
RUSH HOUR-RELATED ROAD CRASHES: ASSESSING THE SOCIAL AND 

ENVIRONMENTAL DETERMINANTS OF FATAL AND NON-FATAL ROAD CRASH 

EVENTS 

 

 

 

by 

 

Oluwaseun John Adeyemi 

 

 

 

 

A dissertation submitted to the faculty of  

The University of North Carolina at Charlotte  

in partial fulfillment of the requirements  

for the degree of Doctor of Philosophy in  

Public Health Sciences 

 

Charlotte 

 

2021 

                                                                            

   

         

 

 

 

 

 

        Approved by: 

 

______________________________ 

Dr. Ahmed Arif 

 

______________________________ 

Dr. Rajib Paul 

 

______________________________ 

Dr. Charles DiMaggio 

 

______________________________ 

Dr. Eric Delmelle 



ii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

©2021 

Oluwaseun John Adeyemi 

ALL RIGHTS RESERVED 

 



iii 
 

DEDICATION 

This dissertation is dedicated to my God, the Author, and Finisher of my faith.  

He gave me the strength, wisdom, and courage to achieve this professional milestone.  

Thank you, Jesus. 

To my wife, Dr. Omotola Adeyemi, my support and encourager.  

Thank you for becoming strong for us and for our family. 

Ellen and David, I love you.  

You are the best children any parent could ever pray for.  

May you forever remember that no success is beyond your reach. 

To my parents, Mr., and Mrs. Adeyemi.  

You always remember me in your prayers.  

Thank you for the training and the years of sacrifice.  



iv 
 

ACKNOWLEDGEMENTS 

 I wish to express my unrepressed appreciation to the members of my committee - Dr. 

Arif, Dr. Paul, Dr. DiMaggio, and Dr. Delmelle. I am privileged to have had Dr. Arif and Dr. 

Paul supervise my work in my first year. It was a career-defining experience. I might not be 

defending my research now if not for my mentors.   

I am privileged to have worked closely with you, Dr. Arif. I learned both on and off the 

job. You exposed me to so many skills which have and will continue to define my career. I am 

grateful for advice, encouragement, and strong recommendations. Thank you for your large heart 

and for sacrificing the time for this work. 

It will always be a great honor to have worked with and learned from you, Dr. Paul. 

Thank you for being so approachable, and ever willing to create unique opportunities for me to 

thrive. Thank you for teaching me the professional and career skills I hold so dearly. Your trust 

in my capabilities, patience with my growth, and concern about my family and welfare are 

unparalleled.  You remain indelible in my heart.  

It was my childhood dream to be a surgeon and a public health professional. I had 

believed those two career paths never cross until I met Dr. DiMaggio. The counsel I have 

received from you has improved my work immensely. Thank you for being so kind and willing 

to guide my research. Time is not an opulent resource for surgeons but I appreciate the rare 

privilege of having you on my committee. I am grateful for the gift of access. This will prove so 

vital as I make my journey into surgical practice.   

Dr. Delmelle, I want to thank you for being my teacher. I wanted to know as much as I 

can and you obliged me to the extent I desired. You guided and counseled me. You made my 



v 
 

degree program more than worth the while with the added geospatial skills. Thank you for 

always ever ready to guide and counsel me.   

Dr. Larissa Huber, thank you for intentionally and consistently standing for doctoral 

students. You are the best. You made this program a home away from home for me. Dr. Warren-

Findlow was intentional about knowing my research interest and your acts of kindness and 

recommendations defined my experience in UNC Charlotte.  To all the other faculty in the 

Public Health Sciences that I worked with for the last three years, I appreciate you all. Shashi 

Gnanasekaran and Julie Howell, what would I have done without your administrative help? 

Thank you for all the hard work. Lastly, my cohort – Tasha Gill, Jessica Hoyle, Melanie 

Mayfield, Caitlan Webster, and Kala Wilson. You all rock! Thank you for everything you did for 

me and my family. You are all superheroes. 



vi 
 

ABSTRACT 

OLUWASEUN JOHN ADEYEMI.  Rush Hour-Related Road Crashes: Assessing the Socio-

Environmental Determinants of Fatal and Non-Fatal Road Crash Events   

(Under the direction of DR. AHMED ARIF and DR. RAJIB PAUL)  

 

 Road crashes remain a preventable cause of morbidity and mortality. The rush-hour 

period represents the time with the highest human and vehicular road densities. This dissertation 

aims to assess, during the rush and non-rush hour periods, the environmental factors associated 

with fatal crash injuries, the association of substance use and non-fatal crash injuries, and the 

association of crash response time and deaths at crash scenes.  To address the first aim, data from 

the Fatality Analysis Reporting System was used. We limited the data to crashes during the rush 

hour period. The outcome variable was the fatal crash counts per county. The predictor variables 

were road design (intersection, driveway, ramp, work-zone), road type (interstate, highways, 

roads/streets), and inclement weather factors (rain, fog, snow). A nested spatial negative 

binomial regression model was used to estimate the incidence rate ratio of fatal crash injury 

during the rush hour period. To address the second aim, Crash data were extracted from the 2019 

National Emergency Medical Services Information System data. The outcome variable was non-

fatal crash injury, assessed on an ordinal scale – critical, emergent, and low acuity. The predictor 

variable was the presence of substance use (alcohol or illicit drugs). Age, gender, region of the 

body injured, and the revised trauma score was used as potential confounders. Partially 

proportional ordinal logistic regression was used to assess the unadjusted and adjusted odds of 

critical and emergent outcomes compared to low acuity patients. To address the third aim, data 

from the 2019 National Emergency Medical Services (EMS) Information System was used. The 

outcome variable was death-at-the-scene. The predictor variables were the crash response times 

– crash notification (EMS notification to departure from the base station) and EMS travel time 
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(base station to crash scene). Age, gender, substance use, region of the body injured, the revised 

trauma score, and rurality/urbanicity of each injury location were used as potential confounders. 

Logistic regression was used to assess the unadjusted and adjusted odds of death-at-the-scene. 

During the rush-hour period, the median fatality rate per county was 7.30 per 100,000 

population. Highways had the highest fatality risk, after adjusting for the interaction effect of 

intersection, driveway, ramp, and work-zone. Also, after adjusting for confounders, Substance 

use was associated with 2.09 (95% CI: 2.03 - 2.14) and 2.26 (95% CI: 2.14 – 2.38) odds of 

emergent and critical injury outcomes as compared to low acuity at all times of the day and 

during the rush hour period, respectively. After adjusting for confounders, a minute increase in 

the EMS travel time was associated with 0.4% (Adjusted OR: 1.004; 95% CI: 1.003 – 1.006) and 

0.7% (Adjusted OR: 1.007; 95% CI: 1.005 – 1.009) increased odds of death-at-the-scene during 

all times of the day and the rush-hour period, respectively. This dissertation reports that certain 

environmental factors, substance use, and crash response times are significantly associated with 

fatal and non-fatal crash injuries. Also, the rate ratios and odds of fatal and non-fatal crash 

injuries are heightened during the rush hour period.  

 



viii 
 

Table of Contents  

List of Tables .............................................................................................................................................. xii 

List of Figures ............................................................................................................................................. xiv 

CHAPTER 1 ................................................................................................................................................. 1 

Significance............................................................................................................................................... 5 

Problem Statement .................................................................................................................................... 6 

Importance for Public Health .................................................................................................................... 7 

Conceptualizing environmental determinants of crash injury using the socio-ecological framework ..... 9 

Theorizing Substance Use as a Determinant of Crash Injury using the Theory of Planned Behavior ... 10 

Conceptualizing Pre-Hospital Crash Response Delay ............................................................................ 11 

Research Focus ....................................................................................................................................... 12 

Research Questions ................................................................................................................................. 13 

Aims and Hypotheses ............................................................................................................................. 13 

Originality of the research ...................................................................................................................... 14 

Assumptions ............................................................................................................................................ 14 

CHAPTER 2: MANUSCRIPT 1 ................................................................................................................ 16 

Abstract ....................................................................................................................................................... 17 

Introduction ................................................................................................................................................. 19 

Background ................................................................................................................................................. 19 

Methods ...................................................................................................................................................... 24 



ix 
 

Study Design ........................................................................................................................................... 24 

Inclusion and Exclusion Criteria ............................................................................................................. 24 

Data Processing ....................................................................................................................................... 25 

Variable Definition ................................................................................................................................. 26 

Analysis .................................................................................................................................................. 27 

Descriptive Statistics ........................................................................................................................... 27 

Regression Models .............................................................................................................................. 28 

Results ......................................................................................................................................................... 30 

Fatal Injury Rates .................................................................................................................................... 30 

Risk of Fatal Injuries ............................................................................................................................... 31 

Spatial Distribution ................................................................................................................................. 33 

Discussion ................................................................................................................................................... 33 

Conclusion .................................................................................................................................................. 39 

References ................................................................................................................................................... 40 

Appendix 1: R Codes .................................................................................................................................. 62 

CHAPTER 3: MANUSCRIPT 2 ................................................................................................................ 65 

Abstract ....................................................................................................................................................... 66 

Introduction ................................................................................................................................................. 68 

Methods ...................................................................................................................................................... 70 

Study Design ........................................................................................................................................... 70 



x 
 

Inclusion and Exclusion Criteria ............................................................................................................. 70 

Injury Outcomes...................................................................................................................................... 71 

Substance Use ......................................................................................................................................... 71 

Confounding ........................................................................................................................................... 72 

Stratification ............................................................................................................................................ 72 

Analysis .................................................................................................................................................. 73 

Results ......................................................................................................................................................... 74 

Discussion ................................................................................................................................................... 76 

References ................................................................................................................................................... 81 

Appendix 2: Revised Trauma Score Computation...................................................................................... 97 

Appendix 3: STATA codes ......................................................................................................................... 98 

CHAPTER 4: MANUSCRIPT 3 .............................................................................................................. 103 

Abstract ..................................................................................................................................................... 104 

Introduction ............................................................................................................................................... 106 

Methods .................................................................................................................................................... 107 

Study Design ......................................................................................................................................... 107 

Inclusion and Exclusion Criteria ........................................................................................................... 108 

Rush and Non-Rush Hour Period.......................................................................................................... 108 

Outcome Variable: Death at the Crash Scene ....................................................................................... 109 

Predictor Variables: Crash Response Times ......................................................................................... 109 



xi 
 

Confounding ......................................................................................................................................... 109 

Analysis ................................................................................................................................................ 110 

Results ....................................................................................................................................................... 110 

Discussion ................................................................................................................................................. 113 

Conclusion ................................................................................................................................................ 116 

References ................................................................................................................................................. 117 

Tables and Figures: Manuscript 3 ............................................................................................................. 122 

Appendix 4: STATA Codes ...................................................................................................................... 128 

CHAPTER 5 ............................................................................................................................................. 144 

Summary of Findings ................................................................................................................................ 145 

Epidemiology of Rush-Hour Crash Injuries ......................................................................................... 145 

Environmental Risk Factors of Rush Hour-Related Fatal Crash Injury................................................ 146 

Substance Use as a Risk Factor for Non-Fatal Crash Injury ................................................................. 146 

Crash Response Time as a Risk Factor for Deaths at the Crash Scene ................................................. 147 

Implications for Public Health Policy and Practice .................................................................................. 147 

Future Directions ...................................................................................................................................... 148 

Conclusion ................................................................................................................................................ 150 

References ................................................................................................................................................. 151 

 

  



xii 
 

List of Tables 

Table 1- 1: Case-specific fatality rates from road environmental characteristics during the rush 

hour period between 2010-2017 ................................................................................................... 55 

Table 1- 2: County characteristics and rush hour-related fatal crash injuries stratified by rural-

urban status ................................................................................................................................... 56 

Table 1- 3: Negative binomial regression (non-nested) models assessing the unadjusted 

relationship between rush hour-related fatal road accidents and road environmental and county-

level characteristics stratified by rural-urban status ...................................................................... 57 

Table 1- 4: Negative binomial regression models predicting rush hour-related fatal road accidents 

occurring at road environmental and county-level characteristics. .............................................. 58 

Table 2- 1: Descriptive statistics of the sociodemographic, injury, and alcohol/drug 

characteristics at all time and during the rush hour period using the 2019 National Emergency 

Medical Services Information System database ........................................................................... 90 

Table 2- 2: Unadjusted odds ratio of emergent and critical health conditions post EMS care 

during all times and at the rush hour period ................................................................................. 91 

Table 2- 3: Adjusted odds of emergent and critical health conditions post-EMS care modeled by 

Substance Use intake in the rural/wilderness, suburban and urban areas at all times and during 

the rush hour period ...................................................................................................................... 92 

Table 2- 4: Unadjusted and adjusted odds of emergent and critical health conditions post-EMS 

care modeled by the interaction effect of Substance Use and Rush Hour period ......................... 93 

Table 2- 5: Predicted probabilities of low acuity, emergent and critical cases secondary to 

substance use during rush and non-rush hours ............................................................................. 94 

Table 3 - 1: Frequency distribution and summary statistics of the EMS crash response times, 

sociodemographic, clinical, and location-based characteristics ................................................. 123 

file:///C:/Users/adey1/Dropbox%20(UNC%20Charlotte)/Adeyemi_Oluwaseun/Dissertation/dissertation%20compilation%20v1.docx%23_Toc77447607
file:///C:/Users/adey1/Dropbox%20(UNC%20Charlotte)/Adeyemi_Oluwaseun/Dissertation/dissertation%20compilation%20v1.docx%23_Toc77447607


xiii 
 

Table 3 - 2: Summary of the odds of fatal cases associated with EMS response times, 

sociodemographic, clinical, and location-based characteristics, measured across all periods and 

the rush hour period. ................................................................................................................... 125 

Table 3 - 3: Summary of the adjusted logistic regression models across all time and during the 

rush hour period, estimating the odds of fatal cases across different EMS response times. ...... 126 

 

  



xiv 
 

List of Figures  

Figure 1- 1: Data selection and aggregation steps ........................................................................ 58 

Figure 1- 2: Raw (A) and Predicted (B) Median Rush-Hour Fatality Crash Counts per County: 

2010 – 2017................................................................................................................................... 59 

Figure 1- 3: Crude (A) and Adjusted (B) Fatality Rate of Rush Hour related Fatal Crash Injury 

per County: 2010 – 2017............................................................................................................... 60 

Figure 1- 4: Cluster and Outlier analysis (A) and Hotspot Analysis (B) of Rush Hour-Related 

Fatal Crash Injuries per County: 2010 – 2017 .............................................................................. 61 

Figure 2- 1: Data selection steps ................................................................................................... 95 

Figure 2- 2: Predicted probabilities of substance used-associated injury outcomes across all age 

groups at all times of the day ........................................................................................................ 96 

Figure 3- 1: Data selection steps ................................................................................................. 127 

 

  



1 
 

CHAPTER 1 

Introduction 
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Introduction 

Within the last decade, an average of 100 persons dies daily from preventable crash injuries 

(National Highway Traffic Safety Administration, 2018). The pattern of deaths varies widely 

from death at the crash scene to deaths from complications, typically measured as occurring 

within 30 days post-crash (National Highway Traffic Safety Administration, 2016a). Between 

2016 and 2019, the US experienced a subtle decline in fatal crash counts (National Center for 

Statistics and Analysis, 2020b; National Highway Traffic Safety Administration, 2020). These 

slow yet progressive successes were attributed to the multifaceted approach of the Federal 

Highway Administration’s Zero Death vision, which aims to involve all states in strategic 

program and policy strengthening that will culminate in achieving zero fatal counts by 2050 

(Ecola, Popper, Silberglitt, & Fraade-Blanar, 2018; Federal Highway Administration, 2020b). 

However, this gradual decline in deaths within recent years was interrupted by the 2020 COVID-

19 pandemic. While the total vehicle miles traveled reduced during the COVID-19 pandemic, 

fatal crash counts slightly reduced and the fatality rate towered higher than reported counts for 

over a decade (National Center for Statistics and Analysis, 2020a). 

Non-fatal crash injuries represent a significant and more frequent outcome of crash events. With 

non-fatal crash injuries occurring over 150 times the occurrence of fatal crash injuries 

(Ballesteros, Schieber, Gilchrist, Holmgreen, & Annest, 2003), non-fatal crash injuries represent 

a dominant source of disability. It is estimated that approximately 3.3 million persons, 

representing an age-adjusted rate of 1,013 per 100,000 US population are involved in all forms 

of non-fatal crash injuries (National Center for Injury Prevention and Control, 2020). As of 2010, 

non-fatal injuries cost US $23 billion in medical cost revenue, and $48 billion in work loss 

(National Center for Injury Prevention and Control, 2020). These estimates would have increased 
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as non-fatal crashes have increased from 1.7 million crash events in 2015 to almost 2 million 

crash events in 2019 (National Highway Traffic Safety Administration, 2021). 

The rush-hour period, also referred to as the period of peak traffic flow (Lee, Polak, Bell, & 

Wigan, 2012; Zheng, Wang, Zhu, & Jiang, 2020), is defined as the time of the day with the 

highest density of humans and automobiles on the road. It is a period that varies widely across 

geographical location, rural-urban delineation, days of the week, and the period of the year 

(Federal Highway Administration, 2017; Jaffe, 2014). In the US, the rush-hour period occurs in 

two phases: a morning phase ranging from 6 to 10 am, and an evening phase, from 3 to 8 pm 

(Lasley, 2019). Although the rush-hour period may capture about a third of the 24-hour duration 

in densely populated urban centers, and much less in rural areas (Congressional Research 

Service, 2018), roughly 40 percent of all crash events occur during this period (National 

Highway Traffic Safety Administration, 2019). It is estimated that about one in four fatal crashes 

occurs during the rush-hour period (Tippett, 2014). Also, between 1982 and 2017, the cost of 

traffic congestion had risen from $1.8 billion to $8.8 billion (Ellis & Glover, 2019; Lasley, 

2019), excluding the cost of fatal and non-fatal crash injuries and property damage.   

The social determinants of health are multivariable factors in the environment that influence 

daily functioning, quality of life, exposure to risk, and health outcomes (Healthy People.Gov, 

2020). The neighborhood and built environment are one of the five domains of the social 

determinant of health. This domain captures the physical and social environmental characteristics 

that influence health outcomes (Healthy People.Gov, 2020). Moreover, the natural and built road 

environment plays a role in the occurrence of crash injuries. It is estimated that at least 300 fog-

related fatal crashes occur annually in the U.S. (Hamilton, Tefft, Arnold, & Grabowski, 2014; 

Wu, Abdel-Aty, & Lee, 2018), with about one of every six weather-related crashes are associated 
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with snow (Federal Highway Administration, 2020a). Also, approximately 40% of all crash 

events occur at intersections (National Highway Traffic Safety Administration, 2010), while 

driveways are associated with about three-fold increased risk of crash injuries (Anthikkat, Page, 

& Barker, 2013; Nadler, Courcoulas, Gardner, & Ford, 2001). 

Substance use, an amorphous classification for alcohol, opioids, and other illicit drugs, are risk 

factors for impaired driving (Alcañiz, Santolino, & Ramon, 2016; Bondallaz et al., 2016; 

Clifasefi, Takarangi, & Bergman, 2006), crash-related morbidity and mortality (Allamani et al., 

2013; Freeman, 2007; Kumar, Bansal, Singh, & Medhi, 2015). Alcohol is associated with an 

estimated 10,000 yearly crash deaths, a value representing more than a quarter of yearly crash 

counts (Centers for Disease Control Prevention, 2016; National Center for Statistics and 

Analysis, 2019b; Niederdeppe, Avery, & Miller, 2017). Cannabis is associated with two to three-

fold increased risk of crash, two-fold increased risk of fatal collisions, and a significantly 

increased risk of non-fatal crash injury (Asbridge, Hayden, & Cartwright, 2012; G. Li, Brady, & 

Chen, 2013; M. C. Li et al., 2012; Santaella-Tenorio et al., 2020).  Similarly, narcotics, 

stimulants, and depressants are associated with a three to five-fold increased risk of fatal crash 

involvement, with the odds further heightened when such drugs are combined with alcohol (G. 

Li et al., 2013; Martin, Gadegbeku, Wu, Viallon, & Laumon, 2017).  

Central to the prevention of fatal crash injuries and worsened crash morbidity is a rapid crash 

response. Emergency medical services (EMS) represents the nation’s institution that provides 

pre-hospital care to crash and non-crash victims (EMS.Gov, 2020). Earlier studies have reported 

longer crash response times in rural areas compared to urban areas (Adeyemi, Paul, & Arif, 

2020a; Byrne et al., 2019). Also, increased crash response time is associated with increased fatal 

crash risk (Byrne et al., 2019).  Acute blood loss, a common diagnosis among crash injury 
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victims (Stainsby, MacLennan, & Hamilton, 2000), is a predictor of hypovolemic shock, 

increased crash morbidity, and mortality. Thus, the prevention of fatal crash injuries requires 

timely intervention. 

Significance 

Approximately 1.25 million people die yearly from road-related crash injuries worldwide 

(Centers for Disease Control and Prevention, 2016). In the US, one person dies every 14 minutes 

from crash-related events (National Center for Statistics and Analysis, 2019d). Between 2016 

and 2019, the US recorded three successive years of decline in fatal crash injury in over a decade 

(National Highway Traffic Safety Administration, 2020, 2021; National Safety Council, 2020). 

However, yearly fatal counts in 2019 still exceeded 37,000 (National Center for Statistics and 

Analysis, 2019a). Uncharacteristically, fatal deaths were  in 2020, a year characterized by travel 

restrictions and stay-at-home order due to the COVID-19 pandemic, exceeded 42,000 (National 

Safety Council, 2021). Despite the declining fatal crash counts, crash-related morbidities have 

not substantially decreased (National Highway Traffic Safety Administration, 2017).  

Elements within the natural and built road environment are associated with both fatal and non-

fatal crash injuries. Road environmental characteristics such as traffic light and pedestrian 

walkways that were originally designed to prevent crash injuries are associated with yellow light 

speeding behavior and jaywalking behaviors, respectively (Marusek, 2014; Palat & Delhomme, 

2012; Shaaban, Muley, & Mohammed, 2016).  Work zone crash events across the US increased 

from 84,000 in 2009 to 123,000 in 2018 (American Road & Transportation Builders Association, 

2018). It is estimated that one work zone fatal injury occurs for every four billion vehicle miles 

traveled (Federal Highway Administration, 2019). From 2007 to 2016, about 8% of fatal crash 
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injuries were attributed to the presence of rain and about 2% were due to fog and snow (Federal 

Highway Administration, 2020a).   

Alcohol and substance use are risk factors for risky driving behavior (Abayomi, Babalola, 

Olakulehin, & Ighoroje, 2016; Blows et al., 2005; Davey, Davies, French, Williams, & Lang, 

2005). Within the last decade, an average of 29 people die daily from alcohol-impaired driving 

crashes (Centers for Disease Control Prevention, 2016; National Center for Statistics and 

Analysis, 2019b; Niederdeppe et al., 2017). In 2016, over a million drivers were arrested for 

driving under the influence of alcohol or narcotics (Centers for Disease Control Prevention, 

2016). While nearly 15% percent of nighttime weekend drivers tested positive for marijuana 

(Centers for Disease Control Prevention, 2016). 

Delays in crash response can occur at any point in the crash response chain. The crash response 

chain is typically segmented into phases such as crash notification, EMS departure from the base 

station, EMS arrival at the crash scene, transport to the hospital, and return to the base station 

(Byrne et al., 2019). Between 2017 and 2018, there were over two million ambulance responses 

across 2,268 US counties, with a median response time of 9 minutes (Byrne et al., 2019). 

Mortality rate ratio increased by 46% in areas with response times greater than 12 minutes 

compared to areas with less than 7 minutes (Byrne et al., 2019). Additionally, the mortality rate 

ratio increases by 1.9% for every minute increase in crash incident to notification time, and by 

3% for every minute delay in crash notification and crash scene arrival time (Adeyemi et al., 

2020a). 

Problem Statement 

Annually, more than 37,000 lives are lost and three million individuals are injured in crash 

events. Successes in the recent decline in fatal crash counts were eroded during the COVID-19 
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pandemic and fatal crash counts rose to heights not observed in the last two decades. There is 

compelling evidence on the effectiveness of interventions targeted at reducing substance use 

while driving (Centers for Disease Control and Prevention, 2011; Matsumura, Yamakoshi, & 

Ida, 2009; Smith et al., 2014), however recent trends in the spike in the death counts (National 

Safety Council, 2021) suggest a need for more focused interventions and policies. The rush-hour 

period, characterized by its increased density of automobiles and road users, may serve as the 

proxy of human and environmental interventions. However, the extent to which crash 

characteristics during the rush-hour period mirror the non-rush-hour period or the average crash 

characteristics at all times of the day remains unknown. Also, few studies have assessed the 

extent to which the natural and built road environment may influence fatal and non-fatal crash 

events. Current evidence suggests that substance use-related driving offenses are common at 

night. However, little is known about the impact of substance use on injury severity during the 

rush hour, non-rush-hour period, and at all times of the day. Moreover, while the rush-hour 

period is characterized by traffic congestion (Federal Highway Administration, 2017; Lasley, 

2019), few studies have assessed crash response times during rush-hour and non-rush-hour 

periods and the effects of such variability on the occurrence of deaths at the scene of the crash 

event. Understanding these rush-hour crash characteristics will provide valuable insight on the 

design of future interventions, inform policy, and guide resource allocation. 

Importance for Public Health  

Understanding the similarity and the uniqueness of the rush-hour period may inform 

interventions and policies. The rush-hour period, with its dense population of road users, 

provides a period where human driving behavior may be assessed. The stress associated with 

driving in traffic congestion is associated with aggressive driving (Berdoulat, Vavassori, & 

Sastre, 2013), reduced use of seatbelt (Wong et al., 2016), engagement in phone-related 
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distracted driving, and increased or reduced speeding depending on the road type. The rush-hour 

period may be used as a proxy in assessing crash risk exposure and a period where interventions 

may be conducted.  

The influence of the built road environment on the proportion of crash events and fatal and non-

fatal crash injury rates may be exacerbated during the rush hour. Research on this relationship 

may situate the rush-hour period as a proxy for environmental-based traffic interventions. Earlier 

studies that evaluated the association of crash injury and environmental characteristics had 

adjusted for the rush-hour period (Call, Medina, & Black, 2019; Jagerbrand & Sjobergh, 2016; 

Stevens, Schreck, Saha, Bell, & Kunkel, 2019). Using the rush-hour period as a proxy for 

temporal-based traffic interventions may be proficient if there is evidence that risks associated 

with the exposure of interest in the rush-hour period adequately mirror the exposure either at all 

times of the day or during the non-rush-hour period.   

Alcohol and substance use and its relationship with fatal and non-fatal crash injuries is a well-

established crash injury prevention domain (Allamani et al., 2013; Antonopoulos et al., 2011; 

Bachani et al., 2013; Blows et al., 2005; Bondallaz et al., 2016; Chen, Tsai, Fortin, & Cooper, 

2012; Clifasefi et al., 2006; Kumar et al., 2015; Martin et al., 2017; Thomas et al., 2020). 

Interventions directed at preventing drunk driving such as ignition locks are one of the most 

effective crash injury prevention interventions aimed at mitigating injuries resulting from 

recidivism (Centers for Disease Control and Prevention, 2011; Matsumura et al., 2009; Smith et 

al., 2014). However, identifying first-time offenders, who are more likely to injure others at their 

first attempt, remains a challenge. (Dickson, Wasarhaley, & Webster, 2013). While earlier 

studies have reported increased cases of driving under the influence of alcohol and other 
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substances during the night (Allamani et al., 2013), the occurrence of substance-use-related fatal 

and non-fatal injuries during the rush hour is not known. 

Research on crash response time is not novel. Recent studies have estimated the disparity in 

crash response time in rural and urban areas and how these differences are associated with 

increased fatality (Adeyemi et al., 2020a; Byrne et al., 2019). Conceptually, crash response time 

may be longer during the rush-hour period due to traffic congestion. However, it is not known to 

what extent such delay associates with an increased fatality rate. The possibility exists that these 

deaths at the crash scene may be unsalvageable (Byrne et al., 2015; Calland et al., 2012). 

However, it is not known if a delay in crash response associates with the presence of deaths at 

the crash scene and how the odds of such events vary during the rush hour, non-rush hour, and at 

all times of the day. 

Conceptualizing environmental determinants of crash injury using the socio-ecological 

framework  

The environmental determinants of crash injuries can be modeled using the socio-ecological 

model (Center for Disease Control and Prevention, 2020). The socio-ecological model identifies 

the societal, community, relationship, and individual levels that identify areas where 

interventional efforts can prevent injury. This framework aptly depicts the nested relationship 

existing at each of the four levels with the individual factors nested in the relationship level 

factors, which in turn is nested within community and societal factors (Center for Disease 

Control and Prevention, 2020).  

The individual factors associated with rush hour factors include age, education, income, history 

of substance use, engaging in risky driving behavior, and knowledge, attitude, and perception of 

safe driving. The relationship-level factors include peer pressure, family influences on driving 

behavior, and passenger effect on distracted driving. At the community level, the role of street 
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and traffic lights, traffic signs, sidewalks, pedestrian bridges and crossings, appropriate road 

intersections, driveways, work zones, and ramps can accentuate or prevent the risk of crash 

injury. At the societal level, economic factors, unemployment, housing structure, road network, 

infrastructure, and the region's weather conditions play diverse roles in road crashes. 

Environmental determinants of crash injury can be identified at the societal and community 

levels. Assessing the relationship of these multi-level nested factors to crash injury presents 

diverse options of statistical assessment. While hierarchical models have been used in previous 

studies in crash injury analysis (Ahmed, Huang, Abdel-Aty, & Guevara, 2011; Alarifi, Abdel-

Aty, & Lee, 2018; Xu, Wang, Yang, Xie, & Chen, 2019; Yanmaz-Tuzel & Ozbay, 2010), the use 

of nested models may provide a novel statistical approach to assess crash injuries under the  

socio-ecological framework  (Center for Disease Control and Prevention, 2020). 

Theorizing Substance Use as a Determinant of Crash Injury using the Theory of Planned 

Behavior 

Substance use-related impaired driving is risky driving behavior. Driving behaviors, similar to 

other actions, reflect knowledge, attitude, and perception (Bachani, Risko, Gnim, Coelho, & 

Hyder, 2017; Hassen, Godesso, Abebe, & Girma, 2011). Additionally, an individual’s social 

network plays complex nonlinear role in the development of a behavior (Bartel et al., 2020; Chu, 

Hoeppner, Valente, & Rohrbach, 2015). Driving under the influence of alcohol or drugs (illegal, 

prescribed, or over-the-counter) represents an action that is not devoid of intent and may be a 

consequence of perceived behavioral control, attitude towards the use of alcohol or drugs, or 

perceived social norm (Ajzen, 2002; Bazargan-Hejazi et al., 2017). While addiction may 

influence the continued engagement in driving under the influence of drugs and alcohol, it rarely 

initiates the behavioral practice (Bondallaz et al., 2016; Sloan, Eldred, & Davis, 2014).  
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The Theory of Planned Behavior (TPB) explains how attitude, perceived behavioral control, 

perceived social norm, and intent influence behavioral outcomes (Ajzen, 2002). The TPB 

explains how behavior is influenced by intent, which is acted upon by attitude, perceived 

behavioral control, and social norm (Figure 2).  Using the framework of TPB, a decision to drive 

under the influence of alcohol or other substances may be influenced by an individual’s attitude 

towards substance use (attitude), the influence of peers, or observing close members of one’s 

network engaging in such activities (perceived norm), or the individual’s multitasking ability 

(perceived behavioral control). While the intention to drive after drinking may not always be a 

prior decision taken before using alcohol or drugs, the perception of being able to drive 

effectively under the influence of alcohol or drugs may overcome the inhibitory effect of attitude 

and perceived social norm if the individual holds such values.  

Several studies have examined the relationship of alcohol and substance use with fatal and non-

fatal crash injuries (Allamani et al., 2013; Chen et al., 2012; Compton & Berning, 2015; 

Degenhardt, Dillon, Duff, & Ross, 2006; Drummer et al., 2004; Freeman, 2007; Geller & 

Negussie, 2018). This study seeks to expand the substance use-related crash injury research by 

identifying the association of substance use with a fatal and non-fatal crash injury during the 

rush-hour period.  

Conceptualizing Pre-Hospital Crash Response Delay  

Preventing fatal road crash injuries is intrinsically hinged on rapid trauma care delivery to crash 

victims. Conceptually, crash responses can be categorized into three phases: duration from crash 

occurrence to notification of Emergency Medical Services (EMS), the period from EMS 

notification to EMS arrival, and the length from EMS arrival to hospital arrival. Any delay at any 

of the three phases can potentially increase the chance of unfavorable health outcomes. 
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Identifying the points of delay can give insights into where interventions can be focused on. With 

the rush-hour period identified as the period with the highest traffic densities, it is expected that 

crash response may be prolonged compared to other times of the day. Additionally, rural and 

urban discrepancies in the population and vehicle densities may play a role in the crash response 

times. It is unknown how crash response times during the rush-hour period associates with fatal 

crash injuries in rural and urban areas.  

Research Focus 

This dissertation aims to assess the social and environmental determinants of fatal and non-fatal 

crash injuries during the rush-hour period. The rush-hour period is an area with sparse literature. 

This dissertation seeks to provide crash injury characteristics within the rush-hour period and 

offer comparable information on the pattern of assessed exposures during the non-rush-hour 

period and across all times of the day.  

This dissertation will assess three domains of crash exposures – the road environment, human 

risky behavior, and crash response time. Within the domain of the road environment, this 

dissertation will assess the relationship between fatal crash injury and the natural elements – rain, 

fog, and snow, and elements within the built environment such as intersections, driveways, work 

zones, interstates, and highways. Substance use is a risky behavior driving behavior. Also, crash 

victims with substance use are at increased risk of worse health outcomes. Rapid crash response 

provides the opportunity to identify salvageable crash injuries and reduce morbidity and 

mortality. Directing research across these three related yet distinct crash domains will provide 

information useful for formulating community-based policies and identify areas in need of 

targeted public health intervention. 
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Research Questions 

This dissertation focuses on three distinct research areas – the environmental determinants of 

fatal crash injuries during the rush-hour period, the association of substance use on non-fatal 

crash injuries, and how crash response time associates with the presence of deaths at the crash 

scene. The research questions guiding these three research domains are as follows:  

1. What are the association of road types (interstates, highways, local roads, and streets), 

road designs (intersections, driveways, ramps, work zones), and inclement weather 

(rain, fog, snow) with fatal crash injuries during the rush-hour period, and how do 

these factors affect the spatial distribution of fatal crash injuries? 

2. What is the association of substance use on the critical, emergent, and low acuity 

crash injuries during the rush-hour, non-rush-hour period, and at all times of the day, 

and what are the probabilities of each of these injury severities occurring?  

3. What are the durations of crash response times during the rush-hour, non-rush-hour, 

and at all times of the day, and how do the crash response times associate with the 

presence of deaths at the crash scene during the rush-hour and non-rush-hour period?  

Aims and Hypotheses  

This dissertation has three aims. Firstly, this dissertation aims to assess the environmental 

determinants of road crash injury during the rush-hour period and its association with fatal road 

crashes. It is hypothesized that road types (such as highways, interstate, local streets), road 

characteristics (such as intersections, ramps, and work zones), and the natural environment (such 

as rain, fog, and snow) will be associated with increased risk of fatal road crashes during the 

rush-hour period.  

Secondly, this dissertation aims to assess the association between substance use and non-fatal 

crash injury. It is hypothesized that substance use will be associated with increased odds of 
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critical and emergent injury severity compared to low acuity injury. It is hypothesized the odds 

of critical and emergent injuries will be higher in the rush-hour and non-rush-hour periods and at 

all times of the day.  

Thirdly, this dissertation aims to assess the association between crash response times and the 

occurrence of deaths at the crash scene. It is hypothesized that the increased duration of crash 

notification to EMS departure from the base station and an increased duration in the travel time 

from the base station to the crash scene will be associated with increased odds of deaths at the 

crash scene. It is hypothesized that the odds of deaths at the crash scene will be elevated during 

the rush-hour and non-rush-hour periods and at all times of the day.  

Originality of the research 

Though anecdotally acknowledged as the period with the highest human and road environmental 

interactions, the rush-hour period is a minimally explored domain of crash injury prevention 

research. While some risky driving behaviors, such as drunk driving, are known to occur more 

during nighttime than daytime driving (National Highway Traffic Safety Administration, 2018a), 

little is known on how substance use associates with injury severity and how the substance use-

related injury severities vary during the rush and non-rush-hour periods. Deaths at the crash 

scene is a sparsely researched crash outcome. It is unknown what proportion of deaths at the 

crash scene occur during the rush-hour period and how crash response times associates with 

deaths at the crash scene. occurrences. 

Assumptions  

This dissertation assumes that the rush-hour period is a fixed period. In reality, the rush-hour 

period is a dynamic and highly fluctuant period (Federal Highway Administration, 2017), that 

varies by days of the week, rurality and urbanicity, US regions and division, and across seasons. 
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However, the decision to characterize the rush-hour period as a fixed and unvarying allows for 

dichotomous categorization in epidemiological studies. 
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CHAPTER 2: MANUSCRIPT 1 

An assessment of the relationship between road environment characteristics and county-level 

fatal crash injury patterns in the United States 
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Abstract 

Background: A substantial proportion of crash injuries occur during the rush-hour period. This 

study aims to assess the relationship between county-level road environmental characteristics 

and fatal road crash counts during the rush-hour period.  

Method: We merged eight-year (2010 - 2017) data from the Fatality Analysis Reporting System. 

We limited the data to crashes during the rush hour period (6–10 am; 3– 8 pm). The outcome 

variable was the counts of fatal crashes per county. The predictor variables were road design 

(intersection, driveway, ramp, work-zone), road type (interstate, highways, roads/streets), and 

inclement weather factors (rain, fog, snow). A nested spatial negative binomial regression model 

was used to estimate the rate ratio of fatal crash injury during the rush-hour period, with 

estimated county population sizes used as the offset variable. Small area estimates, adjusted 

crash fatality rates, clusters, and outliers were visualized using choropleths maps.  

Results: The median prevalence of rush-hour-related fatal crashes was 7.3 per 100,000 

population. Case-specific fatality rates from interstates, highways, roads, streets, intersections, 

rain, fog, and snow were higher than the median fatality rates. Also, the median crash fatality 

rates were significantly higher in rural counties as compared to urban counties. During the rush-

hour period, fatal crash injury rates were significantly elevated on interstates, highways, roads 

and streets, intersections, driveways, and work zones. Further, rain and fog were significantly 

associated with elevated fatal crash rates during the rush-hour period.  

Conclusion:  Certain built, and natural road environment factors may influence crash injury rates 

during the rush-hour period.  

Keyword: Rush hour, Fatal Crash Injury, Road Environment, Nested Spatial Regression, Cluster 

and Hotspot Analysis, Fatality Rates 
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Introduction 

Road crashes are preventable causes of morbidity and mortality in the United States (U.S.). In 

2017, there were 6.5 million crashes, which accounts for the death of over 37,000 individuals 

and about 2.8 million injuries.  One person dies every 14 minutes from crash-related events each 

day in the U.S. (National Center for Statistics and Analysis, 2019a).  In 2016, over 2.5 million 

individuals were treated for crash-related injuries in the emergency departments across the US 

(National Center for Statistics and Analysis, 2017a). The cost of health care and loss from 

productivity exceeded 75 billion dollars in 2015 (Center for Disease Control and Prevention, 

2020a). Fatal and non-fatal crashes are disproportionately distributed across the day, with crash 

injuries predominantly occurring around the rush-hour period (Varghese & Shankar, 2007).  

The rush-hour period represents the time of the day in which the roads have the highest densities 

of human and automobile activities (Call, Medina, & Black, 2019; Norros, Kuusela, Innamaa, 

Pilli-Sihvola, & Rajamaki, 2016). In the U.S., the rush hour is between 6 to 10 am and 3 and 8 

pm (Call, Wilson, & Shourd, 2018; Paleti, Eluru, & Bhat, 2010; Xu & Xu, 2020). This period 

varies by county and rurality (Jaffe, 2014), with urban communities in North Carolina, for 

example, having one of every four road crashes occurring during the rush hour (Tippett, 2014). 

The evening rush hour witnesses more crash events than the morning rush hour period (HG.org, 

2020; Tippett, 2014; Varghese & Shankar, 2007).  

Background 

An individual’s geographical location is an important social determinant of health (González, 

Wilson-Frederick Wilson, & Thorpe, 2015; Healthy People, 2020), and the road environment has 

long been associated with fatal and non-fatal crashes injuries (National Highway Traffic Safety 

Administration, 2010). In the U.S., over 1.2 million fatal and non-fatal crash injuries occur at or 

near intersections (Federal Highway Administration, 2020b; National Highway Traffic Safety 



20 
 

Administration, 2010). Factors reported to be associated with intersection-related crash injuries 

include driving inattention, misjudgment of the speed of another vehicle, distracted driving, and 

aggressive driving (Federal Highway Administration, 2020b; National Highway Traffic Safety 

Administration, 2010). Inadequate surveillance is associated with a six-fold increased crash risk 

at intersections compared to non-intersections, while misjudgment of another vehicle's speed is 

associated with four-fold increased risk of intersection-related crash events (National Highway 

Traffic Safety Administration, 2010). 

While intersections represent an area where two or more roadways meet, driveways represent 

road stretches that lead into public or commercial roads (Liu, 2007; Nadler, Courcoulas, 

Gardner, & Ford, 2001). Driveways crash injuries commonly involve slow-moving vehicles, 

backup driving, crashes from making a left or right turn into a major road (Liu, 2007; Nadler et 

al., 2001). Child pedestrians are commonly involved in drive-way-related crash injuries 

(Anthikkat, Page, & Barker, 2013; Nadler et al., 2001). A systematic review reported that 

residential driveways are associated with over three-fold crash injury (Anthikkat et al., 2013). 

Also, driveways that exit into a local road have longer lengths and run along property boundaries 

are associated with a three-to-five-fold increased risk of crash injury (Anthikkat et al., 2013; 

Shepherd, Austin, & Chambers, 2010). 

Work zones represent non-permanent road characteristics that have been associated with 

property damage and crash injury (American Road & Transportation Builders Association, 2018; 

Federal Highway Administration, 2019).  In the U.S., about five percent of all fatal crashes occur 

at work zones (American Road & Transportation Builders Association, 2018). Work zone-

related crash events increased from 84,000 in 2009 to 123,000 across the U.S., with the 

associated injuries rising from 19,000 to 31,000 (American Road & Transportation Builders 
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Association, 2018). It is estimated that one work zone fatal injury occurs every four billion 

vehicle miles traveled (VMT) (Federal Highway Administration, 2019). Also, the work zone 

area's length and the frequency of work zone regions are associated with increased crash injury 

and property damage (Chen & Tarko, 2012; Ozturk, Ozbay, & Yang, 2014; Athanasios 

Theofilatos, Ziakopoulos, Papadimitriou, Yannis, & Diamandouros, 2017).  

Earlier studies have identified an increased risk of crash injuries during the rain (Andrey & 

Yagar, 1993; Jung, Jang, Yoon, & Kang, 2014; Qiu & Nixon, 2008; A. Theofilatos & Yannis, 

2014), snow (El-Basyouny, Barua, & Islam, 2014; Fridstrøm, Ifver, Ingebrigtsen, Kulmala, & 

Thomsen, 1995; A. Theofilatos & Yannis, 2014), and fog (A. Theofilatos & Yannis, 2014; Wu, 

Abdel-Aty, & Lee, 2018). Between 2007 and 2016,  about 8% of fatal crash injuries were 

associated with rain, while fog and snow were each related to 2% of all fatal crash injuries across 

the U.S. (Federal Highway Administration, 2020a).  Rain, fog, and snow each accounted for 

46%, 9%, and 10%, respectively, of weather-related fatal crash counts (Federal Highway 

Administration, 2020a). About 300 - 400 fog-related fatal crashes occur yearly in the U.S. 

(Hamilton, Tefft, Arnold, & Grabowski, 2014; Wu et al., 2018), and snow accounts for 16% of 

all weather-related crashes (Federal Highway Administration, 2020a). The conceptual link 

between these inclement weather factors and fatal crash events is related to driving visibility and 

road surface friction. Rain, fog, and snow are associated with low visibility, while rain and snow 

limit skid-resistance due to reduced surface friction (El-Basyouny et al., 2014; Li et al., 2019). 

Central to the built and natural environmental characteristics of the crash scene is the rural-urban 

status. The U.S. rural community is home to about 20 percent of the U.S. population (United 

States Census Bureau, 2019a), and less than a third of vehicle miles traveled in the U.S. occurs in 

the rural areas (Federal Highway Administration, 2018; Insurance Institute for Highway Safety, 
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2019). However, rural counties have about half of all fatal crashes (Insurance Institute for 

Highway Safety, 2019; National Center for Statistics and Analysis, 2019b). Earlier studies have 

reported speeding as a major risky driving behavior that contributes to fatal crash injuries in rural 

communities (Federal Highway Administration, 2000b; Insurance Institute for Highway Safety, 

2019). However, the rural areas have poorer road qualities, evidenced by an increased proportion 

of structurally deficient bridges and poor pavement conditions (Congressional Research Service, 

2018). Additionally, rural communities have fewer hospitals and health-related infrastructures 

(Center for Disease Control and Prevention, 2020c; Pink, Osgood, & Sana, 2020) and longer 

response time (Byrne et al., 2019; King, Pigman, Huling, & Hanson, 2018; K. E. M. Miller, 

James, Holmes, & Van Houtven, 2020). With a larger proportion of the older population living 

in the rural community (Smith & Trevelyan, 2019; United States Department of Agriculture, 

2019), the risk of fatal injury is further heightened with the increased prevalence of co-morbid 

conditions and disabilities (Garcia et al., 2019; Zhao, Okoro, Hsia, Garvin, & Town, 2019).  

In predicting crash occurrence at the county level, there is a need to establish the independence 

of observations to reduce analytical errors (Sainani, 2010). The possibility exists that the 

occurrence of crash events in a county may increase (positive autocorrelation) or reduce 

(negative autocorrelation) the likelihood of its occurrence in neighboring counties, especially, if 

such counties share similar exposures – a concept defined as spatial autocorrelation (Kirby, 

Delmelle, & Eberth, 2017). Spatial autocorrelation techniques, commonly with the use of global 

Moran’s I (Anselin, 1988) or general Getis-Ord (Getis & Ord, 2010), presents ways for 

adjustings for spatial autocorrelation. Additionally, crash events share unobserved roadway 

characteristics (Carson & Mannering, 2001), and these spatial estimators adjust for the 

unobserved environmental elements (Jonathan, Wu, & Donnell, 2016). Earlier studies have 
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suggested including spatial estimators in crash injury risk modeling (Jonathan et al., 2016; Lord, 

Cloutier, Garnier, & Christoforou, 2018).  According to Tobler's first law of geography (Sui, 

2004), all things are related, but close things are more related than far things. With increasing 

distance, the global Moran’s I value tends to reduce (Epperson, 2005). Detecting spatial clusters, 

therefore, rely on using local estimators of spatial autocorrelation (Waller & Gotway, 2004) such 

as local Moran’s I (Anselin, 1995) and  Getis-Ord GI* (Getis & Ord, 2010; Ord & Getis, 1995). 

Additionally, county-level estimates may be better predicted using small area estimation 

techniques, and the spatial structure of counties provides more accurate estimation compared to 

national or state-level estimates (Kirby et al., 2017).  

Identifying the environmental factors associated with fatal road crashes and their spatial 

distribution is important to create focused intervention and resource allocation. It is unknown to 

what extent road types, road designs, and inclement weather conditions associates with fatal 

crash events within the rush hour period.  To our knowledge, no publicly available study 

reported fatal crash injury rates during the rush hour period. The literature on rush hour-related 

crash injury is sparse, and this study seeks to provide substantial information on the 

environmental factors associated with fatal crash events during the rush hour period. Therefore, 

this study aims to assess the relationship between county-level road environmental 

characteristics and fatal road crash rates. It is hypothesized that county-level measures of road 

types (such as interstate, highways, roads, and local streets), road designs (such as intersections, 

driveways, ramps, and work zones), and the natural environment (such as rain, snow, and fog) 

will be associated with increased rates of fatal crash events. Additionally, this study aims to 

identify clusters of fatal crash injuries during the rush-hour period. It is hypothesized that 
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homogenous clusters of fatal crash events will emerge from predicted estimates of the county-

level fatal crash rates.  

Methods 

Study Design 

This ecological study pooled eight years of data (2010 – 2017) from the Fatality Analysis 

Reporting System (FARS). The FARS dataset is a repository of fatal road crash events hosted by 

the National Highway Traffic Safety Agency (NHTSA). It provides a nationwide census of all 

crash injuries involving at least a fatality across counties in the U.S. and the District of Columbia 

(National Highway Traffic Safety Administration, 2017). Data are released every year in 

multiple linkable files across domains representing the crash scene, person-related, and vehicle-

related information (National Highway Traffic Safety Administration, 2016a). For this study, the 

variables were extracted from the accident file.   

Inclusion and Exclusion Criteria 

This study's inclusion criterion was that the crash event must have occurred during the rush hour 

period. We defined the rush hour crashes as road accidents that occurred between 6 to 10 am and 

3 to 8 pm (Federal Highway Administration, 2017). We restricted the data to counties within the 

conterminous U.S., excluding counties in Alaska, Hawaii, Northern Mariana Islands, U.S. Virgin 

Islands, American Samoa, Guam, and Puerto Rico. Each county was classified as either urban or 

rural using the Rural-Urban Commuting Area (RUCA) code (Economic Research Services, 

2019). Counties that were classified within the range of metropolitan to high commuting 

micropolitan were classified as urban, while low commuting micropolitan to rural areas were 

classified as rural. The final data consisted of 3,102 counties, with 1,691 classified as urban 

while 1,411 classified as rural (Figure 1-1). 
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Data Processing 

The data extracted from the accident file included the state and county codes, the year and hour 

of the crash, the route the collision occurred (route-related accidents),  the relationship of the 

crash to a junction or a specific location (junction-related accidents), the relationship of the 

accident to the boundaries of work zones (work zone accident), atmospheric conditions (weather-

related accidents), and the number of fatalities that occurred with each crash. The raw data file 

reported route-related crashes as a single variable with multiple categories comprising interstate 

roads, U.S. highway, state highway, county road, local streets in townships, municipality, and 

frontage other roads, and unknown. Three dummy road type variables were generated from this 

variable: interstate, highways (U.S. highway + state highway), and roads and streets (county road 

+ local streets in townships, municipality, and frontage roads).  

Similarly, junction-related crashes were coded originally as a multi-categorical nominal variable 

comprising of non-junction, intersection and intersection-related, driveway and driveway-related, 

ramp and ramp-related, railway grade crossing, crossover-related, shared-use path crossing, 

acceleration/deceleration lane, through the roadway, other location, unknown and not reported. 

Three road design dummy variables were generated from this variable: intersection (intersection 

+ intersection-related), driveway (driveway + driveway-related), and ramp (ramp + ramp-

related). Additionally, weather-related crashes were coded as multi-categorical nominal 

variables. These variables were weather (first weather condition that affects visibility), weather1 

(second weather condition that affects visibility), and weather2 (any other weather condition that 

affects visibility). Each of these variables was reported in multiple categories: clear weather, no 

additional atmospheric condition, rain, sleet, snow, fog/smog/smoke, severe crosswinds, blowing 

sand/soil/dirt, blowing snow, freezing rain/drizzle, others, unknown, or not reported. Three 

inclement weather-related crashes dummy variables were generated across the weather variables: 
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rain (rain + freezing rain/drizzle), snow (snow + blowing snow + sleet), and fog 

(fog/smog/smoke). Work zone-related crashes were reported as a multi-categorical nominal 

variable: None, construction, maintenance, utility, work zone type unknown, and not reported. 

This variable was re-categorized into a dummy variable: work zone (construction, maintenance, 

utility, type unknown).  The number of fatalities per crash was measured as a continuous 

variable.  

Data files across 2010 and 2017 were appended. A five-digit county Federal Information 

Processing Standard (FIPS) code was generated by concatenating the two-digit state code and the 

three-digit county codes.  

Variable Definition 

The outcome variable was the median fatal counts per county. The choice of using the median 

was based on the finding that the yearly distribution of the fatal counts per county was not 

normally distributed. To obtain the median fatal counts, the fatal counts for each county were 

aggregated by year to generate the yearly counts. Then, the median count across the years was 

computed. The average of the 2010 to 2017 county population estimates was used as the offset 

variable. The dummy variables were aggregated per county across the years. Counts of 0 

represented an absence of the category of interest, while values of 1 and higher represented the 

presence of the category of interest in the county. The recoded dummy variables served as the 

predictor variables.  

For this study, the county characteristics of interest that served as the control variables were the 

percentage of the White and male population, county rates of hospital utilization, unemployment, 

vehicle density, county gross domestic product (GDP), and median household income. Data on 

the county population, the percentage of the white and male population, median household 
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income, and vehicle estimate per county were computed as the average of 2010 to 2017 estimate 

from the American Community Survey (United States Census Bureau, 2019b). The hospital 

utilization rate per county was obtained from the mean emergency department utilization per 

1000 by Medicare beneficiaries per county (Center for Medicare and Medicaid Services, 2019). 

The mean unemployment rate per county was obtained from the 2010-2017 local area 

unemployment statistics of the U.S. Bureau of Labor (U.S. Bureau of Labor Statistics, 2019).  

We created a spatial weight matrix of all the eligible county and county equivalents in the dataset 

using the queen contiguity setting. The spatial weight matrix essentially maps the spatial 

relationship between the location, to establish the occurrence of spatial autocorrelation (Zhou & 

Lin, 2008). Spatial autocorrelation of the residuals provides information on the independence of 

the residuals. The presence of significant spatial autocorrelation suggests that there is a lack of 

independence of the residuals. We used the Euclidean distance with the k nearest neighbor set at 

4.  

 Analysis 

Descriptive Statistics 

We visualized the distribution of fatal counts per county. Further, we computed the rush hour-

related raw and predicted median fatality rate by dividing the fatal counts per county by the 

county's population estimates. Also, we reported the fatality rate specific to the road types 

(interstate, highway, road, and streets), road types (intersections, driveway, ramps, work zone), 

and inclement weather (rain, snow, fog). Differences in the crash-specific rates against their 

dummy variables were measured using the Mann-Whitney U test. We reported the distribution of 

rush hour fatality rate and the county characteristics across the urban and rural counties. 

Differences in the fatality rates and county characteristics were measured using independent T-

tests and the Mann-Whitney U tests as appropriate.  
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Regression Models  

We used univariate negative binomial regression analysis to assess the relationship of all the 

predictor variables and county characteristics with fatal crash events. Variance inflation factor 

was used to assess multicollinearity.  

We reported the adjusted incidence rate ratio for each of the ten variables in the road type, road 

design, and inclement weather group, adjusting for county characteristics. We then estimated a 

nested regression model using all determinants. Specifically, with road designs (intersection, 

driveway, ramp, and work zone) nested in road types (interstate, highways, and road/streets), 

interaction variables were generated for road design and road types, and these interaction 

variables were added to the model. After establishing evidence of spatial autocorrelation on all 

the regression models using the global Moran's I, a corresponding nested spatial regression 

model was designed, and incidence rate ratios and the 95% confidence intervals (CI) were 

estimated.  Spatial and non-spatial models were compared using the Akaike Information criteria 

(AIC) (Lee & Bell, 2009). Using Matérn covariance as a kernel function in the Gaussian process 

(Kammann & Wand, 2003), the final nested spatial regression models for each of the individual 

and all-determinant models are stated below: 

Model 1: Interstate with nested road designs 

𝑌 = 𝛽01 +  𝛽1𝐼𝑛𝑡𝑒𝑟𝑠𝑡𝑎𝑡𝑒 +  𝛽2𝐼𝑛𝑡𝑒𝑟𝑠𝑡𝑎𝑡𝑒 ∗ 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 +  𝛽3𝐼𝑛𝑡𝑒𝑟𝑠𝑡𝑎𝑡𝑒 ∗ 𝐷𝑟𝑖𝑣𝑒𝑤𝑎𝑦 +

 𝛽4𝐼𝑛𝑡𝑒𝑟𝑠𝑡𝑎𝑡𝑒 ∗ 𝑅𝑎𝑚𝑝 + 𝛽5𝐼𝑛𝑡𝑒𝑟𝑠𝑡𝑎𝑡𝑒 ∗ 𝑊𝑜𝑟𝑘𝑍𝑜𝑛𝑒 +  𝛽𝛾1𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠 +

Matérn(1 | 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 +  𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒)  +  𝑜𝑓𝑓𝑠𝑒𝑡(𝑙𝑜𝑔(𝑝𝑜𝑝𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒)  

Model 2: Highway with nested road designs 
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𝑌 = 𝛽02 +  𝛽6𝐻𝑖𝑔ℎ𝑤𝑎𝑦 +  𝛽7𝐻𝑖𝑔ℎ𝑤𝑎𝑦 ∗ 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 +  𝛽8𝐻𝑖𝑔ℎ𝑤𝑎𝑦 ∗ 𝐷𝑟𝑖𝑣𝑒𝑤𝑎𝑦 +

 𝛽9𝐻𝑖𝑔ℎ𝑤𝑎𝑦 ∗ 𝑅𝑎𝑚𝑝 + 𝛽10𝐻𝑖𝑔ℎ𝑤𝑎𝑦 ∗ 𝑊𝑜𝑟𝑘𝑍𝑜𝑛𝑒 +  𝛽𝛾2𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠 +

Matérn(1 | 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 +  𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒)  +  𝑜𝑓𝑓𝑠𝑒𝑡(𝑙𝑜𝑔(𝑝𝑜𝑝𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒)   

Model 3: Road and Streets with nested road designs 

𝑌 = 𝛽03 +  𝛽11𝑅𝑜𝑎𝑑 +  𝛽12𝑅𝑜𝑎𝑑 ∗ 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 +  𝛽13𝑅𝑜𝑎𝑑 ∗ 𝐷𝑟𝑖𝑣𝑒𝑤𝑎𝑦 +  𝛽14𝑅𝑜𝑎𝑑 ∗

𝑅𝑎𝑚𝑝 + 𝛽15𝑅𝑜𝑎𝑑 ∗ 𝑊𝑜𝑟𝑘𝑍𝑜𝑛𝑒 +  𝛽𝛾3𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠 + Matérn(1 | 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 +

 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒)  +  𝑜𝑓𝑓𝑠𝑒𝑡(𝑙𝑜𝑔(𝑝𝑜𝑝𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒)   

Model 4: Inclement Weather 

𝑌 = 𝛽04 +  𝛽16𝑅𝑎𝑖𝑛 +  𝛽17𝐹𝑜𝑔 +  𝛽18𝑆𝑛𝑜𝑤 +  𝛽𝛾4𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠 +Matérn(1 | 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 +

 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒)  +  𝑜𝑓𝑓𝑠𝑒𝑡(𝑙𝑜𝑔(𝑝𝑜𝑝𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒) 

Model 5: All-determinants model 

𝑌 = 𝛽05 +  𝛽1𝐼𝑛𝑡𝑒𝑟𝑠𝑡𝑎𝑡𝑒 +  𝛽2𝐼𝑛𝑡𝑒𝑟𝑠𝑡𝑎𝑡𝑒 ∗ 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 +  𝛽3𝐼𝑛𝑡𝑒𝑟𝑠𝑡𝑎𝑡𝑒 ∗ 𝐷𝑟𝑖𝑣𝑒𝑤𝑎𝑦 +

 𝛽4𝐼𝑛𝑡𝑒𝑟𝑠𝑡𝑎𝑡𝑒 ∗ 𝑅𝑎𝑚𝑝 + 𝛽5𝐼𝑛𝑡𝑒𝑟𝑠𝑡𝑎𝑡𝑒 ∗ 𝑊𝑜𝑟𝑘𝑍𝑜𝑛𝑒 +  𝛽6𝐻𝑖𝑔ℎ𝑤𝑎𝑦 +  𝛽7𝐻𝑖𝑔ℎ𝑤𝑎𝑦 ∗

𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 +  𝛽8𝐻𝑖𝑔ℎ𝑤𝑎𝑦 ∗ 𝐷𝑟𝑖𝑣𝑒𝑤𝑎𝑦 +  𝛽9𝐻𝑖𝑔ℎ𝑤𝑎𝑦 ∗ 𝑅𝑎𝑚𝑝 + 𝛽10𝐻𝑖𝑔ℎ𝑤𝑎𝑦 ∗

𝑊𝑜𝑟𝑘𝑍𝑜𝑛𝑒 +  𝛽11𝑅𝑜𝑎𝑑 +  𝛽12𝑅𝑜𝑎𝑑 ∗ 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 +  𝛽13𝑅𝑜𝑎𝑑 ∗ 𝐷𝑟𝑖𝑣𝑒𝑤𝑎𝑦 +

 𝛽14𝑅𝑜𝑎𝑑 ∗ 𝑅𝑎𝑚𝑝 + 𝛽15𝑅𝑜𝑎𝑑 ∗ 𝑊𝑜𝑟𝑘𝑍𝑜𝑛𝑒 +  𝛽16𝑅𝑎𝑖𝑛 +  𝛽17𝐹𝑜𝑔 +  𝛽18𝑆𝑛𝑜𝑤 +

 𝛽𝛾5𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠 + Matérn(1 | 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 +  𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒)  +

 𝑜𝑓𝑓𝑠𝑒𝑡(𝑙𝑜𝑔(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒)   

The all-determinant spatial model was the most parsimonious, and this model was used to 

generate small area estimates and the adjusted fatality rates per county. Cluster and outlier 

analysis was performed using Anselin's local Moran's to identify fatal crash events spatial 



30 
 

clusters (Anselin, 1995). Also, a hotspot analysis was performed using the Getis-ORD star (Getis 

& Ord, 2010) to assess the spatial distribution of significant crash rates across neighboring 

counties. 

Data analysis was performed using Stata version 16 (StataCorp, 2020) and R version 3.6.2 /R 

Studio version 1.2.5033 (R Core Team, 2019; RStudio Team, 2019). Specifically, the R-

packages used for this study were the Spatial Dependence package (SPDEP) (Bivand et al., 

2019), Modern Applied Statistics with S (MASS) (Ripley et al., 2019), and the Mixed-Effect 

Models, Particularly Spatial Models (spaMM) (Rousset, Ferdy, Courtiol, & GSL authors, 2020). 

Spatial weights and choropleths were created with ArcGIS Pro version 10.8 (Environmental 

Systems Research Institute, 2020). 

Results 

Fatal Injury Rates 

Across the eight years, fatal road crashes were reported in 2,550 of the 3,102 counties. The 

median rush hour-related fatality rate per county was 7.30 (IQR: 11.1) per 100,000 population 

(Table 1-1). Across road types, the median (IQR) rush hour-related fatal crash injuries were 

highest on the highways (9.4 (10.8) per 100,000 population), followed by roads and streets (8.4 

(9.7) per 100,000 population) and interstate (7.4 (9.9) per 100,000 population). Intersection-

specific and driveway-specific median (IQR) fatal crash injuries were 7.8 (9.1) and 7.1 (7.8) per 

100,000 population, respectively, during the rush hour period. The median (IQR) fog and rain-

related fatal crash injuries during the rush hour period were 9.3 (10.5) and 7.8 (8.9) per 100,000 

population, respectively, during rush hour period. There were significant differences in the 

median fatal crash injuries that occurred on the interstate (p<0.001), highways (p<0.001), roads, 

and streets (p<0.001), compared to the other road types during the rush hour period. Similarly, 

the median rates of fatal crashes that occurred on intersections (p<0.001) and ramps (p<0.001) 
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were significantly different from non-junctions during the rush hour period. Additionally, rain 

(p<0.001), fog (p<0.001), and snow-related (p=0.042) fatal crash rates were significantly 

different from those that occurred in normal weather during the rush hour period. 

There were significant differences in the median fatal crash injury rates by rural and urban status 

(p<0.001) (Table 1-2). The median (IQR) rush hour-related fatal crash injury rate in rural and 

urban counties was 9.5 (18.7) 6.3 (7.7) per 100,000 population. Other county characteristics that 

demonstrated significant rural-urban differences were the county-level hospital utilization 

(higher urban rates), unemployment rates (higher urban rates), household income (higher urban 

rates), the proportion of Whites (higher rural rates), males (higher rural rates), gross domestic 

product (higher urban rates), and vehicle density (higher rural rates). 

Risk of Fatal Injuries 

In the univariate models, intersections, driveways, and ramps were associated with reduced rates 

of fatal crash injury across all counties during the rush hour period (Table 1-3). However, among 

rural counties, intersections (RR: 1.44; 95% CI: 1.30 - 1.60) and driveways (RR: 1.35; 95% CI: 

1.13 - 1.62) were associated with 44% and 35% increased rates of fatal crash injuries, 

respectively. Also, across all counties, highways and roads and streets were associated with a 

two-fold (RR: 2.07; 95% CI: 1.89 - 2.28) and 9% (RR: 1.09; 95% CI: 1.02 - 1.17) increased rate 

of fatal crash injuries during the rush hour period. There was significantly elevated fatal crash 

injury in urban (RR: 1.86; 95% CI: 1.64 - 2.11) and rural highways (RR: 2.99; 95% CI: 2.65 - 

3.38), in urban (RR: 1.11; 95% CI: 1.02 - 1.22) and rural (RR: 1.56; 95% CI: 1.41 - 1.73) roads 

and streets, and in rural interstate roads (RR: 1.85; 95% CI: 1.61 - 2.13). Across the rural 

counties, rain (RR: 1.41; 95% CI: 1.24 - 1.62), fog (RR: 1.52; 95% CI: 1.15 - 1.99), and snow 



32 
 

(RR: 1.31; 95% CI: 1.07 - 1.59) were associated with significantly elevated fatal crash injury 

during the rush hour period. 

After adjusting for county characteristics, intersections, interstate, highway, roads, and street, 

rain and fog were associated with significantly elevated fatal crash injuries during the rush hour 

period (Table 1-4). The adjusted spatial model showed that while intersection was associated 

with a 21% increased rate of fatal crash injuries (RR: 1.21; 95% CI: 1.13-1.28), ramps were 

associated with a 14% decreased rate of fatal crash injuries (RR: 0.84; 95% CI: 0.78-0.95). Also, 

the interstate (RR: 1.45; 95% CI: 1.32-1.59), highway (RR: 2.48; 95% CI: 2.25-2.72), and 

road/street (RR: 1.48; 95% CI: 1.37-1.60) were associated with increased rates of fatal crash 

injuries in the rush hour period. Rain (RR: 1.15; 95% CI: 1.08-1.23), fog (RR: 1.29; 95% CI: 

1.15-1.47) and snow (RR: 1.15; 95% CI: 1.06-1.25) were each associated with increased fatal 

rates.  

In this study, the all-determinant spatial nested model performed better than the individual and 

non-spatial all-determinant models. The AIC of the all-determinant spatial model was lower than 

each of the individual determinant models (result not shown) and lower than the non-spatial all-

determinant model (result not shown). Additionally, the significant Global Moran's I of the 

residuals of the model suggested the presence of spatial autocorrelation (p=0.011) and further 

strengthened the need for a spatial model. Contrary to the earlier results, the spatial model 

showed that ramps were not protective against fatal crash injury, and the snow was not 

associated with increased fatal crash injury. Intersection (RR: 2.59; 95% CI: 2.11-3.18), 

driveway (RR: 1.70; 95% CI: 1.18-2.43), work zone (RR: 1.94; 95% CI: 1.26-2.93), interstate 

(RR: 1.62; 95% CI: 1.47-1.80), highway (RR: 2.79; 95% CI: 2.51-3.10), roads and streets (RR: 
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1.67; 95% CI: 1.53-1.83), rain (RR: 1.08; 95% CI: 1.02-1.14), and fog (RR: 1.20; 95% CI: 1.09-

1.32) were associated with increased rate of fatal crash injury during the rush hour period.  

Spatial Distribution  

The crude fatal counts and small area estimates from the all-determinant spatial model for all the 

U.S. counties were displayed using choropleths maps (Figure 1-2A). Twenty-two counties, 

located in California, Nevada, Arizona, Texas, Florida, Michigan, Illinois, and New York, had 

elevated crude and predicted rush hour-related fatal counts (>50 fatalities) (Figure 1-2B). 

We generated the crude and adjusted fatality rates using the average county population as the 

denominator (Figure 1-3). A total of 64 counties located in 22 states had crude fatality rates 

above 50 deaths per 100,000 population during the rush hour period (Figure 1-3A). However, 

after adjusting for county characteristics and the environmental determinants, only three 

counties, located in Kansas and Wyoming, had fatality rates in excess of 50 deaths per 100,000 

population during the rush hour period (Figure 1-3B). 

A cluster and outlier analysis showed that "high-high" clusters of rush hour-related fatal events 

in counties located in Idaho, Montana, Nevada, California, Wyoming, Utah, and across a few 

states in the Southeast (Figure 1-4A). Similarly, a hotspot analysis identified several counties in 

California, Nevada, Idaho, Montana, North Dakota, South Dakota, Wyoming, New Mexico, 

Colorado, and states in the Southeast as significant hotspots for rush hour-related fatal crash 

events (Figure 1-4B).  

Discussion 

In this study, the prevalence of rush hour-related fatal crashes was 7.3 per 100,000 population. 

Case-specific fatality rates from interstates, highways, roads, streets, intersections, rain, fog, and 

snow were higher than the median fatality rates. Also, the median crash fatality rates were 
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significantly higher in rural counties as compared to urban counties. During the rush hour period, 

fatal crash injury rates were significantly elevated on interstates, highways, roads and streets, 

intersections, driveways, and work zones. Further, rain and fog were significantly associated 

with fatal crash rates during the rush hour period. Rush hour-related fatal crash injuries 

disproportionately affected counties located in  Idaho, Montana, Nevada, California, Wyoming, 

Utah, New Mexico, Texas, Colorado, Arkansas, Kentucky, Tennessee, and Alabama. 

For over three decades, nationally representative crash reports have consistently reported 

elevated fatal crash counts in rural communities compared to urban communities (Insurance 

Institute for Highway Safety, 2019; National Center for Statistics and Analysis, 2017b; TRIP, 

2020). It was not until 2016 that a reversal of trend showed an increasing crash count in urban 

communities with a subtle decline in rural communities (Insurance Institute for Highway Safety, 

2019; National Center for Statistics and Analysis, 2017b). Earlier studies have attributed elevated 

rural fatal crash injuries to speeding (Insurance Institute for Highway Safety, 2019) and poor 

road conditions (Congressional Research Service, 2018; TRIP, 2020). Additionally, we report 

that some rural-urban socioeconomic differences exhibit significant associations with fatal crash 

injuries. In rural counties, increased White population proportion, vehicle density, median 

household income, and decreased male proportion are associated with reduced fatal crash injury 

during the rush hour period.  Conversely, in urban counties, increased hospital utilization, 

unemployment rate, the proportion of Whites and males, county GDP, and decreased median 

household income were associated with increased fatal crash injury rates. These non-causal 

observatory findings identify how the social determinants of health differentially influence the 

fatal crash injury patterns in rural and urban environments (Healthy People, 2020). 
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In decreasing order of prevalence rates, road type-specific crash fatality rates were highest on the 

highways, followed by road and streets, and on interstates during the rush-hour period. The 

fatality rates pattern follows a similar pattern with the rates higher on highways, followed by 

roads and streets and interstates. The contrast in the prevalence rates on highways and on the 

interstate may be a reflection of the rush hour period. During the rush-hour period, highway road 

users are more likely to be residents within the state going from their homes to their workplaces 

in the morning and vice-versa in the evening. Contrastingly, interstate road users may be 

traversing different counties and states, although some workers engage in long commutes to 

work (Di Milia, Rogers, & Åkerstedt, 2012). Further, the interstate accounts for less than 2% of 

the total road mileage on all U.S. roads, but about 24% of all travel occurs on the interstate 

(Federal Highway Administration, 2000a). Irrespective of the road type, travel duration, and 

mileage are associated with increased fatality rate (Rolison & Moutari, 2018). 

We report an elevated rate of fatal crash injuries at intersections, driveways, and work zones 

during the rush hour period. With more than 50% of fatal and non-fatal crashes occurring at 

intersections (Federal Highway Administration, 2020b), it was expected that the intersection-

specific fatality rate would be higher than driveway, ramp, and work zone-specific fatality rates. 

Speeding and driving inattention might be some of the reasons associated with increased fatal 

crash rate at intersections, driveways, and work zones. Liu et al. (2007) reported that rush-hour 

driving was associated with the speed at which drivers approach the intersections. NHTSA 

reported that misjudgment of another vehicle's speed and inadequate surveillance was associated 

with four to six-fold increased odds of fatal crash injuries (National Highway Traffic Safety 

Administration, 2010). A recent meta-analysis reported that increasing work zone driving 

duration increases crash rates by approximately three folds, and for every kilometer increase in 
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the length of the work zone region, the crash rate increases by two folds (Athanasios Theofilatos 

et al., 2017).  

Earlier studies have reported that rain-related fatal crash injuries account for 8-10% of all fatal 

crash counts (Black, Villarini, & Mote, 2017; S. Saha, Schramm, Nolan, & Hess, 2016). In 

addition, we report elevated rates of fatal crash injuries from rain, with the rates significantly 

higher in rural counties during the rush hour period. However, fog-specific fatal crash rates were 

higher than rain and snow-specific fatal crash rates during the rush hour. Additionally, the rate of 

fog-related fatal crashes was higher than the rate associated with rain during the rush hour 

period. The increased fatality rate from these adverse weather events may be associated with 

decreased visibility (El-Basyouny et al., 2014; Li et al., 2019). Earlier studies have reported 

reduced speeding when driving in the rain, snow, and fog (Federal Highway Administration, 

2020a; Y. N. Miller, Hilpert, Klein, Tyler, & Brooks, 2007; Wu et al., 2018).  

Despite the increased rate of fatal events at different road types and road designs, the rates are 

disproportionately distributed across the U.S. This study and earlier studies (Byrne et al., 2019; 

National Center for Statistics and Analysis, 2019a; National Highway Traffic Safety 

Administration, 2016b) have reported worse crash rates and increased rate of fatal crash injuries 

in rural counties as compared to urban counties. However, identifying counties in need of 

focused crash interventions, especially during the rush hour, may hold the solution to achieving 

zero fatality rates. We demonstrated that counties located in states identified in this study serve 

as clusters and hotspots for fatal crash events during the rush hour after adjusting for 

environmental and county characteristics. Earlier studies have reported increased crash fatality 

rates in similar states (Ecola et al., 2018; National Highway Traffic Safety Administration, 

2018).  Prioritizing intervention by states is not a novel approach to reducing fatal crash injury. 
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There have been reports urging state-specific interventions towards specific risk factors 

associated with fatal crash events (Ecola et al., 2015; Ecola et al., 2018). Since each state within 

the U.S. is responsible for enacting policies and implementing crash prevention programs (Ecola 

et al., 2015), the need for tools that will guide decisions and policymakers on prioritization is 

needed. The Motor Vehicle Prioritizing Interventions and Cost Calculator for States (Center for 

Disease Control and Prevention, 2020b) represent one of those decision tools, which focuses 

primarily on risky driving behavioral intervention. This study demonstrates the need for a 

complementary tool that will help each state improve the road environmental network.  

This study compared estimates from the nested spatial negative binomial model and the non-

spatial model. The spatial model performed better, evidenced by the model diagnostic 

information. Further, this study highlights the benefits of perfunctorily assessing spatial 

autocorrelation as the use of spatial estimators influences the results of the study. An argument 

may be made on how much improvement the spatial model provides. The small value of the 

global Moran’s I may be a reflection of long-range dependencies and the decay with increasing 

distance (Epperson, 2005). We demonstrate that the spatial model improved the model and 

produced marginally better estimates with narrower confidence intervals. For example, the 

nested spatial model showed that there was no significant relationship between snow and fatal 

crash injury while the non-spatial model would have been falsely interpreted as snow being 

associated with reduced odds of fatal crash injury during the rush hour period.  

Predicting crash injury rate ratios from environmental characteristics requires establishing a 

hierarchical modeling approach (Alarifi, Abdel-Aty, & Lee, 2018; D. Saha, Alluri, Gan, & Wu, 

2018) or nested (Abdel-Aty & Abdelwahab, 2004; Patil, Geedipally, & Lord, 2012). For this 

study, a nested model was intuitive as road designs are contained within each road type. Earlier 
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studies have adopted other spatial modeling methodologies such as geographically weighted 

Poisson regression models (Bao, Liu, & Ukkusuri, 2019; Goldstick, Carter, Almani, Brines, & 

Shope, 2019; Hezaveh, Arvin, & Cherry, 2019), ordered probit model (Castro, Paleti, & Bhat, 

2013), spatial autoregressive model (Dezman et al., 2016), multiple additive Poisson regression 

models (Ding, Chen, & Jiao, 2018), and multivariate Poisson lognormal spatial model (Jonathan 

et al., 2016). These models were influenced mainly by how crash injury was defined and the 

choice of predictor variables. This study, which used a nested model, adds to the crash injury 

literature an additional prediction model. We demonstrate its parsimonious use in assessing 

environmental characteristics, using the lens of social determinants of health.  

This study has its limitations. Because of its ecological nature, causal inferences cannot be 

established. FARS dataset relies on crash reporting across all states. Therefore, data entry and 

processing errors cannot be eliminated. The rush-hour period varies widely across states and 

counties. Therefore, our definition of the rush-hour period may overestimate the rush-hour period 

in some counties and underestimate others. Due to the non-static traffic pattern across counties, 

there is a possibility of misclassification bias.  However, such misclassification is likely to be 

non-differential. Despite these limitations, this study is one of the few studies that identify 

regions requiring crash injury-related interventions. The national, rural, and urban estimates of 

the average median fatal crash injury rates fill the gap in the crash injury prevention literature; 

there is no recent study that quantified rush hour-specific crash prevalence and fatality risks.   

Additionally, this study provides information that can inform policy and resource allocation in 

the presence of other competing public health issues.  
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Conclusion 

As the U.S. journeys toward achieving a zero-fatal crash injury rate, identifying the built and 

natural environmental elements associated with fatal crash injuries can inform policy and 

practice. Also, understanding the rural and urban differences in fatal crash injury patterns during 

the rush hour period and counties and clusters where significant injuries occur will help identify 

areas needing focused intervention. This study identifies road environmental characteristics 

associated with fatal crash injury during the rush hour period and demonstrates, through spatial 

modeling tools, areas that may need focused intervention. While this study provides information 

on the rush hour-related crashed, an understudied domain in crash injury prevention, it provides a 

useful tool that can guide policy, public health practice, and resource allocation at the national, 

state, and county levels.  

 

  



40 
 

References 

Abdel-Aty, M., & Abdelwahab, H. (2004). Modeling rear-end collisions including the role of 

driver's visibility and light truck vehicles using a nested logit structure. Accid Anal Prev, 

36(3), 447-456. doi:10.1016/s0001-4575(03)00040-x 

Alarifi, S. A., Abdel-Aty, M., & Lee, J. (2018). A Bayesian multivariate hierarchical spatial joint 

model for predicting crash counts by crash type at intersections and segments along 

corridors. Accid Anal Prev, 119, 263-273. doi:10.1016/j.aap.2018.07.026 

American Road & Transportation Builders Association. (2018). National Estimates of Total and 

Injury Work Zone Crashes. Retrieved from https://www.workzonesafety.org/crash-

information/work-zone-injuries-injury-property-damage-crashes/ 

Andrey, J., & Yagar, S. (1993). A temporal analysis of rain-related crash risk. Accident Analysis 

& Prevention, 25(4), 465-472. doi:https://doi.org/10.1016/0001-4575(93)90076-9 

Anselin, L. (1988). A test for spatial autocorrelation in seemingly unrelated regressions. 

Economics Letters, 28(4), 335-341. doi:https://doi.org/10.1016/0165-1765(88)90009-2 

Anselin, L. (1995). Local Indicators of Spatial Association—LISA. Geographical Analysis, 

27(2), 93-115. doi:doi:10.1111/j.1538-4632.1995.tb00338.x 

Anthikkat, A. P., Page, A., & Barker, R. (2013). Risk Factors Associated with Injury and 

Mortality from Paediatric Low Speed Vehicle Incidents: A Systematic Review. 

International Journal of Pediatrics, 1-17. doi:10.1155/2013/841360 

Bao, J., Liu, P., & Ukkusuri, S. V. (2019). A spatiotemporal deep learning approach for citywide 

short-term crash risk prediction with multi-source data. Accid Anal Prev, 122, 239-254. 

doi:10.1016/j.aap.2018.10.015 



41 
 

Bivand, R., Altman, M., Anselin, L., Assunção, R., Berke, O., Bernat, A., . . . Yu, D. (2019). 

Spatial Dependence: Weighting Schemes, Statistics (Version 1.1-3): CRAN. Retrieved 

from https://cran.r-project.org/web/packages/spdep/spdep.pdf 

Black, A. W., Villarini, G., & Mote, T. L. (2017). Effects of Rainfall on Vehicle Crashes in Six 

U.S. States. Weather, Climate, and Society, 9(1), 53-70. doi:10.1175/wcas-d-16-0035.1 

Byrne, J. P., Mann, N. C., Dai, M., Mason, S. A., Karanicolas, P., Rizoli, S., & Nathens, A. B. 

(2019). Association Between Emergency Medical Service Response Time and Motor 

Vehicle Crash Mortality in the United States. JAMA Surgery, 154(4), 286-293. 

doi:10.1001/jamasurg.2018.5097 

Call, D. A., Medina, R. M., & Black, A. W. (2019). Causes of Weather-Related Crashes in Salt 

Lake County, Utah. Professional Geographer, 71(2), 253-264. 

doi:10.1080/00330124.2018.1501713 

Call, D. A., Wilson, C. S., & Shourd, K. N. (2018). Hazardous weather conditions and multiple‐

vehicle chain‐reaction crashes in the United States. Meteorological Applications, 25(3), 

466-471. doi:10.1002/met.1714 

Carson, J., & Mannering, F. (2001). The effect of ice warning signs on ice-accident frequencies 

and severities. Accid Anal Prev, 33(1), 99-109. Retrieved from https://ac.els-

cdn.com/S0001457500000208/1-s2.0-S0001457500000208-main.pdf?_tid=153b101d-

569d-473c-9018-

0affaa6f830e&acdnat=1544136560_f55bc2a41fc86d03f57c3aff06b96fc0 

Castro, M., Paleti, R., & Bhat, C. R. (2013). A spatial generalized ordered response model to 

examine highway crash injury severity. Accid Anal Prev, 52, 188-203. 

doi:10.1016/j.aap.2012.12.009 



42 
 

Center for Disease Control and Prevention. (2020a). Cost Data and Prevention Policies. 

Transportation Safety. Retrieved from 

https://www.cdc.gov/transportationsafety/costs/index.html?CDC_AA_refVal=https%3A

%2F%2Fwww.cdc.gov%2Fmotorvehiclesafety%2Fcosts%2Findex.html 

Center for Disease Control and Prevention. (2020b). Motor Vehicle Prioritizing Interventions 

and Cost Calculator for States (MV PICCS). Transportation Safety. Retrieved from 

https://www.cdc.gov/transportationsafety/calculator/index.html 

Center for Disease Control and Prevention. (2020c). Rural Communities. Coronavirus Disease 

2019 (COVID-19).  

Center for Medicare and Medicaid Services. (2019). Public Use File. Medicare Geographic 

Variation, 2020(02/26/2020). Retrieved from https://www.cms.gov/Research-Statistics-

Data-and-Systems/Statistics-Trends-and-Reports/Medicare-Geographic-

Variation/GV_PUF 

Chen, E., & Tarko, A. P. (2012). Analysis of Crash Frequency in Work Zones with Focus on 

Police Enforcement. Transportation Research Record, 2280(1), 127-134. 

doi:10.3141/2280-14 

Congressional Research Service. (2018). Rural Highways. Retrieved from 

https://crsreports.congress.gov/product/pdf/R/R45250 

Dezman, Z., de Andrade, L., Vissoci, J. R., El-Gabri, D., Johnson, A., Hirshon, J. M., & Staton, 

C. A. (2016). Hotspots and causes of motor vehicle crashes in Baltimore, Maryland: A 

geospatial analysis of five years of police crash and census data. Injury, 47(11), 2450-

2458. doi:10.1016/j.injury.2016.09.002 



43 
 

Di Milia, L., Rogers, N. L., & Åkerstedt, T. (2012). Sleepiness, long distance commuting and 

night work as predictors of driving performance. PLoS ONE, 7(9), e45856. 

doi:10.1371/journal.pone.0045856 

Ding, C., Chen, P., & Jiao, J. (2018). Non-linear effects of the built environment on automobile-

involved pedestrian crash frequency: A machine learning approach. Accid Anal Prev, 

112, 116-126. doi:10.1016/j.aap.2017.12.026 

Ecola, L., Batorsky, B. S., Ringel, J. S., Zmud, J., Connor, K., Powell, D., . . . Jones, G. S. 

(2015). Should Traffic Crash Interventions Be Selected Nationally or State by State? 

Rand health quarterly. Retrieved from 

https://www.rand.org/pubs/research_briefs/RB9860.html 

Ecola, L., Ringel, J. S., Connor, K., Powell, D., Jackson, C. P., Ng, P., & Miller, C. (2018). Costs 

and Effectiveness of Interventions to Reduce Motor Vehicle-Related Injuries and Deaths: 

Supplement to Tool Documentation. Rand health quarterly, 8(2), 9-9. Retrieved from 

https://pubmed.ncbi.nlm.nih.gov/30323992 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6183771/ 

Economic Research Services. (2019). Rural-Urban Commuting Area Codes. (04/11/2020). 

Retrieved from https://www.ers.usda.gov/data-products/rural-urban-commuting-area-

codes/ 

El-Basyouny, K., Barua, S., & Islam, M. T. (2014). Investigation of time and weather effects on 

crash types using full Bayesian multivariate Poisson lognormal models. Accident 

Analysis & Prevention, 73, 91-99. doi:https://doi.org/10.1016/j.aap.2014.08.014 



44 
 

Environmental Systems Research Institute. (2020). ArcGIS Desktop: Release (Version 10.8). 

Redlands, CA: Environmental Systems Research Institute. Retrieved from 

https://www.esri.com/en-us/arcgis/about-arcgis/overview 

Epperson, B. K. (2005). Estimating dispersal from short distance spatial autocorrelation. 

Heredity, 95(1), 7-15. doi:10.1038/sj.hdy.6800680 

Federal Highway Administration. (2000a). Our Nation's Highways. (HPPI-40/10-01(20M). 

Retrieved from https://www.fhwa.dot.gov/ohim/onh00/our_ntns_hwys.pdf 

Federal Highway Administration. (2000b). Speeding in Rural Areas. Safety. Retrieved from 

https://safety.fhwa.dot.gov/speedmgt/data_facts/docs/speeding_rural.pdf 

Federal Highway Administration. (2017). Traffic Congestion and Reliability: Trends and 

Advanced Strategies for Congestion MItigation. Retrieved from 

https://ops.fhwa.dot.gov/congestion_report/chapter3.htm 

Federal Highway Administration. (2018). Fatality Rate Per 100 Million Annual VMT - 2018. 

Policy and Governmental Affairs. Retrieved from 

https://www.fhwa.dot.gov/policyinformation/statistics/2018/pdf/fi30.pdf 

Federal Highway Administration. (2019). FHWA Work Zone Facts and Statistics. Retrieved 

from 

https://ops.fhwa.dot.gov/wz/resources/facts_stats.htm#:~:text=In%20the%20US%2C%20

one%20work,worth%20of%20roadway%20construction%20expenditures.&text=Work%

20Zone%20Fatalities.,zones%20decreased%20by%201.5%20percent. 

Federal Highway Administration. (2020a). How Do Weather Events Impact Roads? Road 

Weather Management Program. Retrieved from 

https://ops.fhwa.dot.gov/weather/q1_roadimpact.htm 



45 
 

Federal Highway Administration. (2020b). Intersection Safety. Retrieved from 

https://highways.dot.gov/research/research-programs/safety/intersection-safety 

Fridstrøm, L., Ifver, J., Ingebrigtsen, S., Kulmala, R., & Thomsen, L. K. (1995). Measuring the 

contribution of randomness, exposure, weather, and daylight to the variation in road 

accident counts. Accident Analysis & Prevention, 27(1), 1-20. 

doi:https://doi.org/10.1016/0001-4575(94)E0023-E 

Garcia, M., Rossen, L. M., Bastian, B., Faul, M., Dowling, N., Thomas, C. C., . . . Lademarco, 

M. F. (2019). Potentially Excess Deaths from the Five Leading Causes of Death in 

Metropolitan and Nonmetropolitan Counties — United States, 2010–2017. Morbidity and 

Mortality Weekly Report, 68(10). doi:http://dx.doi.org/10.15585/mmwr.ss6810a1 

Getis, A., & Ord, J. K. (2010). The analysis of spatial association by use of distance statistics. In 

Perspectives on spatial data analysis (pp. 127-145): Springer. 

Goldstick, J. E., Carter, P. M., Almani, F., Brines, S. J., & Shope, J. T. (2019). Spatial variation 

in teens' crash rate reduction following the implementation of a graduated driver 

licensing program in Michigan. Accid Anal Prev, 125, 20-28. 

doi:10.1016/j.aap.2019.01.023 

González, G., Wilson-Frederick Wilson, S. M., & Thorpe, R. J., Jr. (2015). Examining Place As 

a Social Determinant of Health: Association Between Diabetes and US Geographic 

Region Among Non-Hispanic Whites and a Diverse Group of Hispanic/Latino Men. 

Family & Community Health, 38(4). Retrieved from 

https://journals.lww.com/familyandcommunityhealth/Fulltext/2015/10000/Examining_Pl

ace_As_a_Social_Determinant_of_Health_.5.aspx 



46 
 

Hamilton, B., Tefft, B., Arnold, L., & Grabowski, J. (2014). Hidden highways: Fog and traffic 

crashes on America’s roads. Transportation Research Board Database. Retrieved from 

https://aaafoundation.org/wp-content/uploads/2017/12/FogAndCrashesReport.pdf 

Healthy People. (2020). Social determinants of health. Retrieved from 

https://www.healthypeople.gov/2020/topics-objectives/topic/social-determinants-of-

health 

Hezaveh, A. M., Arvin, R., & Cherry, C. R. (2019). A geographically weighted regression to 

estimate the comprehensive cost of traffic crashes at a zonal level. Accid Anal Prev, 131, 

15-24. doi:10.1016/j.aap.2019.05.028 

HG.org. (2020). Fatal Car Accident Statistics. Retrieved from https://www.hg.org/legal-

articles/fatal-car-accident-statistics-29836 

Insurance Institute for Highway Safety. (2019). Fatality Facts 2018: Urban/rural comparison. 

Fatality Statistics. Retrieved from https://www.iihs.org/topics/fatality-

statistics/detail/urban-rural-comparison 

Jaffe, E. (2014). Far Beyond Rush Hour: The Incredible Rise of Off-Peak Public Transportation. 

CITYLAB. Retrieved from https://trid.trb.org/view/1291247 

Jonathan, A. V., Wu, K. F., & Donnell, E. T. (2016). A multivariate spatial crash frequency 

model for identifying sites with promise based on crash types. Accident Analysis 

Prevention, 87, 8-16. doi:10.1016/j.aap.2015.11.006 

Jung, S., Jang, K., Yoon, Y., & Kang, S. (2014). Contributing factors to vehicle to vehicle crash 

frequency and severity under rainfall. J Safety Res, 50, 1-10. 

doi:10.1016/j.jsr.2014.01.001 



47 
 

Kammann, E. E., & Wand, M. P. (2003). Geoadditive models. Journal of the Royal Statistical 

Society: Series C (Applied Statistics), 52(1), 1-18. doi:https://doi.org/10.1111/1467-

9876.00385 

King, N., Pigman, M., Huling, S., & Hanson, B. (2018). EMS Services in Rural America: 

Challenges and Opportunities.  

Kirby, R. S., Delmelle, E., & Eberth, J. M. (2017). Advances in spatial epidemiology and 

geographic information systems. Annals of Epidemiology, 27(1), 1-9. 

doi:https://doi.org/10.1016/j.annepidem.2016.12.001 

Lee, K. L., & Bell, D. R. (2009). A spatial negative binomial regression of individual-level count 

data with regional and person-specific covariates. Retrieved from  

Li, Z., Ci, Y., Chen, C., Zhang, G., Wu, Q., Qian, Z., . . . Ma, D. T. (2019). Investigation of 

driver injury severities in rural single-vehicle crashes under rain conditions using mixed 

logit and latent class models. Accident Analysis & Prevention, 124, 219-229. 

doi:https://doi.org/10.1016/j.aap.2018.12.020 

Liu, B.-S. (2007). Association of intersection approach speed with driver characteristics, vehicle 

type and traffic conditions comparing urban and suburban areas. Accident Analysis & 

Prevention, 39(2), 216-223. doi:https://doi.org/10.1016/j.aap.2006.07.005 

Lord, S., Cloutier, M.-S., Garnier, B., & Christoforou, Z. (2018). Crossing road intersections in 

old age—With or without risks? Perceptions of risk and crossing behaviours among the 

elderly. Transportation Research Part F: Traffic Psychology and Behaviour, 55, 282-

296. doi:https://doi.org/10.1016/j.trf.2018.03.005 



48 
 

Miller, K. E. M., James, H. J., Holmes, G. M., & Van Houtven, C. H. (2020). The effect of rural 

hospital closures on emergency medical service response and transport times. Health Serv 

Res, 55(2), 288-300. doi:10.1111/1475-6773.13254 

Miller, Y. N., Hilpert, A. L., Klein, N. D., Tyler, P. J., & Brooks, J. O. (2007). The effects of fog 

on driving speed. Journal of Vision, 7(9), 248-248. doi:10.1167/7.9.248 %J Journal of 

Vision 

Nadler, E. P., Courcoulas, A. P., Gardner, M. J., & Ford, H. R. (2001). Driveway Injuries in 

Children: Risk Factors, Morbidity, and Mortality. Pediatrics, 108(2), 326-328. 

doi:10.1542/peds.108.2.326 

National Center for Statistics and Analysis. (2017a). 2016 Fatal Motor Vehicle Crashes: 

Overview. TRAFFIC SAFETY FACTS Research Note. Retrieved from 

https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812456 

National Center for Statistics and Analysis. (2017b). Rural/urban comparison of traffic fatalities: 

2017 data. Traffic Safety Facts Report.  

National Center for Statistics and Analysis. (2019a). 2018 Fatal Motor Vehicle Crashes: 

Overview. Traffic Safety Fact: Research Note. Retrieved from 

https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812826 

National Center for Statistics and Analysis. (2019b). Rural/Urban Comparison of Traffic 

Fatalities. Traffic Safety Fact: 2017 Data. Retrieved from 

https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812741 

National Highway Traffic Safety Administration. (2010). Crash Factors in Intersection-Related 

Crashes: An On-Scene Perspective. Retrieved from 

https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/811366 



49 
 

National Highway Traffic Safety Administration. (2016a). Analytical User’s Manual 1975-2015. 

Retrieved from https://www.nber.org/fars/ftp.nhtsa.dot.gov/fars/FARS-

DOC/Analytical%20User%20Guide/USERGUIDE-2015.pdf 

National Highway Traffic Safety Administration. (2016b). Traffic Safety Facts 2016. Retrieved 

from https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812554 

National Highway Traffic Safety Administration. (2017). 2017 Fatal Motor Vehicle Crashes: 

Overview. Retrieved from 

https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812603 

National Highway Traffic Safety Administration. (2018). Fatalities and Fatality Rates by 

STATE, 1994 - 2018 - State : USA. Retrieved from https://www-

fars.nhtsa.dot.gov/States/StatesFatalitiesFatalityRates.aspx 

Norros, I., Kuusela, P., Innamaa, S., Pilli-Sihvola, E., & Rajamaki, R. (2016). The Palm 

distribution of traffic conditions and its application to accident risk assessment. Analytic 

Methods in Accident Research, 12, 48-65. doi:10.1016/j.amar.2016.10.002 

Ord, J. K., & Getis, A. (1995). Local spatial autocorrelation statistics: distributional issues and an 

application. Geographical Analysis, 27(4), 286-306. Retrieved from 

https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1538-4632.1995.tb00912.x 

Ozturk, O., Ozbay, K., & Yang, H. (2014). Estimating the Impact of Work Zones on Highway 

Safety. 

Paleti, R., Eluru, N., & Bhat, C. R. (2010). Examining the influence of aggressive driving 

behavior on driver injury severity in traffic crashes. Accident Analysis & Prevention, 

42(6), 1839-1854. doi:10.1016/j.aap.2010.05.005 



50 
 

Patil, S., Geedipally, S. R., & Lord, D. (2012). Analysis of crash severities using nested logit 

model--accounting for the underreporting of crashes. Accid Anal Prev, 45, 646-653. 

doi:10.1016/j.aap.2011.09.034 

Pink, G. H., Osgood, A., & Sana, P. (2020). A Comparison of Rural and Urban Specialty 

Hospitals. NC Rural Health Research Program. Retrieved from 

file:///G:/My%20Drive/spatial%20optimization/project/A-Comparison-of-Rural-and-

Urban-Specialty-Hospitals.pdf 

Qiu, L., & Nixon, W. A. (2008). Effects of Adverse Weather on Traffic Crashes: Systematic 

Review and Meta-Analysis. Transportation Research Record, 2055(1), 139-146. 

doi:10.3141/2055-16 

R Core Team. (2019). R: A language and environment for statistical  computing. Vienna, 

Austria: R Foundation for Statistical Computing. Retrieved from http://www.R-

project.org/ 

Ripley, B., Venables, B., Bates, D. M., Hornik, K., Gebhardt, A., & Firth, D. (2019). Support 

Functions and Datasets for Venables and Ripley's MASS (Version 7.3-51.5): CRAN. 

Retrieved from https://cran.r-project.org/web/packages/MASS/MASS.pdf 

Rolison, J. J., & Moutari, S. (2018). Risk-Exposure Density and Mileage Bias in Crash Risk for 

Older Drivers. American Journal of Epidemiology, 187(1), 53-59. 

doi:10.1093/aje/kwx220 

Rousset, F., Ferdy, J.-B., Courtiol, A., & GSL authors. (2020). spaMM: Mixed-Effect Models, 

Particularly Spatial Models (Version 3.5.0). Retrieved from https://CRAN.R-

project.org/package=spaMM 



51 
 

RStudio Team. (2019). RStudio: Integrated Development for R. Boston, MA: RStudio, Inc. 

Retrieved from http://www.rstudio.com/ 

Saha, D., Alluri, P., Gan, A., & Wu, W. (2018). Spatial analysis of macro-level bicycle crashes 

using the class of conditional autoregressive models. Accid Anal Prev, 118, 166-177. 

doi:10.1016/j.aap.2018.02.014 

Saha, S., Schramm, P., Nolan, A., & Hess, J. (2016). Adverse weather conditions and fatal motor 

vehicle crashes in the United States, 1994-2012. Environmental Health: A Global Access 

Science Source, 15(1), 104. doi:10.1186/s12940-016-0189-x 

Sainani, K. (2010). The importance of accounting for correlated observations. PM&R, 2(9), 858-

861. Retrieved from https://web.stanford.edu/~kcobb/hrp259/correlateddata.pdf 

Shepherd, M., Austin, P., & Chambers, J. (2010). Driveway runover, the influence of the built 

environment: a case control study. J Paediatr Child Health, 46(12), 760-767. 

doi:10.1111/j.1440-1754.2010.01835.x 

Smith, A. S., & Trevelyan, E. (2019). The Older Population in Rural America: 2012–2016. 

(American Community Survey Reports). Retrieved from 

https://www.census.gov/content/dam/Census/library/publications/2019/acs/acs-41.pdf 

StataCorp. (2020). Stata Statistical Software: Release 16. College Station, TX: StataCorp LLC.  

Sui, D. Z. (2004). Tobler's first law of geography: A big idea for a small world? Annals of the 

Association of American Geographers, 94(2), 269-277.  

Theofilatos, A., & Yannis, G. (2014). A review of the effect of traffic and weather characteristics 

on road safety. Accid Anal Prev, 72, 244-256. doi:10.1016/j.aap.2014.06.017 



52 
 

Theofilatos, A., Ziakopoulos, A., Papadimitriou, E., Yannis, G., & Diamandouros, K. (2017). 

Meta-analysis of the effect of road work zones on crash occurrence. Accident Analysis & 

Prevention, 108, 1-8. doi:https://doi.org/10.1016/j.aap.2017.07.024 

Tippett, R. (2014). 1 in 4 car accidents occur during rush hour. Retrieved from 

https://www.ncdemography.org/2014/03/24/1-in-4-car-accidents-occur-during-rush-hour/ 

TRIP. (2020). Rural Connections: Challenges And Opportunities In America’s Heartland. 

Retrieved from https://tripnet.org/wp-

content/uploads/2020/04/TRIP_Rural_Roads_Report_2020.pdf 

U.S. Bureau of Labor Statistics. (2019). Local Area Unemployment Statistics. Retrieved from 

https://www.bls.gov/lau/ 

United States Census Bureau. (2019a). 2010 Census Urban and Rural Classification and Urban 

Area Criteria. Retrieved from https://www.census.gov/programs-

surveys/geography/guidance/geo-areas/urban-rural/2010-urban-rural.html 

United States Census Bureau. (2019b). American Community Survey Data. Retrieved from 

https://www.census.gov/programs-surveys/acs/data.html 

United States Department of Agriculture. (2019). Rural America At A Glance. Retrieved from 

https://www.ers.usda.gov/webdocs/publications/95341/eib-212.pdf?v=844.8 

Varghese, C., & Shankar, U. (2007). Passenger Vehicle Occupant Fatalities by Day and Night – 

A Contrast. Traffic Safety Facts: Research Note. Retrieved from 

https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/810637 

Waller, L. A., & Gotway, C. A. (2004). Spatial Clustering of Health Events:Regional Count 

Data. In Applied spatial statistics for public health data (pp. 236-239). Hoboken, N.J: 

John Wiley & Sons. 



53 
 

Wu, Y., Abdel-Aty, M., & Lee, J. (2018). Crash risk analysis during fog conditions using real-

time traffic data. Accident Analysis & Prevention, 114, 4-11. 

doi:https://doi.org/10.1016/j.aap.2017.05.004 

Xu, M., & Xu, Y. (2020). Fraccidents: The impact of fracking on road traffic deaths. Journal of 

Environmental Economics & Management, 101, N.PAG-N.PAG. 

doi:10.1016/j.jeem.2020.102303 

Zhao, G., Okoro, C. A., Hsia, J., Garvin, W. S., & Town, M. (2019). Prevalence of Disability and 

Disability Types by Urban-Rural County Classification-U.S., 2016. American journal of 

preventive medicine, 57(6), 749-756. doi:10.1016/j.amepre.2019.07.022 

Zhou, X., & Lin, H. (2008). Spatial Weights Matrix. In S. Shekhar & H. Xiong (Eds.), 

Encyclopedia of GIS (pp. 1113-1113). Boston, MA: Springer US. 

 



54 
 

Tables and Figures: Manuscript 1 

  



55 
 

Table 1- 1: Case-specific fatality rates from road environmental characteristics during the rush 

hour period between 2010-2017 

Categorical Variable  Median Fatal Rate (IQR)  

(/100,000 population) 

p-value* 

Road Type   

Interstate-specific death 7.4 (9.9) <0.001 

Highway-specific death 9.4 (10.8) <0.001 

Roads and Streets- specific deaths 8.4 (9.7) <0.001 

Road Design   

Intersection- specific deaths 7.8 (9.1) <0.001 

    Driveway-specific deaths 7.1 (7.8) 0.187 

    Ramp-specific deaths 4.6 (3.4) <0.001 

    Work Zone-specific deaths 6.7 (8.2) 0.288 

Inclement *   

 Rain-specific deaths 7.8 (8.9) <0.001 

        Fog-specific deaths 9.3 (10.5) <0.001 

Snow-specific deaths 7.5 (9.0) 0.042 

*Mann-Whitney U test; Association measured between the variable and its dummy variable e.g. 

interstate-related fatality rates vs non-interstate-related fatality rates 
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Table 1- 3: Negative binomial regression (non-nested) models assessing the unadjusted 

relationship between rush hour-related fatal road accidents and road environmental and county-

level characteristics stratified by rural-urban status 

Variables Univariate Models VIF* 

 All counties Urban Counties Rural Counties   

Road Design     

    Intersections 0.94 (0.88 – 0.99) 0.96 (0.89 – 1.04) 1.44 (1.30 – 1.60) 1.57 

    Driveways 0.86 (0.80 – 0.94) 0.93 (0.85 – 1.01) 1.35 (1.13 – 1.62) 1.23 

    Ramps 0.56 (0.50 – 0.63) 0.67 (0.60 – 0.75) 1.21 (0.40 – 3.85) 1.31 

    Work Zones 0.94 (0.84 – 1.06) 0.97 (0.86 – 1.10) 1.69 (1.28 – 2.24) 1.10 

Road Type     

Interstate 0.96 (0.89 – 1.03) 0.95 (0.88 – 1.03) 1.85 (1.61 – 2.13) 1.31 

Highway 2.07 (1.89 – 2.28) 1.86 (1.64 – 2.11) 2.99 (2.65 – 3.38) 1.36 

Roads and Streets 1.09 (1.02 – 1.17) 1.11 (1.02 – 1.22) 1.56 (1.41 – 1.73) 1.33 

Inclement Weather     

Rain 0.95 (0.88 – 1.02) 0.97 (0.89 – 1.05) 1.41 (1.24 – 1.62) 1.29 

Fog 1.23 (1.07 – 1.43) 1.24 (1.07 – 1.46) 1.52 (1.15 – 1.99) 1.03 

Snow 0.89 (0.80 – 0.99) 0.86 (0.78 – 0.96) 1.31 (1.07 – 1.59) 1.08 

Hospital utilization 1.00 (1.00 – 1.00) 1.00 (1.00 – 1.00) 0.99 (0.99 – 1.00) 1.46 

Unemployment rate  1.08 (1.05 – 1.10) 1.10 (1.07 – 1.13) 1.02 (0.99 – 1.05) 1.48 

Household Income  0.99 (0.99 – 0.99) 0.99 (0.99 – 0.99) 0.99 (0.99 – 0.99) 1.61 

% White population 1.00 (1.00 – 1.00) 1.00 (1.00 – 1.00) 0.99 (0.99 – 0.99) 1.53 

% male population  1.07 (1.05 – 1.09) 1.07 (1.04 – 1.09) 1.02 (1.00 – 1.05) 1.27 

Average GDP 1.00 (1.00 – 1.00) 1.00 (1.00 – 1.00) 0.99 (0.99 – 1.00) 1.01 

Vehicle density 0.99 (0.99 – 1.00) 0.99 (0.99 – 1.00) 0.99 (0.99 – 0.99) 1.77 

VIF: Variance Inflation Factor: values <3 is accepted as this suggests no multicollinearity; 

Metropolitan status (VIF=1.48) was added to the final model as the model final model evidenced 

by a reduced AIC 
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Table 1- 4: Negative binomial regression models predicting rush hour-related fatal road accidents 

occurring at road environmental and county-level characteristics. 

Variables Individual Determinants All Determinants: Nested Models 

 Non-spatial Spatial Model Non-spatial a Spatial Model b 

Road Design*     

    Intersection* 1.14 (1.07-1.21) 1.21 (1.13-1.28) 2.71 (2.19-3.34) 2.59 (2.11-3.18) 

    Driveway* 1.00 (0.94-1.08) 1.04 (0.97-1.11) 1.69 (1.16-2.46) 1.70 (1.18-2.43) 

    Ramp-related* 0.76 (0.69-0.85) 0.86 (0.78-0.95) 0.63 (0.14-2.12) 0.82 (0.18-2.58) 

    Work Zone* 1.05 (0.95-1.16) 1.04 (0.94-1.14) 2.09 (1.34-3.20) 1.94 (1.26-2.93) 

Road Type     

Interstate** 1.55 (1.41-1.71) 1.45 (1.32-1.59) 1.76 (1.58-1.96) 1.62 (1.47-1.80) 

Highway** 2.51 (2.29-2.76) 2.48 (2.25-2.72) 2.91 (2.62-3.24) 2.79 (2.51-3.10) 

Roads and 

Streets** 

1.45 (1.33-1.57) 1.48 (1.37-1.60) 1.64 (1.50-1.79) 1.67 (1.53-1.83) 

Weather*     

Rain* 1.09 (1.02-1.16) 1.15 (1.08-1.23) 1.05 (0.99-1.11) 1.08 (1.02-1.14) 

Fog* 1.28 (1.13-1.45) 1.29 (1.15-1.47) 1.21 (1.09-1.35) 1.20 (1.09-1.32) 

Snow* 1.01 (0.92-1.10) 1.15 (1.06-1.25) 0.92 (0.85-0.99) 1.04 (0.97-1.12) 

Mode Diagnostics 

AIC 

Global Moran’s I 

Z-score/p-value 

Local Moran’s I 

   

12534.0 

0.04 

3.29 / 0.011 

 

12344.7 

 

 

p<0.05(675 

counties)  

*Each model adjusted for hospital utilization, unemployment rate, household income, % white 

population, % male population, average GDP, vehicle density, rurality, and metropolitan 

status; **Each model created as with an interaction effect of intersection, driveway, ramp, and 

work zone, adjusted for hospital utilization, unemployment rate, household income, % white 

population, % male population, average GDP, vehicle density, and metropolitan status; a: 

Model equation for unified non-spatial model:  

𝑌 = 𝛽05 +  𝛽1𝐼𝑛𝑡𝑒𝑟𝑠𝑡𝑎𝑡𝑒 +  𝛽2𝐼𝑛𝑡𝑒𝑟𝑠𝑡𝑎𝑡𝑒 ∗ 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 +  𝛽3𝐼𝑛𝑡𝑒𝑟𝑠𝑡𝑎𝑡𝑒 ∗ 𝐷𝑟𝑖𝑣𝑒𝑤𝑎𝑦 +
 𝛽4𝐼𝑛𝑡𝑒𝑟𝑠𝑡𝑎𝑡𝑒 ∗ 𝑅𝑎𝑚𝑝 + 𝛽5𝐼𝑛𝑡𝑒𝑟𝑠𝑡𝑎𝑡𝑒 ∗ 𝑊𝑜𝑟𝑘𝑍𝑜𝑛𝑒 +  𝛽6𝐻𝑖𝑔ℎ𝑤𝑎𝑦 +  𝛽7𝐻𝑖𝑔ℎ𝑤𝑎𝑦 ∗
𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 +  𝛽8𝐻𝑖𝑔ℎ𝑤𝑎𝑦 ∗ 𝐷𝑟𝑖𝑣𝑒𝑤𝑎𝑦 +  𝛽9𝐻𝑖𝑔ℎ𝑤𝑎𝑦 ∗ 𝑅𝑎𝑚𝑝 + 𝛽10𝐻𝑖𝑔ℎ𝑤𝑎𝑦 ∗
𝑊𝑜𝑟𝑘𝑍𝑜𝑛𝑒 +  𝛽11𝑅𝑜𝑎𝑑 +  𝛽12𝑅𝑜𝑎𝑑 ∗ 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 +  𝛽13𝑅𝑜𝑎𝑑 ∗ 𝐷𝑟𝑖𝑣𝑒𝑤𝑎𝑦 +
 𝛽14𝑅𝑜𝑎𝑑 ∗ 𝑅𝑎𝑚𝑝 + 𝛽15𝑅𝑜𝑎𝑑 ∗ 𝑊𝑜𝑟𝑘𝑍𝑜𝑛𝑒 +  𝛽16𝑅𝑎𝑖𝑛 +  𝛽17𝐹𝑜𝑔 +  𝛽18𝑆𝑛𝑜𝑤 +
 𝑂𝑓𝑓𝑠𝑒𝑡 (log(𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒)) +  𝛽𝛾5𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠 b: Model equation for unified 

spatial model: 𝑌 = 𝛽05 +  𝛽1𝐼𝑛𝑡𝑒𝑟𝑠𝑡𝑎𝑡𝑒 +  𝛽2𝐼𝑛𝑡𝑒𝑟𝑠𝑡𝑎𝑡𝑒 ∗ 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 +
 𝛽3𝐼𝑛𝑡𝑒𝑟𝑠𝑡𝑎𝑡𝑒 ∗ 𝐷𝑟𝑖𝑣𝑒𝑤𝑎𝑦 +  𝛽4𝐼𝑛𝑡𝑒𝑟𝑠𝑡𝑎𝑡𝑒 ∗ 𝑅𝑎𝑚𝑝 + 𝛽5𝐼𝑛𝑡𝑒𝑟𝑠𝑡𝑎𝑡𝑒 ∗ 𝑊𝑜𝑟𝑘𝑍𝑜𝑛𝑒 +
 𝛽6𝐻𝑖𝑔ℎ𝑤𝑎𝑦 +  𝛽7𝐻𝑖𝑔ℎ𝑤𝑎𝑦 ∗ 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 +  𝛽8𝐻𝑖𝑔ℎ𝑤𝑎𝑦 ∗ 𝐷𝑟𝑖𝑣𝑒𝑤𝑎𝑦 +  𝛽9𝐻𝑖𝑔ℎ𝑤𝑎𝑦 ∗
𝑅𝑎𝑚𝑝 + 𝛽10𝐻𝑖𝑔ℎ𝑤𝑎𝑦 ∗ 𝑊𝑜𝑟𝑘𝑍𝑜𝑛𝑒 +  𝛽11𝑅𝑜𝑎𝑑 +  𝛽12𝑅𝑜𝑎𝑑 ∗ 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 +
 𝛽13𝑅𝑜𝑎𝑑 ∗ 𝐷𝑟𝑖𝑣𝑒𝑤𝑎𝑦 +  𝛽14𝑅𝑜𝑎𝑑 ∗ 𝑅𝑎𝑚𝑝 + 𝛽15𝑅𝑜𝑎𝑑 ∗ 𝑊𝑜𝑟𝑘𝑍𝑜𝑛𝑒 +  𝛽16𝑅𝑎𝑖𝑛 +
 𝛽17𝐹𝑜𝑔 +  𝛽18𝑆𝑛𝑜𝑤 + 𝑀𝑎𝑡𝑒𝑟𝑛 (1|𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 + 𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒) +
𝑂𝑓𝑓𝑠𝑒𝑡 (log(𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒)) +  𝛽𝛾5𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠  

Figure 1- 1: Data selection and aggregation steps 

Number of individuals involved in fatal 
crash events from 2010 to 2017 

(N= 252,298) 
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Figure 1- 2: Raw (A) and Predicted (B) Median Rush-Hour Fatality Crash Counts per County: 

2010 – 2017 

 

A: Raw fatal crash counts generated from the median fatal crash counts that occurred during 

the rush hour period between 2010 and 2017. B: Predicted crash counts generated from small 

area estimates of the nested spatial negative binomial regression model    

A B 
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Figure 1- 3: Crude (A) and Adjusted (B) Fatality Rate of Rush Hour related Fatal Crash Injury 

per County: 2010 – 2017 

 

A: County-level crude fatality rates per 100,000 population computed as by the median fatal 

counts divided by 2018 county population estimates. B: County-level adjusted fatality rates per 

100,000 population adjusted for road environmental determinants (road design, road type, 

inclement weather) , and county-level hospital utilization, unemployment rate, household 

Income, percent white population, percent male population, average gross domestic product, 

vehicle density, metropolitan status, and rurality  

  

A B 
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Figure 1- 4: Cluster and Outlier analysis (A) and Hotspot Analysis (B) of Rush Hour-Related 

Fatal Crash Injuries per County: 2010 – 2017 

 

A: Cluster and outlier analysis estimated using Anselin Local Moran's I, showing areas of 

significant high-high and low-low clusters of fatal crash injuries across the United States. B: 

Hotspot analysis estimated using Getis ORD* showing regions with significant hotspots of 

fatal crash injuries. 

  

A B 
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Appendix 1: R Codes 

 

library(MASS) 

library("spaMM", lib.loc = "~/R/x86_64-pc-linux-gnu-library/3.6") 

library("sp", lib.loc = "~/R/x86_64-pc-linux-gnu-library/3.6") 

library("spdep", lib.loc = "~/R/x86_64-pc-linux-gnu-library/3.6") 

setwd("/users/oadeyemi") 

wt2 = read.gal("3102counties_wt.gal",override.id = TRUE) 

wt2.listw = nb2listw(wt2, style = "W", zero.policy = TRUE) 

class(wt2.listw) 

summary(wt2.listw, zero.policy = TRUE) 

rta.data14 = read.csv("model11cdata.csv", header = T) 

 

#variables 

Y <- as.matrix(rta.data14$fatalpc) 

Y2 <- as.matrix(rta.data14$fatalcount) 

X1 <- as.factor(rta.data14$interstate) 

X2 <- as.factor(rta.data14$ushighway) 

X3 <- as.factor(rta.data14$statehighway) 

X4 <- as.factor(rta.data14$countyroad) 

X5 <- as.factor(rta.data14$localstreet) 

X6 <- as.matrix(rta.data14$frontcollision) 

X7 <- as.matrix(rta.data14$sidecollision) 

X8 <- as.matrix(rta.data14$rearcollision) 

X9 <- as.factor(rta.data14$intersect) 

X10 <- as.factor(rta.data14$driveway) 

X11 <- as.factor(rta.data14$ramp) 

X12 <- as.factor(rta.data14$rain2) 

X13 <- as.factor(rta.data14$fog2) 
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X14 <- as.factor(rta.data14$snow2) 

X15 <- as.factor(rta.data14$workz) 

X16 <- as.matrix(rta.data14$schb) 

X17 <- as.matrix(rta.data14$popestimate) 

X18 <- as.matrix(as.integer(rta.data14$ed_util)) 

X19 <- as.matrix(as.integer(rta.data14$unemployment_rate)) 

X20 <- as.factor(rta.data14$ruca2gp) 

X20B <- as.factor(rta.data14$metro) 

X21 <- as.matrix(as.integer(rta.data14$median_household_income_2017)) 

X22 <- as.matrix(as.integer(rta.data14$percent_white)) 

X23 <- as.matrix(as.integer(rta.data14$male_percent)) 

X24 <- as.matrix(as.integer(rta.data14$gdp_avrg)) 

X25 <- as.matrix(as.integer(rta.data14$vehpc)) 

X26 <- as.matrix(as.integer(rta.data14$meanvtotal)) 

X27 <- as.factor(as.integer(rta.data14$hway)) 

X28 <- as.factor(as.integer(rta.data14$road)) 

X301 <-as.factor(rta.data14$interinter) 

X302 <-as.factor(rta.data14$interdriveway) 

X303 <-as.factor(rta.data14$interramp) 

X304 <-as.factor(rta.data14$interwzone) 

X305 <-as.factor(rta.data14$hwayintersect) 

X306 <-as.factor(rta.data14$hwaydriveway) 

X307 <-as.factor(rta.data14$hwayramp) 

X308 <-as.factor(rta.data14$hwaywzone) 

X309 <-as.factor(rta.data14$roadintersect) 

X310 <-as.factor(rta.data14$roaddriveway) 

X311 <-as.factor(rta.data14$roadramp) 

X312 <-as.factor(rta.data14$roadwzone) 
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#Analysis 

Mod14h = fitme(fatalcount ~ interstate + interinter + interdriveway + interramp + interwzone  

  + hway + hwayintersect + hwaydriveway + hwayramp + hwaywzone 

  + road + roadintersect + roaddriveway + roadramp + roadwzone 

  + intersect + driveway + ramp + workz + rain2 + fog2 + snow2  

  + ed_util + unemployment_rate + ruca2gp + metro + 

median_household_income_2017 + percent_white + male_percent + gdp_avrg + vehpc + 

Matern(1|longitude + latitude) + offset(log(popestimate)), data=rta.data14, 

              family = negbin(stop(4.23)), method = "ML") 

summary(Mod14h) 

extractAIC(Mod14h) 

 

est_Mod14h <- cbind(Estimate = coef(Mod14h), confint(Mod14h, "snow2")) 

summary (est_Mod14h) 
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CHAPTER 3: MANUSCRIPT 2 

An assessment of the nonfatal crash risks associated with substance use during rush and non-

rush hour periods 
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Abstract 

Background: Understanding how substance use is associated with severe crash injuries may 

inform traffic safety planning and enhance emergency care preparedness. Little is known on 

how the rush hour period influences the relationship between substance use and crash injury 

severity.  

Objectives: This study aims to ascertain the association of substance use and crash injury 

severity at all times of the day and during rush (6-9 AM; 3-7 PM) and non-rush-hours. Further, 

this study assesses the probabilities of occurrence of low acuity, emergent, and critical injuries 

associated with substance use. 

Methods: Crash data were extracted from the 2019 National Emergency Medical Services 

Information System. The outcome variable was non-fatal crash injury, assessed on an ordinal 

scale: critical, emergent, low acuity. The predictor variable was the presence of substance use 

(alcohol or illicit drugs). Age, gender, region of the body injured, and the revised trauma score 

were included as potential confounders. Partially proportional ordinal logistic regression was 

used to assess the unadjusted and adjusted odds of critical and emergent outcomes compared to 

low acuity patients, during rush-hour and all-time periods. 

Results: Substance use was associated with two-fold adjusted odds of critical and emergent 

injuries as compared to low acuity injury. Although the proportion of substance use was higher 

during the non-rush hour period, substance use was associated with increased adjusted odds of 

critical and emergent injuries during rush hours. The interaction effect of rush hour and 

substance use results in an elevated odds of worse injury outcome. The probability of 

encountering low acuity, emergent, and critical injuries was approximately equal during rush 

and non-rush hours.  
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Conclusion: Substance use is associated with critical and emergent injury severity, with the 

odds heightened during the rush hour period.  

Keyword: Rush hour, Non-fatal Crash Injury, Substance Use, Non-proportional ordinal logistic 

regression, Emergency Medical Response, Injury severity  
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Introduction 

The incidence of nonfatal crash injuries remains high in the United States. As of 2017, an 

estimated 2.8 million crashes involving at least one passenger vehicle occurred, resulting in 

approximately 1.7 million injuries (National Center for Statistics and Analysis, 2019b).  Crash 

injury rates had increased from 711 per 100,000 in 2011 to 761 per 100,000 U.S. population in 

2015 (National Highway Traffic Safety Administration, 2016b). Non-fatal crash counts ranged 

from 1.7 million in 2015 to 1.9 million in 2019, except in 2016 when nonfatal crash counts 

exceeded 2 million (National Highway Traffic Safety Administration, 2021). Between 2015 

and 2019, the age-adjusted rates of nonfatal crash injuries reduced from 1,284 to 1,013 per 

100,000 population (National Center for Injury Prevention and Control, 2020). While the 

declining trend is an acknowledgment of the myriads of crash prevention strategies, current 

estimates suggest that about 5,000 to 6,000 persons sustain crash injuries every day (National 

Highway Traffic Safety Administration, 2021).  

The rush-hour period represents the time of the day with the highest traffic density. This period 

commonly occurs between 6 and 10 am and 3 and 8 pm, although the exact duration varies 

widely across states and rural-urban areas (Jaffe, 2014). About 25% of fatal crashes occur 

during the rush hour period (National Highway Traffic Safety Administration, 2019a, 2019b). 

Contrastingly, approximately 37 percent of nonfatal crashes occur during the rush hour period, 

with a greater proportion of these crashes occurring during the evening rush hour period 

(National Highway Traffic Safety Administration, 2019a). Crash injuries that occur during the 

rush hour period are associated with increased injury severity, reduced crash response time, 

and increased odds of mortality (Chen, Zhang, Xing, & Lu, 2020).  
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Alcohol and illicit drugs, collectively referred to as substance use, is a major cause of road 

crash events (Alcañiz, Santolino, & Ramon, 2016; Bondallaz et al., 2016; Clifasefi, Takarangi, 

& Bergman, 2006), and crash-related morbidity and mortality (Allamani et al., 2013; Freeman, 

2007; Kumar, Bansal, Singh, & Medhi, 2015). Drunk driving, defined as a driver's blood-

alcohol level of 0.08 gram per deciliter (Freeman, 2007), is associated with about five times the 

odds of moderate injury (Niederdeppe, Avery, & Miller, 2017; Penmetsa & Pulugurtha, 2017). 

Drug-impaired driving occurs when drugs such as marijuana, opioids, cocaine, 

methamphetamine, and some prescribed and over-the-counter (OTC) medications alter a 

driver's attention (Berning, Compton, & Wochinger, 2015; National Highway Traffic Safety 

Administration, 2016a). Between 2016 and 2019, drunk driving accounted for more than 

10,000 deaths yearly in the United States (Centers for Disease Control Prevention, 2016; 

National Center for Statistics and Analysis, 2019a; Niederdeppe et al., 2017). In 2016, over a 

million drivers were arrested for driving under the influence of alcohol or narcotics (Centers 

for Disease Control Prevention, 2016), and about 13 percent of nighttime weekend drivers have 

marijuana in their system (Centers for Disease Control Prevention, 2016). 

 Despite having a substantial proportion of fatal and nonfatal crash events, the rush hour period 

has received less attention in the literature. It is unknown if the prevalence and the odds of 

nonfatal injury from substance use are comparable during the rush hour and the all-time 

periods. Additionally, little is known about how substance use is associated with adverse 

clinical outcomes during rush hour and the all-time period. An exploration of the temporal and 

geographical distribution of nonfatal crash outcomes may inform policies and targeted 

intervention as the U.S. journeys to zero fatal count (Ecola, Popper, Silberglitt, & Fraade-

Blanar, 2018). This study evaluates the relationship between substance use and crash injury 
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severity patterns during the rush and non-rush-hour periods. It is hypothesized that substance 

use will be associated with worse injury severity during the rush hour than the non-rush-hour 

period. Also, this study aims to assess the predicted probabilities of critical, emergent, and low 

acuity crash injuries during the rush hour and non-rush hour periods. It is hypothesized that 

there will be no difference in the probabilities of occurrence of the crash injury severities 

during the rush and non-rush-hour periods. 

Methods 

Study Design 

This study was a cross-sectional analytical study using the 2019 data from the National 

Emergency Medical Services Information System (NEMSIS). The NEMSIS is a national 

database of all trauma and non-trauma emergency cases, which standardize data obtained from 

all regional EMS agencies (Mann, Kane, Dai, & Jacobson, 2015; National Emergency Medical 

Services Information System, 2019). Cases reported in the NEMSIS are from emergency 911 

calls across 46 out of the 50 states and the District of Columbia (National Emergency Medical 

Services Information System, 2019). As stated in the NEMSIS documentation (NEMSIS, 

2020), data from Idaho, Missouri, Massachusetts, and Ohio were not captured in the NEMSIS 

dataset.  

Inclusion and Exclusion Criteria 

The inclusion criteria were car crashes occurring during the rush and non-rush hour period. A 

total of 34,248,324 persons were involved in all events resulting from the EMS activations in 

2019 (Figure 2-1). A total of 33,063,246 were excluded for not being crash-related activations. 

Car crashes, identified using the ICD-10 codes V40 to V49, were selected (n=795,371). Values 

in the outcome (n=354,012) and the predictor variables (n=74,948) coded as “not reported” 

were excluded. Additionally, cases that died before the EMS arrival at the crash scene 
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(n=1,236) were excluded. Covariates with cases coded as “not reported” less than 1% 

(n=26,829) were excluded listwise. Not reported categories over 1% were coded into a separate 

category as “unknown”. The final analytical sample consists of 338,346 persons involved in 

car crashes across all times of the day, with 140,360 cases (41.5%) occurring during the rush 

hour period. 

Injury Outcomes 

The main outcome variable was the injury severity post-EMS evaluation. Injury severity was 

defined as a three-point categorical variable: critical, emergent, and lower priority. Critical 

patients represent individuals with life-threatening injuries with high mortality risk if 

intervention is not commenced immediately. Emergent cases represent individuals with injuries 

and symptoms that have the potentials of worsening, resulting in morbidity if intervention was 

not commenced quickly. Lower acuity patients are individuals with injuries that have a low 

probability of worsening or developing complications (National Highway Traffic Safety 

Administration, 2005).  

Substance Use 

The primary predictor variable was substance use. Substance use was defined as car crash 

injuries with evidence of alcohol or drugs either from a self-report, reported from the smell of 

the patient's breath, or the presence of alcohol or drug containers or paraphernalia at the crash 

scene. Positive cases of substance use were defined in the NEMSIS in six categories: alcohol 

containers/paraphernalia at the scene, drug paraphernalia at the scene, patients admit to alcohol 

use, the patient admits to drug use, substance use level known from law enforcement or 

hospital records, and smell of alcohol on breath (Emergency Medical Services, 2020). These 

positive indicators were recoded as positive cases of substance use, while cases that were 

classified as none reported were recoded as negative substance use. 
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Confounding 

For this study, age, gender, injured areas, the revised trauma scores were selected as potential 

confounders. Age, originally reported as a continuous variable, was grouped into five 

categories: less than 16 years, 16 to 25 years, 26 to 35 years, 36 to 55 years, 56 to 75 years, and 

greater than 75 years. Gender was grouped as male and female. The body parts injured were 

recoded into six categories: head and neck, abdomen and genitals, chest and back, extremities, 

general body, and unknown.  

The revised trauma score (RTS) of each patient was computed based on the patient's Glasgow 

Coma Scale score, respiratory rate, and systolic blood pressure. RTS represents a clinical 

outcome score calculatable at the crash scene, and a higher score suggests higher odds of 

survival. The RTS is a useful triaging tool, and it is recommended as the first criteria to assess 

prehospital physiological trauma severity (American College of Surgeons Committee on 

Trauma, Rotondo, Cribari, & Smith, 2014). RTS correlated poorly with parts of the body 

injured in this study, and it was added as a variable without concerns for autocorrelation. An 

earlier study has reported a similar poor correlation with injury severity scores (Galvagno et 

al., 2019).  

The calculation of the RTS was based on the computed variables as defined originally by 

Champion and colleagues (Champion et al., 1989). In brief, GCS, SBP, and RR values were 

classified into five categories ranging from 0 to 4.  RTS represents the sum of (0.9368*GCS 

category) + (0.7326 * SBP category) + (0.2908 * RR category). The ranges of the GCS, SBP, 

and RR are tabulated in Appendix 2.  

Stratification 

All cases were stratified as occurring during the rush hour or non-rush hour. Rush hour period 

was defined as crash injuries between 6 am and 9 am and 3 pm and 7 pm (Federal Highway 
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Administration, 2017). Although the rush hour period varies across regions, states, and 

rurality/urbanicity, a meta-analytical study identified these time intervals as the widest range of 

rush hour traffic occurrence in the U.S. (Adeyemi, Arif, & Paul, 2021).  

Analysis 

The frequency distribution of the categorical variables during all-time, rush, and non-rush 

hours periods were summarized. The differences in the crash injury characteristics were 

assessed using the chi-square statistics. The mean and median revised trauma scores of all the 

patients were computed, and the differences in these scores during the rush and non-rush hours 

were measured using the independent sample t-test and the Mann-Whitney U test.  

The unadjusted and adjusted odds ratios and the 95% confidence intervals of emergent and 

critical injury from substance use were estimated using partially proportional ordinal logistic 

regression (Richard Williams, 2016) . The decision to use a partially proportional ordinal 

logistic regression was because the parallel lines assumption, tested for using the Brant test, 

was violated (Brant test was positive) (Richard Williams, 2005). Non-proportional ordinal 

logistic essentially represents multinominal variable characteristics (Fujimoto, 2003). 

However, in the setting of trauma, low priority, emergent, and critical state represent a 

dynamic assessment that is not mutually exclusive. The partially proportional ordinal logistics 

was selected for this study. Specifically, the syntax, gologit2, was used to estimate the odds 

ratio. By default, the gologit2 produces the estimates of critical and emergent cases compared 

to low acuity (base category), and the critical and low categories compared to the emergent 

cases (base category) (Richard Williams, 2005). The predicted probabilities of each of the 

outcome categories were estimated using the “margins” syntax (R Williams, 2019). Data were 
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analyzed using SAS version 9.4 (SAS Institute Inc, 2019) and Stata version 16.0 (StataCorp, 

2020). 

Results 

In this study, a total of 337,750 persons sustained car crash injuries; about 76% were of lower 

acuity, 20% were emergent, and 3.7% were critical (Table 2-1). A larger proportion of the car 

crash victims were females (55.8%) and between the ages of 36 and 55 years (27.3%). Multiple 

body injuries (23.2%) and injuries to the head and neck (18.3%) were the two commonly 

injured body parts, and the median RTS was 7.84. Substance use-related car crashes formed 

about 10.5% of all the cases.  

There were significant differences in the crash characteristics that occur during rush and non-

rush hours. A higher proportion of individuals aged 36 to 55 were involved in car crashes 

during rush hours (28.3%) as compared to non-rush hours (26.6%; p<0.001). Also, more 

females were involved in rush hour-related car crashes (58.1%) compared to the non-rush hour 

period (54.2%). Injuries to the head and neck (Rush Hour (RH):19.2% vs. non-Rush Hour 

(NRH): 17.7%), abdomen and genitals (RH:2.8% vs. NRH: 2.4%), chest and back (RH:16.3% 

vs. 14.2%), and the extremities (RH:16.1 vs. NRH:15.5) were significantly more during the 

rush hour period compared to the non-rush hour period (p<0.001). The mean RTS was 

significantly higher during rush hour crashes than in non-rush hour crashes. A significantly 

lower proportion of substance use-related car crashes occurred during the rush hour period 

(RH:6.2% vs. NRH: 13.5%; p<0.001). Similarly, a significantly lower proportion of emergent 

and critical cases occurred during the rush hour (21.5%) compared to the non-rush hour period 

(25.8%; p<0.001) 
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Compared to crash injury victims less than 16 years old, all age categories were associated 

with significantly elevated odds of critical and emergent injury severity compared to low acuity 

during the all-time period (Table 2-2). Males were associated with 40% (Odds Ratio (OR): 

1.40; 95% CI: 1.37 - 1.42) increased odds of critical and emergent injury severity with 

reference to low acuity when compared to females. When compared to general body injuries, 

injuries to the abdomen and genitals were associated with 14% increased odds of critical and 

emergent injury severity compared to low acuity while injuries to the head and neck (OR: 0.78; 

95% CI: 0.76 - 0.80), chest and back (OR: 0.75; 95% CI: 0.73 - 0.76), and extremities (OR: 

0.65; 95% CI: 0.63 - 0.66) were less likely to be associated with critical and emergent injury 

severity. A unit increase in RTS was associated with 96% reduced odds (0.04; 95% CI: 0.04 - 

0.04) of critical and emergent injury severity as compared to low acuity. Substance use was 

significantly associated with progressively worsening injury severity. In the unadjusted model, 

substance use was associated with 2.73 (95% CI: 2.66 – 2.79) increased odds of critical and 

emergent injury severity. Rush hour was significantly associated with 21% reduced odds of 

critical and emergent injury severity as compared to low acuity injury.  

After adjusting for age, gender, injury region, and RTS, substance use was associated with two 

times the odds (Adj OR: 2.08; 95%CI= 2.02 - 2.14) of critical and emergent injury outcome as 

compared to low acuity across the all-time period (Table 2-3). During the rush hour, substance 

use was associated with 2.2 times the odds (Adj OR: 2.24; 95%CI= 2.12 - 2.37) of critical and 

emergent injury outcomes as compared to low acuity injury severity. During the non-rush hour, 

substance use was associated with 1.9 times the odds (Adj OR: 1.93; 95%CI= 1.87 – 1.99) of 

critical and emergent injury outcomes as compared to low acuity injury severity.  
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The interaction effect of the rush hour period on substance use was associated with 

significantly elevated odds of critical and emergent injury severity as compared to low acuity 

injury (Table 2-4). In the unadjusted model, substance use during the rush hour was associated 

with 25% increased odds of critical and emergent injury severity as compared to low acuity 

injury (OR: 1.25; 95% CI: 1.19-1.32). After adjusting for age, gender, injured part, and revised 

trauma score, the odds remained significantly elevated but attenuated to 17% increased odds 

(Adj. OR: 1.17; 95% CI: 1.10-1.24). 

A dose-response relationship existed between substance-use-related crash injury severity and 

age (Figure 2-2). The probabilities of low acuity crash injury significantly decreased with 

increasing age while the probabilities of emergent crash injuries increased with increasing age 

at all times of the day.  Among crash victims aged less than 16 years, the probability of low 

acuity injury was 61.9% (95% CI: 61.0 – 62.9%) while the probability of low acuity injury 

among those aged 75 years and older was 46.9% (95% CI: 45.8 – 48.2%).  The probability of 

emergent injuries among those less than 16 years was 27.9% (95% CI: 27.0 – 28.9%) while the 

probability of emergent injuries associated with substance use among crash victims 75 years 

and older was 38.3% (95% CI: 37.0 – 39.5%).   During the rush and non-rush hours, there were 

approximately equal probabilities of having a substance-use-associated crash injury classified 

as emergent at 29% (95% CI: 0.28 – 0.30) and critical at 4.0% (95% CI: 0.04 – 0.04) (Table 2-

5). 

 

Discussion 

Substance use was associated with over two-fold adjusted odds of critical and emergent injury 

severities, across all times of the day, and during rush and non-rush hours. Although the odds 



77 
 

of emergent and critical injuries were slightly higher during the rush hour compared to the non-

rush hour, the adjusted probabilities of low acuity, emergent, and critical injuries were close, 

and may not be of practical importance. Perhaps of more importance is the increasing pattern 

of substance use-related injury severity with increasing age. 

In this study, about 40 percent of crash injury patients sustained their injury during the rush-

hour period. This result is comparable with the report from the National Highway Traffic 

Safety Administration (2019a), which reports a 37 percent proportion using the 2018 Crash 

Reporting Sampling System. Additionally, this study reports a nonfatal injury severity pattern, 

divided non-proportionally into low acuity, emergent and critical. Defining injury outcomes 

based on patient's acuity is a commonly used method of assessing morbidity and potential 

mortality (Vranas et al., 2018; Yiadom et al., 2018). About three-quarters of the sample 

population were classified as low acuity, while about a quarter had emergent or critical 

outcomes. Additionally, this study reports that the proportion of critical and emergency cases 

during the rush hour were lesser than the proportion in the non-rush hour period.   

Earlier studies have reported the increased odds of fatal and nonfatal injury from substance use 

(G. Li, Brady, & Chen, 2013; Potoglou, Carlucci, Cirà, & Restaino, 2018). Alcohol, marijuana, 

and opioid are the commonly used substance that impairs driving (National Institute for Drug 

Abuse, 2019). A decrease in blood alcohol levels is associated with a decreased proportion of 

fatal and nonfatal crash injuries (Andreuccetti et al., 2011; Elvik, 2016; Gill, Sutherland, 

McKenney, & Elkbuli, 2020; Oliveira, Yonamine, Andreucceti, Ponce, & Leyton, 2012). 

Similarly, marijuana is associated with two to four-fold increased odds of fatal and nonfatal 

crash injury (Blows et al., 2005; Chihuri & Li, 2020). Similarly, opioid use while driving has 

been associated with two-fold increased odds of crash initiation and fatal crash involvement 
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(Chihuri & Li, 2019; Guohua Li & Chihuri, 2019). Using the 2019 NEMSIS data, this study 

reports two-fold increased odds of crash victims with substance use being classified as 

emergent or critical as compared to low acuity, with the odds slightly higher during the rush 

hour period.  

In this study, the adjusted odds of substance use-related critical and emergent crashes were 

higher in the rush hour period compared to the non-rush-hour period. Additionally, the 

interaction of the rush hour and substance use was associated with an elevated odd of emergent 

and critical injury severity. This finding suggests that substance use, either among drivers or 

among other car occupants is associated with worse health outcomes while the critical and 

emergent outcome is marginally heightened during the rush hour period. Earlier studies have 

reported that driver injury severity that occurs during the rush hour period is associated with 

worse severity (Estochen, Souleyrette, & Strauss, 1998; Hao, Kamga, & Wan, 2016). A 

possible explanation for this pattern may be related to crash response time and its difference 

during the rush and non-rush hours (Estochen et al., 1998). Early crash interventions have been 

associated with reduced mortality (Byrne et al., 2019) and traffic delay, among other structural 

delay factors, may be associated with the critical and emergent outcomes among crash victims 

with substance use. 

This study identified demographic characteristics associated with increased probability of low 

acuity, emergent and critical injuries from substance use. Specifically, there is an increasing 

probability of emergent injuries with increasing age and the probability of low acuity injuries 

reduces with increasing age. These injury severity probabilities did not change across rush and 

non-rush hour periods. The National Institute for Drug Abuse has earlier reported that teens 

and older adults are the population that commonly engage in drugged driving (National 
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Institute for Drug Abuse, 2019). In addition, this study reports that injury severity has a higher 

probability of being more severe among older age groups.  Although substance use occurrence 

occurs more during the non-rush hour period, the probabilities of encountering the injury 

severity patterns are the same during the rush and rush hour period. 

This study has its limitations. It is a retrospective cross-sectional study and causal inferences 

cannot be made. The large proportion of missing variables in sociodemographic characteristics 

such as race, a known indicator of health outcome, might either increase or decrease the 

observed association. Recategorizing the missing variables under race as a separate category 

did not influence the result of this study. Also, misclassification of substance use is likely as 

multiple measures were used to identify crash victims with substance abuse. The gold standard 

of diagnosing substance use remains serological testing (DiMaggio, Wheeler-Martin, & Oliver, 

2018). Additionally, the EMS data does not capture four states in the U.S. (Mann et al., 2015), 

and this study generalized the results to other four non-representative states. Despite these 

limitations, this study represents one of the few studies that focus attention on rush hour-related 

crashes. This study identifies substance use as a significant predictor of critical and emergent 

crash outcomes at all times of the day and during the rush hour period. An additional strength 

of this study is that car crashes were identified using the International Classification of Disease 

(ICD) 10 code. Misclassification bias of cases is unlikely using the ICD-10 code although 

medical coding errors cannot be eliminated. It is unlikely that such errors will 

disproportionately affect the proportion of substance use and crash injury severity reported in 

this study. Also, misclassification of the outcome is unlikely as injury severity is based on a 

complex matrix administered by trained EMS staff. 
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In conclusion, substance use is associated with critical and emergent crash injury outcomes and 

the odds are marginally heightened during the rush hour period, though the difference may not 

be of clinical or practical importance. Future studies may explore specific substances such as 

alcohol, marijuana, and opioid use while driving during the rush hour period associates with 

fatal injuries. 
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Table 2- 1: Descriptive statistics of the sociodemographic, injury, and alcohol/drug 

characteristics at all time and during the rush hour period using the 2019 National Emergency 

Medical Services Information System database 

Variables All-time 

Period 

(N=337,750) 

Non-Rush 

Hour 

(n=197,616) 

Rush Hour 

(n=140,134) 

p-

value* 

 Frequency (%) Frequency (%) Frequency (%)  

Age     

< 16 years 26,171 (7.8) 13,843 (7.0) 12,328 (8.8) <0.001 

16-25 years 79,678 (23.6) 49,087 (24.8) 30,591 (21.8)  

26-35 years 66,322 (19.6) 39,625 (20.1) 26,697 (19.1)  

36-55 years 92,268 (27.3) 52,654 (26.6) 39,614 (28.3)  

56-75 years 59,487 (17.6) 34,204 (17.3) 25,283 (18.0)  

>75 years 13,824 (4.1) 8,203 (4.2) 5,621 (4.0)  

Gender     

Male 149,209 (44.2) 90,466 (45.8) 58,743 (41.9) <0.001 

Female 188,541 (55.8) 107,150 (54.2) 81,391 (58.1)  

Injured Region     

Head and Neck 61,929 (18.3) 35,062 (17.7) 26,867 (19.2) <0.001 

Abdomen and Genitals 8,798 (2.6) 4,785 (2.4) 4,013 (2.8)  

Chest and Back 50,864 (15.1) 28,082 (14.2) 22,782 (16.3)  

Extremities 53,123 (15.7) 30,593 (15.5) 22,530 (16.1)  

General Body 78,394 (23.2) 46,221 (23.4) 32,173 (23.0)  

Unknown 84,642 (25.1) 52,873 (26.8) 31,769 (22.6)  

Revised Trauma Score**     

Mean (SD) 7.79 (0.36) 7.65 (0.62) 7.68 (0.57) <0.001 

Median (IQR) 7.84 (0.00) 7.79 (0.00) 7.80 (0.00) <0.001 

Substance Use     

Yes 35,338 (10.5) 26,638 (13.5) 8,700 (6.2) <0.001 

No 302,412 (89.5) 170,978 (86.5) 131,434 (93.8)  

Injury severity     

Lower acuity 256,693 (76.0) 146,650 (74.2) 110,043 (78.5) <0.001 

Emergent 68,579 (20.3) 43,039 (21.8) 25,540 (18.2)  

Critical 12,478 (3.7) 7,927 (4.0) 4,551 (3.3)  

*Tests of hypothesis conducted between rush hour vs. non-rush hour events. **Mean (standard 

deviation) and median (interquartile range) reported. T-Test and Mann-Whitney U tests 

performed for mean and median values respectively, otherwise chi-square test of hypothesis 

conducted for all other variables.  
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Table 2- 2: Unadjusted odds ratio of emergent and critical health conditions post EMS care 

during all times and at the rush hour period 

Variables Critical & Emergent vs. Low 

Acuity  

 Odds Ratio (95% CI) 

Age  

16-25 years 1.40 (1.35 – 1.45) 

26-35 years 1.45 (1.39 – 1.50) 

36-55 years 1.39 (1.35 – 1.44) 

56-75 years 1.49 (1.43 – 1.54) 

>75 years 1.87 (1.79 – 1.97) 

< 16 years Ref 

Gender  

Male 1.40 (1.37 – 1.42) 

Female Ref 

Injured Region  

Head and Neck 0.78 (0.76 – 0.80) 

Abdomen and Genitals 1.14 (1.09 – 1.19) 

Chest and Back 0.75 (0.73 – 0.76) 

Extremities 0.65 (0.63 – 0.66) 

General Body Ref  

Revised Trauma Score 0.04 (0.04 – 0.04) 

Substance Use  

Yes 2.73 (2.66 – 2.79) 

No Ref 

Rush Hour  

Yes 0.79 (0.77 – 0.80) 

No Ref 
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Table 2- 3: Adjusted odds of emergent and critical health conditions post-EMS care modeled 

by Substance Use intake in the rural/wilderness, suburban and urban areas at all times and 

during the rush hour period 

Variables All-time duration 

Adjusted Odds  

(95% CI) 

Rush Hour  

Adjusted Odds  

(95% CI) 

Non-Rush Hour 

Adjusted Odds  

(95% CI) 

 Critical & Emergent 

vs. Low Acuity  

Critical & Emergent 

vs. Low Acuity  

Critical & Emergent 

vs. Low Acuity  

Substance Use    

Yes 2.08 (2.02 – 2.14) 2.24 (2.12 – 2.37) 1.93 (1.87 – 1.99) 

No Ref Ref Ref 

Models adjusted for age, gender, injured part, and revised trauma score (RTS).  
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Table 2- 4: Unadjusted and adjusted odds of emergent and critical health conditions post-EMS 

care modeled by the interaction effect of Substance Use and Rush Hour period  

Variables Unadjusted Odds (95% CI) Adjusted Odds (95% CI) 

 Critical & Emergent vs. Low 

Acuity  

Critical & Emergent vs. Low 

Acuity  

Substance Use   

Yes 2.50 (2.43 – 2.56) 1.93 (1.87 – 1.99) 

No Ref Ref 

Rush Hour   

Yes 0.83 (0.82 – 0.85) 0.81 (0.80 – 0.83) 

No Ref Ref 

Rush Hour x Substance 

Use  

  

Yes 1.25 (1.19 – 1.32) 1.17 (1.10 – 1.24) 

No Ref Ref 

Model adjusted for age, gender, injured part, and revised trauma score (RTS). 
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Table 2- 5: Predicted probabilities of low acuity, emergent and critical cases secondary to 

substance use during rush and non-rush hours 

Variable Rush Hour Non-Rush Hour 

 Low 

Acuity 

Emergent Critical Low 

Acuity 

Emergent Critical 

Substance 

Use 

      

Yes 0.67  

(0.66-0.68) 

0.29  

(0.28-0.30) 

0.04  

(0.04-0.04) 

0.66  

(0.66-0.67) 

0.30  

(0.29-0.30) 

0.04  

(0.04-0.04) 

No 0.78  

(0.78-0.79) 

0.18  

(0.18-0.18) 

0.04  

(0.04-0.04) 

0.76  

(0.76-0.76) 

0.20  

(0.20-0.21) 

0.04  

(0.04-0.04) 

Models adjusted for age, gender, injured part, and revised trauma score (RTS).  
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Figure 2- 1: Data selection steps 

 

 

Exclude (V01 – V89 except V40-V49) 
Railway crashes (n=18,782) 
Pedestrian crashes (n=63,982) 
Pedal cyclist crashes (n=34,677) 
Motorcyclist crashes (n=62,720) 
3-wheel motor vehicle (n=1,120) 
Pickup truck crashes (n=23,677) 
Heavy truck crashes (n=9,722) 
Bus crashes (n=8,214) 
Special car crashes (n=166,813) 

Total persons attended to 

after EMS activation 

N=34,248,324 

Total persons involved in 

crash events  

n=1,185,078 

Total persons involved in car 

crash events  

n=795,371 

Final dataset 
n=337,750 

All-time Period 

n=337,750 

Rush Hour  

n=140,134 

Crash with reported post 

EMS care outcome 

n=441,359 

Crash with substance use 
n=366,411 

Non-Rush Hour  

n=197,616 

Exclude not applicable and not reported 
from post EMS care patient status 
(outcome variable) (n=354,012) 

Exclude missing less than 1% from all  
other variables (n=27,425) 
Exclude dead before intervention 
(n=1,236) 

Exclude not applicable and not reported 
from alcohol status  
(n=74,948) 

Exclude all except crashes with ICD V01 
– V89: (n=33,063,246) 
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Figure 2- 2: Predicted probabilities of substance used-associated injury outcomes across all age 

groups at all times of the day 

 

Model adjusted for age, gender, injured part, and revised trauma score (RTS) 
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Appendix 2: Revised Trauma Score Computation 

 

RTS value Respiratory Rate Systolic Blood 

Pressure 

Glasgow Coma Scale 

Score 

4 10 – 29 (normal) >89 13 – 15 

3 > 29 (tachypnea) 76 – 89 9 – 12 

2 6 – 9 (bradypnea) 50 – 75 6 – 8 

1 1 – 5 (gasping 

respiration) 

1 – 49 4 – 5  

0 0 (no respiration) 0 3 

RTS = (0.9368*GCS category) + (0.7326 * SBP category) + (0.2908 * RR category) 
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Appendix 3: STATA codes 

version 16.1 

*cd "K:\Dropbox (UNC Charlotte)\PhD 

Students\Adeyemi_Oluwaseun\Dissertation\Paper_2\data" 

clear 

capture log close 

set more off 

log using subst.log, replace 

use substanceusev3 

numlabel,add 

*rename *, lower 

*analysis 

 

*descriptive 

tab outcome,m 

tab alcdrug2,m 

tab agecat,m 

tab gender,m 

tab race,m 

tab injpart,m 

tabstat rts, statistics (mean, sd, p50, range, iqr) 

foreach var of varlist outcome alcdrug2 agecat gender race injpart { 

 tab `var' rushhr, col chi 

} 

tabstat rts, statistics (mean, sd, p50, range, iqr) by(rushhr) 

 

ttest rts2, by(rushhr) 

ranksum rts2, by(rushhr) 

 

foreach var of varlist outcome alcdrug2 agecat gender race injpart { 
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 tab `var' rur1sub2urb0, col chi 

} 

tab outcome rur1sub2urb0 if rushhr==1, chi2 

tab alcdrug2 rur1sub2urb0 if rushhr==1, chi2 

tab agecat rur1sub2urb0 if rushhr==1, chi2 

tab gender rur1sub2urb0 if rushhr==1, chi2 

tab race rur1sub2urb0 if rushhr==1, chi2 

tab injpart rur1sub2urb0 if rushhr==1, chi2 

oneway outcome alcdrug2 if rushhr==1 

 

*test for proportionality 

omodel logit outcome alcdrug2 

brant, detail 

*result is significant 

*proportionality assumption not met. Use partial proportionality 

*non-proportionality is technically not an ordinal variable 

 

*unadjusted 

*all 

local a alcdrug2 agecat gender  injpart rts2 

foreach var of varlist alcdrug2 agecat gender race rur1sub2urb0 injpart rts2 { 

 gologit2 outcome i.`var', or 

 gologit2 outcome i.`var' i.`a', or   //adjusted 

 gologit2 outcome i.`var' if rushhr==1, or 

 gologit2 outcome i.`var' i.`a'  if rushhr==1, or //adjusted 

 gologit2 outcome i.`var' if rushhr==0, or 

 gologit2 outcome i.`var' i.`a' if rushhr==0, or 

gologit2 outcome 1.alcdrug2,or 

gologit2 outcome i.agecat,or 

gologit2 outcome 1.gender,or 
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gologit2 outcome i.race,or 

gologit2 outcome i.rur1sub2urb0,or 

gologit2 outcome i.injpart,or 

gologit2 outcome rts2,or 

 

gologit2 outcome i.alcdrug2 if rushhr==1,or 

gologit2 outcome i.agecat if rushhr==1,or 

gologit2 outcome 1.gender if rushhr==1,or 

gologit2 outcome i.race if rushhr==1,or 

gologit2 outcome i.rur1sub2urb0 if rushhr==1,or 

gologit2 outcome i.injpart if rushhr==1,or 

gologit2 outcome rts2 if rushhr==1,or 

 

*Adjusted 

gologit2 outcome 1.alcdrug2 agecat gender  injpart rts2 ,or 

gologit2 outcome i.alcdrug2 agecat gender  injpart rts2 if rushhr==1,or 

 

*if rur1sub2urb0==0 

gologit2 outcome i.alcdrug2 agecat gender race injpart rts2 if rur1sub2urb0==0,or 

 

gologit2 outcome i.alcdrug2 agecat gender race injpart rts2 if rur1sub2urb0==0 & 

rushhr==1,or 

gologit2 outcome i.alcdrug2 agecat gender race injpart rts2 i.rur1sub2urb0##i.rushhr,or 

margins i.rur1sub2urb0##i.rushhr 

 

*if rur1sub2urb0==2 

gologit2 outcome i.alcdrug2 agecat gender race injpart rts2 if rur1sub2urb0==2,or 

gologit2 outcome i.alcdrug2 agecat gender race injpart rts2 if rur1sub2urb0==2 & 

rushhr==1,or 
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*if rur1sub2urb0==1 

gologit2 outcome i.alcdrug2 agecat gender race injpart rts2 if rur1sub2urb0==1,or 

gologit2 outcome i.alcdrug2 agecat gender race injpart rts2 if rur1sub2urb0==1 & 

rushhr==1,or 

 

gen pyear = 1 

ir adverse alcdrug2 pyear 

ir adverse alcdrug2 pyear if rushhr==1  

 

*age adjusted 

ir adverse alcdrug2 pyear, by(agecat) 

ir adverse alcdrug2 pyear if rushhr==1, by(agecat) 

 

poisson adverse i.alcdrug2##i.rushhr, irr exp(pyear) 

margins i.alcdrug2##i.rushhr, predict(ir)  

 

poisson adverse i.alcdrug2 i.agecat, irr exp(pyear) 

margins i.alcdrug2, predict(ir)  

gologit2 outcome i.alcdrug2##i.rushhr i.agecat, or 

margins rushhr, at(agecat=(1 2 3 4 5)) 

marginsplot, noci  

 

gologit2 outcome i.alcdrug2##i.rushhr i.agecat, or 

margins alcdrug2, at(rushhr=(0 1)) 

marginsplot, noci  

 

gologit2 outcome i.alcdrug2##i.rushhr i.agecat, irr exp(pyear) 

margins alcdrug2##rushhr, at(agecat=(1 2 3 4 5)) 

marginsplot, noci  
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poisson adverse i.alcdrug2, irr exp(pyear) 

margins alcdrug2, predict(ir)  

 

poisson adverse i.alcdrug2 i.agecat, irr exp(pyear) 

 

poisson adverse i.alcdrug2##ib3.agecat, irr exp(pyear) 

margins  i.alcdrug2, at(agecat=(1(1)5)) 

marginsplot, noci 

margins i.alcdrug2, predict(ir) by(agecat) 

margins i.alcdrug2, predict(ir)  

poisson adverse i.alcdrug2 i.agecat, irr exp(pyear) 

margins i.alcdrug2, predict(ir) by(GEOID) 

bysort agecat: poisson adverse i.alcdrug2 i.agecat, irr exp(pyear) 

bysort agecat: poisson adverse i.alcdrug2 i.agecat if rushhr==1, irr exp(pyear) 
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CHAPTER 4: MANUSCRIPT 3 

The association of crash response times and death-at-the-scene during the rush and non-rush 

hour periods. 
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Abstract 

Background: Death-at-the-scenes are crash deaths that occur within minutes after a crash. 

Rapid crash responses serve as a potential intervention to reduce the occurrence of death-at-

the-scene. 

Objectives: This study aims to assess the association of crash response time with the 

occurrence of death-at-the-scene during all times of the day and the rush and non-rush hour 

periods (6–9 am; 3– 7 pm). 

Method: This cross-sectional study used the 2019 National Emergency Medical Services 

(EMS) Information System. The outcome variable was death-at-the-scene. The predictor 

variables were crash response times measured as crash notification (EMS notification to 

departure from the base station) and EMS travel time (base station to crash scene). Age, 

gender, substance use, region of the body injured, the revised trauma score, and 

rurality/urbanicity of each injury location were used as potential confounders. Logistic 

regression was used to assess the unadjusted and adjusted odds of death-at-the-scene. 

Results: A total of 1,203,527 were involved in EMS-activated road crash events, with 50.2% of 

the population exposed to crash events during the rush-hour period. A total of 8,292 persons 

died at the crash scene. After adjusting for confounders, a minute increase in the EMS travel 

time was associated with 0.4% (Adjusted OR: 1.004; 95% CI: 1.003-1.006) and 0.7% 

(Adjusted OR: 1.007; 95% CI: 1.005-1.009) increased odds of death-at-the-scene during all 

times of the day and the rush-hour period, respectively.  

Conclusion: Reducing crash response times may reduce the occurrence of deaths at the crash 

scene. 
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Keyword: Rush hour, Death-at-the-scene, Emergency Medical Response, Multivariate logistic 

regression, Notification time, Travel time 
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Introduction 

Road crashes remain a preventable cause of death in the United States (U.S.). As of 2019, 

36,096 crash fatalities were recorded in the U.S., representing 1.1 fatalities per 100,000 vehicle 

miles traveled (National Center for Statistics and Analysis, 2020). Approximately one person 

dies in a crash every 14 minutes in the United States (U.S.) (National Center for Statistics and 

Analysis, 2019). The rush-hour period represents the period of peak road activities. The period 

varies widely across rural and urban regions, with the peak densities occurring between 6 and 9 

am and 3 and 7 pm (Call, Medina, & Black, 2019; Paleti, Eluru, & Bhat, 2010). About a 

quarter of fatal crash injuries occur during the rush hour period (Jaffe, 2014; National Highway 

Traffic Safety Administration, 2019).  

The U.S. experienced a decline in fatal deaths between 2016 and 2019 (National Center for 

Statistics and Analysis, 2020; National Highway Traffic Safety Administration, 2020). 

However, estimates in 2020 – a year uniquely characterized by stay-at-home orders and driving 

restrictions due to the COVID-19 pandemic (Moreland et al., 2020), indicated higher deaths 

despite reduced travel (National Safety Council, 2021). Death-at-the-scene represents a unique 

subset of salvageable and unsalvageable crash deaths that would have occurred within minutes 

after the crash, probably due to damage to vital structures (Byrne et al., 2015). Although death-

at-the-scene is an infrequently reported crash characteristic, cases of death on arrival at the 

emergency department have been used in previous studies as a proxy in determining cases that 

either died at the crash scene or in transit (Calland et al., 2012; Khursheed et al., 2015; 

Roudsari et al., 2007). 

Central to preventing fatal crash events is a rapid crash response (Byrne et al., 2019). Acute 

blood loss, one of the major clinical presentations of crash injury victims, is a time-dependent 
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diagnosis that requires interventional care within minutes of its occurrence (Stainsby, 

MacLennan, & Hamilton, 2000).  The Emergency Medical Services (EMS) crash response can 

be conceptualized to occur in three non-overlapping temporal phases: the period from crash 

occurrence to EMS notification, from EMS notification to EMS arrival, and from EMS arrival 

to hospital arrival (Emergency Medical Services, 2020; Lee, Abdel-Aty, Cai, & Wang, 2018). 

Delay at any of the three phases may potentially increase the odds of unfavorable health 

outcomes. 

There is compelling evidence that reducing crash response time is associated with improved 

survival (Babiarz, Mahadevan, Divi, & Miller, 2016; Byrne et al., 2019; Gauss et al., 2019), 

although some crash cases may be unsalvageable (Calland et al., 2012). Although 40% of all 

crashes involving at least one death occur during rush hour (National Highway Traffic Safety 

Administration, 2019), this crash characteristic is not commonly studied. To date, no study in 

the public domain has assessed the association between crash response times and death-at-the-

scene. This study aims to estimate the occurrence of cases classified as death-at-the-scene and 

how this occurrence varies during the rush and non-rush hour periods. Additionally, this study 

will assess the association of crash response time with the occurrence of death-at-the-scene.  It 

is hypothesized that prolonged response times during the rush hour and all-time period will be 

associated with increased odds of death-at-the-scene. 

 

Methods 

Study Design 

This population-based study used the 2019 National Emergency Medical Services Information 

System (NEMSIS), a census of all the EMS activations across the continental U.S. excluding 
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Idaho, Missouri, Massachusetts, and Ohio (National Emergency Medical Services Information 

System, 2019). Cases in the NEMSIS represent trauma and non-trauma emergency cases, 

pooled from all regional EMS agencies (Mann, Kane, Dai, & Jacobson, 2015; National 

Emergency Medical Services Information System, 2019).  

Inclusion and Exclusion Criteria 

A total of 35,214,824 persons were involved in all EMS activations. All road crashes were 

selected. Crashes were identified using the International Classification of Disease (ICD) code, 

version 10. Specifically, cases identified as ICD V01 to V89 were selected. These cases 

represented crashes involving pedestrians (V01-V09), pedal cyclists (V10-V19), motorcycle 

(V20-V29), three-wheeled motor (V30-V39), cars (V40-V49), trucks (V50-V59), heavy 

transport vehicle (V60-V69), bus (V70-V79), and other land transport (V80-V89) 

(n=1,222,005). Cases whose crash outcome was classified as “canceled” were excluded 

(n=1,532). Cases with missing crash response times were excluded (n=6,486). The final sample 

included 1,203,527 persons, with 603,860 persons sustaining injuries during the rush hour 

period (Figure 3-1). 

Rush and Non-Rush Hour Period 

Rush hour period was defined as crash injuries occurring between 6 - 9 am and 3 - 7 pm (O. J. 

Adeyemi, Arif, & Paul, 2021). The non-rush hour period represents the intervening period of 

the day and night that is not the rush hour period. Time of the crash was determined using the 

time the emergency call (911) was received. Crash times with missing information during the 

hour the 911 call was initiated were replaced with the hour the EMS team was notified. The 

difference in the period from the 911 call to EMS notification was measured in seconds in the 

NEMSIS. Hence, it was appropriate to use the hour of the day the EMS was notified as a proxy 

for handling missing data for rush hour determination. 
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Outcome Variable: Death at the Crash Scene 

The main outcome variable was death-at-the-scene, defined as cases classified as dead at the 

incident by EMS personnel. The original variable used to measure death-at-the-scene was “e-

disposition.12”. Unlike other variables that measure crash outcomes, eDisposition.12 was a 

mandatory entry for all patients irrespective of the outcome. eDisposition.12 describes the 

incident patient disposition, and it includes cases that were not treated and discharged, treated 

and discharged at the scene, refused care, treated and transported either by the EMS or other 

forms of transport, were assisted by the EMS and non-EMS personnel, and those that died at 

the scene with or without resuscitation. eDisposition.12 was recoded into two categories: 

death-at-the-scene and otherwise. 

Predictor Variables: Crash Response Times 

Two crash response times were defined. The first predictor is the duration from EMS 

notification to the EMS team departure from its base (“EMS Chute Time Mins”). The second 

predictor is the duration from the EMS team's departure from its base (“EMS Scene Response 

Time Min”) to the time the team arrived at the crash scene (eTimes.06). These crash durations 

were pre-computed in the dataset.  

Confounding 

Age, gender, substance use, region of the body injured, revised trauma score, geographical 

location of the crash injury was used as potential confounders. The region of the body injured 

was recoded into five categories: head and neck, abdomen and genitals, chest and back, 

extremities, and multiple body injuries. The geographical location where the crash injury 

occurred was measured in three categories: rural/wilderness, suburban, and urban.  

The revised trauma score was computed using the Glasgow Coma Scale score (GCS), 

Respiratory Rate (RR), and Systolic Blood Pressure (SBP). These three variables were re-
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categorized into five categories ranging from 0 to 4 as defined in the original documentation 

(Champion et al., 1989), and the final RTS was calculated as the sum of (0.9368*GCS 

category) + (0.7326*SBP category) + (0.2908*RR category). Missingness in the RTS was 

addressed by using the EMS final patient disposition as a proxy. The EMS final patient 

disposition, a variable that captures the clinical outcome after EMS intervention, was measured 

as multiple categorical variables: critical, emergent, low priority, and dead. To address the 

missing values in RTS, missing values in the GCS, RR, and SBP categories identified as a low 

priority were given a score of 4 since these patients would have stable vital signs, otherwise 

would not be categorized as low priority. Also, missing values in GCS, RR, and SBP 

categories that were categorized as critical, emergent, or dead were assigned values of 3, 2, and 

1, respectively.  

Analysis 

Frequency distribution of the sociodemographic, crash, and injury characteristics were 

computed during the all-time, rush hour, and non-rush hour periods. Similarly, the mean 

(standard deviation) and the median (interquartile range) of the crash response times and the 

revised trauma scores were summarized. The prevalence of dead-at-the-scene was computed 

during the all-time and rush hour period. Logistic regression analysis was performed to assess 

the relationship between the crash response time and death-at-the-scene. Data were analyzed 

using STATA version 16 (StataCorp, 2020). 

Results 

A total of 1,203,527 persons were involved in all forms of road crashes, with 50.2% of these 

crashes occurring during the rush hour period (Table 3-1). The majority of the population were 

aged 36 – 55 years (27.5%) with an approximately equal male-female distribution. Multiple 

injuries over the general body (23.5%) followed by injury to the extremities (16.3%) and the 
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head and neck (15.9%), were the commonly injured body parts. The median (IQR) RTS was 

7.80 (0.29). Substance use-associated crash injury represented about 7.7% of the cases, and 

most of the cases occurred in the urban areas (83.4%). The median (IQR) crash notification 

time was 0.9 (1.5) minutes, while the median EMS travel time was 5.50 (5.80) minutes. 

Approximately 8,292 individuals (0.7%) died before the arrival of the EMS personnel.  

There were statistically significant differences in the sociodemographic and crash 

characteristics during the rush and non-rush hour periods (Table 3-1). A larger proportion of 

crashes during the rush hour period involved individuals aged 35 to 55 years (Rush Hour 

(RH):28.1% vs. Non-Rush Hour (NRH): 26.9). More females were involved in rush hour-

related (52.3%) crashes than in non-rush hour-related crashes (48.2%; p<0.001). Injuries to the 

head and neck (RH:16.2% vs. NRH:15.7%) were significantly higher during the rush hour 

period as compared to the non-rush hour period (p<0.001). The proportion of cases associated 

with substance use in the rush hour period (4.9%) were less than half the proportion of cases 

occurring in the non-rush hour period (10.5%; p<0.001). Further, the proportion of urban-

related cases was slightly higher during the rush hour period than the non-rush hour period 

(RH: 83.7% vs. NRH:83.0%; p<0.001). The median crash notification time was shorter in the 

rush hour period (RH:0.88 minutes vs. NRH:0.97 minutes; p<0.001) while the median travel 

time was significantly longer during the rush hour period (RH:5.53 minutes vs. NRH:5.48 

minutes; p<0.001). Dead on EMS arrival was higher during the non-rush hour period (0.8%) 

compared to the rush hour period (0.5%; p<0.001). 

Age, gender, injured body region, substance use, geographical location of the injury, and RTS 

were significantly associated with death-at-the scene at all times of the day and the rush and 

non-rush hour periods (Table 3-2).  Across all times of the day and during the rush hour period, 
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the odds of deaths-at-the-scene increased with increasing age. The odds ratios were 

accentuated during the rush hour period, with crash victims older than 75 years having about 5-

fold increased odds of being classified as death-at-the-scene. Males had approximately three-

fold increased odds of being classified as death-at-the-scene compared to females during the 

all-time (OR: 2.74; 95% CI: 2.61-2.87) and rush hour periods (OR: 2.70; 95% CI: 2.50-2.91). 

Compared to multiple body injuries, cases of death-at-the-scene were less likely to be an injury 

to a specific part of the body during the all-time and rush hour periods. Further, substance use 

was associated with 21% and 56% increased odds of death-at-the-scene at all times of the day 

and during the rush hour, respectively. At all times of the day, crash injuries in rural/wilderness 

and suburban areas were 2.5 times (OR: 2.47; 95% CI: 2.33-2.62) and 1.9 times (OR: 1.93; 

95% CI: 1.79-2.09) more likely to be classified as death-at-the-scene. During the rush hour 

period, the odds were further heightened with crash injuries in rural/wilderness and suburban 

areas 3.3 (95% CI: 2.98-3.55) and 2.2 (95% CI: 1.90-2.44) times more likely to be classified as 

death-at-the-scene. A unit increase in RTS was associated with 73% reduced odds of death-at-

the-scene (OR: 0.27; 95% CI: 0.27-0.28) during the all-time period and the rush hour period. 

In the unadjusted model, a minute increase in EMS notification time was associated with 2.5% 

(OR: 1.025; 95% CI: 1.018-1.031) and 3.4% (OR: 1.034; 95% CI: 1.024-1.044) increased odds 

of death at the scene at all times of the day and during the rush hour period, respectively (Table 

3-2). Also, a minute increase in the EMS travel time was associated 0.4% (OR: 1.004; 95% CI: 

1.003-1.005) and 0.6% (OR: 1.006; 95% CI: 1.004-1.007) increased odds of death-at-the-scene 

during all ties of the day and the rush hour period, respectively.  After adjusting for age, 

gender, injured parts, substance use, RTS, and location of each crash, there was no substantial 

difference in the point estimates (Table 3-2). An interaction effect between the crash response 
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time and location of crash (rural/suburban/urban) did not produce significantly elevated 

estimates (results not shown). 

Discussion 

About half of the crash injuries occurred during the rush-hour period. Cases classified as death-

at-the-scene comprised less than 1% of all crashes that occurred at all times of the day and 

during the rush and non-rush-hour period. The median crash notification time was less than a 

minute during the rush and non-rush hours. EMS travel time was slightly longer during the 

rush hour period compared to the non-rush hour period. After adjusting for sociodemographic 

and crash characteristics, a minute prolongation of the EMS travel time was significantly 

associated with increased odds of death-at-the-scene, with the odds higher during the rush hour 

period. 

Earlier studies that used the FARS dataset have reported that crashes involving at least one 

fatal event occurring during the rush hour period comprise approximately 40 percent of crash 

events (National Highway Traffic Safety Administration, 2019). Our study found that more 

than 50% of all persons involved in crash events in 2019 were exposed to crash events during 

the rush hour period. This difference in the estimates may be due to the differences in the 

population captured in the FARS and the NEMSIS datasets. While the FARS datasets report 

crashes in which at least one fatal event occurred during the crash event, the NEMSIS is all-

encompassing of all crash events during which the EMS was activated. Thus, the NEMSIS 

may be a more representative pool of crash events across the U.S. with 50% of all crash 

victims sustaining crash injuries during the rush hour period.   

The 2019 estimates of fatal crash counts ranged between 36,096 and 38,800 (National Center 

for Statistics and Analysis, 2020; National Safety Council, 2020). This study reports that cases 
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classified as death-at-the-scene were a total of 8,292 – approximately 21 to 23 percent of all 

fatal crashes in 2019. Achieving zero fatality by 2050 (Ecola, Popper, Silberglitt, & Fraade-

Blanar, 2018; Federal Highway Administration, 2020) would require interventions focused on 

reducing death-at-the-scene where about a quarter of crashes occur. The Trauma Quality 

Improvement Program coined the terms Dead on Arrival (DOA) and Died in Emergency (DIE) 

(Calland et al., 2012). This categorization was useful in eliminating bias when assessing 

performance of trauma centers (Calland et al., 2012). From an epidemiologic perspective, 

identifying death-at-the-scene cases may create an area of intervention, especially with regards 

to identifying the risk factors and which death types are salvageable and unsalvageable on the 

field.   

This study provides an estimate of crash notification and travel times. From the time a 911 call 

was received to the time the EMS team leaves its base, the average duration was less than a 

minute. Additionally, the average travel time is less than seven minutes. These statistics may 

represent the underlying characteristics aiding the gradual decline in fatal crash counts 

(National Center for Statistics and Analysis, 2020; National Highway Traffic Safety 

Administration, 2020). However, the lack of a sharp decline may equally suggest that there is 

yet to be a successful intervention designed to target outlier regions. Bryne and colleagues 

(2019) reported a dose-response relationship with increasing crash response times and crash 

fatality. Additionally, earlier studies have estimated the disparity in the crash reported longer 

response and transport times in rural communities with hospital closures (Miller, James, 

Holmes, & Van Houtven, 2020). Optimal citing of EMS centers, especially in regions with 

prolonged crash response times, may strengthen the EMS nationally and may reduce deaths-at-

the-scene. 
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This study reports that a minute increase in travel time was associated with increased odds of 

deaths-at-the-scene. From a prevention perspective, a minute reduction in the travel time is 

associated with 0.4% reduction in death-at-the-scene. In practice, if every EMS station can 

achieve a three-minute reduction in their travel times, about 100 lives may be saved, barring 

unsalvageable injuries. This study reports that the median response time is approximately six 

minutes and there are areas with much higher response times (right skewness). It is important, 

therefore, to identify areas with long EMS travel times to reduce death-at-the-scene. 

The odds of death-at-the-scene are heightened during the rush hour period. The possibility 

exists that drivers and other road users may engage in risky driving behavior during the rush 

hour period, increasing the risk of death-at-the-scene. A meta-analysis reported that the rush 

hour period is associated with increased odds of fatal crash injuries (O. J. Adeyemi et al., 2021) 

Assessing factors associated with delay in crash response, therefore, becomes appropriate to 

design local, regional, and national interventions that will reduce delays. An earlier study, 

using the Fatality Analysis and Reporting System dataset, reported that a minute increase in 

crash fatality rate was associated with a three percent increased fatality risk (O. Adeyemi, Paul, 

& Arif, 2020). The rush hour period, therefore, may be a proxy for interventions for crash 

response times.  

This study has its limitation. This is a cross-sectional study, with data pooled over a single 

study year. Therefore, causal inferences cannot be established. Since the EMS data were 

pooled across different agencies, the possibility of data entry errors cannot be eliminated. 

Misclassification of the outcome is highly unlikely since a diagnosis of death is a terminal 

outcome provided by trained personnel. While the results provide national estimates, NEMSIS 

data does not include four states. However, it is unlikely that these states' results will alter the 
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estimates or disproportionately affect the crash response times or deaths-at-the-scene. The 

absence of county-level identifiers limits the generalization of this result for policy 

recommendations and practice. It is unlikely that the dependence of death on response time 

will exhibit a global pattern across the U.S. since different states have different crash response 

times. Additionally, small sample analytical bias is a concern as less than 1% of the sample 

population experienced death-at-the-scene. However, with over 8,000 cases of death-at-the-

scene rarity of the event, which would have required logistic regression for rare events (King & 

Zeng, 2001) or the penalized likelihood method (Firth method) (Wang, 2014) is not indicated. 

It is unlikely that the maximum likelihood estimation will suffer from a small sample bias 

based on the cell counts (Allison, 2012). Despite these limitations, this study represents one of 

the few studies that report the proportion of death-at-the-scene and its association of crash 

response with these deaths during the rush hour period. 

Conclusion 

A substantial proportion of deaths occur at the crash scene. Approximately half of the persons 

involved in crash events were exposed to crashes during the rush hour period. EMS travel time 

was associated with increased odds of death-at-the-scene, and the odds of a case classified as 

death-at-the-scene is heightened during the rush hour period. Interventions aimed at reducing 

crash fatality rates may consider focusing on deaths-at-the-scene, while interventions aimed at 

shortening EMS travel time may consider using the rush hour period as a proxy. 
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Table 3 - 1: Frequency distribution and summary statistics of the EMS crash response times, 

sociodemographic, clinical, and location-based characteristics 

Variables All Period 

(N=1,203,527) 

Rush Hour 

(n=603,860) 

Non-Rush 

Hour 

(n=599,667) 

p-value* 

 Frequency (%) Frequency (%) Frequency (%)  

Age     

< 16 years 101,446 (8.4) 59,462 (9.9) 41,984 (7.0) <0.001 

16-25 years 274,703 (22.8) 129,277 (21.4) 145,426 (24.3)  

26-35 years 233,371 (19.4) 113,986 (18.9) 119,385 (19.9)  

36-55 years 331,013 (27.5) 169,942 (28.1) 161,071 (26.9)  

56-75 years 216,022 (18.0) 109,053 (18.1) 106,969 (17.8)  

>75 years 46,972 (3.9) 22,140 (3.7) 24,832 (4.1)  

Gender     

Male 598,292 (49.7) 287,960 (47.7) 310,332 (51.8) <0.001 

Female 605,235 (50.3) 315,900 (52.3) 289,335 (48.2)  

Injured Region     

Head and Neck 191,514 (15.9) 97,621 (16.2) 93,893 (15.7) <0.001 

Abdomen and Genitals 26,129 (2.2) 13,342 (2.2) 12,787 (2.1)  

Chest and Back 146,467 (12.2) 75,239 (12.5) 71,228 (11.9)  

Extremities 196,699 (16.3) 97,987 (16.2) 98,712 (16.5)  

General Body 282,806 (23.5) 137,991 (22.8) 144,815 (24.1)  

Unknown 359,912 (29.9) 181,680 (30.1) 178,232 (29.7)  

Substance Use     

Yes 92,858 (7.7) 29,827 (4.9) 63,031 (10.5) <0.001 

No 753,065 (62.6) 392,952 (65.1) 360,113 (60.1)  

Unknown 357,604 (29.7) 181,081 (30.0) 176,523 (29.4)  

Geographical location     

Rural/Wilderness 99,869 (8.3) 48,245 (8.0) 51,624 (8.6) <0.001 

Suburban 61,896 (5.1) 30,354 (5.0) 31,542 (5.3)  

Urban 1,003,256 (83.4) 505,513(83.7) 497,743 (83.0)  

Unknown 38,506 (3.2) 19,748 (3.3) 18,758 (3.1)  

Revised Trauma Score     

Mean (SD)* 7.56 (0.69) 7.58 (0.65) 7.55 (0.73) <0.001 

Median (IQR)** 7.80 (0.29) 7.84 (0.29) 7.84 (0.29) <0.001 

EMS notification time     

Mean (SD)* 1.35 (2.58) 1.28 (2.44) 1.42 (2.71) <0.001 

Median (IQR)** 0.92 (1.52) 0.88 (1.40) 0.97 (1.65) <0.001 

     

 

Table 3-1 (Continued) 
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*Independent sample T-test performed; **Mann Whitney U test performed 

 

Variables All Period 

(N=1,203,527) 

Rush Hour 

(n=603,860) 

Non-Rush 

Hour 

 

EMS travel time     

Mean (SD)* 7.04 (8.67) 7.00 (7.60) 7.09 (9.63) <0.001 

Median (IQR)** 5.50 (5.72) 5.53 (5.70) 5.48 (5.71) <0.001 

Mortality Status     

Dead 8,292 (0.7) 3,238 (0.5) 5,054 (0.8) <0.001 

Not Dead 1,195,235 (99.3) 600,622 (99.5) 594,613 (99.2)  
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Table 3 - 2: Summary of the odds of fatal cases associated with EMS response times, 

sociodemographic, clinical, and location-based characteristics, measured across all 

periods and the rush hour period. 

 

  

Variables All Period 

(N=1,203,527) 

Rush Hour 

(n=603,860) 

Non-Rush Hour 

(n=599,667) 

 Odds Ratio (95% 

CI) 

Odds Ratio (95% 

CI) 

Odds Ratio (95% CI) 

Age    

16-25 years 2.45 (2.14 – 2.81) 2.28 (1.85 – 2.80) 2.33 (1.94 – 2.79) 

26-35 years 3.38 (2.95 – 3.87) 3.06 (2.50 – 3.75) 3.30 (2.75 – 3.96) 

36-55 years 3.14 (2.75 – 3.58) 3.04 (2.50 – 3.71) 3.01 (2.51 – 3.60) 

56-75 years 3.52 (3.08 – 4.03) 3.96 (3.24 – 4.84) 3.02 (2.52 – 3.64) 

>75 years 4.04 (3.45 – 4.73) 5.52 (4.38 – 6.94) 2.90 (2.33 – 3.61) 

< 16 years Ref Ref Ref 

Gender    

Male 2.74 (2.61 – 2.87) 2.70 (2.50 – 2.91) 2.69 (2.52 – 2.86) 

Female Ref Ref Ref 

Injured Region    

Head and Neck 0.20 (0.18 – 0.22) 0.18 (0.15 – 0.21) 0.22 (0.19 – 0.24) 

Abdomen and Genitals 0.04 (0.03 – 0.06) 0.03 (0.01 – 0.07) 0.04 (0.02 – 0.08) 

Chest and back 0.14 (0.13 – 0.16) 0.14 (0.11 – 0.17) 0.14 (0.12 – 0.17) 

Extremities 0.01 (0.01 – 0.02) 0.02 (0.01 – 0.03) 0.01 (0.01 – 0.02) 

Multiple Body Injury Ref Ref Ref 

Substance Use    

Yes 1.21 (1.10 – 1.32) 1.56 (1.33 – 1.83) 0.97 (0.87 – 1.09) 

No Ref Ref Ref 

Geographical location    

Rural/Wilderness 2.47 (2.33 – 2.62) 3.25 (2.98 – 3.55) 2.01 (1.86 – 2.17) 

Suburban 1.93 (1.79 – 2.09) 2.16 (1.90 – 2.44) 1.79 (1.61 – 1.98) 

Urban Ref Ref Ref 

Revised Trauma Score** 0.27 (0.27 – 0.28) 0.27 (0.26 – 0.27) 0.28 (0.27 – 0.28) 

EMS notification time 1.025 

(1.018 – 1.031) 

1.034  

(1.024 – 1.044) 

1.016 ( 

1.007 – 1.024) 

EMS travel time 1.004  

(1.003 – 1.005) 

1.006  

(1.004 – 1.007) 

1.003  

(1.002 – 1.004) 
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Table 3 - 3: Summary of the adjusted logistic regression models across all time and 

during the rush hour period, estimating the odds of fatal cases across different EMS 

response times.  

Models adjusted for age, gender, injured parts, substance use, location of crash 

(rural/urban/suburban) 

 

 

 

 

  

Variables All Period Rush Hour Non-Rush Hour 

 Adjusted Odds Ratio 

(95% CI) 

Adjusted Odds Ratio 

(95% CI) 

Adjusted Odds 

Ratio (95% CI) 

EMS notification 

time 

0.974  

(0.965 – 0.983) 

0.983  

(0.969 – 0.999) 

0.967  

(0.954 – 0.979) 

EMS travel time 1.004  

(1.003 – 1.006) 

1.007  

(1.005 – 1.009) 

1.003  

(1.002 – 1.005) 
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Figure 3- 1: Data selection steps 

 

 

 

 

           

 

 

 

 

 

 

 

 

 

 

Total persons captured 

following EMS activation 

N=35,214,824 

Crash at all-time period 
N=1,203,527 

Rush Hour Crashes 

Victims 

n=603,860 

Non-Rush Hour Crash 

Victims 

n=599,667 

All crash victims 

 n=1,222,005 

All crash victims with 
reported crash response 

times 
n=1,213,987 

Exclude cancelled activations (n=1,532)  
Exclude missing notification to departure 
time (n=3,963) and departure to crash 
scene arrival time (2,523)  
 

Exclude missing variables less than 1% 
(n=10,406) 

Exclude all except crashes with ICD V01 
– V89: (n=34,173,376) 
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Appendix 4: STATA Codes 

tab binoutcome,m 

tab agecat,m 

tab gender,m 

*tab race2,m 

tab injpart,m 

tab alcdrug2,m 

tab rur1sub2urb3,m 

tabstat rts2, statistics (mean, sd, p50, range, iqr) 

tabstat notdep, statistics (mean, sd, p50, range, iqr) 

tabstat depscene, statistics (mean, sd, p50, range, iqr) 

tab binoutcome if rushhr==1,m 

tab agecat if rushhr==1,m 

tab gender if rushhr==1,m 

tab injpart if rushhr==1,m 

tab alcdrug2 if rushhr==1,m 

tab rur1sub2urb3 if rushhr==1,m 

tabstat rts2 if rushhr==1, statistics (mean, sd, p50, range, iqr) 

tabstat notdep if rushhr==1, statistics (mean, sd, p50, range, iqr) 
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tabstat depscene if rushhr==1, statistics (mean, sd, p50, range, iqr) 

tab binoutcome if rushhr!=1,m 

tab agecat if rushhr!=1,m 

tab gender if rushhr!=1,m 

*tab race2 if rushhr!=1,m 

tab injpart if rushhr!=1,m 

tab alcdrug2 if rushhr!=1,m 

tab rur1sub2urb3 if rushhr!=1,m 

tabstat rts2 if rushhr!=1, statistics (mean, sd, p50, range, iqr) 

tabstat notdep if rushhr!=1, statistics (mean, sd, p50, range, iqr) 

tabstat depscene if rushhr!=1, statistics (mean, sd, p50, range, iqr) 

replace rur1sub2urb3 = 9 if rur1sub2urb3==. 

tab binoutcome rushhr, chi2 m 

tab agecat rushhr, chi2 m 

tab gender rushhr,chi2 m 

tab race2 rushhr,chi2 m 

tab injpart rushhr,chi2 m 

tab alcdrug2 rushhr,chi2 m 
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tab rur1sub2urb3 rushhr, chi2 m 

ttest rts2, by(rushhr) 

ttest notdep, by(rushhr) 

ttest depscene, by(rushhr) 

ranksum rts2, by(rushhr) 

ranksum notdep, by(rushhr) 

ranksum binoutcome, by(rushhr) 

tab crowd,m 

tab nolocate,m 

tab distance,m 

tab diversion,m 

tab routeobs,m 

tab staff,m 

tab traffic,m 

tab weather,m 

tab crowd binoutcome, chi2 col m 

tab nolocate binoutcome, chi2 col m 

tab distance binoutcome, chi2 col m 
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tab diversion binoutcome, chi2 col m 

tab routeobs binoutcome, chi2 col m 

tab staff binoutcome, chi2 col m 

tab traffic binoutcome, chi2 col m 

tab weather binoutcome, chi2 col m 

tab nolocate if rushhr==1,  m 

tab distance if rushhr==1,  m 

tab routeobs if rushhr==1,  m 

tab traffic if rushhr==1,  m 

tab weather if rushhr==1,  m 

tab nolocate if rushhr!=1,  m 

tab distance if rushhr!=1,  m 

tab routeobs if rushhr!=1,  m 

tab traffic if rushhr!=1,  m 

tab weather if rushhr!=1,  m 

tab nolocate binoutcome if rushhr==1, chi2 col m 

tab distance binoutcome if rushhr==1, chi2 col m 

tab routeobs binoutcome if rushhr==1, chi2 col m 



132 
 

tab traffic binoutcome if rushhr==1, chi2 col m 

tab weather binoutcome if rushhr==1, chi2 col m 

tab nolocate binoutcome if rushhr!=1, chi2 col m 

tab distance binoutcome if rushhr!=1, chi2 col m 

tab routeobs binoutcome if rushhr!=1, chi2 col m 

tab traffic binoutcome if rushhr!=1, chi2 col m 

tab weather binoutcome if rushhr!=1, chi2 col m 

logistic binoutcome i.agecat 

logistic binoutcome 1.gender 

logistic binoutcome i.race2 

logistic binoutcome i.injpart 

logistic binoutcome i.alcdrug2 

logistic binoutcome i.rur1sub2urb3b 

logistic binoutcome rts2 

logistic binoutcome notdep 

logistic binoutcome depscene 

logistic binoutcome i.agecat if rushhr==1 

logistic binoutcome 1.gender if rushhr==1 
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logistic binoutcome i.race2 if rushhr==1 

logistic binoutcome i.injpart if rushhr==1 

logistic binoutcome i.alcdrug2 if rushhr==1 

logistic binoutcome i.rur1sub2urb3b if rushhr==1 

logistic binoutcome rts2 if rushhr==1 

logistic binoutcome notdep if rushhr==1 

logistic binoutcome depscene if rushhr==1 

logistic binoutcome i.agecat 

logistic binoutcome 1.gender 

logistic binoutcome i.race2 

logistic binoutcome i.injpart 

logistic binoutcome i.alcdrug2 

logistic binoutcome i.rur1sub2urb3b 

logistic binoutcome rts2 

logistic binoutcome notdep 

logistic dead depscene 

logistic binoutcome notdep i.agecat 1.gender  i.race2 i.injpart i.alcdrug2 i.rur1sub2urb3b 

rts2  
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logistic binoutcome depscene i.agecat 1.gender  i.race2 i.injpart i.alcdrug2 

i.rur1sub2urb3b rts2   

logistic binoutcome notdep i.agecat 1.gender  i.race2 i.injpart i.alcdrug2 i.rur1sub2urb3b 

rts2 if rushhr==1 

logistic binoutcome depscene i.agecat 1.gender  i.race2 i.injpart i.alcdrug2 

i.rur1sub2urb3b rts2  if rushhr==1 

gen rur1sub2urb3b = rur1sub2urb3 

replace rur1sub2urb3b = 0 if rur1sub2urb3==3 

gen alcdrug2b = alcdrug2 

replace alcdrug2b=0 if alcdrug2==2 

tab binoutcome,m 

tab agecat,m 

tab gender,m 

tab race2,m 

tab injpart,m 

tab alcdrug2,m 

tab rur1sub2urb3,m 

tabstat rts2, statistics (mean, sd, p50, range, iqr) 

tabstat notdep, statistics (mean, sd, p50, range, iqr) 
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tabstat depscene, statistics (mean, sd, p50, range, iqr) 

logistic  binoutcome nolocate 

logistic  binoutcome distance  

logistic  binoutcome routeobs  

logistic  binoutcome traffic  

logistic  binoutcome weather  

logistic  binoutcome nolocate if rushhr==1 

logistic  binoutcome distance if rushhr==1 

logistic  binoutcome routeobs if rushhr==1 

logistic  binoutcome traffic if rushhr==1 

logistic  binoutcome weather if rushhr==1 

qreg depscene nolocate, quantile(50) 

qreg depscene distance, quantile(50) 

qreg depscene routeobs, quantile(50) 

qreg depscene traffic, quantile(50) 

qreg depscene weather, quantile(50) 

qreg depscene nolocate if rushhr==1, quantile(50) 

qreg depscene distance if rushhr==1, quantile(50) 
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qreg depscene routeobs if rushhr==1, quantile(50) 

qreg depscene traffic if rushhr==1, quantile(50) 

qreg depscene weather if rushhr==1, quantile(50) 

tab dead,m 

tab agecat,m 

tab gender,m 

*tab race2,m 

tab injpart,m 

tab alcdrug2,m 

tab rur1sub2urb3,m 

tabstat rts, statistics (mean, sd, p50, range, iqr) 

tabstat notdep, statistics (mean, sd, p50, range, iqr) 

tabstat depscene, statistics (mean, sd, p50, range, iqr) 

tab binoutcome if rushhr==1,m 

tab agecat if rushhr==1,m 

tab gender if rushhr==1,m 

*tab race2 if rushhr==1,m 

tab injpart if rushhr==1,m 
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tab alcdrug2 if rushhr==1,m 

tab rur1sub2urb3 if rushhr==1,m 

tabstat rts2 if rushhr==1, statistics (mean, sd, p50, range, iqr) 

tabstat notdep if rushhr==1, statistics (mean, sd, p50, range, iqr) 

tabstat depscene if rushhr==1, statistics (mean, sd, p50, range, iqr) 

tab binoutcome if rushhr!=1,m 

tab agecat if rushhr!=1,m 

tab gender if rushhr!=1,m 

*tab race2 if rushhr!=1,m 

tab injpart if rushhr!=1,m 

tab alcdrug2 if rushhr!=1,m 

tab rur1sub2urb3 if rushhr!=1,m 

tabstat rts2 if rushhr!=1, statistics (mean, sd, p50, range, iqr) 

tabstat notdep if rushhr!=1, statistics (mean, sd, p50, range, iqr) 

tabstat depscene if rushhr!=1, statistics (mean, sd, p50, range, iqr) 

destring eVitals_19 eVitals_20 eVitals_21, generate(ev19 ev20 ev21) force 

gen gcs= ev19 + ev20 + ev21 

replace gcs =. if gcs > 15 
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gen sbp = eVitals_06 

gen rr = eVitals_14 

replace sbp =. if sbp > 1000  

replace rr=. if rr > 1000  

gen gcscat = . 

replace gcscat=4 if gcs >=13 & gcs <=15  

replace gcscat=3 if gcs >=9 & gcs <=12  

replace gcscat=2 if gcs >=6 & gcs <=8  

replace gcscat=1 if gcs >=4 & gcs <=5  

replace gcscat=0 if gcs ==3  

gen sbpcat =. 

replace sbpcat= 4 if sbp > 89  

replace sbpcat= 3 if sbp >= 76 & sbp<= 89  

replace sbpcat= 2 if sbp >= 50 & sbp<= 75  

replace sbpcat= 1 if sbp >= 1 & sbp<=49  

replace sbpcat= 0 if sbp ==0  

gen rrcat=. 

replace rrcat = 4 if rr >=10 & rr <=29  
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replace rrcat = 3 if rr >29  

replace rrcat = 2 if rr >=6 & rr <=9  

replace rrcat = 1 if rr >=1 & rr <=5  

replace rrcat = 0 if rr ==0  

replace gcscat=4 if outcome==0 & gcscat==. 

replace gcscat=3 if outcome==1 & gcscat==. 

replace gcscat=2 if outcome==2 & gcscat==. 

replace gcscat=1 if outcome==3 & gcscat==. 

replace gcscat=4 if rrcat==4 & gcscat==. 

replace gcscat=3 if rrcat==3 & gcscat==. 

replace gcscat=2 if rrcat==2 & gcscat==. 

replace gcscat=1 if rrcat==1 & gcscat==. 

replace gcscat=0 if rrcat==0 & gcscat==. 

replace rrcat=4 if outcome==0 & rrcat==. 

replace rrcat=3 if outcome==1 & rrcat==. 

replace rrcat=2 if outcome==2 & rrcat==. 

replace sbpcat=4 if outcome==0 & sbpcat==. 

replace sbpcat=3 if outcome==1 & sbpcat==. 
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replace sbpcat=2 if outcome==2 & sbpcat==. 

gen rts = (0.9368 * gcscat) + (0.7326 * sbpcat) + (0.2908 * rrcat) 

tab dead,m 

tab agecat,m 

tab gender,m 

*tab race2,m 

tab injpart,m 

tab alcdrug2,m 

tab rur1sub2urb3,m 

tabstat rts, statistics (mean, sd, p50, range, iqr) 

tabstat notdep, statistics (mean, sd, p50, range, iqr) 

tabstat depscene, statistics (mean, sd, p50, range, iqr) 

bysort rushhr_new: tab dead,m 

bysort rushhr_new: tab agecat,m 

bysort rushhr_new: tab gender,m 

*tab race2,m 

bysort rushhr_new: tab injpart,m 

bysort rushhr_new: tab alcdrug2,m 
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bysort rushhr_new: tab rur1sub2urb3,m 

bysort rushhr_new: tabstat rts, statistics (mean, sd, p50, range, iqr) 

bysort rushhr_new: tabstat notdep, statistics (mean, sd, p50, range, iqr) 

bysort rushhr_new: tabstat depscene, statistics (mean, sd, p50, range, iqr) 

ab dead rushhr_new, chi2 m 

tab agecat rushhr_new, chi2 m 

tab gender rushhr_new,chi2 m 

*tab race2 rushhr_new,chi2 m 

tab injpart rushhr_new,chi2 m 

tab alcdrug2 rushhr_new,chi2 m 

tab rur1sub2urb3 rushhr_new, chi2 m 

ttest rts, by(rushhr_new) 

ttest notdep, by(rushhr_new) 

ttest depscene, by(rushhr_new) 

ranksum rts, by(rushhr_new) 

ranksum notdep, by(rushhr_new) 

ranksum depscene, by(rushhr_new) 

logistic dead i.agecat 
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logistic dead 1.gender 

logistic dead i.injpart 

logistic dead i.alcdrug2 

logistic dead i.rur1sub2urb0 

logistic dead rts 

logistic dead notdep 

logistic dead depscene 

gen rur1sub2urb0 = rur1sub2urb3 

replace rur1sub2urb0=0 if rur1sub2urb3==3 

logistic dead i.agecat if rushhr_new==1 

logistic dead 1.gender if rushhr_new==1 

*logistic dead i.race2 if rushhr_new==1 

logistic dead i.injpart if rushhr_new==1 

logistic dead i.alcdrug2 if rushhr_new==1 

logistic dead i.rur1sub2urb0 if rushhr_new==1 

logistic dead rts if rushhr_new==1 

logistic dead notdep if rushhr_new==1 

logistic dead depscene if rushhr_new==1 



143 
 

*adjusted 

logistic dead notdep i.agecat 1.gender  i.injpart i.alcdrug2 i.rur1sub2urb0 rts 

logistic dead depscene i.agecat 1.gender  i.injpart i.alcdrug2 i.rur1sub2urb0 rts 

logistic dead notdep i.agecat 1.gender  i.injpart i.alcdrug2 i.rur1sub2urb0 rts if 

rushhr_new==1 

logistic dead depscene i.agecat 1.gender  i.injpart i.alcdrug2 i.rur1sub2urb0 rts if 

rushhr_new==1 
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CHAPTER 5 

Summary of Findings 
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Summary of Findings 

Epidemiology of Rush-Hour Crash Injuries 

This dissertation set out to assess the characteristics of fatal and non-fatal crash injury 

rush-hour-related crash injuries across three domains: environmental determinants of 

crash injuries, substance use, and crash response time. Using the FARS dataset, the 

model-adjusted prevalence of rush-hour-related fatal crashes was 7.3 per 100,000 

population.  The age-adjusted prevalence of fatal crash injuries between 2010 and 2018, 

estimated using the Centers for Disease Prevention and Controls’ WISQAR tool, was 

11.5 per 100,000 (WISQAR, 2020). An earlier study had reported elevated fatal crash 

rates among males and those aged 20 to 24 years (National Highway Traffic Safety 

Administration, 2016).  

The spatial location of fatal crash injuries is important crash injury information as these 

information guides decisions on national, state, and local policies on crash injury 

prevention, funding of projects, and the design of interventions. This dissertation 

identified clusters of fatal crash injuries during the rush-hour period in counties in Idaho, 

Montana, Nevada, California, Wyoming, Utah, New Mexico, Texas, Colorado, Arkansas, 

Kentucky, Tennessee, and Alabama. These clusters identified counties with significantly 

elevated fatal crash injury risks due to environmental factors. A similar procedure could 

be computed with other risk factors such as substance use, seat belt use, distracted 

driving, and speeding. An earlier study, using spatial clustering techniques, identified 

multiple counties in South Dakota, Texas, and Mississippi, as areas with elevated fatal 

crash injuries from non-use of seat belt among older drivers (Adeyemi, Paul, & Arif, 

2020b). 



146 
 

Environmental Risk Factors of Rush Hour-Related Fatal Crash Injury 

This dissertation reports that the case-specific fatality rates from interstates, highways, 

roads, streets, intersections, rain, fog, and snow were higher than the median fatality 

rates. Additionally, during the rush hour period, fatal crash injury rates were significantly 

elevated on interstates, highways, roads and streets, intersections, driveways, and work 

zones.  

An earlier report had estimated that, between 2007 and 2016, rain accounted for up to 

46% of all weather-related fatal crashes while snow and fog account for 13% and 9% of 

all weather-related fatal crashes(Federal Highway Administration, 2020). Also, earlier 

studies have reported increased weather-related fatal crash risks on raining days, during 

the evening rush-hour period  (Black, Villarini, & Mote, 2017; Call, Medina, & Black, 

2019).  

Rurality and urbanicity are factors that are infrequently considered when reporting spatial 

fatal crash injury patterns (Adeyemi, Paul, & Arif, 2020a; Byrne et al., 2019). In this 

dissertation, the median crash fatality rates were significantly higher in rural counties as 

compared to urban counties. Elevated fatality rates from in rural areas as compared to 

urban areas, has been reported in earlier studies (National Center for Statistics and 

Analysis, 2012, 2019). The additional contribution of this dissertation are the estimates 

provided during the rush-hour period and the association of the environmental 

characteristics. 

Substance Use as a Risk Factor for Non-Fatal Crash Injury 

This dissertation reports increased odds of critical and emergent injuries among crash 

victims with substance use. Substance use was associated with over two-fold adjusted 

odds of critical and emergent injury severities, across all times of the day, and during the 
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rush and non-rush hour periods. The relationship of injury severity and alcohol had never 

been in doubt as evidence from numerous studies have reported a significant association 

between alcohol and fatal and non-fatal crash injury or events (Albalate, 2008; Allamani 

et al., 2013; Chen, Tsai, Fortin, & Cooper, 2012; Compton & Berning, 2015). Also, there 

is compelling evidence that marijuana use is associated with elevated crash injury risks 

(Blows et al., 2005; Bondallaz et al., 2016; M. C. Li et al., 2012; Santaella-Tenorio et al., 

2020). This dissertation did not seek to separate the different components measured as 

substance use.  

Crash Response Time as a Risk Factor for Deaths at the Crash Scene 

About half of the crash injuries occurred during the rush hour period. Cases classified as 

death-at-the-scene comprised less than 1% of all crashes that occurred at all times of the 

day and during the rush hour period. Also, the median crash notification time was less 

than a minute during the rush and non-rush hours. EMS travel time was slightly longer 

during the rush hour period compared to the non-rush hour period. After adjusting for 

sociodemographic and crash characteristics, a minute prolongation of the EMS travel 

time was significantly associated with increased odds of death-at-the-scene, with the odds 

higher during the rush hour period. 

Implications for Public Health Policy and Practice 

Fatal crash injuries are preventable and non-fatal crash injuries rates can be reduced. This 

dissertation identifies some of the human, environmental, and institutional factors 

associated with fatal and non-fatal crash injuries in the rush hour period. There may be a 

need for policies that will make the road environment safer for road users, especially 

during the rush-hour period. Strengthening policies on substance use while driving and 
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crash response times may be required as injury severity and fatality are significantly 

affected by these risk factors, respectively.  

This dissertation identifies spatial clusters of fatal crash injury modeled based on the 

environmental risk factors. In identifying locations with significantly elevated fatal crash 

injury rates, this dissertation provides information on areas that might need focused 

intervention. In the presence of competing public health needs, this study can guide 

decisions on states and counties that need funding for intervention-based projects. 

The harm associated with substance use has never been in question. Several studies have 

quantified the associated risks of substance use of crash events (Blows et al., 2005; 

Bondallaz et al., 2016; Bramness, Skurtveit, Mørland, & Engeland, 2012; Kumar, Bansal, 

Singh, & Medhi, 2015; G. Li, Brady, & Chen, 2013; M. C. Li et al., 2012; Thomas et al., 

2020). This dissertation, using a clinical assessment, estimated the odds of critical and 

emergent injuries. This information is useful in prehospital planning of prehospital care, 

predicting the severity of injury from relevant 911 calls, and provide adequate care for 

crash injury patients with substance use.   

The rush-hour period may be a proxy in assessing risk factors of fatal and non-fatal crash 

injuries. The rush-hour period, however, is not a well-researched area. However, with 

human, vehicular, and environmental exhibiting complex interactions during the rush-

hour period, the rush-hour may be a useful period to conduct crash prevention 

interventions.  

Future Directions 

The rush-hour period may serve as a proxy for crash prevention interventions, as some 

crash characteristics are elevated during this period. Future studies may assess the trend 
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of rush hour fatal crash counts and events during the rush-hour period. Additionally, the 

possibility remains that a single fatal crash may be associated with multiple fatalities. It is 

not known if rush-hour-related fatal crash events are associated with multiple fatalities. 

These studies may further identify the rush-hour period as an area for crash-related 

intervention.  

Rurality and urbanicity may play a role in substance-use injury severity since crash 

response times are longer in rural areas compared to urban areas. With death-at-the-

crash-scene, an infrequent outcome of crash response, estimating its prevalence, and rural 

and urban differences may present areas for future research. Additionally, assessing how 

risky driving behaviors such as substance use, speeding, seat belt use, and distracted 

driving differ by rurality and urbanicity and their association to crash injury severity may 

present additional areas of research. Further, the literature is sparse on the spatial clusters 

of risky driving behaviors and risky driving-related fatal crash injuries.    

The delay factors associated with crash response time are an important domain of 

research. No study has evaluated how delay factors are mediated by the crash response 

time. Understanding the association of crash response time and the delay factors may 

provide insight into areas in need of EMS structural and policy-based strengthening. It is 

unknown how these delay factors vary by rural and urban locations. Further, assessing 

the optimal location of EMS base stations in rural locations that will achieve adequate 

crash coverage remains an unexplored area of research. The incorporation of telehealth, 

helicopter services, and drones into emergency response systems has the potential to 

shorten crash response time and provide additional areas of research.  
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Conclusion 

Substantial fatal and non-fatal crash injuries occur during the rush-hour period. Natural 

factors such as rain, fog, and snow are associated with elevated fatal crash injury rates 

during the rush-hour period and elevated fatal crash injuries occur on interstates, 

highways, roads, streets, and intersections during the rush hour period. Substance use is 

associated with elevated odds of critical and emergent injuries and delay in EMS travel 

time is associated with elevated odds of deaths at the crash scene. 

 

 

  



151 
 

References 

Adeyemi, O., Paul, R., & Arif, A. (2020a). 223 An assessment of the impact of the rural-

urban differences in the accident response time to road accident fatality rate in the 

United States. Injury Prevention, 26(Suppl 1), A38-A39. doi:10.1136/injuryprev-

2020-savir.96 

Adeyemi, O., Paul, R., & Arif, A. (2020b). Spatial Cluster Analysis of Fatal Road 

Accidents From Non-Use of Seat Belts Among Older Drivers. Innovation in 

Aging, 4(Supplement_1), 113-114. doi:10.1093/geroni/igaa057.374 

Albalate, D. (2008). Lowering blood alcohol content levels to save lives: The European 

experience. Journal of Policy Analysis and Management, 27(1), 20-39. 

doi:10.1002/pam.20305 

Allamani, A., Holder, H., Santarlasci, V., Bardazzi, G., Voller, F., Mari, F., . . . Pepe, P. 

(2013). Road accidents, alcohol, and drugs: An Emergency Room study in 

Florence, Italy. Contemporary Drug Problems: An Interdisciplinary Quarterly, 

40(3), 295-319. doi:10.1177/009145091304000302 

Black, A. W., Villarini, G., & Mote, T. L. (2017). Effects of Rainfall on Vehicle Crashes 

in Six U.S. States. Weather, Climate, and Society, 9(1), 53-70. doi:10.1175/wcas-

d-16-0035.1 

Blows, S., Ivers, R. Q., Connor, J., Ameratunga, S., Woodward, M., & Norton, R. (2005). 

Marijuana use and car crash injury. Addiction, 100(5), 605-611. 

doi:10.1111/j.1360-0443.2005.01100.x 

Bondallaz, P., Favrat, B., Chtioui, H., Fornari, E., Maeder, P., & Giroud, C. (2016). 

Cannabis and its effects on driving skills. Forensic Sci Int, 268, 92-102. 

doi:10.1016/j.forsciint.2016.09.007 



152 
 

Bramness, J. G., Skurtveit, S., Mørland, J., & Engeland, A. (2012). An increased risk of 

motor vehicle accidents after prescription of methadone. Addiction, 107(5), 967-

972. doi:10.1111/j.1360-0443.2011.03745.x 

Byrne, J. P., Mann, N. C., Dai, M., Mason, S. A., Karanicolas, P., Rizoli, S., & Nathens, 

A. B. (2019). Association Between Emergency Medical Service Response Time 

and Motor Vehicle Crash Mortality in the United States. JAMA Surgery, 154(4), 

286-293. doi:10.1001/jamasurg.2018.5097 

Call, D. A., Medina, R. M., & Black, A. W. (2019). Causes of Weather-Related Crashes 

in Salt Lake County, Utah. Professional Geographer, 71(2), 253-264. 

doi:10.1080/00330124.2018.1501713 

Chen, K. L., Tsai, B.-W., Fortin, G., & Cooper, J. F. (2012). Alcohol-Impaired Driving. 

DOT HS, 811, 630. 

https://safetrec.berkeley.edu/sites/default/files/safetrecfactsalcoholimpaireddrivin

g1.pdf 

Compton, R. P., & Berning, A. (2015). Drug and Alcohol Crash Risk. Traffic Safety 

Facts: Research Note. http://www.nhtsa.gov/staticfiles/nti/pdf/812117-

Drug_and_Alcohol_Crash_Risk.pdf 

Federal Highway Administration. (2020). How Do Weather Events Impact Roads? Road 

Weather Management Program. Retrieved from 

https://ops.fhwa.dot.gov/weather/q1_roadimpact.htm 

Kumar, S., Bansal, Y. S., Singh, D., & Medhi, B. (2015). Alcohol and Drug Use in 

Injured Drivers - An Emergency Room Study in a Regional Tertiary Care Centre 



153 
 

of North West India. J Clin Diagn Res, 9(7), Hc01-04. 

doi:10.7860/jcdr/2015/14840.6239 

Li, G., Brady, J. E., & Chen, Q. (2013). Drug use and fatal motor vehicle crashes: a case-

control study. Accid Anal Prev, 60, 205-210. doi:10.1016/j.aap.2013.09.001 

Li, M. C., Brady, J. E., DiMaggio, C. J., Lusardi, A. R., Tzong, K. Y., & Li, G. (2012). 

Marijuana use and motor vehicle crashes. Epidemiol Rev, 34(1), 65-72. 

doi:10.1093/epirev/mxr017 

National Center for Statistics and Analysis. (2012). Rural/Urban Comparison. Traffic 

Safety Fact: 2010 Data. 

https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/811637#:~:text=Driv

ers%20in%20rural%20areas%20accounted,35%20to%2044%20(25%25). 

National Center for Statistics and Analysis. (2019). Rural/Urban Comparison of Traffic 

Fatalities. Traffic Safety Fact: 2017 Data. 

https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812741 

National Highway Traffic Safety Administration. (2016). Traffic Safety Facts 2016. 

https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812554 

Santaella-Tenorio, J., Wheeler-Martin, K., DiMaggio, C. J., Castillo-Carniglia, A., 

Keyes, K. M., Hasin, D., & Cerdá, M. (2020). Association of Recreational 

Cannabis Laws in Colorado and Washington State With Changes in Traffic 

Fatalities, 2005-2017. JAMA Intern Med, 180(8), 1061-1068. 

doi:10.1001/jamainternmed.2020.1757 

Thomas, F. D., Berning, A., Darrah, J., Graham, L. A., Blomberg, R. D., Griggs, C., . . . 

Rayner, M. (2020). Drug and Alcohol Prevalence in Seriously and Fatally Injured 



154 
 

Road Users Before and During the COVID-19 Public Health Emergency. 

https://rosap.ntl.bts.gov/view/dot/50941 

WISQAR. (2020). Fatal Injury Reports, National, Regional and State, 1981 - 2019: 2010 

- 2018, United States Overall Motor Vehicle Deaths and Rates per 100,000 All 

Races, Both Sexes, All Ages.  Retrieved 04/02/2021, from Centers for Disease 

Control and Prevention https://webappa.cdc.gov/sasweb/ncipc/mortrate.html 

 

 


