
AI BASED REALISTIC MULTI-HOP WIRELESS SIMULATION

by

Tagore Pothuneedi

A thesis submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Master of Science in

Computer Science

Charlotte

2021

Approved by:

Dr. Pu Wang

Dr. Minwoo Jake Lee

Dr. Mohsen Dorodchi

ii

©2021
Tagore Pothuneedi

ALL RIGHTS RESERVED

iii

ABSTRACT

TAGORE POTHUNEEDI. AI Based Realistic Multi-Hop Wireless Simulation.
(Under the direction of DR. PU WANG)

Wireless multi-hop networks and software-defined networking (SDN) are emerging

technologies in wireless communications for deploying cost-efficient programmable

network backbones[1]. However, the physical testbeds do not provide scalable en-

vironments, accelerated development, and testing. Simulations are a cost-effective

approach to overcome the bottlenecks of the physical testbed. Furthermore, Wireless

multi-hop networks tend to have a high environmental impact which leads to signifi-

cant performance issues such as low SNR and throughput. Adopting a multi-channel

multi-radio(MCMR) setup can reduce signal noise and increase overall channel uti-

lization for wireless multi-hop networks. Existing wireless simulators fail to simulate

dominant factors like co-channel and adjust channel interference while simulating a

realistic physical layer to close the gap between the actual physical layer and multi-

channel multi-radio topology simulation.

This thesis attempts to reduce the gap between the physical layer from the real-

world testbed and simulators. We propose a high fidelity physical layer simulator

(FedEdge Simulator) which uses dynamic link scheduling and trace-based channel

modeling to simulate a realistic physical layer for wireless multi-hop networks. The

simulator supports the integration of custom-built machine learning model’s to model

the channel accurately. In addition, the simulator can act as a learning environment

for Reinforcement learning in wireless multi-hop networks and transfer knowledge

from simulation to reality. Finally, To illustrate the reduced reality gap between

simulation and reality, we set up our experiment to integrate our FedEdge simulator

with the existing framework of FedEdge[2][3]. We also show that our design of realistic

simulations could help in knowledge transfer in reinforcement networking.

iv

ACKNOWLEDGEMENTS

Throughout my journey in the master’s program, I received enormous support

and assistance. I want to thank my advisor Dr. Pu Wang, who has given valuable

support and guidance with his expertise and knowledge. Dr. Wang has a unique way

of looking at the problem and making things simpler, which helped me understand

the problem. He was always ready whenever help was required and drove me to learn

and achieve the impossible.

I would like to acknowledge my thesis committee members Dr. Minwoo Jake Lee

and Dr. Mohsen Dorodchi, for being a part of this study and providing their valuable

comments for this thesis.

I would also like to extend my thanks to Pinyarash Pinyoanuntapong and my lab

members for their support and helpful suggestions for research.

Finally, I would like to convey my profound gratitude to my parents and friends

who always believed and encouraged me to work hard and try things differently.

v

TABLE OF CONTENTS

LIST OF TABLES vii

LIST OF FIGURES viii

CHAPTER 1: INTRODUCTION 1

1.1. Motivation 1

1.2. Problems & Challenges 2

1.3. Research Objectives & Contributions 4

1.4. Organizations of Thesis 5

CHAPTER 2: Literature review 6

2.1. Mininet-wifi 6

2.2. Wmediumd 7

2.3. Netorium 9

2.4. ViPmesh 10

CHAPTER 3: SYSTEM ARCHITECTURE 13

3.1. COMPONENTS 13

3.1.1. MAC80211_HWSIM 13

3.1.2. Linux IP Namespaces 14

3.1.3. Netlink Protocol 14

3.1.4. Traffic Control(tc) 15

3.1.5. hostapd & wpa_supplicant 15

3.2. FedEdge Simulator Architecture 17

3.2.1. Netlink Mode 17

vi

3.2.2. TCLink Mode 19

3.3. Simulator Workflow 20

3.3.1. Input Configuration file 20

3.3.2. Stages 21

3.4. Channel Modelling 22

3.4.1. Static Models 23

3.4.2. GAN Based Channel Model 24

3.4.3. Trace Based Channel Model 26

3.5. Interference Model 28

3.5.1. Static Interference 28

3.5.2. Delayed Dynamic Interference 29

CHAPTER 4: EXPERIMIMENTAL EVALUATION 31

4.1. Experiment setup 31

4.2. Experiment Results 32

CHAPTER 5: CONCLUSION & FUTURE WORK 35

REFERENCES 36

APPENDIX A: Tests on existing simulators 38

vii

LIST OF TABLES

TABLE 1.1: Comparison of wireless network simulators 3

TABLE A.1: Mininet-Wifi Tests 39

viii

LIST OF FIGURES

FIGURE 2.1: Mininet-Wifi 7

FIGURE 2.2: Wmediumd 8

FIGURE 2.3: Netorium Architecture 10

FIGURE 2.4: Encapsulation of wireless frame 10

FIGURE 2.5: ViPMesh Architecture 12

FIGURE 3.1: Linux IP Namespaces 15

FIGURE 3.2: Netlink protocol suite 16

FIGURE 3.3: FedEdge Simulator in Netlink mode 18

FIGURE 3.4: Packet processing in netlink mode 18

FIGURE 3.5: FedEdge Simulator in tclink mode 20

FIGURE 3.6: Dynamic Link Scheduling 20

FIGURE 3.7: Stage 1 Build configuration step in FedEdge Simulation 22

FIGURE 3.8: Stage 2 in FedEdge Simulation 22

FIGURE 3.9: Channel Models 23

FIGURE 3.10: Two stage GAN Network[4] 26

FIGURE 3.11: Trace Based Channel Modelling 27

FIGURE 4.1: Experimental setup to in physical testbed and FedEdge
simulator

32

FIGURE 4.2: Test after 20 epochs of shortest-path routing in simulator
(red) and testbed (blue)

33

FIGURE 4.3: Test after 50 epochs of on-policy softmax on simulator (red),
on-policy softmax on testbed online learning (blue), on-policy soft-
max on testbed target testing (black)

33

ix

FIGURE 4.4: Test after 50 rounds of FL communications: seconds per
round(a) and mean seconds per round(b) of on-policy softmax on
simulator (red), on-policy softmax on testbed online learning (blue),
on-policy softmax on testbed target testing (black) over

34

FIGURE A.1: Mininet-wifi test 39

FIGURE A.2: Wmediumd Single Hop test 40

FIGURE A.3: Wmediumd Multi Hop test 40

x

LIST OF ABBREVIATIONS

API Application Programming Interface

DSSS Direct-sequence spread spectrum

FL Federated Learning

GAN Generative adversarial network

HT High Throughput

IP Internet protocol

IPC Inter Process communication

MCMR Multi Channel Multi Radio

MIMO Multiple Input Multiple output

ML Machine Learning

MLME Media Access Control Sublayer Management Entity

OFDM Orthogonal frequency-division multiplexing

QoS Quality of Service

RSSI Received Signal Strength Indicator

SDN Software Defined Networking

SDWMN Software Defined Wireless Multi-hop Networks

SDWN Software Defined Wireless Networking

SNR Signal to Noise Ratio

SUMO Simulation of Urban Mobility

xi

TC Traffic control

UAV Unmanned aerial vehicle

Wifi Wireless Fidelity

CHAPTER 1: INTRODUCTION

1.1 Motivation

Software-defined wireless mesh network (SDWMN) is widely exploited in the re-

search of wireless communications[1]. The wireless mesh network is a rich intercon-

nection of mesh clients, mesh routers, and mesh gateways. Each node in the mesh

wirelessly relays traffic towards the gateway nodes, thereby forming a wireless back-

bone. A traditional network device consists of tightly coupled packet forwarding

called data plane, and forwarding tables called control plane. This makes traditional

networks complex to maintain and difficult to build new network features. On the

other hand, software-defined networks(SDN) address this problem by decoupling the

control plane from the data plane and allowing the control plane to operate from a cen-

tralized location or a server. SDN gives programming flexibility for network devices.

This allows quick real-time insights for wireless telemetry and traffic engineering to

optimize the network and improve the wireless network’s quality of service(QoS).

The high dynamic nature of wireless multi-hop networks makes them prone to

interference and noise, impacting the network’s overall performance. In particular,

multi-hop networks have a significant impact serving as core backbone infrastructure.

Using a multi-channel and multi-radio based wireless setup can reduce the interference

and channel contention between the nodes in the network, thereby providing a better

signal-to-noise ratio(SNR) and high throughput.

Machine learning plays a significant role towards the goal of achieving true next-

generation wireless networks, which are self-driving, cost-efficient, and adaptive by

nature[5]. ML with programmable wireless multi-hop networks can be used in the

wireless backbone to enhance the network’s performance by dynamically adapting to

2

network conditions where traditional networks require constant interoperation from

the network providers. This kind of network can scale dynamically per user demand

and adapt to real-time security threats and performance issues. However, physical

deployments have severe limitations in terms of scalability and cost-efficiency. Real-

istic software simulations are cheap and scalable solutions to alleviate the problems

with physical testbeds, reducing deployment costs and time.

The majority of wireless SDN simulators like mininet-wifi drive the simulations in

wireless networking research and academics. Nevertheless, the major impediment is

that most of the simulators(Table 1.1), including mininet-wifi, ignore the possibility

of a multi-hop network operating in a multi-channel multi-radio scenario. The lack

of support for MCMR channel operations leads to a reality gap between simulation

and real networks which work in wireless multi-hop backbone networks. In this study,

we tried to analyze and reduce the gap between the physical testbed and the simula-

tion. Towards this goal, FedEdge Simulator is an attempt to build realistic multi-hop

wireless networks simulations operating in multi-channel multi-radio and validate the

simulation to real performance gap between FedEdge Simulator and physical testbed.

To the best of our knowledge, there are no existing simulators that are flexible to

integrate custom machine learning models to simulate the wireless channel.

Moreover, The physical layer FedEdge simulator works on top of Linux tools and

open-flow environments, Making it flexible and straightforward to integrate with any

existing frameworks like mininet-wifi. We integrate FedEdge simulator to FedEdge

Framework[3][2] which is used for Federated Edge computing for Reinforcement net-

working.

1.2 Problems & Challenges

The importance of realistic simulations is evident to build robust wireless multi-

hop networks. As shown in Table 1.1 The current works in wireless simulations are

lacking in either or support for Multi-channel Multi-radio, Running simulations on

3

real network protocol stack.

Table 1.1: Comparison of wireless network simulators

Software &

Support

802.11s MCMR Real Protocol

stack

Open source

Mininet-Wifi Yes No Yes Yes

wmediumd Yes No Yes Yes

Netorium Yes No Yes Yes

ViPMesh Yes Yes Yes No

NS-3 GYM Yes Yes No Yes

Overall, we believe the following challenges are hindering the progress of simulation

driven developments of wireless multi-hop networks.

• Existence of reality gap: Even with wide range of applications of current network

simulations, when used for training in machine learning environments leads

to poor performance due to reality gap between the simulations and physical

environments.

• Lack of reliable training environment : Machine learning application perfor-

mance depend on the huge amounts of training data and a realistic training

environment. In general, researchers usually tend to work directly on the phys-

ical testbed and spend a large amount of training time to develop models due

to lack of reliable environment for wireless multi-hop simulations.

• Need for realistic wireless multi-hop simulator : The current simulators setting

of single-radio single-channel links limits the bandwidth available for commu-

nication between the nodes. However this is not a realistic usage settings for

wireless mesh backbone networks. And the use of MCMR will tremendously

reduce the interference from other nodes and increase the overall performance.

4

1.3 Research Objectives & Contributions

With current challenges in existing simulations we believe that a novel approach

to accurately model multi-hop environment is essential. In this study we focused on

realizing the performance drawbacks and build a simulation tool which can accurately

validate wireless multi-hop networks.

We believe that a novel approach to model a multi-hop environment accurately is

essential with current challenges in existing simulations. This study focused on real-

izing the performance drawbacks and building a simulation tool that can accurately

validate wireless multi-hop networks. The objectives of this thesis are summarized as

follows:

• Analyze and reduce the reality gap: To validate the reality gap between

simulation and reality, we proposed realistic but straightforward approach to

simulate a wireless environment by using netlink protocol and tc for managing

link parameters. This allows us to assess the limitations in each process.

• Realistic wireless multi-hop simulations: MCMR wireless networks are

becoming increasingly more realistic usage setting for core backbone networks

due to their advantages in low interference and high bandwidth availability.

To achieve advantage for simulations, we built FedEdge simulator to work on

top of batman-adv[6] and integrated a dynamic link scheduler for a realistic

performance in wireless mesh operations.

• AI-Based operations in simulations: We built a flexible simulation system

for a wireless multi-hop network that can easily facilitate the ML and RL op-

erations. Towards this goal, we ran an unmodified Federated edge computing

system[3] on top of our FedEdge simulator. In addition, we integrated a GAN

channel model[4] which can be used to model UAV mesh backbone networks.

5

To the best of our knowledge, this is the first attempt to realistically model a multi-

hop network simulator that can integrate AI operations. This helps in understanding

and studying the real-time wireless characteristics of wireless multi-hop backbone

networks. Also, we believe that the outcomes of this research will help academia and

researchers to build and test a wide range of ML driven wireless network applications.

1.4 Organizations of Thesis

The rest of the thesis is organized as follows. Chapter 2 is the literature review

of existing works . In chapter 3 we presents simulator components and architecture.

And in sub sections we describe the workflow of simulator , type of modes in which

simulator can support , packet processing frame in netlink mode , working of dynamic

link scheduler in tclink mode and applications, Implementation of channel models and

Interference modelling in the simulator. Finally we present the results and future work

in subsequent chapters 5 and 6 followed by reference and appendix.

CHAPTER 2: Literature review

2.1 Mininet-wifi

Mininet-Wifi[7] focuses mainly on leveraging the software-defined networking

paradigm in the context of wireless networks. It is a fork of mininet and built upon

mininet’s codebase. Like mininet, it is a container-based simulator extended to work

with virtualized wifi stations and AP’s. Wireless channel emulation is supported

by a softmac layer in linux called mac80211. Stations in the network use Media Ac-

cess Control Sublayer Management Entity(MLME). Hostapd[8] is a user-space demon

that will take care of the user-space operations of AP’s. Figure 2.1 illustrates core

components of mininet-wifi.

Linux wireless command tools like iw, iwconfig, and wpa-supplicant are used to

configure various station and AP parameters. Mininet-wifi supports infrastructure

mode and Ad-hoc modes in wireless communications. Traffic control(tc) is a user-

space utility program that mininet-wifi uses to configure the Linux kernel packet

scheduler to control rate, delay, and loss, to emulate the behavior of the wireless

environment. Mobility and propagation models are applied based on user-specified

models. Mininet-wifi supports various models for mobility such as Random waypoint,

Gauss Markov, Reference point & time-variant, and signal propagation. It uses Log

distance, Friis, Lognormal Shadowing, etc. These models will help mininet-wifi to

calculate path loss using log distance models as follows.

PathLoss = PLd0 + 10nlog

(
d

d0

)

SignalStrength = pT + gT + gR− PathLoss

7

Figure 2.1: Mininet-Wifi

Where pT is Transmission power, gT is Transmitter antenna gain, gR is Receiver

antenna gain. The calculated signal strength is the Received Signal Strength In-

dicator(RSSI) is used to calculate the rate of sending the data. The initial works

of mininet-wifi have considered the distance between transmitter and receiver, which

R2lab to calculate loss and rate. Mininet-wifi has been in active development, and the

latest version added an implementation of supporting various ratesets, wmediumd,

and support for Vehicular Adhoc Network scenarios through Simulation of Urban

Mobility (SUMO)

The limitation of mininet wifi concerning wireless mesh networks is the inability

to simulate multi-channel characteristics in mesh or Adhoc modes. Low throughputs

are observed under stress tests of mininet-wifi(Table A.1, FigureA.1) in simple linear

topologies like 2 nodes and 3 nodes wireless mesh networks on different channels, the

distance between nodes varying from 40-105m and tested using all available propaga-

tion models. The performance further deteriorates by increasing the number of nodes

in the simulated network.

2.2 Wmediumd

Wmediumd[9] is a userspace application written in C language, Developed by a

united states company called cozybit. Figure 2.2 shows the design of wmediumd.

8

Figure 2.2: Wmediumd

In the latest version of mininet-wifi, integrates wmediumd for wireless mesh network

simulations. Wmediumd leverages the capabilities of the virtual wireless interface by

using mac80211_hwsim kernel module. The simulator will communicates with the

mac80211_hwsim kernel module and generates probabilistic errors in packet trans-

mission between the virtual wireless interfaces. Using a real protocol stack reduces

the physical layer difference between simulation and actual testbeds and produces

reliable outcomes.

The initial version of wmediumd is a simple implementation of creating the wireless

interface nodes and configuring the nodes to communicate over a mesh network on the

same network, SSID and Channel frequency. Later it was updated to support inter-

ference and backoff timers for channel access mechanisms. For kernel and userspace

communication, wmediumd uses Netlink API and connects to the mac80211_hwsim

family at runtime. Once the driver connects to the user space socket, it will for-

ward the frames to the registered socket. wmediumd will work with the help of a

user-specified probability configuration file which contains the loss probabilities pa-

rameters of each link.

The limitation of wmediumd is that it only considered that all of the mesh net-

9

work nodes are in the same channel and does not extend for a multi-channel en-

vironment. So the interference calculated by the model is similar to single-channel

single-radio links, which are unrealistic in recent wireless multi-hop networks. The

same is reflected in the tests(Figure A.2, Figure A.3) of wmediumd, where we see the

throughput reduced by half with the number of nodes.

2.3 Netorium

Netorium [10] is a virtual wireless simulator that incorporates a radio propaga-

tion simulator called Meteor and a virtual wireless network application called Aster-

oid. The software was implemented in a layered approach as shown in Figure 2.3.

The radio propagation environment in netorium uses multiple computer systems

connected over a wired network and transmits wireless frames over as if they are

wired frames. This extends the scalability of virtual wireless interfaces with less

overhead and can emulate the wireless network features, network delay, bandwidth

availability, and more. The paper mentions the drawback of using hardware em-

ulator mac80211_hwsim[11] tends to require extensive computation resources, and

running large-scale wireless networks on a single computer has substantial computa-

tional costs. Meteor can also reproduce the mobility and geometric behavior of the

nodes in the network. As meteor has frame forwarding, it can work with data link

layer protocols, e.g., B.A.T.M.A.N-adv[6]. The wireless packets generated by wireless

interfaces created by mac80211_hwsim driver are encapsulated, as show in Figure 2.4

to transmit over the wired network. Asteroid use UDP encapsulation to avoid the

difficulty of handling TCP connections. Geneve[12] is used for encapsulation, and

it sets 0xFF01 to protocol field and wireless frame to options. When asteroid re-

ceives a frame, it will check the options field, send an acknowledgment frame to the

transmitter, and forward it to the destination.

Asteroid will stop processing frame until the lock flag is set to true, which in-

dicates some wireless node is transmitting and releasing it when the transmission is

10

Figure 2.3: Netorium Architecture

Figure 2.4: Encapsulation of wireless frame

done. The asteroid simulates the wireless medium behavior by the rate modulation of

802.11b/a/g and handles multiple DSSS and OFDM transmission parameters. This

will benefit the simulation to know the contention window and data transmission

times.

The limitation of netorium is that it requires more physical computer systems to

scale well. Furthermore it does not support multi-channel operations for wireless

mesh networks and OpenFlow-based programmability.

2.4 ViPmesh

Virtual Prototyping Mesh or ViPMesh[13] is a discrete event simulation tool that

simulates wireless environments for mesh networks. ViPmesh is implemented using

virtual wlan interfaces of linux mac80211_hwsim module and virtualization using

QEMU and Linux containers. The architecture of vipmesh is shown in Figure 2.5.

As mentioned, this software has multiple levels of virtualization. QEMU was used to

11

virtualize the guestOS and run the topology simulation which contains all the mesh

nodes separated by Linux IP namespaces. This will help the nodes act as if they

are working on their unmodified protocol stack. The frames will be transferred from

guest to host using the VirtIO framework. An additional interface is used to assist

in time synchronization between the guest os and simulation.

The implementation decouples the wall clock and simulation time to reduce the

effect of computing performance of the host system, which is the work adapted from

Werthmann et al.[14]. This patch to QEMU will provide different clocks for guest

simulation and host. The time for guest and simulation are discrete in time steps, and

the host system clock will be continuous. Blocking external I/O communication of

simulation until the guest process completes and communicates the simulation time

in discrete events will reduce the effect of computation and processing times. The

frame flow starts from the emulated interface and is forwarded to the host OS with

data rate and current wireless parameters.

Underlying simulation of ViPmesh is wmediumd with extension to support Medium

Access techniques carrier sense, random backoff, frame re-transmissions. IEEE802.11e

Enhanced Distributed channel access added, which is a channel access mechanism

for 802.11s networks. The EDCA model also considers the multi-channel operation

where nodes on the same frequency will form the same collision domain. Overall,

the ViPmesh project can be considered for real-time wireless mesh simulations and

support for different current wireless standards like multi-channel operation, Support

for MIMO and HT. However, the work is not open source and is not available for

general academic research purposes.

12

Figure 2.5: ViPMesh Architecture

CHAPTER 3: SYSTEM ARCHITECTURE

3.1 COMPONENTS

3.1.1 MAC80211_HWSIM

mac80211_hwsim[11] is a Linux kernel module used to simulate the IEEE 802.11

virtual radios for mac80211(Figure ??). The module is built to test the func-

tional features of mac80211 and other userspace tools which use the softmac layer

of mac80211. The virtual radios emulated by mac80211_hwsim closely match the

physical radio interfaces and operating system sees that all the radios emulated by

the mac80211_hwsim as yet another hardware radio. The emulated radio interfaces

do not have any limitations which helps researchers and developers emulate the real

hardware to build and test new features to the various wireless drivers and tools

independent of regulatory rules. Each radio in the mac80211_hwsim module works

directly by copying frames to all the enabled radio interfaces which are on the same

channel. The default driver initialization will create two radio interfaces by default

if no ”radios” parameter is passed unless the ”radios” parameter is passed with the

number of radios to create. The driver can generate up to a hundred radio interfaces.

The module can be loaded after loading the operating using the following command.

#!/bin/bash

$modprobe mac80211_hwsim #creates two radios

$modprobe mac80211_hwsim radios=100 #creates a hundred radios

$modprobe -r mac80211_hwsim #unload the kernel module

14

3.1.2 Linux IP Namespaces

The concept of Linux namespaces is to provide an abstraction to the system re-

sources and make the resources appear to be owned by the process itself, isolating

them from the global namespace. Any modification done to the resources resides

exclusively inside the namespaces. Docker containers are implemented using names-

paces. Linux supports different namespace containers like cgroup, IPC, Network,

Mount, PID, Time, User, UTS. In our work, we use Network namespaces to build the

nodes (AP, Stations) in our network. Network namespaces provide an abstraction

for network resources that are available in the system as shown in figure 3.1. Any

physical or virtual network resources available in the root namespace can be moved

to the network namespace. When the network namespace is destroyed, the resources

in the namespace will be moved back to the root namespace.

Each network namespace created has its own view of the network protocol stack,

network devices, IP routing tables, firewall rules, sockets, etc. Network namespaces

can be created by using the following command.

#!/bin/bash

$ip netns add <ns_name> #create namespace

$ip netns delete <ns_name> #delete namespace

$ip netns exec <ns_name> <command> #execute <command> on namespace

3.1.3 Netlink Protocol

The Netlink[15] protocol is an application programming interface used for ker-

nel and userspace communications. The protocol was developed to replace ioctl for

network-related configurations and monitoring. The libnl suite contains various li-

braries to support libnl-route for routing, libnl-nf for monitoring, and libnl-genl, a

generic library to extend and support custom functionality. This study specifically

uses libnl-genl to handle the socket, parsing, deparsing, sending, and receiving the

15

Figure 3.1: Linux IP Namespaces

packets from the radio interfaces created by mac80211_hwsim. The whole protocol

suite is illustrated as shown in Figure 3.2

3.1.4 Traffic Control(tc)

Traffic control or tc is a Linux tool used to configure the traffic settings in the

Linux kernel. Traffic control consists of shaping to control the traffic flow on an

egress interface. In addition to shaping, tc can also support the following: (1) control

the packet bursts, (2) Scheduling to ensure the quality of service by organizing the

transmission of packets to ensure the high priority packets are guaranteed to transmit

successfully, (3) policing occurs on ingress interface or port to filter or police the

arriving traffic, (4)Dropping, traffic which is exceeding can be dropped on ingress

and egress interfaces. Tc uses qdisc to enqueue the packets and is implemented as a

’pfifo’ queue. The queue does not perform any processing on the packet. Instead, it

holds on to the packet when the interface is not able to handle it.

3.1.5 hostapd & wpa_supplicant

Hostapd is a userspace daemon that implements IEEE802.11 access point manage-

ment system. It runs in the background and controls authentications from clients.

Uses the following command to configure hostapd by taking input, a configuration

16

10/24/21, 11:07 AM libnl - Netlink Protocol Library Suite

https://www.infradead.org/~tgr/libnl/ 1/5

Netlink Protocol Library Suite (libnl)

Summary
The libnl suite is a collection of libraries providing APIs to netlink
protocol based Linux kernel interfaces.
Netlink is a IPC mechanism primarly between the kernel and user space
processes. It was designed to be a
more flexible successor to ioctl
to provide mainly networking related kernel configuration and monitoring
interfaces.

Libraries
The interfaces are split
into several small
libraries to not force
applications to link
against a single,
bloated library.

libnl
Core library
implementing
the
fundamentals
required to use
the netlink
protocol such as
socket handling,
message
construction and
parsing,
and
sending and
receiving of
data. This
library is kept
small and
minimalistic.
Other libraries
of the suite depend on this library.

libnl-route
API to the configuration interfaces of the NETLINK_ROUTE family
including network interfaces,
routes, addresses, neighbours, and
traffic control.

libnl-genl
API to the generic netlink protocol, an extended version of the netlink
protocol.

libnl-nf
API to netlink based netfilter configuration and monitoring interfaces
(conntrack, log, queue)

Installation

Figure 3.2: Netlink protocol suite

file which contains interface, channel, SSID name, encryption type, etc.

#!/bin/bash

$hostapd <file_name> -B #starts an access point in background

On the contrary, wpa_supplicant is a daemon that runs in a client-side system.

It is used to control the wireless connections on any client device. wpa_supplicant

needs a network device and its driver loaded. Otherwise, the program will terminate.

The steps wpa_supplicant uses to connect to the wireless access point is as follows.

• Requests the kernel driver to scan available BSSes

• Select a BSS based on its configuration

• Request the driver for association

• Use WPA-EAP, WPA-PSK for authentication & configure encryptions for com-

munication

• Send and receive normal data packets

17

Uses following command to configure wpa_supplicant. ’-I’ is the parameter for inter-

face and -c to pass configuration file which contains BSS, Encryption type, Password,

etc.

#!/bin/bash

$wpa_supplicant -i <interface> -c <file_name.conf> # manage client network

3.2 FedEdge Simulator Architecture

FedEdge simulator enables the ability to mimic electronic hardware wireless ra-

dio and its operations to model an environment inside a computer system. It uses

virtualized hardware and Linux-based software tools to build and maintain wireless

networks. Most of the tools used are Linux inbuilt tools, namely IP namespaces[16] for

containerization, mac80211_hwsim[11] to create virtual radio interfaces, iw tools[17]

to manage the radio interfaces, and batman_adv [6] for shortest path routing. The

simulator is built using the python language and enables open-flow Softswitch[18] for

software-defined networking. In this section, we describe the framework of the Fed-

edge simulator, the modes of operation, workflow, and the models used for channel

emulation. The simulator operates in Netlink mode and TCLink mode.

3.2.1 Netlink Mode

FedEdge simulator architecture is illustrated in Figure 3.3. Network simulation in

typical netlink mode is similar to wmediumd without the multi-channel multi-radio

support. The userspace application registers with the driver using Netlink protocol

and libnl libraries to manage and process the packets received from kernel space

(mac80211_hwsim). The simulator will emulate the channel medium by introducing

the error probabilities while transmitting the packets based on its channel and other

stations on the same channel.

In netlink mode the packet processing works as shown in Figure 3.4, the simulator

has an active netlink socket to the driver to send and receive frames. Once the

18

mac80211_hwsimmac80211

Radio 1 Radio 2 Radio 3

Node 1 Node 2 Node 3

Medium
Emulation Emu db

SDN Controller hostapd wpa_supplicant

User-Space

Kernel-Space
Netlink

Packet
Processing

Figure 3.3: FedEdge Simulator in Netlink mode

loop

process_frame
calc_snr ,
 fading ,

interference

packet_header , RSSI , tx_ratesrc,dst,tx_rate,freq

send_frame

RECV_FRAME

mac80211_hwsim

alt
if RSSI < NOISE _ THRESHOLD

or

PER > pseudo_random

Drop Packet

SEND_FRAME

SEND_TX_ACK

Figure 3.4: Packet processing in netlink mode

simulator registers to receive frames, a function to process the frame is associated

with the callbacks. When the callback function receives the frame, it will unpack the

frame to read source mac address, destination mac address, channel, transmit rates,

payload, cookies, etc. All the parameters from the frame will be used to calculate the

signal-to-noise ratio(SNR), signal fading, interference, transmission probability, and

compare with the obtained signal with the noise threshold. Suppose the calculated

RSSI is significantly higher than noise. In that case, the simulator will compare

the packet error rate(per), obtained from the signal probability matrix for the given

MCS index and RSSI to the randomly generated number between 0 and 1. If the

transmission conditions satisfy, the simulator process the packet and send it back

to the driver by constructing a new frame. Once the frame is successfully sent, the

simulator acknowledges the source node by sending an acknowledgment frame.

However, we found this approach has drawbacks in terms of performance even

19

when the simulated topology operates in multi-channel. Performance analysis using

cprofile on the simulator process, revealed that the userspace simulator is spending

69.09% of the time in receiving the frames from the kernel driver and only 30.15%

in processing the callbacks. As the number of stations increases, these number are

going down further and reducing the performance and actual throughput as revealed

in iperf tests. To overcome this problem, we implemented dynamic link scheduling,

which works in tclink mode.

3.2.2 TCLink Mode

The simulator architecture in tclink mode remains symmetric to netlink mode.

However, in place of netlink, the simulator operates using traffic control(tc). tc is

used to shape the traffic on the egress interfaces of each node based on the signal-

to-noise ratio(SNR) obtained from the channel model and interference model. There

is no switching of frames from kernel to user space, so zero copies are required,

thereby reducing the overhead. Link scheduler comes into the play in tclink mode to

dynamically schedule the links between nodes. Link scheduler runs for every 5secs and

interacts with medium emulation to introduce signal fading and interference between

the nodes. The user-space simulator will not receive any frames from the driver, so it

does not know active transmissions. This is the trade-off in the tclink mode, where

the interference model is restricted to static interference. The simulator assumes the

worst-case scenario as all the nodes in the same channel interfere all the time. If the

network topology nodes use non-overlapping channels, there will be no interference

emulation thus not affecting the multi-channel operations. TClink mode exclusively

uses link scheduler for timely update of link parameters. Figure 3.6 describe the

flow of the dynamic link scheduler. The simulator starts with building the necessary

wireless medium parameters like signal fading, interference, propagation loss., several

threads are created for each node in the topology build stage and based on the number

of interfaces each node contains. Each thread iteratively waits for an interval of 5

20

mac80211_hwsimmac80211

Radio 1 Radio 2 Radio 3

TC

Node 1 Node 2 Node 3

Link Scheduler Medium
Emulation Emu db

SDN Controller hostapd wpa_supplicant

User-Space

Kernel-Space

Figure 3.5: FedEdge Simulator in tclink mode

MCS IDX ,

Data Rate

SNR ,

 PATH LOSS

Distance,

TX_Power ,

fading exponent

start Emu db Channel Model MCS_TABLE Link SchedulerLink Scheduler
Thread

wait 5secs

Stop

Figure 3.6: Dynamic Link Scheduling

seconds before updating the link parameters.

3.3 Simulator Workflow

3.3.1 Input Configuration file

The simulator starts receiving the input configuration file to build a wireless net-

work. code listing at 3.1, is the JSON format configuration, which provides context

to the simulator to build the topology. This file contains the following structures

(1) topology type to determine if the simulation is mesh or UAV, (2) trace_sim is a

boolean value to start the simulator in trace based channel modelling,(3) link_type

contains the mode of the simulator.(4) controller type determines the usage of

software-defined switch , (5)controller_ip will be used if the controller is set to remote

and it contins the ip address of the remote controller,(6) noofnodes maintains the to-

tal count of nodes in the simulation, (7) node_type is dictionary map which maps the

type of each node in the network,(8)radio_per_node is a dictionary map which maps

number of interfaces in each node of the network,(9)node_mac is dictionary map

which contains the mac address of each interface mapped to the nodes,(10)channel

is a dictionary map which contain the mapping from nodes to channel of each in-

21

Listing 3.1: Sample JSON Input Configuration file to Simulator
{
"topology ": <"uav" or "mesh">
"trace_sim ": < true or false >
"link_type ": <"netlink" or "tclink">
"controller ":<" remote"or "local" or "none">
"controller_ip ": <"n1 ":"192.168.1.1" >
"noofnodes ":<2>
"node_type ":<"n1":mesh ,"n2":uav >
"radio_per_node ":<"n1":2>
"node_mac ":<"n1 ":["33:33:00:00:00:01" ,"33:33:00:00:00:02"] >
"channel ":<"n1":[1,6]>
"tx_power ":<"n1":[15 ,15] >
"position ":<"n1":[x,y,z]>
"links":<"n1":["n2",n3"]>
"trace_generate ":<True or False >
"trace_log ":<"n1":[" file_loc1"," file_loc2 "]>
"propagation_model ":<log_distance ,custom_model >
}

terface,(11)tx_power is dictionary map which maps each interface of node to the

transmit power of the interface ,(12)position is a map which map between the loca-

tion of each node to (x,y,z) co-ordinates in 3d space,(13)links is dictionary map which

determines the active links of a particular node ,(14)trace_generate is a boolean value

which work to create the trace files for a simulated topology,(15)trace_log is a list

contains the file location of trace files or the interface name for which the trace is

generated,(16)propagation_model is path loss model choosen to calculate the loss

between the source and destination nodes.

3.3.2 Stages

This section describes the general workflow for FedEdge simulator and its input

and output. The input to the simulator is a JSON file that contains context related to

the topology that needs to be emulated. The simulator works in two stages. Firstly,

as shown in Figure 3.7 the simulator parses the input configuration file to build the

wireless medium parameters, save them to a database, and construct the topology.

Secondly, the simulator works either in netlink mode or tclink mode(Figure 3.8. In

22

Input

Parse config
load radios &

containers

Configure

Namespaces

Build links

init data structs

init Loss Params

Emu

db

Figure 3.7: Stage 1 Build configuration step in FedEdge Simulation

Emu

db

mode

Register Driver

get_model

_paramers get_link_info

Driver

Receive
Frames

Process frames

Cleanup

get_link_infoget_link_infoLink Scheduler Cleanup

Stop

Stop

Interrupt

Interrupt

Netlink

tclink

Figure 3.8: Stage 2 in FedEdge Simulation

netlink mode, the simulator will process frames until an interrupt occurs. In tclink

mode, the simulator uses a link scheduler to update link parameters of each inter-

face until the interrupt. Finally, in either of the modes, the topology is cleaned up

by deleting the nodes, unloading the drivers, killing threads, cleaning up softswitch

processes, etc.

3.4 Channel Modelling

Channel Modelling in wireless simulation involves the estimation of the signal-to-

noise ratio from a given source to destination. The FedEdge Simulator estimates the

channel based on Propagation loss models. In general FedEdge simulator has static

and custom models, as shown in Figure 3.9. Static models are traditional channel

models like Log Distance, Log-Normal Shadowing, etc. In addition, Custom models

can be integrated to the simulator and not restricted to GAN Based Channel Model[4]

and Trace based Channel model. In stage 1, propagation loss is calculated between

23

Channel Models

Static Models Custom Models

Log Distance Log Normal
Shadowing

GAN Based
Channel

Modelling

Trace Based
Channel

Modelling

Emu

db

Figure 3.9: Channel Models

the nodes and stored in the database based on the user-selected channel model. In

stage 2, the simulator uses the propagation loss data in the database to calculate the

wireless parameters at runtime. This section discusses the propagation models used

in the simulator.

3.4.1 Static Models

The log distance model is a traditional wireless propagation model used to calculate

the propagation loss in various environments. However, the model is limited to line-of-

sight signal propagation and does not consider obstructions like walls, trees, buildings,

etc. The model is based on a simple estimation based on referencing the signal

propagation with respect to distances. If path loss from transmitter to distance d0 is

PL0, the path loss at distance d (d>d0) is given by the following equation.

PLd→d0 = PLd0 + 10nlog

(
d

d0

)

PLd0=Path Loss at distance d0 (dBm),

PLd→d0= Path Loss at distance d (dBm),

n = path loss exponent depends on the environment.

24

Log-Normal shadowing is an extension to the log distance model. It accounts for

random shadowing effects by adding a zero-gaussian distributed random variable with

standard deviation Ï expressed in dB.

PLd→d0 = PL0 + 10nlog

(
d

d0

)
+ χ

PLd0=Path Loss at distance d0 (dBm),

PLd→d0= Path Loss at distance d (dBm),

n = path loss exponent depends on the environment,

χ = gaussian distributed random variable .

3.4.2 GAN Based Channel Model

The static models are traditional and instrumental, focusing only on path loss for

simple line of sight signal propagations. However, for wireless networks which work

on millimeter wave(mmwave) the traditional loss model does not capture delay, signal

transmit and receive angles, path gains, etc. Significant research is done to develop

wireless network models based on deep learning and generative networks to accurately

model next-generation wireless networks. This study adopts a mmwave GAN Based

channel model[4] to emulate UAV to the base station channel or, in other words, air

to ground communications. This section describes the model and its integration with

the FedEdge simulator.

The methodology demonstrated by the paper is characterized using unmanned

aerial vehicles (UAV) and base stations located on rooftops(aerial) and street

level(terrestrial) operating at 28Ghz channels. All the node orientation are calcu-

lated in 3d space w.r.t (x,y,z) axis. Training data was provided from a ray-tracing

tool developed to provide datasets to train neural networks. The generative model

used is a variational autoencoder as it avoids the min-max optimization. Problem

formulation to develop this model is considered a link between the UAV as transmit-

25

ter and base station as a receiver or vice versa. Any link between the transmitter and

receiver is formulated as following.

x =
{(
Lk, φ

rx
k , θ

rx
k , φ

tx
k , θ

tx
k , τk

)
, k = 1, . . . , K

}

At a given instance of time, the link condition vector denotes the distance vector

connecting the UAV to the base station in 3d space with d=(dx,dy,dz) and type of

the base station terrestrial, aerial. The condition vector is formulated as

u = (d, c)

The network architecture is of two stages, as shown in Figure 3.10. The first network

predicts the link status based on the condition vector u and outputs the LOS, NLOS,

NoLink. The second stage is path generator takes link state ’s’ condition vector ’u’ and

latent variable ’Z’ as inputs and produces ’x’ path vector. The path vector contains

loss, angle of arrival and departure, the azimuth angle of arrival and departure for

’K’ different paths.

x =
{(
Lk, φ

rx
k , θ

rx
k , φ

tx
k , θ

tx
k , τk

)
, k = 1, . . . , K

}

The encoder network is trained to map data based on ’x’, ’u’, ’s’ and produces a

latent variable space with conditional distribution relevant to the data. The simulator

builts and passes the conditional vector ’u’ to the model and gets the vector ’x’ of ’K’

different path loss. Finally, it takes the median to get the propagation loss and SNR

of the given source and destination nodes. This model was minimally customized to

integrated with FedEdge simulator to emulate air to ground channels. uav to uav

channel realizations in the simulator are done using static channel models and can

easily be extend to any customized channel models.

26

Figure 3.10: Two stage GAN Network[4]

3.4.3 Trace Based Channel Model

Verifying or evaluating a wireless network is the most challenging task given the

random, unpredictable nature of the wireless medium. Trace-based channel modeling

is an essential technique for replaying or reproducing the wireless scenarios from

testbed to simulation or vice versa. Trace simulation in the FedEdge simulator works

in two modes: replay an existing trace and trace generation for a given input topology.

This approach will provide the required data to model complex wireless systems.

3.4.3.1 Trace Replay

The simulator can replay the trace based on a node’s interface and entirely inde-

pendent of the type of the node. As shown in Figure 3.11 the file location passed to

the simulator with the input configuration file as dictionary key-value pair where key

being the radio interface name and associated value is the trace log location. Trace

files of each interface are processed, and threads are generated based on the number

of replay files and passed to the link scheduler. Based on the signal level on each

trace file link scheduler will run the traffic control(tc) and set the bandwidth on each

interface of the replay nodes periodically until the trace files are complete. The node’s

interfaces, which are excluded from the trace replay, are manually taken care of by

the simulator and link scheduler based on the input channel and interference models.

27

link scheduler

stop

trace files

link scheduler
link scheduler

network toplogy

trace replay
 trace generatereplay/

generate

trace logs

Interrupt

Simulated Wireless Nodes

Channel Model

Figure 3.11: Trace Based Channel Modelling

3.4.3.2 Trace Generate

The second mode of the trace model operates to generate the trace logs, which

can be used to replay on the testbed, visualize, or used as training data for machine

learning. When the simulator runs in generate trace mode, it takes the input from the

parsed input configuration and learns the interfaces. Besides, the program works in

the opposite direction compared to replay(Figure 3.11), where it takes in the topology

and produces the trace files in the form of a ”.csv” which contains time, MCS index,

RSSI, loss, traffic rate. The link scheduler will capture the data at an interval of 5

seconds until the interrupt. All the parameters recorded to the trace files are cal-

28

culations made by the simulator based on user-selected channel models, interference

models, and network topology.

3.5 Interference Model

Medium access in wired networks is more straightforward when compared to wire-

less environments because of the ubiquity of unpredictable factors like interference,

noise, signal loss, etc. Interference in wireless networks is seen when two or more

nodes try to sense the channel and transmit the data simultaneously. This causes

collisions and data corruption at the receiver. Upon detecting a collision, the trans-

mitting nodes will back off a random amount of time before sending their data again.

Interference is caused when more nodes are present in the same channel and trying

to access the wireless medium. Ultimately this causes low throughput, high latency

communications. In this study, to achieve a similar effect of interference, we consider

the presence of interference as additive white gaussian noise and simulate lower SNR.

By controlling the SNR, the simulator can change the throughput of nodes using link

scheduling and traffic control(tc). The simulator can simulate the interference in two

modes, static interference, and dynamic interference. The following sections describe

the working of static and dynamic interference in the simulator.

3.5.1 Static Interference

The simulator builds the context from the topology file and builds functional data

structures used at run time, and one such structure is ’channel_radios’. The ’chan-

nel_radios’ contains a map of channel number and interface mac addresses using

that channel. When queried with a channel number, the map returns the list of

nodes in that channel. The static interference function uses this mapping to calculate

the transmit power from all other stations in that channel, excluding the source and

destination. This approach simulates the worst-case scenario by assuming that there

will be constant interference from the nodes in the same channel all the time. The

29

following function is the formulation of the static interference in the simulator.

Interference_power =
channel_radios(channel)∑

n=0

(dbm_to_mW (signal[n][destination])

mW_to_dBm = 10 · log10(mW)

dBm_to_mW = Watt · 1000 = 10
dBm
10

Channel_radios (station_channel) – contains all stations in particular frequency or

channel

3.5.2 Delayed Dynamic Interference

To model an accurate wireless interference, the simulator needs the real-time in-

formation of the frame transmissions, keeping track of the frames generated in the

same channel, and simulating loss, latency between the frame transmissions. The

FedEdge simulation can emulate the dynamic interference in Netlink mode in a de-

layed fashion. Delayed Dynamic interference is an imitation to achieve the dynamic

interference in a single thread application. The approach is similar to static inter-

ference expect the simulator will maintain a channel array(s). if there are multiple

channels, the simulator will maintain multiple arrays and keep track of the stations

transmitting frames for a defined interval. In runtime, the interference calculations

verify the channel arrays and add noise based on the actively transmitting stations

present in the channel arrays. The channel arrays will be cleared as a function of

time. If no stations are transmitting, the channel arrays will be empty. The follow-

ing function is the formulation of delayed dynamic interference used in simulating

dynamic interference.

Interference_power =
node_transmit(channel)∑

n=0

(dbm_to_mW (signal[n][destination])

30

mW_to_dBm = 10 · log10(mW)

dBm_to_mW = Watt · 1000 = 10
dBm
10

node_transmit (station_channel) – contains actively transmitting stations in partic-

ular frequency or channel

CHAPTER 4: EXPERIMIMENTAL EVALUATION

In this thesis, we present the experiments which are part of sim to real transfer in

multi-agent reinforcement networking experiments[19] using FedEdge simulator. The

FedEdge framework is built for the physical testbed to improve federated learning

over multi-hop networks using multi-agent reinforcement learning [3]. To evaluate

the fidelity of our simulator, we ran the FedEdge framework on top of the FedEdge

simulator and physical testbed. The following scenarios are considered to realize the

reality gap between the simulation and testbed:

• We assess the physical layer of the simulator by analyzing the federated learning

experiments free of multi-agent RL on both the simulator and physical testbed.

• We analyze the reality gap difference by training MA-RL agents online in both

environments.

• We examine the outcome of knowledge transfer of the multi-agent RL by as-

sessing model performance on the physical testbed with the pre-trained Q-table

from the simulator.

4.1 Experiment setup

To minimize the differences between simulation and physical testbed, we set up

identical topologies with 10 routers and 9 workers and a server as shown in Fig-

ure 4.1. FedEdge framework works on top of the physical layer of the simulator using

batman_adv shortest path and multi-agent RL for routing packets. A trace-based

simulation was used on the simulator by inputting the logs from the testbed location

in WiNSLAB at uncc. Based on the MCS index table of 802.11ac 20MHz channels

32

FedEdge
Framework

Simulated Wireless Channel

FedEdge Simulation

FedEdge Testbed

Physical Wireless Channel

Reality Gap
FedEdge Simulation

Multi-Agent

Simulation

Multi-Agent

Testbed

Online training

Offline testing

Sim-to-Real

knowledge Transfer

worker

9

worker

8

worker

7

worker

6

worker

5

worker

4

worker

3

worker

2

worker

1

worker

9

worker

8

worker

7

worker

6

worker

5

worker

4

worker

3

worker

2

worker

1

(FL/ RL Code)

Sim-to-Real

Code Transfer Sim-to-Real

Figure 4.1: Experimental setup to in physical testbed and FedEdge simulator

specified at [20] the link scheduler converts the signal to traffic rate and sets the radio

interface bandwidth. In FedEdge Framework, each worker node will participate in

model training and distribute the model to the server for aggregation on each itera-

tion. The CNN model in FedEdge uses two convolution layers with 32 and 64 filters

respectively. Each layer has a 2x2 max-pooling layer. The convolutions are followed

by a fully connected 128 unit ReLU activation. Finally, the output layer is connected

with a softmax function. The learning rate used is 0.1 on all the worker nodes and

the model is of size 5.8MB. The model was tested with widely known benchmark

datasets such as FEMNIST and the extended federated version of MNIST[21] from

the LEAF[22] which has 62 classes.

4.2 Experiment Results

Initially, we evaluate the gap between the shortest path routing in both simulated

environment and physical testbed. Referring Figure 4.2 the closeness of both the

results, which lead to the similar iteration convergence achieving the same loss af-

ter performing the same number of epochs as shown in Figure 4.2(a) and roughly

similar wall clock convergence times Figure 4.2(b). Hence, we verify the results as

nearly identical in both simulation and reality. For the following experiment, we train

33

0 5 10 15
Global Rounds

1.000

1.500

2.000

2.500

3.000

3.500
Lo

ss

Simulator Shortest-path
Testbed Shortest-path

(a) Iteration loss convergence

5 10 15 20 25 30 35
Wall clock Time (Minutes)

1.0

1.5

2.0

2.5

3.0

3.5

Lo
ss

Simulator Shortest-path
Testbed Shortest-path

10 20 30
1.0

1.5

(b) Wall-clock time loss convergence

Figure 4.2: Test after 20 epochs of shortest-path routing in simulator (red) and
testbed (blue)

0 10 20 30 40 50
Global Rounds

1.000

1.500

2.000

2.500

3.000

3.500

4.000

Lo
ss

Simulator RL
Testbed Online RL
Target Testbed RL

(a) Iteration loss convergence

0 10 20 30 40 50 60
Wall clock Time (Minutes)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Lo
ss

Simulator RL
Testbed Online RL
Target Testbed RL

50 60

0.85

0.90

(b) Wall-clock time loss convergence

Figure 4.3: Test after 50 epochs of on-policy softmax on simulator (red), on-policy
softmax on testbed online learning (blue), on-policy softmax on testbed target testing
(black)

the RL agent in an online manner on both the simulator physical layer and physical

testbed. As illustrated in Figure 4.3, the iteration loss convergence are similar in

terms of global rounds. However, in the simulation online RL training, we achieve a

somewhat better wall-clock time than testbed with a difference of 2 minutes. Given

the results and identical physical layer setup confirms that the FedEdge simulator can

effectively reduce the reality gap between simulations and physical testbed. Finally,

to show that simulation-driven development can improve real-world deployments. We

had trained the multi-agent RL in the simulated topology on the worker nodes and

34

0 10 20 30 40 50
Global Round

0.000

20.000

40.000

60.000

80.000

100.000

Se
co

nd
s

Simulator RL
Testbed Online RL
Target Testbed RL

(a) Time per round
Simulator RL Testbed Online RL Target Testbed RL20

30

40

50

60

70

80

90

100

Av
er

ag
e

Ti
m

e
Pe

r R
ou

nd
 (S

ec
on

d)

(b) Average time per round

Figure 4.4: Test after 50 rounds of FL communications: seconds per round(a) and
mean seconds per round(b) of on-policy softmax on simulator (red), on-policy softmax
on testbed online learning (blue), on-policy softmax on testbed target testing (black)
over

transferred the pre-trained knowledge to each worker node in the physical testbed

where we froze the Q-table update and allowed the RL agent to use only the pre-

trained softmax policy. Figure 4.4 shows that the pre-trained testbed RL achieved

better results in terms of wall-clock time convergence compared to the target physical

testbed because of suspending the q-table update and pausing the dynamic adapt-

ability to the wireless environment. Still, from Figure 4.4(a), we can see that the

difference between the target testbed and online training is minimal, and both fol-

low similar trends.Figure 4.4(b) shows the deviation and mean of 50 rounds of FL

communications.

CHAPTER 5: CONCLUSION & FUTURE WORK

The challenges with a physical testbed to practice machine learning in wireless

multi-hop networks are evident. However, it is impractical to extend the experiments

with more physical testbeds. On the other hand, a realistic simulation for such

an application can help in the accelerated development and prototyping of ML for

wireless networks. In this study, we analyze the physical layer gap between the

simulation and physical testbed scenarios, presented a functional simulation tool and

an approach for democratizing AI for realistic wireless network simulations. we believe

this approach will motivate a lot of researchers and academia to build and test robust

machine learning-based models for a wide range of wireless applications.

In the future, the FedEdge simulator can be extended to support dynamic wire-

less environment update to support physical location changes to the nodes with-

out restarting the simulation. In addition, support for RF heat map generation for

the multi-channel topology simulation can help the users have high visibility of the

node position and topology setup with per-channel signal coverage. Furthermore,

P4 switches are increasingly being used in research to leverage the hardware level

programmability support. This aids in testing new independent protocols and in-

troducing custom in-band telemetry to improve communication between the nodes.

Having realistic simulation support for p4 based software switch can help test the

physical testbed topology on p4 switch architecture.

36

REFERENCES

[1] R. G. Clegg, J. Spencer, R. Landa, M. Thakur, J. Mitchell, and M. Rio, “Pushing
software defined networking to the access,” in 2014 Third European Workshop
on Software Defined Networks, pp. 31–36, 2014.

[2] P. Pinyoanuntapong, P. Janakaraj, P. Wang, M. Lee, and C. Chen, “Fedair:
Towards multi-hop federated learning over-the-air,” in Proceedings of IEEE
SPAWC, 2020.

[3] P. Pinyoanuntapong, P. Janakaraj, R. Balakrishnan, M. Lee, C. Chen, and
P. Wang, “Edgeml:towards network-accelerated federated learning over wireless
edge,” in arXiv pre-print, 2021.

[4] W. Xia, S. Rangan, M. Mezzavillla, A. Lozano, G. Geraci, V. Semkin, and
G. Loianno, “Generative neural network channel modeling for millimeter-wave
uav communication,” 12 2020.

[5] M. Chen, U. Challita, W. Saad, C. Yin, and M. Debbah, “Machine learning
for wireless networks with artificial intelligence: A tutorial on neural networks,”
ArXiv, vol. abs/1710.02913, 2017.

[6] S. W. Marek Lindner, “batman_adv,” 2011.

[7] R. R. Fontes, S. Afzal, S. H. B. Brito, M. A. S. Santos, and C. E. Rothenberg,
“Mininet-wifi: Emulating software-defined wireless networks,” in 2015 11th Inter-
national Conference on Network and Service Management (CNSM), pp. 384–389,
2015.

[8] “Linux hostapd,” 2004.

[9] c. bcopeland, “wmeidumd.” https://github.com/cozybit/wmediumd.git, 2010.

[10] K. Akashi, T. Inoue, S. Yasuda, Y. Takano, and Y. Shinoda, “Netorium: High-
fidelity scalable wireless network emulator,” in Proceedings of the 12th Asian
Internet Engineering Conference, AINTEC ’16, (New York, NY, USA), p. 25â32,
Association for Computing Machinery, 2016.

[11] J. Malinen, “mac80211_hwsim,” 2008.

[12] J. Gross, T. Sridhar, P. Garg, C. Wright, and I. Ganga, “Geneve: Generic network
virtualization encapsulation. ietf draft,” 2016.

[13] M. Rethfeldt, H. Raddatz, B. Beichler, B. Konieczek, D. Timmermann,
C. Haubelt, and P. Danielis, “Vipmesh: A virtual prototyping framework for ieee
802.11s wireless mesh networks,” in 2016 IEEE 12th International Conference
on Wireless and Mobile Computing, Networking and Communications (WiMob),
pp. 1–7, 2016.

37

[14] T. Werthmann, M. Kaschub, M. Kühlewind, S. Scholz, and D. P. Wagner, “Vm-
simint: a network simulation tool supporting integration of arbitrary kernels and
applications.,” in SimuTools, pp. 56–65, 2014.

[15] “Netlink protocol library,” 2012.

[16] “Linux namespaces,” 2002.

[17] “Linux wireless iw.”

[18] E. L. Fernandes, E. Rojas, J. Alvarez-Horcajo, Z. L. Kis, D. Sanvito, N. Bonelli,
C. Cascone, and C. E. Rothenberg, “The road to bofuss: The basic openflow
userspace software switch,” Journal of Network and Computer Applications,
p. 102685, 2020.

[19] P. Pinyoanuntapong, T. Pothuneedi, R. Balakrishnan, M. Lee, C. Chen, and
P. Wang, “Sim-to-real transfer in multi-agent reinforcement networking for fed-
erated edge computing,” CoRR, vol. abs/2110.08952, 2021.

[20] “wlanprofessionals mcs snr rssi chart.”

[21] Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010.

[22] S. Caldas, S. Meher Karthik Duddu, P. Wu, T. Li, J. Konečný, H. B. McMahan,
V. Smith, and A. Talwalkar, “LEAF: A Benchmark for Federated Settings,” arXiv
e-prints, p. arXiv:1812.01097, Dec. 2018.

38

APPENDIX A: Tests on existing simulators

This section includes the tests that are done on the existing simulators which

support mesh networks. As each simulator have different kind of architectures, The

wireless standard evaluated will be changing. But the main focus remains to see how

realistic a simulation is able to replicate the real world MCMR mesh environment.

1. Mininet Wifi

Table A.1 shows the tests conducted on mininet-wifi with respect to wireless

multi-hop network operating in MCMR only. The topology evaluated are as

flows

1.1 Single Hop testing

Station1 < −−−−− > Station2

1.2 Multi Hop testing

Station1 < −−−−− > Station2 < −−−−− > Station3

The above two topologies are test for 20,40,80Mhz bands on a, n, ac modes.

The distance between stations are test at 40,52,80,105 meters. The propa-

gation models tested are logDistance, Friis, LogNormalShadowing. The max

throughput observed is around 40Mbps on single hop tests in 20Mhz channel

width and 20Mbps on Multi-hop at the same channel width. By changing the

channel width to 40Mhz or 80Mhz the throughput results are similar which

are 10-15Mbps in all the bands a,n,ac. For convenience below visualization

graph(Figure A.1) shows the average throughput of tests in each band and

Table A.1 shows every test result in different tunable parameters.

39

Table A.1: Mininet-Wifi Tests
Topology under evaluation Band Channel Width(MHz) Propagation model Tx power Node distance latency(avg)ms Throughput(mode=a) Throughput(mode=n) Throughput(mode=ac)

1 5Ghz 20 logDistance,exp=4 15dBm 40m 1.073 9.28Mbps 8.93Mbps 9.27Mbps
2 5Ghz 20 logDistance,exp=4 15dBm 80m 1.932 4.96Mbps 4.95Mbps 5Mbps
1 5Ghz 20 logDistance,exp=4 15dBm 52m 0.335 4.48Mbps 4.11Mbps 4.47Mbps
2 5Ghz 20 logDistance,exp=4 15dBm 105m 0.383 2.31Mbps 2.16Mbps 2.32Mbps
1 5Ghz 40 logDistance,exp=4 15dBm 40m 11.714 8.44Mbps 8.15Mbps 9.17Mbps
2 5Ghz 40 logDistance,exp=4 15dBm 80m 19.43 4.62Mbps 4.50Mbps 3.33Mbps
1 5Ghz 40 logDistance,exp=4 15dBm 52m 1.153 1.24Mbps 1.37Mbps 1.23Mbps
2 5Ghz 40 logDistance,exp=4 15dBm 105m 12.466 0.681Mbps 0.726Mbps 0.908Mbps
1 5Ghz 80 logDistance,exp=4 15dBm 40m 0.312 8.99Mbps 8.26Mbps 9.31Mbps
2 5Ghz 80 logDistance,exp=4 15dBm 80m 0.337 3.4Mbps 4.59Mbps 3.33Mbps
1 5Ghz 80 logDistance,exp=4 15dBm 52m 17.823 1.31Mbps 4.56Mbps 4.45Mbps
2 5Ghz 80 logDistance,exp=4 15dBm 105m 28.728 0.908Mbps 2.35Mbps 2.33Mbps

1 5Ghz 20 Friis,exp=4 15dBm 40m 0.785 17.8Mbps 30.5Mbps 28.4Mbps
2 5Ghz 20 Friis,exp=4 15dBm 80m 1.183 29.2Mbps 31Mbps 29.3Mbps
1 5Ghz 20 Friis,exp=4 15dBm 80m 0.779 17.8Mbps 30.7Mbps 28.7Mbps
2 5Ghz 20 Friis,exp=4 15dBm 140m 0.798 31.9Mbps 29.3Mbps 29.6Mbps
1 5Ghz 40 Friis,exp=4 15dBm 40m 8.809 6.06Mbps 5.26Mbps 10.2Mbps
2 5Ghz 40 Friis,exp=4 15dBm 80m 8.417 10.3Mbps 10.3Mbps 10.0Mbps
1 5Ghz 40 Friis,exp=4 15dBm 80m 8.632 11.2Mbps 12Mbps 11.8Mbps
2 5Ghz 40 Friis,exp=4 15dBm 140m 8.586 11.8Mbps 12Mbps 11.7Mbps
1 5Ghz 80 Friis,exp=4 15dBm 40m 8.751 11.5Mbps 11.6Mbps 11.9Mbps
2 5Ghz 80 Friis,exp=4 15dBm 80m 8.657 12Mbps 11.8Mbps 11.7Mbps
1 5Ghz 80 Friis,exp=4 15dBm 80m 10.686 11.6Mbps 11.6Mbps 11.3Mbps
2 5Ghz 80 Friis,exp=4 15dBm 140m 10.619 11.9Mbps 11.6Mbps 11.7Mbps

1 2.4Ghz 20 logDistance,exp=4 15dBm 40m 2.672 NA 12.4Mbps 13.1Mbps
2 2.4Ghz 20 logDistance,exp=4 15dBm 80m 1.885 NA 6.32Mbps 6.92Mbps
1 2.4Ghz 20 logDistance,exp=4 15dBm 15m 0.777 NA 31.6Mbps 31.1Mbps
2 2.4Ghz 20 logDistance,exp=4 15dBm 30m 1.093 NA 24.5Mbps 21.8Mbps
1 2.4Ghz 20 Friis,exp=4 15dBm 40m 0.732 NA 31.7Mbps 33.6Mbps
2 2.4Ghz 20 Friis,exp=4 15dBm 80m 0.754 NA 31.6Mbps 32Mbps
1 2.4Ghz 20 Friis,exp=4 15dBm 15m 0.745 NA 31.8Mbps 32.6Mbps
2 2.4Ghz 20 Friis,exp=4 15dBm 30m 0.722 NA 32.5Mbps 32.1Mbps
1 2.4Ghz 20 logNormalShadowing,exp=4 15dBm 40m 3.923 NA 18.8Mbps 19.3Mbps
2 2.4Ghz 20 logNormalShadowing,exp=4 15dBm 80m 0.802 NA 11.54Mbps 11.4Mbps

Figure A.1: Mininet-wifi test

2. Wmediumd

The test topology for wmediumd is similar to Mininet-wifi. The wmediumd has

no options for different modes like mininet wifi. So the tests are limited and

only single and multihop are done in this case as show below.

2.1 Single Hop testing

Station1 < −−−−− > Station2

2.2 Multi Hop testing

40

Figure A.2: Wmediumd Single Hop test

Figure A.3: Wmediumd Multi Hop test

Station1 < −−−−− > Station2 < −−−−− > Station3

The throughput results(Figure A.2 A.3) are similar to mininet-wifi which are

around 40Mbps for single hop and for multi-hop its different ,wmediumd is able

to get 35-40Mbps on multihop.

