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Abstract

CHRISTOPHER DANIEL JR. Timely updating with intermittent energy and data
for multiple sources over erasure channels. (Under the direction of DR. AHMED

ARAFA)

A status updating system is considered in which multiple data sources generate

packets to be delivered to a destination through a shared energy harvesting sensor.

Only one source’s data, when available, can be transmitted by the sensor at a time,

subject to energy availability. Transmissions are prune to erasures, and each suc-

cessful transmission constitutes a status update for its corresponding source at the

destination. The goal is to schedule source transmissions such that the collective

long-term average age-of-information (AoI) is minimized. AoI is defined as the time

elapsed since the latest successfully-received data has been generated at its source.

To solve this problem, the case with a single source is first considered, with a fo-

cus on threshold waiting policies, in which the sensor attempts transmission only if

the time until both energy and data are available grows above a certain threshold.

The distribution of the AoI is fully characterized under such a policy. This is then

used to analyze the performance of the multiple sources case under maximum-age-

first scheduling, in which the sensor’s resources are dedicated to the source with the

maximum AoI at any given time. The achievable collective long-term average AoI

is derived in closed-form. Multiple numerical evaluations are then demonstrated to

show how the optimal threshold value behaves as a function of the system parameters,

in which showcases the benefits of a threshold-based waiting policy with intermittent

energy and data arrivals.
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Preface

This thesis presents my work on the topic of how to optimize timely updating systems

that use the age-of-information metric to effectively quantify the freshness of data

transmitted, using an energy harvesting sensor, shared with multiple data sources,

through an erasure channel.



CHAPTER 1: INTRODUCTION

Emerging technological innovations rely on timely wireless communications that

need to process time critical tasks with up to date information. Low-latency cyber-

physical systems which integrate computation, control, and networking have increas-

ing demands for fresh information to conduct reliable and efficient tasks. The age-

of-information (AoI) metric was first introduced in [1] as a novel way to quantify

the freshness of knowledge a system has about a process to capture the requirement

of such applications as a means to maintain information about the current state of

a network, and has since seen growing interests in the literature in various settings

demonstrated in the most recent survey [2].

In this thesis, status updating for multiple data sources using a shared energy

harvesting sensor over an erasure channel is analyzed. The sources’ data and the

sensor’s energy arrive according to Poisson processes of various rates. The sensor can

only serve one data source at a time, with scheduling and transmission policies needed

to be designed to optimally manage the arriving energy to transmit the arriving data.

The goal is to minimize the collective long-term average AoI of all sources at the

destination. AoI is defined as the time elapsed since the latest successfully-received

data has been generated at its source. We analyze the benefits of idle waiting after

both energy and data are available for dispatch from a given source, with a focus on

threshold policies, in which a new transmission occurs only if the time until energy

and data arrives surpasses a certain threshold. Idle waiting before updating has been

analyzed previously in [3] for a single source, yet in a non-energy-harvesting setting,

and with fixed waiting times. In this work, we provide closed-form expressions for:

(1) the AoI distribution; (2) the long-term average AoI for a single source; and (3)



3

...
D

1

2

N

erasure channel

q

sensor

data sources

destination

S

energy arrivals ∼ λe
data arrivals

∼ λd,1

∼ λd,2

∼ λd,N

Figure 1.1: System model overview: status updating with multiple sources using a
shared energy harvesting sensor.

the collective long-term average AoI for multiple sources under maximum-age-first

scheduling, in which the source with the maximum AoI is given priority over others.

We then show how the optimal threshold value behaves as a function of the system

parameters, considering data and energy arrival rates, erasure probability, and the

number of data sources attached to the system.

1.1 Related Works

Status updating with energy harvesting sensors has been studied in, e.g., [4–24],

and can be generally categorized according to whether the energy harvested is known

a priori (offline) or causally (online), or whether data can be generated at will or is

exogenous. Our work in this thesis is online with exogenous data arrivals.

In [4], each status update requires an energy unit and is powered by a stochastic

energy harvesting system with an infinite battery. It is demonstrated that waiting

is beneficial to reducing the expected AoI in this setting which is an inspiration to

our system’s transmission policy. In [5], an energy harvesting sensor continuously

monitors the system and sends time-stamped status updates generated at will to a

destination which keeps track of the system status through the updates. Optimal

online status updating are utilized to minimize the long-term average AoI of a single

data source subject to an energy causality constraint for the sensor. Varying battery
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sizes of one unit only, finite, and infinite for the system model are also considered.

In [6], an energy harvesting sensor is considered with a random battery recharge

model and an incremental battery recharge model. In both models, energy arrives

according to a Poisson process which completely fills up the battery in the random

battery recharge model, and partially fills up the battery incrementally in the incre-

mental battery recharge model. The optimal status update policy is then examined

for both models while showing the optimality of renewal policies, in which the inter-

update times follow a renewal process which depends on the energy arrival rate and

the size of the battery. The optimal renewal policy is then shown to have a threshold

structure, in which a new update is transmitted only if the AoI grows above a certain

threshold. Reference [7] shows a similar result to the incremental battery recharge

model of [6] for non-decreasing age-penalty functions.

While the works in [5–7] consider generate-at-will models, the works in [8–10] con-

sider exogenous data arrivals, modeled through Poisson processes, as in our setting.

Tools from stochastic hybrid systems are employed to analyze the AoI in [8, 9] in

different settings, and non-linear age-penalties are considered in [10]. Differently,

however, we introduce the notion of threshold waiting before updating and show that

it can enhance the achievable AoI under favorable circumstances.

The setting in which updates are subject to being erased is considered in [11] with a

finite battery, and in [12,13] with a unit battery, yet all with generate-at-will sampling

system models. In this thesis, we further extend [13] to a model with exogenous data

arrivals for multiple data sources.

References [14–16] study multiple data sources. The work in [14] focuses on analyz-

ing the performances of time division multiple access and frequency division multiple

access scheduling. Reference [15] follows a Markov decision process framework in a

discrete-time setting with a finite time horizon; the optimal policy is such that the

sensor first probes the channel if the maximum AoI grows above a certain threshold,
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and then decides on sampling the source with the maximum AoI if the probed channel

conditions are better than a certain threshold as well. Different from [15], we consider

an infinite time horizon setting, with exogenous data arrivals, and provide analytical

expressions for the AoI under Poisson energy arrivals. Lastly, the work in [16] con-

siders the notion of source diversity when multiple sources monitor the same physical

phenomenon with different costs.

Other related works include focusing on sending information through the timing

of status updates [17]; wireless power transfer and RF energy applications [18–21];

heterogeneous data streams [22]; sensing costs [23]; and status priorities [24].



CHAPTER 2: SYSTEM MODEL

We consider a system composed of N sources of time-varying data that are to be

monitored at a remote destination through the help of a shared energy harvesting

sensor (transmitter). Source j’s data is generated in packets according to a Poisson

process of rate λd,j, with each packet containing a time-stamp of its generation time.

Each generated data packet is fed into the sensor’s data buffer. However, the sensor is

capable of only holding one data packet at a time, and it needs to decide on whether

to discard newly-arriving data packets or preempt the currently-held ones, if any are

available for transmission.

Furthermore, the sensor relies on energy harvested from nature to communicate.

Energy arrives in units according to a Poisson process of rate λe, with each unit ca-

pable of transmitting only one data packet. The sensor is equipped with a battery

of unit size to save the incoming energy. All processes (sources’ data and sensor’s

energy) are independent. Only when both energy and data are available the sensor

may transmit. Transmissions are instantaneous, but are subject to erasures; each

transmission may get erased with probability q. Erasure events are i.i.d. across

transmissions. The destination also provides instantaneous feedback to denote suc-

cessful/failed transmissions. An overview of the system model is shown in Fig. 1.1.

Let li,j denote the ith transmission time pertaining to source j, and si,j denote the

ith successful transmission of which. Clearly, due to erasures, {si,j} ⊆ {li,j}. Let us

define E(t) and D(t) as the energy available in the sensor’s battery and the identity

of the data packet available in the sensor’s data buffer at time t, respectively. Note

that E(t) ∈ {0, 1}, while D(t) ∈ {0, 1, 2, . . . , N}, with D(t) = 0 denoting an empty

data buffer. Therefore, we have the following energy causality and data causality
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constraints [25]:

E
(
l−i,j
)

=1, ∀i, j, (2.1)

D
(
l−i,j
)

=j, ∀i, j, (2.2)

where l−i,j denotes the time instant right before li,j. A set of feasible {li,j} according to

(2.1) and (2.2) is denoted the transmission policy. We denote this by π, a scheduling

policy that determines how the sensor manages its data buffer, e.g., which data source

is to be given priority. Observe that the transmission policy is, in general, highly

intertwined with the scheduling policy.

Our main metric of focus is data freshness, captured effectively through AoI. When

a transmission for source j’s data is successful, a status update is received at the

destination. Thus, the AoI for source j at time t is defined as

aj(t) , t− uj(t), (2.3)

where uj(t) is the time-stamp of the latest successfully-received data pertaining to

source j. An example of how the AoI may evolve over time is shown in Fig. 2.1.

We use the term epoch to denote the time in between two consecutive successful

transmissions for a given source. For source j’s ith epoch, we denote its starting AoI

by ∆i−1,j, its length by Li,j, and the corresponding area under the AoI evolution curve

during which by Qi,j, see Fig. 2.1. From the figure, one can see that

Li,j =si,j − si−1,j, (2.4)

Qi,j =∆i−1,jLi,j +
1

2
L2
i,j. (2.5)

The goal is to design transmission and scheduling policies to minimize the collective

long-term average AoI of all data sources. That is, to solve the following optimization
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Figure 2.1: An example evolution of the jth source AoI in the ith epoch. Falling
(resp. rising) hashed lines rectangles denote failed (resp. successful) attempts for
source j, while the solid rectangle denotes other sources’ attempts.

problem:

min
{li,j}, π

1

N

N∑
j=1

lim sup
n→∞

∑n
i=1 E [Qi,j]∑n
i=1 E [Li,j]

s.t. E
(
l−i,j
)

= 1, ∀i, j,

D
(
l−i,j
)

= j, ∀i, j, , (2.6)

where the expectation E [·] is taken according to the underlying energy, data, and

erasure distributions.

We discuss the solution of problem (2.6) over the next two chapters, first for the

single source case, followed by the multiple sources case.



CHAPTER 3: THE SINGLE SOURCE CASE

In this chapter, we focus on problem (2.6) for N = 1 data source, which will serve

as a necessary building block for N ≥ 2. In this case, no scheduling is needed, and

hence we drop the index j. Since we aim at minimizing AoI, only the freshest data

packet is kept at the sensor’s data buffer, i.e., newly-generated data packets preempt

old ones waiting for transmission, if any are available.

Let ei,1 and di,1 denote the time elapsed from the beginning of the ith epoch until

the first energy and data arrivals, respectively. It then follows that ei,1 ∼ exp (λe) and

di,1 ∼ exp (λd). By (2.1) and (2.2), the first transmission attempt in the ith epoch

must therefore occur after at least max{ei,1, di,1} time units. Instead of transmitting

right when energy and data are available, we allow the sensor to idly wait for some

extra time units. While this lets the current data packet become more stale, it

provides an opportunity for the sensor to capture a fresher data packet in the waiting

window before transmission. Specifically, the first transmission attempt in the ith

epoch occurs after

w (max{ei,1, di,1}) (3.1)

time units from its beginning, for some waiting function w(t) ≥ t. If such a trans-

mission attempt fails, the above policy is repeated, yet with ei,2 and di,2, which now

denote the time until the next energy and data arrivals, respectively, after the first

transmission attempt. By the memoryless property of the exponential distribution,

ei,2 ∼ exp (λe) and di,2 ∼ exp (λd) as well. Transmission attempts are required to

continue until success. Let Mi denote the number of transmission attempts during
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Figure 3.1: An example for the ith epoch evolution with Mi = 2. Circles
(resp. squares) represent energy (resp. data) arrivals; a Cross (resp. check mark)
represents a failure (resp. success).

the ith epoch. It is direct to see that Mi’s are i.i.d. geometrically-distributed with

parameter 1− q. Therefore, one can write

Li =

Mi∑
k=1

w (max{ei,k, di,k}) . (3.2)

An example is shown in Fig. 3.1.

Next, observe that the proposed transmission/waiting policy induces a stationary

distribution across all epochs. Since w (max{ei,k, di,k})’s are i.i.d., and since Mi is

independent of w (max{ei,k, di,k}), one can use Wald’s identity to write

E [Li] =E [Mi]E [w (max{ei, di})]

=
E [w (max{ei, di})]

1− q
, ∀i, (3.3)

E
[
L2
i

]
=E [Mi]E

[
w (max{ei, di})2]+ E [Mi(Mi − 1)] (E [w (max{ei, di})])2

=
E
[
w (max{ei, di})2]

1− q
+

2q (E [w (max{ei, di})])2

(1− q)2
, ∀i, (3.4)

where the second equalities in (3.3) and (3.4) follow from the properties of the geo-

metric distribution. In addition, we note that ∆i−1 is now independent of Li. Hence,

E [Qi] =E [∆i−1]E [Li] +
1

2
E
[
L2
i

]
, ∀i. (3.5)

Using (3.3), (3.4), and (3.5), problem (2.6) now reduces to the following optimization
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problem over a typical epoch:

min
w(t)≥t

E [∆i−1] +
E [L2

i ]

2E [Li]
. (3.6)

For a given waiting policy w(·), the following lemma characterizes the CDF of

the starting AoI ∆i−1. By stationarity, we drop the index i for simplicity of the

presentation in the remainder of this chapter.

Lemma 1 The CDF of an epoch’s starting AoI ∆ is given by

F∆(δ) = 1− e−λdδP (w (max{e, d})− d ≥ δ) , δ ≥ 0. (3.7)

Proof: We first note that ∆ only depends on the variables pertaining to the successful

(final) transmission attempt in the epoch, and does not depend on how many failures

M − 1 occurred before it. Thus, the random variables e and d denote the time until

the energy and data arrivals, respectively, since the (M − 1)th transmission attempt.

We now use total probability to write

F∆(δ) =

∫
te,td≥0

P (∆ ≤ δ|e = te, d = td) fe,d(te, td)dtedtd, (3.8)

with fe,d(te, td) , λee
−λeteλde

−λdtd . Now observe that if w (max{te, td})− td < δ, then

clearly P (∆ ≤ δ|e = te, d = td) = 1. On the other hand, if w (max{te, td}) − td ≥ δ,

then ∆ ≤ δ if and only if at least one data arrival occurred in the last δ interval of

the epoch. The memoryless property of the exponential distribution indicates that

P (∆ ≤ δ|e = te, d = td) = 1− e−λdδ in this case. Combining both cases we get

F∆(δ) =1− e−λδ
∫
te,td: w(max{te,td})−td≥δ

fe,d(te, td)dtedtd, (3.9)

which is exactly (3.7). �
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We observe that solving problem (3.6) is challenging since the waiting function

is embedded into the CDF of ∆ in a highly intertwined manner as shown in (3.7).

Inspired by the results in [5–7,12,13] we focus on threshold waiting policies and analyze

their performance. These threshold waiting policies are defined as

w(t) = t+ [γ − t]+ , (3.10)

for some γ ≥ 0, where [·]+ , max(·, 0). Thus, a new transmission attempt takes

effect only if the time until its pertaining energy and data become available surpasses

a certain threshold γ. Threshold policies are quite intuitive, since one needs to balance

the risk of waiting too long and letting the available data grow stale, with that of

waiting too short and missing the opportunity to capture fresher available data. In

addition, they have been shown optimal in, e.g., [5–7,12,13], albeit in a generate-at-

will context in which data arrivals times are controlled. Under the specific γ-threshold

policies introduced in (3.10), the next lemma characterizes the distribution of the

starting AoI of each epoch.

Lemma 2 Under a γ-threshold policy, the CDF of an epoch’s starting AoI ∆ is given

by

F∆(δ)=1−e−λdδ
(

1−e−λd[γ−δ]+
(

1− λd
λe + λd

e−λe max{γ,δ}
))

, δ ≥ 0. (3.11)

Proof: We show this by substituting (3.10) into (3.7) and evaluating the inner prob-

ability terms. Taking this route, we have

P
(
d ≥ e, [γ − d]+ ≥ δ

)
=

∫ [γ−δ]+

td=0

∫ td

te=0

fe,d (te, td) dtedtd

=1− e−λd[γ−δ]+ − λd
λd + λe

(
1− e−(λe+λd)[γ−δ]+

)
. (3.12)
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We deal with the other probability term by dividing it into two integrals in which

e > γ and e ≤ γ as follows:

P
(
d ≤ e, [γ − e]+ + e− d ≥ δ

)
=

∫ ∞
te=max{γ,δ}

∫ te−δ

td=0

fe,d (te, td) dtddte

+

∫ γ

te=0

∫ min{te,[γ−δ]+}

td=0

fe,d (te, td) dtddte. (3.13)

One can show that the first integral is equal to

e−λe max{γ,δ} − λe
λe + λd

e−(λe+λd) max{γ,δ}eλdδ, (3.14)

and that the second one is equal to

1− e−λe[γ−δ]+− λe
λd + λe

(
1− e−(λe+λd)[γ−δ]+

)
+
(

1− e−λd[γ−δ]+
)(

e−λe[γ−δ]+ − e−λeγ
)
.

(3.15)

Adding (3.12), (3.14), and (3.15) together with some involved algebraic manipula-

tions, one can achieve the simplified expression of (3.11). �

In Fig. 3.2, we show an example of a simulated system’s empirical CDF of an

epoch’s starting AoI ∆ under a γ-threshold policy vs. the theoretical CDF in (3.11)

with λe = 1, λd = 10, and γ = 0.9. We see from the figure that the theoretical and

empirical CDFs are practically indistinguishable.

Using the CDF in (3.11), one can now compute the average starting AoI of the

epoch as follows:

E [∆] =

∫ ∞
0

(1− F∆(δ)) dδ

=
(1− e−λdγ)

λd
− γe−λdγ

(
1− λd

λe + λd
e−λeγ

)
+

λd

(λe + λd)
2 e
−(λe+λd)γ. (3.16)

Next, we evaluate the first and second moments of the epoch length L in (3.3)
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Figure 3.2: An example of a simulated system’s empirical CDF of an epoch’s starting
AoI ∆ under a γ-threshold policy vs. the theoretical CDF in (3.11) with λe = 1,
λd = 10, and γ = 0.9.

and (3.4), respectively, by evaluating the first and second moments of w (max{e, d}).

Direct computations lead to the following result for the first moment:

E [w (max{e, d})]

= γ(1− e−λdγ)(1− e−λeγ) +
(λdγ+1)

λd
e−λdγ(1−e−λeγ) +

(λeγ+1)

λe
e−λeγ(1−e−λdγ)

+
λd[λe(λe + λd)γ + 2λe + λd]

λe(λe + λd)2
e−(λe+λd)γ +

λe[λd(λe + λd)γ + 2λd + λe]

λd(λe + λd)2
e−(λe+λd)γ.

(3.17)

For the second moment, the computations lead to a more involved expression,
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E
[
w (max{e, d})2]

= γ2
(
1−e−λdγ

) (
1−e−λeγ

)
+
λ2
dγ

2+2λdγ+2

λ2
d

e−λdγ
(
1−e−λeγ

)
+
λ2
eγ

2+2λeγ+2

λ2
e

e−λeγ
(
1−e−λdγ

)
+
λd (λ2

e(λe + λd)
2γ2 + 2λe(λe + λd)(2λe + λd)γ + 6λ2

e + 6λeλd + 2λ2
d)

λ2
e(λe + λd)3

e−(λe+λd)γ

+
λe (λ2

d(λe + λd)
2γ2 + 2λd(λe + λd)(2λd + λe)γ + 6λ2

d + 6λeλd + 2λ2
e)

λ2
d(λe + λd)3

e−(λe+λd)γ.

(3.18)

Finally, using (3.16), (3.17), and (3.18), together with (3.3) and (3.4), one can sub-

stitute these expressions into (3.6) and evaluate the long-term average AoI achieved

with a γ-threshold policy. We define this as AoIq (γ) to appropriately emphasize the

dependency on q and γ.



CHAPTER 4: THE MULTIPLE SOURCES CASE

In this chapter, we extend the results of chapter 3 to N ≥ 2 sources. We consider a

MAF scheduling policy, denoted πMAF , in which the sensor’s data buffer accepts data

packets from source j at time t if and only if it has the maximum instantaneous AoI,

i.e., if and only if aj(t) ≥ aκ(t), ∀κ 6= j. Let us assume without loss of generality that

the system starts with fresh information at time 0: aj(0) = 0, ∀j, and hence, under

the πMAF scheduling policy, the sensor first dedicates all transmission attempts to

source 1’s data, until successful, and then focuses on source 2’s data, all the way until

source N ’s data is transmitted successfully, and then repeats transmission attempts

in the same order {1, 2, . . . , N}. We also note that MAF scheduling is only possible

due to the erasure status feedback made available by the destination.

Let us focus on some source j, and denote by e(j)
i,1 and d(j)

i,1 the time elapsed from

the beginning of the ith epoch until the first energy and data arrivals, respectively,

dedicated for that source. As in Chapter 3, the sensor does not immediately attempt

transmission after receiving the energy and data. Instead, the first transmission

attempt for source j in the ith epoch occurs after

w
(

max
{
e

(j)
i,1 , d

(j)
i,1

})
(4.1)

time units from its beginning. This is followed by a second attempt in case of failure,

which occurs after another w
(

max
{
e

(j)
i,2 , d

(j)
i,2

})
time units, where e(j)

i,2 and d
(j)
i,2 now

denote the time until the next energy and data arrivals, respectively, for source j

after the first transmission attempt. This continues until source j’s transmission is

successful, which takes Mj,i attempts. Afterwards, the focus turns to source j + 1.
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Observe that Mj,i’s are i.i.d. geometric random variables with parameter 1 − q.

In addition, by the memoryless property of exponential distribution, e(j)
i,k ∼ exp (λe)

and d(j)
i,k ∼ exp (λd,j), ∀i, k. The structure of our waiting policy, therefore, induces a

stationary distribution across all epochs. Therefore, we drop the index i, and define

the following random variables in a typical epoch for source j: ∆(j) as the starting

AoI; L(j) as the epoch length; and Q(j) as the area under the AoI evolution curve in

the epoch. Therefore, one can write

E
[
Q(j)

]
= E

[
∆(j)

]
E
[
L(j)

]
+

1

2
E
[(
L(j)

)2
]
. (4.2)

As in chapter 3, we focus on γ-threshold waiting policies in our analysis. We use

the same threshold γ for all sources.The analysis is readily extendable to account for

different thresholds if needed. Now observe that under πMAF , source j’s epoch length

depends on the time elapsed until all other sources are done with their successful

transmissions. With a slight abuse of notation, let us denote by Lκ the time needed

for source κ to finish its successful transmission. Therefore, one can express

L(j) =
N∑
κ=1

Lκ (4.3)

in a typical epoch. We now present the main result.

Theorem 1 Let AoIq,N (MAF, γ) denote the collective long-term average AoI of prob-



18

lem (2.6) achieved under πMAF and γ-threshold waiting policy. Then

AoIq,N (MAF, γ) =
1

N

N∑
j=1

E
[
∆(j)

]
+

∑N
κ=1 E

[
w
(
max{e(κ), d(κ)}

)2
]

2
∑N

κ=1 E [w (max{e(κ), d(κ)})]

+
q
∑N

κ=1

(
E
[
w
(
max{e(κ), d(κ)}

)])2

(1− q)
∑N

κ=1 E [w (max{e(κ), d(κ)})]

+

∑
1≤α≤N
1≤β<α

E
[
w
(
max{e(α),d(α)}

)]
E
[
w
(
max{e(β),d(β)}

)]
(1− q)

∑N
κ=1 E [w (max{e(κ), d(κ)})]

, (4.4)

with E
[
∆(j)

]
given by (3.16) after replacing λd with λd,j, and the first and second mo-

ments of w
(
max{e(κ), d(κ)}

)
given by (3.17) and (3.18), respectively, after replacing

λd with λd,κ.

Proof: It is clear from (4.3) that L(j)’s are i.i.d. across sources ∼ L(?). By (4.2), one

can express AoIq,N (MAF, γ) as

1

N

N∑
j=1

E
[
∆(j)

]
+

E
[(
L(?)

)2
]

2E [L(?)]
. (4.5)

Now observe that the average starting AoI E
[
∆(j)

]
will be given by (3.16) after

replacing λd by λd,j, since the same γ-threshold policy is applied at every transmission

attempt. Thus, it only remains to evaluate the first and second moments of L(?).

Towards that end, using (4.3), one can write

E
[
L(?)

]
=

N∑
κ=1

E [Lκ] , (4.6)

E
[(
L(?)

)2
]

=
N∑
κ=1

E
[
(Lκ)

2]+ 2
N∑
α=1

α−1∑
β=1

E [Lα]E [Lβ] . (4.7)

Next, we note that the first and second moments of Lκ are given by (3.3) and (3.4),

respectively, in which the corresponding first and second moments of the waiting

random variables are given by (3.17) and (3.18), respectively, after replacing λd with
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λd,κ. Substituting these results into (4.5) and then simplifying gives us our main

result in (4.4). �



CHAPTER 5: NUMERICAL EVALUATIONS

We now present various numerical evaluations to further illustrate the results of

this thesis. We first show how the optimal threshold value behaves as a function of

the system parameters for the single source case. In all experiments, we set the energy

arrival rate to λe = 0.1. In Fig. 5.1, we plot the optimal threshold γ∗ that minimizes

AoIq (γ) versus the erasure probability q, with varying values of λd. One can see that

as the erasure probability increases, the optimal threshold value decreases, which

demonstrates that waiting for additional data to arrive is not beneficial for the AoI

due to the increased rate of erased data transmissions in our system. We also observe

that as the data arrival rate approaches the energy arrival rate, the optimal threshold

value decreases. This shows that waiting is more beneficial to reducing the AoI when

λd is relatively larger than λe, and when q is relatively small.

In Fig. 5.2, we plot the percentage gain due to waiting versus the erasure probability.

We define the percentage gain as

(
1− AoIq (γ∗)

AoIq (0)

)
× 100%. (5.1)

That is, the percentage amount of reward one can gain by applying the optimal

threshold waiting policy when compared to a zero-wait policy. From the figure, it can

be seen that as the data arrival rate approaches the energy arrival rate, there is no

percentage gain to waiting for additional data arrivals. However, as the data arrival

rate becomes relatively larger than the energy arrival rate, waiting becomes signifi-

cantly beneficial with the corresponding optimal threshold value shown in Fig. 5.1. In

addition, since γ∗ approaches 0 as q increases, we see that the percentage gain due to
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Figure 5.1: Optimal threshold γ∗ versus the erasure probability q, with λe = 0.1 and
varying values of λd.

waiting decreases with the increase in erasure probability as well. Finally, though it

is not shown on the figure, we observe, numerically, that for λd > 10, the percentage

gain curve is almost the same as that for λd = 10. This may be attributed to the fact

that the sensor’s battery is unit-sized, and therefore higher gains from waiting could

be achieved for larger battery sizes in future work.

Next, we present results for the multiple sources case. For that, we focus on a

symmetric system in which all data arrivals’ rates are the same, i.e., λd,j = λd, ∀j.

Hence, we drop the sources’ indices from (4.4), since every random variable now is
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Figure 5.2: Percentage gain due to waiting versus the erasure probability, with λe =
0.1 and varying values of λd.

identical, and simplify the expression to obtain

AoIq,N (MAF, γ) = E [∆] +
E
[
(w (max{e, d}))2]

2E [w (max{e, d})]
+

(
q + N−1

2

1− q

)
E [w (max{e, d})] .

(5.2)

It is immediate to see that the collective long-term average AoI is increasing in both

the number of sources N and the erasure probability q. In Fig. 5.3, we show how

the optimal threshold γ∗ behaves as a function of N and q. Fig. 5.3 demonstrates

that as the number of sources grow relatively large, there is no benefit to waiting

for additional data arrivals and the corresponding optimal threshold policy becomes

a zero-wait policy. This is mainly due to the fact that as the number of sources

increase, each source’s inter-update duration becomes longer, since they need to wait
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Figure 5.3: Optimal threshold γ∗ versus the number of sources N , with λe = 0.1,
λd,j = 10, ∀j, and varying values of q.

for every other source’s successful transmission under the πMAF policy. It is also

shown in Fig. 5.3, as in Figs. 5.1 and 5.2, that the optimal threshold value decreases

as a function of q. Once q = 0.5, the optimal threshold values become 0 for any

number of sources, which agrees with the data demonstrated in Figs. 5.1 and 5.2.

This also resonates with the results shown in the generate-at-will single source study

of [12], in which a zero-waiting policy is optimal if q ≥ 0.5.



CHAPTER 6: CONCLUSION

A multiple source status updating system has been considered, in which data is

generated according to Poisson processes and are conveyed to a destination over an

erasure channel using a shared energy harvesting sensor. Detailed analyses of the

achievable collective long-term average AoI of the sources have been carried out with

a focus on threshold-based transmission policies combined with the maximum-age-

first scheduling policy, showcasing the benefits of waiting before updating in such

systems and extending previous works in the literature.



CHAPTER 7: FUTURE WORK

Future work includes analyzing other scheduling policies for sensors with larger

data buffers and battery sizes. These additional data buffers and battery sizes could

very well contribute to additional percentage gain due to waiting at the expense of a

more laborious analysis of the system.

The MAF scheduling policy may be the optimal policy when the data arrivals’ rates

are the same, i.e., when the system parameters are symmetric across sources. How-

ever, when the data arrivals’ rates are not the same, and we evaluate a non-symmetric

system, different scheduling policies are necessary to enhance the performance of the

model and solve problem (2.6) optimally.

Finally, extending the analyses done for arbitrary energy and data arrival processes

that are not necessarily Poisson could be pursued, so as to model more general and

practical systems. It is expected, however, that closed-form solutions in these cases

would not be direct to achieve with intensive numerical work required to utilize these

system models.
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