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ABSTRACT

BEHNAM NIKPARVAR. SPATIOTEMPORAL MODELING OF DISEASE
SPREAD THROUGH MICROMOBILITY SYSTEMS. (Under the direction of DR.

JEAN-CLAUDE THILL)

New modes of public transportation such as micromobility are rapidly growing in

urban areas. Bike sharing and e-scooter sharing, for example, have been advanced

to solve the first/last mile problem, providing quick access to bus stops and train

stations for their users. This efficiency, however, may come at the cost of transmit-

ting disease since the surfaces on the bicycles or scooters are subject to germs and

harmful pathogens when they are left in contaminated places or used by infectious

individuals. This dissertation aims to understand various facets of the role of mi-

cromobility transportation in the spread of viral disease within dense urban areas.

I propose a novel micro-level and spatially-explicit agent-based modeling framework

to model the spread of viral infectious diseases through micromobility systems and a

baseline population. I use this simulation framework to study the role of micromobil-

ity in the spread of viral disease in urban areas by breaking down the problem into

three directions. First, I want to study how surfaces on the new micromobility trans-

portation systems contribute to the emergence and dynamics of viral epidemics in

urban areas. Second, I seek to find out how geographic space and time are organized

concerning the risk of exposure to a viral disease out of using micromobility vehicles.

Third, to inform decision-making in response to the spread of viral disease through

micromobility systems, I examine what intervention methods and strategies, includ-

ing random or systematic intervention, are more effective in controlling the spread

of infectious diseases through micromobility vehicles. In order to test the proposed

model, a case study is conducted in Cook County, Illinois, and uses the Chicago City

public bikesharing system. Results show that the emergence of viral disease through

micromobility transportation in Cook County is possible, but the overall impact of
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the system on the disease dynamics in a worst-case scenario, especially with the cur-

rent size of the system, is rather small. The proposed model, however, provides a

better measure to evaluate the role of transportation in spread of disease compared

to existing measures. The spatial pattern for the risk of exposure is higher in the

central business district and in northern regions, where most of the shared bike trans-

portation occurs. Moreover, the start day of exposure impacts the dynamics of the

spread of disease through both micromobility and the baseline population. Finally,

intervention success in a full-blown epidemic highly depends on human behavior,

availability of disinfection equipment, and strategies to implement control methods.

The proposed simulation framework can be used to assess the efficacy of interventions

and make trade-offs between these factors when dealing with epidemics of the sort

analyzed in this research.
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CHAPTER 1: INTRODUCTION

New modes of transportation such as on-demand mobility services that usually in-

volve shared use of vehicles instead of personal vehicles are becoming more pervasive

due to creating more comfort and efficiency in the mobility of the population within

urban areas. However, this efficiency may come at the cost of transmitting harmful

pathogens and disease as people share space and surfaces in vehicles and infrastruc-

ture. For example, micromobility systems, such as bike and e-scooter sharing, have

been advanced to solve the first/last mile problem, providing quick access to bus stops

and train stations for its users. However, the surfaces on public bicycles or scooters

are still subject to germs and harmful pathogens when they are left in contaminated

places or used by infected individuals. In order to explore the role of these systems in

the spread of infectious disease, a new way of studying the impact of transportation’s

sharing economy on the transmission of contagious diseases is critically needed.

To control infectious disease, we need to understand how the responsible pathogens

and microorganisms spread throughout the environment [1] and how they may com-

promise the safety of transportation modes. The study of the spatiotemporal in-

fectious disease patterns is usually limited to close contact and direct transmission

between the hosts or transfer through common vehicles such as water, food, and air.

Less attention has been placed on the role of inanimate surfaces –scientifically called

fomites–, mainly because it is challenging to keep track of agents passing through

surfaces. Also, it used to be assumed that the fomites are not a significant transmis-

sion route, but recent studies show that the role of these surfaces is not negligible in

the spread of many types of infectious disease [2, 3]. While frequently touched sur-

faces are everywhere in transportation systems, they are the main points of contact
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between susceptible and infected individuals in micromobility systems. The process

of transmission, in this case, highly depends on the disease agent and individual be-

havior. Thus, to be effective, a modeling framework should account for these types

of heterogeneities.

In addition, little attention has been paid to the spatial aspects of epidemics of this

type in large and dynamic human contact networks, which is prevalent in urban areas

[4]. While recent contact network models in mathematical epidemiology account for

the structure of contacts among individuals, they hardly capture the spatial aspects of

infectious disease transmission since the network perspective, in most cases, concerns

the epidemic outbreak in a single population [5]. Thus, it is central to study these

gaps by accounting for both spatial and temporal aspects [6].

Hence, this dissertation proposes to address the current shortcomings mentioned

above with a new and original micro-level agent-based modeling framework for disease

spread through micromobility in a dense urban environment. It involves an empirical

simulation study of the Chicago public bikesharing system on how the velocity and

spatial diffusion of infectious diseases are related to shared mobility vehicle surfaces.

1.1 Statement of Research

This study aims to model the spatiotemporal spread of a viral disease through

surfaces on public micromobility vehicles within urban areas. In order to attain this

goal, we need to look at the intersection between transportation and disease systems.

The Spanish flu of 1918-19 is the most widespread pandemic in modern history. It

is estimated to have infected 30% of the world population and to have killed 50 to

100 million. The infection and morbidity rate of descendant pandemics, such as flu

1968, Middle East respiratory syndrome (MERS), and Severe Acute Respiratory Syn-

drome (SARS-CoV), have decreased thanks to progress in the prevention, diagnosis,

surveillance, control, and treatment of infectious diseases1. Despite all this progress,
1Centers for Disease Control and Prevention (CDC):https://www.cdc.gov/flu/pandemic-
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we are still vulnerable to the emergence and resurgence of infectious disease [7]. The

emergence of the new Coronavirus (SARS-CoV2) in 2019-2021, which infected 251

million people and killed more than five million in almost all countries2, is the most

recent evidence that infectious diseases are still a serious threat for the foreseeable

future.

The emergence, resurgence, and diffusion of infectious disease is a molecular or

microbiological phenomenon and a matter of social, ecological, and geographical

changes. This means that we need to determine disease causation and spread in

social, geographical, and ecological contexts [8]. Stress factors of the modern era,

such as urbanization, mobility, and transportation technology, as well as land-use

and climate change, may contribute to the emergence and rapid diffusion of these

communicable diseases [9].

Urban areas are at the forefront of disease outbreaks and spread initially because

of the high population density. In the past hundred years, urbanization has resulted

in the concentration of population in both developed and less developed regions in

the world, changing from 30% back in 1950 to 56% in 2020, and projected to be

68% by 2050 [10]. Within urban areas, the population is heterogeneous in terms of

distribution over space, contact network, and socioeconomic attributes, all of which

can significantly affect the dynamics of epidemics.

The spatial distribution of population is a critical determinant from an epidemio-

logical point of view. A single disease agent may cause different diffusion dynamics

in two different cities only because the population contact network is different in

those environments. This is the intuition behind network-based epidemiology, one

of the most widely popular approaches in the past two decades [11]. However, very

limited studies exist on the heterogeneity in behavior (e.g. mobility) using network

resources/reconstruction-1918-virus.html
2COVID-19 Map - Johns Hopkins Coronavirus Resource Center:

https://coronavirus.jhu.edu/map.html
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epidemiology [12].

Transportation systems can contribute to epidemics initially by introducing it to

new regions. That means a larger population may be infected at the end of the epi-

demic [13]. The spread of many infectious diseases follows the pattern of international

passenger flows, such as flights between gateway cities around the world [14]. It can be

explained by the fact that the incubation period of many infectious diseases is longer

than even long-distance travel owing to the increasing efficiency of transportation

systems and to the resulting time-space convergence [15]. Thus, before symptoms of

an infected person may be perceptible to health officials, the virus may already have

spread to populations in other geographic regions [16]. For instance, a recent study

of the spread of the early COVID-19 outbreak in 2019-2020 estimated that about

64% of exported cases from China to other countries were in the presymptomatic

incubation period upon arrival [14]. At the same time, very limited empirical work

exists that reveals the extent that transportation systems contribute to the spread of

disease [17].

Transportation systems also have the potential to accelerate the diffusion of in-

fectious diseases. For example, compared to the 1918 pandemic, the faster speed of

spread of the influenza pandemic that originated in mainland China in 1957 is par-

tially attributed to the availability of air and sea travel [18]. A systematic review

of the role of transportation in the propagation of influenza and coronaviruses shows

that global air transport plays an essential role in accelerating influenza. However,

the degree to which transportation systems can accelerate epidemics of this type is

not always easy to determine especially for ground-based transportation [17].

Public policies tend to lean toward efficient and accessible public transportation

systems and infrastructures within urban areas. In this regard, micromobility, a rel-

atively new transportation mode known for short-range trips, shares many of the

fundamental characteristics of public transportation goods and is becoming more
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pervasive in many cities worldwide. However, shared bicycle services are subject to

pathogens and can become a vector to spread disease in the population (figure 1.1).

The handlebars of public bikesharing systems, especially, are likely to be contam-

inated with disease-causing agents because they are in contact with the hands of

different people with different standards of hygiene. Simultaneously, while bicycling

is regaining popularity in many regions, including Europe, North America, and Asia,

in some countries like China, the number of bikes is more than the carrying capac-

ity of many cities, which raises serious concerns on safety and health. In order to

fill these gaps, this study aims to model the spatiotemporal dynamics of contagious

disease through micromobility systems within urban areas.

Figure 1.1: Micromobility and spread of viral disease in urban areas.

Intervention and control strategies related to micromobility and public transporta-

tion systems are also essential. When an epidemic occurs, partial or complete sus-

pension of public transportation services is one of the early actions that local officials

may take to stop or delay the spread of pathogens and diseases. However, other alter-

natives, such as disinfection and sterilizing environments in transportation systems,

may be more effective since the service provided by public transportation remains
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available3.

Several studies have evaluated the use of control and intervention methods in trans-

portation systems [19, 14]. For example, a recent study on the impact of individual

hand hygiene at airports reveals a potential pandemic can be inhibited by 24% to

69% by increasing the engagement of travelers in washing hands [20].

Thus, we aim to empirically model potential intervention strategies pertaining to

micromobility systems when infectious disease outbreaks happen. This can be infor-

mative both in terms of which methods to use and how to apply them. For example,

the disinfection of a portion of bicycles may reduce the intensity of the disease agents

on the surfaces and indeed decrease the possibility of transmission. Alternatively,

placing hand sanitizing stands at stations and encouraging individuals to use them

may reduce the possibility of spreading the pathogens.

1.2 Structure of The Dissertation

The dissertation is organized as follows. The next chapter reviews the literature

in four sections. First, it reviews the theoretical and empirical literature on the in-

tersection between transportation systems and epidemics. In the second section, it

reviews the micromobility transportation systems. Third, it reviews the literature

related to modes of transmission. Then, it reviews both the theoretical and em-

pirical bodies of literature on epidemic modeling. It starts with the most popular

and straightforward homogeneous mixing compartment models and continues with

more complex metapopulation, contact network, and agent-based models. Finally, it

reviews the intervention and control methods and strategies. Chapter 3 states the

research questions and contributions of this research. Then, in chapter 4, we present

a methodological framework and our proposed model’s building blocks. It is followed

by proposing a case study of a viral disease spread in Cook County in chapter 5.

Conclusions are drawn in Chapter 6.

3Transportation Research Board, 2018 https://www.trb.org/Main/Blurbs/180591.aspx



CHAPTER 2: LITERATURE REVIEW

This section reviews the literature from multiple disciplines that cross-pollinate

around transportation systems and the spread of infectious diseases in urban areas.

It starts with a background and literature review on transportation systems and

their relationship with epidemics, followed by the recent literature on micromobility

systems. The next section reviews the theoretical underpinnings of contagious disease

spread, including different agents, disease, and transmission modes. Then, we review

the methodological aspect of the subject, which mostly covers the modeling of the

dynamics of disease spread in space and time. Finally, we review the intervention and

control strategies that can be envisioned.

2.1 Transportation Systems and Epidemics

Throughout history, transportation has contributed to the spread of vector-borne

and non-vector borne infectious diseases locally, regionally, and globally. The inter-

action between infected and susceptible hosts and vectors usually creates a geograph-

ical pattern known as spatial diffusion of disease. The spatial diffusion of infectious

disease follows a contagious, hierarchical, or network process [21]. In human to hu-

man infectious disease, these patterns emerge following the mobility of people along

with transportation links. Contagious diffusion happens when the infection spreads

outward from a source of infection to other locations according to proximity. For

example, the spread of HIV in suburban areas is highly correlated with the number

of workers who commute to urban areas [9, 22]. Human to human infectious diseases

also diffuse hierarchically, starting from large cities and moving to medium and then

smaller cities. Lastly, network diffusion is the spread through transportation and so-
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cial networks. Most of the infectious diseases these days follow a hybrid pattern due

to the complexity of transportation systems and of human mobility [9].

The geographic extent and the speed of many pandemics are attributed to the

extent and speed to which humans could relocate by ground, water, and air trans-

portation. Multiple reemergences of the plague around Europe during the 14-17

centuries and its later outbreaks that mainly happened in port cities involved modes

of international transportation at the time [23]. The 1957 influenza pandemic orig-

inated in mainland China, spread around the world in only six months thanks to

the availability of both air and sea travel, compared to the 1918 influenza pandemic,

when passenger air travel was not yet available [18]. According to the World Health

Organization (WHO) COVID-19 situation report, three months after the emergence

of COVID-19, almost all countries worldwide reported infection cases.

The transportation systems and epidemics (or pandemics) exhibit a two-way re-

lationship. Transportation can contribute to the spread of disease, and in reverse,

epidemics can restrict operation or shut down transportation systems as soon as they

occur. Transportation systems can contribute to the spread of diseases in three ways.

First, by introducing it to new geographic regions via the interregional transfer of

commodities, people, animals, etc. This contribution exposes a larger population

to the agent that causes the disease, and as a result, a larger population may be

impacted by the time the epidemic disappears. In other words, the transportation

system affects the extent of the epidemic [13].

The second way is not by introducing the disease to a new region but through the

speeding up or acceleration of diffusion in the areas that have already been affected

by the disease. This happens by both increases in the volume of flows and decreases

in travel time from one location to another [5]. The impact on the final epidemic

curve is that the infected population reaches its maximum more rapidly. In these two

ways, the infection of the new population happens in the destination.
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[24] predicts the geographic spread of the SARS by considering global air traffic.

Results show an agreement between the predictions and actual incidents. They show

that the strong heterogeneity of the network causes a high degree of predictability.

Multiple studies have shown the daily new cases of COVID-19 infections was associ-

ated with mobility records of three weeks before, indicating the significance of human

mobility behavior in the spread of the disease [25, 26]. Third, for certain types of in-

fectious diseases, such as gastrointestinal and respiratory diseases, the infection may

happen within the transportation infrastructure or the vehicles where people have

direct contact with one another and the environment [27]. In this regard, transporta-

tion systems can be considered as vectors 1. Examples of these situations include

global airports, public buses, and train stations. It is essential to distinguish this

contribution from the other two introduced earlier because transportation infrastruc-

ture and vehicles act as intersection points of trips where people are in contact[28].

Furthermore, it can inform the choice of appropriate intervention methods. More

investigation is required regarding the role of transportation systems, and transport

hubs in the spread of infectious disease either in the form of pandemics or epidemics

[29, 17].

2.2 Micromobility Systems As a Novel Mode of Transportation

Transportation systems operating on the principle of asset sharing can be cate-

gorized based on whether they share a vehicle, passenger ride, or a delivery ride.

Micromobility systems are a subcategory of the first class and include sharing public

bicycles, electric scooters, or other similar single-user vehicles [30]. Among micro-

mobility systems, public bikesharing systems first appeared in Amsterdam in 1965

and became more popular in several other European countries during the 1990s. Be-
1The word vector is usually used for living organisms that can transmit infectious pathogens

between humans, or from animals to humans. Our use of the word for transportation systems
through out the document is mainly to make a distinction with other ways transportation may
contribute to the spread of infectious disease.
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fore 1998, all public bikesharing systems were coin based. The first computerized

bike sharing system with 200 bicycles was developed in Rennes, France [31]. During

the 2000s, many countries in other parts of the world started to open their public

bikesharing systems. Still, they hardly became widely popular until the 2010s, when

information technology facilitated their operation significantly. The number of docked

bikesharing fleets experienced a worldwide increase from 139,000 to 2,300,000 between

2010-2016, with more than 80% deployed in P.R. China2. By the end of 2016, France,

China, Belgium, and Taiwan are the top five docked bikesharing markets with 6.7,

6.2, 6.0, 5.0, and 4.8 bikes per 10,000 people [32].

Dockless bikes emerged in 2016, starting in China, and boomed to the other parts

of the world. There is no exact market scale for dockless bikesharing. By the end

of 2017, estimates of a fleet of 23 million bikes in China have been reported in the

literature [32], with picks of 70 million rides a day, and 17 billion rides overall for

dockless bicycles. In some countries like China, Denmark, and the Netherlands,

cycling encompasses more than 25% of all trips, especially in large cities [13]. Public

electric scooters started operation in 2015 from Europe and spread throughout the

world [30].

Research has been conducted on the benefits of bikesharing systems on health

against chronic disease [33], on bicycle rebalancing [34], demand [35], on factors im-

pacting bicycle use [36], and on revealing spatiotemporal patterns of trips [37]. One

way to look at a mode of transportation is to see how it affects the mobility of people.

While micromobility systems are well known to serve the first or last mile of trips,

they are also used for long-distance trips in urban areas [38]. The distribution of trip

distance for users of public bicycles in China shows that 23% of the trips are less than

0.5 miles, 60% of the trips are between 0.5-2 miles, and 20% are more than 2 miles

(See [32]).
2https://bikesharemap.com
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These systems also impact the way people use other public transportation systems

and their vehicles. According to a survey conducted by [30] on North American

public bikesharing systems, more than 50% of the respondents reported a reduction

in personal automobile usage. The increase in bus use in all cities has also been

attributed to bikesharing improving access to/from bus stations. Also, the bikesharing

systems of large cities tend to use buses less due to the cost benefits and speed of the

bikesharing systems. Thus, bikesharing systems may work both as competitors and

as complement to public transportation systems [39, 40].

Operations related to rebalancing and charging are the most critical challenges

concerning micromobility systems. Research has been conducted on the costs, ben-

efits and operational optimization of rebalancing [41] and to predict the demand to

inform this logistical activity [42]. For example, [43] studied the individual destina-

tion preferences of bike users in Chicago using a multinomial logit model, where the

destination station utility is affected by user attributes (e.g., age and gender), trip

attributes (such as time of day) and destination attributes (e.g., distance from the

origin station, bicycle infrastructure variables, and land use and built environment

attributes). Their results show that higher capacity stations were more likely to be

chosen as a destination. The network distance between origin and destination has

negative impacts on selecting a station as a destination. The effects of the number

and capacity of neighboring stations are opposite for casual and regular members.

Members are more likely to use the higher number of stations with smaller capacities,

while daily customers tend to use fewer stations with many docks. This information

can inform the rebalancing of bicycles by operators.

While inventory management and rebalancing are still the main concerns in mi-

cromobility systems, equity of the systems, instead of equality, has been discussed

in a few papers. It has frequently been reported in the literature that male, white,

employed, and, compared to the average population, younger, more affluent, more
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educated people have a higher tendency to use bikesharing systems [44]. Data from

the New York City Bike-share system shows the distribution of bikesharing stations is

uneven between low and high-poverty regions, having a higher share in more affluent

areas [45]. Demand for bikesharing systems in disadvantaged communities is lower

than in other areas, for instance, in Chicago [46].

Only limited research has been conducted to compare docked and dockless bicycles

in the literature, which sometimes are not in agreement. [46] analyzed the perfor-

mance of the two types of systems with regard to providing service to disadvantaged

communities by considering bike availability, service areas, bike idling, rebalancing,

and trip demand for these systems in San Francisco, CA. In terms of availability, dock-

less bikes are more readily available, and the bike idling time is higher on average for

them in disadvantaged communities of San Francisco. These results are limited by

assuming that trips are associated with local users, which is not necessarily true. In

San Francisco, some tracts are both communities of concern zones and tourist areas.

Tourists have been found to generate a large portion of bikeshare trips.

[47], however, compared the spatial access in these two types of systems based on

bicycle data from 73 bikesharing systems and census level socioeconomic variables.

Their result shows that dockless systems operate more equitably than docked systems

by education but do not differ in spatial access by socioeconomic class.

The following are some of the challenges mentioned in the literature working with

data from micromobility systems. While trip data are available from many micromo-

bility systems, the user attributes are not, which makes it hard to study who are the

users of the system and what their mobility behavior is. No information shows what

the purpose of a trip is in micromobility records or whether it is part of a multimodal

trip; not does it provide the origin and destination of a trip made by a user. While

the user type is usually available, there is no information about the frequency of trips

made by any individual. Within a geographic region, trips can be made by local or
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non-local customers, which is not available in any of the current micromobility data.

Surveys have been conducted in the case of micromobility systems to tackle some of

these challenges. Still, in many cases, survey results are not in agreement, making it

hard to generalize conclusions to other systems in other cities. Data from dockless

bikes and electric scooters have more limited availability, making it hard to compare

with station-based systems. Distinguishing real trips made by users from the reloca-

tion of bicycles made by operators is also not an easy task. Some methods to deal

with are available by data mining methods such as looking at the charge level of the

battery, the distance of two bike locations records, or the duration of a trip [46].

2.3 Transmission Modes

To control infectious disease, we need to understand how the responsible pathogens

and microorganisms spread throughout the environment and between the hosts [1].

For a contagious disease to infect a person, the pathogen first needs to reach the host

(transmission). It needs to grow or multiply in the host body (infection or exposed),

which does not necessarily result in disease. In case that it causes illness, there is a

period before the symptoms appear (incubation) which is typically in the range of

a few hours (6-12) to several days (30-60). After a host becomes infectious, he/she

may shed disease agents through cough, sneeze, vomit, etc. in the environment, and

in so doing, contaminates the air, surfaces, water, or food. A secondary transmis-

sion happens when the pathogen enters the body of a healthy individual from the

environment through the entrance membranes, and the process repeats [48].

The mode of transmission is an agent characteristic, and a specific agent may

transmit through multiple routes. Since this research focuses on the transmission via

surfaces on micromobility vehicles, we study the pathogens and the disease that are

able to transmit through the fomite route. The fomite route is a common pathway

for many respiratory and enteric diseases. However, for many of them, it may not

be the main route of transmission. For example, for most respiratory disease-causing
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agents, such as the influenza virus or coronavirus families (SARS, H1N1), the main

transmission route is in fact through aerosols (close contact route). However, long-

range airborne transmission or transmission through surfaces are also possible ??.

Some gastrointestinal disease-causing pathogens such as norovirus, on the other hand,

transmit mainly through surfaces or food more efficiently, while they can also transmit

through aerosol as a secondary route [49].

The study of the spatiotemporal patterns of gastrointestinal and respiratory disease

is usually limited to close contact and direct transmission between the hosts (aerosol)

or transfer through common vehicles such as water or food. However, less attention

has been placed on the role of fomites. In fact, it used to be assumed that the fomites

are not a significant route of transmission. Recent studies show that the role of these

surfaces is actually not negligible in the spread of many types of pathogens such

as rhinovirus and norovirus that are responsible for respiratory and gastrointestinal

kinds of disease [2, 3]. Thus, we know that the surfaces are involved in transmitting

certain types of infectious disease, but there is little data about how contamination

propagates in the environment [50].

Several sources of contamination exist for the surfaces. One way is to divide the

fomite contamination sources into direct and indirect ways. Contamination can be

deposited on a surface directly from the aerosols in the air, droplets from a cough, or

aerosolization of other body secretions such as vomit [51]. This is considered a host-

fomite route. Contaminated hands, either after coughing on hands (host-hand-fomite)

or touching another contaminated surface (fomite-hand-fomite), can also indirectly

transmit pathogens on a new surface. [50] characterized the fomite-hand-fomite route

to create a notion of surface contamination network. After a surface is contaminated,

either through a direct or indirect route, an individual may touch and pick up a

portion of contamination on his/her hand. The contaminated hand may touch mucus

membranes of the host and cause infection, or it may touch another surface and
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transmit contamination to that. This chain of hand and fomite touch creates a

network of connected surfaces. The nodes of this network are fomites; they are

linked if they have been touched with at least a hand. The authors found that the

number of contaminated surfaces in an airplane grows logistically, and in a period

of five to six hours, nearly all touchable surfaces are contaminated. This logistic

growth shows that, in crowded environments, surfaces may become contaminated very

quickly. Also, evidence exists that high-touch surfaces are more likely to be exposed

to severe contamination and, as a result, play an essential role in the transmission of

the contamination to other surfaces like human hands [52, 53].

A combination of pathogen and fomite related characteristics and human behav-

ior regarding the above sources of contamination defines whether or not a fomite-

mediated route can sustain the disease spread. Pathogen characteristics, such as

environmental persistence, shedding, recovery rate, and dose-response, are among

the main factors that influence disease transmission through surfaces [51]. For exam-

ple, rhinovirus, norovirus, and influenza can all transmit through surfaces. However,

the first two are more infectious through fomite routes [54].

Not all of the surfaces are considered as high risk concerning disease transmission.

A large body of literature has attempted to characterize fomite properties. Fomites

have been classified according to different transfer efficiencies and die-off rates, mainly

divided into porous and non-porous [55]. The size of the surface, together with human

touching behavior, has also been used to differentiate fomites concerning pathogen

transmission [51]. Some of the surfaces are not accessible to human touch at all. Thus,

they are not involved in the transmission while they can still become contaminated.

However, some others are subject to rates of touch by hands ranging from low to high

(frequently and non-frequently touched surfaces) [56]. [51] shows large and frequently

touched surfaces have the highest potential to be involved in fomite transmission of

influenza. They also show the direct route (droplet-surface) in the transmission of
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contamination is more likely than the indirect route (droplet-hand-surface), except

for small frequently touched surfaces such as doorknobs.

Surfaces and human behavior have also been characterized according to the venue

where the contact may occur (e.g., home, school, office, public transportation) [54].

Fomites in different venues can be differentiated based on their physical (size, type,

quantity) and human-related characteristics (touch frequency, the density of host,

duration of time spent in a venue, and shedding rate concerning age). For example,

the number of accessible surfaces, their touching frequency, and the shedding rate is

high at schools compared to home or office.

2.4 Epidemic Modeling

We can categorize the individual level epidemiological models according to the

degree to which they represent reality and their complexity. The main model strands

can be divided into the compartment, network, and agent-based models, in order of

increasing complexity [57].

2.4.1 Homogeneous Mixing Models

Homogeneous mixing models are the simplest dynamic models for spreading dis-

ease in the host population. The origins of the subject are attributed to the Swiss

mathematician Bernoulli in the 18th century, while he was working on the smallpox

[58]. Hamer (1906) and Soper (1929) [59, 60] established the foundation of such type

of system view models, known as recurrent epidemic models. The model organizes

people in different compartments according to their health status. In a simple model,

each individual in the population is susceptible (S) or infected (I), or recovered (R)

at any point in time, and their compartment will change over time based on different

transition rates (figure 2.1).

Figure 2.1: Homogeneous mixing compartment models.
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In homogeneous mixing approaches, deterministic mathematical models are used to

model temporal dynamics of the epidemic using the following differential equations:

ds/dt = −βi(t)s(t), (2.1)

di/dt = βi(t)s(t)− γi(t), (2.2)

dr/dt = γi(t) (2.3)

Where s(t), i(t), and r(t) are the fractions of the population within each state.

Transmission rate β characterizes the ease with which the agent is transmitted from

person to person, and γ represents the rates with which individuals are removed from

the infectious state. i(t)s(t) is a representative of the contacts between individuals of

the two compartments s(t) and i(t). This term makes a few critical assumptions about

the population. It assumes that each person has an equal probability of contacting

every other individual and that all individuals have the same number of contacts at

each point in time [11]. These types of models are known as homogeneous mixing

models. The assumption of homogeneous mixing contact among individuals may be

not hold in reality, thus limiting the practical value of this approach to properly model

some critical aspects of disease spread [57].

Homogeneous mixing models have also been used to model the spread of infectious

disease through the environment, including inanimate surfaces. To provide a theoret-

ical framework for examining the role of the environment in pathogen transmission

of non-vector born disease, [61] suggested the so-called environmental infection trans-

mission system (EITS). This model enables the researcher to characterize different

fomite-mediated transmission routes by incorporating deposition and pick up of the

pathogens in a homogeneous environment. This is realized by defining a surface

contamination ratio, which measures the total pathogen deposited by an infectious

individual during the contagious period. The environmental persistence ratio creates
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a link between the pick-up and elimination of the pathogens. Using this conceptual

framework, [51] characterized the impact of fomite route transmission for influenza.

They estimated the basic reproductive rate based on human behavior and the two

main characteristics of the surfaces.

2.4.2 Metapopulation Models

To account for heterogeneity in contacts, simple spatial models were initially used.

These models assumed that contacts between susceptible and infectious individuals

decline with the distance between them and create a heterogeneous mixing population.

While explicitly spatial models are challenging to derive using mathematical equations

2.1, 2.2, and 2.3, a simplified representation of space where individuals are located at

regular distances from one another and the spread of infection is isotropic is possible

[18]. In this case, each spatial unit (e.g., county) has separate compartments sets,

and transportation links connect these units. These links can be weighted by the

flow of population between them, which then acts as a covariate. In the absence of

flow data, more sophisticated spatial interaction models (e.g., gravity models) may

be used to account for the mobility of the population between these spatial units per

unit of time [62]. A gravity model uses the mass of the population in regions together

with their distances to estimate the flow between areas [18].

These approaches are known as metapopulation models and have been among the

main spatial modeling methods over the past two decades [19, 63]. The well-known

global epidemic and mobility (GLEaM) model is based on a metapopulation approach

3. In this model, the world is divided into regions defining subpopulations connected

by transportation and mobility infrastructure. [64] compares GLEaM with an agent-

based approach to model the spread of influenza-like disease between municipalities

in Italy and shows the results of both models show agreement for epidemic spatial

patterns in the accessible levels of granularity. The difference is in the peak time,
3http://www.gleamviz.org/
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which is in the order of a few days. The extent of population infected at the end

of the epidemic is higher for metapopulation models, which is expected based on

the structure of within municipality populations. At the urban scale, [65] uses a

dynamic metapopulation model informed by hourly subway transit data in Shanghai

to estimate epidemic risks across different spatial and temporal scenarios. They found

that time of day and the neighborhood of disease introduction significantly impact

the initial epidemic growth. These results show that the metapopulation method is

an effective way to model spatial aspects of disease spread.

In both homogeneous mixing and metapopulation models, ordinary differential

equations are used to model the dynamics of transmission. Overall, these models are

able to model the temporal dynamics of epidemics. When it comes to integrating

systems together, in terms of replicability, these models are generalizable and easy

to communicate. Homogeneous mixing models are less flexible when it comes to

highly parameterized, disaggregated, and spatially explicit applications [62]. This

is not necessarily a drawback and in applications where the aggregated behavior is

of interest, it can smooth out fluctuations. Metapopulation models can account for

heterogeneities between subpopulations, but they still make simplistic assumptions

about the intra-subpopulation heterogeneities.

2.4.3 Contact Network Models

Network-based models are another way to incorporate human contact structure

or mobility of populations. The nodes of the network are individuals or geographic

locations. If the aim is to create a network of host contacts, it is called a contact

network. As with the other individual-based methods, all individual humans within

the population are modeled. These individuals are represented as nodes and connected

by edges that represent their social ties.

The first question that needs to be answered when setting up a contact network

model is how to create a network of contacts. Whether or not an edge exists be-
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tween two individuals is a function of the mode in which the disease transmits in

the population, and its weight is a function of disease transmissibility [11]. There

are three ways to create contact networks: real, simulated, and semi-real networks.

Using real contact networks is the best, but they are rarely available. Instead, simu-

lated contact networks with network parameters that resemble the real networks are

frequently used. The degree distribution of the individuals in the network is usually

used to create a simulated network of contacts. Several well-known network struc-

tures have been used in the literature, according to the specific disease and the nature

of the real contact networks. Random graphs, small-world networks, and scale-free

networks have been used because they represent many natural and social phenomena

[66]. Suppose the network is a random graph with a Poisson degree distribution.

In that case, it is equivalent to the homogeneous mixing compartment models. The

degree to which the real network departs from this structure determines whether the

traditional compartment models are valid [67]. Small-world networks are character-

ized by high levels of local clustering and global connectivity. In contrast, scale-free

networks are characterized by degree distributions that follow a power law, where

a small number of nodes have a large number of contacts [67]. The problem with

these networks is that they cannot model the spatial aspects of the epidemic, and

real contact networks can still be very different from them.

As a third alternative, closer to the real contact networks, semi-real networks can

be created using synthetic populations from census, travel behavior surveys, and other

ancillary data sources [68]. While creating synthetic population networks is a recent

addition to research practices, creating synthetic populations has been around for

many years. These synthetic populations are usually categorized in micro-simulation

models (MSM), which are closely related to agent based models (see section 2.4.3)

[69]. The goal of a synthetic population is to simulate individuals in a way that

the distribution and correlation of their attributes are similar to those in census and
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the number of people with specific attributes matches the aggregated population

data [70]. Synthetic population methods can be partitioned into sample-based and

sample-free based [71]. Among sample based methods, synthetic reconstruction [72]

and combinatorial optimization techniques [73] have frequently been used in the lit-

erature. The former use the iterative proportional fitting method [74] together with

a sample of the target population to obtain the target joint-distributions. Examples

of that are4, TRANSIMS population synthesizer [75], and the synthetic population

of Virginia Bioinformatics Institute Synthetic [4]. The combinatorial optimization

methods create a population and modify it with the sample population until it meets

a required constraint [76]. Using these synthetic populations, very large contact net-

works for purposes including disease spread have been created on national, regional,

and urban scales in the past few years [77, 4, 76, 77]. A method developed by [76] is

used in my research to create a large contact network as the baseline population.

Various types of disease, modes of transmission, and nodes may require different

network types. For example, within a healthcare center, patients treated in different

wards are typically not directly in contact. However, caregivers moving from ward to

ward may transmit the infection from one ward to another. Bi-partite networks can be

used to model contact networks of this type, where two different types of nodes exist

in the network [78]. Sometimes the disease can only be transmitted in one direction.

For example, many gastrointestinal diseases transmit mainly through surfaces. If

person A (not necessarily infected) touches a surface with a contaminated hand and

person B touches the same surface afterward, the contact AB is in one direction. It

is not possible for person B to infect person A. These networks are usually called

semi-directed networks. Each node has three degree distributions: undirected degree,

directed indegree, and directed outdegree distributions. Epidemiological quantities

for these types of networks are in [79]. [80] show that the probability that an outbreak
4https://www.rti.org/impact/rti-us-synthetic-household-population%E2%84%A2
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happens and the fraction of the population that is infected can be different in semi-

directed networks compared to undirected networks. The transmissibility may not

be the same in both directions, making contact asymmetric. For instance, not all the

population age groups are vulnerable to disease to the same degree.

The links in networks can also change over time. For instance, contact networks on

weekdays and weekends are likely to be different [65], and they would also be distinc-

tively different during holidays and other events of social significance. Most of the

mathematical models on contact networks assume that the contacts are fixed during

an outbreak. While static networks can capture diversity in the number of contacts

and their intensity among individuals in the population, they miss the heterogeneity

that results from the dynamicity of contacts of a single individual [81]. Whether or

not modeling a dynamic network is needed can be informed by looking at the nature

of contacts in the population. If the rate of change in contacts compared to the length

of the outbreak is very slow, then a static network can probably capture the structure

of contacts appropriately. However, suppose the rate of change in contacts is very

high. The population structure is then similar to the homogeneous mixing setting,

and maybe a mass action (i.e., homogeneous mixing) model is the best choice. Any-

where between these two cases is when a dynamic network structure can impact the

dynamics of the epidemic [82].

Disease propagation in contact networks is modeled using different methods, one of

which is bond percolation theory from statistical physics [11]. The spread of disease in

network is similar to the homogeneous mixing populations except that a structured

contact network replaces the Poisson distribution of contacts. Imagine a vertex is

infected initially and remains infectious for a period of time. During this time, it is

possible for the disease to transmit to each of the contacts of that individual. This

process repeats for those secondary cases and, in this way, the disease percolates in the

network. Bond percolation on networks describes this behavior of connected groups
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of vertices in spreading disease. It can predict the number of vertices reached via

disease transmission along the edges in the network, the size of the infected cluster,

and outbreaks [67].

Contact network epidemic models, similar to percolation, can incorporate the het-

erogeneity of contacts to the model. However, even when the contacts in network

are realistic, these models have important limitations. The realistic contact pattern

is just one way to increase the fidelity of epidemic models. The spread of disease is

different in various age groups. It changes depending on the type of contact (e.g.,

home, school, and public transportation), various behavior in population, and geo-

graphic and seasonality [57]. Models like bond percolation cannot account for these

heterogeneities.

Also, while they are faster than other approaches lie agent-based models, they can

still be computationally heavy when the contact network is very large and dynamic.

Parallel algorithms such as EpiFast have been developed to reduce computation time

for these types of networks [77].

While in most epidemic models, the population is divided into compartments, in

some other models, population, attributes, and behaviors are aggregated. For exam-

ple, EpiRank is a model that uses the commuting network of townships in Taiwan

together with Markov Chains and a page-rank like algorithm to estimate disease risk

for different townships. The model distinguishes inward and outward commuting

loads for different daytime settings between townships. The movement is usually

more toward city centers from satellite areas in the morning while the heavy load

is reversed in the afternoon. Compared to compartment models, these models are

less computationally expensive and more suitable to incorporate geographic aspects.

They can also identify commutes made by different transportation modes and various

environmental and socioeconomic factors [83]. These methods are useful, especially

when the purpose is to capture spatial diffusion patterns. However, they cannot
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provide detailed information about the epidemic and cannot model the impact of

intervention methods.

2.4.4 Agent-Based Models

Agent-based models (ABM) are decentralized, dynamic, individual level (bottom-

up) modeling approaches composed of autonomous and independent entities, called

agents, that have a purpose, are capable of interaction with each other and with their

environment, can make decisions and learn new things and indeed are capable of

adapting to new conditions [84, 85]. ABM approaches are a subcategory of a larger

class of models that are called individual-based models. Individual-based modeling

started with Von Neumann’s idea of an autonomous machine in the late 1950s (

see [86]). It was followed by the Game of Life model of Conway (1970) [87]. The

segregation model of Schelling (1971) [88] was among the first social individual-based

models. Although the computational methods started in the 1950s, lack of data and

of computation resources imposed severe restrictions in many ways, specifically on

individual-based models, that impeded their progress. It is in the 1990s that these

computationally intensive models found a chance to become more widespread. The

word ’agent’ was introduced by Holland and Miller (1991) [89] in the context of the

economy. The Epstein and Axtell Sugarscape model (1996) was among the first large

scale models that incorporated the geographic space into the agent-based models [90].

There is no agreed definition of agents, but most of the existing literature shares

the view that agents are autonomous, heterogeneous, active entities. [91] has inves-

tigated the properties of agents that are frequently shared in the literature and their

meaning for how agents operate. Agents are autonomous because they are not gov-

erned by a centralized control system and are free in setting their interaction and

decision-making. Heterogeneity can feature in the agent population properties, in

their relationship with other agents, in the environment, and in the rules of behav-

ior. Being active has a more complex meaning. Agents can follow a specific goal
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or be reactive to the environment and interact with other agents by having sensory

properties. They may be mobile and move in the space, whether it is continuous,

discrete (cell or patch-based), or topological/physical network. They can communi-

cate and exchange information. More progressive active properties include bounded

rationality, learning, and adaptation, as well as having memory. Bounded rationality

comes from the fact that agents (especially humans) do not have infinitive analytical

capabilities and do not behave with perfect logical analysis [92].

Since humans are probably the most complex agents in terms of behavior, a brief

review of the methods to model this behavior can be informative to other social sys-

tems. [93] specifies some of the strategies to model human behavior in ABM. The

first category of methods is mathematical models. One of the simplest ways is to

randomly select a value for variables that represent the behavior of humans. How-

ever, this can end in completely wrong claims because human behavior is not random,

although they may have long-range values. A better choice is to use threshold-based

and simple IF-THEN rules. Alternatively, differential equations and dynamic mod-

eling can be used, which links the rate of change to its previous states. The second

category of methods to model human behavior is more abstract and conceptual. One

example of that would be to analyze data on human decisions and create decision

trees. Lastly, cognitive architectures like Soar [94] can model the intelligent agentâs

behavior. Understanding and measuring human behavior and validation remains the

main challenge for modeling human behavior [93].

Adaptation, learning, memory are among the most complex properties of agents.

The notion of learning and memory opens space for a variety of inductive learning

methods to be integrated with agent-based models. An example of approaches to

the modeling of spatial memory and mind maps in ABMs is in [85] in the context of

ecological individual-based models.

Previous work has focused on existing ABM [95, 96]. [96] highlighted seven chal-
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lenges in developing agent-based modeling as follows: (1) Purpose of the model rang-

ing from exploratory to predictive; (2) Theory and model; (3) Replication and exper-

iment; (4) Verification calibration and validation; (5) Agent representation, aggrega-

tion and dynamics; (6) Operational modeling; and (7) Sharing and dissemination of

the model.

A significant portion of the research agenda in ABM has been dedicated to ad-

dressing these various challenges. One of ABM’s benefits is that we can simply create

a wide range of scenarios, even for a simple model [97]. However, this can be chal-

lenging since we need to make sure that we develop appropriate research problems

and scenarios. Models need to have a proper level of abstraction [98]. ABM is a rela-

tively late arrival in modeling. There have been many other widely accepted models

like deterministic mathematical (e.g., system dynamics) or statistical models that are

usually easier to implement [99]. Thus, it is essential to make sure that ABM makes

a difference, which is mainly realized by clearly specifying the purpose of the model

and also thinking about the question of what the agents are, what they do, and how

their decision may impact the system-level properties or decision of the other indi-

viduals? [99]. This can be even more important when there is an explicitly spatial

aspect. [99] explore the answer to these questions in the purpose of the agents them-

selves. Certain model features are critical to attempt to answer the above questions.

These features are the heterogeneity of the decision-making context, the impact of

interactions, and the size of the system. Heterogeneity appears in characteristics of

agents (e.g. gender) and their decision-making context (e.g. health status), which

may further vary spatially. If, for example, agents are heterogeneous both in their

characteristics and (spatial) decision making context, and their individual choice is

likely to cause unexpected outcomes, then there is stronger evidence that using an

ABM (as opposed to other types of modeling) in an explicit geographic area makes a

difference in our understanding of the system or capturing the unexpected behavior.
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Calibration and validation remain the main challenges in developing effective ABM.

Calibration involves the fine-tuning of the parameters of the model using real-world

data. Validation assesses how much the model results match with the real world

by measuring the goodness of fit of the model [100, 91]. Verification is a process to

ensure the model serves the goal for which it has been designed (See [101]). Numerous

validation methods have been studied in the literature. Reviews of different validation

methods can be found in [100, 102].

ABMs are very sensitive to initial conditions. That means small variations in

interaction rules may significantly change outputs [98]. If the purpose of the ABM is

prediction, this can be a fundamental challenge [103]. ABM is a stochastic model and

different outputs are generated at each instance of the model. Thus, it is necessary

to have several model runs to produce a statistically robust output [97] that is not

dependent on a single specific set of stochastic parameters. In that past few years and

with parallel and GPU computing progress, some studies have focused on modeling

parallel ABM [104]. One of the complaints about many, if not most of the ABM works,

especially those performed in spatially explicit environments and have output maps,

is that the outcomes are usually compared or investigated only visually. Instead,

spatial statistical approaches can be used to have a more in-depth and more robust

assessment of the results.

Representation of the geographic space is also a significant challenge since multiple

alternatives are available. Agents do not interact in a vacuum [105]. While they are

not necessarily mobile, it should be recognized that they can be both in physical or

social environments. The spatial extent of the model is said to have a significant

impact on urban ABM models [106]. The use of highly granular resolutions has

been reported to produce overly fragmented outputs in some studies [107]. However,

a coarse granularity of the data relaxes spatial heterogeneity and spatial dynamics

[108]. Aside from all these considerations, the fact is that different processes may
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happen at different scales. The interaction between agents and their environment

and other agents may occur in multiple scales [108]. Thus, it is essential to fine-tune

the model to select the appropriate analysis scale or develop ABM in multiple scales

[109].

A vast body of literature exists that has used agent-based modeling to model both

vector-borne [110, 111] and non-vector borne infectious disease [112, 113]. However,

spatially explicit agent-based models of respiratory and gastrointestinal disease are

less frequent. [64] models the spread of influenza-like illness between municipalities

in Italy using an agent-based model where a synthetic population is created based on

census data. The mobility of individuals is modeled using a gravity model. Large-

scale disease spread agent-based models are usually computationally expensive and

need a significant amount of effort to implement. [92] suggest a global scale agent-

based model (GSAM), a distributed platform, to model international scale disease

transmission.

A few empirical studies have been conducted to reveal the role of fomites during real

outbreaks using agent-based modeling. A SARS outbreak distribution in a hospital

in Hong Kong represented a significant spatial pattern. [114] explored the role of

fomites and long-range airborne contact routes to study this spatial pattern using

multi-agent-based modeling. In the SARS coronavirus case, results show that the

combined route transmission is very likely the correct transmission scenario, and the

role of fomites is not negligible. A similar approach has been used in [115] to study

the transmission of MERSâCoV during a hospital outbreak in the Republic of Korea.

2.5 Interventions and Control

Effective control of infectious diseases needs a quantitative comparison of different

intervention strategies. Intervention success depends on the transmissibility of the

disease and the contact network [116]. Accordingly, intervention methods can be

categorized into three main approaches: transmission reduction, contact reduction,
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and immunization [57]. Transmission reduction can be implemented by using barriers

that reduce the spread of pathogens in the environment, such as wearing masks or

disinfecting the hands and surfaces. Study shows both these approaches can affect the

spread of respiratory and gastrointestinal disease [7]. A recent study on the impact

of individual hand hygiene at airports reveals a potential pandemic can be inhibited

by 24% to 69% by increasing the engagement of travelers in washing hands [20]. [116]

shows that using face masks and general vaccination will only moderately affect the

spread of mildly contagious disease. In contrast, quarantine and targeted vaccination

can prevent the spread of a broader spectrum of disease.

Case identification and isolation, social distancing measures, and closures can re-

duce contact between individuals. The role of travel restrictions and control on in-

ternational flights and hubs has been studied for influenza-like diseases [19, 14]. The

social behavior of people usually impacts these intervention strategies. The individ-

ual willingness to follow the precautions is related to many factors such as the media

or whether a member of their family or friends is already infected. Sometimes it is

limited by the necessity of going to work or school [117].

Lastly, by either deploying antiviral agents or vaccination, the number of suscep-

tible individuals decreases within the population. Both of these methods are labor-

intensive and need a proper implementation strategy to manage resources. At the

same time, both these methods have their uncertainties. On the one hand, the first

approach is subject to false positives, unless adequate contact tracing and distribution

capacities are available [24]. On the other hand, vaccination may not be effective after

some lapse of time because the virus evolves to different variants or the antibodies are

no longer exist in the host blood. The strategy with which the population receives

the vaccination or antiviral is crucial for effective implementation.



CHAPTER 3: RESEARCH QUESTIONS

My main goal in this research is to better understand various facets of the role of

micromobility transportation in the spread of viral disease within urban areas through

spatially-explicit modeling. I make a distinction between the risk of exposure that

occurs at the destination and exposure that occurs while an individual is using the

micromobility vehicle by touching surfaces. In the former, the attention is on the part

of the disease spread that results from the mobility of human individuals between an

origin and a destination. This, in fact, is less affected by the mode of transportation

in urban areas for two reasons. First, micromobility is only one of many options in

an individual’s modal choice set, which is replaced by other modes of transportation

if micromobility is not available. In other words, the contact network of people is

expected to remains the same whether or not the modal choice is micromobility.

Second, the trip duration across various modes of transportation has no impact on

the pace of contagious disease transmission, mainly due to short travel distances in

urban areas.

However, in the latter case, the concentration is on the part of the disease spread

where micromobility vehicle plays a role as a vector (similar to vector-borne diseases).

This role is the center of interest to this research. The first question that I seek to

answer in this regard is how surfaces on the new micromobility transportation systems

contribute to the emergence and dynamics of viral epidemics in urban areas.

The second objective of this research is to study the spatiotemporal pattern of

disease spread through micromobility systems. Thus, I am interested to understand

how the interplay of geographic space and time with the use of micromobility services

influences the risk of exposure to a viral illness. Both spatial and temporal profiles
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of micromobility usage exhibit very different use patterns during different times and

for various locations in urban areas.

The last objective of this research is related to intervention methods and control

strategies to reduce or eliminate the risk of a viral disease spread through micro-

mobility vehicles. For example, in the presence of an outbreak we can decrease the

transmissibility of the disease agent by using disinfection methods. At the same time,

strategies to implement these intervention methods are important. Thus, I identify

which intervention methods and strategies are more effective in disrupting the spread

of a viral disease through micromobility vehicles.

In summary, I seek to answer the following research questions:

1. How do surfaces on the new micromobility transportation systems contribute to

the emergence and dynamics of viral epidemics in urban areas?

2. How are geographic space and time organized concerning the risk of exposure

to a viral disease out of using micromobility vehicles?

3. What are intervention methods and strategies, including random or systematic

intervention, more effective in controlling the spread of infectious diseases through

micromobility vehicles?

Given the above research questions and the fact that this research is at the intersec-

tion of public transportation, environmental health, and urban modeling, I underscore

the following contributions to each discipline.

While modeling the role of transportation and mobility in the spread of infectious

diseases has been around for decades, modeling the role of different modes of trans-

portation in the spread of the infectious disease has less been a focus of attention.

This makes it less practical for intervention and control strategies, which are specific

to each mode of transportation. Micromobility is a relatively new and fast-growing

transportation mode that has induced change in mobility behavior in urban areas.

Thus, it is less studied than other modes of transportation, specifically when it comes
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to the spread of diseases. Besides, recent models of contagious disease spread in

transportation systems usually assume homogeneity in population behavior while the

spread of contagious diseases is highly dependent on the behavior of individuals [27].

This research contributes to the literature in public transportation by modeling the

spread of disease in micromobility systems and then explicitly modeling the hetero-

geneity in human contacts and behavior. Last but not least, I model the transmission

through micromobility vehicles by considering actual individual trips. The proposed

model can be used to simulate scenarios as new micromobility data streams into the

system.

From a modeling perspective, I propose a novel large-scale spatially explicit agent-

based model to study the spread of a viral disease through micromobility and a large

urban human contact network. The model has several attractive features. First, the

model integrates actual individual micromobility transportation trips into epidemic

modeling. This means it exploits actual mobility behavior of individual trips, and

spatio-temporal movement patterns of the micromobility vehicles. Second, most epi-

demic modeling methods make simplistic assumptions about the heterogeneity of con-

tacts, spatial distribution, and mobility of the baseline population. I use a synthetic

human contact network generated from census data, which also considers individual

social ties in the population. Third, the proposed SIR-SC epidemic model integrates

the calculation of the spread of viruses through micromobility vehicles and through

other processes in the baseline population. In epidemiology, it is common to divide

the population into different compartments that represent health status of individ-

uals. SIR represents the health status of human individuals (susceptible, infectious,

and recovered), and SC represents the contamination status of micromobility vehi-

cles (susceptible and contaminated). Thus, the SIR-SC models the complexity in the

behavior of individuals in ways that are consistent with epidemiologic theories. From

an epidemiological perspective, to my knowledge, this research is the first attempt to
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model fomite-mediated disease transmission in explicit large urban scales. Previous

studies only focus on a single or limited number of indoor spaces. This enables us to

experiment with spatial intervention methods.



CHAPTER 4: RESEARCH DESIGN

This chapter builds the methodological framework for modeling the spatiotemporal

spread of contagious disease through micromobility systems at an individual level us-

ing an agent-based model. I propose a hybrid modeling framework where agent-based

modeling features prominently owing to its ability to model the behavior of individ-

uals explicitly. The spread of contagious diseases highly depends on the behaviors of

individual humans. These micro-level behaviors may result in outbreaks of disease at

the system level. Agent-based modeling, which is a bottom-up approach, can model

these behaviors. I describe the agent-based model using the overview, design, details

protocol (ODD) [118].

4.1 Purpose of The Model

The model aims to simulate the spatial and temporal dynamics of a viral disease

through surfaces on micromobility vehicles in urban areas. I propose a spatially

explicit hybrid agent-based model in an urban scale. The current model focuses on

micromobility transportation and on viral diseases that can transmit through surfaces

(e.g., Norovirus and Rhinovirus) as surfaces are the only contact points between

human individuals in micromobility systems. To this end, a large contact network

is generated and used as baseline population. The model uses multiple discrete-time

intervals for different processes. To calculate the disease transmission process in the

micromobility system, a 1-day time-step is used.

4.2 Agents, State Variables, And Scales

Figure 4.1 shows the class diagram of the agents in the model. Human agents

are independent and heterogeneous meaning they are characterized by age, gender,
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household ID, work/school ID, and health status. They are also connected within a

social network of family members, co-workers, or schoolmates. Such a social network

is created in the process explained in section 5.4. and used as the baseline population

in my model. Human agents are also active and mobile meaning they can move

around either by if-then rules (to follow their schedule) or by picking up micromobility

vehicles. They interact with other human individuals in the baseline population

through proximity at school, home, and workplaces, and with micromobility vehicles.

Micromobility vehicles are characterized by their contamination status and by their

current location (latitude and longitude for dockless micromobility or station for dock-

based systems). A unique property of the proposed model is that it is designed to use

actual micromobility trips made by human individuals in urban areas. At the same

time, the model can be adapted to include trips with other modes of transportation.

Disease agents are not explicitly modeled in this research. In this model, a viral

disease that can transmit through surfaces is characterized by the basic reproductive

rate, inactivation time of a virus on surfaces, and recovery rate.

Static agents shape the other entities and geographic spaces in the environment.

Schools are defined by their enrollment level and location. Households are charac-

terized by the number of members, type, and location. Workplaces have number

of employees and location. These geographic entities are considered as static point

features. Areal geographic entities are divided into census units and micromobility

service area units. The granularity and partitioning of the former geographic units

are flexible and defined based on the desired level of complexity, constrained by pop-

ulation data available at that granularity level. The latter, however, is defined based

on the service area of the micromobility stations (in station based systems).
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Figure 4.1: Class diagram of agents in the model.

Every human agent is simulated and located in a household. A human individual

has a schedule and may go to either school or work during working/schooling hours or

stay home for the entire day, representing preschool-age children, homemakers, people

who work at home, retirees, and the elderly. People usually spend most of their time

at home, workplace, or school, which increases the risk of infection in these small

subpopulations, making it reasonable to distinguish these activities from others.

Such synthetic population with their daily schedule serves two important purposes

in the model. First, it determines whether or not a connection exists between every

pair of individuals in the population. That is, two individuals are connected if they

are members of the same household, school, or workplace group (i.e., in the same

proximity). Such a connection, if it exists, creates a potential route of transmission

for viruses. At the population level, this would be a large individual contact network

through which disease transmit. The schedule of human agents remains the same

during workdays of the week, but it changes over weekends and holidays, meaning

that they stay at home. That means two such contact networks are created both for

weekdays and weekends (figure 4.2). These contact networks are created once and

before the transmission process starts. The second purpose of a synthetic population
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with daily schedule is to model the change in location of individual humans during

the day due to a travel activity, which will be explained in section 4.3.1. where we

describe this relocation process.

There are two discrete time-steps in the model. The first time-step is one hour and

the second is a day. The former is used for considering relocation of the individuals.

The latter is used to calculate the spread of disease in micromobility system and the

baseline population at the last hour of each day.

Figure 4.2: Synthetic baseline population.

4.3 Process Overview And Scheduling

The model comprises several processes, including relocation, micromobility ride,

human-human transmission, human-micromobility vehicle transmission, micromobil-

ity vehicle-human transmission, inactivation, disinfection, and recovery. In what fol-

lows, I explain each process in more detail.

4.3.1 Relocation

Two mobile agents are present in the model: micromobility vehicles and human

individuals. Micromobility vehicles relocate in the simulator to match actual trip

records between start and end station service areas or start and end locations (for

dockless systems).

As mentioned at the end of section 4.2, the second purpose of a synthetic population
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with daily schedule is to model the relocation of individual humans during the day.

The mode of transportation with this relocation is not important in itself. People

relocate during a day based on their schedule and visit different micromobility service

areas near their home, school, or workplace locations at what point they may decide

to initiate a micromobility trip from that location. This means people from any part

of the urban area can pick up a micromobility vehicle currently located in a specific

zone as long as they are present in that zone. The distinctive objective of this research

is to assess the implications of such decision of the spread of a contagious disease at

the system level, spatially and temporally.

Virus loads may be exchanged between an individual hands and the micromobility

surfaces and be transferred to other zones by the individual or the micromobility

vehicle (section 4.3.3). One thing that is important about these two types relocation

is that their purpose is not important for the model. Next I describe how human

individuals in the model are assigned to ride micromobility vehicles.

4.3.2 Micromobility Ride

As mentioned earlier in section 4.2, a unique property of the proposed model is that

it is designed to use actual micromobility trips made by human individuals in urban

areas. These trips determine origin and destination zones of a micromobility vehicle

associated with that trip. Based on the relocation process explained in the previous

section, and the current location of human individuals and micromobility vehicles,

individuals are assigned to trips that start from a specific zone in a stochastic way.

In case that the demographic attributes of a rider is available in actual trip records,

the process of assigning individual humans to micromobility vehicles is conducted

by matching these attributes in a stochastic way (see section 4.4). So far, we know

how human individuals and micromobility vehicles relocate in an urban area (figure

4.3). Next I describe how pathogens transmit and cause infections in micromobility

systems and in the baseline population.
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Figure 4.3: Process overview (micromobility).

4.3.3 Transmission

This research focuses on a viral disease transmission through fomites on micromo-

bility systems and a baseline population. Within this context, fomites are a sufficient

route of transmission, while they may not be the main pathway (see [54]). For exam-

ple, surfaces are the main route of transmission in Norovirus outbreaks, while they

are only a secondary route for rhinovirus transmission which sustains mainly through

droplets route ([119]). Thus, I make a distinction between transmission in micromo-

bility and transmission in the baseline population because in the latter transmission

may occur through multiple pathways. Within micromobility systems, interaction ex-
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ists between human individuals in an indirect way through surfaces on micromobility

vehicles.

In section 4.2, I defined the potential route of transmission in the baseline popula-

tion based on proximity in places where people spend significant amount of their time

together. Thus, within the baseline population transmission occurs in the synthetic

contact network where the number of existing contacts with infectious individuals

determines one of the risk factors for a susceptible individual to be infected.

In this research, I assume the virus loads are deposited in the environment only

by infectious human individuals (no spillover from other species to humans or vice

versa occurs). I also assume the virus does not evolve into multiple variants, and

the antibodies remain in the bloods of recovered individuals for the entire epidemic

period.

Based on the above assumptions, I propose the SIR-SC transmission model de-

picted in figure 4.4. The host population of human individuals is divided into three

compartments: susceptible (SH), infectious (IH), and recovered (RH) (representing

SIR in the naming of the model). The micromobility vehicles are divided into two

compartments: susceptible (SM) and contaminated (CM) (representing SC in the

naming of the model). With each iteration t, a susceptible human individual may

transit to an infectious state with a certain probability PHH or PMH (SH→ IH). At

the same time, infectious individuals progress to the recovered state after a certain

number of days 1/γ (IH→RH). I assume the immunity of individuals after recovery

based on assumption made earlier in this section. For micromobility vehicles, a sus-

ceptible micromobility vehicle may become contaminated with a certain probability

PHM at the end of each day (IM→CM), and a contaminated micromobility vehicle

may transit to the susceptible state by either disinfection or inactivation (CM→SM).
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Figure 4.4: SIR-SC model.

According to SIR-SC model, multiple processes exist to model transmission and

contamination in the population, namely human-human (HH), micromobility fomite-

human (MH), human-micromobility fomite (HM), inactivation, recovery, and disin-

fection (Table 4.1). These are now discussed in turn.

4.3.3.1 Human-human (HH) transmission

This process models the spread of disease within the population when people spend

time in the same proximity at home, school, or office (indoor environments). Infection

through this process occurs with a certain probability PHH(IH |SH)i,t, which is defined

based on the transmission rate of the virus and the number of infectious contacts for

each individual. When people spend significant amount of time together in a certain

environment, it is more likely for disease to spread in the population. We assume

the same transmission rates for different venues, but one may calculate separate

probabilities for different indoor environments and routes of transmission by acquiring
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appropriate transmission rates.

4.3.3.2 Micromobility fomite-human (MH) transmission

As far as micromobility vehicles are concerned, fomites are the only possible path-

way for virus to spread. When a human individual uses contaminated micromobility

vehicles, infection occurs with a certain probability PMH(IH |SH)i,t, which is defined

based on the transmission rate of the virus between fomites on micromobility vehicles

and hands of human individuals, as well as the number of surfaces (number of micro-

mobility vehicles) one interacts with during a day. In other words, at the end of each

day, the number of contaminated micromobility vehicles and the rate of transmission

from surfaces to hands define the risk of infection, which is used to calculate proba-

bility PMH(IH |SH)i,t. This means that people who use micromobility transportation

frequently are more likely to be infected by contaminated bikes. Another parameter

that impacts transmission of disease from micromobility vehicles to human is the abil-

ity of virus to survive on the micromobility surfaces. A virus must survive a sufficient

amount of time on micromobility vehicles until the next human individual use the

vehicle. I assume transmission through a micromobility vehicle occurs until the virus

is inactivated or disinfected. Thus, a single contaminated micromobility vehicle can

infect multiple human individuals.

4.3.3.3 Human-micromobility fomite (HM) transmission

This process models contamination of a micromobility vehicle when loads of virus

are deposited on the vehicle surfaces by infectious individuals. HM is also referred

to as contamination process and occurs with probability PHM(CM |SM)b,t, which de-

pends on the transmissibility of the virus and the number of infectious individuals

who use the vehicle during a day. Thus, if a bicycle is used frequently in a day, it is

more likely to be contaminated.
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4.3.4 Inactivation

Virus loads must survive a sufficient amount of time on micromobility surfaces until

a new human host picks up the vehicle and become exposed to the virus. I define

inactivation rate of the virus on micromobility surfaces as a constant value of α.

4.3.5 Recovery

The recovery rate of individuals is independent of the environment. Individuals are

removed by transitioning from the infectious state to the recovered state at rate γ. I

assume individuals are immune after infection for the duration of the epidemic. That

means the virus does not evolve into multiple variants, and the antibodies remain in

the blood of recovered individuals through the end of the epidemic.

4.3.6 Disinfection

Disinfection may occur in either of two ways in the model. The first one is by

disinfecting bikes. Each day, a random number Q of micromobility vehicles are dis-

infected. The second one occurs by disinfection of human hands, which depends on

the availability of a sanitizing stand at each station and the probability of sanitizing

(P snt) by individuals.



44

Table 4.1: Overview of processes and parameters

Process Parameter Description

Transmission

R0 Basic reproductive rate

βHH , βMH , βHM Transmission rate in human contact network,

transmission rate from micromobility vehicle to hu-

man, and transmission rate from human to micro-

mobility vehicle

λHH , λMH , λHM Human-human (HH), micromobility fomite-human

(MH), and human-micromobility fomite (HM) risk

of infection

PHH(IH |SH)i,t Human-human (HH): probability of transition

from SH→ IH for human individual i at time t

given contacts with other infectious humans

PMH(IH |SH)i,t Micromobility fomite-human (MH): probability of

transition from SH→ IH for human individual i at

time t given contacts with contaminated micromo-

bility vehicles

PHM (CM |SM )b,t Human-micromobility fomite (HM): probability of

transition SM→CM for micromobility vehicle b at

time t given contacts with infectious human indi-

viduals

ρ relative transmission factor

Recovery

γ Recovery rate

Inactivation

α Inactivation time (CM→SM )
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Table 4.1. (Continued) Overview of processes and parameters

Process Parameter Description

Disinfection

Q Micromobility vehicles disinfected a day (CM→

SM )

D Fraction of stations with sanitizing stand

P snt Probability sanitizing by individual humans

4.4 Design Concepts

The design concept in an agent based model provides a common framework to

design and communicate the model by defining a few concepts including, interac-

tion, emergence, sensing, stochasticity, observation, adaptation, fitness, and pre-

diction [118]. Individual agents communicate through interaction with each other.

Within micromobility systems, interaction exists between human individuals in an

indirect way through surfaces on micromobility vehicles. In the baseline population,

the interaction between human individuals is defined based on proximity in places

where people spend a significant amount of time together (section 4.3.3). Emergence

is a property of the system which arises from interaction among individual agents.

Epidemics are the emergent phenomena attributed to the system of disease in this

model, and emerge out of the above mentioned interactions between individuals. In-

dividuals know their schedule during a day and week, as well as their school, home,

and workplace locations and contacts. However, this information is imposed to the

individuals and do not change during time.

Stochasticity may be defined for different behaviors or processes through pseudo-

random numbers in an agent-based model [118]. Deciding on where and to what
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degree include stochasticities is a challenging task in agent-based models. This deci-

sion highly depends on the purpose of the model and the questions that a model aims

to answer. In my model, stochasticity exists in a number of processes and behaviors.

Referring back to section 4.3 where I define the processes, let me start with re-

location and micromobility riding processes. On the one hand, relocation is not

stochastic in the model. First, each individual follows a constant schedule during a

day and week. Second, actual micromobility trips are used as input to the model.

That means, the model always starts with the same set of origin-destination mi-

cromobility trips. However, it includes actual spatial and temporal patterns of the

micromobility system usage in the urban area over time. Thus, one does not need to

add stochasticity to the mobility unless the research questions call for that.

On the other hand, the micromobility riding process is stochastic in the model.

Depending on their current location, individuals are assigned to micromobility trips

in a stochastic way. Let us assume demographic attributes of riders exist in the

actual trip records. Then, for a specific station at a specific time-step, trips are

grouped based on existing age and gender values in the trip records. Accordingly,

from the population currently present in the service area of the station (or zone

in dockless systems), similar age-gender groups are extracted, and one of them is

randomly assigned to the trip. If no individual with that attribute values is present

in the service area (zone), a person from the entire population is selected with the

sought age and gender via the same process.

The transmission process is stochastic and based on certain probabilities. Recovery

and inactivation rates are assumed constant in the model. Disinfection of micromo-

bility vehicles and sanitizing hands by individuals are also stochastic. Depending on

the scenario, disinfection of micromobility vehicles and placing sanitizing stands at

stations can be stochastic or systematic.

Finally, I observe the number of infectious and recovered individuals in micromo-
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bility and baseline population, separately. Human host infections (either in micro-

mobility or baseline population) can be reported based on their household, school, or

workplace locations, or in the census geographic level as an aggregated variable. I also

observe the number of contaminated micromobility vehicles as outputs of the agent

based model. Micromobility vehicle contamination is reported based on the vehicle

current docked stations or census units (for dockless micromobility systems). Indi-

viduals do not make strategic choice, follow explicit goals, or predict future. Thus,

adaptation and fitness are not part of the model.

4.5 Model Details

Initialization of parameters in the model changes based on different scenarios. In

the current model, a virus is roughly characterised by using different R0 values. Also,

actual micromobility data (including age and gender of users) are used as input to

the ABM. Whenever data is not available for a parameter, we conduct sensitivity

analysis to see how a range of values of the parameter may impact the system (e.g.

βMH and βHM through sensitivity analysis of relative transmission factor ρ). No

other environmental conditions are entered as inputs in the ABM. Next, I provide

the details of transmission processes in the following submodels.

4.5.1 Human-Human (HH) Submodel

Let us start with modeling transmission of a disease within a homogeneous mixing

population following [120]. Within a homogeneous mixing population, every individ-

ual has the same probability of contact with other individuals. Within this system,

imagine an individual with an average of k contacts per unit of time. Only a fraction

X/N of these contacts is formed of infectious individuals (X is the number of infec-

tious individuals in the entire population and N is the number of possible contacts

or population size). Thus, the number of contacts with infectious individuals during

time interval ∆T is k(X/N)∆T . Now, let us define w(0≤w≤1) as the probability of
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successful disease transmission following a single contact. The probability that the

transmission does not occur is then (1−w). Furthermore, by assuming independence

of contacts, the probability that a susceptible individual escapes infection following

all these contacts is:

1− p = (1− w)k(X/N)∆T (4.1)

And the probability that an individual is infected following any of these contacts

is:

p = 1− (1− w)k(X/N)∆T (4.2)

However, probability p is the same for all individuals in the population and does

not consider any heterogeneity in space, time, or attributes. Instead, let us consider

G as a spatiotemporal graph of human contact networks with N nodes and l edges.

Nodes represent human individuals (with their location) and edges represent their

connections. The number of nodes remains constant from time step t to t+1 (the

system is closed), but the number of edges may change over time (dynamic network).

Using such a contact network, one can write a separate probability of infection for each

individual i based on the number of contacts at time t. Compared to the equation 4.2,

here one has the exact number of infectious contacts for each individual (k/N = 1)

and the above probability can be rewritten as:

pi,t = 1− (1− w)Xi,t∆T (4.3)

Where pi,t is the probability of infection for individual i following any of its current

contacts with infectious individuals during time interval ∆T. Xi,t is the number of

infectious contacts for individual i at time t. Note that the probability depends

on both time and location of the individual i (i is tied to a household, school, or
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workplace location). Now, to create a connection between the probability in 4.3 and

disease parameters, let us define β = −log(1− w) following [120]. By substituting β

for w in equation 4.3, I can rewrite the probability as:

pi,t = (1− e)−βXi,t∆T (4.4)

In this equation, βXi,t is called the force of infection, which measures the risk of

acquiring infection by individual i at time t and is usually represented by λi,t. β

is a parameter which defines how transmissible a virus is. In this research, I use

one single β value for all indoor environments and approximate the value of that

by using the basic reproductive and recovery rates. As explained in section 4.2,

in this research, a viral disease is characterized by the basic reproductive rate R0,

inactivation time α of a virus on surfaces, and recovery rate γ. The β value in the

baseline population is approximated from the following threshold equation, which is

derived from a homogeneous mixing condition [120].

R0 = βHH/γ (4.5)

In this equation, γ is easier to measure because it does not depend on the envi-

ronment of transmission (1/ number of days to recover). Thus, it is usually known.

The R0 value is determined in either of two ways. One is through epidemiological

surveillance at the very beginning of an outbreak in a population (independently of

the above equation). Such value is determined by measuring the number of secondary

cases that arise from a single infectious individual in a completely susceptible popula-

tion. The R0 value constantly changes during the epidemic and may even not be the

same in two populations at a time due to many virus, environment, and population

related factors. Because of this condition, determining the accurate value of R0 with

surveillance is not easy after the disease starts to spread. Thus, in the second method,
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the value of R0 is derived by evaluating the largest eigenvalue in next generation ma-

trix of the infection dynamics in a disease-free equilibrium [64]. Either way, the range

values of R0 has been reported in the literature for different viruses. Given the fact

that ranges of γ and R0 are available in the literature, we can use them in equation

4.5 to have an approximation of β value for a viral disease in the baseline population.

By testing scenarios with range values of these parameters, I can simulate the spread

of different viral diseases with in the baseline population.

I rewrite equation 4.4 with more representative notations as follows:

PHH(IH |SH)i,t = (1− e)−βHHXi,t∆T (4.6)

Where PHH(IH |SH)i,t is the probability of transition from SH→ IH for human

individual i at time t, given contacts with other infectious humans, and βHH is a

parameter that determines the transmissibility of the virus in human populations.

4.5.2 Micromobility Fomite-Human (MH) Submodel

Using the same process, I derive a probability for transmission of a virus from

micromobility fomites to human body. Note that this time an individual human i

rides the exact number of Yi,t micromobility vehicles during time step ∆T .

PMH(IH |SH)i,t = (1− e)−βMHYi,t∆T (4.7)

Where PMH(IH |SH)i,t is the probability of transition from SH→ IH for human

individual i at time t given interaction with contaminated micromobility vehicles, and

βMH is a parameter that determines transmissibility of the virus from micromobility

vehicle to human individuals.
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4.5.3 Human-Micromobility Fomite (HM) Submodel

I use a similar strategy to calculate the probability of contamination of a micro-

mobility vehicle b when Zb,t infectious human individuals ride the vehicle during time

step ∆T .

PHM(CM |SM)b,t = (1− e)−βHMZb,t∆T (4.8)

Where PHM(CM |SM)b,t is the probability of transition from SM→CM for mi-

cromobility vehicle b at time t, given interaction with infectious human individuals,

and βHM is a parameter that determines transmissibility of the virus from human

individuals to micromobility vehicles.

In order to determine the values of βHM and βMH , I define the relative transmission

factor ρ which specifies the transmission rates βHM and βMH as a factor of βHH . For

simplicity’s sake, I also assume these two rates have the same value.

βHM = βMH = (1/ρ)βHH , (4.9)

The rate of transmissions βHM (from hands of an infectious person to bicycle sur-

faces) and βMH (from contaminated bicycle surfaces to hands) are smaller than βHH

because the virus may have multiple path ways in other venues and people spend more

time in the same proximity. Thus, ρ has a value larger than one. I conduct sensitivity

analysis for different values of ρ to experiment with different possible scenarios.

Using equations 4.6, 4.7, and 4.8, we can calculate the transmission of virus during

each time step ∆T in the baseline population and micromobility.



CHAPTER 5: A CASE STUDY: SPATIOTEMPORAL MODELING OF DISEASE

SPREAD IN COOK COUNTY, ILLINOIS

In this chapter, I conduct a case study simulating an epidemic in Cook County in

the presence of micromobility as a transportation mode to demonstrate the use and

effectiveness of the proposed agent-based modeling framework of disease spread.

5.1 Study Area

Cook County in the state of Illinois has a 2010 estimated population of 5,194,675,

among which 2,746,388 live in the City of Chicago, part of the third largest metropoli-

tan area in the United States1. It is highly connected to other large cities both nation-

ally and internationally, making it more vulnerable to the emergence and spread of a

disease. The city bikesharing system, Divvy, has been in place and growing since 2013,

and several previous studies have been conducted on it. Thus, the Divvy bikesharing

is used as the micromobility service, and bicycles are considered the micromobility

vehicles in this case study. The trip data of Divvy are available for free and includes

some demographic information about bicycle users. These properties make Cook

County and Chicago a suitable region for this case study. While, the shared bike

stations are distributed in the Chicago City, I model the baseline population for the

entire Cook County (Figure 5.1).
1United States Census Bureau: QuickFacts.
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Figure 5.1: Study area.

5.2 Modeling Framework

Figure 5.2 represents a diagram of modules in the model. As explained in sec-

tion 4.2, a network of individual contacts is needed to calculate the probability of

infection for each individual in the baseline population (HH) at the end of each time

step. I create a synthetic population based on census data and define household

and work/school locations of the individuals using the origin-destination employment

statistics (LODES), and school and educational institutions (ORNL education). Us-

ing this synthetic population, a human contact network is created which is used for

the purpose of simulating the disease spread in the baseline population. Human in-
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dividuals follow their daily schedule to go to work or school or stay at home. During

the day, they may use Divvy public bikesharing as part of their trips. The human

contact network is dynamic in the sense that, during weekends and holidays, indi-

viduals stay at home. Thus, only family contacts are present in the contact network

during these days. Finally, the interaction among people in the indoor environments

and with bicycles facilitates the spread of viruses and, as a result, disease, through

population, which is modeled by the proposed SIR-SC model. In what follows, I

explain the implementation of each module in more detail.

Figure 5.2: Modeling framework for Cook County.

5.3 Data

5.3.1 Micromobility

I use historical micromobility data from the Divvy bikesharing system in Chicago2

for June and July 2018. Divvy bikesharing is a station-based system. This means

that all the micromobility trips originate and finish at specific locations (stations).

The data set has two main tables: bikesharing stations and trips. Each station has a
2https://www.divvybikes.com/system-data
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name, a geographic location, and capacity. The trip table keeps a record of all trips.

Every trip has a bike ID associated with it, a start and end date and time, start and

end station, gender, and birth year. The urban space is divided into areal units based

on the service areas defined according to the travel distance on the road network.

These areas are used to assign trips to human individuals currently present in the

service area and to represent the current location of bicycles.

5.3.2 Workplaces

I use two sets of data to assign workplaces to each individual in work-age. County

Level Business Establishment Counts (CBP)3 and Longitudinal Employer-Household

Dynamics (LEHD) Origin-Destination Employment Statistics (LODES)4. These datasets

are used initially to determine the number of businesses in each census tract. CBP

provides subnational economic data by industry (6-digit NAICS industry codes) each

year. It includes the number of establishments by different employment size at the

county level. LODES is provided by the Census Bureau and contains the residence

and workplace flow between census blocks. Two sets of origin and destination tables

are available at the census block level. One includes jobs with both workplace and

residence in the state, and the other has jobs with the workplace in the state and the

residence outside of the state. The data include residence and census block codes, the

total number of jobs, and the total number of jobs by age, income level, and type.

LODES is also used to assign individuals to workplace locations (see appendix A for

the details).

The employment data of LODES are from three different sources: Unemployment

insurance (UI) wage records reported by employers and maintained by each state, the

Office of Personnel Management (OPM), and the Quarterly Census for Employment

and Wages (QCEW), which provides information on the firm structure and establish-
3https://www.census.gov/programs-surveys/cbp.html
4https://lehd.ces.census.gov/data/



56

ment locations. There are some data quality considerations concerning LODES data.

For example, LODES does not include all workers covered by OPM. That means trips

that are made by these individuals are missing in the origin-destination statistics and

our mobility model underestimates the number of individuals who commute between

origin-destinations. LODES data of 2018 is used for our study.

5.3.3 Schools

I use school and daycare locations from the United States Environmental Protection

Agency (EPA), Office of Environmental Information5. The data include the grade and

enrollment at each institution, which I use to assign school age individuals to school

locations. I use the most recent update of the file, which is for 2015. Finally, the

Cook County road network of 2018 from the Census Bureau TIGER/Line Shapefiles

data set6 is used to locate household and workplace locations.

5.4 Synthetic Population Module

I use the methodology proposed by [76] to create a baseline population for Cook

County, which includes social ties among individuals based on their family, work, and

school membership (a detailed description is available in Appendix A). The process

includes four steps:

• Creating home, work, and school environments across geographic space,

• Generating and assigning individual agents to households,

• Assigning work and school locations to each individual,

• Creating a network of social contacts based on membership in family, school,

and, workplace social ties.

Home and work locations are created along the road network in Cook County. For

each census tract, the number of occupied houses are extracted from the census data
5https://geodata.epa.gov/arcgis/rest/services/OEI
6https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html
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and located 50m apart or on top of each other on local roads. The number of work

locations in each census tract is derived from the county-level business establishment

counts after disaggregation by population size. Then, they are placed on secondary

roads 20m apart or on intersections of the local roads. School locations are extracted

from the ORNL_education.

Eleven household types together with group quarters are identified in census data

and are simulated. All Cook County individual residents are simulated using Census

tables. These individuals are assigned to households based on their age-gender groups

and a method called synthetic reconstruction (SR) [121]. SR assigns samples derived

from joint distribution of relevant attributes (here, age and gender) to population

based on an iterative proportional fitting (IPF) method [74]. Finally, households are

assigned to the house locations within each census tract. Because the process of fitting

population to households is stochastic and it is based on specific attributes, one needs

to assess the accuracy of the fitting by aggregating population attributes and compare

it with other actual census attributes. After placing individuals into households, I

aggregate population to reconstruct four variables namely, the average family size,

the average household size, the number of households with children under 18, and

the number of households with individuals over 65 years old. Then, I compare these

synthesized values with their actual value for the census tracts using the percentage

error (Esyn) with the following equation:

Esyn =
(Synthesized− Actual) ∗ 100

Actual
(5.1)

Individuals of school age are assigned to the nearest school based on their age and

school enrollment and those of work age are randomly assigned to the work locations

based on the origin-destination employment statistics (LODES), either in their resi-

dential geographic unit or another geographic unit. I assume the work/school location

of a single individual remains the same for the duration of the model execution.
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Finally, a large scale social network is generated based on the contacts at residences,

schools, and workplaces. We do not expect an individual to be connected to all

other individuals at school, workplace, or household/group quarter. Previous research

revealed small-world properties for human contact network of infectious disease [122].

When the number of individuals in one of these groups is larger than five, a small-

world network is created [123]. Otherwise, a complete graph is created. I assume

this contact network stays the same for the workdays of the week. For weekends and

holidays, however, I assume the work and school connections are removed.

5.5 Mobility Module

I divide transportation modes into micromobility and other modes of transportation

(including personal vehicles and walking). A human agent may use micromobility as

part of his/her trip to the desired locations. The mobility of population, however, is

calculated every hour to take into account commute of individuals to work/school.

Every hour, trips originating from a specific station are randomly assigned to the

individuals currently available in the service area based on the trip and individual

attributes (riding). When no individual with the matching age and gender as a trip

is available in the service area of a station, a individual with appropriate age and

gender is assigned to the trip from the entire population via a random process. An

individual may use any type of transportation to commute to work or school, including

micromobility vehicles.

5.6 Disease Transmission Module

I use the SIR-SC model proposed in section 4.3.7 to calculate the transmission

of disease within urban areas. As the simulation unfolds, individuals follow their

activity schedule to go to work/school or stay home. If they are infected, they may

transmit virus on the surfaces on micromobility vehicles or infect other individuals in

the population.
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In the SIR-SC model, time is discrete and the spread of the disease is calculated

at the end of each day (24 hours). The contamination probability of a bicycle is

calculated based on interactions with individuals during a day, and infection of an

individual is calculated based on the interaction with bicycles and other individuals

in the population all at once at the last hour of the day. That means new infections

and contamination during a day have no impact on each other. If a bicycle is con-

taminated, the start time of contamination is stochastically assigned based on the

distribution of the number of trips at weekdays and weekends for the next day. Then,

the bicycle remains contaminated for the inactivation time (the amount of time a

virus can survive on a surface) of the virus, or until it is disinfected. This approach

allows us to experiment with virus inactivation times less than a day. Initialization

parameters are varied based on our scenarios (sections 5.8.4-5.8.8).

5.7 Programming And Software

The synthetic population is implemented by adapting codes from [76] for Cook

County. All other codes are in Python. Graph-tool7, and Networkx8 packages are used

for the manipulation of graphs. The core data structures and algorithms in graph-tool

are implemented in C++, making it comparable to a pure C/C++ library (both in

memory usage and computation time). Thus, graph-tool is specially used for parallel

processing tasks. Model and scenarios are implemented on Orion, a general use

Slurm partition on a Redhat Linux based high-performance computing environment.

Finally, ArcGIS Pro 2.8 is used for network analysis and some of the visualizations.

Pseudo-code for the sequential version of the SIR-SC model is available in figure

5.3.
7https://graph-tool.skewed.de/
8https://networkx.org/
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Figure 5.3: Pseudo-code for the sequential version of the SIR-SC model.
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5.8 Results

5.8.1 Micromobility Trips

I processed shared bike data of Divvy system for June and July 2018. Publicly

available Divvy data have already been processed by the data providers to remove

trips taken by staff and trips with duration under 60 seconds. The latter are poten-

tially false starts or re-dock by users. The farthest trip in the data set is 35 km, which

has happened in 2.5 hours. I assume trips are not valid when their duration is larger

than five hours (2,605 trips). Trips larger than five hours are less likely to be valid

especially for the purpose of this research.

A large number of trips exist for the period of study with a distance of 0 (26,973

trips). I keep these records in the dataset for analysis since their duration is higher

than 60 seconds and they still represent an interaction between a cyclist and a bike,

which may lead to spread of disease agents. I also calculate the speed of trips. It

is less likely that speed is faster than 25 km/h, and I remove those trips from the

database as well (14 trips). 308,359 records do not include the age of the cyclist. I use

the age distribution by gender from the rest of the database to impute age values for

these records. I use the same strategy to impute new age values for records with age

80 and over (2,126 trips) because the values are not logically valid. Age and gender

are customer reported in the database.

Figure 5.4 shows some of the statistics about the final data set after all corrections,

with 1,209,808 trips for the period of study. 5,874 unique bikes exist within this data

set. For visualization purposes, I demonstrate the hourly distribution of starting

Divvy trips only for July 2018 in figure 5.4(a) and figure 5.4(b) Similar patterns are

observed for weekends and holidays. Most of the shared bike users are subscribers

to the system. There is no way to exactly determine the purpose of the trips from

the data set. However, the hourly pattern of weekdays for subscribers implies that

significant portion of these trips would be for commuting purposes. At the same
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time, the similarity between hourly weekday patterns of trips by non-subscribers with

weekend patterns (including subscribers and non-subscribers) may imply that most

of these non-subscriber patterns are likely to be for non-commute purposes. Men use

public bicycles more than women, but with the same hourly pattern.

Figure 5.4.c shows the duration, length, and speed of the trips for the entire pe-

riod of study. Average duration of trips by subscribers is less than customers (non-

subscribers). Customers are more likely to use the bicycles for recreational purposes,

which is expected to be longer than commuting trips by bicycles. The same inference

can be made with regard to trip length. Also, there is no way to find out the types

of trips (single or multimodal) or infer the origin and destination of an individualâs

trip from the data set.

5.8.2 Micromobility Stations

The station table contains 595 stations, among which 564 are either start station

or end station in the trip data set during the period of study. If a station has no

record during the time period of our study, I check if trips are available outside of that

period within 2018. If the trips are available before and after, I keep the station in the

micromobility stations table. Otherwise, I assume the station has been established

after the period of study or stopped operation before the period of study. Then,

these stations are removed from the station table. The Divvy system stations are

rather systematically distributed across the city. The average Euclidean distance to

the nearest station from each individual station is 586.38m with standard deviation

of 244.26m. The service area of each station is calculated based on network distance

and reported in figure 5.1.



63

(a)

(b)

(c)

Figure 5.4: Divvy shared bike system statistics during July 2018. (a) Hourly dis-
tribution of Divvy trips by type of users. (b) Hourly distribution of Divvy trips by
gender. (c) Duration (left), length (center), and speed (right) of trips.
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5.8.3 Synthetic Population

I use the 2010 decennial census to generate a synthetic population. Business estab-

lishment counts (CBP) data are at the county level. I disaggregated these business

counts into the census tract level in proportion to the employees population size (see

Appendix A for details). Alternatively, one can use other existing business points

of interest (POIs) data sets such as Data Axle. These business locations were used

as workplaces, which are placed along the secondary roads or intersections of local

roads. I used the LODES origin-destination statistics after aggregation from blocks

to census tracts to assign workplaces to each individual in work age. Figure 5.5 shows

the origin and destination in- and out-flows for census tracts.

Figure 5.5: Origin-destination employment statistics.

Finally, the contact network was created by connecting individuals with their social

ties at school, home, and work. The accuracy assessment of the synthetic population

for four variables (average family size, average household size, number of households

with children under 18, and number of households with individuals over 65 years old)
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is shown in figure 5.6 by measuring percentage error (equation 5.1). The vertical

axis shows the percentage errors of the synthesized attributes compared to the actual

values for 1314 census tracts (1318 census tracts exist in 2010 Cook County census

records, four of which have zero population). Each dot represents a census tract.

Average family and household sizes are shows in figure 5.6(a) and the other two

attributes are shown in 5.6(b). In general, the number of households with minors

and seniors (b) show larger margins of error. A detailed description of the errors are

available in table (5.1).

(a)

(b)

Figure 5.6: Accuracy assessment of the synthetic population. (a) Average family
size and average household size. (b) Households with age>65 and households with
age<18.

The percentage errors for the number of households with seniors ranges between

-59.52 and 129.5, and the percentage errors for the number of households with minors

ranges between -41.66 and 250. The larger standard deviation and outliers for these

variables may be due to varying number of them in group quarters and households.
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Table 5.1: Accuracy assessment of the synthetic population (based on percentage
errors).

Statistic Average family

size

Average house-

hold size

Families with se-

nior >65

Families with

children <18

Count 1314 1314 1314 1314

Mean 3.40 -0.37 2.88 10.96

Std 3.38 0.58 9.58 15.35

min -10.49 -8.35 -59.52 -41.66

Median 2.61 -0.20 1.93 10.70

Max 27.07 0.3 129.5 250

Two contact networks are created for weekdays (all edges) and weekends (household

edges only), respectively. A sub-network of a weekday is represented in figure 5.7 for

census tract 17031491400 for illustration purposes. Nodes are all individuals who live

in this census tract plus the individuals that are direct work or school contacts of these

residents from outside of this tract. The cone shaped light green edges in the large

cluster (center), for example, are work contacts to locations outside of their tract).

Six schools and daycare centers are in this census tract, which have created strong

ties among households. Note how the households are creating a link between school

and work contacts. A large number of connected components show households and

group quarters that are not connected with other households in the census tract (see

household types and group quarters in Appendix A). See how groups (households,

work and school groups) with a small number of members (<=5) are all connected

to each other. The workplace groups that are not all connected have larger than 5

members (those that are outside of the census tract are not shown for illustration

purposes). At the same time groups with larger than five members are connected
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using a small-world network mentioned earlier. 26 individuals are grouped in group

quarters within this tract which stands out in the bottom-right of the figure. We

assume all individuals that are categorized in group quarters are in a single group

and assigned to a single place. Some individuals in single member households have

no contacts at all, which is expected, given the assumptions of the model.

Figure 5.7: Census tract 17031491400 contact network. The vertices along the end
of work edges (light green) are contacts outside of their census tract. 29% of the
contacts are household, 25% are school, and 45% are work contacts (including the
ones from outside).
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5.8.4 Sensitivity Analysis and Parametrization

To study the sensitivity of the epidemic dynamics to the variations of the main pa-

rameters, I conduct sensitivity analysis. These parameters are virus inactivation time

(α), number of bikes (B), basic reproductive rate (R0), relative transmission factor ρ,

probability of sanitizing by human individuals (P snt), and fraction of stations with

sanitizing stand (D). Depending on the experiment, I implement a different number

of replications, ranging between 25-50. In general, a higher number of replications

is recommended (at least 100). However, because I use the same trips (actual mi-

cromobility trips) during the study period and because most of the variables are not

stochastic (random variables), the number of replications for the current study is still

valid. All of the sensitivity analysis results are reported while answering research

questions in the upcoming sections except for the virus inactivation time (α), which

I present hereunder.

Virus inactivation time

It is expected that the dynamics of a viral disease epidemic in micromobility systems

changes significantly by variations of virus inactivation time. Virus inactivation time

is the amount of time a virus can survive on surfaces of micromobility vehicles. If

the time period between two micromobility trips, made by a single vehicle, is more

than the inactivation time of a virus, then there is no possible route of transmission

between the individuals who ride that bicycle. Thus, in order to find out how much

this parameter affects the disease spread in Divvy system, we conduct sensitivity

analysis for this parameter by adjusting its values α =[5min, 10min, 30min, 1 hour,

2 hours, 4 hours, 6 hours, 8 hours, 16 hours, 24 hours]. Results are shows in Figure

5.8. These results show that when the inactivation time of a virus is short, even in

full blown epidemic conditions, a very small number of individuals in the population

are infected.
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(a)

(b)

Figure 5.8: Virus inactivation time impact on disease spread in Divvy system. (a)
The number of new infections per day in Divvy system. (b) The cumulative number
of infected individuals for different inactivation times. Initial conditions: R0=3, ρ=2,
α=1-day, γ=0.2, IH0 =100, IM0 =0, rep=25.

5.8.5 Micromobility Impact on Viral Disease Emergence And Dynamics

In the first research question, I aim to find how surfaces on the new micromobility

transportation systems contribute to the emergence and dynamics of viral epidemics

in urban areas. In order to answer this question, I design two scenarios. The first

scenario studies the emergence of a viral disease through micromobility in urban areas

while the second scenario studies the dynamics of disease spread.
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Emergence of viral disease through micromobility system

In the first experiment, I initialize the model with a single contaminated bicycle,

which is located in a station in the central business district (CBD) of Chicago where

the risk of infection is high due to high demand during the rush hours. Then, I count

the number of times an outbreak occurs after 40 replications. I say an outbreak occurs

when a person who has contracted the disease, out of using a contaminated bicycle,

infects at least one other susceptible host in the population. Also, I conduct a multi-

variable sensitivity analysis for R0 (0.5, 1, 1.5, 3, 5) and ρ (2, 5, 10) to experiment

with different types of viruses. In a deterministic homogeneous mixing condition, an

outbreak can only occur with R0 > 1. In network and agent based models, however,

small outbreaks are possible for that condition because the probability of infection is

calculated for each individual separately. Thus, I include R0 values under one in the

series of experiments.

The results are reported in Figure 5.9. Figure 5.9 shows the relationship between

the basic reproductive rate (left) and the relative transmission factor (right) with the

number of outbreaks. Outbreaks occur with R0=1 only when ρ=2. As expected, the

larger the basic reproductive rate, the larger the number of outbreaks. Both parame-

ters show a quadratic relationship with the number of outbreaks. It is interesting to

see that, even for small R0 values (e.g., 1 and 1.5), outbreaks are likely to happen.

Out of 40 replications, one outbreak has even occurred in a scenario with ρ=2 when

the R0=1.
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Figure 5.9: Emergence of outbreaks through micromobility. Initial conditions:
R0=(0.5, 1, 1.5, 3, 5), ρ=(2, 5, 10), α=1-day, γ=0.2, IH0 =0, IM0 =1, rep=40.

I need to highlight two important points here. First, We must be careful when

interpreting these results. The basic reproductive rate that I use in the simulations

as initial conditions provides a basic representation of a virus transmission ability.

In other words, two viruses with the same R0 may show quite different transmission

behaviors based on their intrinsic properties (e.g., respiratory and gastrointestinal)

and properties of the environment (frequency and type of the surfaces, temperature,

humidity, type of venue). Also, I define βHM and βMH relative to the βHH because I

do not have their actual rates.

Second, the scenario I designed here is an extreme case, in which only one contam-

inated bicycle is placed in the City. In a city as large as Chicago and with the size

of the Divvy system, it is likely there would be more than one contaminated bicycle

at a time. Moreover, a positive feedback exists between contamination and infection

processes, meaning new infections reinforce new bicycle contamination and vice versa.
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Thus, the role of micromobility is not limited to the emergence of a disease and we

need to study its role during the epidemic. Thus, I also design a second scenario

where I study the impact of micromobility on dynamics of disease.

Micromobility impact on dynamics of viral disease spread

In order to study the impact of micromobility on dynamics of the viral disease, I

design a worst case scenario with high basic reproductive rate (R0=3) and low relative

transmission factor (ρ=2). Going back to equation 4.9, the rate of transmission βHM

and βMH are defined relative to the transmission rate βHH using multiplication factor

ρ. ρ has a value larger than one based on explanations provided in section 5.6. At

the same time, the larger the value of ρ the lower the rate of transmission between

individual hands and bicycle surfaces and vice versa. Thus, a value of 2 for parameter

ρ corresponds to a case with high probability of virus transmission. That is why I

call a condition with R0=3, and ρ=2 a worst case scenario. Then, I measure the

infected population P at the end of the epidemic and the amount of time it takes for

a full blown epidemic to reach half its course T(mid). These two measures have been

used to evaluate the impact of public transportation on epidemics [13]. Since my

model has considered individual trips it is possible to directly measure the infections

that occur in micromobility system. I implement the scenario with and without

micromobility transportation. In this experiment, I also use a range of values for the

number of available bicycles in the system to investigate the sensitivity of dynamics

(micromobility impact) to the size of the micromobility system.

The Divvy data set has 5,874 unique bicycles during the period of the study. I

use the current bicycles and trips in the data set to impute new bikes and trips. To

create new bikes, I first calculate the number of times each bicycle in the system

has been used during the period of study. The outcome is a distribution that shows

the frequency of use for a bicycle in the system. Then, I randomly sample from

this distribution to impute new bicycles and trips. New trips are imputed similar to
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the trips associated with each sampled bicycle in the main data set. I design four

experiments with 50%, 100%, 300%, and 500% increase in the number of bicycles,

respectively.

Table 5.2: Comparison of population infected in the presence and absence of micro-
mobility.

#

bikes

# infected (micro-

mobility)

Infected micromobility

& baseline population

(P)

∆P ∆P(%)

0 0 4,474,198 - -

5,874 11,469 4,482,363 8,165 0.182

8,811 17,463 4,487,315 13,117 0.293

11,748 23,093 4,490,795 16,597 0.370

23,496 45,131 4,506,340 32,142 0.718

35,244 69,898 4,523,073 48,875 1.092

Figure 5.10 shows the cumulative number of new cases for all experiments in this

scenario. The blue curve is the dynamics of new cases for the experiment without

micromobility transportation, while the black curve represents the dynamics for the

experiment with the largest number of bicycles and trips. Compared to the experi-

ment without micromobility, the epidemic reaches its half course about one day earlier

(∆T(mid)=one day).

Table 5.2 shows the infected population and their percentage increase compared

to the controlled experiment. The maximum increase in the infected population

(∆P ) is 48,875 new cases which is about one percent increase in the extent of the

overall infected population. For the Divvy system with current number of bicycles

and trips, 8,165 (0.182%) new infections are added by the end of the epidemic. While

these results show that the impact of micromobility in the spread of the disease is



74

rather small, they are underestimated. Part of the population who would be infected

in the baseline population when the micromobility is absent, may now be infected

in micromobility. The second column in table 5.2 shows the number of infected

individuals in the micromobility system at the end of the epidemic (also see figure

5.10(b)). Comparing these numbers with ∆P (column 4) reveals that the number

of infected individuals are higher by 33-43% . This finding is important because it

shows that ∆P is not sufficient to measure the role of public transportation systems

and an individual based model such as the one presented here is needed to reveal the

actual impact of transportation systems.

Moreover, one should notice that new cases from interaction with bicycles can cause

secondary new infections in the population. Also, in the Cook County contact net-

work, 332,610 individuals have no contact. They represent families in the census who

are single individuals, are not working nor they are going to school. In the absence

of micromobility, these individuals will not be infected at all since no connections

exist between them and other individuals in the population. In the presence of mi-

cromobility, however, this part of population may be impacted by using contaminated

bicycles.

In conclusion, and based on our simulations, the emergence of viral disease through

micromobility transportation in Cook County is possible, but the overall impact of

the system on the disease dynamics in a worst case scenario, especially with the

current size, is rather small (number of infections in micromobility= 1,469 or 0.26%

of all infections, ∆T(mid)=less than an hour), but underestimated with the current

measures by 43%.
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(a)

(b)

(c)

Figure 5.10: (a) Micromobility impact on disease dynamics in terms of infected
people P and the time it takes for epidemic to reach half its course T(mid). (b)
Daily new infections in micromobility. (c) Daily new bike contamination. Initial
conditions:R0=3, ρ=2, α=1-day, γ=0.2, IH0 =100, IM0 =0, rep=25.
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5.8.6 Risk of Exposure to Viral Disease in Micromobility

In the second question, I set out to find out how geographic space and time are

organized concerning the risk of exposure to a viral disease out of using micromobility

vehicles. I design two experiments to answer this question. In the first experiment,

I study the spatial pattern of exposure risk to viral contamination in micromobility

vehicles. In the second scenario, I aim to find out how the start time of the epidemic

impacts the dynamics of the epidemic with respect to individuals who are infected by

using bicycles.

Risk of exposure in urban space

To study the spatial pattern of exposure, I track the average cumulative number of

contaminated bikes docked to each station over the course of an epidemic (2 months)

for 50 replications. The epidemic starts with 100 randomly selected infectious indi-

viduals, R0=3, ρ=2, γ=1/5, and survival time of one day. Then, I rank the stations

based on the cumulative number of contaminated bikes. Figure 5.11 shows the spatial

and temporal progress of the epidemic in terms of the cumulative number of contam-

inated bikes visiting each station during each time step. Zones are the service areas

of the shared bike stations. For station based micromobility systems, the location of

bicycles are recorded only when they are docked to a station. Thus, the color coded

values are the number of contaminated bicycles.

At the end of the epidemic, a number of stations remain not impacted, meaning

that no contaminated bicycles were docked to these stations during the epidemic.

These stations have either a small number of trips (green service areas), or have no

trips, which means they are out of service for the period of study (gray service areas).

The Global Moran’s I index for the spatial pattern of the last day of epidemic shows

a highly spatially clustered pattern (0.56), as I expect stations close to each other to

have similar exposure risks (last row, right).
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The spatially local clusters are demonstrated on the last row (right) of figure 5.11.

The spatial pattern on the last day of the epidemic (2018-07-31) shows that the risk of

exposure is higher in the central business district and northern regions of CBD where

most of the shared bike transportation occurs. Apart from stations that are out of

service, it is interesting to see a number of stations with low risk (blue clusters) in

the CBD, which is because not many bicycles are docked to these stations. I defined

a neighborhood for each station based on the inverse distance method with a 1500

meter threshold (Divvy stations are 500m apart in average) to identify the local

clusters. The threshold value can be defined based on the intervention application.

For example, later in intervention scenarios I use the high-high clusters of this pattern

to apply systematic interventions. One may use different thresholds based on the

resources available for the intervention.
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Figure 5.11: Spatial and temporal patterns of exposure risk to contaminated bicycles.
The service areas in green and gray colors (last row) have no exposure to contaminated
bicycles by the end of epidemic. Stations associated with green service areas have a
small number of trips, while stations in gray areas are out of service for the period
of study. Local clusters of high exposure areas are concentrated around downtown
and the central business district (last row, right). Initial conditions: R0=3, ρ=2,
α=1-day, γ=0.2, IH0 =100, IM0 =0, rep=50.
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Start day of epidemic impacts dynamics of disease

To determine whether the start day has an impact on dynamics of disease spread in

micromobility, I initialize the epidemic with 10 contaminated bikes on different days

of a week. All these bicycles start a trip from a station in the central business district.

Then, I record the time it takes until 20% of the census tracts in Cook County are

reached by the disease through people who are infected using a micromobility vehicle.

Results are shown in figure 5.12. According to these results, it takes about 48

days on average until 20% of the census tracts in the city are reached by the disease

through people who are infected using a micromobility vehicle when the epidemic

starts on Wednesday, Thursday, or Friday. This time is increased to 51 days for an

epidemic that starts on Saturday (Figure 5.12(b)). That means if an epidemic starts

on Saturday, it takes more time for it to reach 20% of the census tracts compared

to the time to reach that same benchmark if it starts on Friday. There is a possible

explanation for that based on both Divvy trips and baseline population relocation

with respect to the schedule of individuals. During weekends, number of trips tend

to be less than weekends. At the same time, only household contacts are present in

the baseline population. During weekdays, however, number of trips tend to be larger

compared to weekend. Moreover, the contacts in the baseline population include all

household, workplace, and school contacts. Thus, in general during the weekdays,

the disease has more opportunity to spread faster and reach the census tracts.

The same pattern of differences based on the starting day of the infection is ob-

served if I monitor the time it takes for the epidemic to reach 20% of the census

tracts (including infections outside of micromobility), but in a shorter period of time

(Figure 5.12(b)). The slight difference between the two patterns for monday, tues-

day and Wednesday is due to stochasticity in bikesharing system trips patterns. The

baseline population is assumed to have the same weekday pattern for all days. These

results confirm the importance of human mobility and social distancing in dynamics
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of epidemics.

(a)

(b)

Figure 5.12: Start day of exposure impacts the dynamics of the spread of disease
through both micromobility (a) and baseline population (b). Initial conditions: R0=3,
ρ=2, α=1-day, γ=0.2, IH0 =0, IM0 =10, rep=25.
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5.8.7 Interventions and Control

Last but not least, with my last research question, I aim to find out how inter-

vention methods and strategies, including random or systematic interventions, affect

controlling the spread of infectious diseases through micromobility vehicles. Thus,

I design two scenarios. In the first scenario, I apply a random daily disinfection of

bicycles by maintenance staff. In the second scenario, I place hand sanitizing stands

at micromobility stations either randomly and systematically across the city. Then,

I record the impact on the number of people who are infected in the micromobility

system by the end of the epidemic.

Disinfection of bicycles

For this scenario, I assume Q=5%, 15%, 25%, and 50% bicycles are randomly

disinfected by maintenance staff each day in a worst case scenario. The epidemic

starts with 100 infectious individuals, while R0 = 3 and ρ = 2. Figure 5.13 shows

the number of new infections from micromobility vehicles. Results show that, until a

significant number of bicycles are cleaned (50%), the infection in the system remains

high. Disinfection of a large number of bicycles is costly, and may not be practical

for micromobility service providers.

Figure 5.13: Random disinfection of bikes reduces the number of new infections in
the micromobility system. Initial conditions: R0=3, ρ=2, α=1-day, γ=0.2, IH0 =100,
IM0 =0, rep=25.
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Placing sanitizing stands at the stations

In this scenario, I assume that a fraction D of stations are randomly or system-

atically equipped with sanitizing stands nearby. Also, I assume people sanitize their

hands with a probability P snt after using a bicycle. In the experiment with random

strategy, I place D=(0%, 25%, 50%, 75%, and 100%) sanitizing stands at stations

randomly. When systematically placing sanitizing stands, I use the high-high clus-

ters of the exposure risk in section 5.8.7 as the target stations (25.7% of the entire

stations). Then, I place hand sanitizing at D=(0%, 25%, 50%, 75%, and 100%) of

these stations, which corresponds to D=(0%, 6.4%, 12.9%, 19.3%, 25.7%) of all the

stations. That means, in the second scenario, I do not apply any intervention on part

of the stations, those with low level of risk. Then, for both experiments, I measure

the cumulative number of people infected in the shared bike system at the end of a

worst case epidemic.

The results are demonstrated in figure 5.14. Each color represents the experiment

with a specific probability of sanitizing by cyclists. First, the relationship between

the percentage of stations with sanitizing and the number of infections is quadratic

in the case of systematic placement (first row, left) and linear in the case of random

(first row, right) distribution. The reason is that in the first case stations are also

ranked by risk of exposure. Second, the success of intervention highly depends on

both human behavior and on the presence of sanitizing equipment. If 50% of the

individuals use hand sanitizing, even when all of the stations have sanitizing stands,

one can only reduce the number of infections by 50% (first row, right). If more people

use hand sanitizing, however, the number of required sanitizing stands may reduce

to 60% (when 75% of people sanitize their hands) or less that 50% (when all people

sanitize their hands). Third, imagine the goal is to reduce infection in the system by

50% and assume that 75% of the individuals are likely to sanitize their hands after

using a bicycle. Then, in the random experiment, about 65% of the stations must be
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equipped with hand sanitizing stands (first row, right). In the systematic strategy,

however, only 25.7% of the stations must be equipped with sanitizing stand (first

row, right). Finally, by changing the distance threshold when identifying the local

clusters, one can control the number of target stations for the second experiment.

Other intervention scenarios are possible to test. For example, what if people wipe

the handlebars of bicycles before cycling, or how many stations should stop operation

to make sure no infection occurs in the system (flattening the curve).
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Figure 5.14: Placing sanitizing stand at stations by systematic (left) and random
strategies (right). Initial conditions: R0=5, ρ=2, α=1-day, γ=0.2, IH0 =100, IM0 =0,
rep=25.



CHAPTER 6: CONCLUSIONS

The main idea of this research was grounded in the realization that the efficiency in

mobility gained through novel methods of public transportation may come at the cost

of transmitting harmful pathogens and disease as people share space and surfaces in

vehicles and infrastructure. In recently popular micromobility systems, for example,

the surfaces on the bicycles or scooters are subject to germs and harmful pathogens.

The purpose of the current study was to better understand various facets of the

potential role of micromobility transportation in the spread of viral disease within

dense urban areas. To this end, I designed and implemented a novel spatially-explicit

agent-based model of spread of infectious diseases and demonstrated its applicability

in a case study of the Chicago Divvy bikesharing system.

In conclusion of the case study in Cook County, even in the extreme case where

only a single contaminated bicycle is left in the County, an outbreak can emerge.

With the current size of the Divvy system in Chicago, the impact of the system on

overall infection rates is rather small (11,469 infections or 0.26% of all infections).

However, ignoring the role of micromobility as a vector may underestimate its role in

the spread of disease by 43%. The spatial pattern of exposure risk to viruses through

micromobility follows the pattern of trips between origins and destinations (CBD

and downtown in Chicago), and the start time of the epidemic can highly impact the

dynamics of the disease. In terms of intervention methods, disinfection of bicycles

is effective only when a large portion of them are cleaned regularly. When hand

sanitizing stands are placed at stations, success highly depended on the behavior of

individuals and the availability of the equipment. Finally, by systematically placing

hand sanitizing stands at micromobility stations, one can save a large amount of
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resources compared to the random placing of sanitizing stands at stations.

The contributions of this dissertation research fall in three areas, namely public

transportation, disease transmission modeling, as well as policy and decision making.

From a public transportation perspective, this research is one of the first attempts

to thoroughly study the spread of disease within public transportation vehicles and

infrastructure by providing a platform to study the spread of disease in micromobility

systems. In the first place, the model provides a more accurate measure of the role of

public transportation in the spread of diseases by considering the vehicles as vectors.

Secondly, it is designed based on origin-destination micromobility trips and can be

adapted to other modes of transportation.

From a modeling perspective, I proposed a novel agent-based framework to study

how micromobility systems contribute to the spread of disease in urban settings. The

proposed model has multiple key components that distinguish it from existing models

in the literature. First, it was central to this research to distinguish individual humans

in the population with their spatial distribution across the urban environment, their

heterogeneity in the number of contacts, their mobility in the environment, and their

behavior while using the micromobility vehicles. I developed a baseline human contact

network with social ties derived from their home, school, and workplace relationships

to account for these considerations. Such a network was synthesized from census,

public surveys, and empirical data for the entire population in the urban area. Then,

two different networks were created for different times and days of a week.

Second, the model stands out by using historic individual micromobility trips,

which allowed me to incorporate actual spatial and temporal dynamics (e.g., sea-

sonality) of micromobility vehicles. The availability of such data was an essential

contribution to the modeling approach. Historically, agent-based models have de-

pended on simulating the behavior of individual agents. In the past few years and

with wider data availability, however, the behavior can now be entered as an input to



89

ABMs. Third, I proposed the SIR-SC model, a novel epidemic model which leverages

the previous two components and mimics vector-borne diseases modeling to calculate

the spread of viruses through micromobility systems and a large urban human contact

network for the baseline population.

Finally, from the intervention perspective, I created a platform that can be used

to test a wide range of control and intervention scenarios.

At the same time, there are some limitations in the model. Since I use actual

micromobility trips and a micro-level model with details about the spatial distribution

of population and heterogeneity of contacts, the findings may be less generalizable to

other micromobility systems.

Similar to other ABMs, evaluating the internal and external validity of the model is

a challenge. I externally evaluated the synthetic population by comparing the synthe-

sized values with the four other attributes. The large value of errors and outliers for

some census tracts are associated with the group-quarters. More information about

the age-gender structure within these groups is needed to improve the performance of

the synthetic population. Also, because types of group quarters are not available in

the census, they can cause issues related to contacts. For example, a group quarter

in jail is supposed to have no contact with individuals outside, but the current model

cannot identify those (see appendix A).

External evaluation of the spatial pattern of the exposure risk and the new infec-

tions in the population is rather not a simple task. Field sampling from surfaces on

bicycles can be conducted to evaluate the density of pathogens on surfaces and com-

pare the spatial pattern with the output of the current model. Other data sources

such as master address files and business POIs can be used to determine house and

workplace locations instead of placing them on roads by simple rules. When using

LODES data, one must be aware that all origin-destination commuting patterns made

by workers are not available in this data set.
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At the same time, it is important to keep in mind that agent-based models are not

necessarily the best way to model problems such as the one discussed in this research.

Depending on the purpose of the model, one may find simpler modeling approaches

more useful. A good rule of thumb is to start with the simplest methods and switch

to more complex approaches as needed.

Modeling frameworks such as the one presented in this research are in the early

stages. I suggest multiple interesting lines of research for the future of these types of

models.

With respect to the human contact network, I did not model all possible social

contacts for individuals. Friends and relatives and contacts made by trips with dis-

cretionary purposes (e.g., shopping, social events, restaurants, etc.) are not present

in the current contact network. The implication for the model is the spread of disease

within the population maybe highly underestimated. These contacts may be cre-

ated using existing surveys or based on data from social media and recently available

cellphone foot traffic and origin-destination.

Alternatively, one can substitute the synthetic contact networks with real contact

networks (usually based on cell phone tracking) such as the ones that are used in

contact tracing in some countries. In any case, it would be interesting to explore the

further impact of the contact network properties by sensitivity analysis of the size

of the network for different cohorts of family, school, work and other types of social

contacts.

Models like this can be calibrated to current conditions in an epidemic and provide

quick and short-term predictions, while they are highly capable of testing different

scenarios and providing suggestions. Most of the current prediction models forecast

new cases only based on the historic data. Historic data can be integrated in the envi-

ronments like the one proposed here and improve predictions by considering behavior

and other heterogeneities of population.



91

More complex properties and rules of behavior can be considered for human agents

in the model. One can add other characteristics to agents such as ability to change

their goals (e.g., schedule) or their behavior (e.g., adapting to seasonal changes by

not using micromobility vehicles or wearing gloves during winters) in response to the

events that occur during the epidemics.

Finally, environments such as the one presented here are critically needed to ex-

periment with different what-if and intervention scenarios to smartly choose the best

choices among alternatives. Let us consider an example with respect to what-if sce-

narios. What if one manipulates the number of trips to concentrate their load on

specific geographic regions (e.g., due to a sports event) and see how the mobility

pattern changes the dynamics of disease? In the absence of such a tool, it is not easy

to find answers to these questions.

Also, there are some minor areas for future research. It is interesting to distinguish

exposure risk in weekday and weekends because of the difference between trip pat-

terns. During weekends trips are likely to be for recreational purposes, so they happen

more in places such as parks. During weekdays, however, most trips are for the com-

muting purpose, so they may concentrate in places such as business districts. That

means the high risk stations may have different patterns for weekdays and weekends.

Concerning the SIR-SC transmission model, one can flexibly distinguish rates of

transmission in these groups based on the properties of these environments and calcu-

late a separate risk of infection λi,t (equation 4.4) for each venue. Moreover, one may

consider contamination sources from the environment. While calculating the adjusted

R0 was not needed for this research, it may be interesting to observe the variations of

that during epidemic by considering a variation of first-generation matrix approach

similar to [64].

I conducted a study on station-based micromobility. Particularly, it is interesting

to see how these results may change when dockless bicycles are used. Also, this
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research considered the age and gender of the individuals to assign the micromobility

trips. However, it did not make a distinction of individual vulnerability against

the viral disease. The implication for the results is that it may impact the final

number of infections since the distribution of trips changes by gender-age groups of

the micromobility users. It is also interesting to find out how the spatial pattern

of the exposure risk is associated with other transportation infrastructure and land

use such as subway and bus stations, parks, and different business sectors in future

research.
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APPENDIX A: GENERATING SYNTHETIC POPULATION WITH SOCIAL

TIES

I used the methodology proposed by [76] to generate a realistic large scale synthetic

baseline population with social ties using the census data, work and school locations

and commuting patterns. Here, I describe in detail the process of generating the

synthetic population with social ties for Cook County, IL.

The synthetic population is created in four steps:

1. Creating home, work, and school environments across geographic space,

2. Generating and assigning individual agents to households,

3. Assigning work and school locations to each individual,

4. Creating a network of social contacts based on membership in family, school,

and, workplace social ties.

A.1 Creating the Geographic Space

A.1.1 Household locations

House locations are created along the road network in Cook County1. The number

of occupied houses are extracted from census data for each census tract (number of

occupied houses equals the number of households in census). Then, they are located

50m apart on local roads (MTFCC = S1400)2. When the population density is high

they are placed on top of each other.

A.1.2 Workplace locations

Two sources of data are used to calculate the number of businesses within each tract.

County level business establishment counts (CBP) and Origin-Destination Employ-
1https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html
2see technical documentation of the TIGER data set, Appendix E, MAF/TIGERFeature

Class Code (MTFCC) Definitions athttps://www.census.gov/geographies/mapping-files/time-
series/geo/tiger-line-file.html
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ment Statistics (LODES). The CBP database is available through the US Census

Bureau County Business Patterns survey (CBP)3. CBP provides annual subnational

economic data by industry, and includes the number of business establishments, em-

ployment during the week of March 12, first quarter payroll, and annual payroll. The

number of business establishments are extracted from CBP table, but it is in county

level. Thus I need to downscale the data into census tract level. Origin-Destination

Employment Statistics (LODES) data from Longitudinal Employer-Household Dy-

namics (LEHD) program4 is used for this purpose. LEHD provides the residence and

workplace flow among blocks for the years between 2002-2019 (for this case study

I use data of 2018). The data includes all jobs covered under state unemployment

insurance law and most civilian federal employment. However, it does not cover the

self-employment, military, the US Postal Service, and informal employment5. Jobs

totals are associated with home and work Census Blocks. First the jobs totals are

aggregated into the census tract level. Then, I count the number of jobs within each

census tract and the number of jobs for the entire county. Using this new information

together with the number of businesses within each county (nworkplacestract), one

can calculate the number of workplaces within each census tract using the following

equation:

nworkplacestract = nworkplacescounty ∗
njobstract
njobscounty

(A.1)

Finally, Workplaces are placed 20m apart on secondary roads or on intersection of

local roads (MTFCC = S1200, S1400).
3https://www.census.gov/programs-surveys/cbp.html
4https://lehd.ces.census.gov/
5https://ideas.repec.org/p/cen/wpaper/14-38.html
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A.1.3 School locations

School locations are extracted from the United States Environmental Protection

Agency (EPA), Office of Environmental Information6. The data set is called ORNL_Education,

which is collected by Oak Ridge National Laboratory and includes colleges and uni-

versities, supplemental colleges, private schools, public schools and day care centers.

Location, enrollment, and grade of Private schools, public schools, and daycare homes

were extracted and all used as school locations in the model.

Figure A.0 shows some example census tracts with simulated house, workplace,

and school, as well as actual public bicycle stations in Cook County, IL.

(a)

6(https://geodata.epa.gov/arcgis/rest/services/OEI/ORNLEducation/MapServer)
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(b)

(c)

Figure A.0: Sample census tracts.
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A.2 Generating and Assigning Individual Agents to Households

In order to create synthetic population, one needs to simulated every individual and

then place them in the households. I use two sets of information from the decennial

census tables to generate individuals and assign them to households. The first one is

age and sex groups and the second one is the household types. Within census tables

individuals are divided into two sex types each with 18 age groups. Thus, within

each census tract the number of individuals for 36 sex-age groups are available. For

each census tract, individuals within these sex-age categories are generated. Then,

we need to populate the households with these individuals.

Within census tables, population is divided into household and group quarters.

Two types of each group exist in the tables. Households are divided into family

and non-family households and group quarters are divided into institutionalized and

non-institutionalized groups. Family households include, husband and wife with and

without children under age 18, male householder with and without children under age

18, and female householder with and without children under age 18 (1-6). Non-family

households are divided into non-family groups (e.g. friends, unmarried couple), male

younger and older than 65, and female younger and older than 65 (6-11). These

11 household types together with group quarters (both group quarter types are con-

sidered together as category 12) are generated for the Cook County and randomly

assigned to household locations in section A.1.1. For simplicity, I call all these cate-

gories as households.

Using the first 11 household types, and a few other constraints imposed by Amer-

ican Community Survey (ACS) family arrangement data7, individuals are assigned

to households. First, the head of a household is assigned to each household based

on household type constraints, where the sex and age of the head is stochastically

derived from the ACS Families and Living Arrangements tables 2018 age and sex
7https://www.census.gov/data/tables/2018/demo/families/cps-2018.html
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distribution of householders (nationally). Then, for household types with married

couples, a simple rule is defined to add the wife or husband of a householder (−4 <

husband age − wife age < 9)[76].

For the households with children under 18, the number of children is stocahstically

defined by distributions extracted from ACS Families and Living Arrangements 2018.

Group quarters are considered as one single population within each county and are

placed to the same location. I did not distinguish different group quarters from each

other. One may extract them using ACS tables related to group quarters (Tables

B26101, B26201). To illustrate the importance of group quarters in creating synthetic

population, let us consider an example. The largest group quarter in Cook County is

located in census tract 17031843500 (Cook County Department of Corrections) with

10,273 individuals belong to this group out of 11,309 residents. However, we do not

expect individuals in a jail to have connections with outside. There is no way in the

model to account for that unless we know the types of a group quarter.

A.3 Assigning Work and School Locations to Each Individual

Individuals in work-age are randomly assigned to a working location within a tract

using the LEHD origin-destination statistics. Employee size of the establishments is

considered lognormal within each tract8. Schools are assigned based on grade and

enrollment levels. School-age agents are assigned to the nearest school within 30 km

distance to their home location if a spot is available for their age. Otherwise, they

are assigned to the school with the lowest enrollment.

A.4 Creating a network of social contacts

Based on their connections in household, school, and workplace, individuals are

linked to each other. When the size of population within one of these places is higher

than 5, a small-world network is created.

8https://www.aeaweb.org/articles?id=10.1257/aer.97.5.1639


