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ABSTRACT

BRYTTANY HERREN. Download cost of cache-aided private updating with
unknown prefetching. (Under the direction of DR. AHMED ARAFA)

We consider the problem of privately updating a message out of K messages from

N replicated and non-colluding databases. In this problem, a user has an outdated

version of the message Ŵθ of length L bits that differ from the current version Wθ in

at most f bits. In addition, the user also has access to a cache Z containing linear

combinations of each of the K messages, the realizations of which are unknown to

the N databases (unknown prefetching). The cache Z contains ` linear combinations

from each of the K messages in the databases, and we say that r = `
L
is the caching

ratio. The user needs to retrieve Wθ correctly using a private information retrieval

(PIR) scheme with the least number of downloads without leaking any information

about the message index θ to any individual database. To that end, we propose a

novel achievable scheme based on syndrome decoding. Specifically, the user downloads

the syndrome corresponding to Wθ, according to a linear block code with carefully

designed parameters, using an optimal PIR scheme for messages with a length con-

straint. For this scheme, the cached linear combinations in Z are chosen to be bits

pertaining to the syndrome of each message in the database. We derive a lower

bound on the optimal download cost for general 0 ≤ r ≤ 1, and upper bounds on the

optimal download cost for when r is exceptionally low or high. In particular, when de-

riving our upper bounds, we develop novel cache-aided arbitrary message length PIR

schemes. Our bounds match if the term log2

(∑f
i=0

(
L
i

))
is an integer. Our results

imply that there is a significant reduction in the download cost if f < L
2
compared

with downloading Wθ directly using cached-aided PIR approaches without taking the

correlation between Wθ and Ŵθ into consideration.
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CHAPTER 1: INTRODUCTION

The problem of private information retrieval (PIR), introduced by Chor et al.

in [1], seeks to find the most efficient way for a user to privately retrieve a single

message from a set of K messages from N fully replicated and non-communicating

databases. PIR schemes are designed to download a mixture of all K messages, with

the least number of overhead downloaded bits, such that no single database can infer

the identity of the desired message. The user accomplishes this task by sending a

query to each database. The databases respond truthfully to the submitted query

with an answer string. The user can then reconstruct the desired message from jointly

decoding the returned answer strings. Recently, the problem of PIR has received a

growing interest from the information and coding theory communities. The classical

PIR problem is re-formulated using information-theoretic measures in the seminal

work of Sun-Jafar [2]. In there, the performance metric of the PIR scheme is the

retrieval rate, which is the ratio of the number of the desired message symbols to the

total number of downloaded bits. The supremum of this ratio is denoted by the PIR

capacity, C. Sun and Jafar characterize the PIR capacity of the classical PIR model

to be

C =

(
1 +

1

N
+

1

N2
+ · · ·+ 1

NK−1

)−1

. (1.1)

Following [2], the capacity (or its reciprocal, the normalized download cost) of many

variations of the problem have been investigated, see, e.g., [3–17].

In all these works, the user is assumed to have no information about the desired

message prior to retrieval. Thus, the queries are designed independently from the
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message contents. This is not always the case in practice. To see that, consider the

following classical motivational example of PIR: in the stock market, investors need

to privately retrieve some of the stock records, since showing interest in a specific

record may undesirably affect its value. PIR is a natural solution to this problem.

Now, consider the case when an investor has already retrieved a specific stock record

some time ago but this record has been changed. The investor needs to update

the record at his/her side. A trivial solution to this problem is to re-apply the

original PIR scheme again. Nevertheless, this solution overlooks the fact that stock

records are correlated in time. Another example arises in the context of private

federated submodel learning [18], in which a user needs to retrieve the up-to-date

desired submodel without leaking any information about its identity. The weights

of each submodel are usually correlated in time as in the stock market example. In

both examples, it is interesting to investigate whether or not the investor (user) can

exploit the correlation between the outdated record (submodel) and its up-to-date

counterpart to drive down the download cost. In this work, we focus our attention on

a specific type of correlation, in which the up-to-date message is a distorted version

of the outdated message according to a Hamming distortion measure. The most

closely related works to this problem are the PIR problems with side information, e.g.,

[19–25]. We also assume that the user has access to a private local cache containing

equal portions of each message. Caching systems of this variety have been explored

before in the PIR setting, e.g., [26,27], but not in conjunction with other forms of side

information (outdated or updated). In the works regarding PIR with side information,

the user has side information in the form of a subset of undesired messages, which

are utilized to assist in privately retrieving the desired message. This is different from

our setting, in which the user possesses side information in the form of an outdated

desired message. Furthermore, these works differ from each other in whether the

privacy of the side information should be maintained or not. This is different from
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our problem in which the identity of the desired and side information is the same,

and therefore the privacy constraint in our problem is modified to reflect this fact.

In this thesis, we introduce the problem of cache-aided private updating with un-

known prefetching for a message out of a K-message library from N replicated and

non-colluding databases. In this problem, the user has an outdated version Ŵθ of

the desired message θ, and wishes to update it to its up-to-date version Wθ. Further-

more, the user has information about the maximum Hamming distance f between the

up-to-date message and its outdated counterpart, i.e., the user possesses Ŵθ, which

differs in at most f bits from the desired up-to-date messageWθ. Based on Ŵθ and f ,

the user needs to design a query set to reliably and privately decode the up-to-date

version of the desired message Wθ with the least number of downloaded bits. Equiv-

alently, the user needs to privately retrieve an auxiliary message that corresponds to

the flipped bit positions in the desired message. Similar to the works of [28, 29], we

assume that the databases can construct a mapping from the original library of mes-

sages into a more appropriate form that can assist the user in the retrieval process.

The user also has access to a private cache Z containing ` linear combinations of each

message, and we say that r = `
L
is the caching ratio. We aim at characterizing the

optimal download cost needed to update Ŵθ to Wθ given Z without disclosing the

desired message index θ to any of the databases.

To that end, we propose a novel achievable scheme that is based on the syndrome

decoding idea introduced in [30], and adapt it to our setting to exploit the corre-

lation between Wθ and Ŵθ. Hence, syndrome decoding is used to compress the

desired message based on the user’s side information (i.e., the outdated message Ŵθ).

More specifically, the databases apply a linear transformation to the stored library of

messages using the parity check matrix of a linear block code with carefully chosen

parameters. The existence of such a code can be readily inferred from the Gilbert-

Varshamov and the Hamming bounds [31]. This transformation, in effect, maps the
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messages into their corresponding syndromes. Thus, the problem is reduced to re-

trieving the auxiliary messages (i.e., the syndrome representation) that comprises of⌈
L̄
⌉

=
⌈
log2

(∑f
i=0

(
L
i

))⌉
≤ L bits, where L is the original message length.

In the case of r = 0, this enables us to directly apply the PIR scheme in [32] to the

auxiliary messages of length
⌈
L̄
⌉
, which is optimal under message length constraints.

In the case where r satisfies 0 < r ≤ 1
1+N+N2+···+NK−1 (denoted very low r) or 1

1+N
≤

r ≤ 1 (denoted very high r), we extend the PIR scheme in [32] to the cache-aided

setting in [27], and develop a novel cache-aided arbitrary message length PIR scheme

to solve our problem. Like with the r = 0 case, we can then use this new cache-

aided arbitrary message length scheme to download the auxiliary messages of length⌈
L̄
⌉
with an effective caching ratio of r̃ = `

dL̄e . For each of these cases, we confirm

the validity of our proposed scheme by deriving a matching converse proof. Our

converse proof is inspired by the converse proof of the cache-aided PIR problem with

unknown and uncoded prefetching in [27], with the main difference being the fact that

in addition to a private cache, the user has access to the outdated message Ŵθ, the

index of which they wish to keep private. Consequently, we show that the optimal

download cost, D̄L, is bounded by
⌈
(L̄−Lr)

∑K−1
j=0

1
Nj−Lr

∑K−2
j=0

K−1−j
Nj

⌉
≤ D̄L ≤⌈(⌈

L̄
⌉
−Lr

)∑K−1
j=0

1
Nj−Lr

∑K−2
j=0

K−1−j
Nj

⌉
when r̃ is very low, and that D̄L =

⌈
L̄
⌉
−Lr

when r̃ is very high. Our achievable scheme for very low r̃ is optimal if L̄ is an integer,

otherwise the gap between the upper and lower bounds is upper bounded by 2 bits.

This justifies the efficacy of using syndromes as a message mixing technique in our

setting. Furthermore, our results show that performing direct PIR on the original

library of messages is strictly sub-optimal as long as the maximum Hamming distance

f < L
2
.



CHAPTER 2: SYSTEM MODEL

We consider a classical PIR problem with K independent, uncoded, messages

W1, · · · ,WK , with each message consisting of L independent and uniformly dis-

tributed bits. We have

H(Wi) = L, 1 ≤ i ≤ K, (2.1)

H(W1, . . . ,WK) = H(W1) + · · ·+H(WK). (2.2)

The K messages are stored in N replicated and non-communicating databases. The

user (retriever) has a local copy of one of the messages whose index θ ∈ [K] is known

to the user,1 but not the database.2 However, this message stored locally is outdated,

and the user wishes to update it so that it is consistent with the copies in the databases

without revealing to any of the databases what the message index is.

The user also has a local cache memory whose contents is denoted by a random

variable Z. The cache is populated through a prefetching phase in which the user

randomly and independently caches ` bits of linear combinations from each of the up-

to-date messages Wi, i ∈ [K], with ` < L. Such linear combinations are represented

by a matrix multiplication WiRi, where Ri is of dimension L× `. Thus, we have

Z = [W1R1, W2R2, · · · , WKRK ]. (2.3)

We assume that the contents of the cache are unknown to the databases, as in,
1[K] denotes the set {1, 2, . . . ,K}.
2This is true if message θ has been previously obtained in a private manner.
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e.g., [19, 25,27]. We define the caching ratio as

r =
`

L
. (2.4)

Observe that the number of cached bits pertaining to each message is equal to Lr. It

now follows that

H(Z) =
K∑
i=1

H(WiRi) ≤ KLr, (2.5)

I(Wi;Z) = H(WiRi) ≤ Lr, 1 ≤ i ≤ K. (2.6)

The setting described above defines the cache-aided private updating problem with

unknown prefetching.

Since each message is a string of L bits, the problem can be formulated as privately

determining which subset of the message bits need to be flipped in order to fully

update it. To model this, we use Ŵθ to represent the locally stored outdated message,

W̄θ to represent the subset of bit indices that need to be flipped, and f to represent

the maximum Hamming distance betweenWθ and Ŵθ.3 Therefore, in order to update

message θ the user needs to flip at most f bits, i.e., W̄θ takes a value out of
∑f

i=0

(
L
i

)
choices. We assume that such choices are uniformly distributed and independently

realized from Ŵθ. Based on this model, the following holds:

H(Wθ) = H(Ŵθ) = L, (2.7)

H(W̄θ) = log2

(
f∑
i=0

(
L

i

))
, L̄, (2.8)

H(Wθ|Ŵθ) = H(W̄θ|Ŵθ) = L̄, (2.9)

H(W̄θ|Ŵθ,Wθ) = 0, (2.10)

3Clearly, f ≥ 1 must hold; otherwise there is not need to update Ŵθ.
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|W̄θ| ≤ f ≤ L, (2.11)

where | · | denotes cardinality.4 We assume that the maximum Hamming distance f

between the outdated and updated message is known to the user. By (2.8), one can

see that
⌈
L̄
⌉
bits should be sufficient to update Ŵθ. Hence, one can set a maximum

value on the number of cached bits from each message as

` ≤
⌈
L̄
⌉
. (2.12)

In order to retrieve Wθ, the user sends a set of queries Q[θ]
1 , . . . , Q

[θ]
N to the N

databases to efficiently obtain W̄θ. The queries are generated according to Ŵθ, f ,

and Z; and are jointly independent of the realizations of the [K]\{θ} messages and

W̄θ given Ŵθ. Therefore we have5

I
(
W[K]\{θ}, W̄θ;Q

[θ]
1:N

∣∣∣Ŵθ, Z
)

= 0. (2.13)

Upon receiving the query Q[θ]
n , the nth database replies with an answering string A[θ]

n ,

which is a function of Q[θ]
n and all the K messages stored. Therefore, ∀θ ∈ [K], ∀n ∈

[N ], we have

H
(
A[θ]
n

∣∣∣Q[θ]
n ,W1:K

)
= 0. (2.14)

To ensure that individual databases do not know which message is being updated,

we need to satisfy the following privacy constraint, ∀n ∈ [N ], ∀k ∈ [K]:

(
Q[1]
n , A

[1]
n , Ŵ1,W1:K

)
∼
(
Q[k]
n , A

[k]
n , Ŵk,W1:K

)
, (2.15)

4We have a brief discussion on deriving (2.8) in Appendix A.
5We use the notation xS to denote the collection of {xi, i ∈ S}.
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Wθ⇒

θ θ θ

Figure 2.1: Cache-aided private updating with unknown prefetching system model.

where ∼ denotes statistical equivalence. After receiving the answering strings A[θ]
1:N

from all the N databases, the user needs to decode the desired information Wθ with

no uncertainty, satisfying the following correctness constraint:

H
(
Wθ

∣∣∣A[θ]
1:N , Q

[θ]
1:N , Ŵθ, Z

)
= 0. (2.16)

The overall system model is depicted in Fig. 2.1.

For fixed N , K, f , and r, a pair (D̄, L) is achievable if there exists a cache-aided

private updating with unknown prefetching scheme for messages of length L bits

long satisfying the privacy constraint (2.15) and the correctness constraint (2.16). In

this pair, D̄ represents the expected number of downloaded bits received from the N
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databases independently via the answering strings A[k]
1:N , i.e.,

D̄ =
N∑
n=1

H
(
A[θ]
n

)
. (2.17)

Our goal is to characterize the optimal download cost D̄L for the cache-aided private

updating problem with unknown prefetching for fixed arbitrary L, N , K, f , and r.

That is, to solve for

D̄L = min
{
D̄ : (D̄, L) is achievable

}
. (2.18)

Clearly, the user can ignore its outdated message Ŵθ and re-download the whole

new message Wθ using standard cache-aided PIR schemes [2, 27]. Our main result,

however, shows that we can use Ŵθ to do strictly better.



CHAPTER 3: MAIN RESULT

Our first result characterizes a converse bound for the optimal download cost D̄L

for general N , K, f , and r.

Theorem 1 (Converse) In the cache-aided private updating problem with unknown

prefetching, the optimal download cost is lower bounded by

D̄L ≥

⌈
max

i∈{2,...,K+1}
(L̄− Lr)

K+1−i∑
j=0

1

N j
− Lr

K−i∑
j=0

K + 1− i− j
N j

⌉
, (3.1)

with L̄ defined in (2.8).

The proof of Theorem 1 is provided in Chapter 4.

For our next result, we characterize an achievability bound for specific values of the

caching ratios, and otherwise general L, N , K, and f . Before we present our result,

we need to introduce some notation. Specifically, as in [27], for s ∈ {1, 2, . . . , K − 1},

we define a caching ratio rs as

rs =

(
K−2
s−1

)(
K−2
s−1

)
+
∑K−1−s

i=0

(
K−1
s+i

)
(N − 1)iN

. (3.2)

Now, we say that a caching ratio r is very low if 0 ≤ r ≤ r1 = 1
1+N+N2+···+NK−1 , and

very high if rK−1 = 1
1+N
≤ r ≤ 1. Our results will depend on a normalized version of

r, and so we denote

r̃ =
Lr⌈
L̄
⌉ (3.3)

as the effective caching ratio. Clearly, by (2.12), 0 ≤ r̃ ≤ 1. We are now ready to
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present our achievability result.

Theorem 2 (Achievability) In the cache-aided private updating problem with un-

known prefetching, for very low effective caching ratios, the optimal download cost is

upper bounded by

D̄L ≤

⌈(⌈
L̄
⌉
− Lr

)
·
K−1∑
i=0

1

N i
− Lr ·

K−2∑
i=0

K − 1− i
N i

⌉
, (3.4)

and for very high effective caching ratios, the optimal download cost is upper bounded

by

D̄L ≤
⌈
L̄
⌉
− Lr, (3.5)

with L̄ defined in (2.8), and the effective caching ratio defined in (3.3)

The proof of Theorem 2 is provided in Chapter 5.

In Chapter 6, we include a discussion on extending these achievability results to

effective caching ratios r̃ with r1 < r̃ < rK−1.

Combining the achievability bounds in Theorem 2 with the converse bound in

Theorem 1, we obtain a fairly tight characterization of the optimal download cost D̄L

for very low and very high effective caching ratios. This is stated in the following

corollary:

Corollary 1 In the cache-aided private updating problem with unknown prefetching,

for very low caching effective ratios, we have

⌈
(L̄−Lr)

K−1∑
j=0

1

N j
−Lr

K−2∑
j=0

K − 1− j
N j

⌉
≤ D̄L

≤

⌈(⌈
L̄
⌉
−Lr

)K−1∑
j=0

1

N j
−Lr

K−2∑
j=0

K − 1− j
N j

⌉
,

(3.6)
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and for very high caching effective ratios, we have

D̄L =
⌈
L̄
⌉
− Lr (3.7)

Proof: The right hand side inequality of (3.6) is given directly by Theorem 2. By

choosing i = 2 in (3.1), we obtain the left hand side inequality in (3.6). Similarly, by

choosing i = K − 1 in (3.1), we obtain the result in (3.7) (note that Lr is an integer,

and so in this case the converse and achievability bounds match). This concludes the

proof. �

We conclude this chapter with some remarks.

Remark 1 The result in Corollary 1 generalizes our preliminary work on the private

updating problem with no caching involved [33]. Specifically, plugging in r = r̃ = 0 in

Corollary 1 directly gives [33, Theorem 1].

Remark 2 Consider the result in (3.6). From (2.8) and (2.11), it follows that
⌈
L̄
⌉

=

L for all values of f ≥ L
2
; and that

⌈
L̄
⌉
< L for all values of f < L

2
.1 Combining

this with the results in [27, Corollary 2] (which is the analog of our result in case

the user does not have an outdated message), this means that there is a Hamming

distance threshold of L
2
beyond which there is no advantage to using a private updating

strategy, and below which there will always be some savings in download cost. This

can be seen in Figure 3.1, where we also note that the non-linearity of the upper and

lower bounds are a result of the ceiling functions that appear in these bounds.

Remark 3 If L and f are such that L̄ = dL̄e then the upper and lower bounds in

(3.6) match. We will see that this holds if a perfect code2 by which the queries are sent

exists (cf. Chapter 5). Otherwise, if L̄ < dL̄e, one can show using similar arguments

as in [32, Section 7.2] that the two bounds are within 2 bits for N ≥ 2 databases.

1This can be readily shown using the binomial theorem. Details are in Appendix B.
2Perfect codes are those that attain the Hamming bound with equality [31].
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Figure 3.1: Download cost of cache-aided private updating with unknown prefetching
with L = 32 bits, N = 2 databases, K = 3 messages, and r = 1
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CHAPTER 4: PROOF OF MAIN RESULT: CONVERSE

In this chapter, we derive the general (converse) lower bound for the download

cost in Theorem 1. To do so, we prove two useful lemmas, which were previously

used in the cache-aided PIR setting of [27], for the case of our cache-aided private

updating problem. The two lemmas are then combined to prove the general lower

bound. The key difference between our lemmas and those in [27] is that in addition

to some uniform portion of each message being cached, the user is given an outdated

message Ŵθ, requiring careful handling of the correlation between Wθ and Ŵθ.

Lemma 1 (Interference lower bound) In the cache-aided private updating prob-

lem with unknown prefetching, the interference from undesired messages within the

answering strings, D̄ − (L̄− Lr), satisfies

D̄ − (L̄− Lr) ≥ I
(
Wk:K ;Q

[k−1]
1:N , A

[k−1]
1:N

∣∣∣W1:k−1, Ŵk−1, Z
)

(4.1)

for all k ∈ {2, . . . , K}.

Proof: We start with the right hand side of (4.1),

I(Wk:K ;Q
[k−1]
1:N , A

[k−1]
1:N |W1:k−1, Ŵk−1, Z)

= I(Wk:K ;Q
[k−1]
1:N , A

[k−1]
1:N ,Wk−1|W1:k−2, Ŵk−1, Z)− I(Wk:K ;Wk−1|W1:k−2, Ŵk−1, Z)

(4.2)

= I(Wk:K ;Q
[k−1]
1:N , A

[k−1]
1:N |W1:k−2, Ŵk−1, Z)

+ I(Wk:K ;Wk−1|Q[k−1]
1:N , A

[k−1]
1:N ,W1:k−2, Ŵk−1, Z) (4.3)

(2.16)
= I(Wk:K ;Q

[k−1]
1:N , A

[k−1]
1:N |W1:k−2, Ŵk−1, Z) (4.4)
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(2.13)
= I(Wk:K ;A

[k−1]
1:N |Q

[k−1]
1:N ,W1:k−2, Ŵk−1, Z) (4.5)

= H(A
[k−1]
1:N |Q

[k−1]
1:N ,W1:k−2, Ŵk−1, Z)−H(A

[k−1]
1:N |Q

[k−1]
1:N ,W1:k−2,Wk:K , Ŵk−1, Z)

(4.6)

(2.16)
= H(A

[k−1]
1:N |Q

[k−1]
1:N ,W1:k−2, Ŵk−1, Z)

−H(A
[k−1]
1:N ,Wk−1|Q[k−1]

1:N ,W1:k−2,Wk:K , Ŵk−1, Z) (4.7)

≤ H(A
[k−1]
1:N |Q

[k−1]
1:N ,W1:k−2, Ŵk−1, Z)−H(Wk−1|Q[k−1]

1:N ,W1:k−2,Wk:K , Ŵk−1, Z) (4.8)

(2.13)
= H(A

[k−1]
1:N |Q

[k−1]
1:N ,W1:k−2, Ŵk−1, Z)−H(Wk−1|Ŵk−1, Z) (4.9)

(2.17),(2.2)
≤ D̄ −H(Wk−1|Ŵk−1,Wk−1Rk−1) (4.10)

= D̄ −
(
H(Wk−1,Wk−1Rk−1|Ŵk−1)−H(Wk−1Rk−1|Ŵk−1)

)
(4.11)

= D̄ −
(
H(Wk−1|Ŵk−1) +H(Wk−1Rk−1|Ŵk−1,Wk−1)−H(Wk−1Rk−1|Ŵk−1)

)
(4.12)

(2.9),(2.6)
≤ D̄ − (L̄− Lr). (4.13)

This concludes the proof. �

Note that if privacy was not a constraint, then D̄ = L̄−Lr and the interference from

undesired messages would be non-existent. However, when the privacy constraint is

present, D̄ − (L̄− Lr) characterizes the number of bits that will be downloaded and

used as side information to preserve privacy from the databases in a given scheme.

Lemma 2 (Induction lemma) For all k ∈ {2, . . . , K}, the mutual information

term in Lemma 1 can be inductively lower bounded as

I
(
Wk:K ;Q

[k−1]
1:N , A

[k−1]
1:N

∣∣∣W1:k−1, Ŵk−1, Z
)

≥ 1

N
I
(
Wk+1:K ;Q

[k]
1:N , A

[k]
1:N

∣∣∣W1:k, Ŵk, Z
)

+
L̄− Lr
N

− (K − k + 1)Lr. (4.14)
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Proof: We start with the left hand side of (4.14),

I(Wk:K ;Q
[k−1]
1:N , A

[k−1]
1:N |W1:k−1, Ŵk−1, Z)

= I(Wk:K ;Q
[k−1]
1:N , A

[k−1]
1:N , Z, Ŵk−1|W1:k−1)− I(Wk:K ;Z, Ŵk−1|W1:k−1) (4.15)

= I(Wk:K ;Q
[k−1]
1:N , A

[k−1]
1:N |W1:k−1) + I(Wk:K ;Z, Ŵk−1|W1:k−1, Q

[k−1]
1:N , A

[k−1]
1:N ) (4.16)

− I(Wk:K ;Z, Ŵk−1|W1:k−1)

≥ I(Wk:K ;Q
[k−1]
1:N , A

[k−1]
1:N |W1:k−1)− I(Wk:K ;Z, Ŵk−1|W1:k−1) (4.17)

Now, for the first term in (4.17), we have

I(Wk:K ;Q
[k−1]
1:N , A

[k−1]
1:N |W1:k−1) (4.18)

≥ 1

N

N∑
n=1

I(Wk:K ;Q[k−1]
n , A[k−1]

n |W1:k−1) (4.19)

(2.15)
=

1

N

N∑
n=1

I(Wk:K ;Q[k]
n , A

[k]
n |W1:k−1) (4.20)

≥ 1

N

N∑
n=1

I(Wk:K ;A[k]
n |W1:k−1, Q

[k]
n ) (4.21)

(2.14)
=

1

N

N∑
n=1

H(A[k]
n |W1:k−1, Q

[k]
n ) (4.22)

≥ 1

N

N∑
n=1

H(A[k]
n |W1:k−1, Ŵk, Z,Q

[k]
1:N , A

[k]
1:n−1) (4.23)

(2.14)
=

1

N

N∑
n=1

I(Wk:K ;A[k]
n |W1:k−1, Ŵk, Z,Q

[k]
1:N , A

[k]
1:n−1) (4.24)

=
1

N
I(Wk:K ;A

[k]
1:N |W1:k−1, Ŵk, Z,Q

[k]
1:N) (4.25)

(2.13)
=

1

N
I(Wk:K ;Q

[k]
1:N , A

[k]
1:N |W1:k−1, Ŵk, Z) (4.26)

(2.16)
=

1

N
I(Wk:K ;Wk, Q

[k]
1:N , A

[k]
1:N |W1:k−1, Ŵk, Z) (4.27)

=
1

N
I(Wk:K ;Q

[k]
1:N , A

[k]
1:N |W1:k, Ŵk, Z) +

1

N
I(Wk:K ;Wk|Wk−1, Ŵk, Z) (4.28)

=
1

N
I(Wk:K ;Q

[k]
1:N , A

[k]
1:N |W1:k, Ŵk, Z) +

1

N
H(Wk|Ŵk, Z) (4.29)
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(2.9),(2.6)
≥ 1

N
I(Wk+1:K ;Q

[k]
1:N , A

[k]
1:N |W1:k, Ŵk, Z) +

L̄− Lr
N

. (4.30)

Note that (4.30) follows from a similar argument in Lemma 1 starting at (4.9). Next,

for the second term in (4.17), we have

I(Wk:K ;Z, Ŵk−1|Wk−1) =H(Wk:K |Wk−1)−H(Wk:K |Wk−1, Z, Ŵk−1) (4.31)

=(K − k + 1)L− (K − k + 1)L(1− r) (4.32)

=(K − k + 1)Lr (4.33)

Finally, we have

I(Wk:K ;Q
[k−1]
1:N , A

[k−1]
1:N |Wk−1)− I(Wk:K ;Z, Ŵk−1|Wk−1)

≥ 1

N
I
(
Wk+1:K ;Q

[k]
1:N , A

[k]
1:N

∣∣∣W1:k, Ŵk, Z
)

+
L̄− Lr
N

− (K − k + 1)Lr. (4.34)

This concludes the proof. �

We now apply the result of Lemma 2 recursively on that of Lemma 1 to get the

general lower bound.

Lemma 3 The optimal download cost of cache-aided private updating with unknown

prefetching satisfies the following lower bound:

D̄L ≥

⌈
max

i∈{2,...,K+1}
(L̄− Lr)

K+1−i∑
j=0

1

N j
− Lr

K−i∑
j=0

K + 1− i− j
N j

⌉
(4.35)

Proof: The download cost of any cache-aided private updating with unknown prefetch-

ing scheme satisfies the following series of inequalities:

D̄
(4.1)
≥ (L̄− Lr) + I(Wk:K ;Q

[k−1]
1:N , A

[k−1]
1:N |W1:k−1, Ŵ1, Z) (4.36)
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(4.14)
≥ (L̄− Lr) +

L̄− Lr
N

+
1

N
I(Wk+1:K ;Q

[k]
1:N , A

[k]
1:N |W1:k, Ŵk, Z)− (K − 1)Lr

(4.37)
(4.14)
≥ (L̄− Lr) +

L̄− Lr
N

+
L̄− Lr
N2

+
1

N2
I(Wk+2:K ;Q

[k+1]
1:N , A

[k+1]
1:N |W1:k+1, Ŵk+1, Z)

− (K − 1)Lr +
(K − 2)Lr

N
(4.38)

(4.14)
≥ . . . (4.39)

= (L̄− Lr)
K+1−k∑
j=0

1

N j
− Lr

K−k∑
j=0

K + 1− k − j
N j

(4.40)

Next, (4.40) gives K intersecting line segments, therefore, the download cost D̄ is

lower bounded by their maximum value

D̄ ≥ max
i∈{2,...,K+1}

(L̄− Lr)
K+1−i∑
j=0

1

N j
− Lr

K−i∑
j=0

K + 1− i− j
N j

. (4.41)

Since (4.41) lower bounds the download cost D̄ for any cache-aided private updating

with unknown prefetching scheme, it also lower bounds the download cost of the

optimal private updating scheme D̄L. Finally, since D̄L is an integer, we take the

ceiling of (4.41) to get (4.35). �

This concludes the converse proof.



CHAPTER 5: PROOF OF MAIN RESULT: ACHIEVABILITY

Our achievability scheme makes use of the correlation between Wθ and Ŵθ through

the knowledge of their maximum Hamming distance f in order to reduce the down-

load cost. This approach is related to the problem tackled in [30] (without privacy

constraints), in which a source is compressed given that it is correlated with some

side information that is available only at the decoder. The retrieving user represents

the decoder in our case, with side information Ŵθ. By the Slepian-Wolf coding theo-

rem [34], one can noiselessly compress the source Wθ at the rate of H(Wθ|Ŵθ) = L̄.

The compressed source is treated as a new message to be downloaded using a PIR

scheme, as opposed to downloading the whole message Wθ. Such scheme, however,

has a message length constraint (unlike most of the PIR works in the literature). For

that reason, we leverage tools from the PIR scheme with arbitrary message length

in [32], and extend them to work in the caching setting at hand, to accomplish our

task.

While our achievability schemes make use of the local cache Z, we will first give

some motivating examples without the user having knowledge of Z, which represents

the case r = 0 tackled in our preliminary work [33].

5.1 Motivating Examples without Caching

5.1.1 L = 3, N = 2, K = 2, f = 1, and r = 0

In this example, we have L̄ = log2(1 + 3) = 2, and C = 2/3.1 Setting r = 0 in

(3.4), we need to show that D̄ =
⌈⌈
L̄
⌉
/C
⌉

= 3 bits is achievable. We first start by

constructing a [3, 1, 3] linear block code, which is in this case a repetition code with
1C = (1 + 1/N + · · ·+ 1/NK−1)−1 is the classical PIR capacity [2].
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generator matrix G and parity check matrix H given by

G =

[
1 1 1

]
, H =

1 1 0

1 0 1

 . (5.1)

Note that such code is capable of correcting at most f = 1 error. The syndromes

associated with this code are s ∈ {00, 01, 10, 11}. Observe that the length of s is

exactly
⌈
L̄
⌉
.

Instead of requesting Wθ, the user retrieves the index of the coset in which Wθ

resides in the code’s standard array. That is, its corresponding syndrome

sθ = WθH
T . (5.2)

The user then compares Ŵθ to all the words in that coset, and decodes Wθ as the

one closest in Hamming distance. This is guaranteed to yield the unique correct

message [30]. Therefore, the syndrome sθ efficiently represents the flipped bits’ indices

W̄θ, and one is able to reduce the effective message length from L = 3 to
⌈
L̄
⌉

= 2 by

dealing with the syndrome sθ instead of Wθ.

Let W1 = [a1, a2, a3], and W2 = [b1, b2, b3]. The syndromes (the new messages) are

given by

s1 = W1H
T =

[
a1 + a2 a1 + a3

]
,

[
ā1 ā2

]
, (5.3)

s2 = W2H
T =

[
b1 + b2 b1 + b3

]
,

[
b̄1 b̄2

]
. (5.4)

Assume θ = 1. Since
⌈
L̄
⌉

= NK−1, we can apply a non-symmetric PIR scheme as
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follows to decode s1 [32]:

Database 1 Database 2

ā1, b̄1 ā2 + b̄1

This has a download cost of D̄ = 3 bits, which is optimal in this case since it meets

the converse bound.

The repetition code used in this example is a perfect code. While this makes L̄ an

integer, and meets the converse bound, perfect codes are scarce. In the next example,

we show how the proposed scheme performs with non-perfect codes.

5.1.2 L = 5, N = 2, K = 2, f = 1, and r = 0

In this example, we have L̄ = log2(1 + 5) = 2.58, and C = 2/3. We show that

D̄ =
⌈⌈
L̄
⌉
/C
⌉

= 5 bits is achievable. As in the previous example, we start by

constructing a [5, 2, 3] linear block code. Differently though, this is not a repetition

code, and is characterized by

G =

1 0 1 1 1

0 1 1 1 0

 , H =


1 1 1 0 0

1 1 0 1 0

0 1 0 0 1

 . (5.5)

The syndromes s have length
⌈
L̄
⌉
. Specifically,

s1 = W1H
T =

[
a1 + a2 + a3 a1 + a2 + a4 a2 + a5

]
,

[
ā1 ā2 ā3

]
, (5.6)

s2 = W2H
T =

[
b1 + b2 + b3 b1 + b2 + b4 b2 + b5

]
,

[
b̄1 b̄2 b̄3

]
. (5.7)

Since
⌈
L̄
⌉

= NK−1 + 1, we follow the methodology in [32]; we privately download

NK−1 = 2 bits (ā1 and ā2) using the non-symmetric PIR scheme in the previous
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example, and then privately download the remaining 1 bit (ā3) using the scheme

in [35]. The technique in [35] in this case is such that the user requests random linear

combinations of [ā3 b̄3] from database 1 using a random binary vector h, and the

same from database 2 yet with h′ = h+eθ, where ei is the ith standard basis vector.

The full PIR scheme is as follows:

Database 1 Database 2

ā1, b̄1 ā2 + b̄1

h1ā3 + h2b̄3 (h1 + 1)ā3 + h2b̄3

This has a download cost of D̄ = 5 bits, which is 1 bit away from the converse bound

since the code used is non-perfect.

5.2 The General Scheme with Caching

For general L, N , K, and f , we construct an [L,L−
⌈
L̄
⌉
, 2f + 1] linear block code.

From the Gilbert-Varshamov bound [31], we know that such a code exists if

2dL̄e ≤
2f∑
j=0

(
L

j

)
. (5.8)

In addition, such a code must satisfy the Hamming bound [31]:

f∑
j=0

(
L

j

)
≤ 2dL̄e. (5.9)

By the definition of L̄ in (2.8), both (5.8) and (5.9) are satisfied, and so the code

exists and is able to correct f bit flips.

Next, we map each message to its corresponding syndrome of the constructed code,

which is of length L − (L −
⌈
L̄
⌉
) =

⌈
L̄
⌉
. The user then retrieves the syndrome sθ

according to a PIR scheme with N databases, K messages, and
⌈
L̄
⌉
message length.

For the case r = 0, by [32, Theorem 1], a download cost of
⌈⌈
L̄
⌉
/C
⌉
is achievable

in this case. Finally, correctness is guaranteed since querying for the syndrome sθ
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allows the user to decode Wθ as the unique word in the syndrome’s coset with the

least Hamming distance from Ŵθ [30]. This shows that (3.4) holds specifically when

r = 0.

For the case when r 6= 0, the user will have access to cached linear combinations of

Wi for all i ∈ [K]. These cached linear combinations are given by WiRi, where Ri is

a matrix of dimension (L ×
⌈
L̄
⌉
). For the purposes of our cache-aided achievability,

we let

Ri = HT , ∀i ∈ [K], (5.10)

where H is the parity check matrix of the code. This means that during the prefetching

phase, bits from our desired syndrome are being cached, and what is left to download

is the remaining
⌈
L̄
⌉
− Lr bits.

To this end, we develop some novel schemes for cache-aided PIR with arbitrary mes-

sage length that utilize the results from [27]. In particular, for all s ∈ {1, 2, . . . , K−1}

we define the message length of a cache-aided PIR scheme from [27] with caching ratio

rs as

Lr(s) =

(
K − 2

s− 1

)
+

K−1−s∑
i=0

(
K − 1

s+ i

)
(N − 1)iN, (5.11)

and the normalized download cost of such a scheme as

Dr(s) =

∑K−1−s
i=0

(
K

s+1+i

)
(N − 1)iN(

K−2
s−1

)
+
∑K−1−s

i=0

(
K−1
s+i

)
(N − 1)iN

. (5.12)

For very low caching ratio r, we recall from [27] that the optimal normalized download

cost of a cache-aided PIR scheme is

D∗(r) = (1− r) ·
K−1∑
i=0

1

N i
− r ·

K−2∑
i=0

K − 1− i
N i

, (5.13)
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and that for very high caching ratio r (in the context of this work), the optimal

normalized download cost of a cache-aided PIR scheme is

D∗(r) = (1− r). (5.14)

With these tools in hand, in the remainder of this chapter, we describe our achiev-

able schemes for very low and very high caching ratios for cache-aided PIR with

arbitrary message length, and show that they achieve the download costs in Theo-

rem 2.

5.3 Very Low Caching Ratio: Proof of (3.4)

What follows is a cache-aided achievable scheme for retrieving an arbitrary L bits,

for very low caching ratios (0 < r ≤ r1 = 1
1+N+N2+···+NK−1 ). We first use an optimal

cache-aid PIR scheme with message size Lr(1). Within the desired L bits (including

the cached bits), we view each Lr(1) bits as a group, and proceed until the number

of desired bits remaining is strictly less than Lr(1). To this end, we have

L = G0Lr(1) + L0, (5.15)

where G0 =
⌊

L
Lr(1)

⌋
and 0 ≤ L0 ≤ Lr(1)−1. If L0 = 0, then the retrieval is completed.

If not, then for the L0 bits that remain, we use an optimal asymmetric PIR scheme

with message size NK−1. Within the remaining L0 desired bits, we view each NK−1

bits as a group, and proceed until the number of desired bits remaining is strictly less

than NK−1. To this end, we have

L0 = G1N
K−1 + L1, (5.16)

where G1 =
⌊

L0

Nk−1

⌋
and 0 ≤ L1 ≤ NK−1 − 1. If L1 = 0, then the retrieval is

completed. If not, then for the L1 bits that remain, we use the scheme in [35] with N
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databases and message size N−1. Within the remaining L1 bits, We view each N−1

bits as a group, and proceed until the number of desired bits remaining is strictly less

than N − 1. To this end, we have

L1 = G2(N − 1) + L2, (5.17)

where G2 =
⌊

L1

N−1

⌋
and 0 ≤ L2 ≤ N − 2. If L2 = 0, then the retrieval is completed.

If L2 bits still remain, we use the scheme in [35] with L2 + 1 databases and message

size L2. Therefore, the message size and the achievable download cost are

L = G0Lr(1) +G1N
K−1 +G2(N − 1) + L2, (5.18)

D =


G0Lr(1)D∗(r1) +G1

NK−1

C
+G2N, if L2 = 0,

G0Lr(1)D∗(r1) +G1
NK−1

C
+G2N + L2 + 1, otherwise.

(5.19)

We next show that the achievable download cost in (5.19) satisfies D ≤ dD∗(r) ·Le.

To this end, we have the following lemma:

Lemma 4 For two very low caching ratios ra and rb with 0 ≤ ra ≤ rb ≤ r1, we have

D∗(ra)−D∗(rb) = (rb − ra) ·Dc, (5.20)

where Dc =
∑K−1

i=0
K−i
N i .

Proof: We begin from the left hand side of (5.20) and use (5.13) to write

D∗(ra)−D∗(rb) =

(
(1− ra) ·

K−1∑
i=0

1

N i
− ra ·

K−2∑
i=0

K − 1− i
N i

)

−

(
(1− rb) ·

K−1∑
i=0

1

N i
− rb ·

K−2∑
i=0

K − 1− i
N i

)
(5.21)

= ((1− ra)− (1− rb)) ·
K−1∑
i=0

1

N i
− (ra − rb) ·

K−2∑
i=0

K − 1− i
N i

(5.22)
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= (rb − ra) ·
K−1∑
i=0

1

N i
+ (rb − ra) ·

K−2∑
i=0

K − 1− i
N i

(5.23)

= (rb − ra) ·

(
K−1∑
i=0

1

N i
+

K−2∑
i=0

K − 1− i
N i

)
(5.24)

= (rb − ra) ·

(
K−1∑
i=0

1

N i
+

K−1∑
i=0

K − 1− i
N i

)
(5.25)

= (rb − ra) ·
K−1∑
i=0

1 + (K − 1− i)
N i

. (5.26)

= (rb − ra) ·
K−1∑
i=0

K − i
N i

. (5.27)

Defining Dc =
∑K−1

i=0
K−i
N i concludes the proof. �

Now towards proving D ≤ dD∗(r) · Le, it suffices to show that D < D∗(r) · L + 1

for two cases. For the first case, let L2 = 0. We wish to show that

G0Lr(1)D∗(r1) +G1
NK−1

C
+G2N < D∗(r) ·

(
G0Lr(1) +G1N

K−1 +G2(N − 1)
)

+ 1.

(5.28)

First, we group the terms in (5.28); we need to show that

G1N
K−1 ·

(
1

C
−D∗(r)

)
−G0Lr(1) · (D∗(r)−D∗(r1))−G2(N − 1)D∗(r)

< 1−G2N. (5.29)

Focusing on the left hand side of (5.29), we use Lemma 4 to simplify the expression.

In doing this, note that D∗(0) = 1
C
.

G1N
K−1 ·

(
1

C
−D∗(r)

)
−G0Lr(1) · (D∗(r)−D∗(r1))−G2(N − 1)D∗(r)

= G1N
K−1Dcr −G0Lr(1)Dc(r1 − r)−G2(N − 1)

(
1

C
−Dcr

)
, (5.30)

= Dc ·
(
G1N

K−1r −G0Lr(1)(r1 − r) +G2(N − 1)r
)
−G2

N − 1

C
, (5.31)
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= Dc ·
(
r
(
G0Lr(1) +G1N

K−1 +G2(N − 1)
)
−G0Lr(1)r1

)
−G2

N − 1

C
, (5.32)

= Dc · (Lr −G0Lr(1)r1)−G2
N − 1

C
, (5.33)

= Dc · (Lr −G0)−G2
N − 1

C
. (5.34)

Note that Lr is the number of cached bits, and that G0 is the number of times a

cache-aided PIR scheme is used. For very low caching ratios, these quantities are

equal, and so we have

Dc · (Lr −G0)−G2
N − 1

C
= −G2

N − 1

C
. (5.35)

Now, substituting (5.35) back into (5.29), we now need to show

0 < 1−G2N +G2
N − 1

C
. (5.36)

If N = 1, then G2 = 0, and so (5.36) clearly follows. For the case when N ≥ 2,

plugging in C = NK−1(N−1)
NK−1

to the right hand side of (5.36) gives

1−G2N +G2
(N − 1)(NK − 1)

(N − 1)NK−1
= 1−G2N +G2

(NK − 1)

NK−1
, (5.37)

= 1−G2N +G2N −G2
1

NK−1
, (5.38)

= 1−G2
1

NK−1
. (5.39)

Now, note that the maximum value of G2 is
⌊
NK−1−1
N−1

⌋
. It follows that

G2 ≤
⌊
NK−1 − 1

N − 1

⌋
=

⌈
NK−1

N − 1

⌉
− 1 <

NK−1

N − 1
(5.40)
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Substituting (5.40) into (5.39), we have

1−G2
1

NK−1
> 1− NK−1

N − 1
· 1

NK−1
, (5.41)

= 1− 1

N − 1
. (5.42)

Finally, using (5.42) as a lower bound for the right hand side of (5.36), we have

0 ≤ 1− 1

N − 1
< 1−G2N +G2

N − 1

C
, (5.43)

and so (5.36) clearly holds for N ≥ 2.

For the second case, let L2 ≥ 1. We wish to show that

G0Lr(1)D∗(r1) +G1
NK−1

C
+G2N + L2 + 1

< D∗(r) ·
(
G0Lr(1) +G1N

K−1 +G2(N − 1) + L2

)
+ 1. (5.44)

First, we group the terms in (5.44); we need to show that

G1N
K−1 ·

(
1

C
−D∗(r)

)
−G0Lr(1) · (D∗(r)−D∗(r1))−G2(N − 1)D∗(r)− L2D

∗(r)

< 1−G2N − L2 − 1. (5.45)

Focusing on the left hand side of (5.45), we use Lemma 4 to simplify the expression

as follows:

G1N
K−1 ·

(
1

C
−D∗(r)

)
−G0Lr(1) · (D∗(r)−D∗(r1))−G2(N − 1)D∗(r)− L2D

∗(r)

= G1N
K−1Dcr −G0Lr(1)Dc(r1 − r)−G2(N − 1)

(
1

C
−Dcr

)
− L2

(
1

C
−Dcr

)
(5.46)
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= Dc ·
(
G1N

K−1r −G0Lr(1)(r1 − r) +G2(N − 1)r + L2r
)
−G2

N − 1

C
− L2

C

(5.47)

= Dc ·
(
r
(
G0Lr(1) +G1N

K−1 +G2(N − 1) + L2

)
−G0Lr(1)r1

)
−G2

N − 1

C
− L2

C

(5.48)

= Dc · (Lr −G0Lr(1)r1)−G2
N − 1

C
− L2

C
(5.49)

= Dc · (Lr −G0)−G2
N − 1

C
− L2

C
. (5.50)

Note that Lr is the number of cached bits, and that G0 is the number of times a

cache-aided PIR scheme is used. For very low caching ratios, these quantities are

equal, and so we have

Dc · (Lr −G0)−G2
N − 1

C
− L2

C
= −G2

N − 1

C
− L2

C
. (5.51)

Now, substituting (5.51) back into (5.45), we have

0 < 1−G2N +G2
N − 1

C
+ L2

(
1

C
− 1

)
− 1. (5.52)

Since L2 ≥ 1, we have N ≥ 2. Plugging in C = NK−1(N−1)
NK−1

into the right hand side of

(5.52) gives

1−G2N +G2
N − 1

C
+ L2

(
1

C
− 1

)
− 1

= −G2N +G2
NK − 1

NK−1
+ L2

(
NK − 1

NK−1(N − 1)
− 1

)
(5.53)

= −G2
1

NK−1
+ L2

(
NK − 1−NK−1(N − 1)

NK−1(N − 1)

)
(5.54)

= −G2
1

NK−1
+ L2

(
NK−1 − 1

NK−1(N − 1)

)
. (5.55)

We wish to find a lower bound for the right hand side of (5.52). To this end, we want
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to maximize G2 and minimize L2. We know that L2 ≥ 1, but this also means that

G2(N − 1) < L1 ≤ NK − 1 from (5.17). Plugging these values into (5.55) gives

−G2
1

NK−1
+ L2

(
NK−1 − 1

NK−1(N − 1)

)
≥ − G2(N − 1)

NK−1(N − 1)
+

NK−1 − 1

NK−1(N − 1)
(5.56)

> − NK−1 − 1

NK−1(N − 1)
+

NK−1 − 1

NK−1(N − 1)
(5.57)

= 0. (5.58)

Thus, (5.52) clearly holds. This completes the proof that D ≤ dD∗(r) · Le for very

low caching ratios.

Since the above PIR scheme is constructed as a concatenation of several PIR

schemes that are both correct and private, by [32, Theorem 4], the above scheme

is both correct and private. Furthermore, since the above PIR scheme retrieves L

bits (including cached bits) at a download cost of D ≤ dD∗(r) · Le, this scheme

can used to retrieve
⌈
L̄
⌉
bits (including some Lr cached bits) at a download cost of

D̄ ≤
⌈
D∗(r̃) ·

⌈
L̄
⌉⌉
. Expanding this statement gives

D̄ ≤
⌈
D∗(r̃) ·

⌈
L̄
⌉⌉

(5.59)

=

⌈⌈
L̄
⌉

(1− r̃) ·
K−1∑
i=0

1

N i
−
⌈
L̄
⌉
r̃ ·

K−2∑
i=0

K − 1− i
N i

⌉
(5.60)

=

⌈⌈
L̄
⌉

(1− Lr⌈
L̄
⌉) ·

K−1∑
i=0

1

N i
−
⌈
L̄
⌉ Lr⌈
L̄
⌉ · K−2∑

i=0

K − 1− i
N i

⌉
(5.61)

=

⌈(⌈
L̄
⌉
− Lr

)
·
K−1∑
i=0

1

N i
− Lr ·

K−2∑
i=0

K − 1− i
N i

⌉
, (5.62)

which is precisely (3.4).

5.4 Very High Caching Ratio: Proof of (3.5)

What follows is a cache-aided achievable scheme for retrieving an arbitrary L bits,

for very high caching ratios (rK−1 = 1
1+N
≤ r ≤ 1). In this scheme, we only use an
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optimal cache-aided PIR scheme with message size Lr(K−1) = 1 +N . We note that

in this scheme, for each bit we have cached, we can download 1 bit from each of the

N databases to get a total of N unknown bits at a download cost of N bits.

Within the desired L bits (including cached bits), we view each Lr(K−1) bits as a

group, and proceed until the number of desired and unknown L− Lr bits remaining

is strictly less than N . To this end, we have

L = G0Lr(K − 1) + L0, (5.63)

where G0 =
⌊
L−Lr
N

⌋
, and L0 = L − G0Lr(K − 1). We define C0 = Lr − G0 as the

number of unused cached bits thus far in our scheme. If we have L0 = C0, then we have

all of our desired information, and we are done. Otherwise, we still have L0−C0 < N

bits left to download. Since the caching ratio r is very high, we have C0 ≥ 1, and so

we can use this bit, as noted above, to download 1 bit from L0 − C0 < N databases

each to get the remaining L0 − C0 unknown bits at a download cost of L0 − C0 bits.

Therefore, the message size and the achievable download cost are

L = G0Lr(K − 1) + L0, (5.64)

D = G0Lr(K − 1)D∗(rK−1) + L0 − C0. (5.65)

We next show that the achievable download cost in (5.65) satisfies D ≤ dD∗(r) ·Le.

To this end, it it suffices to show that D < D∗(r) · L+ 1, or more specifically, that

G0Lr(K − 1)D∗(rK−1) + L0 − C0 < D∗(r) · (G0Lr(K − 1) + L0) + 1. (5.66)

First, we rearrange the terms in (5.66) as

G0Lr(K − 1)D∗(rK−1) + L0 − C0 −D∗(r) · (G0Lr(K − 1) + L0) < 1, (5.67)
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and then we reduce the left hand side of (5.67) as follows

G0Lr(K − 1)D∗(rK−1) + L0 − C0 −D∗(r) · (G0Lr(K − 1) + L0)

= G0(1 +N)(1− 1

1 +N
) + L0 − C0 − (1− r) · (G0(1 +N) + L0) (5.68)

= G0N + L0 − C0 − (1− r) · (G0 +G0N + L0) (5.69)

= G0N + L0 − C0 − (G0 +G0N + L0) + r (G0 +G0N + L0) (5.70)

= −C0 −G0 + r (G0 +G0N + L0) (5.71)

= G0 − Lr −G0 + r (G0 +G0N + L0) (5.72)

= −Lr + r (G0(1 +N) + L0) (5.73)

= 0. (5.74)

Thus, (5.66) holds, and so this completes the proof that D ≤ dD∗(r) · Le for very

high caching ratios.

Again, since the above PIR scheme is constructed as a concatenation of several

PIR schemes that are both correct and private, by [32, Theorem 4], the above scheme

is both correct and private. Furthermore, since the above PIR scheme retrieves L

bits (including cached bits) at a download cost of D ≤ dD∗(r) · Le, this scheme

can used to retrieve
⌈
L̄
⌉
bits (including some Lr cached bits) at a download cost of

D̄ ≤
⌈
D∗(r̃) ·

⌈
L̄
⌉⌉
. Expanding this statement gives

D̄ ≤
⌈
D∗(r̃) ·

⌈
L̄
⌉⌉

(5.75)

=
⌈
(1− r̃) ·

⌈
L̄
⌉⌉

(5.76)

=

⌈
(1− Lr⌈

L̄
⌉) ·

⌈
L̄
⌉⌉

(5.77)

=
⌈⌈
L̄
⌉
− Lr

⌉
=
⌈
L̄
⌉
− Lr, (5.78)

which is precisely (3.5).



CHAPTER 6: DISCUSSION

As seen in Corollary 1, for very low and very high effective caching ratios, we obtain

full characterizations of the optimal download cost D̄L for fixed L,N,K, and f . What

remains is to do the same for an effective caching ratio r̃ with 1
1+N+N2+···+NK−1 = r1 ≤

r̃ ≤ rK−1 = 1
1+N

. We call such a caching ratio mid-range.

Our approach for our achievability results when r̃ 6= 0 has been to describe an

arbitrary message length PIR scheme for a setting with unknown prefetching, and

then show that the download cost D of such a scheme satisfies D ≤
⌈
D∗(r̃) ·

⌈
L̄
⌉⌉
.

This approach mirrors what was done in [32] for the classical PIR setting.

From [27], for rs < r < rs+1 and α ∈ [0, 1] with r = αrs + (1− α)rr+1 we define

D̄(r) = αDr(s) + (1− α)Dr(s+ 1). (6.1)

We know that D̄(r) = D∗(r) for very low and very high caching ratio r, and this is

used in our approach for Theorem 2. For when D̄(r) 6= D∗(r), as is the case for most

mid-range caching ratios, we can still attempt to describe a scheme, and show that

the download cost D ≤
⌈
D̄(r̃) ·

⌈
L̄
⌉⌉

to obtain some useful result.

Our goal in this chapter is to present some motivating examples that show what

these result may look like. Future investigations of this problem setting include

formulating such results in concrete theorems.

6.1 Example Set 1: N = 2, K = 3, and r1 ≤ r ≤ r2 = rK−1

Recall that for the N = 2, K = 3 setting, we have r1 = 1
7
and rK−1 = 1

3
. With

this in mind, we start with a standard cache-aided PIR scheme from [27] with N = 2,

K = 3, and r = r1 = 1
7
:
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Database 1 Database 2

a2 + b1 a4 + b1

a3 + c1 a5 + c1

b2 + c2 b3 + c3

a6 + b3 + c3 a7 + b2 + c2

Z = {a1, b1, c1}

This scheme is for a very low caching ratio, and we know that it is optimal in

obtaining 7 bits of useful information (including cached bits) at a download cost of

8. By truncating the above scheme, the same query structure can be used to obtain

L1
6 = 6 bits of useful information at a download cost D1

6 = 7:

Database 1 Database 2

a2 + b1 a4 + b1

a3 + c1 a5 + c1

b2 + c2 b3 + c3

a6 + b3 + c3

Z = {a1, b1, c1}

Note that the setting of this new scheme has a caching ratio of r = 1
6
. Also, we

have
⌈
D̄(1

6
) · L1

6

⌉
= 7, and so D1

6 ≤
⌈
D̄(1

6
) · L1

6

⌉
holds.

For another example, consider the same setting, but with caching ratio r = 1
5
:

Database 1 Database 2

a2 + b1 a4 + b1 + c1

a3 + c1 a5 + b2 + c2

b2 + c2

Z = {a1, b1, c1}

Here, we have L1
5 = 5, and D1

5 = 5 =
⌈
D̄(1

5
) · L1

5

⌉
, and so D1

5 ≤
⌈
D̄(1

5
) · L1

5

⌉
clearly

holds. Like before, this scheme can be truncated by removing the a5 + b2 + c2 query

to obtain L1
4 = 4 bits of useful information at a download cost of D1

4 = 4. It can be

shown that
⌈
D̄(1

4
) · L1

4

⌉
= 4, and so D1

4 ≤
⌈
D̄(1

4
) · L1

4

⌉
holds as well.

As a final example for this section, consider this same setting, but with a caching

ratio r = 2
8
. While this may seem redundant given the previous example, we state r



35

in this way to highlight how in this case, there are 2 bits from each message cached.

This is shown in the following scheme:

Database 1 Database 2

a3 + b1 + c1 a4 + b1 + c1

a5 + b2 a7 + b2 + c2

a6 + c2 a8 + b3 + c3

b3 + c3

Z = {a1, a2, b1, b2, c1, c2}

Here, we obtain L2
8 = 8 bits of useful information at a download cost of D2

8 = 7.

We have
⌈
D̄(2

8
) · L2

8

⌉
= 7, and so D2

8 ≤
⌈
D̄(2

8
) · L2

8

⌉
holds. Again, this scheme can

be truncated by removing the a8 + b3 + c3 query to obtain L2
7 = 7 bits of useful

information at a download cost D2
7 = 6. It can be shown that

⌈
D̄(2

7
) · L2

7

⌉
= 6, and

so D2
7 ≤

⌈
D̄(2

7
) · L2

7

⌉
holds as well.

What we have shown here with these examples is that for the N = 2, K = 3

setting, there appears to be a pattern where for any i, j ∈ N with r1 ≤ i
j
≤ rK−1,

it can shown that Di
j ≤

⌈
D̄( i

j
) · Lij

⌉
. Hence, as a future work, these examples may

lead us to show that Di
j ≤

⌈
D̄( i

j
) · Lij

⌉
holds for mid-range caching ratio r = i

j
when

K = 3 and N ≥ 1.

In the next section, we show how this result may not hold if K 6= 3.

6.2 Example Set 2: N = 3, K = 4, and rK−2 ≤ r ≤ rK−1

For the N = 3, K = 4 setting, we have r1 = 1
40

and rK−1 = 1
4
, and so a caching

ratio is mid-range in this setting if 1
40
≤ r ≤ 1

4
. However, for our purposes, we will

focus on the subset of mid-range caching ratios r satisfying rK−2 = 2
17
≤ r ≤ 1

4
.

With this in mind, for our first example, we consider a setting with a caching ratio

r = 1
6
. We wish to obtain L1

6 = 6 bits of useful information (1 of which is cached),

and to that end, we download 3 of those bits using an optimal cache-aid PIR scheme

from [27]:

Now, in order to download the 2 remaining bits of useful information, we use the
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Database 1 Database 2 Database 3
a2 + b1 + c1 + d1 a3 + b1 + c1 + d1 a4 + b1 + c1 + d1

Z = {a1, b1, c1, d1}

scheme in [35] to privately download these N − 1 = 2 bits at a download cost of

N = 3. The result is a total download cost of D1
6 = 6 for this scheme. Also, we

have
⌈
D̄(1

6
) · L1

6

⌉
= 6, and so D1

6 ≤
⌈
D̄(1

6
) · L1

6

⌉
holds. Note that if we instead use

the scheme in [35] to privately download 1 bit at a download cost of 2, then we have

a scheme for a caching ratio of r = 1
5
obtaining L1

5 = 5 bits at a download cost of

D1
5 = 5. It can be shown that

⌈
D̄(1

5
) · L1

5

⌉
= 5, and so D1

5 ≤
⌈
D̄(1

5
) · L1

5

⌉
holds.

Next, consider the same setting, but with a caching ratio r = 1
8
. We wish to obtain

L1
8 = 8 useful bits of information (again, 1 of which is cached), and to this end, we

can use the scheme described above to get 5 bits at a download cost of 6. Just as

before, there are 2 remaining bits of useful information to download, and we do so

using the scheme in [35] to obtain N − 1 = 2 bits at a download cost of N = 3.

The result is obtaining L1
8 = 8 bits of useful information at a download cost D1

8 = 9.

Just as with the previous examples, it can be shown that
⌈
D̄(1

8
) · L1

8

⌉
= 9, and so

D1
8 ≤

⌈
D̄(1

8
) · L1

8

⌉
holds.

If this pattern continued, we would be able to truncate the above query structure to

get a new scheme for a setting with caching ratio r = 1
7
. In fact, doing so would give

a scheme obtaining L1
7 = 7 bits of useful information at a download cost of D1

7 = 8.

However,
⌈
D̄(1

7
) · L1

7

⌉
= 7, and so D1

7 ≤
⌈
D̄(1

7
) · L1

7

⌉
does not hold, breaking the

pattern we have witnessed up to this point. Hence, as a future work, these examples

may lead us to show that Di
j ≤

⌈
D̄( i

j
) · Lij

⌉
+ 1 for all i, j ∈ N with r1 ≤ i

j
≤ rK−1

for K ≥ 2 and N ≥ 1.

The question remains on why this is the case. That is, why this pattern breaks,

and why it is difficult to find an alternative query structure. To help answer these

questions, let us look at 2 final examples for the N = 3, K = 4 case, one with a
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caching ratio of r = 2
14

and the other with a caching ratio of r = 3
21
. Again, we state

r this way to highlight how 2 and 3 bits are cached from each message in each scheme,

respectively:

r = 2
14

scheme:

Database 1 Database 2 Database 3
a3 + b1 + c1 a6 + b1 + c1 a9 + b1 + c1 + d1

a4 + b2 + d1 a7 + b2 + d1 a10 + b2 + c2 + d2

a5 + c2 + d2 a8 + c2 + d2 a13 + b3 + c3 + d3

b3 + c3 + d3 b4 + c4 + d4 a14 + b4 + c4 + d4

a11 + b4 + c4 + d4 a12 + b3 + c3 + d3

Z = {a1, a2, b1, b2, c1, c2, d1, d2}

r = 3
21

scheme:

Database 1 Database 2 Database 3
a4 + b1 + c1 a7 + b1 + c1 a10 + b1 + c1

a5 + b2 + d1 a8 + b2 + d1 a11 + b2 + d1

a6 + c2 + d2 a9 + c2 + d2 a12 + b2 + d2

b4 + c4 + d4 b5 + c5 + d5 b6 + c6 + d6

a13 + b5 + c5 + d5 a15 + b4 + c4 + d4 a17 + b4 + c4 + d4

a14 + b6 + c6 + d6 a16 + b6 + c6 + d6 a18 + b5 + c5 + d5

a19 + b3 + c3 + d3 a20 + b3 + c3 + d3 a21 + b3 + c3 + d3

Z = {a1, a2, a3, b1, b2, b3, c1, c2, c3, d1, d2, d3}

Both of these query structures satisfyD2
14 ≤

⌈
D̄( 2

14
) · L2

14

⌉
andD3

21 ≤
⌈
D̄( 3

21
) · L3

21

⌉
,

respectively, but have an equivalent caching ratio to the scheme with r = 1
7
where

D1
7 ≤

⌈
D̄(1

7
) · L1

7

⌉
did not hold. This suggests that the cause of our issues regarding

this r = 1
7
scheme has not to do with with the value of the r, but with the number

number of cached bits Lr. More specifically, there may be some additional limitation

on how low of a download cost can be achieved with a cache-aided arbitrary mes-

sage length PIR scheme when Lr is relatively low (or in this case, when Lr = 1).

Investigating such limitations is left to future works.



CHAPTER 7: CONCLUSIONS

In this thesis, we introduced the cache-aided private updating problem with un-

known prefetching, in which a user’s outdated message is to be privately updated by

utilizing a private cache and querying a set of replicated and non-colluding databases

that have the up-to-date version. Under a Hamming distortion measure between the

outdated and the up-to-date messages, a syndrome decoding technique is leveraged to

compress the number of bits that needs to be downloaded in order to correctly update

the message. In our preliminary work without caching, this was combined with PIR

schemes with message length constraints to guarantee privacy [33]. However, in a

cache-aided setting, there did not exist PIR schemes with message length constraints.

In this thesis, we remedy this fact by developing novel arbitrary message length cache-

aided PIR schemes for very low caching ratios and very high caching ratios. These

schemes are then combined with syndrome decoding techniques to guarantee privacy.

For very low and very high effective caching ratios, the proposed cache-aided private

updating with unknown prefetching scheme has been shown to be optimal when the

system parameters enable the construction of a perfect code according to which the

syndrome decoding technique is worked out. In other cases, the achievable download

cost has been shown to be within at most 2 bits from a derived converse bound.

In the cache-aided private updating problem with unknown prefetching, the most

pertinent item that remains to be resolved is the characterization of the optimal

download cost D̄L for mid-range caching ratios. This is dependent entirely on finding

and formalizing an arbitrary message length cache-aided PIR scheme for such caching

ratios, the progress of which has been discussed thoroughly in Chapter 6. Such

schemes would ideally resemble the results from [27], but with an arbitrary message
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length constraint. Another item that could be resolved in this problem is the inflexible

nature of the cache in our achievability. Specifically, the fact that for each i ∈ [K],

we fix Ri = HT during the prefetching phase. Ideally, we would be caching individual

bits from each message in the databases, and if we must cache linear combinations,

we would impose less control over the realization of each Ri. Resolving each of these

items of interest would help to strengthen our current solutions to the cache-aided

private updating problem with unknown prefetching.
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APPENDIX A: Evaluation of H(W̄θ)

In (2.8), we state that

H(W̄θ) = log2

(
f∑
i=0

(
L

i

))
. (A.1)

For completeness, we briefly show that this is indeed the case here.

Fix some f ≤ L, then let M =
∑f

i=0

(
L
i

)
, which is to say that M is the number of

possible realizations of W̄θ. Since, given our problem formulation, every realization

of W̄θ is equally likely, we have

H(W̄θ) = −
M∑
i=1

1

M
· log2

(
1

M

)
(A.2)

= −M · 1

M
· log2

(
1

M

)
(A.3)

= log2 (M) . (A.4)

Since M =
∑f

i=0

(
L
i

)
, this shows that (A.1) holds.
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APPENDIX B: Bound on Effective Value of f

In this appendix, for completeness, we show that

f <
L

2
⇐⇒

⌈
L̄
⌉
< L, (B.1)

and hence if the maximum number of bit flips is more than half the message length

it is optimal to ignore the outdated message (as per Corollary 1’s result).

First, suppose that f =
⌊
L−1

2

⌋
< L

2
. If L is odd, then f = L−1

2
, and so it follows

that

L∑
i=0

(
L

i

)
= 2 ·

L−1
2∑
i=0

(
L

i

)
= 2L ⇐⇒

f∑
i=0

(
L

i

)
= 2L−1. (B.2)

This means that for odd L, we have

L̄ = log2

(
f∑
i=0

(
L

i

))
= L− 1, (B.3)

and so L−1
2

is the maximum value of f satisfying
⌈
L̄
⌉
< L when L is odd.

Next, suppose that L is even. It follows that

L∑
i=0

(
L

i

)
= 2 ·

bL−1
2 c∑
i=0

(
L

i

)
+

(
L
L
2

)
= 2L ⇐⇒

f∑
i=0

(
L

i

)
< 2L−1. (B.4)

This means that for even L, we have

L̄ = log2

(
f∑
i=0

(
L

i

))
< L− 1. (B.5)
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Also, note that for even L

L
2∑
i=0

(
L

i

)
=

bL−1
2 c∑
i=0

(
L

i

)
+

(
L
L
2

)
> 2L−1. (B.6)

This means that if f ≥ L
2
, then

⌈
L̄
⌉

= L, and so
⌊
L−1

2

⌋
is the maximizing value of f

satisfying
⌈
L̄
⌉
< L when L is even.

Therefore, for any message length L, we have

f <
L

2
⇐⇒

⌈
L̄
⌉
< L. (B.7)

This completes the proof.


