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ABSTRACT

VAHID IZADI. Towards Explainable Robots: Developing Consensus Reaching
Mechanisms for Co-Robots in Haptic Shared Control Paradigms. (Under the

direction of DR. AMIRHOSSEIN GHASEMI)

Human-automation teaming (HAT) is gaining importance in military and commercial

applications with autonomous vehicles because it promises to improve performance,

reduce operating and designing platforms’ costs, and increase adaptability to new situ-

ations. Given that both humans and automation systems are subject to misses, faults,

or errors, to ensure the HAT performance in unpredictable conditions, it is critical

to address the hand-off problem – how to transition control between a human driver

and automation system. Current solutions for control transfer in semi-automated

ground vehicles face issues such as prolonged transfer time, misinterpretations or

misappropriations of responsibility, and incomplete or inaccurate understandings of

the vehicle and environment state. Transitions involving such issues are often bumpy

and implicated in safety compromises.

This dissertation focuses on addressing these issues by designing and testing an

adaptive haptic shared control wherein a driver and an automation system are phys-

ically connected through a motorized steering wheel. We model the structure of the

automation system like the structure of the human driver, including a higher-level

intent generator and lower-level impedance controller. In the first part of this dis-

sertation, we developed a nonlinear stochastic model predictive approach (SMPC) to

determine how automation’s impedance should be modulated in different interaction

modes to enable the smooth and dynamic transition of control authority between hu-

mans and automation systems. The cost function in this SMPC is defined to maximize

task performance and minimize the disagreement between humans and automation

within different interaction modes. To solve the optimal control problem, first, we em-

ployed the polynomial chaos (PC) approach to construct a deterministic surrogate for
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the stochastic MPC problem of adaptive HSC. Then, we employed the continuation

generalized minimum residual (C/GMRES) solver that provides an iterative algo-

rithm to solve the nonlinear model predictive controller. Finally, a set of numerical

and experimental results are demonstrated to evaluate the performance of the pro-

posed adaptive haptic shared control framework. The numerical results demonstrate

that when the human control command is sufficient for avoiding the obstacle, the

disagreement between the human and automation systems can be reduced by modu-

lating and adopting smaller values for the impedance controller. On the other hand,

when the human control command is insufficient, the automation system gains con-

trol authority by modulating and adopting larger values for the impedance controller

parameters. It ensures the safety of the obstacle avoidance task. We also performed

tests with processors in the loop (PIL) to show that the proposed predictive controller

can compute the optimal modulation policy in real-time. The PIL results show high

computational speed and numerical accuracy for the proposed method using low-cost

microcontrollers. Finally, we quantified the performance of an adaptive haptic shared

control through a set of human-subject studies using a fixed-base driving simulator.

We invited 27 participants to drive a simulated vehicle through a course with ob-

stacles. For forty percent of these obstacles, the human is instructed to avoid the

obstacles in a similar direction as the automation system. For the other sixty percent

of the obstacles, the human driver is instructed to take an opposite direction than

the automation system to avoid the obstacle. We compare the performance of the

adaptive haptic shared control with two other shared control schemes named assistive

haptic shared and active-safety haptic shared control schemes. The automation sys-

tem weighs the error term between the steering angle and the driver’s desired steering

command in the Assistive mode. This mode represents a case where the automation

has relatively high confidence in the driver. The automation system weighs the er-

ror term between the steering angle and the automation’s desired steering command
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in the Active-Safety mode. This mode represents a case where the automation has

relatively low confidence in the driver. In the adaptive haptic shared control, the au-

tomation adaptively assigns different weights to the error terms based on the human

impedance. Here, we used the human grip force as a proxy to estimate the human

impedance on the steering wheel. We compared the performance of these three shared

control schemes by analyzing five metrics, including obstacle hits and metrics related

to driving maneuvers around the obstacles that were avoided. Our statistical analysis

indicated that the adaptive haptic shared control paradigm supports the best overall

team performance in resolving a conflict between the driver and automation system

while keeping the vehicle safe.

In the second part of this dissertation, we studied the principles of convention

formation in a haptic shared control framework to narrow down the many possible

strategies for resolving a conflict to those that a driver might be more gravitated. To

this end, we proposed a modular platform to separate partner-specific conventions

from task-dependent representations and use this platform to learn various forms of

conventions between a human-driver and automation system. We assumed the hu-

man and automation steering commands could be determined by optimizing a set

of cost functions in this platform. For each agent, the cost function is defined as

a combination of hand-coded features and vectors of weights. We argue that the

hand-coded features can be selected to describe task-dependent representations. On

the other hand, the weight distributions over these features can be used to determine

the partner-specific conventions. Using this platform, we created a map of human-

automation interaction outcomes to the space of conventions. Finally, an adaptable

automation system is designed to reach a desirable shared convention using the con-

vention map. In particular, we developed a reinforcement-learning-based model pre-

dictive controller to enable the automation system to learn complex policies and adapt

its behavior accordingly. To this end, we designed an episode-based policy search us-
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ing the Deep Deterministic Policy Gradients agent to determine automation’s cost

function’s optimal weights vector distribution. We applied the proposed platform to

the problem of intent negotiation for resolving a conflict. Specifically, we considered a

scenario where both humans and automation detect an obstacle but choose different

paths to maneuver around the obstacle. The simulation results demonstrate that the

convention-based handover strategies can successfully resolve a conflict and improve

the performance of the human-automation teaming.



vii

DEDICATION

This work is dedicated first to my parents, Hossein Izadi and Akram Farahani, who

provided the much-needed motivation to keep me focused on the finish line.

Secondly, to my brothers, Saeed and Masud Izadi and my sisters, Nahid and Mahnaz

Izadi. Without the continual support and love they provided throughout my life, this

would not have been possible.

And finally, to my loving wife and daughter, Rahele Jabari and Sida Izadi, for being

my cheerleaders throughout my Ph.D. endeavor.

Thank you all



viii

ACKNOWLEDGEMENTS

Over the past years in the mechanical engineering and engineering science depart-

ment, I have had the great privilege of studying and learning under my advisor, Dr.

Amirhossein Ghasemi. He has provided significant guidance and support as my Ph.D.

supervisor throughout these years. His knowledge about the human-robot interaction

and his practical experiences were a conducive light to my research. In the pandemic

situation caused by Covid-19, Dr. Ghasemi was constantly and patiently leading me

to simulate the system and implement it on the different types of processors.

I would like to thank my labmates Pouria Karimi Shahri and Daniel Saraphis for

their help on the human subject tests.

I would also like to thank my committee members, Dr. Scott Kelly, Dr. Stuart Smith,

and Dr. Artur Wolek, for their support throughout this process.



ix

TABLE OF CONTENTS

LIST OF TABLES xii

LIST OF FIGURES xiii

CHAPTER 1: Introduction 1

1.1. Hand-off Problem in Shared Control Paradigms 2

1.2. Haptic Shared Control 4

1.3. Convention-based Control Transfer Mechanisms 7

1.4. Problem Statement 9

1.5. Thesis Structure and Outcomes 10

References 12

CHAPTER 2: (PAPER 1) Modulation of Control Authority in Adaptive
Haptic Shared Control Paradigms

26

2.1. Introduction 26

2.2. Adaptive Haptic Shared Control Framework 29

2.2.1. Equations of Motion 30

2.3. Impedance Modulation Controller Design 35

2.3.1. Continuation method 41

2.3.2. Forward difference GMRES method 42

2.3.3. Combination of continuation and GMRES 42

2.4. Simulation Studies and Discussions 46

2.5. PIL implementation 56

References 59



x

CHAPTER 3: (PAPER 2) Quantifying the Performance of an Adaptive
Haptic Shared Control Paradigm for Steering a Ground-Vehicle

68

3.1. Introduction 68

3.2. Method 71

3.2.1. Participants 71

3.2.2. Apparatus 72

3.2.3. Control System Design 74

3.2.4. Experimental Conditions 78

3.2.5. Performance Metrics 80

3.2.6. Data Analysis 82

3.3. Results 83

3.3.1. RMS Lateral Deviation 83

3.3.2. Differential Torque 86

3.3.3. Obstacle Hits 92

3.3.4. Safe Approach Distance 97

3.3.5. Peak Excursion 99

3.4. Conclusions 102

References 104

CHAPTER 4: (PAPER 3) Learning and Leveraging Conventions in the
Design of Haptic Shared Control Paradigms for Steering a Ground
Vehicle

111

4.1. Introduction 111

4.2. Adaptive Haptic Shared Control Framework 115



xi

4.3. Convention Formation through Intention Negotiation 119

fromDistinguishing Partner-specific Conventions4.3.1.
Task-dependent Representations

120

4.3.2. Characterization of Convention Maps 122

4.3.3. Design an Adaptable Automation System 125

4.4. Numerical Simulations and Discussion 128

4.5. Conclusions 137

References 138

CHAPTER 5: CONCLUSIONS 147

5.1. Recommendations for Future Works 150

Appendix: C/GMRES Solver 153



xii

LIST OF TABLES

TABLE 2.1: Numerical values for the system parameters in the simulation 48

TABLE 2.2: PIL results for the Low-level controller in active safety and
assistive modes

59

TABLE 3.1: The part list for the driving simulator setup 73

TABLE 3.2: Intent types and the displayed impedance level to partici-
pants on the monitor

79

TABLE 3.3: Mean and Standard Error (S.E.) values of RMS Lateral
Deviation

85

TABLE 3.4: Mean and Standard Error (S.E.) values of the maximum
measured differential torque

93

TABLE 3.5: Mean and Standard Error (S.E.) values of numbers of hits 93

TABLE 3.6: Mean and Standard Error (S.E.) values of Safe Approach
Distance

97

TABLE 3.7: Mean and Standard Error (S.E.) values of Peak Excursion 100

TABLE 4.1: Numerical values for the system parameters in the simulation 130



xiii

LIST OF FIGURES

FIGURE 1.1: A schematic a haptic shared control paradigm 4

FIGURE 1.2: A conflict sample for the shared driving task between human
driver and automation.

6

FIGURE 2.1: A general model of control sharing between driver and au-
tomation.

30

FIGURE 2.2: (A) Free body diagram of a haptic shared steering control,
(B) A block diagram is laid out to highlight the interaction ports
between subsystems. [9]

31

FIGURE 2.3: C/GMRES method’s flowchart 44

FIGURE 2.4: The detailed block diagram of the adaptive haptic shared
control paradigm including the higher level controller, the automa-
tion’s lower-level controller and Laplace block diagram of the haptic
interface.

45

FIGURE 2.5: The outputs of the driver and automation system in-
teraction within non-adaptive and adaptive haptic shared control
paradigms are compared. (A) driver intent (red), autonomous sys-
tem intent (blue) and steering column angle (black) (B) Measured
torque (black), human torque (red) and automation torque (blue)
(C) Damping coefficients of the agents (D) Stiffness coefficients of
the agents. The automation system act as assistive in an uncooper-
ative mode in the adaptive haptic shared control paradigm. By re-
ducing the automation’s impedance controller gains, the automation
system reduces the disagreement between the human and automa-
tion system. The shaded bands for θS, KA, and BA represent the
95% confidence intervals.

50



xiv

FIGURE 2.6: The outputs of the driver and automation system in-
teraction within non-adaptive and adaptive haptic shared control
paradigms are compared. (A) driver intent (red), autonomous sys-
tem intent (blue) and steering column angle (black) (B) Measured
torque (black), human torque (red) and automation torque (blue)
(C) Damping coefficients of the agents (D) Stiffness coefficients of the
agents. The automation system act as assistive in an uncooperative
mode in the adaptive haptic shared control paradigm. The automa-
tion system provides enough control input for obstacle avoidance by
increasing the automation’s impedance controller gains. The shaded
bands for θS, KA, and BA represent the 95% confidence intervals.

52

FIGURE 2.7: The outputs of the driver and automation system in-
teraction within non-adaptive and adaptive haptic shared control
paradigms are compared. (A) driver intent (red), autonomous sys-
tem intent (blue) and steering column angle (black) (B) Measured
torque (black), human torque (red) and automation torque (blue)
(C) Damping coefficients of the agents (D) Stiffness coefficients of
the agents. The automation system act as assistive in a cooperative
mode in the adaptive haptic shared control paradigm. By reducing
the automation’s impedance controller gains, the automation sys-
tem reduces the disagreement between the human and automation
system. The shaded bands for θS, KA, and BA represent the 95%
confidence intervals.

53

FIGURE 2.8: The outputs of the driver and automation system in-
teraction within non-adaptive and adaptive haptic shared control
paradigms are compared. (A) driver intent (red), autonomous sys-
tem intent (blue) and steering column angle (black) (B) Measured
torque (black), human torque (red) and automation torque (blue)
(C) Damping coefficients of the agents (D) Stiffness coefficients of
the agents. The automation system act as active safety in a coop-
erative mode in the adaptive haptic shared control paradigm. By
increasing the automation’s impedance controller gains, the automa-
tion system provides enough control input for obstacle avoidance.
The shaded bands for θS, KA, and BA represent the 95% confidence
intervals.

55



xv

FIGURE 2.9: The human and automation’s interaction in the four interac-
tion modes. The sequence of these interaction modes is cooperative-
active safety (shaded blue), uncooperative assistive (shaded orange),
uncooperative-active safety (shaded yellow), and cooperative-auto pi-
lot mode (shaded green). The outputs of the driver and automation
system interaction within non-adaptive and adaptive haptic shared
control paradigms are compared. (A) driver intent (red), autonomous
system intent (blue) and steering column angle (black) (B) Measured
torque (black), human torque (red) and automation torque (blue)
(C) Damping coefficients of the agents (D) Stiffness coefficients of
the agents. In the proposed adaptive haptic shared paradigm, by
recognizing the interaction mode, the appropriate set of weights for
the cost function can be determined, and automation can continu-
ously adjust its impedance controller parameters such that not only
the safety is ensured, but also the customizability feature of the au-
tomation system is improved.

57

FIGURE 2.10: (A) The experimental PIL test setup, (B) The block dia-
gram of the PIL setup

58

FIGURE 3.1: A schematic of a haptic shared control where both hu-
man and automation collaboratively control the steering of a semi-
automated ground vehicle.

70

FIGURE 3.2: Experimental setup of the fixed-base driving simulator with
magnified road display on monitor.

73

FIGURE 3.3: An overview of the road trajectory (blue line), automation’s
intended trajectory (dotted black line), measured experiment (green
line) and obstacles (read circles)

74

FIGURE 3.4: The performance metrics Approach Distance, RMS Lateral
Deviation, and Excursion Peak are demonstrated in a typical obsta-
cle avoidance trajectory. (a) The intersection of Expanded Obstacle
Boundary (white lines) and vehicle path (solid black line) defines
points A and B as threshold crossing points. The description of the
Approach Distance is the length between point A and obstacle center
(O) along the centerline. (b) The RMS value of the Lateral Devia-
tion of the vehicle from the centerline is calculated for the sampled
values (starting at point A and ending at point B) denoted by e1, ...,
eN . The Peak Excursion is defined as the absolute maximum Lateral
Deviation of the vehicle around the obstacle.

81



xvi

FIGURE 3.5: The driving trajectories of the vehicle are depicted in the
road trajectory coordinate with an obstacle as an origin (a red half-
circle). The shaded bands represent the 90% confidence intervals,
while the solid line represents the mean value of the measured data
from participants. The first three columns are dedicated to a specific
shared control scheme (Assistive Adaptive Haptic Shared Control,
and Active-Safety,). The last column demonstrates the measured grip
force on the steering. Rows are based on the cooperation/impedance
status of the automation system and the human driver. The first row
illustrates the cooperation between the human driver and the recom-
mended value for the grip force on the steering is high impedance.
The second, third and fourth rows are cooperative-Low impedance,
uncooperative-high impedance and uncooperative-low impedance in-
teraction modes.

84

FIGURE 3.6: RMS value for Lateral Deviation of the vehicle from the
centerline for each shared control scheme containing all interaction
modes between the human driver and the automation system. The
asterisks on the lines linking two bars indicate a significant difference
between the two control schemes.

85

FIGURE 3.7: RMS value for Lateral Deviation of the vehicle from the cen-
terline for each shared control scheme grouped by interaction mode
between the human driver and the automation system.

86

FIGURE 3.8: RMS value for Lateral Deviation of the vehicle from the cen-
terline for each interaction mode grouped by shared control scheme
between the human driver and the automation system.

87

FIGURE 3.9: The measured differential torque between the human driver
and the autonomous system is depicted in the road trajectory coor-
dinate with an obstacle as an origin (a thick red line). The shaded
bands represent the 90% confidence intervals, while the solid line rep-
resents the mean value of the measured data from participants. The
first three columns are dedicated to a specific shared control scheme
(Active-Safety, AssiSstive and Adaptive Haptic Shared Control). The
last column demonstrates the measured grip force on the steering.
Rows are based on the cooperation/impedance status of the automa-
tion system and the human driver. The first row illustrates the co-
operation between the human driver and the recommended value for
the grip force on the steering is high impedance. The second, third
and fourth rows are cooperative-Low impedance, uncooperative-high
impedance and uncooperative-low impedance interaction modes.

88



xvii

FIGURE 3.10: Measured differential torque between the human driver
and the automation system for each shared control scheme grouped
by interaction mode between the human driver and the automation
system

90

FIGURE 3.11: Measured differential torque between the human driver
and the automation system for each interaction mode grouped by
shared control scheme between the human driver and the automation
system.

91

FIGURE 3.12: Measured differential torque between the human driver
and the automation syste for each shared control scheme containing
all interaction modes between the human driver and the automation
system.

92

FIGURE 3.13: Percent Obstacle Hits for each shared control scheme
grouped by interaction mode between the human driver and the au-
tomation system.

94

FIGURE 3.14: Percent Obstacle Hits for each interaction mode grouped
by shared control scheme between the human driver and the automa-
tion system

95

FIGURE 3.15: Percent Obstacle Hits for each shared control scheme con-
taining all interaction modes between the human driver and the au-
tomation system. The asterisks on the lines linking two bars indicate
a significant difference between the two control schemes.

96

FIGURE 3.16: Safe approach distance value for each shared control
scheme grouped by interaction mode between the human driver and
the automation system.

98

FIGURE 3.17: Safe approach distance value for each interaction mode
grouped by shared control scheme between the human driver and the
automation system.

98

FIGURE 3.18: Safe Approach Distance value for each shared control
scheme containing all interaction modes between the human driver
and the automation system.

99

FIGURE 3.19: Peak excursion value in each shared control scheme
grouped by interaction mode between the human driver and the au-
tomation system.

100



xviii

FIGURE 3.20: Peak excursion value in each interaction mode grouped by
shared control scheme between the human driver and the automation
system.

101

FIGURE 3.21: Peak excursion value for each shared control scheme con-
taining all interaction modes between the human driver and the au-
tomation system.

102

FIGURE 4.1: A schematic of a haptic shared control paradigm. The
human and automation are modeled as two-level controller that their
dynamics are coupled through the steering wheel.

116

FIGURE 4.2: Demonstration of a scenario when both human and automa-
tion systems select a different path for avoiding obstacle

119

FIGURE 4.3: Schematic diagram of the DDPG with the system states as
the input for actor and critic networks.

126

FIGURE 4.4: Competitive-Cooperative cost functions values for lower-
level interaction modes. The columns represent the interaction mode,
and the rows depict the cooperative/competitive cost values from the
Nash solution. In each surface has wH, wH and VCoop/VComp coordi-
nates axis. The color-bars demonstrate the range for each surface
based on its minimum and maximum value.

131

FIGURE 4.5: The outputs of the human and automation interaction asso-
ciated with the three points shown with red, blue and orange circles
in the neutral interaction mode (ZH = ZA). The surfaces represent
the convention map’s cooperative (right-top) and competitive (right-
bottom) surfaces. The plots on the second column represent the
lateral deviation of the vehicle from the centerline of the road. The
last column is for the differential torque between the human driver
and the automation system. The human drivers’ behavior identifies
each row based on his/her weight for the right directionwHR.

132

FIGURE 4.6: The outputs of the human and automation interaction asso-
ciated with the three points shown with red, blue and orange circles in
the assistive interaction mode (ZH = 10ZA). The surfaces represent
the convention map’s cooperative (right-top) and competitive (right-
bottom) surfaces. The plots on the second column represent the
lateral deviation of the vehicle from the centerline of the road. The
last column is for the differential torque between the human driver
and the automation system. The human drivers’ behavior identifies
each row based on his/her weight for the right directionwHR.

133



xix

FIGURE 4.7: The outputs of the human and automation interaction asso-
ciated with the three points shown with red, blue and orange circles
in the active-safety interaction mode (ZH = 0.1ZA). The surfaces
represent the convention map’s cooperative (right-top) and compet-
itive (right-bottom) surfaces. The plots on the second column rep-
resent the lateral deviation of the vehicle from the centerline of the
road. The last column is for the differential torque between the hu-
man driver and the automation system. The human drivers’ behavior
identifies each row based on his/her weight for the right directionwHR.

134

FIGURE 4.8: Schematic diagram of the DDPG-based intent adaptation
approach. The DDPG agents receive the observations from the
model, lower-level and higher-level controller and generate updated
wA.

135

FIGURE 4.9: RL-based intent adaptation for the case that the human
and automation system have the same impedance. The first column
demonstrates the convention map with the cooperative and compet-
itive cost values. The second column shows the lateral deviation,
differential torque and the cost weights ωAR and ωHL. The red cir-
cle on the convention map is the initial weight value, and the green
circle is the adapted weight value.

136



CHAPTER 1: Introduction

The main goal in human-robot teaming is to combine the best features of a human

(e.g., perception, judgment) with the speed, accuracy, and tirelessness of automa-

tion to solve complex problems rapidly [1, 2, 3, 4, 5, 6]. However, the partnership

between the human driver and the automation system can potentially present some

challenges because the two types of intelligence are not symmetrical (a gap between

the world as a human sees it vs. the world as modeled by the automation) [1, 6, 7]. A

key factor in designing a successful human-automation team is to create a paradigm

wherein both humans and automation are able to maintain their mode awareness

[8, 9]. Mode awareness includes knowledge and understanding of (i) system status

(active/armed/engaged/off), (iii) (changes in) system goals/intentions/targets, (ii)

control modes (strategies for achieving goals), (iv) actual control inputs made by the

system, and (v) problems/challenges faced by the automation or driver. A loss of

mode awareness is more likely to occur in highly dynamic high-tempo circumstances,

when the automation operates at very high levels of autonomy for extended periods

and when system status and/or behavior changes in the absence of immediately pre-

ceding human input [10, 9]. To support mode awareness, recent research studies have

been focused on four main themes: (1) development of models that capture human

intent [11, 12, 13, 14, 15], (2) development of algorithms that can identify the system

status (e.g., cooperative vs. uncooperative mode) [16, 17, 18, 19, 20], (3) develop-

ment of interfaces that allows bi-directional communication between the two agents

[21, 22, 23, 24, 25], (4) development of algorithms that support negotiation and arbi-

tration of control authority between human and automation system [26, 27, 28, 29].

This project addresses a series of challenges associated with the fourth category and
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develops new algorithms that support the intuitive exchange of control authority

between a human and an automation system.

1.1 Hand-off Problem in Shared Control Paradigms

Numerous companies and academic groups are pushing to develop autonomous

vehicles to free up attention for drivers and improve safety on the road. However,

barriers remain to the deployment of fully autonomous vehicles, given current au-

tomation capabilities and the likelihood of encountering conditions for which the

automation cannot guarantee safety. While the challenge of meeting human capabil-

ities for sensing, perceiving, and predicting the road’s environment is formidable, the

hand-off problem is the main problem– how to transition control between a human

driver and an automation system.

Supervisory control [30] involves delegating lower-level tasks to automation while

the human operator monitors performance and stays engaged in higher-level tasks. In

driving, however, a supervisory role for the driver is difficult to define, and transitions

may become bumpy when necessary to re-delegate authority to the driver because the

control challenge has exceeded automation capabilities. Rather than separating and

delegating control responsibilities, sharing control between a driver and automation

has been suggested as a more flexible authority structure that offloads portions of

the driver’s task yet supports rapid authority transitions when the need arises. The

supposition is that by asking two agents to simultaneously perform the same task and

share responsibility for performance outcomes, conditions are created that support

rapid control authority transitions. A second supposition is that cooperating on the

task requires less effort than performing the task alone. It is also possible that by

having the humans stay “in the loop” on the primary task, they are better positioned

to monitor safety and initiate a take-over when necessary. Other advantages are

discussed in [31, 32, 33].

Various shared control schemes have been proposed, differing primarily according
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to how control authority is transitioned between the two agents [34, 35, 36, 37]. These

schemes can be categorized into two main categories: switch-based control schemes

and continuous control schemes [3, 30, 38]. Switched-based, also known as Traded

Control schemes [39], which involve complete, wholesale hand-offs of control author-

ity between driver and automation can only be deployed in the absence of sudden

and rapid transitions [31]. Depending on the scheme, transfers may be initiated by

the human driver, by the automation system, or by a separate arbitration algorithm

[37, 35, 36]. Switched-based control schemes involve issues such as a protracted-time

interval required for full transfer, misinterpretation or misappropriation of responsi-

bility (called mode errors), and incomplete understanding of the environment state

(loss of situation awareness) [40, 2, 37].

To address these issues, various schemes have been proposed under which the con-

trol authority is continuously shared between humans and automation to address

these shortcomings. Two main groups of these schemes are input-mixing control and

haptic shared control [41, 42, 43, 44, 45, 46, 47, 48]. The main difference between these

two paradigms is that haptic shared control paradigms involve a dynamic coupling

between a human driver and automation through the steering wheel. In contrast,

the input-mixing paradigms do not involve such a coupling. The dynamic coupling

allows the driver to remain bodily in the loop, with his/her hands on a motorized

steering wheel. A valuable feature of haptic shared control is that the role (e.g.,

leader/follower) played by each agent and the level of authority held by each agent

(how much control an agent exerts) is a dynamic outcome of the interaction between

the two agents and the vehicle [49, 50, 51, 52]. The feature of role and level of au-

thority being outcomes of the interaction in haptic shared control is in sharp contrast

to the control sharing paradigm of input mixing, where a third party imposes the

level of authority (an agent or algorithm that assesses current threat) and potentially

make the haptic shared control to be more robust to automation’s misses, and faults
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[41, 44, 42, 53, 34].

1.2 Haptic Shared Control

The control sharing scheme called Haptic Shared Control takes its inspiration from

two humans cooperating on a manual task, for example, moving a piece of furniture

[54, 42]. Figure 1.1 demonstrates a schematic of a haptic shared control paradigm

in the context of steering control of a semi-automated vehicle. Here, three entities

each impose a torque on the steering wheel: τH by a driver through his hands, τA

by an automation system through a motor, and τV by the road through the steering

linkage. The driver can be considered as a hierarchical two-level controller in which the

upper-level control represents the cognitive controller, and its output, θH is the driver’s

intent. The lower level represents the human’s biomechanics which its parameters zH

can vary over time (e.g., with muscle co-contraction). Similarly, the automation

system can be modeled as a higher-level controller (AI) coupled with a lower-level

impedance controller with the modest gain zA [55, 56, 56, 57, 58].

Figure 1.1: A schematic a haptic shared control paradigm
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In the haptic shared control paradigm, the steering wheel’s dynamics is the arbiter

of authority in the haptic shared control paradigm. The human driver can increase

the impedance zH by increasing the steering grip and co-contracting the muscles to

override the automation system and can reduce the impedance by decreasing the

steering grip and relaxing the muscles (while keeping hands on the wheel) to yield

control to the automation system. Whether active or relaxed, the human driver can

monitor the actions of the automation system through haptic feedback [59, 60, 45, 61].

A majority of Haptic Shared Control designs are only concerned with human-

automation cooperation at the “operational level" (or the “control level") [62, 63]. In

automotive systems, cooperation at the “operational level" involves collaboratively

generating a trajectory or a path using both the automation and driver inputs to

determine the final steering wheel angle [62]. Although such embodiment of Haptic

Shared Control still provide a smooth shift of authority during driving, they can suf-

fer from conflicts between the driver and the automation that arise when there is a

difference between the actions and intentions of the human driver and the automa-

tion system. Conflicts are undesirable as they can cause annoyance, can deteriorate

driving performance, and, in worst-case scenarios, can result in accidents [64, 62].

For instance, consider a scenario when the human and automation see an obstacle

but decide to maneuver around different sides of the obstacle (see Figure 1.2). If

both human and automation applies the same torque but in the opposite direction on

the steering wheel, they cancel out each other’s input, and the vehicle would hit the

obstacle. In addition, to reverse intent conflict, the other forms of conflict can be in

the form of (i) one agent does not provide any control inputs (e.g., one agent doesn’t

detect an obstacle), (ii) too much, or too little inputs (e.g., two agents has different

perceptions from the size/position of an obstacle), (iii) control inputs arrive too early

or too late, and (iv) additional inputs cause conflict (e.g., disturbance feedback from

the road).
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Figure 1.2: A conflict sample for the shared driving task between human driver and
automation.

To resolve such a conflict, the automation can either select a lower impedance and

yield the control to the human driver or adopt a higher impedance and gain the control

from the human driver. However, there is a trade-off between the control authority

provided to an agent (driver or automation) and the fault protection provided by

the other agent [65]. For example, the protection against driver faults would be high

for high impedance automation. However, the protection against automation faults

may be low because the human driver can not provide sufficient torque to override

the automation’s commands. On the other hand, for low impedance automation,

protection against driver faults provided by the automation would be low. Therefore,

it seems necessary that automation should be able to adjust its impedance adaptively

to have maximum protection against both human and automation errors.

To determine how the automation system shall modulate its impedance param-

eters, a wide range of research has been conducted [66, 29, 67, 68, 69, 50, 51, 70,

71, 72, 73, 74, 75, 76, 77, 78]. Two main streams of these approaches are non-

learning-based control methodologies, wherein a set of predefined control laws is used

to modulate impedance controller parameters [79, 80, 81] and learning-based control

methodologies, wherein data-driven approaches are exploited for optimally varying
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the impedance parameters [71, 82, 83, 75, 84]. In this dissertation, we also defined a

non-learning algorithm in the context of steering control of a semi-automated vehicle.

The main limitations of the non-learning-based approaches are their limited applica-

bility because human-automation dynamics is hard-to-model and uncertain. Consider

the uncertainty description in the form of a bounded set, and safe interaction is often

achieved at the expense of closed-loop performance [85, 86, 87]. The learning-based

approaches can be categorized into two main families of model-free and model-based

approaches [88, 89, 75, 71]. The main limitation of model-free learning approaches

is that these algorithms are computationally expensive to train, which often limits

their application. Therefore, a promising direction is to employ model-based learning

approaches [88, 89, 90, 91] to optimally modulate the automation’s impedance pa-

rameters. In the future, we plan to integrate the impedance modulation algorithms

developed in this dissertation with a series of learning-based approaches to further

improve the performance of HAT in resolving a conflict.

1.3 Convention-based Control Transfer Mechanisms

Balancing between the driver’s preference and the joint task’s safety in a haptic

shared control may result in several possible handover strategies that differ mainly

in human and automation’s shared conventions. Here, we define conventions as the

shared knowledge that emerges from repeated interactions [92]. Consider a scenario

when the human and automation see an obstacle but decide to maneuver around

different sides of the obstacle (see Figure 1.2). There are three possible solutions

to resolve such a conflict (different maneuver directions for avoiding the obstacle).

Specifically, the automation can apply a lower torque and yield the control to the

human driver. On the other hand, the automation can apply a higher torque and gain

control from the human driver. Also, the automation can adapt its desired path and

select a path similar to the human driver. Since the human driver is a non-stationary

partner, it is important to study the principles of convention formation so that we
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can design an adaptable automation system that can (to some extent) personalize its

behavior to the human partner.

To study convention, a wide range of approaches such as the theory of mind,

game theory, and pragmatic reasoning are focused on modeling the human reasoning

over the partner’s states and strategies based on observations of their actions and

unfolding events [93, 94, 95]. The main drawback of these approaches is that they

become easily computationally intractable and, therefore, can not be used to adapt

automation’s behavior in real-time. Recently, a few studies have proposed a platform

to separate partner-specific conventions from task-dependent representations [92, 96]

using a two-player Markov Decision Process (MDPs) framework. Even though the

partner-specific conventions from task-dependent representations are separated, both

are based on data-driven approaches. The task-dependent representation can be

realized based on a mathematical model, and therefore the computational load will

be decreased. This dissertation presented a framework that can be used to learn

and leverage conventions in designing an adaptable automation system. Here, we

model the human and automation cost function for driving a semi-automated vehicle

(e.g., obstacle avoidance) as a weighted linear combination of a set of features that

a human and automation care about (e.g., collision avoidance, staying on the road,

or distance to the final goal). While these features can represent the task, we argue

that the distribution of the weights associated with these features and how they may

evolve in time can be used as a proxy to learn and leverage the conventions formed

between the human driver and automation system. Additionally, defining the concept

of cooperative and competitive cost functions, we create a map to characterize the

outputs of human-automation interaction under different conventions. Using such a

map, an adaptable automation system can be designed to change its behavior adaptive

and form a desirable convention with a human driver.

An automation system should automatically learn complex policies and adjust its
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behavior accordingly to adaptively form conventions. While model-predictive-base

approaches are powerful tools to deal with the uncertainty and complexity of human-

automation interaction, they lack the learning capability [97, 98, 99]. On the other

hand, conventional end-to-end learning algorithms require significant amounts of data

(hundreds or even thousands of experiments) to achieve a desired level of performance

that may not be feasible. To merge the strengths of these approaches, recent efforts

have been focused on combining data-driven techniques learning with the model-based

controller [100]. For instance, several approaches have used RL-based methods to up-

date the hyper-parameters of the model-predictive controller. Although there have

been few works combining MPC with learning-based techniques, there seems to be

no such work done for the problem in the context of convention formation to the best

of our knowledge. To this end, we implement a DDPG based RL method to select

appropriate weights for the automation’s cost function such that the automation can

adapt its desired steering policy if needed. We test the performance of our convention

formation framework in the context of resolving a conflict between a human driver

and automation.

1.4 Problem Statement

This dissertation focused on designing and testing an adaptive haptic shared con-

trol paradigm to shorten the control transfer time, improve interpretation and ap-

propriation of responsibility, produce a more accurate understanding of vehicle and

environment state, and reduce the human partner’s cognitive load. To this end, we

defined two objectives.

Aim 1: Design an Adaptive Haptic Shared Control Paradigm. To

allow a smooth exchange of the control authority, we developed a predictive

controller to modulate the impedance controller’s parameters actively. This ob-

jective is achieved through (a) development of a model for a haptic shared con-

trol paradigm wherein the topic of role negotiation, role allocation, and intention
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integration can be systematically explored on two levels of mind (intent/deci-

sion making) and motor (human biomechanics/robot’s impedance control); (b)

development of a set of stochastic optimal control algorithms for modulating

the automation’s impedance controller parameters so that the control authority

can dynamically be arbitrated between the human and automation systems; (c)

validation of the optimal controller for real-time implementation using a series

of process-in-the-loop tests and human-subject studies.

Aim 2: Establish the Principles of Convention Formation in a Haptic

Shared Control Paradigm. To improve the customizability of automation

systems, the automation system must be able to narrow down its control han-

dover strategy (from many possible strategies) to the ones that a driver may

gravitate to. To this end, we created a platform that allows studying the conven-

tion formation between a human driver and utilizes this approach to determine

suitable handover strategies. This objective is achieved through (a) developing a

modular structure to separate partner-specific conventions from task-dependent

representations and use this structure to learn and leverage different forms of

conventions, (b) developing a map that connects different forms of conventions

to the outputs of human-automation interaction using cooperative-competitive

game theory concept, (c) designing an adaptable automation system so that a

desirable shared convention can be achieved.

1.5 Thesis Structure and Outcomes

The models and algorithms developed in this dissertation bridge different fields of

study, including control engineering, robotics, and cognitive science to (i) advance

learning-based algorithms for intelligent robotic partners and (ii) promote human-

robot teaming for performing complex tasks in a dynamic and uncertain environment.

The research presented in this dissertation is in the three-article format. Chap-
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ter 2 (Paper 1) presents an adaptive haptic shared control framework wherein the

automation’s impedance controller parameters are modulated to enable the dynamic

exchange of the control authority with a driver. This work was published in the

Mechatronics journal in 2021. Chapter 3 (Paper 2) tests the performance of the

adaptive haptic shared control through a series of human subject test studies. This

work has been submitted to the Journal of Transportation Research Part F and is

awaiting an editorial response. Finally, Chapter 4 (Paper 3) establishes a platform

to study the principles of convention formation in a haptic shared control framework.

This work has been submitted to the Journal of Autonomous Robots and is await-

ing an editorial response. In addition to the three mentioned journal papers, seven

conference papers are published in this Ph.D. research which are:

1- Game-Theoretic Intent Negotiation in a Haptic Shared Control Paradigm, 2021

American Control Conference (ACC)

2- Adaptive Impedance Control for the Haptic Shared Driving Task Based on

Nonlinear MPC, 2020 Dynamic Systems and Control Conference

3- Towards explainable co-robots: Developing confidence-based shared control

paradigms, 2020 Dynamic Systems and Control Conference

4- Modeling cooperative human-automation interactions in Haptic Shared Control

Framework, 2020 SAE Technical Paper

5- Negotiating the Steering Control Authority within Haptic Shared Control Frame-

work, 2020 SAE Technical Paper

6- Impedance Modulation for Negotiating Control Authority in a Haptic Shared

Control Paradigm, 2020 American Control Conference (ACC)

7- Determination of Roles and Interaction Modes in a Haptic Shared Control

Framework, 2019 Dynamic Systems and Control Conference
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CHAPTER 2: (PAPER 1) Modulation of Control Authority in Adaptive Haptic

Shared Control Paradigms

2.1 Introduction

Haptic Shared Control is a shared control paradigm wherein humans interact with

co-robot through a physical object [16, 6]. Haptic shared control paradigms have

a wide range of applications, from transformative technologies in which a fully au-

tonomous system is not yet accessible/feasible (e.g., service robots, semi-autonomous

vehicles, smart manufacturing) to applications where human-robot interactions are

inevitable or even desirable (e.g., rehabilitative devices, care robots, and educational

robots) [1, 3, 5, 9, 17, 18, 15, 16, 48, 6, 22]. In a haptic shared control paradigm, both

humans and co-robots can simultaneously exert their control inputs, and by virtue of

haptic feedback continuously, monitors each other’s actions. With recent advances in

artificial intelligence and robotics, conflicts may arise in which an automation system

can make decisions different from the human partner’s. For instance, in steering a

vehicle, there might be cases where both humans and automation detect an obstacle

but select different trajectories to avoid it [6].

While human teams can be exceptionally efficient at resolving conflicts using shared

mental models, the ability of co-robots for negotiating and resolving conflicts is sig-

nificantly underdeveloped. To enable a co-robot to resolve a conflict, a series of

challenges shall be addressed. First, a model that can capture the human’s intent

shall be developed [39, 4, 47, 52, 12]. Second, algorithms that can identify the current

interaction mode shall be developed [49, 40, 2, 28, 27]. Third, algorithms that support

arbitration of control authority shall be created [32, 33, 45, 44]. Finally, interfaces

that allows bi-directional communication between the human and co-robot shall be
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made [23, 26, 41, 11, 8].

This paper’s focuses on the third technical challenge. In particular, we consider the

co-robot with a similar structure to the human partner with a two-level hierarchical

control structure. The higher-level controller generates the co-robot desired reference

(intent), determines the current interaction mode, and estimates the human’s intent.

The lower level is an impedance controller generating the required torque signals. In

this paper, we focus on the design of this lower-level controller. While the funda-

mental approaches and models proposed in this research can be applied to a wide

range of physical human-robot systems, we select semi-automated vehicles’ steering

control as a setup for exploring the proposed study. We consider a scenario where the

human and the automation system detect an obstacle and negotiate on controlling

the steering wheel so that the obstacle can be avoided safely. To this end, the simu-

lations involve four interaction modes addressing the cooperation status (cooperative

and uncooperative) and the desired direction of the control transfer (active safety and

assistive).

To determine how the automation system’s impedance controller parameters should

be dynamically modulated so that a smooth transition of control authority can oc-

cur, a cost function is designed to maximize task performance and minimize the

disagreement between the human and the co-robot. We utilize a stochastic nonlinear

model-predictive control approach to solve the optimal control problem. To obtain a

tractable form of the cost function, the generalized polynomial chaos (PC) scheme is

utilized to formulate the deterministic surrogate of the stochastic MPC with proba-

bilistic constraints. In the PC method, the implicit mappings among the uncertain

parameters (i.e., human arm’s biomechanics) and the states are replaced with explicit

functions in the form of a sequence of orthogonal polynomials, whose coefficient can

be calculated from the expansion coefficients [30, 37]. We then employed the contin-

uation generalized minimum residual (C/GMRES) solver that provides an iterative
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algorithm to solve the tractable nonlinear model predictive controller [31, 43, 36, 34].

In this method, first, the optimal control problem is discretized over the horizon. A

differential equation is then obtained by using the continuation method to update

the sequence of control inputs [34]. Since the differential equation involves a large

linear equation, the GMRES method [25] is employed to solve the linear equation. It

is shown that the C/GMRES requires much less computational expenses than other

iterative methods such as Newton’s method. Moreover, C/GMRES involves no line

search, which is also significantly different from standard optimization methods [35].

To evaluate the proposed methods’ computational complexity, a set of PIL tests are

conducted using two low-cost microcontrollers (STM32F4and ATmega2560). These

processors provide direct access to the CPU’s hardware resources to implement the

proposed algorithm without involving the time management for handling the serial

port for the data communication between the target board and the host computer.

The comparative studies in the real-time PIL testbed show high accuracy with ap-

propriate computation time in the STM32F4 Discovery target board.

In summary, the contributions of this paper are (i) development of a model for a

haptic shared control paradigm wherein the topic of role negotiation, role allocation,

and intention integration can be systematically explored in two levels of mind (in-

tent/decision making) and motor (human biomechanics/robot’s impedance control);

(ii) development of a set of stochastic optimal control algorithms for modulating the

automation’s impedance controller parameters so that the control authority can dy-

namically be arbitrated between the human and automation systems; (iii) validation

of the optimal controller for real-time implementation using a series of process-in-the-

loop tests.

The outline of this paper is as follows. In section 2.2, we model the adaptive haptic

shared control paradigm, and the equations of motions are derived. In section 2.3, the

problem of modulation of control authority is presented as an optimal control problem.
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To demonstrate the proposed approach’s effectiveness, a set of numerical simulations

are illustrated in Section 4. The PIL results on the low-cost microcontrollers are

presented in Section 5, which shows the proposed method’s implementation ability

in real-time execution. Section 6 consists of the conclusions and the future directions

for this research.

2.2 Adaptive Haptic Shared Control Framework

Figure 2.1 shows a schematic of an adaptive haptic shared control paradigm. Three

entities each impose a torque on the steering wheel: a driver through his hands, an

automation system through a motor, and the road through the steering linkage.

We model the human and automation system with a similar structure. In par-

ticular, we model the driver as a hierarchical two-level controller. The upper-level

control represents the cognitive controller, and its output, θH, represents the drivers

intent. The lower-level represent the human’s biomechanics, ZH, and is considered

back-drivable [9]. To indicate that driver’s biomechanic parameters vary with changes

in grip on the steering wheel, use of one hand or two, muscle co-contraction, or posture

changes, we have drawn an arrow through human ZH.

Similarly, the automation system is modeled as a higher-level controller (AI) cou-

pled with a lower-level impedance controller. The automation system is also consid-

ered to be back-drivable, and the gains of the impedance controller, ZA, are designed

to be modest rather than infinite. In other words, the automation is not intended

to behave as an ideal torque source; instead, the automation imposes its command

torque τA through an impedance ZA that is approximately matched to the human

impedance ZH.

Furthermore, the reference signals RH and RA represent the goals of the driver and

the automation system, respectively. It should be noted that these goals may not

necessarily be the same, which is when the negotiation of control authority becomes

essential. To generate algorithms that support the negotiation and dynamic transfer
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Figure 2.1: A general model of control sharing between driver and automation.

of the control authority between the human and co-robot, the robot can adjust its

behavior at a higher level (changing intent) as well as at the lower level (changing

ZA). Specifically, from the model presented in Figure 2.1, it follows that the steering

angle θS is not only a function of the humans intent θH, automations intent θA, and

the road feedback torque τV, but also its a function of human arm’s biomechanics ZH

as well as the gains of the impedance controller ZA [7]. The crux of this paper lies

in the design of a back-drivable impedance ZA such that it enhances the negotiation

and transfer of control authority between the human and automation system. To

this end, we present the equations of motion of the lower-level of the adaptive haptic

shared control framework shown in Figure 2.2.

2.2.1 Equations of Motion

Figure 2.2-A shows a free body diagram of an adaptive haptic shared control

paradigm consisting of a driver, a steering wheel, a steering shaft, and an automation
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system. Figure 2.2-A demonstrates a simplified model of a driver arms’ bio-mechanics

in the form of a mass-spring-damper system connected to a motion source represent-

ing the driver’s intent, θH. The steering wheel is modeled as a disk with a rotational

inertia of JSW. A differential torque sensor is modeled as a rotational spring with

stiffness KT and connected to the steering wheel and steering shaft. The steering

shaft is also considered as a rotational bar with the inertia of JS that is connected to

the steering wheel on the left side, to the rack and pinion on the right side, and the

automation system through a timing belt with a mechanical advantage of rS/rM. The

block diagram of the lower-level of the adaptive haptic shared control is also shown

in Figure 2.2-B. In this block diagram, signals of θH, θA, and τV are considered as

exogenous signals; signals of differential torque τT and the steering shaft angle θS can

be measured by the on-board sensors.

Figure 2.2: (A) Free body diagram of a haptic shared steering control, (B) A block
diagram is laid out to highlight the interaction ports between subsystems. [9]
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It follows from Figure 2.2 that the equations of motion for the steering wheel,

steering column and the motor can be expressed as

JSWθ̈SW = τH − τT (2.1a)

JSθ̈S = τT + τV + τSM (2.1b)

JMθ̈M = τA − τMS (2.1c)

where τSM and τMS represent the internal torque imposed by the timing belt. It should

be noted that the kinematic and kinetic constraints imposed by the timing belt are

rMθM = rSθS and rMτSM = rSτMS.

Modeling the driver as a spring-mass-damper with a proximal motion source θH(t),

the torque applied by the human is [18]

τH = −JHθ̈SW +BH(θ̇H − θ̇SW) +KH(θH − θSW) (2.2a)

where JH, BH, and KH are the inertia, damping and stiffness of the driver’s arm.

Similarly, considering an impedance controller in the lower-level of the automation

system, the toque generated by the motor can be presented as

τA =BA(θ̇A − θ̇M) +KA(θA − θM)

=BA(θ̇A − rS
rM
θ̇s) +KA(θA − rS

rM
θS) (2.2b)

whereKA, BA represent the gains of the impedance controller. Furthermore, it follows

from Figure 2.2 that the torque measured by the torque sensor can be expressed as

τT = KT(θSW − θS) (2.2c)

It follows from Eq. (2.2a) that human’s torque is not only a function of human’s
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intent θH but also the biomechanic parameters ZH. By modulating these parameters,

the human can either yield or retain the control authority. Similarly, algorithms can

be developed to give the automation the ability to either yield authority or retain

authority as a function of driver behavior and sensed threats to safety. To present

how human’s bio-mechanics and the automation’s impedance controller parameters

may evolve in time, we introduce the following simple but generic dynamic models as

ŻH(t) = αHZH(t) + βHΓH(t) + %(t) (2.3a)

ŻA(t) = αAZA(t) + βAΓA(t) (2.3b)

where ZH = [BH KH]
T, ZA = [BA KA]

T, and ΓH = [ΓbH(t) ΓkH(t)]
T is the humans

control action for modulating his impedance ZH, ΓA = [ΓbA(t) ΓkA(t)]
T is the au-

tomations control input for modulating its impedance ZA, and %(t) = [%bH(t) %kH(t)]
T

reflects the uncertainty associated with measurement and model of ZH. Furthermore,

αH =

αbH 0

0 αkH

 , βH =

βbH 0

0 βkH


αA =

αbA 0

0 αkA

 , βA =

βbA 0

0 βkA

 (2.4)

where {αbH, αkH, αbA, αkA, βbH, βkH, βbA, βkA} are constant parameters. The details of

this model is given in [21]

In this paper, we only assumed the uncertainty in estimation of human’s bio-

mechanics ZH and didn’t consider the uncertainty in estimation of human’s intent

θH.

Ideally, to determine an optimal behavior for the automation system, optimization

should be performed over all control signals of the automation system, including (i.e.,

θA,ΓA). However, this paper’s focus is to determine ΓA as a means for allocating
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the level of authority between the driver and the automation system. By combining

Eqs. (2.1a-2.3b), the dynamics interaction between human and automation system

in the lower-level of the adaptive haptic shared control framework can be expressed

as following stochastic model:

ẋ(t) = x(t) + f (x(t), w(t)) +Bu(t) +G%(t) (2.5a)

y(t) = h (x(t)) + ς(t) (2.5b)

where x = [θSW θ̇SW θS θ̇S BH KH BA KA]
T, are the state of the system; u =

[ΓbA(t) ΓkA(t)]
T are the control commands, and w = [ΓbH(t) ΓkH(t) θH θA τV]

T are

the exogenous signals, y = [θS θ̇S τT KH BH KA BA]
T are measured variables, ς

denotes the measurement’s noise, and G models the effects of % on the system state,

and

f (x,w) =

θ̇SW

BH

(
θ̇H−θ̇SW

)
+KH(θH−θSW)−KT(θSW−θS)

JSW+JH

θ̇S
rS
rM

BA

(
θ̇A− rS

rM
θ̇S

)
+

rS
rM

KA

(
θA− rS

rM
θS

)
+KT(θSW−θS)+τv

JS+
(

rS
rM

)2
JM

αbHBH + βbHΓbH

αkHKH + βkHΓkH

αbABA

αkAKA



, (2.6a)

B =

0 0 0 0 0 0 βbA 0

0 0 0 0 0 0 0 βkA


T

(2.6b)

G =

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0


T

(2.6c)
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It should be noted that in this paper, we assume all the measured variables y are

accessible. In practice, θS can be measured using the encoder attached to the steering

column, τT can be measured using the differential torques indicating the difference

between θSW and θS, KH and BH can be estimated using various techniques such as

identification techniques discussed in [53, 51] and KA and BA are design parameters

and directly can be calculated.

2.3 Impedance Modulation Controller Design

In this section, we present a predictive controller for modulating the automation’s

impedance controller parameters. For the steering control problem, we define a non-

linear cost function in the form of

min
ΓA

J(t) = E
{
ϕ (x,w) +

∫ t+th

t

L (x,w, u) dς
}

= E
{∫ t+th

t

{‖θH − θS‖w1 + ‖θA − θS‖w2 + ‖τT‖w3}dς
}

(2.7)

where th is the defined horizon for the model predictive controller, w1, w2 and w3

are weights matrices, ϕ (x,w) is the terminal cost value which is considered zero.

The first term of the cost function over the finite horizon (integration part) aims to

minimize the error between the human’s intent and the steering angle. Similarly,

the second term of the cost function over the finite horizon is defined to minimize

the tracking error between the automation’s desired angle (automation’s intent) and

the steering angle. Since the human’s and automation’s intent may not necessarily

be the same, which is when the negotiation of control authority becomes important,

the third term of the cost function over the finite horizon is defined to minimize the

disagreement between a driver and the automation system.

In this paper, we assume that both % and ς to be sequences of independent and

identically distributed (i.i.d.) variables with known probability distributions p% and
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pς , respectively. In particular, E[%%T] = Q%, E[ςςT] = Qς , and E[%ςT] = 0. Let define,

the bar symbol | .̄ | on a variable as the expected value (e.g., θ̄S = E{θS}). Then, the

cost function (2.7) can be expressed as

min
ΓA

J(t) = ϕ (x,w) +

∫ t+th

t

L (x,w, u) dς

=

∫ t+th

t

{‖θH − θ̄S‖ŵ1 + ‖θA − θ̄S‖ŵ2 + ‖τ̄T‖ŵ3}dς (2.8)

where ŵ1 = Qςw1, ŵ2 = Qςw2, and ŵ3 = Qςw3.

We define two sets of constraints for the nonlinear cost function J to ensure the

non-negative values for the impedance controller’s parameters. In particular the ex-

pectation form of the inequality constraints are:

C1(t) :
{
s21 − B̄A(t) = 0, E {−BA(t)} 6 0

}
(2.9a)

C2(t) :
{
s22 − K̄A(t) = 0, E {−KA(t)} 6 0

}
(2.9b)

Alternatively, constraints in (2.9a) and (2.9b) can be defined as chance constraints.

Specifically,

C1(t) :
{
P
[
−B(k)

A 6 0
]
> fC1

}
(2.10a)

C2(t) :
{
P
[
−K(k)

A 6 0
]
> fC2

}
(2.10b)

where fC1 ∈ (0, 1) and fC2 ∈ (0, 1) denote the lower bound of the desired joint

probability that the state constraints should satisfy.

To solve the nonlinear cost function described in Eq. 2.7, we discretize the equation

of the dynamics system using the forward Euler method. Specifically,

x(k+1) = x(k) + Tsf
(
x(k), w(k)

)
+ TsBu

(k) + TsG%
k (2.11)
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where Ts is the size of the time-step, k is the number of time-step (considered as

the current time-step), x(k), w(k) and u(k) are equal to x(t = Tsk), w(t = Tsk) and

u(t = Tsk), respectively. It should be noted that that higher order discretizations can

be employed at the expense of the computational complexity.

Assuming that the system states can be measured at all times, the finite-horizon

stochastic MPC (SMPC) problem with probabilistic constraints C1 and C2 and cost

function J can be stated in discretized mode as follows:

min
ΓA

J (k) =

Np∑
j=1

Ts{‖θ(k+j)
H − θ̄

(k+j)
S ‖ŵ1 + ‖θ(k+j)

A − θ̄
(k+j)
S ‖ŵ2

+ ‖τ̄ (k+j)
T ‖ŵ3}

s.t. :



x(k+1) = x(k) + Ts
(
f
(
x(k), w(k)

)
+Bu(k) +G%k

)

C
(k)
1 : {P

[
−B(k)

A 6 0
]
> fC1}

C
(k)
2 : {P

[
−K(k)

A 6 0
]
> fC2}

(2.12)

The closed-loop MPC problem (2.12) is not solvable directly due to the infinite

dimensional nature of the control policy ΓA. A tractable approximation to (2.12)

can be derived using polynomial chaos (PC) expansion method [50, 37]. Using PC

expansion, the stochastic function ψ(%) = f(x,w) +G% can be approximated with a

finite second-order moments. [14, 30]. In particular,

ψ (%) = f (x,w) +G% ≈
Lpc−1∑
j=0

$jΦ$j
(%) = ηTΛ (%) (2.13a)

Λ (%) =
[
Φ$0 , Φ$1 , · · · , Φ$Lpc−1

]T
(2.13b)

ηj =
[
$0 , $1 , · · · , $Lpc−1

]T (2.13c)
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where $j indicates the expansion coefficients and Φ$j
(%) =

∏n
i=1Φ$i,j

(%i) de-

notes the multivariate polynomials with Φ$i,j
being univariate polynomials in %i of

degree $i,j. The total number Lpc depends on the number of the number of uncertain

parameters and the order of expansion (Lpc = (n+m)!
n!m!

). In this paper, the measure-

ment noises % on the human bio-mechanic parameters BH and KH are assumed to

have Gaussian distribution in the form of ( 1
2π
exp (−σ2

i /2) , i ∈ {H, B}). Therefore,

the Hermite polynomials can be utilized to approximate nonlinear dynamics (2.5b).

Specifically, the multivariate polynomials with the Gaussian distribution of % becomes

Λ (σi) = [1, σi, σ
2
i − 1, σ3

i − 3σi, σ
4
i − 6σ2

i + 3, · · · ] and the expansion coefficients $j

at each time state can be calculated based on the pseudo-spectral approach [42]. The

details of PC expansion method can be found in [13]. By employing PC expansion,

the deterministic surrogate for the stochastic MPC problem (2.12) can be expressed

as follow:

min
ΓA

J (k) =

Np∑
j=1

Ts{‖θ(k+j)
H − θ̄

(k+j)
S ‖ŵ1 + ‖θ(k+j)

A − θ̄
(k+j)
S ‖ŵ2

+ ‖τ̄ (k+j)
T ‖ŵ3}

s.t. :



x̄(k+1) = x̄(k) + Ts

((
η(k)
)T

Λ
(
%(k)
)
+Bu(k)

)

C
(k)
1 : −

√
fC1

1−fC1
Var[B

(k)
A ]− B̄

(k)
A + s1 = 0

C
(k)
2 : −

√
fC2

1−fC2
Var[K

(k)
A ]− K̄

(k)
A + s2 = 0

(2.14)

where s1 and s2 are slack variables and Var[.] represent the variable’s variance. By

using the non-negative slack variables in Eq. (2.14), the inequality constraints will

be transformed to the equality constraints [46].



39

Next, let H denote the Hamiltonian defined by

H
(
x̄(k), w(k), u(k), λ(k), µ(k)

)
=

Ts

(
‖θ(k)H − θ̄

(k)
S ‖ŵ1 + ‖θ(k)A − θ̄

(k)
S ‖ŵ2 + ‖τ̄ (k)T ‖ŵ3

)
+ λ(k)

(
x̄(k) − x̄(k+1) + Ts

((
η(k)
)T

Λ
(
%(k)
)
+Bu(k)

))
+ µ(k)

([
C

(k)
1 , C

(k)
2

]T)
(2.15a)

where

λ(k) =

[
λ
(k)
θS

λ
(k)

θ̇S
λ
(k)
θSW

λ
(k)

θ̇SW
λ
(k)
ΓbH

λ
(k)
ΓkH

λ
(k)
ΓbA

λ
(k)
ΓkA

]
(2.15b)

µ(k) =

[
µ
(k)
C1

µ
(k)
C2

]
(2.15c)

where λ and µ are costate vector and Lagrange multiplier vector respectively. The

necessary conditions for optimality are obtained by the calculus of variations [10].

We discretize the conditions by dividing the horizon into Np steps. The discretized

Karush-Kuhn-Tucker (KKT) necessary conditions are given as follows:

x̄∗(k+1) = x̄∗(k) + Ts

((
η∗(k)

)T
Λ
(
%(k)
)
+Bu∗(k)

)
(2.16a)

x̄∗(0) = x̄(0) (2.16b)

λ∗(k) = λ∗(k+1) + Ts
∂HT

(
x̄∗(k), w(k), u∗(k), λ∗(k), µ∗(k))

∂x̄
(2.16c)

λ∗(k+Np) = 0 (2.16d)

∂HT
(
x̄∗(k), w(k), u∗(k), λ∗(k), µ∗(k))

∂u
= 0 (2.16e)C(k)

1

C
(k)
2

 =

0
0

 (2.16f)

By employing forward recursion, for j = 1, · · · , Np, the state variables x̄∗(k+j),
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can be defined using equations (2.16a) and (2.16b). Furthermore, by employing back

recursion from the final condition to the present time-step (j = Np, Np−1, · · · , 1) the

co-states λ∗(k+j) can be determined using (2.16c) and (2.16d). Finally, by plugging

x̄∗(k+j) and λ∗(k+j) into equations (2.16e) and (2.16f), a KKT vector F (X,U, t) for Np

horizon can be defined, where

F =



∂HT
(
x̄∗(k),w(k),u∗(k),λ∗(k),µ∗(k))

∂u

C
(k)
1

C
(k)
2

...
∂HT

(
x̄∗(k+Nc),w(k+Nc),u∗(k+Nc),λ∗(k+Nc),µ∗(k+Nc)

)
∂u

C
(k+Nc)
1

C
(k+Nc)
2

...
∂HT

(
x̄∗(k+Np),w(k+Np),u∗(k+Np),λ∗(k+Np),µ∗(k+Np)

)
∂u

C
(k+Np)
1

C
(k+Np)
2



(2.17a)

where

X = [x̄(k), w(k), x̄(k+1), w(k+1), ..., x̄(k+Np), w(k+Np)]T (2.17b)

U = [u(k), µ(k), · · · , u(k+Nc), µ(k+Nc), · · · , u(k+Nc), µ(k+Np)]T (2.17c)
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where Nc is the number of the control horizon steps. Note that for Nc ≤ j ≤

Np, uk+j = uk+Nc . By solving a nonlinear algebraic equation F (X,U, t) = 0, an

optimal optimal points can be determined and the optimal control command can be

determined by

u(k) = P0U (2.18)

where P0 is a projection matrix and can be defined as

P0 =

1 0 0 · · · 0 0 0

0 1 0 · · · 0 0 0


2×12Np

. (2.19)

2.3.1 Continuation method

To solve F (X,U, t) = 0 with respect to the unknown vector U , for each time-step,

the C/GMRES method is employed [35]. In C/GMRES method, instead of solving

F (X,U, t) = 0, we select the proper initial value U(0) and take the time derivative of

Eq. (2.17a) into account. Specifically, we define

Ḟ (X,U, t) = AsF (X,U, t) (2.20)

where As is a stable matrix (i.e. with negative eigenvalues). Differentiating the left

side of Eq. (2.20) yields

FU (X,U, T ) U̇ = AsF (X, U, t)− FX (X,U, t) Ẋ − Ft (X,U, t) (2.21)

If FU is non singular, we can obtain the differential equation for U̇ as

U̇ = F−1
U

(
AsF (X, U, t)− FX (X,U, T ) Ẋ − Ft (X,U, T )

)
(2.22)



42

2.3.2 Forward difference GMRES method

The calculation of Jacobians FX , FU and Ḟ is computationally expensive. Instead

to solve Eq. (2.22), we employed the forward-difference approximation to eliminate

the calculation of the Jacobians. To this end, using the concept of forward difference,

we approximate the products of Jacobians and some L ∈ R11×Np , M ∈ R12×Np , and

ω ∈ R and replaced it to Eq. (2.22) which results in:

DhF
(
X,U, t : 0, U̇ , 0

)
= b

(
X, Ẋ, U, t

)
(2.23a)

where

b
(
X, Ẋ, U, t

)
= AsF (X,U, t)−DhF

(
X,U, t : Ẋ, 0, 1

)
(2.23b)

DhF (X,U, t : L,M, ω) =
F (X + hL,U + hM, t+ hω)− F (X,U, t)

h
(2.23c)

where h is a positive real number, DhF (X,U, t : L,M, ω) stands for the concept of

forward difference for F . It should be noted that there is main difference between

forward-difference approximation and finite-difference approximation with regards to

computational expenses. The forward difference approximation of the products of

the Jacobians and vectors can be calculated with only an additional evaluation of the

function, which requires notably less computational burden than approximation of

the Jacobians themselves. Since Eq. (2.23a) is a linear equation with respect to U̇ ,

we applied the forward difference GMRES method to solve it [25]. The details of this

method is described in Algorithm 1.

2.3.3 Combination of continuation and GMRES

U̇ is the output of the forward-difference GMRES algorithm, and integration of

this value results in U for the current time step. For a sampling time 4t and integer

value `, Algorithm 2 shows the required steps of the continuation/GMRES method
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Algorithm 1: Forward-Difference GMRES[35]

Result: U̇ := FDGMRES
(
X, Ẋ, U, Uint, h, Imax

)
r̂ := b

(
X, Ẋ, U, t

)
−DhF

(
X + hẊ, U, t+ h : 0, Uint, 0

)
;

v1 := r̂/‖r̂‖, ρ := ‖r̂‖, ζ := ρ, I = 0 ;
while I < Imax do

I := I + 1;

vI+1 := DhF
(
X + hẊ, U, t+ h : 0, vI , 0

)
;

for j = 1, 2, . . . , I do
hj,I := vTI+1vj ;
vI+1 := vI+1 − hj,Ivj

end
hI+1,I := ‖vI+1‖;
vI+1 := vI+1/‖vI+1‖;
for e1 = [1, 0, . . . , 0] ∈ RI+1 && HI = (hi,j) ∈ RI+1×I do

Minimize ‖ζe1 −HIYI‖ with LS method to determine Y ∈ RI

end
ρ := ‖ζe1 −HIYI‖;

end
U̇ := U̇ + VIYI where VI = [v1, v2, · · · , vI ] ∈ R12×Np×I .

for nonlinear model predictive control.

It should be noted that the C/GMRES is an iterative method that solves Eq.(2.17a)

with respect to U̇ only once at each sampling time and therefore, requires much

less computational expenses than other iterative methods such as Newtons method.

Moreover, C/GMRES involves no line search, which is also a significant difference

from standard optimization methods [35]. The C/GMRES method’s flowchart is

depicted in Fig. (2.3), which demonstrates the solving procedure for each time steps

in the numerical executions. The problem construction step till U, U̇0 initialization

will be executed one time in the algorithm, which leads to a reduced computational

load in the solver. The rest of the algorithm is running till the termination condition

is satisfied. The termination condition in the numerical simulation is the simulation

run time, and in the PIL implementations, it is set as the maximum number of control

loop execution.
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Algorithm 2: Continuation/GMRES [35]

Result: U := CntFDGMRES
(
X, Ẋ, U̇ , t,4t, δ

)
(1) t := 0, ` := 0;
(2) Select small value δ > 0;
(3) Find U(0) for satisfying ‖F (X(0), U(0), 0) ‖ 6 δ ;
(4) In t′ ∈ [t, t+4t) set u(t′) := P0U(`4 t);
At time t+4t by considering measured states x(t+4t) set
4x` = x`(t+4t)− x`(t);
(5) Uint = Ut0 , Uint = U̇((`− 1)4 t);
(6) U̇(`4 t) := FDGMRES(X,4x`/4 t, U, Uint, h, Imax);
(7) Set U ((`+ 1)4 t) = U (`4 t) +4t U̇ (`4 t)
(8) Set t := t+4t, ` := `+ 1 and go back to line (4)

Start

Define �, �(�, �, �) and the 
forward difference

�� and �̇� initialization

�� = ���

�̇ = FDGMRES(�, �̇, �, ����, ℎ, ����)

�� = ���� + ∆� �̇ 

� = � + ∆�,    � = � + 1

Termination 
Condition

End

Next time step

Yes

No

Construct Eqs. (16)

Obtain Eq.(23)

Figure 2.3: C/GMRES method’s flowchart
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Figure 2.4 shows the control architecture of the closed loop. The higher-level

control consists of four main sections: interaction mode determination that define the

appropriate form of the cost function as well as the appropriate weights of each term in

the cost function [27, 29, 24], human’s biomechanics identification that identifies the

current state of ZH [53, 51, 20], human’s intent detection that determines θH [39, 4, 47]

and automation system’s motion planning that determine θA [19]. The outputs of the

higher-level controller are fed to the automation’s lower-level control to determine

the optimal ZA. By modulating the automation’s impedance controller gains, the

control authority dynamically exchanges between the human and automation, and

subsequently θS follows the intents of humans or automation.

�

�����

�

���� 

����

��� ��

��

+

++

����

��

+ − −+ +−

−+ ��

��

−

������ ����

��+

��

��

����

+

−

��������

A A A A AZ Z   
�.

Algorithm 2: 
Continuation/GMRES

Algorithm 1: 
Forward-Difference 
GMRES

Model-Based System 
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Δ�, � 
Γ�

Higher Level Controller

Interaction Mode Determination

Human’s Biomechanics Identification 

Automation System’s  Motion Planning

��, ��, ��

Human’s Intent Detection

��~� �̅�, ���

��

��

λ, �

Automation’s Lower-Level Controller
(Nonlinear Model Predictive Impedance Controller)

�, �̇

Laplace Block Diagram
of the Haptic Interface

Constructing PC-based MPC 

Figure 2.4: The detailed block diagram of the adaptive haptic shared control paradigm
including the higher level controller, the automation’s lower-level controller and
Laplace block diagram of the haptic interface.
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2.4 Simulation Studies and Discussions

In this section, we present a series of simulation studies demonstrating the effective-

ness of the proposed controller in transferring the control authority between the driver

and the automation system. The following simulations consider a scenario where the

human and the automation system detect an obstacle and negotiate on controlling

the steering wheel so that the obstacle can be avoided safely. To this end, the sim-

ulations involve two conditions when the control authority shifts from the human to

the automation system (active safety mode), as well as when the control authority

shifts from the automation system to human (assistive mode). Also, we included two

other conditions where the human and automation are in cooperative and uncoop-

erative mode. In cooperative mode, the human and automation intents detect the

obstacle and decide to avoid the obstacle by maneuvering in the same direction (same

intent signs sgn(θH) = sgn(θA)). In uncooperative mode, humans and automation’s

detect the obstacle but their intents have opposite signs (sgn(θH) = −sgn(θA)). In

this paper, the driver’s intent is expressed by the following curve

θH =



0 t < T1

W
2
cos( π

T2
t− T1,2

T2
π) + W

2
T1 < t < T1,2

W T1,2 < t < T1,2,3

W
2
cos( π

T2
t− T1,2,3

T2
π) + W

2
T1,2,3 < t < T1,2,3 + T2

0 T1,2,3 + T2 < t

. (2.24)

T1,2 = T1 + T2, T1,2,3 = T1 + T2 + T3

where T1 = 1 sec, T2 = 5 sec, T3 = 2 sec and W = 1 rad are selected for the following

examples. Note that in the following examples to illustrate the results clearly, we

select |θA| = 0.9|θH|. We also assume no feedback from the road and consider τV = 0
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in the following examples.

Additionally, in the following simulations, we select the mean values of human

arms’ bio-mechanics as either Z̄H = [0.5 1]T representing a case when the human

control command is sufficient or Z̄H = [0.1 0.1]T describing a situation when the

driver’s control command is insufficient. These values are selected based on a set

of simulation studies. To consider the role of uncertainity in the estimation of the

human’s bio-mechanics parameters, KH and BH are generated using a series of random

parameter vectors generated from the Gaussian pdfs [38]. Specifically, the human’s

bio-mechanics variance value (σBH
, σKH

) in random parameter vectors has maximum

(0.05, 0.1) to define the performance range of the adaptive impedance controller. The

additive disturbances % have a Gaussian distribution % ∼ N (0, Qσ) with zero mean

and covariance matrix Qσ = diag[0.01, 0.001, 0.005, 0.05, 0.02, 0, 0]. The numerical

values for the other parameters in the simulation studies are demonstrated in table

2.1.

When the human’s control command is sufficient (high ZH), the automation system

shall be designed to yield the control authority to the human operator. Specifically,

we select the weights of the cost function to be w1 = 0.2, w2 = 0 and w3 = 0.8.

With selecting these weights for the cost function, the automation system acts in

an assisitive mode [6]. On the other hand, when the human’s control command is

insufficient (low ZH), the automation system is designed to ensure the safety of the

task by avoiding the obstacle. In particular, we select the weights of the cost function

to be w1 = 0, w2 = 0.8 and w3 = 0.2. With choosing these weights for the cost

function, the automation system acts in the active safety mode [6].

Figure 2.5 demonstrates the problem of control authority negotiation in un-cooperative

mode. Specifically, the interaction between the human and automation system in the

adaptive haptic shared control paradigm is compared with the interaction in non-

adaptive haptic shared control wherein the parameters of the automation’s impedance
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Table 2.1: Numerical values for the system parameters in the simulation

Parameters Variables 
Interaction Modes 

Unit 
Active safety Assistive 

Activation coefficient of 𝑘A 𝛽𝑘A 1 0.1 - 

Activation coefficient of bA 𝛽bA  1 0.1 - 

Memory coefficient of 𝑘A 𝛼𝑘A -1 - 

Memory coefficient of bA 𝛼𝑘A -1 - 

  0.1 1 - 

  0.1 0.5 - 

Driver arm's inertia JH 1x10-3 Kg.m2 

Steering wheel inertia JSW 1x10-2 Kg.m2 

Steering column inertia JS 1x10-2 Kg.m2 

Motor's  inertia JM 1x10-3 Kg.m2 

Torque sensor stiffness KT 1000 N.m/rad 

Timing belt mechanical advantage 𝑟S/𝑟M 1 - 

Prediction horizon 𝑁p 10 - 

Control horizon 𝑁c 10 - 

The sample time TS 1x10-2 Sec 

Maximum index  12 - 

KKT vector norm range 𝛿 5x10-2 - 

Mean value of driver arm's stiffness

Mean value of driver arm's damping

𝐾H

BH

_

_



49

controller are invariant. The first row shows the human’s intent θH, the automation’s

intent θA, and the steering angle θS. The second row shows the human’s torque τH,

the automation system’s torque τA, and the torque measured by the torque sensor τT.

The third and fourth row shows the parameters of the damping and stiffness of the

human arm and automation’s impedance controller, respectively. In this example,

we select the human’s biomechanics mean value to be Z̄H = [0.5 1]T. Since with

Z̄H = [0.5 1]T, the human’s control command is sufficient to maneuver the steering

angle safely, we select the weights of the cost function such that the automation acts

in an assistive mode [6] (i.e., w1 = 0.2, w2 = 0 and w3 = 0.8). In a non-adaptive

haptic shared control paradigm, the automation’s impedance controller parameters

are selected to be the same as the mean value of the driver’s biomechanics (Z̄H = ZA).

It follows from Figure 2.5-A and 2.5-B that in the non-adaptive haptic shared control

paradigm when humans and automation are in the uncooperative mode, their control

commands are opposite and cancel out each other (τA ≈ −τH); and therefore, the

steering angle is almost zero (θ̄S ≈ 0). On the other hand, it follows from Figures

2.5-C and 2.5-D that in the adaptive haptic shared control paradigm, the automation’

impedance controller parameters ZA are reduced to minimize the disagreement τT.

It follows from Figure 2.5-B that the disagreement between humans and automation

is effectively smaller than the non-adaptive haptic shared control paradigm. Fur-

thermore, since the human’s adopted impedance is sufficient, the steering angle θS

command follows the human’s intent θH.

Figure 2.6 also demonstrates the interaction between the driver and the automation

system in the un-cooperative mode in non-adaptive and adaptive haptic shared control

paradigms. In this example, we selected the human’s biomechanics to be Z̄H =

[0.1 0.1]T. Since with Z̄H = [0.1 0.1]T, the human’s control command is insufficient to

maneuver the steering angle safely, we select the weights of the cost function such that

the automation acts in an active safety mode [6] (i.e., w1 = 0, w2 = 0.8 and w3 = 0.2).
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Figure 2.5: The outputs of the driver and automation system interaction within non-
adaptive and adaptive haptic shared control paradigms are compared. (A) driver
intent (red), autonomous system intent (blue) and steering column angle (black)
(B) Measured torque (black), human torque (red) and automation torque (blue) (C)
Damping coefficients of the agents (D) Stiffness coefficients of the agents. The au-
tomation system act as assistive in an uncooperative mode in the adaptive haptic
shared control paradigm. By reducing the automation’s impedance controller gains,
the automation system reduces the disagreement between the human and automation
system. The shaded bands for θS, KA, and BA represent the 95% confidence intervals.
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Similar to the previous example, we assumed the automation system has an estimation

of the human’s biomechanics, and since the human adopted a lower impedance, the

automation re-gain the control authority from the human driver. Also, similar to

the previous example, in the non-adaptive paradigm, the automation’s impedance

controller parameters are selected to be the same as the driver, and therefore, the

control commands of the human τH and automation system τA are opposite and

cancel out each other (see Figure 2.6-A). On the other hand, it follows from the

Figures 2.6-C and 2.6-D that in the adaptive haptic shared control paradigm, the

automation system’s impedance controller parameters ZA is increased to ensure the

desired performance (e.g., avoiding an obstacle in the middle of the road). Since

the automation’s impedance control parameters are increased, the disagreement τT

between the two agents is also increased (See Figure 2.6-B). Furthermore, since ZA

is bigger than ZH, the steering angle θS is closer to the automation’s intent θA (see

Figure 2.6-A).

Figure 2.7 demonstrates the interaction between the driver and the automation sys-

tem in the cooperative mode. In this example, we select the human’s biomechanics to

be Z̄H = [0.5 1]T. Since the human’s control command is sufficient to maneuver the

steering wheel safely, we select the weights of the cost function as w1 = 0.2, w2 = 0,

and w3 = 0.8. With choosing these weights for the cost function, the automation sys-

tem acts in an assistive mode [6]. In a non-adaptive haptic shared control paradigm,

the automation’s impedance controller parameters are selected to be the same as the

driver (ZA = Z̄H). Although the torques of the driver τH and the automation system

τA in cooperative mode are much smaller than torques in the uncooperative mode,

it follows from the Figures 2.7-B that by modulating the automation’ impedance

controller parameters ZA the disagreement τT even decreased more.

Figure 2.8 also demonstrates the interaction between the driver and the automation

system in non-adaptive and adaptive haptic shared control paradigms in the coopera-
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Figure 2.6: The outputs of the driver and automation system interaction within non-
adaptive and adaptive haptic shared control paradigms are compared. (A) driver
intent (red), autonomous system intent (blue) and steering column angle (black)
(B) Measured torque (black), human torque (red) and automation torque (blue) (C)
Damping coefficients of the agents (D) Stiffness coefficients of the agents. The au-
tomation system act as assistive in an uncooperative mode in the adaptive haptic
shared control paradigm. The automation system provides enough control input for
obstacle avoidance by increasing the automation’s impedance controller gains. The
shaded bands for θS, KA, and BA represent the 95% confidence intervals.
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Figure 2.7: The outputs of the driver and automation system interaction within non-
adaptive and adaptive haptic shared control paradigms are compared. (A) driver
intent (red), autonomous system intent (blue) and steering column angle (black)
(B) Measured torque (black), human torque (red) and automation torque (blue) (C)
Damping coefficients of the agents (D) Stiffness coefficients of the agents. The au-
tomation system act as assistive in a cooperative mode in the adaptive haptic shared
control paradigm. By reducing the automation’s impedance controller gains, the
automation system reduces the disagreement between the human and automation
system. The shaded bands for θS, KA, and BA represent the 95% confidence intervals.
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tive mode. In this example, we select the human’s biomechanics to be Z̄H = [0.1 0.1]T.

Since the human’s control command is insufficient to maneuver the steering wheel

safely, we select the weights of the cost function to be w1 = 0, w2 = 0.8, and w3 = 0.2.

With choosing these weights for the cost function, the automation system acts in the

active safety mode [6]. It follows from the Figures 2.8-C and 2.8-D that in the adaptive

haptic shared control paradigm, the automation’ impedance controller parameters ZA

are increased to ensure the desired performance (e.g., providing the required control

inputs).

Considering no uncertainty in ZH (i.e., ZH = Z̄H), Figure 2.9 shows a scenario

wherein all the four interaction modes are integrated into one unified framework.

The sequence of these interaction modes is cooperative-active safety, uncooperative

assistive, uncooperative-active safety, and cooperative-auto pilot mode. It follows

from Figure 2.9 that initially, the human and automation system are in cooperative

mode; however, the human’s torque input is insufficient (low ZH). The automation

system increases its impedance to provide the required control command. In the next

mode, the human and robot are in the uncooperative mode; however, the human’s

torque input is sufficient (high ZH). The automation system reduces its impedance to

minimize the disagreement with the driver. In the third mode, the human and robot

are in the uncooperative mode; however, the human’s torque input is insufficient

(low ZH). The automation system again increases its impedance to ensure safety

at the expense of fighting with the driver (high τT). Finally, the human and robot

are again in the cooperative mode in the fourth mode; however, the human’s torque

input is sufficient (high ZH). The automation system reduces its impedance and

yields the control authority to the driver. It follows from Figure 2.9 that in the

proposed adaptive haptic shared paradigm, by recognizing the interaction mode, the

appropriate set of weights for the cost function can be determined and automation

can continuously adjust its impedance controller parameters such that not only the
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Figure 2.8: The outputs of the driver and automation system interaction within non-
adaptive and adaptive haptic shared control paradigms are compared. (A) driver
intent (red), autonomous system intent (blue) and steering column angle (black)
(B) Measured torque (black), human torque (red) and automation torque (blue) (C)
Damping coefficients of the agents (D) Stiffness coefficients of the agents. The au-
tomation system act as active safety in a cooperative mode in the adaptive haptic
shared control paradigm. By increasing the automation’s impedance controller gains,
the automation system provides enough control input for obstacle avoidance. The
shaded bands for θS, KA, and BA represent the 95% confidence intervals.
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safety is ensured, but also the customizability feature of the automation system is

improved.

2.5 PIL implementation

To validate the modulation algorithms developed in this paper in a human-in-the-

loop setup, it is necessary to make sure the nonlinear model predictive algorithms

can be solved in real-time. As a first step towards this goal, we performed a series of

tests with a processor in the loop (PIL) using a set of low-cost microcontrollers.

The processor in the loop (PIL) is a test method with a compiled code that describes

a controller running in an external microprocessor or processor. The deterministic

plant model runs on a remote simulator. Both subsystems, controller and plant, are

linked by a communication link or data transfer port. A PIL platform is developed

for the proposed impedance modulation approach and illustrated in Fig. 2.10-(A). In

PIL simulations, subsystems run in separate processing platforms, which intercross

input and output data through a communication mean.

In PIL architecture, we select the ATMega2560 and STM32F4 discovery board to

be the target boards for implementation purposes. The PIL test-bed block diagram

is illustrated in Fig. (2.10). As illustrated in Fig. (2.10-B), the target board contains

three main subroutines. The port decoder subroutine extracts the host computer’s

received data for the nonlinear MPC. The NLMPC subroutine, based on the current

value of the state/co-state vector and the unknown vector on the previous time step,

propagates the system to form the FL,A(XLL, ULL, t). Then the optimal value of the

unknown vector from the C/GMRES method will be defined and based on (2.18), the

control signal uLL will be fed to the packet generator subroutine. The communication

between the target board and the Simulink environment is performed over a serial port

connection by 115200 bps. The host and target modules’ synchronization procedure

is based on the control loop execution on the target board. Arduino Mega’s processor

is an ATmega2560 microcontroller, and its CPU clock is 16 MHz, while the STM32F4
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Figure 2.9: The human and automation’s interaction in the four interaction modes.
The sequence of these interaction modes is cooperative-active safety (shaded blue),
uncooperative assistive (shaded orange), uncooperative-active safety (shaded yellow),
and cooperative-auto pilot mode (shaded green). The outputs of the driver and au-
tomation system interaction within non-adaptive and adaptive haptic shared control
paradigms are compared. (A) driver intent (red), autonomous system intent (blue)
and steering column angle (black) (B) Measured torque (black), human torque (red)
and automation torque (blue) (C) Damping coefficients of the agents (D) Stiffness
coefficients of the agents. In the proposed adaptive haptic shared paradigm, by recog-
nizing the interaction mode, the appropriate set of weights for the cost function can
be determined, and automation can continuously adjust its impedance controller pa-
rameters such that not only the safety is ensured, but also the customizability feature
of the automation system is improved.
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Figure 2.10: (A) The experimental PIL test setup, (B) The block diagram of the PIL
setup
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has up to 180 MHz operating frequency. Different scenarios are implemented in the

PIL test-bed for each of these processors based on the 10, 20, and 30 grid numbers

Np and 10, 15, and 20 maximum iterations C/GMRES solver.

Table 2.2: PIL results for the Low-level controller in active safety and assistive modes
 

  Arduino Mega2560 STM32F4 Discovery 

Grid Num. (𝑵𝒑) Maximum C/GMRES Iteration 

10 (Itr)  15 (Itr) 20 (Itr) 10 (Itr)  15 (Itr) 20 (Itr) 

Active 

Safety 

Mode 

10 280 410 570 80 110 150 

20 420 630 910 120 160 230 

30 620 980 1380 170 250 400 

Assistive 

mode 

10 210 390 510 70 90 130 

20 370 590 860 100 140 210 

30 580 910 1210 150 230 370 

The PIL implementation for low-level controllers is performed for both active safety

and assistive modes. The control loop’s execution time on a microcontroller depends

on the interaction mode (assistive or active-safety modes). For example, On the

discover board with grid number 10 and the maximum C/GMRES iteration 15, the

execution time for the active-safety and assistive modes are 110 and 90 microseconds,

respectively (Table 2.2). The maximum iterations for the continuation method and

the horizon view (grid number) are the main effective parameters in the control loop’s

execution time. The termination condition for convergence in GMRES method is in

the range of 10−4 for both control signals (ΓkA, ΓbA). For each microcontroller in

each mode, nine case studies are performed. Specifically, we considered three values

for the maximum C/GMRES iteration and three values of the grid numbers (Np).

Table 2.2 shows the PLI results for both microcontrollers, and the time unit for

the recorded execution time is a microsecond. Since the model execution time is

equal to 2 milliseconds in the model simulator, the control signals must be computed

on the processor before the next sequence. Therefore the loop requirement for the

implemented PIL is two milliseconds. Both the Discovery board and Arduino Mega

pass the loop requirement, while STM32F407 shows better performance.
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CHAPTER 3: (PAPER 2) Quantifying the Performance of an Adaptive Haptic

Shared Control Paradigm for Steering a Ground-Vehicle

3.1 Introduction

Human-automation teaming (HAT) is gaining importance in commercial and mili-

tary applications with autonomous vehicles because of its promise to improve perfor-

mance, reduce the cost of operating and designing platforms, and increase adaptability

to new situations [8, 9]. However, adding automation may sometimes have unintended

consequences and increase rather than reduce—problems for a human operator, es-

pecially when faults occur. Given the fact both human and automation are subject

to faults and errors, the fundamental question is how should control be dynamically

transitioned between the human and automation to minimize the trade-off between

the human partner’s preference and the safety and performance of the task in the

presence of conflicts between human and automation’s goals.

To this end, various schemes have been proposed, differing primarily according to

how to control authority is transitioned between the two agents [5, 36, 35, 25]. These

schemes can be categorized into two main categories: switch-based control schemes

and continuous control schemes [32, 33, 13]. In the switch-based control schemes, the

control authority is transferred as a lumped whole from human to automation or back

to human. Depending on the scheme, transfers may be initiated by the human driver,

by the automation system, or by a separate arbitration algorithm [25, 36, 35]. Switch-

based control schemes involve issues such as a protracted-time interval required for full

transfer, misinterpretation or misappropriation of responsibility (called mode errors),

and incomplete understanding of the environment state (loss of situation awareness)

[11, 30, 25]. To address these issues, various schemes have been proposed under
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which the control authority is continuously shared between humans and automation

to address these shortcomings. Two main groups of these schemes are input-mixing

control, and haptic shared control [12, 1, 29, 3, 28, 22, 31, 10]. The main differ-

ence between these two paradigms is that haptic shared control paradigms involve

a dynamic coupling between a human driver and automation through the steering

wheel. In contrast, the input-mixing paradigms do not involve such a coupling. The

dynamic coupling allows the driver to remain bodily in the loop, with his/her hands

on a motorized steering wheel. A valuable feature of haptic shared control is that

the role (e.g., leader/follower) played by each agent and the level of authority held

by each agent (how much control an agent exerts) is a dynamic outcome of the in-

teraction between the two agents and the vehicle [24, 16, 17, 6]. The feature of role

and level of authority being outcomes of the interaction in haptic shared control is in

sharp contrast to the control sharing paradigm of input mixing, where a third party

imposes the level of authority (an agent or algorithm that assesses current threat)

and potentially make the haptic shared control to be more robust to automation’s

misses, and faults [12, 3, 1, 19, 5].

Figure 3.1 demonstrates a schematic of a haptic shared control paradigm. Three

entities each impose a torque on the steering wheel: τH by a driver through his hands,

τA by automation system through a motor, and τV by the road through the steer-

ing linkage. Here, we model the driver as a hierarchical two-level controller. The

upper-level control represents the cognitive controller, and its output, θH represents

the driver’s intent. The lower-level represents the human’s biomechanics which it’s

parameters zH can vary in time (e.g., with muscle co-contraction). Similarly, the au-

tomation system is modeled as a higher-level controller (AI) coupled with a lower-level

impedance controller with the modest gain zA [18, 14, 14, 21, 20].

In our recent work, comparing HAT performance for steering control across several

shared control schemes, we showed that sharing methods like haptic shared control ef-
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Figure 3.1: A schematic of a haptic shared control where both human and automation
collaboratively control the steering of a semi-automated ground vehicle.

fectively support smooth shifts of authority during automation-induced faults [5]. In

this study, the automation’s impedance zA - which is an index for automation’s level

of control - was remained constant; and the human, by modulating its impedance,

was responsible for gaining or yielding the control from the automation partner. The

invariant impedance resulted in lower driving performance (e.g., longer Safe Approach

Distance indicating a lower driver’s preparedness) in situations where the automation

was subject to faults. We recently addressed this issue by developing algorithms

to actively modulate automation’s impedance control parameters zA to improve the

quality of human-automation handover [19]. This study employs the algorithm de-

veloped in [19] to quantify the performance of the Adaptive Haptic Shared Control in

resolving a conflict through a set of human-subject studies. Specifically, we compare

the the performance of the Adaptive Haptic Shared Control with two other shared

control schemes named ASssistive and Active-safety haptic shared paradigms.

The outline of this paper is as follows. In Section 2, we present our MPC-based
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automation system and our driving simulator and elaborate on our implementation of

Assistive, Adaptive, and Active-safety shared control paradigms. Next, we describe

an experiment in which we asked 27 participants to drive with the assistance of the

automation system under these three control sharing schemes. Finally, in Section 3,

we present experimental results and follow this with a Discussion and Conclusion in

Section 4.

3.2 Method

We conduct a series of human test studies to evaluate the performance of the

proposed Adaptive Haptic Shared Control scheme. The details about these studies

including the participant characteristics, apparatus, experimental conditions, perfor-

mance metrics and data analysis method are described in below.

3.2.1 Participants

Twenty-seven test participants (20 male and 7 female) between the ages of 22 and

45 years old recruited for these tests. All participants signed the consent form under

the Office of Research Protections and Integrity at the University of North Carolina

at Charlotte. All participants were without physical or visual impairments while per-

forming their driving duties and did not receive compensation for participating in the

test. Before the test, each participant was given a fifteen to twenty minutes opportu-

nity to become familiar with the test setup and the graphical interface. Participants

experienced all three different driving conditions based on the shared control scheme

(Assistive Haptic Shared, Adaptive Haptic Shared and Active-safety Haptic Shared).

Each participant was asked to complete the three experimental conditions with two

repetitions each. The order of conditions was randomized. The vehicle speed was set

constant at 13 m/s, and each test run was about 90 s long. The sampling rate of the

acquired data, such as the lateral and longitudinal position of the vehicle, features of

obstacles (location, avoiding status), steering angle and its first and second deriva-
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tives, grip force, differential torque, are 1 kHz. The graphical user interface refresh

rate for the road display is set to 20 Hz in the GUI renderer.

Ten obstacles are placed along the route with a randomized locations at each run.

When the car approaches these obstacles, as it is demonstrated in Fig. 3.2, two

messages are displayed to the driver: recommended direction to avoid the obstacle

(left or right) and the suggested level of grip force (high or low). The reference path

for each participant is clearly defined graphically, and each participant is asked to

avoid the obstacle by turning the steering wheel based on the recommended direction

and impedance value. Drivers informed that the autonomous system could employ

different trajectories to avoid obstacles, and as a result, they might perceive conflict

by experiencing a resistive torque on the steering wheel.

3.2.2 Apparatus

We developed a low-fidelity driving simulator with a motorized steering wheel (see

Figure (3.2)). An overview of the track, road trajectory of a subject human driver

and automation system with the obstacles from one of the studies is represented

in Figure (3.3). The mechanical modules and the sensor/actuator combination was

adopted from [5] with some changes, and Table 3.1 represents a part list for the

driving simulator setup. The position controller of the DC motor is based on the

state-feedback controller, and its input is desired steering angle of the automation

system. Therefore, the required tools for the Adaptive Haptic Shared Control scheme

are provided to the control algorithm in the Matlab Simulink real-time environment.

Unlike [5], in this work, both MPC controller and graphical interface were running

on one PCwith Intel-core i7-8700 CPU, 32 GB Ram. The switching frequency of the

PWM signal is increased to 3 kHz to remove the torque ripple on the rotor. Fur-

thermore, to increase communication speed between the host board and the Simulink

real-time target environments, the rate of the acquired signal is selected to be ten

micro-second.
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Motor, Driver, 

Encoder and  Belt

Graphical Interface

Force Sensor

Figure 3.2: Experimental setup of the fixed-base driving simulator with magnified
road display on monitor.

Table 3.1: The part list for the driving simulator setup

Component Model/Producer Description 

DC motor A28-150/AmpFlow High performance, 24 volt/ 13.77N.m 

Steering Wheel Speedway 38 cm solid aluminum wheel 

Timing Belt - 72:15 mechanical advantage 

Optical Encoder US Digital HB6M 4096 PPR 

Torque Sensor TAT200/ HT sensor 0 to 50 N.m 

Force Sensor TAL220/Sparkfun 10kg Load Cell 

ADC HX711/Avia Semiconductor 24-Bit/I2C communication 

DC motor Driver BTN7960/dfrobot Two channel, 15A, 4.8 ~ 35V 
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Figure 3.3: An overview of the road trajectory (blue line), automation’s intended
trajectory (dotted black line), measured experiment (green line) and obstacles (read
circles)

The virtual environment was adapted from [5]. It was created using the Matlab-

Simulink Virtual Reality Toolbox, and appeared as shown in Fig. 3.2. It contained a

notional High Mobility Multipurpose Wheeled Vehicle (HMMWV) and a road with

various landmarks that provided motion cues during driving. The vehicle traveled at

a constant speed of 13 m/s, and neither the participant nor the automation system

had any control over speed. The road (in gray) was 8 m wide with a white dashed

centerline. Shoulders of 6 m width (in dark green) were located on either side of

the road. The entire track was 850 m long, with 5 left turns and 5 right turns. An

overview of the track is shown in Fig. 3.3. Ten cylindrical obstacles with a 2 m

diameter and 0.5 m height were distributed along the tracks centerline at intervals

that were set randomly between 40 and 50 m.

3.2.3 Control System Design

The automation system consists of three main controllers. At the highest level, to

generate the desired steering commands θA for the lane-keeping and obstacle evasion,
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we employed a pursue tracking controller. A pure pursuit controller generates steer-

ing commands such that the path tracking error is minimized using a ‘look-ahead’

distance away from the vehicle location on the reference path [34]. To ensure that

our pursuit tracking is capable of obstacle avoidance, we modified the center-line

trajectory considering a concave-arc shape arc around the obstacle. We designed

the concave-arc shape to go around the obstacle from either right or left side of the

obstacle. Figure 3.3 shows the automation’s trajectory with dashed-black lines.

At the mid-level, we used Model Predictive Control (MPC) described in [18] to

modulate the impedance parameters of the automation system zA = [bA kA]
T. Here

kA, bA represent the gains of the impedance controller. The inputs to this MPC

include the vehicle’s state xV, an estimation of the human’s steering commands θ̂H,

the automation’s steering commands θA, an estimation of the parameters of human’s

impedance ẑH = [b̂H k̂H]
T, automation impedance parameters zA = [bA kA]

T, and

data describing the track. Here k̂H, b̂H represent an estimation of the stiffness and

damping of the human’s biomechanics model presented in [12]. Furthermore, we

adopt the kinematic bicycle model to describe the behavior of the vehicle [23].

The MPC’s cost function is defined as

min
ΓA

J(t) =

∫ t+th

t

{‖θ̂H − θS‖wAH
+ ‖θA − θS‖wAA

+ ‖τT‖wAθ
}dς (3.1)

s.t. żA(t) = αAzA(t) + βAΓA(t) (3.2)

where ΓA = [ΓbA(t) ΓkA(t)]
T is the automations control input for modulating its

impedance, th is the defined horizon for the model predictive controller, wAH, wAA,

wAθ are weights matrices, and αA, βA are the constant matrices. The first term of

the cost function over the finite horizon (integration part) aims to minimize the error

between the human’s desired steering command θ̂H and the steering angle. The second

term of the cost function over the finite horizon is defined to minimize the tracking
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error between the automation’s desired steering command θA (automation’s intent)

and the steering angle. Since the human’s and automation’s intent may not necessarily

be the same, which is when the negotiation of control authority becomes important,

the third term of the cost function over the finite horizon is defined to minimize

the disagreement between a driver and the automation system. Here, we defined

τT = kT(θH−θA). Additionally, we define two sets of constraints for the nonlinear cost

function J to ensure the non-negative values for the impedance controller’s parameters

bA and kA.

To solve the cost function J , we require to have an estimation of human’s steering

command θ̂H and estimation of the human’s impedance parameters ẑH. To estimate

θH, we developed a second pursuit tracking controller similar to the automation pur-

suit tracking. The only difference between these two pursuit tracking is their reference

trajectories. Specifically, the difference between the human reference path and au-

tomation’s reference trajectory is around six out of ten obstacles, wherein the human’s

trajectory has an opposite direction with respect to the automation’s trajectory (i.e.,

human is going right but the automation’s is going to left or vice versa). It should be

noted that the human’s actual trajectory rH might be different from the estimated

r̂H. Also, to determine an estimation of zH, we used a grip force on the steering wheel

(see Figure 3.2). We measured the grip force of each participant in a set of trial tests.

Then, the grip force is normalized based on minimum and maximum measured grip

force.

Gf,n =
Gf,meas −Gf,min

Gf,max −Gf,min

(3.3)

where Gf,n is the normalized grip force, Gf,meas is the measured grip force, Gf,max is

the maximum measured grip force Gf,min is the minimum measured grip force. We

quantitized the normalized grip force Gf,n into five ranges called low when 0 ≤ Gf,n ≤
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0.2, medium low (0.2 ≤ Gf,n ≤ 0.4), medium (0.4 ≤ Gf,n ≤ 0.6), medium high

(0.2 ≤ Gf,n ≤ 0.8) and high (0.8 ≤ Gf,n ≤ 1). For the low Gf,n, we select the values

of the human driver’s impedance to be ẑH = [0.1 0.02]. For the medium low, Gf,n,

the values of the human driver’s impedance to be ẑH = [0.25 0.04]. For the medium

, Gf,n, the values of impedance to be ẑH = [0.5 0.06]. For the medium high, Gf,n, the

values of the human driver’s impedance to be ẑH = [0.75 0.08], and for the high Gf,n,

the values of impedance to be ẑH = [1 0.1]. We employed a continuation generalized

minimum residual method to solve the cost function J . The detail of these approaches

is described in [18]

We also employed a state-feedback controller to generate the motor command

torque τM as a function of the setpoint trajectory θA generated by the automation’s

pursuit tracking, the automation’s impedance zA generated by the automation MPC

controller, and the current steering angle θS. In particular, the equations of motion

for the motor connected to the steering wheel is considered as

JMθ̈M + bMθ̇M + kMθM = kIIM −Ml (3.4)

LİM +RIM + kbθ̇M = vt (3.5)

where (vt) is the voltage sent to the motor, Ml is the torque applied because of the

load connected to the steering motor. Here, this load can be considered as Ml =

(JS)
(

rM
rS

)2
θ̈M + bS

(
rM
rS

)2
θ̇M + kS

(
rM
rS

)2
θM. Here, JS is the steering inertia, bS is the

steering damping, and kS is the steering stiffness. Furthermore, IM, R, L, kI and kb

are motor’s current, resistant, inductance, torque constant, and electromotive force

constant, respectively. To determine the voltage sent to the motor, we employ a

state-feedback controller. In particular,

vt = kA(θA − θS) + bA(θ̇A − θ̇S) + JA(θ̈A − θ̈S) (3.6)
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Here JA = 1× 10−6 is a small constant. Finally, the command voltage was converted

to the duty cycle of the PWM signal on the HIL board, and it applied the full-bridge

motor driver at 3kHz.

3.2.4 Experimental Conditions

Our experiment involved three situations in which control was shared between the

human drivers and the automation system: Assistive Haptic Shared Control, Adaptive

Haptic Shared Control, and Active-Safety Haptic Shared Control.

Under each situation, participants were requested to follow the road, keeping as

close as possible to the centerline but to avoid obstacles. Obstacles were imperceptible

until the vehicle was within 40 meters range. Therefore, with a constant velocity of

13 m/s, the participant had three seconds to identify and avoid obstacles.

Ten obstacles were encountered on each run. The automation was designed to

maneuver from the left side for 5 of these obstacles and the right side for the other

5. To create a conflict between human and automation, we displayed a sign asking

the driver to take to the right or left side of the obstacle (by showing a right-sided or

left-sided arrow on the monitor). We randomize these events so that the automation

path and the sign displayed to the driver are the reverse directions for six obstacles,

and the other four obstacles have the same direction. As it is demonstrated in Figure

3.2, we asked the driver to either adopt a high impedance for 5 of these obstacles

or a low impedance for the other five obstacles (i.e., hold the steering wheel tightly

or loosely). Below is a table showing the number of obstacles for the four possible

interaction modes between the human driver and automation system.

3.2.4.1 Assistive Haptic Shared Control

In the Assistive Haptic Shared Control scheme, we select the weights of the cost

function such that automation generates a low impedance in the presence of conflicts.

In the Assistive mode, the automation has confidence in the human driver. Its main
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Table 3.2: Intent types and the displayed impedance level to participants
on the monitor

 

 

 

Intent Type Impedance Level repetition Direction Sub-repetition 

Same Intents 
(Cooperative) 

Human asked for High 
Impedance 

2 
Right  1 
Left  1 

Human asked for Low 
Impedance 

2 
Right  1 
Left  1 

Reverse Intents 
(Uncooperative) 

Human asked for High 
Impedance 

3 
Right  1 
Left  2 

Human asked for Low 
Impedance 

3 
Right  2 
Left  1 
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 Assistive Adaptive HSC Active-Safety 

Cooperative 
High Impedance 

Mean  PDT 22.64 17.39 20.77 
S.E.  PDT 1.84 0.53 0.96 

Low Impedance 
Mean  PDT 25.25 19.25 20.98 
S.E.  PDT 0.81 0.55 0.98 

Uncooperative 

High Impedance 
 

Mean  PDT 32.35 37.10 44.64 
S.E.  PDT 5.24 3.66 3.21 

Low Impedance 
Mean  PDT 28.88 38.77 55.04 
S.E.  PDT 2.77 2.67 3.20 

Total RMS LD for Each Mode 
Mean  PDT 27.95 30.09 34.96 
S.E.  PDT 2.68 1.78 2.23 

goal is to follow the estimated steering commands of the human driver and not nec-

essarily follow its own steering commands. In the Assistive mode, the automation

system employed the MPC algorithm described in Eq.(3.1) with a constant penalty

weight value wAA = 0.1 and wAH = 0.9. In the Assistive mode, the automation

is confident in the human driver. Its main goal is to follow the estimated steering

commands of the human driver and not necessarily follow its steering commands.

3.2.4.2 Active-Safety Haptic Shared Control

In the Active-Safety Haptic Shared Control scheme, we select the weights of the cost

function such that automation generates a high impedance in the presence of conflicts.

In the Active-safety mode, the automation has low confidence in the human driver.

Its main goal is to follow its own estimated steering commands despite a conflict it

may arise with a driver. In particular, the automation system employed the MPC

algorithm described in Eq.(3.1) with a constant penalty weight value wAA = 0.9 and

wAH = 0.1.

3.2.4.3 Adaptive Haptic Shared Control

In the Adaptive Safety Haptic Shared Control scheme, we select the weights of

the cost function such that automation can modulate its level of impedance to gain

or yield the control from the human driver. To this end, the cost function weights

are adaptively modulated based on the human’s normalized grip force expressed in

Eq.(3.3). We assumed that when a human’s grip force is high, automation’s confidence
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in human actions is also high. Therefore, it yields control to the driver by adopting

a lower impedance. When a human’s grip force is low, the automation’s confidence

in human actions is also low; it gains control from the driver by adopting a higher

impedance. In Adaptive HSC scheme, for the low gf,n, we select the values of weights

to be (wAA = 0.99, wAH = 0.01). For the medium-low, Gf,n, the values of weights

to be (wAA = 0.75, wAH = 0.25). For the medium , Gf,n, the values of automation’s

cost weights to be (wAA = 0.5, wAH = 0.5). For the medium-high, Gf,n, the values of

weights to be (wAA = 0.25, wAH = 0.75), and for the high Gf,n, the values of weights

to be (wAA = 0.01, wAH = 0.99).

3.2.5 Performance Metrics

The dependent measures used to characterize the behavior and performance of the

driver-automation teams were based on the following two categories: (1) the steering

and torque trajectories (2) the excursions around the obstacles.

The time-dependent behavior of the participants is reflected in the vehicle trajec-

tory on the road and the measured differential torque on the steering wheel. The

road attached coordinate system is used to specify the vehicle’s location. In this co-

ordinate system, the center of the obstacle is considered the same as the origin point.

The radius of the cylindrical obstacle is one meter, and it is demonstrated with a

red circle in the figures. The absolute value of the differential torque and the lateral

vehicle position are employed for demonstration/comparison purposes.

The following four performance metrics were based on the excursions around the

obstacles: Obstacle Hits, RMS Lateral Deviation, Approach Distance, and Peak Ex-

cursion. Obstacle Hits are simply the number of obstacle collisions within a given

run, and its percentage is calculated by considering the total numbers of the obstacle

(ten obstacles) in each run. These excursion-related statistics around the obstacles

are extracted from the acquired data from each run. For each obstacle, the recorded

values from 25 meters before reaching an obstacle and 25 meters after the obstacle
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Figure 3.4: The performance metrics Approach Distance, RMS Lateral Deviation,
and Excursion Peak are demonstrated in a typical obstacle avoidance trajectory. (a)
The intersection of Expanded Obstacle Boundary (white lines) and vehicle path (solid
black line) defines points A and B as threshold crossing points. The description of
the Approach Distance is the length between point A and obstacle center (O) along
the centerline. (b) The RMS value of the Lateral Deviation of the vehicle from the
centerline is calculated for the sampled values (starting at point A and ending at point
B) denoted by e1, ..., eN . The Peak Excursion is defined as the absolute maximum
Lateral Deviation of the vehicle around the obstacle.
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are utilized to construct the data sets for four excursion-related statistics. The Ap-

proach Distance is defined as the distance from the obstacle when the vehicle starts

maneuvering one meter away from the road’s centerline (see Fig.3.4-a). In order to

have a safe driving condition, the Distance Approach must be more than 15 meters.

Therefore a Safe Approach Distance can be defined as a difference between raw Ap-

proach Distance and 15 meters. Instead of using the raw Approach Distance, the Safe

Approach Distance is utilized as a metric in this paper. The Lateral Deviation was

then defined as the nearest distance to the centerline for each evenly sampled point

on the vehicle trajectory. The RMS Lateral Deviation was the root mean square

of the Lateral Deviation between points A and B in Fig.3.4-b). Peak Excursion is

defined as the maximum lateral distance from the extended obstacle boundary which

is demonstrated on Fig.3.4.

3.2.6 Data Analysis

The present study utilized a three by two by two factorial design, with the three

factors being: Control Sharing Condition (Assistive Haptic Shared Active, Adaptive

Haptic Shared Control, Active-Safety Haptic Shared Control), similarity of intents

(same or reverse intent), and the human’s impedance requested from drivers (high,

low). The control sharing scheme varies between six trials for each participant (for

each human driver, two runs for Assistive, two runs for Adaptive, and two runs for

Active-safety schemes), and the obstacle avoiding direction with impedance level is

varied within trials.

The experimental data were measured with one thousand hertz. These data are

as follow: steering angle and its first and second derivatives (θS, θ̇S, θ̈S), centerline

location ([Xcl, Ycl]), vehicle location ([Xvl, Yvl]), obstacles position ([xiobs, yiobs] with

i = 1, 2, ..., 10), reference trajectory for the autonomous system ([Xref , Yref ]), grip

force (Fgrip) and differential torque (τT). These time series measures are exploited to

illustrate the behavior and performance of the driver-automation teams.
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The dependent measures are Obstacle Hit percentage, Peak Excursion near each

obstacle, Safe Approach Distance from the obstacle, and Maximum Torque. All these

measures are extracted from the measured steering and torque behavior of partici-

pants. Univariate analysis of variance (ANOVA) is employed to analyze the statistical

data of the metrics. The Obstacle Hit metric is investigated using the binary logistic

regression approach, whereas Excursion Peak and Safe Approach Distance were an-

alyzed using the linear modeling technique. The control sharing scheme, impedance

level, and the preferred direction for avoiding obstacles are selected as independent

factors. The ANOVA analysis determines the significant difference between the groups

by a p-value less than 0.02. Post-hoc, sequential Bonferroni method is utilized to dis-

tinguish significant differences.

3.3 Results

In this paper, we considered twelve interaction modes between the driver and au-

tomation system based on the three control schemes (Active-safety, Adaptive and As-

sistive); similarity of intents (same or reverse intent) and human’s adapted impedance

(high and low). Below is the detailed Analysis of the performance metrics in each of

these modes.

3.3.1 RMS Lateral Deviation

Figure 3.5 demonstrates the vehicle trajectory for these twelve conditions. The

first, second and third columns, represent the vehicle trajectory in the Assistive,

Adaptive and Active-safety haptic shared control schemes, respectively. The fourth

column show the driver’s grip force. The first row represent the vehicle trajectory

when the human is asked to avoid the obstacle in a direction similar to the automation

(cooperative automation) with a high impedance. The second row also represent the

same intent scenario but the human is asked to adopt a lower impedance. The third

row represent the vehicle trajectory when the human is asked to avoid the obstacle
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in a direction opposite to the automation (uncooperative automation) with a high

impedance. Finally, the fourth row represent the reverse intent scenario but the

human is asked to adopt a lower impedance.

Figure 3.5: The driving trajectories of the vehicle are depicted in the road trajec-
tory coordinate with an obstacle as an origin (a red half-circle). The shaded bands
represent the 90% confidence intervals, while the solid line represents the mean value
of the measured data from participants. The first three columns are dedicated to a
specific shared control scheme (Assistive Adaptive Haptic Shared Control, and Active-
Safety,). The last column demonstrates the measured grip force on the steering. Rows
are based on the cooperation/impedance status of the automation system and the hu-
man driver. The first row illustrates the cooperation between the human driver and
the recommended value for the grip force on the steering is high impedance. The
second, third and fourth rows are cooperative-Low impedance, uncooperative-high
impedance and uncooperative-low impedance interaction modes.

To gauge which shared control scheme resulted in the best maneuver performance

around the obstacles, we calculate the RMS Lateral Deviation from the center-line.

The RMS Lateral Deviation was only computed for obstacle that were successfully

avoided. The means value of RMS Lateral Deviation for all the shared control condi-

tions is presented in Figs.3.6,3.7, 3.8 and Table 3.3. It follows from Fig.3.6 that be-

tween all control schemes, the adaptive haptic shared control scheme has a lower RMS

Lateral Deviation and consequently better maneuvering performance than Active-



85

safety (p = 0.0625) and assitive (p = 0.018).
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Figure 3.6: RMS value for Lateral Deviation of the vehicle from the centerline for
each shared control scheme containing all interaction modes between the human driver
and the automation system. The asterisks on the lines linking two bars indicate a
significant difference between the two control schemes.

Table 3.3: Mean and Standard Error (S.E.) values of RMS Lateral Deviation

 

 

 

 

 

 

 

 Assistive Adaptive HSC Active-Safety 

Cooperative 
High Impedance 

Obstacles Hit 5/108 0/108 5/108 
%Hit 4.6% 0.0% 4.6% 

Low Impedance 
Obstacles Hit 2/108 0/108 1/108 

%Hit 1.9% 0% 0.9% 

Uncooperative 

High Impedance 
 

Obstacles Hit 3/162 1/162 5/162 
%Hit 1.8% 0.6% 3.0% 

Low Impedance 
Obstacles Hit 2/162 5/162 4/168 

%Hit 1.2% 3.0% 2.4% 

Total Hit for Each Mode 
Obstacles Hit 12/540 4/540 15/540 

%Hit 2.2% 0.7% 2.7% 

 Assistive Adaptive HSC Active-Safety 

Cooperative 
High Impedance 

Mean AP 13.8 14.6 12.9 
S.E.  AP 3.8 3.6 3.1 

Low Impedance 
Mean AP 13.9 14.7 12.9 
S.E.  AP 3.3 3.7 3.3 

Uncooperative 

High Impedance 
 

Mean AP 13.4 14.9 13.1 
S.E.  AP 4.0 3.9 3.3 

Low Impedance 
Mean AP 13.2 13.8 13.1 
S.E.  AP 3.7 3.5 3.2 

Total AP for Each Mode 
Mean AP 13.6 15.5 13.0 
S.E.  AP 3.2 3.4 3.1 

 Assistive Adaptive HSC Active-Safety 

Cooperative 
High Impedance 

Mean PE 3.4 3.5 3.5 
S.E.  PE 0.5 0.5 0.5 

Low Impedance 
Mean PE 3.5 3.5 3.5 
S.E.  PE 0.3 0.4 0.5 

Uncooperative 

High Impedance 
 

Mean PE 3.1 3.5 2.5 
S.E.  PE 0.6 0.4 0.3 

Low Impedance 
Mean PE 3 3.4 2.4 
S.E.  PE 0.5 0.3 0.3 

Total PE for Each Mode 
Mean PE 3.2 3.5 2.9 
S.E.  PE 0.5 0.4 0.4 

 Assistive Adaptive HSC Active-Safety 

Cooperative 
High Impedance 

Mean  RMS LD 1.9 1.5 1.7 
S.E.  RMS LD 0.4 0.4 0.3 

Low Impedance 
Mean RMS LD 1.9 1.5 1.7 
S.E.  RMS LD 0.3 0.3 0.3 

Uncooperative 

High Impedance 
 

Mean RMS LD 1.9 1.5 1.7 
S.E.  RMS LD 0.4 0.2 0.2 

Low Impedance 
Mean RMS LD 1.8 1.4 1.7 
S.E.  RMS LD 0.3 0.2 0.3 

Total RMS LD for Each Mode 
Mean RMS LD 1.9 1.5 1.7 
S.E.  RMS LD 0.3 0.2 0.2 

It can interfere that a lower value of RMS Lateral Deviation for a specific control

scheme indicates that the participant prefers to use that control scheme to maneuver

around the obstacle efficiently. Considering the sample trajectory depicted in Fig.3.5,

the presented mean and standard error values in Table.3.3 can be more perceptible.
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The smaller standard value for the RMS Lateral Deviation has a thinner shaded

confidence area in the graphical representation (Figure 3.5).

The mean value of the RMS Lateral Deviation in each control scheme for differ-

ent interaction modes is approximately the same. There is no significant difference

between the interaction modes within the same control scheme, as is demonstrated

in the bar chart Fig.3.7. The standard error value in the Assistive control scheme

shows a wider variation (S.E. = 0.3), which is bigger even for the cases with high

impedance values (S.E. = 0.4). The RMS Lateral Deviation in the Adaptive scheme

demonstrates better performance (mean = 1.5m, S.E. = 0.2) compared to Assistive

(mean = 1.9m, S.E. = 0.3) and Active-safety (mean = 1.7m, S.E. = 0.2) schemes.

p=0.489

p=0.357

p=0.092

Figure 3.7: RMS value for Lateral Deviation of the vehicle from the centerline for
each shared control scheme grouped by interaction mode between the human driver
and the automation system.

3.3.2 Differential Torque

Fig.3.9 has the same structure as Figure 3.5 but it represent the the differential

torque τT between the human driver and automation system around the obstacle.

Figure 3.12 represent the maximum differential torque for the three shared control
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Figure 3.8: RMS value for Lateral Deviation of the vehicle from the centerline for
each interaction mode grouped by shared control scheme between the human driver
and the automation system.
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Figure 3.9: The measured differential torque between the human driver and the au-
tonomous system is depicted in the road trajectory coordinate with an obstacle as an
origin (a thick red line). The shaded bands represent the 90% confidence intervals,
while the solid line represents the mean value of the measured data from partici-
pants. The first three columns are dedicated to a specific shared control scheme
(Active-Safety, AssiSstive and Adaptive Haptic Shared Control). The last column
demonstrates the measured grip force on the steering. Rows are based on the coop-
eration/impedance status of the automation system and the human driver. The first
row illustrates the cooperation between the human driver and the recommended value
for the grip force on the steering is high impedance. The second, third and fourth rows
are cooperative-Low impedance, uncooperative-high impedance and uncooperative-
low impedance interaction modes.
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paradigms. Figures 3.10 and 3.11 show the maximum differential torque for the twelve

different modes grouped by the shared control scheme and grouped by the interaction

mode, respectively.

It follows from Figures 3.11 - 3.12 that, for all three shared control schemes,when the

human and automation have reverse intents to avoid the obstacle, they both feel a

higher differential torque on the steering wheel. The higher differential torque is an

indication of the uncooperativness between the human and automation.

In addition to the intent, differential torque is also a function of the impedance

adopted by the driver and automation system. When one agent adopts a lower

impedance, the differential torque is expected to be smaller. It follows from Figure

3.11 that in the Assistive and Active safety mode, this assumption is true. Specif-

ically, comparing the torque profile for each of the cases shown in the first row of

Figure 3.9 with the torque shown in the second row, it is clear that the differential

torque is reduced when the human adopts a lower impedance. Similarly, comparing

the torque profile shown in the third row with the torque shown in the fourth row,

it is clear that when both human and automation are in the uncooperative mode, if

the human adopts a lower impedance, the differential torque between them will be

reduced.

By comparing the three shared control schemes (Figure 3.12), it is shown that

the differential torque in the Assistive mode is smaller compared to Adaptive hap-

tic shared control and Active-safety control schemes. Considering the gray area in

Figure 3.9, the peak measured differential torque is ignorable for the same direction-

low impedance case. Because of this case, the overall peak differential torque for

the Assistive scheme is smaller than the adaptive haptic shared control. Post-hoc

comparisons for the differential torque in different shared control schemes indicated

that the possibility of peak torque for the Adaptive HSC condition was significantly

lower than the Active-safety (p = 0.008) conditions (indicated in Fig.3.12). There
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Figure 3.10: Measured differential torque between the human driver and the automa-
tion system for each shared control scheme grouped by interaction mode between the
human driver and the automation system
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Figure 3.11: Measured differential torque between the human driver and the automa-
tion system for each interaction mode grouped by shared control scheme between the
human driver and the automation system.
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is no significant difference between the Adaptive and Assistive schemes (p = 0.021).

Considering the RMS value for the Assistive control scheme reveals that the lower

peak differential torque in this scheme caused more Lateral Deviation from the road

centerline, which is not desired for the driving task.
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Figure 3.12: Measured differential torque between the human driver and the automa-
tion syste for each shared control scheme containing all interaction modes between
the human driver and the automation system.

Table 3.4 demonstrates the mean, and the standard error of the peak measured

differential torque for different interaction modes and control schemes. As mentioned

before, the standard error of the peak differential torque for the cooperative-low

impedance case is approximately equal to zero (S.E. = 0.01), which caused the smaller

peak differential torque for the Assistive scheme with respect to the other control

schemes.

3.3.3 Obstacle Hits

Table 3.5 demonstrates the obstacle hit numbers and percentages for each control

scheme and the interaction modes. The obstacle hit percentage in each run is cal-

culated based on the number of hits divided by the number of the obstacles (ten

obstacles in the road trajectory). As demonstrated in this table, the percentage of

obstacles hit in the Adaptive haptic shared conditions is low (0.7%) compared to the
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Table 3.4: Mean and Standard Error (S.E.) values of the maximum measured
differential torque 
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 Assistive Adaptive HSC Active-Safety 

Cooperative 
High Impedance 

Mean  PDT 22.64 17.39 20.77 
S.E.  PDT 1.04 0.53 0.96 

Low Impedance 
Mean  PDT 25.25 19.25 20.98 
S.E.  PDT 0.01 0.55 0.98 

Uncooperative 

High Impedance 
 

Mean  PDT 32.35 37.10 44.64 
S.E.  PDT 3.24 3.66 3.21 

Low Impedance 
Mean  PDT 28.88 38.77 55.04 
S.E.  PDT 2.77 2.67 3.20 

Total RMS LD for Each Mode 
Mean  PDT 27.95 30.09 34.96 
S.E.  PDT 1.68 1.78 2.23 

2.2% and 2.7% obstacles hit in the Assistive and Active-safety schemes.

Table 3.5: Mean and Standard Error (S.E.) values of numbers of hits

 

 

 

 

 

 Assistive Adaptive HSC Active-Safety 

Cooperative 
High Impedance 

Obstacles Hit 5/108 0/108 5/108 
%Hit 4.6% 0.0% 4.6% 

Low Impedance 
Obstacles Hit 2/108 0/108 1/108 

%Hit 1.9% 0% 0.9% 

Uncooperative 

High Impedance 
 

Obstacles Hit 3/162 1/162 5/162 
%Hit 1.8% 0.6% 3.0% 

Low Impedance 
Obstacles Hit 2/162 5/162 4/168 

%Hit 1.2% 3.0% 2.4% 

Total Hit for Each Mode 
Obstacles Hit 12/540 4/540 15/540 

%Hit 2.2% 0.7% 2.7% 

By considering only cooperative-high impedance conditions, in the Assistive and

Active safety modes, the obstacle hit percentage is 4.6%, whereas there is no obstacle

hit in the Adaptive haptic shared control condition. Likewise, in the cooperative-low

impedance condition, there is no obstacle hit in the Adaptive haptic shared control

condition, while in the Assistive and Active-safety conditions, there are 1.9% and

0.9% obstacles hit. The obstacle hit percentage in the uncooperative-high impedance

conditions shows better performance for the Adaptive HSC scheme (only one obstacle

out of 162 obstacles has been hit). In contrast, the Assistive and Active-safety schemes

have three and five obstacle hits. In Fig.3.13 the bar chart of the percentage of the

obstacle hit for different controller structures in four conditions is demonstrated. For

each interaction mode, a different color is dedicated to distinguishing them. In the

bar chart, the superior performance of the Adaptive HSC scheme for three conditions
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is obvious compared to the corresponding conditions in Assistive and Active-safety

modes. Only in the uncooperative-low impedance condition the Adaptive HSC scheme

has lower performance for obstacle avoidance concerning the other control schemes.
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Figure 3.13: Percent Obstacle Hits for each shared control scheme grouped by inter-
action mode between the human driver and the automation system.

Post-hoc comparisons indicated that the possibility of an obstacle hit for the Adap-

tive HSC condition was significantly lower than for both the Assistive condition

(p = 0.0005) and for the Active-safety (p = 0.0004) conditions (indicated in Fig.3.15).

Analysis of the obstacle hit percentage data for the different interaction modes in-

dicated that the Assistive and Active-safety conditions had a significant main effect

(F (1, 8447) = 0.9231, p = 0.542) on the likelihood of a hit in their cooperative-high

impedance situation. Likewise, the Post-hoc sequential Bonferroni test revealed that

in the uncooperative-low impedance mode, Adaptive HSC had a higher likelihood of

an obstacle hit than Assistive (p = 0.0097) and Active-safety (p = 0.0097) conditions.

However, since the total hit percentage for the Adaptive HSC is significantly lower

than Assistive and Active-safety conditions, the hit percentage in the uncooperative-
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Figure 3.14: Percent Obstacle Hits for each interaction mode grouped by shared
control scheme between the human driver and the automation system
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Figure 3.15: Percent Obstacle Hits for each shared control scheme containing all in-
teraction modes between the human driver and the automation system. The asterisks
on the lines linking two bars indicate a significant difference between the two control
schemes.
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low impedance mode of Adaptive HSC could not be generalized to the other groups

in Adaptive HSC.

3.3.4 Safe Approach Distance

The Approach Distance is used to gauge the control transfer time between the

human and automation system. since the vehicle velocity is constant (13 m/sec),

the Approach Distance is presented in meters in this paper. The value of approach

distance indicated how early the human-automation team deviated from the center-

line track (one meter) to avoid the obstacle. For instance, a lower approach distance

implied that the human-automation team took more time to deviate from the track

during obstacle avoidance. In this paper, we employed the safe approach distance.

The Safe Approach Distance provides a more accurate measure to compare the perfor-

mance of the different shared control schemes since it removes the reckless distance

(15 meters) from the recorded raw Approach Distance values. The means of Safe

Approach Distance for all conditions are summarized in Table 3.6.

Table 3.6: Mean and Standard Error (S.E.) values of Safe Approach Distance

 

 

 

 

 

 

 

 Assistive Adaptive HSC Active-Safety 

Cooperative 

High Impedance 
Obstacles Hit 5/108 0/108 5/108 

%Hit 4.6% 0.0% 4.6% 

Low Impedance 
Obstacles Hit 2/108 0/108 1/108 

%Hit 1.9% 0% 0.9% 

Uncooperative 

High Impedance 

 

Obstacles Hit 3/162 1/162 5/162 

%Hit 1.8% 0.6% 3.0% 

Low Impedance 
Obstacles Hit 2/162 5/162 4/168 

%Hit 1.2% 3.0% 2.4% 

Total Hit for Each Mode 
Obstacles Hit 12/540 4/540 15/540 

%Hit 2.2% 0.7% 2.7% 

 Assistive Adaptive HSC Active-Safety 

Cooperative 

High Impedance 
Mean AP 1.88 2.59 0.87 

S.E.  AP 0.23 0.21 0.20 

Low Impedance 
Mean AP 1.98 2.67 0.87 

S.E.  AP 0.19 0.20 0.19 

Uncooperative 

High Impedance 

 

Mean AP 1.45 2.94 1.09 

S.E.  AP 0.28 0.24 0.20 

Low Impedance 
Mean AP 1.28 1.84 1.15 

S.E.  AP 0.26 0.19 0.19 

Total AP for Each Mode 
Mean AP 1.65 2.51 0.99 

S.E.  AP 0.24 0.21 0.20 

 Assistive Adaptive HSC Active-Safety 

Cooperative 

High Impedance 
Mean PE 3.4 3.5 3.5 

S.E.  PE 0.5 0.5 0.5 

Low Impedance 
Mean PE 3.5 3.5 3.5 

S.E.  PE 0.3 0.4 0.5 

Uncooperative 

High Impedance 

 

Mean PE 3.1 3.5 2.5 

S.E.  PE 0.6 0.4 0.3 

Low Impedance 
Mean PE 3 3.4 2.4 

S.E.  PE 0.5 0.3 0.3 

Total PE for Each Mode 
Mean PE 3.2 3.5 2.9 

S.E.  PE 0.5 0.4 0.4 

 Assistive Adaptive HSC Active-Safety 

Cooperative 

High Impedance 
Mean  RMS LD 1.9 1.5 1.7 

S.E.  RMS LD 0.4 0.4 0.3 

Low Impedance 
Mean RMS LD 1.9 1.5 1.7 

S.E.  RMS LD 0.3 0.3 0.3 

Uncooperative 

High Impedance 

 

Mean RMS LD 1.9 1.5 1.7 

S.E.  RMS LD 0.4 0.2 0.2 

Low Impedance 
Mean RMS LD 1.8 1.4 1.7 

S.E.  RMS LD 0.3 0.2 0.3 

Total RMS LD for Each Mode 
Mean RMS LD 1.9 1.5 1.7 

S.E.  RMS LD 0.3 0.2 0.2 

Looking at the means of Safe Approach Distance presented in Table 3.6, we see

that out of all control schemes, the Adaptive Haptic Shared Control scheme has the

highest Safe Approach Distance whereas the Active-Safety Haptic Shared Control has

the lowest Safe Approach Distance value.

The mean values for Safe Approach Distance grouped in the different interaction

modes (Figure 3.17) and different control schemes (Figure 3.16) reveal that partici-
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Figure 3.16: Safe approach distance value for each shared control scheme grouped by
interaction mode between the human driver and the automation system.
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pants have a slower reaction in the Active safety and Assistive control schemes. The

results for the analysis of the Safe Approach Distance in different shared control

schemes are summarized in Figure 3.18. Through the post hoc tests it was found

that the mean value of the Safe Approach Distance for the Adaptive Haptic Shared

Control scheme was significantly higher than Assistive (p = 0.011) and Active-safety

(p = 0.004) schemes.
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Figure 3.18: Safe Approach Distance value for each shared control scheme containing
all interaction modes between the human driver and the automation system.

3.3.5 Peak Excursion

The Peak Excursion is employed to measure the vehicle distance from the obstacle

while crossing it. Peak Excursion is calculated as the absolute maximum lateral

deviation of the vehicle from the extended obstacle boundary. The mean and standard

error values of Peak Excursion for all conditions are summarized in Table 3.6.

Also, the bar chart of the Excursion Peak for the extended obstacle boundary

for the different interaction modes (Figure 3.20) and shared control schemes (Figure
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Table 3.7: Mean and Standard Error (S.E.) values of Peak Excursion

 

 

 

 

 

 

 

 Assistive Adaptive HSC Active-Safety 

Cooperative 
High Impedance 

Obstacles Hit 5/108 0/108 5/108 
%Hit 4.6% 0.0% 4.6% 

Low Impedance 
Obstacles Hit 2/108 0/108 1/108 

%Hit 1.9% 0% 0.9% 

Uncooperative 

High Impedance 
 

Obstacles Hit 3/162 1/162 5/162 
%Hit 1.8% 0.6% 3.0% 

Low Impedance 
Obstacles Hit 2/162 5/162 4/168 

%Hit 1.2% 3.0% 2.4% 

Total Hit for Each Mode 
Obstacles Hit 12/540 4/540 15/540 

%Hit 2.2% 0.7% 2.7% 

 Assistive Adaptive HSC Active-Safety 

Cooperative 
High Impedance 

Mean AP 1.88 2.59 0.87 
S.E.  AP 0.23 0.21 0.20 

Low Impedance 
Mean AP 1.98 2.67 0.87 
S.E.  AP 0.19 0.20 0.19 

Uncooperative 

High Impedance 
 

Mean AP 1.45 2.94 1.09 
S.E.  AP 0.28 0.24 0.20 

Low Impedance 
Mean AP 1.28 1.84 1.15 
S.E.  AP 0.26 0.19 0.19 

Total AP for Each Mode 
Mean AP 1.65 2.51 0.99 
S.E.  AP 0.24 0.21 0.20 

 Assistive Adaptive HSC Active-Safety 

Cooperative 
High Impedance 

Mean PE 1.45 1.50 1.45 
S.E.  PE 0.25 0.25 0.27 

Low Impedance 
Mean PE 1.54 1.48 1.49 
S.E.  PE 0.05 0.21 0.27 

Uncooperative 

High Impedance 
 

Mean PE 1.10 1.52 0.47 
S.E.  PE 0.60 0.25 0.18 

Low Impedance 
Mean PE 1.02 1.43 0.42 
S.E.  PE 0.42 0.21 0.18 

Total PE for Each Mode 
Mean PE 1.27 1.48 0.96 
S.E.  PE 0.41 0.23 0.23 

 Assistive Adaptive HSC Active-Safety 

Cooperative 
High Impedance 

Mean  RMS LD 1.9 1.5 1.7 
S.E.  RMS LD 0.4 0.4 0.3 

Low Impedance 
Mean RMS LD 1.9 1.5 1.7 
S.E.  RMS LD 0.3 0.3 0.3 

Uncooperative 

High Impedance 
 

Mean RMS LD 1.9 1.5 1.7 
S.E.  RMS LD 0.4 0.2 0.2 

Low Impedance 
Mean RMS LD 1.8 1.4 1.7 
S.E.  RMS LD 0.3 0.2 0.3 

Total RMS LD for Each Mode 
Mean RMS LD 1.9 1.5 1.7 
S.E.  RMS LD 0.3 0.2 0.2 
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Figure 3.19: Peak excursion value in each shared control scheme grouped by interac-
tion mode between the human driver and the automation system.
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Figure 3.20: Peak excursion value in each interaction mode grouped by shared control
scheme between the human driver and the automation system.

3.19) are depicted. In the Adaptive HSC scheme and the cooperative interaction

modes, the mean Excursion Peak is about 1.5 meters. It reveals that having an

opposite intent for avoiding the obstacles by participants and automation system

cause a slower reaction in the driving task. In the Adaptive HSC scheme and the

cooperative interaction modes, the mean Excursion Peak is about 1.5 meters (Figure

3.19). In the uncooperative interaction modes of the Active-safety and the Assistive

control schemes, the mean value of the Peak Excursion is approximately 1 and 0.5

meters (Figure 3.20), respectively. The post hoc tests found that the mean Peak

Excursion for the Adaptive Haptic Shared Control condition was significantly higher

than the Active-Safety (p = 0.003) and also higher than the Assistive (p = 0.057)

shared control schemes (Figure 3.21).



102

Assistive Adaptive HSC Active-Safety
0

0.5

1

1.5

2

P
ea

k 
E

xc
ur

si
on

 (
m

)

Extended Mean Peak Excursion

p=0.057

* p=0.003

Figure 3.21: Peak excursion value for each shared control scheme containing all in-
teraction modes between the human driver and the automation system.

3.4 Conclusions

In this study, our goal was to compare the performance of shared control schemes

in resolving a conflict. To this end, we studied a scenario wherein both human

and automation detect an obstacle and try to avoid it. To study the human and

automation’s interaction outputs, twelves interaction modes were considered. These

modes are designed based on the similarity of human and automation intents (same or

reverse intent for avoiding the obstacle), the amount of participants’ impedance level

(high/low) and the share control schemes (Assistive, Active-safety and the Adaptive

shared control).

All analyses were undertaken on five performance metrics that focused on distinct

aspects of the obstacle avoidance task. The Obstacle Hits and the Peak Excursion

metric were used to compare driving safety; higher obstacle hits/lower Peak Excur-

sion corresponded to lower safety. The safe Approach Distance and Peak Differential

Torque values were used to gauge the quality of control transfer between the human
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and automation. A lower approach distance indicated that around the obstacle, the

human driver was either unprepared to take over the driving authority or was unpre-

pared to give away the driving authority to automation. The lower Differential Torque

means a higher comfort level for participants for the driving task. Finally, RMS Lat-

eral Deviation was used to compare the driver’s maneuvering efficiency around the

obstacle; lower RMS lateral deviation indicated that the maneuver was performed

more efficiently without excessive lateral deviation from the centerline.

The analyzed results revealed that Adaptive Haptic Shared Control has a better

performance based on the Five metrics. The overall Hit percentage of Adaptive

HSC scheme in a run was less than 1% which means the numbers of participants who

experienced obstacle hit were less that four person (since there were only four-hit over

540). The Adaptive HSC scheme had a significantly lower Peak Differential Torque

than the Active-safety HSC scheme and lower Differential Torque than the Assistive

HSC scheme. Also, the Adaptive HSC scheme had significantly lower RMS Lateral

Deviation than both Assistive and Active Safety schemes and had significantly higher

Approach Distance than both Assistive and Active Safety schemes. Moreover, with

respect to the five presented metrics, the driving performance with Adaptive HSC

was never significantly lower than the Active-Safety and the Assistive HSC schemes.

The improvement in driving performance with Adaptive HSC can be attributed to

the adaptive structure of collaboration compared to the Assistive and Active-Safety

HSC schemes. All three HSC schemes communicated their control efforts to the

driver through torque feedback on the steering wheel. In the Adaptive HSC scheme,

the automation continuously monitors and estimates the human impedance level to

indicate their intention to gain/yield the control authority. Therefore based on human

behavior, the Adaptive HSC updates the model of the propagated system in the

high-level MPC (Eq. (3.1)).

Based on the presented analysis of our performance metrics, sharing control under
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Adaptive HSC promotes safer driving and enhances driving efficiency. Especially,

Adaptive HSC improves preparedness to take over or give away the driving author-

ity and fosters more efficient driving maneuvers around obstacles than Assistive and

Active-Safety HSC schemes. Complementing previous research [5, 2, 4, 7, 15, 26, 27,

28], this study demonstrates how adaptively adopting the automation intent (updat-

ing the system model in the HSC scheme) based on the human driver behavior can

help improve driving performance.

There are multiple hyperparameters in the present design of the Adaptive HSC, and

the presented results in this paper are dependent on those parameters. Particularly,

the dependency of the human impedance determination to the measured grip force,

the number of the quantized level for the penalty weights in the cost function (Eq.

(3.1)), the designed curvature in the test and the distribution of the interaction types

between the obstacles are some of the tunable hyperparameters in the current design.

Defining the effect of these parameters in the system design and experimental setup

requires sensitivity analysis and an intelligent tuning mechanism. The data-driven

approaches can be considered a potential solution to handle these tunable parameters

in the current study.
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CHAPTER 4: (PAPER 3) Learning and Leveraging Conventions in the Design of

Haptic Shared Control Paradigms for Steering a Ground Vehicle

4.1 Introduction

Human-automation teaming (HAT) is gaining importance because it promises to

improve performance, reduce the cost of operating, and increase adaptability to new

situations [1, 2]. However, the partnership between the human driver and the au-

tomation system can potentially present some challenges because the two types of

intelligence are not symmetrical (a gap between the world as a human sees it vs.

the world as modeled by the automation) [3, 4, 5]. For instance, given that both

humans and automation systems are subject to faults, the hand-off problem how to

exchange control between a driver and automation plays a critical role in ensuring

HAT’s performance [6, 7, 8, 9]. To this end, various schemes have been proposed, dif-

fering primarily according to how to control authority is transitioned between the two

agents [10, 11, 12, 7]. These schemes can be categorized into two main categories:

switch-based control schemes and continuous control schemes [13, 14, 15]. In the

switch-based control schemes, the control authority is transferred as a lumped whole

from human to automation or back to human. Depending on the scheme, transfers

may be initiated by the human driver, by the automation system, or by a separate ar-

bitration, algorithm [7, 11, 12]. Switch-based control schemes involve issues such as a

protracted-time interval required for full transfer, misinterpretation or misappropria-

tion of responsibility (called mode errors), and incomplete understanding of the envi-

ronment state (loss of situation awareness) [16, 17, 7]. Researchers have proposed vari-

ous schemes under which the control authority is continuously shared between humans

and automation to address these shortcomings. Two main groups of these schemes are
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input-mixing control and haptic shared control [15, 18, 19, 20, 21, 22, 23, 24, 25]. The

main difference between these two paradigms is that haptic shared control paradigms

involve a dynamic coupling between a human driver and automation through the

steering wheel. In contrast, the input-mixing paradigms do not involve such a cou-

pling. The dynamic coupling allows the driver to remain bodily in the loop, with

his/her hands on a motorized steering wheel. A valuable feature of haptic shared

control is that the role (e.g., leader/follower) played by each agent and the level

of authority held by each agent (how much control an agent exerts) is a dynamic

outcome of the interaction between the two agents and the vehicle [26, 27, 28, 29].

The feature of role and level of authority being outcomes of the interaction in haptic

shared control is in sharp contrast to the control sharing paradigm of input mixing,

where a third party imposes the level of authority (an agent or algorithm that assesses

current threat) and potentially make the haptic shared control to be more robust to

automation’s misses, and faults [15, 20, 18, 30, 10].

Balancing between the driver’s preference and the joint task’s safety in a haptic

shared control may result in several possible handover strategies that differ mainly

in human’s and automation’s shared conventions. Here, we define conventions as the

shared knowledge that emerges from repeated interactions [31]. Consider a scenario

when the human and automation see an obstacle but decide to maneuver around

different sides of the obstacle (see Figure 4.2). If both human and automation applies

the same torque, but in the opposite direction on the steering wheel, they cancel out

each other’s input, and the vehicle would hit the obstacle. Three possible solutions

to resolve such a conflict are, the automation can apply a lower torque and yield the

control to the human-driver. On the other hand, the automation can apply a higher

torque and gain control from the human driver. Also, the automation can adapt its

desired path and select a path similar to the human driver. Since the human driver

is a non-stationary partner meaning different humans may prefer different forms of
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handover policy, it is important to study the principles of convention formation so that

we can design an adaptable automation system that can (to some extent) personalize

its behavior to the human partner.

To study convention, a wide range of approaches such as the theory of mind, game

theory, and pragmatic reasoning are focused on modeling the human reasoning over

the partner’s states and strategies based on observations of their actions and un-

folding events [32, 33, 34, 35]. The main drawback of these approaches is that they

become easily computationally intractable and therefore can not be used to adapt

robot’s behavior in real-time [31]. The other group of studies employ multi-agent re-

inforcement learning techniques to qualitatively detect emergent conventions through

post-hoc assessment of the learned strategies [36]. But, these studies do not provide

a platform that separates partner-specific conventions from task-dependent repre-

sentations, making it challenging to leverage learned conventions [31]. Recently, a

few studies have proposed a platform to separate partner-specific conventions from

task-dependent representations [31, 37] using a two-player Markov Decision Process

(MDPs) framework.

In this paper, we follow the same idea but instead of employing MDP framework,

we propose a framework wherein the human and automation actions are defined based

on optimization of a set of cost functions. Here, we model the human and automa-

tion cost function for driving a semi-automated vehicle (e.g., obstacle avoidance) as

a weighted linear combination of a set of features that a human and automation care

about (e.g., collision avoidance, staying on the road, or distance to the final goal).

While these features can represent the task, we argue that the distribution of the

weights associated with these features and how they may evolve in time can be used

as a proxy to learn and leverage the conventions formed between the human driver and

automation system. Additionally, defining the concept of cooperative and competi-

tive cost functions, we create a map to characterize the outputs of human-automation
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interaction under different conventions. Using such a map, an adaptable automation

system can be designed to change its behavior adaptive and form a desirable conven-

tion with a human driver.

To adaptively form conventions, an automation system should automatically learn

complex policies and adjust its behavior accordingly. While model-predictive-base

approaches are powerful tools to deal with the uncertainty and complexity of human-

automation interaction, they lack the learning capability [38, 39, 40, 41, 42]. On the

other hand, conventional end-to-end learning algorithms require significant amounts

of data (hundreds or even thousands of experiments) to achieve a desired level of per-

formance that may not be feasible. To merge the strengths of these approaches, re-

cent efforts have been focused on combining data-driven techniques learning with the

model-based controller [39]. For instance, several approaches have used reinforcement

learning (RL) based methods to update the hyper-parameters of the model-predictive

controller (MPC) [43, 44, 45, 38]. Although there have been few works combining

MPC with learning-based techniques, there seems to be no such work done for the

problem in the context of convention formation to the best of our knowledge. To this

end, we implement a DDPG based RL method to select appropriate weights for the

automation’s cost function such that the automation can adapt its desired steering

policy if needed. We test the performance of our convention formation framework in

the context of resolving a conflict between a human-driver and automation.

In summary, the main contributions of this paper are (i) creating and testing a

method that can be used for extracting modular structure which separates partner-

specific conventions from task-dependent representations; (ii) characterizing a map

that can connect the space of conventions to outcomes of a human-automation in-

teraction for resolving the reverse intent conflict, (iii) development of an adaptable

automation system that can form a convention with a human driver.

The outline of this paper is as follows. Section II presents the model of the adaptive
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haptic shared control paradigm. Section III presents the principles of the convention

formation in a haptic shared control paradigm. In this section, we propose the basics

of a modular structure that can be used for separating partner-specific conventions

from task-dependent representations. Using this structure, we create a map to con-

nect different forms of the conventions with the outputs of the human-automation

interaction. We further develop an RL-based MPC-controller for the automation

system to enable it to form conventions adaptively. Section IV presents numerical

results, followed by Section V, which presents the conclusions and plan.

4.2 Adaptive Haptic Shared Control Framework

Figure 4.1 shows a schematic of an adaptive haptic shared control paradigm. Three

entities each impose a torque on the steering wheel: a driver through his hands, an

automation system through a motor, and the road through the steering linkage.

We model the human and automation system with a similar structure. We model

the driver as a hierarchical two-level controller. The upper-level control represents

the cognitive controller, and its output, θH, represents the driver’s intent. The lower-

level represent the human’s biomechanics, zH, and is considered back-drivable [46].

To indicate that driver’s biomechanic parameters vary with changes in grip on the

steering wheel, use of one hand or two, muscle co-contraction, or posture changes, we

have drawn an arrow through human zH. Similarly, the automation system is mod-

eled as a higher-level artificial intelligence (AI) coupled with a lower-level impedance

controller. The automation system is also considered to be back-drivable, and the

gains of the impedance controller, zA, are designed to be modest rather than infinite.

In other words, the automation is not intended to behave as an ideal torque source;

instead, the automation imposes its command torque τA through an impedance zA

that is approximately matched to the human impedance zH.

Modeling the driver as a spring-mass-damper with a proximal motion source θH(t),
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Figure 4.1: A schematic of a haptic shared control paradigm. The human and au-
tomation are modeled as two-level controller that their dynamics are coupled through
the steering wheel.

the torque applied by the human on the steering wheel is [47]

τH = −JHθ̈SW + bH(θ̇H − θ̇SW) + kH(θH − θSW) (4.1)

where JH, bH, and kH are the inertia, damping and stiffness of the driver’s arm.

Similarly, considering an impedance controller in the lower-level of the automation

system, the torque generated by the motor can be presented as

τA = bA(θ̇A − rS
rM
θ̇S) + kA(θA − rS

rM
θS) (4.2)

where kA, bA represent the gains of the impedance controller and rS/rM is the mechan-

ical advantages of a timing belt connecting the motor to the steering wheel. Human

and automation system can modulate their gains zH = [bH kH]
T, zA = [bA kA]

T to

gain or yield the control [47].

We use a differential torque sensor between the steering wheel and steering shaft

to measure the differential torque between humans and automation. The magnitude

of the differential torque can be used as a metric for identifying the level of cooper-
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ativeness between humans and automation [47]. We model the torque measured by

the torque sensor as

τT = KT(θSW − θS) (4.3)

Furthermore, we adopt the bicycle model to describe the vehicle dynamics [48]. In

particular,

ẋV = AVxV +BVθS (4.4)

where θS is the steering column angle and xV = [υy ω yV ψ]T are states of the

vehicle, and

AV =



−Cαf+Cαr

mvx

−lfCαf+lrCαr−mv2x
mvx

0 0

lfCαf−lrCαr

Izvx

−l2fCαf+l2rCαr

Izvx
0 0

1 0 0 vx

0 1 0 0


, (4.5)

BV =

[
Cαf

mrsw

lfCαf

Izrsw
0 0

]T
(4.6)

Here, υy(t) is the lateral velocity, ω(t) is the yaw velocity ,ψ(t) is the yaw angle

of vehicle , yV(t) is the lateral displacement and Cαf , Cαr,m, Iz, Ir, lf , lr and rsw are

vehicle parameters.

By combining the vehicle dynamics and the dynamics of the human-machine inter-

action on the steering wheel, the equation of motion for a haptic shared control can

be expressed as
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ẋ(t) = f(x(t), p(t), w(t)) +BA(p(t))uA(t) +BH(p(t))uH(t) (4.7a)

y = h(x(t)); (4.7b)

where x = [θSW θ̇SW θS θ̇S x
T
V]

T, are the state of the integrated system, uA = [θA θ̇A]
T,

and uH = [θH θ̇H]
T are the automation system and the human driver’s control com-

mands, p(t) = [zTH z
T
A]

T are the time-varying parameters of the system, and w(t) = τV

is exogenous signals, and

f(x(t), p(t), w(t)) =



θ̇SW

−bHθ̇SW−kH−θSW−KT(θSW−θS)
JSW+JH

θ̇S

−
(

rS
rM

)2
bAθ̇S−

(
rS
rM

)2
kAθS+KT(θSW−θS)+τv)

JS+
(

rS
rM

)2
JM


(4.8a)

BH(p(t)) =
1

JSW + JH



0 0 0 0

kH bH 0 0

0 0 0 0

0 0 0 0


(4.8b)

BA(p(t)) =

rS
rM

JS +
(

rS
rM

)2
JM



0 0 0 0

0 0 0 0

0 0 kA bA

0 0 0 0


(4.8c)

It should be noted that in this paper, we assume all the measured variables y

are accessible. In practice, θS can be measured using the encoder attached to the

steering column, τT can be measured using the differential torques indicating the
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Figure 4.2: Demonstration of a scenario when both human and automation systems
select a different path for avoiding obstacle

difference between θSW and θS. Additionally, kH and bH can be estimated using

various techniques such as identification techniques discussed in [49, 50] and kA and

bA are design parameters and directly can be calculated.

4.3 Convention Formation through Intention Negotiation

In a haptic shared control paradigm, there are can be scenarios where a human

and automation face a conflict. For instance, Figure 4.2 shows a scenario when

both human and automation systems see an obstacle and select a different path for

avoiding it. In such a scenario, if both the human and automation select the same

impedance (zH = zA), their control commands cancel out each other, and the vehicle

hits an obstacle. In addition, to reverse intents, the other forms of conflicts can be

considered when (i) one agent does not provide any control inputs (e.g., one agent

does not detect an obstacle), (ii) too much or too little inputs (e.g., two agents

have different perceptions from the size/position of an obstacle), (iii) control inputs

arrive too early or too late, and (iv) additional inputs cause conflict (e.g., disturbance

feedback from the road).
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To potentially resolve a conflict such as having a reverse intent, the human and

automation can adapt their control strategies by modulating their impedance pa-

rameters [47] and also by updating their steering commands θH and θA. While there

might be multiple strategies for resolving a conflict (e.g., updating their steering com-

mands or modulating their impedance parameters), some of these strategies may be

more preferable than others to the human-driver. The idea behind the convention

formation is to narrow the possible strategies for collaboration into a subset of these

strategies to which the human partner might naturally be more gravitated.

To achieve this goal, three technical challenges must be met. First, we need to

create a modular structure that separates partner-specific conventions from task-

dependent representations. Second, using this structure, a map shall be developed

to connect conventions to the outputs of human-automation interaction. Third, an

adaptable automation system shall be designed to learn complex policies and adapt

its behavior so that a desirable shared convention can be reached. Below, we discuss

our approach for addressing these three challenges.

4.3.1 Distinguishing Partner-specific Conventions from Task-dependent

Representations

To be able to learn and leverage conventions, we need to create a modular structure

that separates partner-specific conventions from task-dependent representations. To

this end, in this paper, we consider a structure where in the human and automation’s

steering commands at the higher-level can be determined by optimizing cost functions

JH, and JA, respectively. These cost functions are defined as a combination of a set of

hand-coded features φH = [φH,1 · · · φH,nH ]
T and φA = [φA,1 · · · φA,nA ]

T and vectors

of the weights wH = [wH,1 · · · wH,nH ] and wA = [wA,1 · · · wA,nA ]. In particular,

JH = φHwH and JA = φAwA. The hand coded features can be defined as possible

maneuvering paths and the control effort for each agent.

The focus of this paper is to develop a platform wherein the concept of conven-
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tions can be utilized for resolving a conflict between a human driver and automation

system. To this end, we select an example of conflict as shown in Figure 4.2. In

this scenario, both human and automation may see an obstacle and they have two

possible maneuvering trajectories rR from the right side and rL from the left side of

the obstacle. To determine their steering commands, they both solve an optimization

problem as follow:

min
θH

JH (x, u) =

Np∑
k=1

(
‖yV(k)− rR(k)‖wHR

+ ‖yV(k)− rL(k)‖wHL
+ ‖θH(k)‖wHθ

)
(4.9a)

min
θA

JA (x,w) =

Np∑
k=1

(
‖yV(k)− rR(k)‖wAR

+ ‖yV(k)− rL(k)‖wAL
+ ‖θA(k)‖wAθ

)
(4.9b)

s.t. xd(k + 1) = fd(xd(k), p(k), d(k)) +Bd,H(p(k)d)uH(k) +Bd,A(p(k))uA(k)

(4.9c)

Here, Eq. (4.9c) describes the discrete dynamics of the haptic shared control frame-

work. In this paper, we derived the discrete dynamics using zero-order hold on the

inputs and a sample time of Ts and Np is a horizon time. Here φH,1 = φA,1 = ‖yV−rR‖

and φH,2 = φA,2 = ‖yV − rL‖ represent possible strategies for maneuvering the ve-

hicle from the right or left of the obstacles. The last term (i.e., φH,3 = ‖θH‖ and

φA,3 = ‖θA‖) represent the control effort value. The weight distribution over these

features determines the interaction behavior between the human and automation.

Three examples of these behaviors are discussed below.

First, let define εcomp, εcoop,and εundecided to be three design parameters. Also, let

assume wHθ = wAθ = const. Furthermore, assume wAR = 1−wAL and wHR = 1−wHL.

Then, for a fixed wH = [wHR wHLwHθ], the automation system’s can adopt different
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levels of cooperativeness by assigning how weight vectors wA = [wAR wALwAθ] shall

be distributed. If the driver selects one of the two paths (|wHR − wHL| > εundecided),

then, three human-automation interaction behavior at the higher-level can be defined

as

• Uncooperative Automation: When automation selects a different path than the

human driver. This behavior can be described when |wHR − wAL| ≤ εcomp.

Similarly, it can be described when |wHL − wAR| ≤ εcomp.

• Undecided Automation: The automation’s assign similar weights to the two

paths around the obstacle. This behavior can be described when |wAR−wAL| ≤

εundecided.

• Cooperative Automation: When automation selects a path similar to the human

driver. This behavior can be described when |wHR − wAR| ≤ εcoop. Similarly,

|wHL − wAL| ≤ εcoop.

Note, the driver can be also undeceives meaning |wHR − wHL| ≤ εundecided but for the

sake of brevity, we don’t consider such a case in this paper.

4.3.2 Characterization of Convention Maps

To be able to adapt automation system so that a desired convention can be reached,

a map should be created to connect the space of convention to the outcomes of

human-automation interaction. To create such a map, the first step is to determine

driver and automation’s intents. To this end, we employ an open-loop Nash solution

[51] wherein it is assumed that each agent minimize its own cost function considering

the optimal input of the other agent. In particular, the steering angle pair θH and θA

is a Nash solution if the following holds.

1. The control θ∗H provides a solution to the optimal control problem of the human
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driver’s cost function. Specifically,

θ∗H = argmax
θH

(
JH(x, θH, θ

∗
A)
)

(4.10)

where θ∗A is the optimal solution of automation’s cost function.

2. The control θ∗A provides a solution to the optimal control problem of the au-

tomation’s cost . The control θ∗H provides a solution to the optimal control

problem of the human driver’s cost function. Specifically,

θ∗A = argmax
θA

(
JA(x, θ

∗
H, θA)

)
(4.11)

where θ∗H is the optimal solution of automation’s cost function.

The two optimization problem will be solved iteratively until the Nash optimal solu-

tion (θ∗H, θ
∗
A) is reached. Specifically,

JH(θ
∗
H, θ

∗
A) ≤ JH(θ

∗
H, θA) (4.12)

JA(θ
∗
H, θ

∗
A) ≤ JA(θH, θ

∗
A) (4.13)

We solve the two optimization problem using C-GMRES technique [52]. The details

of the C-GMRES is described in the [47].

It should be noted that the sufficient conditions for having a unique Nash solution

is given in [53]. In the context of haptic shared control, these conditions are (i) the

domains of θA(t) and θH(t) are closed and convex subsets of R2; (ii) two matrices BA,

BH(t) continuously depend on time t and the states of the integrated system x(t);

(iii) the Lagrangian of the cost functions be strictly convex; and (iv) the Lagrangian

is have superlinear growth [53]. It follows from Eq. (4.9) that all these conditions are

satisfied and therefore there is a unique Nash solution to the optimization problem

described by Eq. (4.9).
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The main goal behind leveraging conventions is to determine a behavior for the

automation system such that the overall cost functions of the human and automation

system is minimized. In particular,

JH(θ
∗
H, θ

∗
A) + JA(θ

∗
H, θ

∗
A) = min

θH,θA

(
JH(θH, θA) + JA(θH, θA)

)
(4.14)

However, this choice may favor one agent much more that the other. For exam-

ple, JA(θ∗H, θ∗A) � JH(θ
∗
H, θ

∗
A). Such an outcome which may not be agreeable to one

agent (i.e., human driver in this case). To resolve this problem, the concept of co-

operative and competitive (co-co) game theory has been established [54]. This co-co

concept models a situation where one agent pays/receives an incentive to implement

a strategy that minimizes the combined cost function. Specifically, employing a co-co

game, the original game can be split as the sum of a purely cooperative game, where

both players have the same cost function, and a purely competitive (i.e., zero-sum)

game, where the players have opposite cost functions [55]. An issue regarding the

cooperative-competitive game is that the incentive amount shall be known.

In this paper, instead of solving the co-co game, we split the combined cost function

of the human and automation systems into two competitive Jcomp and cooperative

Jcoop cost functions and calculate their values at the Nash solution (i.e., θ∗H and θ∗A).

In particular

Jcoop(θ
∗
H, θ

∗
A) =

JH(θ
∗
H, θ

∗
A) + JA(θ

∗
H, θ

∗
A)

2
, (4.15a)

Jcomp(θ
∗
H, θ

∗
A) =

JH(θ
∗
H, θ

∗
A)− JA(θ

∗
H, θ

∗
A)

2
(4.15b)

It follows from Eq. (4.15) that JH = Jcoop + Jcomp and JA = Jcoop − Jcomp.

To create the convention map, we evaluate the values of Jcoop and Jcomp for a

range of weights wH and wA (see Figure 4.4). To form a desirable conventions, it

is desirable to minimize Jcoop and also keep Jcomp as close as possible to zero (i.e.,
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cooperation is maximum and competition is minimum). To this end, we developed

an adaptable automation system that for a given wH, determines an appropriate wA

such the conflict is resolved while the safety of the vehicle is guaranteed.

4.3.3 Design an Adaptable Automation System

To adaptively form conventions, an automation system should be able to auto-

matically learn and perform complex decision-making policies. In the context of the

intent negotiation with the human driver this means that the automation system

should be able to adjust the weights of its higher-level cost function and produce a

desired steering behavior. To this end, we develop an episode-based policy search

using Deep Deterministic Policy Gradients (DDPG) technique to determine automa-

tion’s optimal policies (i.e., automation’s model-predictive weights vector wA– See

Figure 4.3). We select DDPG since it is deemed particularly powerful in handling

continuous action spaces and its relative simplicity. Our action space is naturally

continuous, as the choice of the automation’s weight vector can take any real value

in a constrained range.

Figure 4.3 shows the structure of the DDPG approach that includes two neural

networks named critic and actor networks. At each time-step k, the DDPG algorithm

receives a system states feedback Sk = [xT(k) pT(k)]T as its observation, and generates

action Ak = {ωAR,i, ωAL,k} from the action set A according to a policy π (Sk). The

undertaken action Ak (penalty weights) results in a scalar reward rk and the updated

system states Sk+1.

A DDPG algorithm aims to determine an optimal policy such that the aggregated

discounted future reward defined as Ri =
∑∞

i=0 γ
i rk+i is maximized. Here, γ = (0, 1]

is the discount factor. To this end, the DDPG algorithm use the Q-value function

Q (S,A) and the deterministic policy π (S). Here, S and A are state and action spaces,

respectively. In the learning phase, at each time step, the DDPG algorithm updates

the actor and critic networks properties and stores the experiences in the previous
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Figure 4.3: Schematic diagram of the DDPG with the system states as the input for
actor and critic networks.

time-steps by a circular buffer. A mini-batch of randomly sampled experiences from

the circular buffer updates the actor and critic [56]. The DDPG algorithm at each

training step perturbs the action selected by the policy using stochastic noise.

The DDPG agent contains four function approximators name: actor π (S; ρ), target

actor πtrg (S; ρtrg), critic Q(S,A; %), and target critic Qtrg(S,A; %trg) to estimate the

value function and policy. Here {ρ, ρtrg, %, %trg} are the parameters of the networks.

At the actor network, the policy π (S; ρ) generates action A to maximize the long-term

reward based on the states S. At the critic network, the Q(S,A; %) function generates

the long-term reward expectation based on the states S and action A. The target

actor and target critics with the same structure and parameterization as the actor and

critics, respectively, are employed to improve the stability of the optimization. During

the training phase, the DDPG agent adjusts the parameter values in {ρ, ρtrg, %, %trg}

and these parameters remain at their tunned value after the training phase. Algorithm

1 described the training of the DDPG network at each time step [56]. The DDPG

algorithm updates the critics’ network parameters % by minimizing the following loss
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function:

L =
1

M

M∑
k=1

(Q (Sk, Ak; %)− `k)
2 (4.16)

where M is the number of DDPG’s training episode.

`k = r(Sk, Ak) + γQ (Sk+1, κ (Sk+1) ; %)

κ (Sk+1) = argmax
A

Q(S,A) (4.17)

Here, κ(S) is a greedy policy from the Q-learning algorithm. The sampled policy

gradient OpJ for maximizing the discounted reward R is:

OpJ =
1

M

M∑
i=1

(
OAQ (Si, A; %) + Oρπ (Si; ρ)

)
(4.18)

Here, OAQ and Oρπ are gradients of the critic and actor, respectively, with respect to

the action computed by the actor A and the actor parameters ρ. These gradients are

evaluated for states Sk. The sampled policy gradient OpJ updates the actors’ network

parameters ρ. The target actor ρtrg and critic %trg parameters in the DDPG agent

are updated based on the smoothing method at every time sample with a smoothing

factor K .

%trg = K %+ (1− K )%trg (4.19)

ρtrg = K ρ+ (1− K )ρtrg (4.20)

The aggregated reward and the state errors are stored in their dedicated buffer in each

episode. These buffers supply the observation and the reward value to the DDPG

algorithm. The update rate of the automation systems’ penalty weights in the training

phase on the DDPG agent is the same as the episode length. In this paper, for each
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set of weights, the nonlinear MPC of the automation system is executed 100 times,

and in each execution time, the model propagated to cover the view horizon.

Algorithm 3: DDPG agents training algorithmAlgorithm 1: DDPG agents training algorithm 

• Initialization of actor 𝜋(𝑆; 𝜌) and critic 𝑄(𝑆, 𝐴; 𝜚) networks with random 

weights 𝜌and 𝜚 

• Initializing target networks 𝜋𝑡𝑟𝑔(𝑆; 𝜌𝑡𝑟𝑔) and critic 𝑄𝑡𝑟𝑔(𝑆, 𝐴; 𝜚𝑡𝑟𝑔) with 

weights 𝜌𝑡𝑟𝑔 = 𝜌 and 𝜚𝑡𝑟𝑔 = 𝜚 

• Set up an empty experience buffer 𝑅 

for episode = 1 to 𝑀 do 

 1: Begin with an Ornstein-Uhelnbeck (OU) noise 𝒩 for exploration 

 2: Receive initial observation state 

 3: Apply action 𝐴, Observe the reward 𝑅 and next observation 𝑆′. 

 4: Store transitions (𝑆𝑖, 𝐴𝑖 , 𝑅𝑖, 𝑆𝑖+1) into experience buffer 𝑅. 

5: Sample a random mini-batch of 𝑀 experiences from the experience 

buffer. 

 6: value function target 𝑦𝑖 = 𝑅𝑖 + 𝛾𝑄𝑡𝑟𝑔(𝑆𝑖
′, 𝜋𝑡𝑟𝑔(𝑆𝑖

′; 𝜌𝑡𝑟𝑔), ; 𝜚𝑡𝑟𝑔) 

7: Update the critic parameters by minimizing the loss 𝐿 across all 

sampled experiences. 

 8: Update the actor policy using the sampled policy gradient ∇𝜌𝐽.  

 9: Update the target networks by smoothing factor 𝓀.  

end 

 

 4.4 Numerical Simulations and Discussion

In this section, we present a series of simulation studies demonstrating the effective-

ness of the convention formation for resolving a conflict between a human driver and

automation system. The following simulations consider a scenario where the human

driver and the automation system detect an obstacle and negotiate on controlling the

steering wheel to safely avoid the obstacle. We consider the two cost functions in Eqs.

(4.9) for the human-driver and automation system. Table 4.1 shows the numerical

values that are used in the simulation. Here, we select different values for the pa-

rameters of the human driver and automation’s impedance controllers to demonstrate
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different lower-level interaction modes. (e.g., active-safety vs. assistive mode.)

Figure 4.4 shows the competitive-cooperative cost functions values for a range of

wA and wH in three lower-level interaction modes named active safety, neutral and

assistive modes. Specifically, we define active safety mode when the parameters of

the automation’s impedance controller is larger than the parameters of the human

driver’s bio-mechanics (zA − zH > ε1). The assistive mode is when the parameters of

the automation’s impedance controller is smaller than the parameters of the human

driver’s bio-mechanics (zH − zA > ε1). Finally, the neutral is when the human and

automation’s impedance parameters are almost the same (|zH − zA| < ε1). Here, we

considered zA = 0.1zH in the assisitve mode, zA = zH in the neutral and zA = 10zH in

the active-safety mode. To create the conventions map, we considered wHR = 1−wHL

and wHθ = 1. Similarly, we considered wAR = 1− wAL and wAθ = 1.

It follows from Figure 4.4 that the convention maps for the cooperative surfaces

have two maximum points. These two maximum points are when [wHR wAR] = [0 0]

representing a scenario when both agents choose the left path to avoid the obstacle

or when [wHR wAR] = [1 1] representing a scenario when both agents choose the left

path to avoid the obstacle. The competitive cost surfaces have also two maximum

points. Specifically, the competitive cost value is maximum when [wHR wAR] = [0 1]

representing a scenario when human driver choose the left path but automation choose

the right path to avoid the obstacle or when [wHR wAR] = [1 0] representing a scenario

when human driver choose the right path but automation choose the left path to avoid

the obstacle.

Comparing the shape of cooperative and competitive surfaces for the three lower-

level interaction modes, it can be seen that by changing the lower-level interaction

mode the flatness of the convention map for the cooperative/competitive value sur-

faces and the direction of curvature of the competitive value surface varies. It should

be noted that since the competitive surface defines the payoff of one agent to the
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Table 4.1: Numerical values for the system parameters in the simulation

Parameters Description Haptic Interaction mode UnitsActive-Safety Assistive
kH Driver arms stiffness 0.5 3 N.m/rad
bH Driver arms damping 0.2 0.5 N.m.s/rad

kA
Automation’s initial value

of the arms stiffness 0.5 3 N.m/rad

bA
Automation’s initial value

of the arms damping 0.2 0.5 N.m.s/rad

βkA Activation coefficient of kA 1 -
βbA Activation coefficient of bA 1 -
αkA Memory coefficient of kA -1 -
αbA Memory coefficient of bA -1 -
JH Driver arms inertia 1× 10−3 kg.m2

JSW Steering wheel inertia 1× 10−2 kg.m2

JS Steering column inertia 1× 10−2 kg.m2

JM Motors inertia 1× 10−3 kg.m2

KT Torque sensor stiffness 1000 N.m/rad
rS/rM Timing belt mechanical advantage 1 -
m Total mass of vehicle 1385 kg
Iz Vehicle yaw moment of inertia 2065 kg.m2

lf Distance from CG to front axle 1.114 m
lr Distance from CG to rear axle 1.436 m
rsw Steering ratio 15
Cf Front cornering stiffness 85,000 N/rad
Ct Rear cornering stiffness 123,000 N/rad
vx Vehicle longitudinal velocity 20 m/sec

NPImp

Prediction horizon for Impedance
Control 10 -

NPH_L

Prediction horizon for Higher-level
Controller 100 -

NCImp

Control horizon for Impedance
Control 2 -

NCH_L

Control horizon for Higher-level
Controller 20 -

Ts Simulation time step 0.002 sec

Imax_out
Maximum index for outer iteration

C/GMRES algorithm 5 -

Imax_in
Maximum index for inner iteration

C/GMRES algorithm 10 -

δ KKT vector norm range 1× 10−2 -
λrate Learning rate 0.001 -
γ Discount Factor 0.9 -
- Mini-Batch size 128 -
- Reply buffer size 1× 105 -
- Reply start size 300 -
k Target update smoothing factor 0.01 -

Msub Time steps for fixe weights 200 -
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Figure 4.4: Competitive-Cooperative cost functions values for lower-level interaction
modes. The columns represent the interaction mode, and the rows depict the cooper-
ative/competitive cost values from the Nash solution. In each surface has wH, wH and
VCoop/VComp coordinates axis. The color-bars demonstrate the range for each surface
based on its minimum and maximum value.

other one (zero-game part), having zero competition is desirable in the interaction

between two agents. Therefore, in defining the reward function for the RL agent (Eq.

(4.21)), the second norm of the aggregated competitive value is employed in addition

to the differential torque and the cooperative value.

Figure 4.4 can be used as a map to connect conventions to the output of human-

automation interaction. For instance, Figure 4.5 shows the outputs of the human and

automation interaction associated with the three points shown with red, blue and

orange circles in Figure 4.4 when both human and automation has similar impedance

parameters. These three circles demonstrate three interaction modes where in the

automation is cooperative (red circle), undecided (orange circle) and uncooperative

(blue circile) as discussed in section 3.1. For all these three cases the human’s desired

path for maneuvering the obstacle is from the right of the obstacle (i.e., wHR = 1).

Therefore, the red circle represent a case where automation’s desired path is from the
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left side (i.e., wAL = 1). Orange circle represent a case where the automation’s wights

both right and left paths the same (i.e., wAR = wAL = 0.5). Blue circle represent a

case where the automation’s desired path is also from the right side (i.e., wAR = 1).

Figure 4.5: The outputs of the human and automation interaction associated with the
three points shown with red, blue and orange circles in the neutral interaction mode
(ZH = ZA). The surfaces represent the convention map’s cooperative (right-top) and
competitive (right-bottom) surfaces. The plots on the second column represent the
lateral deviation of the vehicle from the centerline of the road. The last column is for
the differential torque between the human driver and the automation system. The
human drivers’ behavior identifies each row based on his/her weight for the right
directionwHR.

The first column of Figure 4.5 shows the two possible path for avoiding the obstacles

and the vehicle’s rR and rL and the vehicle’s lateral position yV. The second column

shows the differential torque measured by the torque sensor τT. It is demonstrated

that when human and automation’s have opposite different path since their impedance

is the same, their control commands cancel out and the vehicle hit the obstacle. To

avoid such a conflict, two possible solutions can be presented. First, we can modulate

the automation’s impedance controller’s parameters to yield or gain the control as

studied in our previous work [47]. Also, the automation’s intent can be adapted to

the select a path similar to the human driver as demonstrated in Figure 4.5. In this

paper, we focus on the latter approach.
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When the human driver and the automation system have the same intent (wAR =

wHR = 1 shown in the third row of Figure 4.5), the differential torque is much smaller

compared to the other two cases (the uncooperative automation shown and undecided

automation). It should be noted that even though the competitive value for the

blue and orange points are approximately the same, since the cooperative value is

different, the differential torque for the undecided automation is not zero. Also, the

vehicle’s lateral position is not the same as the right reference path for the undecided

automation system.

Figure 4.6: The outputs of the human and automation interaction associated with the
three points shown with red, blue and orange circles in the assistive interaction mode
(ZH = 10ZA). The surfaces represent the convention map’s cooperative (right-top)
and competitive (right-bottom) surfaces. The plots on the second column represent
the lateral deviation of the vehicle from the centerline of the road. The last column
is for the differential torque between the human driver and the automation system.
The human drivers’ behavior identifies each row based on his/her weight for the right
directionwHR.

Figure 4.6 shows the outputs of the human and automation interaction in the

assisitive mode (zA = 0.1zH). It follows from Figure 4.6 that for the three cases of

uncooperative automation, undecided automation and cooperative automation, the

vehicle path is close to the human’s desired path. Also, the differential torque is

relatively small for all the three cases. This is because automation’s impedance is
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relatively small meaning it only applies a low torque on the steering wheel. In this

scenario, the human driver is mainly in control of the vehicle.

Figure 4.7: The outputs of the human and automation interaction associated with
the three points shown with red, blue and orange circles in the active-safety interac-
tion mode (ZH = 0.1ZA). The surfaces represent the convention map’s cooperative
(right-top) and competitive (right-bottom) surfaces. The plots on the second column
represent the lateral deviation of the vehicle from the centerline of the road. The last
column is for the differential torque between the human driver and the automation
system. The human drivers’ behavior identifies each row based on his/her weight for
the right directionwHR.

Figure 4.7 shows the outputs of the human and automation interaction in the

assisitive mode (zA = 10zH). It follows from Figure 4.7 that for the three cases

of uncooperative automation, undecided automation and cooperative automation,

the vehicle path is close to the automation’s desired path. When the human and

automation has a reverse intent the differential torque is relatively high in the active

safety mode. This is because automation’s impedance is relatively high meaning it

applies a high torque in an opposite direction as the human driver which can cause a

discomfort to the driver but it ensure the safety of the vehicle.

As demonstrated in Figures 4.5-4.7 the interaction between the human driver and

automation system depends on the weights of the nonlinear MPC for each of them.

A point in the convention maps demonstrates the agent’s decision to choose the pre-
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ferred path in the obstacle avoidance task. Based on human behavior, the automation

system can adapt wAR and wAL to minimize the conflict in the interaction. To resolve

a conflict between the automation system and the human driver, impedance mod-

ulation in the lower-level controller or intent adaption of the automation system in

the higher-level controller can be used as a solution. The impedance modulation was

studied in detail in [47]. In this paper, we discuss intent adaptation for resolving a

conflict.

Figure 4.8 shows how the weights of the nonlinear model predictive controller in the

automation system are adjusted dynamically with the DDPG agent to minimize the

conflict. For the DDPG agent, each actor and critic network has an input layer, an

Figure 4.8: Schematic diagram of the DDPG-based intent adaptation approach. The
DDPG agents receive the observations from the model, lower-level and higher-level
controller and generate updated wA.

output layer, and three hidden layers of 100 units. In the hidden layer, the rectified

linear unit (ReLU) is employed as the activation function which projects the input

to the output signal. The reward function in the DDPG algorithm is defined to

minimize the integrated differential torque and cooperative value while maintaining
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the competitive value to zero:

rk =
1

Msub

(
Msub∑
k=1

(−100 ‖Vcoop‖ − 100 ‖Vcomp‖ − ‖τT‖)

)
(4.21)

which Msub is the number of time steps with fixed weights in the cost function of

the automation system. In a training phase of the DDPG agent, the number of the

time step in each episode includes 100Msub. Vcoop and Vcomp are the cooperative and

competitive cost values in the equilibrium point. The hyperparameters of the DDPG

agent are presented in Table 4.1.

Figure 4.9: RL-based intent adaptation for the case that the human and automation
system have the same impedance. The first column demonstrates the convention
map with the cooperative and competitive cost values. The second column shows the
lateral deviation, differential torque and the cost weights ωAR and ωHL. The red
circle on the convention map is the initial weight value, and the green circle is the
adapted weight value.

Figure 4.9 demonstrates the performance of the RL-based intent adaptation ap-

proach when the human driver wants to go more in the left direction for avoiding

the obstacle with weight [wHR wHL] = [0.2 0.8] and they have equal impedance. On

the contrary, the automation system preferred the right direction for avoiding the

obstacle ([wAR wAL] = [0.8 0.2]). The initial weight value of the human driver and
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the automation system is depicted by a red circle on the cooperative and competitive

surfaces of the convention map (the first column). The lateral deviation of the vehicle

(yV) and the reference paths for right (rR) and left (rL) sides are depicted in the first

row of the second column. The measured differential torque is depicted in the second

row of the second column, and the units of the y-axis are 100 mN.m. The weight

value of the human driver and the automation system is demonstrated in the second

column of the last row. By approaching the obstacle, the trained DDPG agent adopts

the weight in the cost function of the automation system to minimize conflict between

the automation and the human driver. The red dashed line demonstrate the start of

the intent adaptation, and the green dashed line depicts the green circle on the con-

vention map as the terminal weight of the automation system, and after this line, the

conflict is minimized. The value of the differential torque retained approximately to

the zero value after the intent adaption, which shows zero fight. Also, the competitive

value is zero, so there is no side payment from the automation system to the human

driver or vice versa. Therefore, the DDPG agent handled the intent adaptation for

minimizing the conflict while the vehicle avoided the obstacle.

4.5 Conclusions

This project aims to study the principles of convention formation in a haptic shared

control framework wherein both humans and automation collaboratively control the

steering of a semi-automated ground vehicle to determine optimal handover strategies

in uncertain circumstances. Here, we focused on a specific type of conflict between

the driver and automation, named reverse intent. We introduced a modular structure

that can be used for separations of partner-specific conventions and task-dependent

representations. Using this structure, we created a map to connect conventions with

the outputs of the human-automation interaction. Finally, we designed an RL-based

model predictive controller to search for automation’s optimal strategy such that

conventions can be reached.
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To validate the performance of the proposed platform, the first step is to integrate

the proposed platform with an inverse reinforcement learning approach to capture

the distribution of the human weight vector. By capturing the human’s weight vec-

tor, we can realize whether the weight vector distribution can be used as a proxy

for identifying the partner-specific conventions. We further plan to improve the au-

tomation system capability by employing Bayesian optimization (BO) to determine

automation’s optimal policies. We select BO since it is deemed particularly powerful

in handling multi-objective optimization problems with a mixture of continuous and

discrete decision variables and accommodating the system’s uncertainties and con-

straints (i.e., adversarially robust BO [39]). Finally, we plan to develop a framework

that allows transferring the knowledge of learned conventions into interacting with

new users or on new tasks.
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CHAPTER 5: CONCLUSIONS

This dissertation focused on designing and validating an adaptive haptic shared

control paradigm to shorten the control transfer time, improve interpretation and

appropriation of responsibility, produce a more accurate understanding of the vehi-

cle and/or environment, and reduce the driver’s cognitive load. This dissertation

was presented in a three-article format. Chapter 2 (Paper1) presented a design of

an adaptive haptic shared control framework wherein both humans and automation

are physically connected through a steering angle. To shorten the control transition

time in the present conflict, we designed a modulation algorithm to vary the automa-

tion’s impedance controller parameter in different interaction modes. This work was

published in the Mechatronics journal in 2021. This paper considered a cost func-

tion to determine an optimal modulation policy. Its terms were defined to minimize

performance error and reduce the disagreement between the human and automation

system. We employed a nonlinear stochastic model predictive approach to solving the

cost function subjected to probabilistic uncertainties in human biomechanics. The

polynomial chaos expansions were employed to obtain a computationally tractable

form of the cost function. The continuation generalized minimum residual method

was utilized to solve the tractable nonlinear cost function. To demonstrate the effec-

tiveness of the proposed approach, we considered a scenario where the human and the

automation system both detect an obstacle and negotiate on controlling the steering

wheel so that the obstacle can be avoided safely. For this scenario, four interaction

modes were defined based on the cooperation status (cooperative and uncooperative)

and the control transfer’s desired direction (human to automation or automation to

human). The numerical results demonstrated that when the human control command
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is sufficient for avoiding the obstacle, the disagreement between the human and au-

tomation systems can be reduced by modulating and adopting smaller values for the

impedance controller. On the other hand, when the human’s control command is

insufficient, by modulating and adopting larger values for the impedance controller

parameters, the automation system gains the control authority and ensures the safety

of the obstacle avoidance task. Additionally, we performed tests with processors in

the loop (PIL) to show the proposed predictive controller can compute the optimal

modulation policy in real-time. The PIL results showed high computational speed

and numerical accuracy for the proposed method using two low-cost micro-controllers.

In Chapter 3 (Paper2), we quantified the performance of an adaptive haptic shared

control paradigm through a set of human-subject test studies. We invited 27 partic-

ipants to drive a vehicle in a fixed-based driving simulator. The drivers are asked to

follow a road and avoid the static obstacles on the road. To study the performance

of the proposed controller in resolving a conflict, for sixty percent of these obstacles,

the human driver is instructed to avoid the obstacles in the opposite direction as the

automation system. For the other forty percent of the obstacles, the human driver is

instructed to take a similar direction as the automation system to avoid the obstacle.

To determine the optimal impedance modulation policy, we employed a predictive

model controller which its cost function contains three terms. These terms are the

error between the steering angle and the human’s desired steering command, the error

between the steering angle and the automation’s desired steering command, and the

differential torque on the steering wheel. We compared the adaptive haptic shared

control with two other shared control paradigms: named assistive haptic shared and

active-safety haptic shared control. The automation system weighs the error term

between the steering angle and the driver’s desired steering command in the assistive

paradigm. This mode represents a case where the automation has relatively high
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confidence in the driver’s actions. In the active-safety paradigm, the automation sys-

tem weighs the error term between the steering angle and the automation’s desired

steering command. This mode represents a case where the automation has relatively

low confidence in the driver’s action. In the adaptive haptic shared control, the au-

tomation adaptively assigns different weights to the error terms based on the human’s

adopted impedance. When the human’s adopted impedance is high, the automation

in the adaptive paradigms acts more like the assistive paradigm, and when the hu-

man’s impedance is low, the automation in the adaptive paradigms acts more like the

active-safety paradigm. Here, we used the human grip force as a proxy to estimate

the human impedance on the steering wheel. Specifically, we quantized the human

grip force into five ranges: low, medium-low, medium, medium-high, and high. Based

on the recorded grip force, the automation policy of an adaptive haptic shared con-

trol paradigm is adapted to determine optimal impedance control parameters. We

compared the performance of these three shared control schemes by analyzing five

metrics, including obstacle hits and metrics related to driving maneuvers around the

avoided obstacles. Our statistical analysis indicated that the adaptive haptic shared

control paradigm supports the best overall team performance in resolving a conflict

between the driver and automation system while keeping the vehicle safe.

Chapter 4 (Paper3) established a platform to study the principles of convention

formation in a haptic shared control framework wherein both humans and automa-

tion collaboratively control the steering of a semi-automated ground vehicle. We

then applied these principles to determine optimal strategies for exchanging the con-

trol authority between human drivers and an automation system. In the first step,

we proposed a modular structure to separate partner-specific conventions from task-

dependent representations and use this structure to learn and leverage different forms

of conventions. In this structure, we assumed the human and automation steering

commands could be determined by optimizing a set of cost functions. For each agent,
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the cost function was defined as a combination of hand-coded features and vectors

of weights. We argued that the hand-coded features could be selected to describe

task-dependent representations. On the other hand, the weight distributions over

these features can be used to determine the partner-specific conventions. Next, to

leverage the learned conventions, we developed a map that connects different forms of

conventions to the outputs of human-automation interaction. Finally, an adaptable

automation system was designed using the convention map to reach a desirable shared

convention. In particular, we developed a reinforcement-learning-based model predic-

tive controller to enable the automation system to learn complex policies and adapt

its behavior accordingly. Specifically, we designed an episode-based policy search

using the Deep Deterministic Policy Gradients technique to determine automation’s

cost function’s optimal weights vector distribution. Next, we applied the proposed

platform to the problem of intent negotiation for resolving a conflict. Specifically,

we considered a scenario where both humans and automation detect an obstacle

but choose different paths to maneuver around the obstacle. The simulation results

demonstrate that the convention-based handover strategies can successfully resolve a

conflict and improve the performance of the human-automation teaming.

5.1 Recommendations for Future Works

A set of challenges needs to be addressed before implementing the proposed shared

control paradigm in real-world applications. These challenges are the subjects of our

future studies.

The proposed adaptive haptic shared control design and test assumed that the

human partner’s impedance and his/her preferred path are known. Therefore, de-

veloping a set of learning and identification approaches to estimate the intent and

impedance adopted by the human driver and track them as they vary will allow us

to design a more effective controller. Furthermore, it is crucial to create a method

that allows recognizing the current interaction mode in real-time using the data ac-
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quired by onboard sensors. An appropriate cost function can be defined by knowing

the interaction mode, and the automation system can adjust its behavior based on

this cost function. Additionally, the proposed nonlinear model predictive control

method in paper 1 assumed that the uncertainty in the human-automation interac-

tion is characterized. In future work, we will address these shortcomings by develop-

ing a learning-and-scenario-based optimal controller that (1) learns the (intrinsically

state- and control-dependent) uncertainties in the system and updates the human-

automation dynamics online; and (2)given the uncertainty in the system, calculates

an optimal modulation policy within the required sampling time scales. Also, while

the main focus of paper 1 was on modulating the impedance controller parameters,

knowing how and when to attempt transitions is another challenge. It is essential to

test various transition schemes, including discrete and slow or fast continuous tran-

sitions, to determine an optimal speed for exchanging the control authority. Finally,

a user-adaptive path planner can be designed and integrated into the shared steering

control problem, thereby reducing steering conflicts and overall cognitive load on the

operator while improving mission performance.

In our human-subject tests discussed in paper 2, the human driver was engaged in

driving the vehicle and interacting with the automation system. However, a driver’s

attention might be occupied with other tasks during driving. Therefore, it is necessary

to test the performance of the adaptive haptic shared control in more sophisticated

driving situations, including a case where the driver is also responsible for a secondary

task. In addition, instead of the low-fidelity Matlab Simulink real-time environment

presented in paper 2, we plan to use CarSim software and a Unity-based Virtual

Reality driving simulation setup so that participants will have greater immersion and

a wider field of view. Furthermore, the proposed shared control algorithm shall be

tested on a physical ground vehicle platform to discover the potential challenges that

might not be present in the controlled simulation environment.
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While paper 3 discussed the principles of convention formation in a haptic shared

control paradigm, many steps still need to be taken to enable collaborative partner-

ships between teams of humans and semi-automated ground vehicles based on the

formed conventions. For instance, the problem of convention formation shall be stud-

ied considering the interaction at both intent and body levels. By such analysis,

we can determine the best approach for negotiating intent and transitioning control

authority between the driver and automation system. We also need to consider the

role of uncertainty in how the automation’s policy search will be designed or mod-

ified. Furthermore, it is necessary to discuss the transfer of conventions knowledge

so that it can be used to exploit the structural similarity among a distribution of

partner-specific conventions and task-dependent representations. The capability of

transferring convention knowledge will allow us to optimize automation’s behavior

for rapid adaptation to new partners and new tasks.



To solve the nonlinear cost function described in Eq. 4.9, we discretize the equations

of motion using the forward Euler method. It should be noted that higher order

discretizations can be employed at the expense of the computational complexity.

Similarly, the cost function Ji and the set of constraints will be transformed in the

discrete form on time axis as:

min
ui

J
(k)
i = ϕ

k+Np

i (x,w) +

Np−1∑
j=0

Ts{L̃k+j
i (x,w, u)}

s.t. :


x(k+1) = x(k) + Tsf

(
x(k), w(k)

)
+ TsBu(k)

C
(k)
i,eq = 0

(6.1)

where Ts is the size of the time-step, k is the number of time-step (considered as

the current time-step), x(k), w(k) and u(k) are equal to x(t = Tsk), w(t = Tsk) and

u(t = Tsk), respectively. We discretize the necessary optimality conditions by dividing

the horizon into Np steps. The discretized KarushKuhnTucker (KKT) necessary

conditions with the boundary conditions are given as follows:

   

Appendix: C/GMRES Solver
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x∗(k+1) = x∗(k) + Tsf
(
x∗(k), w(k)

)
+ TsBu∗(k) (6.2)

x∗(0) = x(0) (6.3)

λ∗
i
(k) = λ∗

i
(k+1) + Ts

∂Hi

∂x
(6.4)

λ∗
i
(k+Np) = ϕ

k+Np

i (x,w) (6.5)

∂Hi

∂u
= 0 (6.6)

C
(k)
i,eq = 0 (6.7)

By employing forward recursion, for j = 1, · · · , Np, the state variables x∗(k+j), can

be defined using equations (6.2) and (6.3). Furthermore, by employing back recursion

from the terminal cost to the present time-step (j = Np, Np − 1, · · · , 1) the co-states

λ∗(k+j) can be determined using (6.4) and (6.5). Therefore, the state and co-state

variables xk+j|Np

j=0 and λk+j|Np

j=0 sequences formed in terms of control input uk+j|Np

j=0

and Lagrange multiplier µk+j|Np

j=0 sequences which are unknown. Finally, by plugging

x∗(k+j) and λ∗(k+j) into equations (6.6) and (6.7), a KKT vector F (X,U, t) for Np

horizon can be defined, where
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Fi (X,U, t) =



∂H
(k)
i (x∗,w,u∗,λ∗,µ∗)

∂u

C
(k)
i,eq

...
∂H

(k+Nc)
i (x∗,w,u∗,λ∗,µ∗)

∂u

C
(k+Nc)
i,eq

...
∂H

(k+Np−1)

i (x∗,w,u∗,λ∗,µ∗)
∂u

C
(k+Np−1)
i,eq



(6.8)

where

X = [x(k), w(k), x(k+1), w(k+1), ..., x(k+Np), w(k+Np)]T (6.9)

where Nc is the number of the control horizon steps. Note that for Nc ≤ j ≤ Np,

uk+j = uk+Nc .

Continuation/GMRES method

To solve F (X,U, t) = 0 with respect to the unknown vector U , for each time-step,

the C/GMRES method is employed [? ]. In C/GMRES method, instead of solving

F (X,U, t) = 0, we select the proper initial value U(0) and take the time derivative of
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Eq. (6.8) into account. Specifically, we define

Ḟ (X,U, t) = AsF (X,U, t) (6.10)

where As is a stable matrix (i.e. with negative eigenvalues). Differentiating the left

side of Eq. (6.10) yields:

FU (X,U, T ) U̇ = AsF (X, U, t)− FX (X,U, T ) Ẋ − Ḟ (X,U, T ) (6.11)

Since FU is non-singular, we can obtain the differential equation for U̇ as:

U̇ = F−1
U

(
AsF (X, U, t)− FX (X,U, T ) Ẋ − Ḟ (X,U, T )

)
(6.12)

The calculation of Jacobians FX and FU are computationally expensive. Instead to

solve Eq. (6.12), we employed the forward-difference approximation to eliminate the

calculation of the Jacobians. To this end, using the concept of forward difference, we

approximate the products of Jacobians and some X̄, Ū , and t̄ and replaced it to Eq.

(6.12) which results in:

DhF
(
X,U, t : 0, U̇ , 0

)
= b

(
X, Ẋ, U, t

)
(6.13)

(6.14)

where

b
(
X, Ẋ, U, t

)
= AsF (X,U, t)−DhF

(
X,U, t : Ẋ, 0, 1

)
(6.15)

DhF |X̄,Ū ,t̄
X,U,t =

F
(
X + hX̄, U + hŪ, t+ ht̄

)
− F (X,U, t)

h
(6.16)

where h is a positive real number, DhF
(
X,U, t : X̄, Ū , t̄

)
stands for the concept of

forward difference for F . It should be noted that there is the main difference between
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forward-difference approximation and finite-difference approximation with regards to

computational expenses. The forward difference approximation of the Jacobians and

vectors’ products can be calculated with only an additional evaluation of the func-

tion, which requires notably less computational burden than an approximation of the

Jacobians themselves. Since Eq. (6.13) is a linear equation with respect to U̇ and

U̇Hap, we applied the forward difference GMRES method to solve it [? ].

U̇ is the outputs of the forward-difference GMRES algorithm and integration of this

value results in U for the current time step. It should be noted that the C/GMRES

is an iterative method that solves Eq.(6.8) concerning U̇ only once at each sampling

time and, therefore, requires much less computational expenses than other iterative

methods such as Newtons method. Moreover, C/GMRES involves no line search,

which is also a significant difference from standard optimization methods [? ].


