on

the body fixed frame will always satisfy a few conditions regarding their commuta-

tive properties, understood through the (Jacobi) Lie bracket operation. In addition,

vectors of this body fixed space can be understood as elements. These elements and

the bracket operation comprise the necessary concepts to define an algebra.

Definition 2.2.9. A Lie algebra is a vector space V together with an operation

[⋅, ⋅] ∶ V × V → V such that
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1. [⋅, ⋅] is bilinear;
2. [v, v] = 0 for every v ∈ V ;

3. [u, [v,w]] + [v, [w,u]] + [w, [u, v]] = 0 for all u, v,w ∈ V (Jacobi identity).

The elements of the Lie algebra are denoted by ξ ∈ g. Lie algebra elements are

body fixed group tangent vectors or ξ ∈ TeG.

Definition 2.2.10. The left extension of any ξ ∈ TeG is the vector field XL
ξ given

by

XL
ξ (g) ∶= TeLg(ξ). (16)

Definition 2.2.11. A vector field X ∶ G→ TG, h→X(h) is called left invariant if

L∗g(X) =X ,∀g ∈ G. (17)

Definition 2.2.12. With ξ ∈ g, the one-parameter subgroup corresponding to ξ,

gξ ∶ R→ G is the unique solution curve of the initial-value problem

dg

dt
= Xξ(g),

g(0) = e. (18)

Definition 2.2.13. G is a Lie group and g is its Lie algebra. The Lie exponential

map is a map

exp ∶ g→ G (19)
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given by exp(X) = γ(1), where γ ∶ R→ G is the unique one-parameter subgroup of G,

whose tangent vector at the identity is equal to X. It also coincides with the matrix

exponential given by the series expansion

exp(A) = γA(1) = e = I + A

1!
+ A2

2!
+⋯. (20)

Example 2.2.2.

For the 2D wheel, the Lie algebra is gl(1) ≃ R. For any x ∈ GL(1), the left

translation map Lx ∶ GL(1) → GL(1) is given by Lx(y) = xy. The left extension of

a vector ξ ∈ gl(1) is the vector field Xξ given by Xξ(x) ∶= TeLx(ξ) = xξ. Because the

x velocity of the disc is the same no matter where the starting point of the x axis

is defined, the vector field X is left invariant. The integral curve t → γξ(t) is the

solution of the corresponding ODE:

dx

dt
= ξx,

x(0) = 1.

Direct integration gives the one-parameter subgroup γξ(t) = etξ. The Lie exponential

map is exp(ξ) = γξ(1) = eξ.

Definition 2.2.14. (Infinitesimal Generator) The infinitesimal generator as-

sociated with ξ at x ∈ M , denoted ξM(x), is the tangent (or velocity) vector to this

curve at x; that is,
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ξM(x) = d

dt
∣t=0(exp(tξ), x) ∈ TxM. (21)

The smooth vector field ξM ∶ M → TM,x → ξM(x), is called the infinitesimal

generator vector field associated to ξ. The infinitesimal generator map g ×M →
TM, (ξ, x) → ξM(x) can be thought of as the “infinitesimal action” of g on M . It is

the expression at the tangent level of the action of G on M . For translating the disc

example, with exp(tξ) = etξ, the infinitesimal generator is given by

ξM(x) = d

dt
∣t=0(etξx)

= (etξξx)∣t=0
= ξx. (22)

Definition 2.2.15. A function F is invariant with respect to an action Φ of a Lie

group G if, for every g ∈ G, the map φg is a symmetry of F ; that is, F ○Φg = F . The

group G is called a Lie group symmetry or symmetry group of F.

For the rolling disc, the function ẋ = rφ̇ is invariant with respect to the group action

ΦGL(1)(q) =
⎛⎜⎜⎜⎝
a1 + x

φ

⎞⎟⎟⎟⎠
, (23)

where a1 ∈ GL(1).
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2.3 Unconstrained Reduction Without Dissipation

The concepts in this section are an introduction to the technique of Lagrangian

reduction. This technique uses symmetries and Lie groups inherent in Lagrangian

systems to simplify the systems, so they are expressed in terms of Lie algebra elements

and momentum terms. It is often easier to work with a simplified set of equations

because they are easier to manipulate and solve. This technique also yields significant

insight into the system because it parses the non-drift terms from the drift terms and

maps the motion of the actuation variables onto the body velocities of the system.

First, some definitions are delineated.

For the Lagrangian, L ∶ TQ→ R of a mechanical system,

Definition 2.3.1. The fiber derivative FL ∶ TQ→ T ∗Q of the Lagrangian L ∶ TQ→
R is

⟨FL(u), v⟩ = d

dt
∣t=0L(u + tv) for u, v ∈ TqQ (24)

at every q ∈ Q.

The fiber derivative simply gives the momenta of the system in the global frame.

However, viewing the system on a body fixed frame will reduce the complexity of the

system. To do so, the Lagrangian first must be G-invariant.

Definition 2.3.2. A Lagrangian function, L ∶ TQ→ R, is said to be G-invariant if it

is invariant with respect to the lifted action, that is, if
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L(q, vq) = L(Φh(q), TqΦhvq) (25)

for all h ∈ G and all vq ∈ TqQ

Definition 2.3.3. A kinetic energy metric of a system can be expressed in terms

of the fiber derivative of a G-invariant Lagrangian, such that

⟪u, v⟫KE = ⟨FL(u), v⟩. (26)

This relationship can then be used to express the global momentum in terms of body

fixed momenta.

Definition 2.3.4. Given a G-invariant Lagrangian, the momentum map J ∶ TQ→
g∗ is

⟨J(vq), η⟩ = ⟨FL(vq), ηQ(q)⟩
= ⟪vq, ηQ(q)⟫KE, (27)

for vq ∈ TqQ and η ∈ g.
If L is G invariant, then G is said to determine a symmetry of the system given by

the Euler-Lagrange equations. The relationship between symmetries and conservation

laws is formalized by the following.

Theorem 2.3.1. (Noether) If L ∶ TQ → is G invariant, then the momentum

J ∶ TQ→ g∗ is conserved along integral curves of the Euler-Lagrange equations corre-

sponding to L.
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The kinetic energy metric can be used to define a second map for a Lagrangian

system:

Definition 2.3.5. Given that G acts on Q to define a principal bundle over M .

If L ∶ TQ → R is G invariant, the locked inertia tensor corresponds to the map

I ∶ g→ g∗ at each q ∈ Q such that

⟨I(q)ξ, η⟩ = ⟪ξQ(q), ηQ(q)⟫KE. (28)

The locked inertia tensor gives the masses and moments of inertia of the system at

an instant in time when the non-group elements of the system are considered locked.

The importance of the body fixed representation of the coordinate frame to the

reduction process should be clear. To further clarify how to construct vector spaces

considered in the different frames, the global and body frames are discussed.

Definition 2.3.6. The Lagrangian or material velocity is given by

vmaterial(t) = ġ(t) ∈ Tg(t)G, (29)

where left and right translation in G both determine isomorphisms between TeG and

Tg(t)G. For the local, body fixed frame,

Definition 2.3.7. The convective or body velocity is given by

vbody(t) = Tg(t)Lg−1(t)ġ(t) ∈ TeG. (30)

To help move between global and local vector spaces, the following is used:
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Definition 2.3.8. The adjoint action of G on g, given by

G × g→ g, (g, ξ) → Adgξ ∶= TeIg(ξ) = Te(Lg ○Rg−1ξ). (31)

The adjoint action can be thought of as a map from G to g. One example of the

usefulness of this action is its use to re-express the global representation of the locked

inertia tensor in terms of a localized representation of the locked inertia tensor

I(r, g) = Ad∗g−1Iloc(r)Adg−1 . (32)

The next definition is possibly the most important in this chapter. For all problems

in Parts I and II, the definition is central to constructing the reduced equations and

understanding the system on a geometric level.

Definition 2.3.9. The mechanical connection corresponding to the one form

Γmech ∶ TQ→ g is given by

Γmech(q, q̇) = I
−1(q)J(q, q̇), (33)

where J ∶ TQ → g∗ is the momentum map. The mechanical connection can also be

expressed as

Γmech(q, q̇) = Adg(g−1ġ +Amechṙ). (34)

The derivation can be found in Kelly (1998).

For example, a four-wheeled mobile robot has rear wheels that rotate at a given
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angular velocity for forward motion of the robot and has front wheels that steer.

Given the angular velocity of the rear wheels, the angle of the front wheels, and

the body velocity of the system, all the motion of the system through space can be

determined through the connection map.

To delve deeper into the abstract geometric description of mechanical systems, a

few more concepts need to be defined. These concepts help to clarify the underlying

structure of the configuration manifold Q =M ×G.

Definition 2.3.10. The canonical projection is a differentiable projection onto

the second coordinate factor: π(q) = π(g, s) = s. The sets π−1(s) ⊂ Q for r ∈ M are

the fibers, and Q is the union over M of its fibers.

Definition 2.3.11. A (left) principal fiber bundle with base space M and struc-

ture group G comprises a manifold Q and a free (left) action Φ of G on Q such

that

1. M = Q/G.

2. The canonical projection πM ∶ Q→M = Q/G is differentiable.

3. Q =M ×G locally.

Thus, the fiber gives a way to relate coordinates in the base manifoldM to coordinates

anywhere in Q. Associating a free action to the fiber deepens the meaning behind

the fiber. Because the action can be used to generate vector fields, the principal fiber

bundle now carries information about how the system evolves over time.

For the configuration manifold Q, the tangent space at each point can be split into

two vector spaces.



29

Definition 2.3.12. The vertical space is the space of all vectors vq ∈ TqQ that are

tangent to the fiber through Q.

Definition 2.3.13. The horizontal space is the kernel of the connection one form,

HqQ = {z∣Γ(q)z = 0} . (35)

TqQ can be decomposed into horizontal vectors in HqQ and vertical vectors in VqQ,

HqQ⊕ VqQ = TqQ. (36)

Figure 9: Operations on the fiber bundle.

Example 2.3.1.

To begin, the following system is constructed.
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qr = (x, y),
qf = (x + l cos θ, y + l sin θ),
vr = q̇r,

vf = q̇f ,

vrLB
= vr ⋅ (cos θ, sin θ),

vrSB
= vr ⋅ (− sin θ, cos θ),

vfLB
= vf ⋅ (cos θ, sin(θ)),

vfSB
= vf ⋅ (− sin θ, cos θ). (37)

Figure 10: A beanie diagram.

This system consists of two planar rigid bodies attached at their centers of mass. The

rigid bodies move freely in the plane, and the existence of control torques between

the two bodies is assumed.
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The Lagrangian corresponding to Figure 10 is as follows:

L = 1

2
m(v2fLB

+ v2fSB
) + 1

2
JJ θ̇

2 + 1

2
JB(θ̇ + φ̇)2, (38)

or

L = 1

2
m(ẋ2 + ẏ2 + l2mθ̇2) + lmθ̇(ẏ cos θ − ẋ sin θ) + 1

2
JJ θ̇

2 + 1

2
JB(θ̇ + φ̇)2. (39)

Remark 2.3.1. Before continuing further, a suitable Lie group for this particular sys-

tem must be identified. With translation and rotation in the plane defined, the SE(2)
Lie group and its associated Lie algebra, se(2), must be addressed. Elements of SE(2)
can be matrices of the form

g =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos θ − sin θ x

sin θ cos θ y

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (40)

The group operation corresponds to matrix multiplication. The corresponding ele-

ments of SE(2) will sometimes be denoted by triplets (x, y, θ). If g1 = (x1, y1, θ1), g2 =
(x2, y2, θ2) ∈ SE(2), then

g1 ⋅ g2 = (x1 + x2 cos θ1 − y2 sin θ1, y1 + x2 sin θ1 + y2 cos θ1, θ1 + θ2). (41)

Elements of se(2) can be represented as matrices of the form
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −ξθ ξx

ξθ 0 ξy

0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (42)

The bracket operation corresponds to matrix commutation, and corresponding ele-

ments of se(2) will sometimes be denoted by triplets (ξx, ξy, ξθ). If ξ = (ξx, ξy, ξθ), η =
(ηx, ηy, ηθ) ∈ se(2), then

[ξ, η] = (ξyηθ − ξθηy, ξθηx − ξxηθ,0). (43)

The exponential map exp ∶ se(2) → SE(2) is given by

expξ = ( 1
ξθ
(−ξy + ξy cos ξθ + ξx sin ξθ,

1

ξθ
(ξx − ξx cos ξθ + ξy sin ξθ), ξθ) (44)

if ξθ ≠ 0 and by the Abelian exponential map (ξx, ξy,0) ↦ (ξx, ξy,0) if ξθ = 0. It follows

that the infinitesimal generator of left translation corresponding to ξ ∈ se(2) is given

by

ξSE(2) = (ξx − yξθ, ξy + xξθ, ξθ). (45)

The adjoint action of SE(2) on se(2) is given by

Adgξ = (ξx cos θ − ξy sin θ + ξθy, ξx sin θ + ξy cos θ − ξθx, ξθ). (46)

If g(t) = (x(t), y(t), θ(t)) is a curve in SE(2), then
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g−1ġ = (ẋ cos θ + ẏ sin θ, ẏ cos θ − ẋ sin θ, θ̇). (47)

Example 2.3.1 continued.

First, the Lagrangian must be checked to determine whether it is invariant under

left translation of the group. The fiber bundle for the system is given by Q = SE(2)×
S = G×M . With the element h = (a1, a2, α) ∈ G = SE(2) and φ ∈M , the corresponding

group action is given by

Φg(q) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 + x cosα − y sinα

a2 + x sinα + y cosα

α + θ

φ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and the lifted action by

TqΦg(q̇) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cosα − sinα 0 0

sinα cosα 0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ẋ

ẏ

θ̇

φ̇

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ẋ cosα − ẏ sinα

ẋ sinα + ẏ cosα

θ̇

φ̇

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Substituting these lifted velocities into the Lagrangian shows that
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L(Φgq, TqΦgġ) = 1

2
m((ẋ cosα − ẏ sinα)2 + (ẋ sinα + ẏ cosα)2 + l2mθ̇2)

+lmθ̇((ẋ sinα + ẏ cosα) cos θ
−(ẋ cosα − ẏ sinα) sin θ) + 1

2
JJ θ̇

2 + 1

2
JB(θ̇ + φ̇)2

= 1

2
m(ẋ2 + ẏ2 + l2mθ̇2) + lmθ̇(ẏ cos θ − ẋ sin θ) + 1

2
JJ θ̇

2 + 1

2
JB(θ̇ + φ̇)2

= L(q, q̇). (48)

With group invariance demonstrated, the next step is to construct the fiber deriva-

tive FL(vq) by taking the partial derivatives of the Lagrangian with respect to each

group element x, y, θ.

FL(vq) =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂L
∂ẋ ,

∂L
∂ẏ ,

∂L
∂θ̇

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

m(ẋ − lθ̇ sin θ)
m(ẏ + lθ̇ cos θ)

−lmẋ sin θ + lmẏ cos θ + (JB + JJ + l2m)θ̇ + JBφ̇

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (49)

This can then be used to calculate the momentum map J .
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⟨J(vq), η⟩ = ⟪vq, ηQ(q)⟫KE

= ⟨FL(vq), ηQ(q)⟩
= ∂L

∂ẋ
(ξx − yξθ) + ∂L

∂ẏ
(ξy + xξθ) + ∂L

∂θ̇
ξθ

Jxξx + Jyξy + Jθξθ = m(ẋ − lθ̇ sin θ)ξx + (m(ẏ + lθ̇ cos θ)ξy
+(−mẋ(l sin θ + y) +mẏ(l cos θ − x)
+θ̇(JB + JJ + l2m + lmx cos θ + lmy sin θ) + JBφ̇)ξθ. (50)

Equating coefficients gives J momentum equations.

The fiber derivative can also be used to construct the locked inertia tensor I(q).
Replacing vectors of TG in L(vq) with vectors of ηQ (same as ξQ) gives FL(ηQ).
Starting with

ηSE(2) = (ηx − yηθ, ηy + xηθ, ηθ), (51)

and substituting into the Lagrangian gives

L(q, η) = 1

2
m((ηx − yηθ)2 + (ηy + xηθ)2 + l2mη2θ) + lmηθ((ηy + xηθ) cos θ

−((ηx − yηθ) sin θ) + 1

2
JJη

2
θ + 1

2
JB(ηθ + φ̇)2, (52)
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FL(ηq) =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂L
∂ηx

∂L
∂ηy

∂L
∂ηθ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

m(ηx − lηθθ)
m(ηy + lηθθ)

−lmηx sin θ + lmηy cos θ + (JB + JJ + l2m)ηθ + JBφ̇

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (53)

⟨I(q)ξ, η⟩ = ⟪ξQ(q), ηQ(q)⟫KE

= ⟨FL(ηQ), ξQ(q)⟩
= ∂L

∂ηx
(ξx − yξθ) + ∂L

∂ηy
(ξy + xξθ) + ∂L

∂ηθ
ξθ

= Ixxηxξx + Ixyηxξy + Ixθηxξθ + Iyxηyξx + Iyyηyξy

+Iyθηxξθ + Iθxηθξx + Iθyηθξy + Iθθηθξθ,

= mηxξx + 0 ⋅ ηxξy −m(l sin θy)ηxξθ + 0 ⋅ ηyξx +mηyξy

+m(l cos θ + x)ηyξθ −m(l sin θ + y)ηθξx +m(l cos θ + x)ηθξy
+(JB + JJ + l2m +m(2lx cos θ + x2 + 2ly sin θ + y2))ηθξθ. (54)

The adjoint action of SE(2) can be used to localize the locked inertia tensor:
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Iloc = Ad∗gI(q)Adg

=
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos θ sin θ 0

− sin θ cos θ 0

y −x 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos θ − sin θ y

sin θ cos θ −x
0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

Iloc =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

m 0 0

0 m lm

0 lm JB + JJ +ml2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The definition of Γmech can be used to calculate Amech. Starting with

I
−1
locAd

∗
gJ − g−1ġ = Amechṙ, (55)

then ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
m 0 0

0 l2

JB+JJ + 1
m − l

JB+JJ

0 − l
JB+JJ

1
JB+JJ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos θ sin θ 0

− sin θ cos θ 0

y −x 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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∗

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m(ẋ − lθ̇ sin θ)ξx

(m(ẏ + lθ̇ cos θ)ξy

(−mẋ(l sin θ + y) +mẏ(l cos θ − x)
+θ̇(JB + JJ + l2m + lmx cos θ + lmy sin θ) + JBφ̇)ξθ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ẋ cos θ + ẏ sin θ

ẏ cos θ − ẋ sin θ

θ̇

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

JB l
JB+JJ

− JB
JB+JJ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ṙ, (56)

so

Amech =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

JB l
JB+JJ

− JB
JB+JJ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (57)

Using
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g−1ġ = −Amechṙ + I
−1
locp,

ṗ = ad∗g−1ġp

renders

⎛⎜⎜⎜⎝
ġ

ṗ

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ẋ

ẏ

θ̇

ṗx

ṗy

ṗθ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos θpx
m − sin θ(JB+JJ+l2m)py

m(JB+JJ) + lm(−pθ+JB φ̇)
m(JB+JJ)

sin θpx
m + cos θ(JB+JJ+l2m)py

m(JB+JJ) + lm(−pθ+JB φ̇)
m(JB+JJ)

−lpy+pθ−JB φ̇
JB+JJ

− lp2y
JB+JJ + pypθ

JB+JJ + JBpyφ̇
JB+JJ

lpxpy
JB+JJ − pxpθ

JB+JJ − JBpxφ̇
JB+JJ

l2pxpy
JB+JJ − lpxpθ

JB+JJ − JB lpxφ̇
JB+JJ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (58)

These reduced equations completely describe the evolution of the system.

2.4 Reduction for Purely Dissipative Systems

The introduction of dissipation to a system is an important part of capturing the

accurate behavior of mechanical systems. Dissipation is usually present in the form

of friction or drag. Given its prevalence in mechanical systems, it deserves a thorough

description in terms of Lagrangian reduction. To being, a purely dissipative system

is one in which there is no momentum.

Reduction for such a system is based on the following concepts. These concepts are

simply the dissipative analogues of the concepts introduced in the previous section.

The first concept is the familiar notion of force.

Definition 2.4.1. A force field is a fiber preserving map F ∶ TQ → T ∗Q over the
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identity. The force field determines a one form F̃ ∶ T (TQ) → R such that

F̃ (v)W = ⟨F (v), TvτQW ⟩ (59)

for v ∈ TQ and W ∈ Tv(TQ).

Given a Rayleigh dissipation function R for a system, a dissipative force field can be

generated by F = F(−R).

Definition 2.4.2. Given a G-invariant Rayleigh dissipation function such that F =
F(−R), the momentum map, K ∶ TQ→ g∗, is given by

⟨K(q, q̇), ξ⟩ = ⟨F (q, q̇), ξQ(q)⟩. (60)

Definition 2.4.3. Given a G-invariant Rayleigh dissipation function such that F =
F(−R), the viscosity tensor V ∶ g→ g∗ is given by

⟨V(q)ξ, η⟩ = ⟨F (ξQ(q)), ηQ(q)⟩. (61)

Definition 2.4.4. The Stokes connection corresponding to the one form ΓStokes ∶
TQ→ g is given by

ΓStokes ∶ (q, q̇) ↦ V
−1(q)K(q, q̇). (62)

It can also be expressed as

ΓStokes = Adg(g−1ġ +AStokesṙ). (63)
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Figure 11: The Stokesian car model.

Comparing the Stokesian-based maps defined above to the Lagrangian-based maps

defined in the previous section shows each Stokesian-based map is geometrically iden-

tical to a Lagrangian-based map. For instance,

R,L ∶ TQ → R,

F(−R),F(L) ∶ TQ → T ∗Q,

K,J ∶ TQ → g∗,

V, I ∶ g → g∗,

ΓStokes,Γmech ∶ TQ → g. (64)

Given this relationship, the procedure for calculating each of the dissipative maps is

identical to that for calculating the Lagrangian-based maps. Thus, detailed calcula-

tions are omitted in the following example.

Example 2.4.1.
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Starting with a system defined by

(xr, yr) = (x, y),
(xf , yf) = (x + l cos θ, y + l sin θ),

vr = ẋr, ẏr,

vf = ẋf , ẏf ,

vrLB
= vr ⋅ (cos θ, sin θ),

vrSB
= vr ⋅ (− sin θ, cos θ),

vfLB
= vf ⋅ (cos θ, sin(θ)),

vfSB
= vf ⋅ (− sin θ, cos θ),

vfwLB
= vf ⋅ (cos(θ + φ), sin(θ + φ)),

vfwSB
= vf ⋅ (− sin(θ + φ), cos(θ + φ)),

(65)

leads to the Rayleigh dissipation function:

R = Cc(ẋ sin θ − ẏ cos θ)2 +Cc(ẋ sin(θ + φ + π) − ẏ cos(θ + φ + π)
−lθ̇ cos(φ + π))2 +Cc(ẋ cos θ + ẏ sin θ − ν̇)2. (66)

The same technique used for checking the Lagrangian for G-invariance shows that R

is G-invariant. Starting with the G-invariant R, taking F(−R), pairing with ξQ, and

using the definition for the momentum map K gives the following:
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K =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

K1

K2

K3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−3Ccẋ +Ccẋ cos(2θ + 2φ) +Ccẏ sin(2θ + 2φ)
+2Cclθ̇ cosφ sin(θ + φ) + 2Ccν̇ cos θ

Ccẋ sin(2θ + 2φ) − 3Ccẏ −Ccẏ cos(2θ + 2φ)
−2Cclθ̇ cosφ cos(θ + φ) + 2Ccν̇ sin θ

2Cclẋ cosφ sin(θ + φ) +Ccxẋ sin(2θ + 2φ) + 3Ccyẋ

−Ccyẋ cos(2θ + 2φ) − 2Cclẏ cosφ cos(θ + φ) − 3Ccxẏ

−Ccxẏ cos(2θ + 2φ) − 2Ccyẏ cos(θ + φ) sin(θ + φ)
−2Ccl2θ̇ cos2 φ − 2Cclxθ̇ cosφ cos(θ + φ)

−2Cclyθ̇ cosφ sin(θ + φ) + 2Ccxν̇ sin θ − 2Ccyν̇ cos θ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (67)

Substituting the group element velocities (ẋ, ẏ, θ̇) with the infinitesimal generator

elements of left translation corresponding to η ∈ se(2) (ηx−yηθ, ηy+xηθ, ηθ) in F(−R),
pairing with ξQ, and using the definition of Vloc gives the following:

Vloc =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

Cc(−3 + cos 2φ) Cc sin 2φ Ccl sin 2φ

Cc sin 2φ −Cc(3 + cos 2φ) −2Ccl cos2 φ

Ccl sin 2φ −2Ccl cos2 φ −2Ccl2 cos2 φ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (68)

With the definition of the Stokesian connection ΓStokes, AStokes can be calculated:

AStokes =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

dν

0

tanφ
l dν

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (69)

giving the equations
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g−1ġ = −AStokesṙ +V
−1
lock (70)

=
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−ν̇ − kxl+kθ tanφ
2Ccl

,

kθ−kyl
2Ccl

ν̇ tanφ
l + −kθ sec2 φ+l(ky−k1 tanφ)2Ccl2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (71)

2.5 Unconstrained Reduction with Dissipation

Reduction techniques for a mechanical system with dissipation can be synthesized

from the techniques introduced in the last two sections. Starting with

g−1ġ +Amechṙ = I
−1
locp (72)

where the body momentum is

p = Ad∗gJ. (73)

Then considering

g−1ġ +AStokesṙ = V
−1
locAd

∗
gK. (74)

A function φ(t, s), such that φ(a, s) = φ(b, s) = φ(t,0) = 0, can be selected and the

variation considered:

q(t, s) = exp(φ(t, s)ξ)q(t), (75)

where ξ ∈ g. Substituting the corresponding infinitesimal variation
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∂q(t) = ∂φ

∂s
∣s=0 ξQ(q(t)), (76)

into

∂ ∫ b

a
L(q(t), q̇(t))dt + ∫ b

a
F (q(t), q̇) ⋅ ∂qdt = 0, (77)

gives

⟨F (q, q̇, ξQ(q)⟩ = d

dt
⟨FL(q, q̇), ξQ(q)⟩ (78)

= d

dt
⟨J(q, q̇), ξ⟩ (79)

= ⟨ d
dt
J(q, q̇), ξ⟩ . (80)

Thus, K(q, q̇) = J̇(q, q̇) under the natural identification of g∗ with TJg∗, and

g−1ġ +AStokesṙ = V
−1
locAd

∗
g J̇ . (81)

The expression Ad∗g J̇ can be re-expressed in terms of body momenta as

Ad∗g J̇ = ṗ − ad∗g−1ġp. (82)

See Kelly (1998) for the derivation. Substituting (82) back into (81) gives
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ṗ − ad∗g−1ġp = Ad∗g J̇

ṗ − ad∗g−1ġp = Vloc(g−1ġ +AStokesṙ)
ṗ = Vloc(g−1ġ +AStokesṙ + ad∗g−1ġp. (83)

Substituting

g−1ġ = −Amechṙ + I
−1
locp (84)

into (83) gives

ṗ = Vloc(AStokes −Amech)ṙ +VlocI
−1
locp + ad∗g−1ġp. (85)

Thus, (84) and (85) completely define the motion of an unconstrained inertial system

with dissipation.

The classical Reynolds number can be applied to the present situation by con-

structing the Reynolds tensor IlocV−1loc and premultiplying (85) by IlocV
−1
loc. In the low

Reynolds number limit, as with IlocV
−1
loc → 0, (85) and (84) become

g−1ġ = −Amechṙ + Ilocp,

0 = Iloc(AStokes −Amech)ṙ + p; (86)
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and rearranging gives

g−1ġ = −AStokesṙ. (87)

In the inviscid limit as V→ 0, and (85) and (84) reduce to the familiar equations

g−1ġ = −Amechṙ + I
−1
locp,

ṗ = ad∗g−1ġp.

The following example demonstrates all of these techniques.

Example 2.5.1.

In the unconstrained system from Section 3, Amech and Iloc were already calculated.

Now, the following dissipation function is added.

R = 1

2
Cd(ẋ cos θ + ẏ sin θ)2 + 1

2
Cb(−ẋ sin θ + ẏ cos θ)2. (88)

This function defines a dissipative force that occurs whenever the (x, y) coordinate

moves. Next, the following maps are calculated:

Vloc =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−Cd 0 0

0 −Cb 0

0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
; (89)

and
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AStokes =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (90)

These maps, along with the previously calculated maps, give all the information

needed to realize the reduced equations of motion for the system.

g−1ġ = −Amechṙ + I
−1
locp,

ṗ = Vloc(AStokes −Amech)ṙ +VlocI
−1
locp + ad∗g−1ġp,

⎛⎜⎜⎜⎝
ġ

ṗ

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ẋ

ẏ

θ̇

ṗx

ṗy

ṗθ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos θpx
m − sin θ(JB+JJ+l2m)py

m(JB+JJ) + lm(−pθ+JB φ̇)
m(JB+JJ)

sin θpx
m + cos θ(JB+JJ+l2m)py

m(JB+JJ) + lm(−pθ+JB φ̇)
m(JB+JJ)

−lpy+pθ−JB φ̇
JB+JJ

−Cdpx
m − lp2y

JB+JJ + pypθ
JB+JJ + JBpyφ̇

JB+JJ

−Cbl
2py

JB+JJ − CbJBpy(JB+JJ)m − CbJJpy(JB+JJ)m + lpxpy
JB+JJ

+ Cblpθ
JB+JJ − pxpθ

JB+JJ + CbJB lφ̇
JB+JJ − JBpxφ̇

JB+JJ
l2pxpy
JB+JJ − lpxpθ

JB+JJ − JB lpxφ̇
JB+JJ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (91)

2.6 Nonholonomically Constrained Systems

A nonholonomic constraint is simply a constraint that is non-integrable. Deriv-

ing reduced equations of motion for such a system requires more consideration than

deriving equations of motion for unconstrained systems.

Definition 2.6.1. Given a G-invariant local basis, X1, ...,Xn−k, for D, there exist
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G-invariant one forms, ω1, ..., ωk such that the constraint distribution is given by

D = v ∈ TQ∣⟨ωi; v⟩ = 0, i = 1, ..., k. (92)

Definition 2.6.2. The intersection of the constraints with the fiber distribution S =
D ∩ V Q is called the constrained fiber distribution. The subspace of g that

generates S is denoted as gq, with elements ξq.

Definition 2.6.3. The constrained Lie algebra gS is the fiber bundle over Q with

fibers gS, such that gS ≃ S/G.

Figure 12: The manifold intersections forming Sq.

Next, a fiber distribution Uq ⊂ Tq(Orb(q)) is selected, such that Tq(Orb(q)) = Sq⊕Uq.

These concepts are clarified in the following example.
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Example 2.6.1. Starting with a nonholonomically constrained system with one ac-

tuated degree of freedom, so that Q = G ×M , where TM consists of vectors in ∂
∂φ .

The constraint is given by

ẋ sin θ − ẏ cos θ = 0. (93)

It allows for rotation and translation in one direction. The one form corresponding

to this constraint is

ω = sin θdx − cos θdy. (94)

A constraint distribution D corresponding to this one form is

D = v ∈ TQ = span{cos θ ∂

∂x
+ sin θ

∂

∂y
,
∂

∂θ
,
∂

∂φ
}, (95)

where

⟨ω, v⟩ = ⟨sin θdx − cos θdy, cos θ
∂

∂x
+ sin θ

∂

∂y
⟩

0 = sin θ cos θ − cos θ sin θ. (96)

This distribution is not necessarily unique. However, this particular choice is simple

and lends itself well to the present discussion. With

V Q = span{ ∂

∂x
,
∂

∂y
,
∂

∂θ
}, (97)

the constrained fiber distribution is



51

S = D ∩ V Q

= span{cos θ ∂

∂x
+ sin θ

∂

∂y
,
∂

∂θ
}. (98)

The constrained Lie algebra gS lies in the quotient group S/G. Its basis can be

determined by taking S as the identity so that elements in gS lie in the vector space

defined by

span{ ∂

∂x
,
∂

∂θ
}. (99)

Momentum maps and inertia/viscosity tensors can be defined for this system, much

as they are for unconstrained and dissipative systems.

Definition 2.6.4. The nonholonomic momentum map is the map, Jnhc ∶ TQ →
(gS)∗, defined by

⟨Jnhc, ξq⟩ = ⟪vq, ξqQ⟫, (100)

where ξq ∈ gq.

Definition 2.6.5. The dissipative nonholonomic momentum map is the map,

Knhc ∶ TQ→ (gS)∗, defined by

⟨Knhc, ξ
q⟩ = ⟪vq, ξqQ⟫,= ⟨F, ξqQ⟩, (101)

where ξq ∈ gq.
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To embed the constrained Lie algebra elements gS into the unconstrained Lie al-

gebra elements, f1, ..., fs is taken as a basis for gS, along with the local form of the

unconstrained locked inertia tensor for the system in g. Then,

Definition 2.6.6.

(Icloc)α,β = (Iloc)abfa
αf

b
β, (102)

where (Icloc)−1 ∶ (gS)∗ → gS.

As shown in Ostrowski (1996), elements in g for a nonholonomically constrained

system are given as

ξ = g−1ġ = −Amechṙ + Ĩ
−1
locp, (103)

where

(Ĩ−1loc)aα = ((Icloc)−1)αβfa
β . (104)

Similarly,

Definition 2.6.7.

(Vc
loc)αβ = (Vloc)abfa

αf
b
β, (105)

where Vloc is the local form of the unconstrained locked viscosity tensor and (Vc
loc)−1 ∶

(gS)∗ → gS. Elements in g are given as
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ξ = g−1ġ = −AStokesṙ + Ṽ
−1
locAd

∗
gK, (106)

where

(Ṽ−1loc)aα((Vc
loc)−1)αβfa

β . (107)

Definition 2.6.8. The nonholonomic connection is the map Γsym ∶ TQ→ gS given

by

Γsym = (Icloc)−1Jnhc, (108)

where Γsym
Q ∶ TqQ→ TqQ is the identity on all vectors in S.

Definition 2.6.9. The dissipative nonholonomic connection is the map Γsym
Stokes ∶

TQ→ gS given by

Γsym
Stokes = (Vc

loc)−1Knhc, (109)

where Γsym
StokesQ ∶ TqQ→ TqQ is the identity on all vectors in S.

The connections were constructed using Sq. Using Uq gives Γkin. Because the con-

straints indicate that vectors in Uq are 0, the corresponding principal connection

should be Γkin = 0. Both principal connections together forming a single principal

connection for the entire system gives

Γ = Γsym + Γkin, (110)
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with

Γkin(q̇) = 0, (111)

Γsym(q̇) = (Icloc)−1Jnhc. (112)

Example 2.6.2. In this example, equations for the Lie algebra elements of the sys-

tem defined in Example 2.3.1 are derived, subject to the nonholonomic constraints

in Example 2.6.1. This system corresponds to the following figure. However, for

this example, the constraint does not allow the coordinate (x, y) to move normal to

the length of body l. The basis elements of the constraint are used to define the

nonholonomic momentum map, Jnhc. The map

Figure 13: The beanie diagram with a nonholonomic constraint.
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⟨Jnhc; ξq⟩ = ⟪vq, ξqQ⟫
= ⟨FL, ξqQ⟩,

can be used to calculate the mechanical connection

Amech =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

JB l
JB+JJ

− JB
JB+JJ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (113)

and the constrained locked inertia tensor

Ĩ
−1
loc =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0

JB+JJ+ml2

m(JB+JJ) − l
JB+JJ

− l
JJ+JB

1
JB+JJ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (114)

which can then be used to calculate

g−1ġ = −Amech(r)ṙ + Ĩ
−1
locp,

and

( ġ ) =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

ẋ

ẏ

θ̇

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos θp1
m

sin θp2
m

p2−JB φ̇
JB+JJ+l2m

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (115)

The Lie algebra elements can be used to define equations for the body momentum of

a nonholonomically constrained system.
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The body momentum equations can be defined using the following definitions:

Definition 2.6.10. Given a set of constraint one forms, ω1, ..., ωk and a forcing

function τ and splitting them using the trivial bundle structure as

ω = ωgdg + ωrdr, (116)

and

τ = τgdg + τrdr, (117)

the nonholonomic constrained variational principle can be written as

d

dt
(∂L
∂q̇

− ∂L

∂q
) = λωr + τr. (118)

Definition 2.6.11. The reduced Lagrangian is the function l ∶ TQ/G→ R induced

by a G-invariant Lagrangian function, given by

l(ξ, r, ṙ) = L(g−1g, r, ṙ, g−1ġ). (119)

The invariance of the Lagrangian and its corresponding reduced Lagrangian can be

used to write the nonholonomically constrained variational principle equations on the

partially reduced space of g × TM .

Definition 2.6.12. The reduced nonholonomic constrained variational principle

on g × TM is given by
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d

dt
( ∂l

∂ξa
) − ad∗ξ

∂l

∂ξa
= λωgg + τgg,

d

dt
( ∂l
∂ṙ

) − ∂l

∂r
= λωr + τr, (120)

where g denotes the coordinate version of the lifted left action TeLg on TeG = g and ad∗ξ

is the dual of the adjoint action of g on g such that adξη = [ξ, η] and ad∗ξp = ⟨p; [ξ, ⋅]⟩.

Definition 2.6.13. If (L,D) is a constrained system on Q(M,G) and L is G-

invariant, for all curves c ∶ [a, b] → Q satisfying the nonholonomic constrained vari-

ational principle, the following generalized momentum equation holds for all

elements, ξq ∈ gq:

d

dt
= ∂L

∂q̇
( d
dt
[ξq(c(t))])Q + τr(ξq(c(t)))q, (121)

where

p = ∂L

∂q̇
(ξq(c(t))Q) (122)

is the generalized momentum.

Definition 2.6.14. Given the above basis for the constrained Lie algebra, f ∈ gS,

the generalized momentum equation is along trajectories

d

dt
(pα) = ∂L

∂q̇
( d
dt
fα)Q(t) + τ(fα)Q, (123)

where
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pα = ∂L

∂q̇
(fα)Q. (124)

Thus, the equations of motion governing flow along the fiber can be written

d

dt
( ∂l
∂ξ

) = ad∗ξ( ∂l∂ξ ) + λω(e, r) + τ e, (125)

where ω(e, r) are the constraints evaluated at g = e as above. As noted, the basis

for the constrained fiber distribution is f1, ..., fs. Noting that any element of this

distribution is in the kernel of ω gives the following.

Definition 2.6.15. The body momentum equations are

d

dt
(pα) = d

dt
( ∂l
∂ξ

)fα + ∂l

∂ξ

d

dt
(fα)

= ad∗ξ( ∂l∂ξ )fα +
∂l

∂ξ

d

dt
(fα) + τ efα

= ⟨ ∂l
∂ξ

; [ξ, fα] + d

dt
(fα)⟩ + τ efα, (126)

where the definition of the generalized momentum, pα = ∂l
∂ξ ⋅ fα, is used.

The system is now completely defined by the equations

ξ = g−1ġ = −Asym
mech(r)ṙ + Ĩ

−1p,

ṗ = ⟨ ∂l
∂ξ

; [ξ, fα⟩ + d

dt
(fα)⟩ + τ efα. (127)

Example 2.6.3. The final example for this section derives the body momentum

equations for the system. Because the above Lagrangian is G-invariant, the reduced
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Lagrangian, l, of the system is given by

l = 1

2
m(ξ2x + ξ2y + l2mξ2θ) + lmξyξθ + 1

2
(JJ)ξ2θ + 1

2
JB(ξθ + φ̇)2. (128)

The partial derivatives of l with respect to Lie algebra elements ξ are

∂l

∂ξ
=
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

mξx

m(ξy + lξθ)
(JB − JJ)ξθ + lm(ξy + lξθ) + JBφ̇.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (129)

Lie bracketing the Lie algebra elements with the constrained Lie algebra elements

gives

[ξ, f1] =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −ξθ ξx

ξθ 0 ξy

0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1

0 0 0

0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
−
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1

0 0 0

0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −ξθ ξx

ξθ 0 ξy

0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0

0 0 ξθ

0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (130)

and written as a triple gives

[ξ, f1] = ( 0 ξθ 0 ) . (131)

In addition,
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[ξ, f2] =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −ξθ ξx

ξθ 0 ξy

0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 0

1 0 0

0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
−
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 0

1 0 0

0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −ξθ ξx

ξθ 0 ξy

0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 ξy

0 0 −ξx
0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (132)

written as a triple gives

[ξ, f2] = ( ξy −ξx 0 ) . (133)

The time derivatives of the constrained Lie algebra elements are simply

d

dt
(f1) = 0,

d

dt
(f2) = 0. (134)

Taking the natural pairing of the first calculation with the sum of the last two calcu-

lations gives
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ṗ1 = ⟨ ∂l
∂ξ

, [ξ, f1] + d

dt
(f1)⟩

=
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

mξx

m(ξy + lξθ)
(JB − JJ)ξθ + lm(ξy + lξθ) + JBφ̇

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

T ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

ξθ

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (135)

Using (127), the Lie algebra elements are calculated as

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξx

ξy

ξθ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

py
m

px
m

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (136)

then

ṗ1 = lm(p2 − JBφ̇)2(JB + JJ + l2m)2 . (137)

Further,

ṗ2 = ⟨ ∂l
∂ξ

, [ξ, f2] + d

dt
(f2)⟩

=
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

mξx

m(ξy + lξθ)
(JB − JJ)ξθ + lm(ξy + lξθ) + JBφ̇

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

T ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξy

−ξx
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
= − lp1(p1 − JBφ̇)

JB + JJ + l2m
. (138)
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Recognizing the system has no dissipation, that is, τ = 0, the body momentum equa-

tions have been solved for.



CHAPTER 3: DISSIPATION AS A CONSTRAINT

Dissipative forces can be useful in modeling Lagrangian systems with friction and

energy loss. They often have many applications, from modeling bushings in automo-

tive models to modeling friction in systems with slippage. Understanding how these

forces behave in the limiting cases can be useful for establishing and verifying the

bounds of their applicability.

In this chapter, a theorem is proposed and proved, indicating in the limit, as a dis-

sipative system becomes infinitely dissipative, it acts as though constrained. Then,

analytical models for constrained and dissipative systems are constructed and com-

pared to demonstrate the validity and applicability of the theorem. Last, simulations

numerically support the validity of the theorem.

3.1 Theory

Before the theorem is proved, a few concepts must be defined.

Definition 3.1.1. In a vector space TqQ corresponding to a Rayleigh interpolated

system, the principal connection for this space is given by

Γ = Γ0
Stokes+mech. (139)

Definition 3.1.2. Given aG-invariant local basis,X1, ...,Xn−k, there existG-invariant

one forms, ω1
R, ..., ω

k
R, denoted as the restricted one forms.
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Definition 3.1.3. Restricted one forms can be used to define theRayleigh restricted

distribution, given by

H = v ∈ TQ∣⟨ωi
R; v⟩ = 0, i = 1, ..., k. (140)

Definition 3.1.4. The intersection of the restricted space with the fiber distribution,

N = H ∩ V Q, (141)

is called the restricted fiber distribution. The subspace of g that generates N is

denoted gN , with elements ξN .

Thus, the following are defined:

Definition 3.1.5. The complementary distribution Fq such that

Fq ⊕Hq = TqQ. (142)

Definition 3.1.6. The complementary one forms define the distribution

Fq = v ∈ TQ∣⟨ωi
F ; v⟩ = 0, i = 1, ..., k. (143)

Definition 3.1.7. The complementary fiber distribution is given by

Rq = Fq ∩ Tq(Orb(q)), (144)

with Lie algebra elements gR.

The superscript N or R will be added to the principal connection maps to denote
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the corresponding fiber distribution. The same procedures presented in Chapter 2,

Section 6, can be used to arrive at these maps, giving

Γ0
Stokes+mech = ΓNStokes+mech + ΓRStokes+mech. (145)

These procedures and the previous definitions allow for the following theorem.

Proposition 3.1.1. Given a set of complementary one forms ω1
F . . . , ωk

F identical to

a set of constraint one forms from a given nonholonomically or holonomically con-

strained system, ω1 . . . , ωk, and using these to split the tangent spaces and connections

for a nonholonomic system and dissipative system, respectively, then in the limit as

V−1locIloc → 0 for ΓNStokes+mech, and in the limit as Vloc → 0 for ΓRStokes+mech, the principal

connections ΓNStokes+mech and ΓRStokes+mech converge to the principal connections Γkin and

Γsym for a nonholonomically or holonomically constrained system.

Proof. The principal connection for a system that has been split using the constraint

one forms ω1, ω2, . . . ωk into two connections is

Γ = Γsym + Γkin,

where

Γkin = 0,

Γsym = (Ic)−1Jnhc.
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(147)

Given complementary one forms ω1
F , ω

2
F , . . . ω

k
F that are identical to the constraint

one forms, and given a Rayleigh interpolated system with connection Γ0
Stokes+mech,

ωF can be used to split Γ0
Stokes+mech into two connections, such that ΓNStokes+mech +

ΓRStokes+mech = Γ0
Stokes+mech. The reduced equations corresponding to Nq are

g−1ġ = −Amechṙ + I
−1
locp,

ṗ = Vloc(AStokes −Amech)ṙ +VlocI
−1
locp + ad∗g−1ġp.

Letting IlocV
−1
loc → 0, the equations become

g−1ġ = −Amechṙ + I
−1
locp,

0 = Iloc(AStokes −Amech)ṙ + p,

or

g−1ġ = −AStokesṙ.

Rearranging this equation gives
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0 = g−1ġ +AStokesṙ

0 = Adg(g−1ġ +AStokesṙ)
0 = AdgV

−1
locAd

∗
gK

0 = V
−1K

0 = ΓNStokes = Γkin. (148)

To show the convergence of the second principal connection, reduced equations for

an interpolated Rayleigh system corresponding to Rq are used.

g−1ġ = −Amechṙ + I
−1
locp,

ṗ = Vloc(AStokes −Amech)ṙ +VlocI
−1
locp + ad∗g−1ġp.

Then allowing Vloc → 0, the reduced equations go to

g−1ġ = −Amechṙ + I
−1
locp,

ṗ = ad∗g−1ġp.

Rearranging the first equation gives
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−Amechṙ + I
−1
locp = g−1ġ

I
−1
locp = g−1ġ +Amechṙ

Adg(I−1locAd∗gJ) = Adg(g−1ġ +Amechṙ)
I
−1J = ΓRmech = Γsym. (149)

Since the Rayleigh interpolated connections were split with identical one forms used

to split the non-dissipative system, it is ensured that Rq ≡ Sq and Nq ≡ Uq.

3.2 Modeling

The proposition is demonstrated by constructing and exploring example systems

that correspond to special cases of the nonholonomic connection (excluding the purely

kinematic case). These special cases are classified by the generic and extreme ways

the subspaces (Fq,Hq,D, Sq, and TqOrb(q)) interact with each other. To begin, the

following system is constructed.

Case Conditions Connection

Unconstrained Dq = TqQ Γsym(q̇) = I−1J(q̇)
Purely Dq ⋂Tq(Orb(q)) = 0 Γkin(q̇) = 0

Kinematic

Horizontal Dq ⋂Tq(OrbG(q)) Γsym(q̇) + Γkin(q̇) = I−1JH(q̇)
Symmetries =Tq(OrbH(q))
General Dq + Tq(Orb(q)) = TqQ Γsym(q̇) + Γkin(q̇) = I−1Jnhc(q̇)
Principal

Bundle Case

Table 1: The special cases of the nonholonomic connection (principal case).
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Case Conditions Connection

non-dissipative Fq = TqQ ΓRmech(q̇) = I−1J(q̇))Hq ⋂Tq(Orb(q)) = 0
Purely Hq = TqQ ΓNStokes(q̇) = V−1K(q̇) = 0

Dissipative Hq ⋂Tq(Orb(q)) = 0

Horizontal Fq ⋂Tq(OrbG(q)) ΓNStokes(q̇) + ΓRmech(q̇) = I−1JH(q̇)
Symmetries = Tq(OrbH(q))
General Fq + Tq(Orb(q)) = TqQ ΓNStokes(q̇) + ΓRmech(q̇) = I−1J(q̇)
Principal

Bundle Case

Table 2: The special cases of a dissipative system when Vloc → 0 for R and IlocV
−1
loc → 0

for N (principal case).

qr = (x, y),
qf = (x + l cos θ, y + l sin θ),
vr = q̇r,

vf = q̇f ,

vrLB
= vr ⋅ (cos θ, sin θ),

vrSB
= vr ⋅ (− sin θ, cos θ),

vfLB
= vf ⋅ (cos θ, sin(θ)),

vfSB
= v⋅(− sin θ, cos θ), (150)

This is the system explored in the previous chapter. However, to analyze this robotic

system, it makes sense to re-envision the system as a small cart-like robot, with a

rotating disk on the front and two wheels on the back (Figure 14). The wheels are
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Figure 14: The beanie re-envisioned as a cart-like robot.

aligned perpendicular to one another.

3.2.1 Unconstrained, Non-Dissipative System

The unconstrained, non-dissipative case provides a way to explore the simplest

form of the system. This can be thought of as the cart with both wheels removed.

Throughout this chapter, constraints and dissipations will be added to this original

system and results compared.

The position and orientation of the point at which the constraint is applied is

(x, y, θ) ∈ SE(2), and φ ∈ S is the relative angle between body one and body two.

The total mass of the system is set at m, and the moments of inertias of body one and

body two are JB and JJ , respectively. Thus, the fiber bundle Q = SE(2) ×S = G×M
is the configuration space. The fiber coordinates are g = (x, y, θ), and base coordinate

is r = φ. This system has no potential energy. The Lagrangian corresponding to

Figure 14 is
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L = 1

2
m(v2fLB

+ v2fSB
) + 1

2
JJ θ̇

2 + 1

2
JB(θ̇ + φ̇)2, (151)

which is used to calculate

Iloc =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

m 0 0

0 m lm

0 lm JB + JJ +ml2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (152)

Amech =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

JB l
JB+JJ

− JB
JB+JJ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (153)

Using

g−1ġ = −Amechṙ + I
−1
locp, (154)

ṗ = ad∗g−1ġp, (155)

give

⎛⎜⎜⎜⎝
ġ

ṗ

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ẋ

ẏ

θ̇

ṗx

ṗy

ṗθ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos θpx
m − sin θ(JB+JJ+l2m)py

m(JB+JJ) + lm(−pθ+JB φ̇)
m(JB+JJ)

sin θpx
m + cos θ(JB+JJ+l2m)py

m(JB+JJ) + lm(−pθ+JB φ̇)
m(JB+JJ)

−lpy+pθ−JB φ̇
JB+JJ

− lp2y
JB+JJ + pypθ

JB+JJ + JBpyφ̇
JB+JJ

lpxpy
JB+JJ − pxpθ

JB+JJ − JBpxφ̇
JB+JJ

l2pxpy
JB+JJ − lpxpθ

JB+JJ − JB lpxφ̇
JB+JJ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (156)
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Equation (151) will serve as the Lagrangian for all systems in this chapter 1.

3.2.2 Nonholonomically Constrained Systems

In this section, three nonholonomic constraint cases, A, B, and C, are constructed

for the system. Constraint A represents a system in which the constraint allows ro-

tation only about the local origin. Constraint B 2 represents a system in which the

constraint allows rotation about the local origin and translation along the direction

that points to the center of masses of the rigid bodies (the local x direction). Con-

straint C represents a system in which the constraint disallows translation along the

direction that points to the center of masses of the rigid bodies but allows it along the

direction of the local y axis. The system is free to translate normal to this direction,

as well as rotate. For each of the three systems,

∂l

∂ξ
=
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

mξx

m(ξy + lξθ)
J + Jξθ + lm(ξy + lξθ) + JB(ξθ + φ̇)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (157)

The constraint cases are shown in Table 3. The constraints, along with (152), (153),

and (157), can be used to calculate the body momentum equations for the three

cases. The only tensor unique to each constraint case is Ĩ−1loc. Thus, it and the body

momentum equations for each case will be calculated.

The resulting equations for the cases follow.

Case A

1When the system is not free to translate, the system is commonly referred to as Elroy’s Beanie
problem.

2Constraint Case B is referred to as the Chaplygin’s Beanie problem in Kelly et al. (2012)
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Case A B C

constraint ẋ sin θ − ẏ cos θ = 0 ẋ sin θ − ẏ cos θ = 0 ẋ cos θ + ẏ sin θ = 0
equation(s) ẋ cos θ + ẏ sin θ = 0

one form(s) ωa1 = sin θdx − cos θdy ωb1 = sin θdx − cos θdy ωc1 = cos θdx + sin θdy
ωa2 = cos θdx + sin θdy

one form(s) ωa1e = dy ωb1e = dy ωc1e = dx
at identity ωa2e = dx

subspace fa1(r) = ∂
∂θ fb1(r) = ∂

∂x fc1(r) = ∂
∂y

at identity fb2(r) = ∂
∂θ fc2(r) = ∂

∂θ

Table 3: The expressions, one forms, and subspaces (from the kernel of the one forms
at the identity) for Cases A, B, and C.

Ĩ
−1
loc =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

1
JJ+JB+ml2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (158)

⎛⎜⎜⎜⎝
ġ

ṗ

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ẋ

ẏ

θ̇

ṗ1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

p1−JB φ̇
JB+JJ+l2m

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (159)

Case B
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Ĩ
−1
loc =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0

JB+JJ+ml2

m(JB+JJ) − l
JB+JJ

− l
JJ+JB

1
JB+JJ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (160)

⎛⎜⎜⎜⎝
ġ

ṗ

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ẋ

ẏ

θ̇

ṗ1

ṗ2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos θp1
m

sin θp2
m

p2−JB φ̇
JB+JJ+l2m
ml(p2−JB φ̇)2
(JB+JJ+l2m)2
−lp1(p2−JB φ̇)
JB+JJ+l2m

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (161)

Case C

Ĩ
−1
loc =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
m 0

0 0

0 1
JJ+JB+ml2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (162)

⎛⎜⎜⎜⎝
ġ

ṗ

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ẋ

ẏ

θ̇

ṗ1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− sin θ((JB+JJ+l2m)p1+lm(−p2+JB φ̇))
(JB+JJ)m

cos θ((JB+JJ+l2m)p1+lm(−p2+JB φ̇))
(JB+JJ)m
p1−JB φ̇(JB+JJ+l2)m

−lp1+p2−JB φ̇
JB+JJ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (163)

3.2.3 Dissipative Systems

Next, three dissipative systems related to the nonholonomically constrained sys-

tems are constructed. Referring to Figure 14, each system will be generated by the
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combination of wheels present at the body origin of the system. Again, the Lagrangian

from (151), along with the Rayleigh dissipation function, are used.

Case A

Along with using (152) and (153), the first step is to construct a dissipation function

by using the complementary one forms that are equal to the constraint one forms from

Case A.

R = 1

2
Ci⟨ωi

R, v⟩2
= 1

2
Cd⟨dy + dθ + dφ, ẋ

∂

∂x
+ ẏ

∂

∂y
+ θ̇

∂

∂θ
+ φ̇

∂

∂φ
⟩2

+1
2
Cb⟨dx + dθ + dφ, ẋ

∂

∂x
+ ẏ

∂

∂y
+ θ̇

∂

∂θ
+ φ̇

∂

∂φ
⟩2

= 1

2
Cdẋ

2 + 1

2
Cbẏ

2, (164)

then

Vloc =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−Cd 0 0

0 −Cb 0

0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (165)

AStokes =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (166)

Equations (165),(166),(153) and (152), completely define the system as
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g−1ġ = −Amechṙ + I
−1
locp,

ṗ = Vloc(AStokes −Amech)ṙ +VlocI
−1
locp + ad∗g−1ġp,

to arrive at

⎛⎜⎜⎜⎝
ġ

ṗ

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ẋ

ẏ

θ̇

ṗx

ṗy

ṗθ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos θpx
m − sin θ(JB+JJ+l2m)py

m(JB+JJ) + lm(−pθ+JB φ̇)
m(JB+JJ)

sin θpx
m + cos θ(JB+JJ+l2m)py

m(JB+JJ) + lm(−pθ+JB φ̇)
m(JB+JJ)

−lpy+pθ−JB φ̇
JB+JJ

−Cdpx
m − lp2y

JB+JJ + pypθ
JB+JJ + JBpyφ̇

JB+JJ

−Cbl
2py

JB+JJ − CbJBpy(JB+JJ)m − CbJJpy(JB+JJ)m + lpxpy
JB+JJ

+ Cblpθ
JB+JJ − pxpθ

JB+JJ + CbJB lφ̇
JB+JJ − JBpxφ̇

JB+JJ
l2pxpy
JB+JJ − lpxpθ

JB+JJ − JB lpxφ̇
JB+JJ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (167)

Next, the system is split using the restricted one forms, according to Proposition

3.1.1, giving

Nq = span⟨ ∂

∂x
,
∂

∂y
⟩, (168)

with f1 = (1,0,0), f2 = (0,1,0). Then

(Vc)α,β = Vabf
a
αf

b
β =

⎛⎜⎜⎜⎝
−Cd 0

0 −Cb

⎞⎟⎟⎟⎠
, (169)

and
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(Ic)α,β = Iabf
a
αf

b
β =

⎛⎜⎜⎜⎝
m 0

0 m

⎞⎟⎟⎟⎠
. (170)

This gives

V
−1
locIloc =

⎛⎜⎜⎜⎝
− m

Cb
0

0 m
Cd

⎞⎟⎟⎟⎠
, (171)

with eigenvalues

λ =
⎛⎜⎜⎜⎝

− m
Cb

m
Cd

⎞⎟⎟⎟⎠
. (172)

Allowing the eigenvalues to go to zero ensures that V−1locIloc goes to zero.

Case B

Next, a dissipation function is constructed by using the restricted one forms corre-

sponding to Case B. Starting with

R = 1

2
Ci⟨ωR, q̇⟩2

= 1

2
Cb⟨cos θdx + sin θdy + dθ + dφ, ẋ

∂

∂x
+ ẏ

∂

∂y
+ θ̇

∂

∂θ
+ φ̇

∂

∂φ
⟩2

= 1

2
Cb(ẋ sin θ − ẏ cos θ)2, (173)
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gives

Vloc =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0

0 −Cb 0

0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (174)

AStokes =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (175)

which then yields

g−1ġ = −Amechṙ + I
−1
locp, (176)

ṗ = Vloc(AStokes −Amech)ṙ +VlocI
−1
locp + ad∗g−1ġp, (177)

⎛⎜⎜⎜⎝
ġ

ṗ

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ẋ

ẏ

θ̇

ṗx

ṗy

ṗθ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos θpx
m − sin θ(JB+JJ+l2m)py

m(JB+JJ) + lm(−pθ+JB φ̇)
m(JB+JJ)

sin θpx
m + cos θ(JB+JJ+l2m)py

m(JB+JJ) + lm(−pθ+JB φ̇)
m(JB+JJ)

−lpy+pθ−JB φ̇
JB+JJ

− lp2y
JB+JJ + pypθ

JB+JJ + JBpyφ̇
JB+JJ

−Cbl
2py

JB+JJ − CbJBpy(JB+JJ)m − CbJJpy(JB+JJ)m

+ lpxpy
JB+JJ + Cblpθ

JB+JJ − pxpθ
JB+JJ + CbJB lφ̇

JB+JJ − JBpxφ̇
JB+JJ

l2pxpy
JB+JJ − lpxpθ

JB+JJ − JB lpxφ̇
JB+JJ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (178)

Again, the original system corresponding to Γ0 is split using the restricted one forms,

giving
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Nq = span⟨sin θ ∂

∂x
− cos θ

∂

∂y
⟩, (179)

with f1 = (0,1,0).
The constrained locked viscosity and inertia tensors are calculated as

V
c
loc = ( −Cb

) (180)

and

I
c
loc = ( m ) . (181)

In addition,

V
−1
locIloc = ( − m

Cb

) , (182)

along with its eigenvalue

λ = ( − m
Cb

) . (183)

Case C

A dissipation function is constructed by using the complementary one forms cor-

responding to Case C. Beginning with
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R = 1

2
Ci⟨ωF , v⟩2

= 1

2
Cd⟨sin θdx − cos θdy + dθ + dφ, ẋ

∂

∂x
+ ẏ

∂

∂y
+ θ̇

∂

∂θ
+ φ̇

∂

∂φ
⟩2

= 1

2
Cd(ẋ cos θ + ẏ sin θ)2, (184)

then

Vloc =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−Cd 0 0

0 0 0

0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (185)

AStokes =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (186)

g−1ġ = −Amechṙ + I
−1
locp, (187)

ṗ = Vloc(AStokes −Amech)ṙ +VlocI
−1
locp + ad∗g−1ġp, (188)
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⎛⎜⎜⎜⎝
ġ

ṗ

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ẋ

ẏ

θ̇

ṗx

ṗy

ṗθ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos θpx
m − sin θ(JB+JJ+l2m)py

m(JB+JJ) + lm(−pθ+JB φ̇)
m(JB+JJ)

sin θpx
m + cos θ(JB+JJ+l2m)py

m(JB+JJ) + lm(−pθ+JB φ̇)
m(JB+JJ)

−lpy+pθ−JB φ̇
JB+JJ

−Cdpx
m − lp2y

JB+JJ + pypθ
JB+JJ + JBpyφ̇

JB+JJ
lpxpy
JB+JJ − pxpθ

JB+JJ − JBpxφ̇
JB+JJ

l2pxpy
JB+JJ − lpxpθ

JB+JJ − JB lpxφ̇
JB+JJ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (189)

Constructing the system corresponding to the restricted one forms gives

Nq = span⟨ ∂

∂x
⟩, (190)

with f1 = (1,0,0).
The constrained locked viscosity and inertia tensors are calculated as

V
c = ( −Cd

) (191)

and

I
c = ( m ) . (192)

This gives

V
−1
locIloc = ( − m

Cd

) , (193)

along with the eigenvalues
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λ = ( − m
Cd

) . (194)

3.3 Convergence

In this section, the convergences of the dissipative systems with the constrained

systems in the limiting cases are investigated. The first part shows the convergences

analytically while the second part shows them numerically.

3.3.1 Analytical

The analytical solutions for the three different constraint cases appear below. First,

the reduced equations for each constraint case are shown; then substitutions are

made to eliminate the body momentum terms. Next, the reduced equations for the

dissipative case are shown, substitutions are made to eliminate the momentum terms,

and the limit of the Reynolds number quantity is taken. In the limit, the dissipative

equations converge to the constrained equations.

3.3.1.1 Case A

This system is an example of the general principal bundle case of the nonholonomic

connection. It is modeled with the nonholonomic constraints

ẋ sin θ − ẏ cos θ = 0, (195)

ẋ cos θ + ẏ sin θ = 0. (196)

Constrained
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First, the reduced equations calculated in Section 3.2 for constraint Case A are

used; these are

⎛⎜⎜⎜⎝
ġ

ṗ

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ẋ

ẏ

θ̇

ṗ1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

p1−JB φ̇
JB+JJ+l2m

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (197)

with

p1 = −lm sin θẋ + lm cos θẏ + (JB + JJ + l2m)θ̇ + JBφ̇, (198)

ẋ sin θ − ẏ cos θ = 0. (199)

Substituting p1, along with the constraint equation, into (197) gives

⎛⎜⎜⎜⎝
ġ

ṗ

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ẋ

ẏ

θ̇

ṗ1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

θ̇

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (200)

Dissipative

The reduced equations for the dissipative system are
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⎛⎜⎜⎜⎝
ġ

ṗ

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ẋ

ẏ

θ̇

ṗx

ṗy

ṗθ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos θpx
m − sin θ(JB+JJ+l2m)py

m(JB+JJ) + lm(−pθ+JB φ̇)
m(JB+JJ)

sin θpx
m + cos θ(JB+JJ+l2m)py

m(JB+JJ) + lm(−pθ+JB φ̇)
m(JB+JJ)

−lpy+pθ−JB φ̇
JB+JJ

−Cdpx
m − lp2y

JB+JJ + pypθ
JB+JJ + JBpyφ̇

JB+JJ

−Cbl
2py

JB+JJ − CbJBpy(JB+JJ)m − CbJJpy(JB+JJ)m

+ lpxpy
JB+JJ + Cblpθ

JB+JJ − pxpθ
JB+JJ + CbJB lφ̇

JB+JJ − JBpxφ̇
JB+JJ

l2pxpy
JB+JJ − lpxpθ

JB+JJ − JB lpxφ̇
JB+JJ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (201)

with px, py, and pθ as

px = m cos θẋ +m sin θẏ, (202)

py = −m sin θẋ +m cos θẏ + lmθ̇, (203)

pθ = −lm sin θẋ + lm cos θẏ + JB θ̇ + JJ θ̇ + l2mθ̇ + JBφ̇. (204)

In addition, taking derivatives of px and py with respect to t gives

ṗx = −m sin θẋθ̇ +m cos θẏθ̇ +m cos θẍ +m sin θÿ, (205)

ṗy = −m cos θẋθ̇ −m sin θẏθ̇ −m sin θẍ +m cos θÿ + lmθ̈. (206)

Substituting px, py, pθ, ṗx, and ṗy back into the equations give



85

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ẋ

ẏ

θ̇

mθ̇(− sin θẋ + cos θẏ) +m(cos θẍ + sin θÿ)
mθ̇(− cos θẋ − sin θẏ − sin θẍ + cos θÿ + lθ̈)

ṗθ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(207)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ẋ

ẏ

θ̇

−Cd(cos θẋ + sin θẏ) +mθ̇(− sin θẋ + cos θẏ + lθ̇)
Cb(sin θẋ − cos θẏ) −mθ̇(cos θẋ + sin θẏ)

−lmθ̇(cos θẋ + sin θẏ)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (208)

As noted, the eigenvalues are λ = (− m
Cd
,− m

Cb
). The fourth row is divided by Cd, and

m
Cd

→ 0. ṗx vanishes, and the first nonholonomic constraint

ẋ cos θ + ẏ sin θ = 0 (209)

is recovered. The fifth row is divided by Cb,
m
Cb

→ 0, ṗy vanishes, and the second

nonholonomic constraint

ẋ sin θ − ẏ cos θ = 0 (210)

is recovered. Substituting the constraint equations back into the equations leaves
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⎛⎜⎜⎜⎝
ġ

ṗ

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ẋ

ẏ

θ̇

ṗθ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

θ̇

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (211)

3.3.1.2 Case B

This system is another example of the general principal bundle case. The nonholo-

nomic constraint for the system is

ẋ sin θ − ẏ cos θ = 0. (212)

Constrained

The reduced equations from Section 3.2 for Constraint Case B are as follows.

⎛⎜⎜⎜⎝
ġ

ṗ

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ẋ

ẏ

θ̇

ṗ1

ṗ2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos θp1
m

sin θp2
m

p2−JB φ̇
JB+JJ+l2m
ml(p2−JB φ̇)2
(JB+JJ+l2m)2
−lp1(p2−JB φ̇)
JB+JJ+l2m

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (213)

The momenta p1 and p2 are calculated to be

p1 = m(cos θẋ + sin θẏ), (214)

p2 = −lm sin θẋ + lm cos θẏ + (JB + JJ + l2m)θ̇ + JBφ̇. (215)
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Substituting these equations back into the reduced equations give

⎛⎜⎜⎜⎝
ġ

ṗ

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ẋ

ẏ

θ̇

ṗ1

ṗ2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos θ(cos θẋ + sin θẏ)
sin θ(cos θẋ + sin θẏ)
lm(− sin θẋ+cos θẏ)

JB+JJ+l2m + θ̇

lm(−lm sin θẋ+lm cos θẏ+(JB+JJ+l2m)θ̇)2(JB+JJ+l2m)2

− lm(cos θẋ+sin θẏ)(−lm sin θẋ+lm sin θẏ+(JB+JJ+l2m)θ̇)
JB+JJ+l2m

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (216)

Because these equations were constructed on the constrained subspace defined by

−ẋ sin θ + ẏ cos θ = 0, the equations go to

⎛⎜⎜⎜⎝
ġ

ṗ

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ẋ

ẏ

θ̇

ṗ1

ṗ2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos θ(cos θẋ + sin θẏ)
sin θ(cos θẋ + sin θẏ)

θ̇

mlθ̇2

−lm(cos θẋ + sin θẏ)θ̇

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (217)

Dissipative

Starting with the reduced equations for the dissipative system from Section 3.3 and

substituting the expressions for the momenta give
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ẋ

ẏ

θ̇

ṗx

mθ̇(− cos θẋ − sin θẏ − sin θẍ + cos θÿ + lθ̈)
ṗθ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(218)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ẋ

ẏ

θ̇

mθ̇(− sin θẋ + cos θẏ + lθ̇)
Cb(sin θẋ − cos θẏ) −mθ̇(cos θẋ + sin θẏ)

−lmθ̇(cos θẋ + sin θẏ)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (219)

The eigenvalue for this system is λ = − m
Cb
. The equation in the fifth row is divided by

Cb, and
m
Cb

→ 0. ṗy vanishes, and the nonholonomic constraint is recovered:

− ẋ sin θ + ẏ cos θ = 0. (220)

Substituting the constraint equation back into the equations give
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⎛⎜⎜⎜⎝
ġ

ṗ

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ẋ

ẏ

θ̇

ṗx

ṗθ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos θ(cos θẋ + sin θẏ)
sin θ(cos θẋ + sin θẏ)

θ̇

mlθ̇2

−lm(cos θẋ + sin θẏ)θ̇

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (221)

3.3.1.3 Case C

This system is an example of the horizontally symmetric case of the nonholonomic

connection. It considers the constraint

ẋ cos θ + ẏ sin θ = 0. (222)

Constrained

Starting with the reduced equations from Section 3.2 for Constraint Case C,

⎛⎜⎜⎜⎝
ġ

ṗ

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ẋ

ẏ

θ̇

ṗ1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− sin θ((JB+JJ+l2m)p1+lm(−p2+JB φ̇))
(JB+JJ)m

cos θ((JB+JJ+l2m)p1+lm(−p2+JB φ̇))
(JB+JJ)m
p1−JB φ̇(JB+JJ+l2)m

−lp1+p2−JB φ̇
JB+JJ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (223)

with

p1 = m(− sin θẋ + cos θẏ + lθ̇), (224)

p2 = −lm sin θẋ + lm cos θẏ + (JB + JJ + l2m)θ̇ + JBφ̇, (225)
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give

⎛⎜⎜⎜⎝
ġ

ṗ

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ẋ

ẏ

θ̇

ṗ1

ṗ2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

sin θ(sin θẋ − cos θẏ)
cos θ(− sin θẋ + cos θẏ)

θ̇

mθ̇(− sin ẋ + cos θẏ + lθ̇)
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (226)

Given that the constraint does not break the symmetry of the system, the center of

mass remains stationary even when the group velocity is nonzero; thus,

mθ̇(−ẋ sin θ + ẏ cos θ + lθ̇) = 0, (227)

giving the final equations for the system:

⎛⎜⎜⎜⎝
ġ

ṗ

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ẋ

ẏ

θ̇

ṗ1

ṗ2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

sin θ(sin θẋ − cos θẏ)
cos θ(− sin θẋ + cos θẏ)

θ̇

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (228)

Dissipative

Starting with the reduced equations for the dissipative system from Section 3.3 and

substituting the expressions for the momenta give
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ẋ

ẏ

θ̇

mθ̇(− sin θẋ + cos θẏ) +m(cos θẍ + sin θÿ)
ṗy

ṗθ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(229)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ẋ

ẏ

θ̇

−Cd(cos θẋ + sin θẏ) +mθ̇(− sin θẋ + cos θẏ + lθ̇)
−mθ̇(cos θẋ + sin θẏ)
−lmθ̇(cos θẋ + sin θẏ)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (230)

The eigenvalue for this system is λ = − m
Cd
. The equation in the fourth row is divided

by Cd,
m
Cd

→ 0, ṗx vanishes, and the nonholonomic constraint

ẋ cos θ + ẏ sin θ = 0 (231)

is recovered. Substituting this back into the equations gives
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⎛⎜⎜⎜⎝
ġ

ṗ

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ẋ

ẏ

θ̇

ṗy

ṗθ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos θ(cos θẋ + sin θẏ)
sin θ(cos θẋ + sin θẏ)

θ̇

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (232)

3.3.2 Numerical

This section includes simulation results for each of the systems explored in the

previous sections. Expressions for J̇ , J̇nhc, and K can be derived. The nonholonomic

systems are simulated by solving the set of equations generated by solving for J̇nhc for

each constraint case. The Rayleigh system is simulated by solving the set of equations

generated by setting

J̇ =K. (233)

Case Nonholonomic Rayleigh
Unconstrained none Cd, Cb → 0

Purely Kinematic (not explored in this section) � �

Horizontal Symmetries C m
Cd

→ 0

General Principal Bundle Case A and B m
Cd
, m
Cb

→ 0

Table 4: The special cases of the connection and their corresponding constraint and
dissipative cases.

Simulations for each of the cases in Table 3.4 were generated. Results appear

below. The figures are organized so that each dissipative case is arranged beside

its corresponding nonholonomic case. The system is driven by a sinusoidal forcing
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function in φ̈.

Figure 15: Time lapse of the unconstrained system, superimposed with the paths of
pr and pf .

(a) Rayleigh System as m
Cd

, m
Cb
→ 0. (b) Nonholonomic System A.

Figure 16: Case A.

(a) The Rayleigh system as Cd,
m
Cb
→

0.
(b) Nonholonomic System B.

Figure 17: Case B.
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(a) The Rayleigh system as Cb,
m
Cd
→

0.
(b) Nonholonomic System C.

Figure 18: Case C.

The paths of the center of mass and the center of the constraint for each figure

are superimposed with a time-lapsed representation of each system. The path for

each point is nearly identical in each of the corresponding dissipative and constrained

cases, indicating the technique can indeed model constraints using dissipation. The

unconstrained case looks identical to the horizontal symmetries case (Case C and m
Cd

→
0). It represents the two rigid bodies counter-rotating in space, where the constraint

does not interfere with the motion because of the conservation of momentum (a

horizontal symmetry). Constraint Case A shows, as the beanie is rotated, the center

of mass of the system rotates around the constraint. The constraint is free to rotate,

but not translate. Constraint Case B shows, as the beanie is rotated, the entire system

begins to translate and rotate because of the constraint resisting the counter-rotation

of rigid body two. Constraint Cases A and B represent the general principal bundle

cases.



CHAPTER 4: CLOSED-LOOP REDUCED DISSIPATIVE SYSTEM

4.1 Introduction

Robotic systems with wheels are a frequent topic of interest in the dynamics and

controls community. These frequently tend to be Lagrangian systems. For these sys-

tems, Lagrangian reduction techniques can be used to put the corresponding equations

of motion in a form that is useful for control analysis.

In this chapter, a Lagrangian system with drift is modeled using geometric tech-

niques of reduction from the previous chapters. Then, a test for accessibility is re-

viewed, stating that a controllable driftless system is accessible when drift is added.

To use this test to show accessibility for the system with drift, V−1locIloc is set to 0, thus

removing the drift from the system. Controllability for this system is easily achieved

via a simple control law. Drift is added back to the system by allowing V−1locIloc to be

nonzero. The test for accessibility shows this system is accessible. Finally, the control

law for the driftless system is used to help construct a control law for the system with

drift.

4.2 The Geometry of Accessiblity and Controllability

This section introduces geometric tools that can be used to make statements about

controllability and accessibility of systems with drift that also have Lie group sym-

metries.



96

Definition 4.2.1. Given a finite-dimensional control system,

ẋ = f(x, u1, . . . , um), x ∈M, (234)

and a particular point, x0 ∈M , then RV
T (x0) is denoted as the set of points in M that

are reachable from x0 in time t ≤ T along trajectories that remain in the neighborhood

V ⊂M of x0.

Definition 4.2.2. Given all x0 ∈M in the system defined by (234), if RV
T (x0) contains

a non-empty open subset of M for every choice of T > 0 and V , the system is locally

accessible.

Definition 4.2.3. For all x0 ∈ M , if x0 is interior to RV
T (x0) for every choice T > 0

and V , the system is locally controllable.

Definition 4.2.4. The standard form for a nonlinear control system with affine

inputs

ż = f(z) + hi(z)vi. (235)

Definition 4.2.5. Starting with

△0 = span{f, h1, . . . , hm} (236)

(the span taken over C∞ functions on N), then
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△k = △k−1 + span[X,Y ]∣X,Y ∈ △k−1 (237)

is a nondecreasing sequence of distributions on N that terminates at some kf under

certain regularity conditions.

The accessibility distribution is given by C ∶

C = △kf = △∞ (238)

Theorem 4.2.1. Lie Algebra Rank Condition (LARC) If dim C(z) = dim TzN

for all z ∈ N , then the system is locally accessible.

This condition is a result of Frobenius’ theorem (see Nijmeijer and van der Schaft

1990).

If f = 0 in (234), the driftless system is:

ẋ = h1(x)u1 + . . . + hm(x)um. (239)

Local controllability and local accessibility are equivalent notions in the absence of

drift, in which case, Theorem 4.2.1 is equivalent to Chow’s theorem (see Chow (1949)).

Definition 4.2.6. A system on Q =M ×G is totally controllable if it is locally Q

controllable and fiber controllable if it is locally G controllable.

Definition 4.2.7. Given a differential form α ∶ (TQ)n → g, its covariant exterior
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derivative is defined Dα ∶ (TQ)n+1 → g with respect to a connection, such that

Dα(X1, . . . ,Xn+1) = dα(horX1, . . . ,horXn1). (240)

Definition 4.2.8. The curvature form DΓ ∶ TQ × TQ → g corresponding to the

connection form Γ is given by its covariant exterior derivative:

DΓ(X,Y ) = dΓ(horX,horY ). (241)

In practice, it is often easier to compute the curvature of a connection by using

Definition 4.2.9. Cartan’s structure equation ∶ if Γ ∶ TQ → g is a connection

form and DΓ ∶ TQ × TQ→ g the corresponding curvature form, then

DΓ(X,Y ) = dΓ(X,Y ) − [Γ(X),Γ(Y )]. (242)

Definition 4.2.10. The local curvature form is the map DA ∶ TM × TM → g,

which satisfies

DΓ(r, g)(Xh, Y h) = Adg(DA(r)(X,Y ) (243)

for X,Y ∈ X (M). The form can be calculated in terms of the Lie bracket on g by

DA(X,Y ) = dA(X,Y ) − [A(X),A(Y )] (244)

for X,Y ∈ X (M).
Definition 4.2.11. Subspaces of the Lie algebra can be defined as
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h1 = span{A(Xi)},
h2 = span{DA(Xi,Xj)},
h3 = span{XkDA(Xi,Xj) − [A(Xk)DA(Xi,Xj)]},
⋮
hk = span{Xiξ − [A(Xi), ξ], [ξ, η]ξ ∈ hk−1, η ∈ h2 +⋯+ hk−1}. (245)

Theorem 4.2.2. The driftless system is fiber controllable near q = (r, g) ∈ Q if and

only if

g = h1 + h2 + ...

there and totally controllable near q ∈ Q if and only if

g = h2 + h3 + ...

there.

Theorem 4.2.3. If the system without dissipation on M ×G is locally controllable,

the system with dissipation on TM ×G×g∗ is locally TM ×G accessible or accessible

modulo momentum.

Lemma 4.2.1. If a system with drift is accessible and [hi, [hi, f]] = 0, then this

system is small-time locally controllable (STLC) from all equilibrium points, z0 ∈ N .

Lemma 4.2.1 is a result of techniques seen in Sussman (1987) and Ostrowski (1996).
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In those papers it stated that, whenever a drift term appears an odd number of times

and with the control vector fields appearing an even number of times (including zero

times), the bracket can be defined as bad. The sufficient conditions for STLC can be

restated as requiring that all “bad” brackets be expressible in terms of brackets of

lower degree (“good” brackets). These conditions are met when [hi, [hi, f]] = 0.

4.3 The Four-Wheeled Robotic Car on Ice

The dissipative inertial system is constructed by simply adding a Lagrangian to

the previous Stokes system in Example 2.4.1 (see Figure 11):

L = 1

2
m(ẋ2 + ẏ2) + 1

2
JJ θ̇

2 + 1

2
Jw(θ̇ + φ̇)2. (246)

Performing reduction on the system gives



101

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

ġ

ṗ

ṙ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ẋ

ẏ

θ̇

ṗx

ṗy

ṗθ

ν̇

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

px cos θ−py sin θ
m

py cos θ+px sin θ
m

pθ
JJ

−3Ccpx
m + Ccpx cos 2φ

m + pypθ
JJ + Ccpy sin 2φ

m + Cclpθ sin 2φ
JJ

−3Ccpy
m − Ccpy cos 2φ

m − 2Ccpθl cos
2 φ

JJ − pxpθ
JJ

+ Ccpx sin 2φ
m

−2Ccpyl cos2 φ
m − 2Ccpθl

2 cos2 φ
JJ

+ 2Cclpx sinφ cosφ
m

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

−2Cc

0

0

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ν̇.

(248)

(249)

The eigenvalues of the reduced Reynolds tensor are calculated as
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λR =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

− m
2Cc

− m
4CC

− JJ sec2 φ
2Ccl2

−
√

16J2
J+l4m2+l4m2 cos 2φ(2+cos 2φ) sec2 φ

8Ccl2

− m
4CC

− JJ sec2 φ
2Ccl2

+
√

64J2
J+6l4m2+2l4m2(4 cos 2φ+cos 4φ) sec2 φ

16Ccl2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (250)

Since the Rayleigh one forms span all of Tq(Orb(q)) and V−1locIloc → 0, (148) can be

used. This describes a system with dissipation that, in the limiting case, converges

to the fully constrained, kinematic car system, defined by

ġ = −gAStokesṙ.

Thus, the system goes to

⎛⎜⎜⎜⎝
ġ

ṙ

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ẋ

ẏ

θ̇

ν̇

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos θ

sin θ

tanφ
l

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ν̇. (251)

Controllability for this driftless system is shown by, first, taking the bracket [h1, h2],
which gives
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h1 = span

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos θ

sin θ

tanφ
l

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (252)

h2 = span{[h1, h2]} = span

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− sin θ tanφ
l

cos θ tanφ
l

− sin θ
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (253)

Thus,

g = h1 + h2 + ...

and

g = h2 + h3 + ....

Therefore, by Theorem 4.2.2, the system without drift is fiber controllable and totally

controllable. By Theorem 4.2.3, the system with drift is accessible.

4.4 Control

This section addresses construction of a control law for the driftless system. This

control law is used as a starting point to develop a control law for the system with

drift. Then, simulations and results for each controlled system are examined.

With the control law
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φ = k(θ − θd), (254)

such that

θ̇ = − ν̇ tanφ
l

, (255)

the Lyapunov functions for the system are taken as

S = 1

2
ν̇(k(θ − θd))2,

Ṡ = k2ν̇2 tan (k(θ − θd))(θ − θd)
l

, (256)

for

− 2π < θd < 2π,

and

0 > k > −1
4
.

Because S is positive definite and Ṡ is negative definite, S satisfies the conditions for

a Lyapunov function.

For a full system with drift, a control law candidate could be

φ = kp(θ − θd) + kdθ̇.



105

Figure 19: Time lapse of the cart over 9 s at 1 s intervals for three different Cc values
of .5, 1, and 2.

This control law is the same as the previous control law, except that a derivative/drift

term has been added to the end. This control law is valid as long as

π/2 ≥ kp(θ0 − θd),
and

kp > kd.

Simulating the closed loop system with the control law, the navigational goal is

achieved even in scenarios where the cart wheels have different levels of traction

(governed by changing the constant values in the Rayleigh dissipation function). In

Figure 19, the system easily attains the navigational goal. For the case in which

the cart wheels have the least amount of traction, the system performs a fish tail

maneuver, commonly seen in rear-wheel-drive vehicles when the driver takes a turn

too fast and the back wheels lose traction 3.

3This move is a common phenomenon in car chase scenes of Hollywood action movies.
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Figure 20: Heading (in radians) vs. time of the car over 20 s for three different Cc

values of .5, 1, and 2.



CHAPTER 5: GEOMETRIC APPROACH TO UNDERACTUATED PLANAR
NAVIGATION

Underactuated mechanical systems present unique problems in the field of control.

These are systems in which there are fewer control inputs than degrees-of-freedom.

In this chapter, an underactuated control system will be analyzed with the aid La-

grangian reduction techniques.

5.1 Underactuated Control

Starting with the beanie system from Chapter 2, Section 6, defined by (137) and

(138), a proportional controller α̇ = kθ is added, and the final equations for the closed

loop system become
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ṗ1

ṗ2

θ̇

φ̇

α̇

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ml(p2−JB φ̇)2
(JB+JJ+l2m)2
−lp1(p2−JB φ̇)
JB+JJ+l2m
p2−JB φ̇

JB+JJ+l2m

α

kθ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(257)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

mlθ̇2

−lp1θ̇
p2−JB φ̇

JB+JJ+l2m

α

kθ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (258)

Defining the following variables as

r = −ap1
ml2 + JB + JJ

, (259)

w = p2
ml2 + JB + JJ

, (260)

p = JJ − JBα

ml2 + JB + JJ
, (261)

and constants as

γ = −ml2

ml2 + JB + JJ
, (262)

λ = kJB
ml2 + JB + JJ

, (263)
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the equations for the closed loop system are re-expressed as

ṙ = γp2, (264)

ẇ = rp, (265)

θ̇ = p, (266)

ṗ = rp − λθ. (267)

Using these equations, a Lyapunov function for the system is defined as

S = 1

2
λθ2 + 1

2
p2, (268)

with derivative

Ṡ = λθθ̇ + pṗ = λθp + p(rp − λθ) = rp2. (269)

It is clear that S is always positive definite. It is also clear that Ṡ is always negative

definite as long as JLT ≥ 0. Thus, conditions for a Lyapunov function are satisfied.

An energy-like quantity can be defined as

Λ = (p2 − JBα)2
ml2 + JB + JJ

+ kJBθ
2 + p21

m
, (270)

and it is straightforward to verify that it is conserved by the flow of the closed-loop

system (258). The asymptotic value of the cart’s forward momentum can thus be

determined by
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lim
t→∞p21 =mΛ(0) =D + kF, (271)

where

D =m
(p2(0) − JBα(0)2
ml2 + JB + JJ

=m(ml2 + JB + JJ)θ̇(0)2, (272)

and

F =mJB(θ(0))2. (273)

Simulation results are given in Figures 21 and 22 by solving the equations for the

closed-loop system for different values of k.

Figure 21: Still frame snapshots of three different gains at equal time intervals.

Larger values of k tend to cause the system to reach its navigational goal more
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Figure 22: An extended duration plot of beanie trajectories for different gains.

quickly and in less distance than do smaller values. For different k values, the system

does not always reach the goal monotonically. Sometimes it reaches it through a

damped oscillation. If the same system in which actuation enters the system as

control velocities instead of control torques is used, the control law φ̇ = p2+kθ
JB

can be

applied to achieve similar results as above.



CHAPTER 6: OPEN-LOOP REDUCED INERTIAL SYSTEM WITH
GEOMETRIC PHASE

To initiate the exploration of fish-like swimming, in this chapter, geometric tech-

niques are used to study a fish-like system with no drift. A three-link elliptical system

that approximates the motion of a carangiform fish is constructed and its locomotion

due to geometric phase studied. Given that this system is driftless, the evolution of

the system is completely governed by the control variables and the local connection

of the system.

6.1 Geometric Phase

First, more concepts must be defined.

Definition 6.1.1. A gait can be considered a time-parameterized cyclic shape change

or a map γ ∶ I →M ∶ t↦ r(t) from some interval I ⊂ R into a shape manifold M .

The motion of the system through G can be calculated by introducing the area rule.

Definition 6.1.2. The area rule for Abelian bundles is shown by starting along a

curve in Q that is everywhere horizontal,

ġ = −gA(r)ṙ
in local coordinates. In general, the geometric phase associated with a closed curve

c ∶ [0, T ] →M is given by
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g(T ) = g(0)expξ(c),
where

ξ(c) = −A + 1

2
[A,A] − 1

3
[[A,A],A] − 1

12
[A, [A,A]] + . . . (274)

and

A = ∫ T

0
A(c(t))ċ(t)dt,

[A,A] = ∫ T

0
[∫ t

0
A(c(τ))ċ(τ)dτ,A(c(t))ċ(t)]dt,

⋮

.

If G is Abelian, only the first term in this expansion is nonzero, so that

g(T ) = g(0)exp(−∫ T

0
A(c(t))ċ(t)dt) .

By Stokes’ theorem,

g(T ) = g(0)exp(−∫
S
dA(r))

= exp(−∫
S
dA(r)) g(0),
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where S is any oriented submanifold of M whose boundary is traced by c(t) as t

increases from 0 to T . If G is Abelian, then the local curvature form satisfies

DA(X,Y ) =DΓ(Xh, Y h)
for X,Y ∈ X(M). However,

DA(X,Y ) = dA(X,Y ).
The area rule can be used to devise an open-loop control strategy.

Step 1: Given a driftless Lagrangian system with two control inputs, create a 3D plot

for the values of the local curvature form.

Step 2: Identify regions in the plot that have the highest values of curvature.

Step 3: Generate gaits that encircle these regions.

The area rule indicates, whenever the areas of two different gaits are equal, the gait

that encompasses a region with higher values of curvature will result in a larger net

displacement or geometric phase. Thus, efficient gaits can easily be designed by

encircling regions with high curvature values.

6.2 Open-Loop System

These ideas can be used to construct an optimal open-loop control gait for a fish-

like system. This system consists of three elliptical linkages, moves only along the

x-axis, and has two actuated joints. This gives a system with the product structure

Q = G ×M = GL(1) ×R2.

The system is constructed with the following equations:
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Figure 23: The three link system.

p1 = (x,0), (275)

p2 = (x + a + b cosφ, b sinφ),
p3 = (x + a + 2b cosφ + c cos(φ + β),2b sinφ + c sin(φ + β),
v1 = ṗ1,

v2 = ṗ2,

v3 = ṗ3,

v1L = v1.(1,0),
v1S = v1.(0,1),
v2L = v2.(cosφ, sinφ),
v2S = v2.(− sinφ, cosφ),
v3L = v3.(cos(φ + β), sin(φ + β)),
v3S = v3.(− sin(φ + β), cos(φ + β)).

The Lagrangian for the system is given by
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L = 1

2
m1v

2
1L

+ 1

2
m2v

2
2L

+ 1

2
M2v

2
2S

+ 1

2
m3v

2
3L

+ 1

2
J̇2
2 + 1

2
(φ̇ + β̇)2 + 1

2
J̇2
3 . (276)

Applying this equation gives a local mechanical connection of the form

Amech = (A1dφ +A2dβ) , (277)

with

A1 = −(5b3(5ρf + ρs) + 2bc2(13ρf + 5ρs)) sinφ(a2(ρf + 5ρs) + (b2 + c2)(13ρf + 5ρs) − 12ρf(b2 cos(2φ) + c2 cos(2(β + φ))))
− c2(5c(5ρf + ρs) sin(β + φ) + 24bρf sin(2β + φ))
(a2(ρf + 5ρs) + (b2 + c2)(13ρf + 5ρs) − 12ρf(b2 cos(2φ) + c2 cos(2(β + φ)))) ,

(278)

and

A2 = −(5c3(5ρf + ρs) sin(β + φ))
(a2(ρf + 5ρs) + (b2 + c2)(13ρf + 5ρs) − 12ρf(b2 cos(2φ) + c2 cos(2(β + φ))) .

(279)

Because the system is Abelian, the local curvature form is equal to the exterior

derivative calculated by

DA = dA.

Plotting the DA values over the range of the actuation variables φ and β gives the

following figures.
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,

Figure 24: A 3D curvature plot of the system.
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Figure 25: A curvature contour plot of the system with two different trajectories.

The second contour plot has two trajectories overlayed on it. The orange gait gives

a likely (although uninformed) first choice for the system. Using the curvature plot,

the smaller, red gait can be constructed around a section with larger values of DA.

This smaller gait has a radius that is 1
6 that of the larger trajectory. When the smaller

trajectory is actuated at a frequency 6 times that of the larger gait, each trajectory

moves through equal amounts of shape space over a given time period T .
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Plotting the x values of the system over time t, the smaller gait achieves a net

displacement in the negative x direction, the desirable direction. The larger gait

achieves motion in the opposite direction with the same amount of distance through

shape space. However, this net motion is still nearly 3 times less than the net motion

of the smaller gait. Tracing out the larger gait in reverse would give a net motion in

the negative x direction.
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4

Figure 26: A snapshot of the smaller gait extended to its maximum range.
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Figure 27: A snapshot of the larger gait extended to its maximum range.
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Figure 28: 1
2 Hertz; net x distance .1437.
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Figure 29: 3 Hertz; net x distance -.398.



CHAPTER 7: EXPERIMENTAL APPROACH TO UNDERACTUATED PLANAR
NAVIGATION

In Kelly and Pujari (2010), a model was constructed for a fish-like swimmer that

could vary its camber to shed discrete point vortices that induced forward motion.

It was also shown that the swimmer could execute a turning maneuver along a spec-

ified heading and continue to oscillate and, therefore, swim in that direction. This

movement was accomplished with the control law φ̇ = kθ. This chapter presents

experimental data that complement the model seen in Figure 30.

Figure 30: Simulation snapshots of the swimmer. Notice the blue CW and red CCW
counter-rotating vortices in the trailing wake.

7.1 Experiment Construction

A robot was rapid prototyped from an initial CAD design. It was split into three

sections, the front, mid, and tail sections. Each adjoining section was connected by

a steel shaft. On the end of each shaft was a sprocket and chain, which connected
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to the sprocket on the servomotor. The robot had two Hitec HSR-5990 high-torque

servomotors controlled by an onboard Arduino microcontroller. This microcontroller

communicated with a laptop through an onboard X-Bee bluetooth unit. The roof

and floor of the robot were constructed of aluminum. Between the aluminum and the

rapid prototyped sections was a rubber gasket that created a water-tight seal.

Figure 31: The robotic fish floating in the pool.

Figure 32: An inside view of the robotic
fish. Figure 33: The IR tracking LEDs.
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Figure 34: The experimental pool.

Figure 35: One of six cameras used in
tracking the motion of the robot.
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In the simulation, the mathematical model implicitly contained information about

the position, orientation, and camber of the fish-like swimmer. This could be specified

or solved for and analyzed as needed. However, to attain these data in the experiment,

a sophisticated measurement and control system was implemented.

The measurement system was an OptiTrack camera system (Figure 35) running

NaturalPoint motion tracking software. It could record position and orientation in-

formation for any object in the pool. Six cameras were mounted along the perimeter

of the pool (as seen in Figure 34), a few feet above the surface of the water. The sys-

tem tracked infrared points in the viewing area of the cameras. When three cameras

had a point in view, the software was capable of tracking its location. Given multiple

points mounted on a rigid object, the software would recognize it as a rigid object

and return not only its position but also its orientation. Because the system tracked

infrared points of light, care was taken to ensure that extraneous sources of infrared

light(the sun, ceiling lights) were blocked. To make sure that the robot would be

tracked by the system, a circuit of four infrared light-emitting diodes was constructed

and mounted on top of the robot (Figure 33).

The control system for the robot was a laptop running LabVIEW 8.5. The Lab-

VIEW program would read in the position and orientation data from the NaturalPoint

motion-tracking software and use this information in a proportional feedback control

loop based on maintaining a desired heading. The output of this control loop was

tail position. The program recorded time, robot position, robot orientation, and tail

position data for the duration of the experiment.
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7.2 Results

In the simulation, the swimmer would experience stable oscillations of its tail to

provide forward propulsion. The gain could be directly tuned to achieve a specific

speed. The experimental swimmer could swim in a similar way; a higher gain meant a

higher speed. However, there was a slight difference in their swimming styles. When

the robotic swimmer would swim using stable tail oscillations, the oscillations would

damp out over time, and the robot would come to a stop. However, by tuning the

gain beyond a certain threshold value, the controller could induce unstable oscilla-

tions. These unstable oscillations were bounded by the mechanical range of the tail.

The speed at which these unstable oscillations occurred could be influenced by ad-

justing the gain of the controller. Thus, speed and heading could be specified for the

underactuated system. Figure 36 shows the oscillation values for a typical swimming

experimental run. Figure 37 plots the moving average velocities for different values

of k. Higher values of k lead to higher final velocities.
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Figure 36: Heading of the robot vs. time.
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Figure 37: Moving average velocities for different values of k.
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Figure 38: Still-frame pictures showing a 180-degree turn.

Figure 38 shows images generated from experimental data. A run was conducted

initially specifying a heading for the swimmer, which was then re-specified in the

opposite direction. Data from the experiment included heading data, x and y po-

sition and velocity data, and joint angle (camber) data. Importing these data into

Mathematica and representing the swimmer as a three-ellipse system, the data were

used to construct the still frame image in Figure 38. The data show the robot swim-

ming along a given heading, turning 180 degrees, and then swimming along its new

heading.



CHAPTER 8: VORTEX CHARACTERIZATION

In this chapter and the next, an experiment is constructed to complement a sim-

ulation conducted in Kelly and Pujari (2010). The simulation demonstrated, with

a simple control law, a swimmer could navigate a staggered array of idealized fluid

vortices (see Figure 39). Not only did the swimmer navigate the array, but it used

the vortices to propel itself along its desired heading, resulting in a higher swimming

efficiency than was observed in the absence of vortices. The first step in constructing

the experiment was to develop a machine that could generate standing fluid vortices.

These fluid vortices needed characteristics similar to those of the fluid vortices of the

simulations.

This chapter begins with a brief review of the theory behind planar, irrotational

fluid flow. Then, a machine for generating experimental vortices is described. Finally,

the experimental vortices are characterized to determine their fitness for comparison

with the simulations.

8.1 Modeling of 2D Flow Regions

The continuity equation for steady, planar, incompressible, and irrotational regions

of flow in polar coordinates is

r
∂

∂r
(1
r

∂φ

∂r
) + ∂2φ

∂θ2
= 0. (280)
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Figure 39: Drafting through the array of fluid vortices via PID control.

The stream function ψ is defined as

vr = 1

r

∂ψ

∂θ
and vθ = −∂ψ

∂r
. (281)

The vorticity is given by

ω = 1

r

∂

∂r
(rvθ) − 1

r

∂vr
∂θ

, (282)
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and the divergence by

∇ ⋅ v = ∂vr
∂r

+ 1

r
(∂vθ
∂θ

+ vr) . (283)

For an ideal point source,

vr = qo
2πr

,

vθ = 0. (284)

For an ideal vortex,

vr = 0,

vθ = Γo

2πr
,

ω = 0,

∇ ⋅ v = 0. (285)

Because the Laplace equation is a linear homogeneous differential equation, the

linear combination of two or more solutions of the equation must also be a solu-

tion. Thus, the stream functions of the source and vortex can be superimposed and

differentiated to arrive at the equations for a source and vortex:
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vr = qo
2πr

,

vθ = Γo

2πr
. (286)

8.2 Experimental Setup

The experiment consisted of three basic components: a single vortex generator, a

pool of water, and a PIV measurement system. The vortex generator consisted of an

18-inch long, quarter-inch diameter metal shaft, with two 8 by 2 by 16 inch metal

plates welded onto the diameter. These created a paddle-like structure. To prevent

water from being pumped into the paddle during operation, a flat disc was welded

onto the bottom.

Figure 40: The vortex generator.

The pool of water for this experiment was a small section of a water channel. A

motor drive system was mounted onto the structure and connected to the vortex

generator. The top of the vortex generator was flush with the surface of the water.

The measurement system for this experiment was a Dantec Dynamics Particle
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Image Velocimetry (PIV) system. This system consists of seed particles, a laser, a

high-speed camera, and a laptop running post-processing software. The laser com-

ponent formed a planar sheet of laser light, oriented normal to the axial direction of

the vortex generator shaft, about 3 inches from the bottom of the shaft. The seed

particles consisted of tiny reflective particles of silver that float in the water. The

high-speed camera was positioned a couple of feet away, pointed normal to the laser

sheet so that the laser sheet was in the camera’s field of view. When the laser was

turned on, the camera captured the laser’s reflections off the seed particles at 1600

frames per second. The post-processing software then monitored the change in posi-

tion of each particle from frame to frame to create a velocity vector field plot for the

system.

8.3 Experimental Results

The PIV system was used to characterize the fluid vortices.

Figure 41: A view of the vortex
paddle from below.

Figure 42: A snapshot of the PIV
velocity vectors of the paddle.

Figure 41 shows the view of the vortex generator from below. It is a snapshot of the



133

camera footage used in the PIV calculations. Figure 42 shows the raw vector field

data calculated from the camera footage. The following figures were generated using

the velocity vector field in Figure 42.
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Figure 43: Vorticity. Figure 44: Divergence.

Figure 45: Radial velocity from
vortex center.

Figure 46: Angular velocity about
vortex center.

Figure 47: Tangential velocity
about vortex center.
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The figures suggest a few characteristics of the system. Figure 43 shows ω for the

system. Because ω ≠ 0, the test indicates the system is not irrotational. Figure 44

shows ∇ ⋅ v for the system. Because ∇ ⋅ v ≠ 0, it indicates the presence of a point

source/sink. The positive values indicate a point source, which can be interpreted as

water entering the viewing plane from the z direction. Figures 45 and 46 decompose

the velocity field into radial and angular velocity components. Figure 45 shows regions

of outward fluid velocity. The lack of symmetry in the system might have been caused

by the lack of symmetry in the boundary locations of the fluid. The max and min

y locations were locations of the walls, whereas the locations of the other two walls

were much further out of the measurement window in the positive and negative x

directions. Figure 45 clearly shows regions of decreasing angular fluid velocity about

the generator. The angular velocity decreases steadily as radial distance increases,

consistent with irrotational behavior. Figure 47 shows the tangential velocity of the

fluid about the center point. It indicates that the tangential velocity of the fluid

decreases with radial distance from the center. This is inconsistent with irrotational

vortex behavior.

Because there are inconsistencies between the experimental vortex and an ideal

vortex, a measurement was needed to determine how much the experimental values

deviated from the ideal case. First, a vector plot was constructed from the equations

for an ideal vortex. Then, (287) was used to sum the differences in each vector

in the field, normalizing by the maximum possible sum for the combined vector field

magnitude. The idea was, given two vectors, a third vector could be constructed from

vector subtraction of the initial two vectors. Doing so would give an indication of the
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deviation of one vector from another. The max value for this vector would be the

magnitudes of the two vectors combined, meaning both vectors were placed tail-to-

tail, pointed in exactly opposite directions. Summing all the deviations and dividing

that sum by the sum of all of the maximum values gives a normalized coefficient

indicating how nonideal a vector field is from an ideal case. Thus, for identical vector

fields, the value of this coefficient was zero. For exactly opposite vector fields or the

zero case, the value was one.

idcoeff = ∑imax

N ∣vi2 − vi1∣
∑imax

N ∣vi2∣ + ∣vi1∣ (287)

Different coefficients for different ideal vortices were compared to a baseline ideal

vortex. Doing so helped in determining what an acceptable coefficient value would

be for the experimental data. These coefficients are shown in Table 5. Values are also

given for an ideal vortex as opposed to an ideal vortex of constant strength, plus an

ideal point source of varying strength.

The experimental vector field was compared to seven different ideal cases: the

zero, the rotational, the reverse rotational, the irrotational, the point source, the

irrotational plus point source, and the modified Rankine vortex plus point source.

Figures 48 through 53 show the different numerically generated vector fields for each

case. Table 6 shows the different cases, along with the equations for each case, the

values of the variables for each case, and the calculated coefficient values for each

case. The worst cases were the zero and reverse rotational cases, and the best case

was the modified Rankine vortex plus source.
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Γ1 Γ2 q1 q2 coefficient
1 0 0 0 1
1 .5 0 0 1

3

1 1 0 0 0
1 2 0 0 1

3

1 3 0 0 1
2

1 4 0 0 3
5

1 5 0 0 2
3

1 6 0 0 5
7

1 7 0 0 3
4

1 1 0 0 0
1 1 0 1

4 .068545
1 1 0 1

3 .090943
1 1 0 1

2 .13458
1 1 0 1 .25298
1 1 0 3

2 .35057
1 1 0 2 .429549
1 1 0 3 .545993
1 1 0 4 .625747
1 1 0 6 .725631
1 1 0 9 .805823
1 1 0 15 .878595

Table 5: The coefficient values for the different ideal vortices.
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Figure 48: Reverse rotational.
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Figure 49: Rotational.
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Figure 50: Point source.
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Figure 51: Irrotational.
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Figure 52: Source plus irrota-
tional.
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Figure 53: Modified vortex plus
source.
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Figure 54: Experimental vector
plot.
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Vector Field equation constants coefficient

Zero Velocity vθ = 0
vr = 0

Γ = 0 (m2

s )
q = 0

1

Reverse Rotational vθ = rθ̇
vr = 0

θ̇ = .000112 ( rads ) .974

Rotational vθ = −rθ̇
vr = 0

θ̇ = −.000112 .566224

Point Source vθ = 0
vr = q

r

q = .023913 0.584776

Irrotational vθ = Γ
r

vr = 0
Γ = −.023913 0.396671

Irrot. + Source vθ = Γ
r

vr = q
r

Γ = −.016909
q=.016909

.346372

Modified Rankine
+Source

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

vθ = −0.004913 R ≥ r
vr = .004913
vθ = Γ

rν R < r
vr = q

rν

Γ = −.083207
q=.036981
R=.125(m)
ν = 1.5

.251533

Table 6: Coefficient values for the different runs

The best case indicates that, although the experimental vortex had characteristics

of both an ideal point source and a modified ideal vortex, the vortex behavior dom-

inated the point source behavior. This result also indicates the experimental vortex

is a satisfactory representation of a vortex from the simulations.



CHAPTER 9: VORTEX ENERGY HARVESTING

9.1 Experimental Setup

Figure 55 shows the setup of the experiment. The vortex generating machine rests

above the pool and spins the fluid below. The robot is placed within the vortices at

the beginning of the experiment. The tracking system setup and control programs

are identical to the setup in Chapter 7.

Figure 55: The robot steering through the vortex array.
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9.2 Experimental Results

Three types of experiments were performed that paralleled the three simulations

discussed previously.

1. Vortices were present. The robot was guided by a closed-loop control system

using φ = kθ as the control law.

2. Vortices were present. The robot was unguided by any control and did not

actuate/swim. It was essentially dead in the water.

3. Vortices were not present. The robot was again guided by φ = kθ. This experi-

ment was identical to the swimming demonstrated in Chapter 7.

Multiple runs for each type of experiment were performed, and the data were

recorded. The data were loaded into Mathematica and used to generate still frame

pictures depicting the motion of the robot throughout the duration of the experiment.

The three experimental runs had distinct behaviors. Experiment 1, Figure 56,

showed that the robot steered in a way that always pointed along the given heading.

With the aid of the fluid vortices, the robot was propelled along the entire width of

the pool. It followed the path in Figure 56. It was observed in Experiment 2, Figure

57, that the robot was propelled around the vortex, then was ejected out the side of

the vortex pair. In Experiment 3, Figure 58, as expected, the robot swam the width

of the pool.
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Figure 56: Still frames showing vortex energy harvesting.

Figure 57: Still frames showing the robot dead in the water.

Each of the experimental runs displayed similar behavior to the simulation runs in

Kelly and Pujari (2010).
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Figure 58: Still frames showing free swimming.

9.2.1 Tail Data

The angular position of the tail was recorded for each experimental run. Curves

were fitted to the position data for the runs. Doing so helped characterize the actu-

ation effort required from the robot for each run. Figures 59 through 64 show all the

measured tail data over the duration of the closed-loop and open-loop runs. Because

the actuation was turned off, no data were recorded for Experiment 2.
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Figure 59: Open-loop tail position
data, f = 60Hz, A = 30 deg. Figure 60: Closed-loop run 1.

Figure 61: Run 2. Figure 62: Run 3.

Figure 63: Run 4. Figure 64: Run 5.

For Experiment 3, a periodic gait was needed to propel the robot across the same

distance of the pool as the vortex runs in a roughly equal interval of time. The

average time needed for the vortex run to traverse the pool was about 60 seconds. A

sinusoidal gait was chosen because it approximates the motion of a fish tail. After

experimenting with different frequencies and amplitudes of the sinusoidal gait, a gait

with a 60 Hz frequency and a range of ± 30 degrees was chosen because it was able

to traverse the distance of the pool in about 60 seconds.
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9.2.2 Calculating Efficiency

The curve fits for each run in the following equations were used to calculate the

economy of motion (total angle swept by the tail) for each run and to measure a total

energy-like quantity expended by the tail over each run.

θ̇net = ∫ t

0
∣θ̈(τ)∣dτ (288)

θnet = ∫ t

0
∣θ̇(τ)∣dτ (289)

Run θnet(deg) θ̇net(degs ) θnet
θfree

%
θ̇2net
θ̇2
free

% final velocity (m/s)

free 860.36 5403.70 100 100 .014
1 27.7 73.8 3.2 .019 .026
2 47.1 56.2 5.5 .011 .011
3 40.8 73.0 4.7 .018 .030
4 44.4 63.9 5.1 .014 .021
5 47.1 74.4 5.5 .019 .029

Table 7: Efficiency values for the different runs

The table above shows the calculated values of (288) and (289), the ratio of the

closed-loop over the open-loop values for the economy of motion and for the rotational

energy, and the final velocity for each run. The net angular distances of the runs for

Experiment 1 are about two orders of magnitude less than the angular distance of

those for Experiment 3. The net angular distance of each run for Experiment 1

is less than the distance traveled by one oscillation for Experiment 3. The ratios

of the rotational energy for Experiment 1 over Experiment 3 differ by four orders
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of magnitude. The final velocities for Experiment 1 runs were usually nearly twice

those for Experiment 3, with one exception, when it was less. All these results are

consistent with the results of the simulations.



CHAPTER 10: CONCLUSIONS

This work has included a thorough introduction to techniques of Lagrangian reduc-

tion, including concepts, definitions, and detailed examples. The reader will obtain

a sufficient foundation for performing reduction of problems. In addition, it showed

theoretically, analytically, and numerically that dissipation can be used to model non-

holonomic, holonomic, and kinematic constraints. Thus, a technique commonly used

by practicing engineers was placed on firm theoretical footing.

Lagrangian reduction was used to develop control laws for three different novel

robotic systems. For the first system, dissipation was used to model the constraints.

Controllability was demonstrated. When the dissipation was reduced, accessibility

was shown. For the second system, a strategy for underactuated control was demon-

strated. For the third system, the geometric phase was used to generate an optimal

open-loop control strategy.

Experiments were conducted to complement a previous set of simulations. The first

experiment explored underactuated planar navigation for a fish-like robot. That ex-

periment showed that navigational and velocity goals could be achieved with a control

law using unstable oscillations to generate propulsion. The results were consistent

with the simulations.

The next experiment characterized standing fluid vortices generated by custom-

built vortex generators. These vortex generators were the experimental analogs to
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the ideal vortices in the simulations. The generated vortices were analyzed with

a PIV system, and their behavior was compared to the behavior of ideal vortices.

A coefficient was defined to specify the degree to which the experimental vortices

deviated from the ideal. As expected, the experimental vortices were not perfectly

ideal. However, they were dominated by circulatory behavior seen in the ideal case.

This result indicated the vortices could sufficiently replicate ideal vortices.

The last set of experiments showed the robot could extract energy from fluid vor-

tices to assist in propulsion. This technique was shown to be vastly more efficient

than swimming in the absence of vortices. These experiments provided evidence that

schooling fish could harvest the vortex energy created within the school to achieve

net gains in efficiency and that engineers can unlock these efficiency gains for aquatic

robots as well.



CHAPTER 11: FUTURE WORK

Extensions of this work could be made in theoretical, computational, and experi-

mental directions. A few such possibilities are presented.

Possibilities for theoretical developments include exploring when the viscosity ten-

sor and other reduced structures built on the Rayleigh dissipation function can be used

for various systems. Since the dissipation momentum map K was derived in Kelly

(1998), it has yet to make its way into the geometric mechanics canon. Thus, it can

be applied to many problems involving dissipation, including structural dissipation in

elastic continua (see Marsden and Hughes (1983)) and dissipation in variational in-

tegrators (see Leok (2004) and West (2004)). Thus far, dissipation in these problems

has not been considered within the context of a momentum map.

The proof presented in this work only considers constraints where the velocities

enter linearly into the constraint equation. This is sufficient for most mechanical

systems. A possible direction for study would be to extend this proof to systems

with nonintegrable constraints where the velocities do not enter linearly into the con-

straint equations. These types of constraints are much more common in optimization

problems (see Arora (2004)).

Future simulations could involve continued development of reduced models for land-

based fish-like systems that lend themselves well to geometric control and analysis.

Recently in Choset et al. (2013), such a system has been modeled. This system,
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as well as systems in this thesis, have been analyzed assuming that they translate

through a flat, 2D surface. Interesting mechanics could be observed by mapping

such surfaces to non-flat, 2D surfaces. Such candidates would be conic or spherical

surfaces, that could be used as approximations of mountains or asteroids.

Future experiments could include building an experimental analogue to a simulated

closed-loop hydrofoil swimmer with a source-seeking controller developed by Cochran

et al. (2009). A sensor has already been designed and constructed to output a voltage

level proportional to the magnitude of a sound source. This sensor could serve as a

control input to the system source-seeking control law. Other possible experiments

include designing and fabricating land-based robots that complement the Chaplygin

beanie and the robotic swimmer, such as the one explored in Choset et al. (2013).
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