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ABSTRACT 
 
 

KRISTOFFER RASK. Introducing non-linearities and interaction terms in a conditional 
asset pricing model. (Under the direction of DR. CRAIG A. DEPKEN II) 
 
 
Throughout history of the conditional asset pricing literature the goal has been to find the 

best possible model to explain what determines a firm’s expected stock return. In 

Dickson (2015) the variables that prove to be best at explaining a firm’s stock return is 

book-to-market, market capitalization, gross profitability, investment, short-term reversal, 

and momentum. The aim of this study is to further examine improvements in Dickson 

(2015) by changing the functional form and adding interaction terms between the 

variables. The chosen methodology is a version of the popular Fama-Macbeth regressions 

which are well documented in the literature to determine the added risk premium 

associated with firm characteristics. By allowing for the possibility of non-linear 

characteristics and interaction terms, this study shows that market capitalization follows a 

significant non-linear relationship with the average stock return and by adding the 

squared regressor to the model, the explanatory power and risk premium for market 

capitalization improves. The study further shows that including the interaction between 

investment and market capitalization improves the explanatory power of the investment 

variable and the market capitalization variable. 
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CHAPTER 1: INTRODUCTION

This study is an extension of the first chapter in Dickson (2015) with the sole

purpose of exploring new insights into how the risk premiums in a conditional asset-

pricing model may be better explained. This will be done by either including non-

linear forms of the firm characteristic regressors or by including interaction terms with

the other variables in the model. This study examines the additional explanatory power

these variables contribute with by looking at the regression statistics. The choice of

variables is based on those included in Dickson (2015) who, after careful consideration,

determined those variables that best explain the excess return of a firm’s stock. The

included variables are book-to-market, market capitalization, investment, and gross

profitability between the years 1963 and 2013. The historical stock price data comes

from all firms in the exchanges: NYSE, NASDAQ and AMEX and the accounting

data used for calculating the firm characteristic regressors is gathered from Compus-

tat. Based on the findings in Dickson (2015) this study uses the same variables, but

changes the functional form and includes interaction terms to determine if it is possible

to improve the explanatory power of Dickson’s (2015) model. If successful, by chang-

ing the functional form or including interaction terms of the regressors, future trading

strategies can use these findings and better explain the predicted return. The majority

of the new regressors does not improve the explanatory power, but when including the

squared market capitalization and the interaction term between market capitalization

and investment, the model is better explained.

It is important to understand that the results generated from this study can not be

used as an implementable trading strategy. Fama-Macbeth regressions are not set up



in a way that work as a trading strategy. The benefit with the regressions is that it is possible

to determine the individual firm characteristic’s risk premium which findings can be added

to the selection process when constructing the trading portfolio.

The comparison will be possible because the same methodological procedure will be

used, specifically, Fama-Macbeth regressions are performed following Dickson (2015).

The results from this study will be possible to include in both current conditional asset

pricing models and add new insights to the asset pricing literature.

In the current literature there is only a limited number of studies in this area. The dis-

cussion exists but there is no paper that explicitly takes a model and includes new variables

that are either new functional forms or interaction terms. The aim of this study is to use

the well documented Fama-Macbeth regression approach and include different functional

forms and determine if non-linear marginal effects exist in the chosen firm characteristic

variable. The results show how the slopes and t-statistics for the regressors change when

adding squared terms and interaction terms to the regression. This study will conclude

if this is possible by answering the following question: Is it possible to improve the ex-

planatory power of the risk premium in a conditional asset pricing model by allowing for

interaction terms between the regressors and non-linear functional forms?
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CHAPTER 2: BACKGROUND

Dickson (2015) investigated issues from previous asset pricing literature and fo-

cused on generating a systematic portfolio choice solution with better return predictabil-

ity. In his first chapter, Dickson (2015) investigates in a multivariate cross-sectional

regression which firm characteristics variables that are best at predicting a firm’s stock

return. With the generated model he builds tradable portfolios to compare with bench-

marks to see by how much the portfolios outperform the market. In his second chapter

Dickson (2015) continues the portfolio analysis using individual stock data. Results

show that his approach of using naive diversification outperforms the use of traditional

active diversification. The third chapter finalizes the analysis by investigating how well

conditional asset pricing models can construct tradable stock portfolios. To improve

the performance of tradable stock portfolios Dickson (2015) discusses the importance

of looking at improvements in return predictability by finding a functional form of firm

characteristics that is better at explaining the predicted return. By starting off with the

popular Fama-Macbeth regression, Dickson (2015) uses predictive regressions that are

linear models, with no squared terms or interaction terms.

The Fama-Macbeth regression is a cross-sectional regression estimating risk pre-

miums for asset pricing models. The method was introduced by Fama and MacBeth

(1973) using the Capital Asset Pricing Model (CAPM) with a panel data of multi-

ple firm characteristics for a number of firms over a specific time period. The Fama-

Macbeth regression combines one regression estimating the betas (risk premiums) for

every firm characteristic over time. The second step is to regress stock returns on these

estimated betas for a fixed period of time and then iterate this procedure for every time



period in the sample. The betas from this regression are the estimated risk premiums for

each firm characteristic.

Slope coefficients in the regressions can be interpreted as returns when used in characteristic-

based portfolios and hence, by generating a higher slope coefficient for a regressor, the re-

gressor’s marginal risk premium awarded to the firm’s stock price increaes. In other words,

if it is possible to interpret the slope coefficients in the characteristic-based portfolios as

returns, the t-statistic, which is a statistical measure testing the significance of an included

regressor coefficient, can be used as proxy for the Sharpe ratio, a commonly used mea-

sure of return considering the risk of an investment. The higher the t-statistic, the higher

the Sharpe ratio. As a portfolio manager you want to achieve as high return as possible

with the lowest possible risk, therefore the Sharpe ratio is a good measure when comparing

different investments with different risk profiles.

2.1 Literature Review

In their pioneering asset pricing paper Fama and MacBeth (1973) laid the foundation

for the standard model for asset pricing. In their initial stochastic model for stock return

Fama and MacBeth (1973) tested for non-linearities in all firm characteristic variables by

including squared regressors of the variables in the model. The included squared regressors

worked as a test for linearity between expected return on a firm’s stock return and the firm

characteristic. Fama and MacBeth (1973) argue if the price formation on tradable firms is

shifting based on investors attempts to hold efficient portfolios, the linearity condition must

hold. Fama and MacBeth (1973) found that in the two-parameter model for their dataset

(1935-1968), they were not able to reject the hypothesis that the relationship between the

expected return and the risk factor is linear even though they find evidence that there existed

stochastic nonlinearities from period to period.

Fama and French (1992) saw some connection between the size variable and the book-

to-market variable, i.e. testing for a statistically significant interaction term between these

two regressors. They found that small firms tend to have lower stock price (higher book-
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to-market ratio) due to higher uncertainty about their future profits. Large firms on the

other hand tend to have higher stock prices, based on the opposite argument - more positive

future outlook and thus a lower book-to-market ratio. In their data they find a negative cor-

relation between the logarithmic value of market capitalization and the logarithmic value of

book-to-market for individual stocks of -0.26, hence, individual slope coefficients will dif-

fer depending on whether one includes the interaction variable in the regression. Fama and

French (1992) argue that the interaction term between size and book-to-market seems to ab-

sorb the roles of leverage. In their preliminary tests, they capture a pattern in the data where

the natural logarithm of the leverage variable is a good functional form which captures the

relationship between leverage and average returns. Using the logarithmic transformation of

the regressor instead of using levels smooth’s the observation distribution, which reduces

the impact of extreme values.

In a more recent paper, Fama and French (2008) argue that the standard Fama-Macbeth

regression faces potential problems when the sample data are sorted into portfolios. They

argue that the assigned risk premium in the regression for each firm characteristic will not

represent the true marginal effect they have on average stock return. The second issue when

using sorted portfolios is that the estimated functional form of the firm characteristics will

not be very precisely estimated compared with an estimation using a large data sample.

Fama and French (2008) analyzed how accurate this estimation is in the full data sample

by looking at simple diagnostics of the regression residuals. They find that by using a large

data sample the functional form can be measured more precisely.

Fama and French (2008) separate stocks in three groups based on firm size before run-

ning the Fama-Macbeth regressions (microcap stocks, small stocks, and large stocks). They

do this separation to more precisely examine how firm characteristics behave in different

sized firms. The smallest stocks are most likely to have extreme firm characteristics and

extreme stock returns. When running the regression using the full data sample, the smallest

stocks contribute more to a firm characteristic’s risk premium than the average firm in the
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full data sample, so the slope coefficients (risk premiums) are not as accurately estimated.

Fama and French (2008) compare the size-sorted output with the output using the full data

sample. Minor differences exist, but they are still able to draw the same conclusions from

each regression about which firm characteristics are good at explaining a firm’s stock re-

turn. Fama and French (2008) finish by saying, using an alternative functional form of

the firm characteristics in the full data sample regression can potentially capture the minor

difference in the output.

The Fama and French (2008) results indicate that the average residuals from the above-

mentioned regressions do identify a minor functional form problem for the following vari-

ables: net stock issues, momentum, accruals, profitability, and asset growth. The problem

lies in the extreme values. In other words by using the linear functional form, the extreme

values are not fully captured in the model. Fama and French (2008) finish their paper by

saying that there is no point in trying to find a better explanation of average returns by

changing the functional form. This is because many of the anomalous returns are caused

by the extremes, and changing the functional form will not produce a better explanation of

the excess return.

Fama and French (2015) discuss the potential relation between size and investment.

When sorting portfolios based on size and investment there is a size effect present when

looking at how much investment affects the average return. Small stocks have higher av-

erage return and small firms with low investment have much higher average return than

small firms with high investment. But looking at the portfolio with the highest amount of

investment (top qunitle) the size effect is not present. This relationship can be tested by

including an interaction term between the market cap and investment.

Cordis and Kirby (2015) use an alternative approach of capturing the relationship be-

tween a firm characteristic and a firm’s average stock return. Their approach is entirely

built on a one step cross-sectional regression, compared to the more commonly used two-

step approach found in this study, where the object is to use cross-sectional estimates in a
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time-series specification.

Cordis and Kirby (2015) conclude that an advantage of using their alternative method

is that the method is valid independent of the number of firm characteristics under consid-

eration. This means that the model can easily be extended and include any number of firm

characteristics, because the method isolates the relationship between each firm character-

istic and the firm’s average stock return by controlling for the cross-sectional correlation

between the regressors. They also introduce a brief discussion about how including non-

linear functional forms of the firm characteristics in the model can generate new insights in

the relationship between average returns and the firm characteristic variables. Cordis and

Kirby (2015) mention that including the squared functional form of the firm characteristic

regressor is a simple test for a quadratic relationship between a firm characteristic and the

firm’s average stock return.
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CHAPTER 3: DATA AND FIRM CHARACTERISTIC VARIABLES

The regressions use a stock price data from the years 1963 and 2013. The historical

stock price data have been collected from the Center for Research in Security Prices

(CRSP) and the accounting data have been collected from Compustat. The data have

previously been used in Dickson (2015) and the same data are used in this study. The

historical stock price data comes from the exchanges: NYSE, NASDAQ, and AMEX

(share codes 10 and 11). The paper will use all available data and include all firms in

the regressions. The microcap stock definition will be the same as in Fama and French

(2008), i.e., stocks with a market equity below the 20th percentile of the NASDAQ mar-

ket capitalization distribution. Microcap stocks are roughly 50% of all stocks traded at

NYSE, NASDAQ, and AMEX and represent 3% of total market capitalization.

The accounting data from Compustat will be used to calculate the firm characteris-

tic regressors. In order to make sure the model is only trading on public data, the tests

will only use data that are available at time t. In addition to this, the data will be lagged

a minimum 6-month, max 18-month to make sure all the information used is publicly

available. The firm characteristic betas are a weighted average across the time periods

and the firm characteristics are the actual observation at a specific time:

The book-to-market regressor is calculated as the book value of the firm’s equity

over the market capitalization of the firm. The book value of equity is calculated as

the shareholder’s equity, plus deferred taxes, and less preferred stock. The market

capitalization of the firm, price per share times the number of shares outstanding, is

taken from the month of June each year.

The market capitalization regressor is calculated by the same method as the



denominator in the book-to-market regressor, specifically it is the share price times the

number of shares outstanding for the firm in June each year.

The investment regressor is the growth in investments from one year to the next. The

regressor is calculated as the change in total assets by dividing the change in total assets in

year It−1 by the total assets in year It−2.

The Gross Profitability regressor is the ratio of the firm’s gross profits to its total assets.

The gross profits are calculated as total revenue less cost of goods sold (COGS).

The Short-term reversal regressor is the 1 month lagged return for time period t.

The Momentum regressor is the previous year’s 11 month return. The 12th month return

is excluded in order to not capture any Short-term reversal effect in the regressor.

3.1 Spurious Regression and Data Mining

In the asset pricing litterature it is important to understand how the explanatory vari-

ables covary with the expected return of the model. Situations when a variable has high

autocorrelation the resulting statistics will overestimate the quality of the variable in a time

series regression. This characteristic called spurious regression will yield higher, more sig-

nificant test statistics as pointed out by Yule (1926) and Granger (1974). The regression

model will show more significant relations than what actually exists. Ferson, Sarkissian,

and Simin (2006) restate the previous research that stock return data has strong persistence

and that, for instance, the dividend yield spread of the SandP 500 index has an autocorrela-

tion of 0.97 which may cause the time series regression to be spurious. They also argue that

even though stock returns are not considered as highly autocorrelated, the expected return

consists of unobserved expected return and unobserved noise, so the expected returns could

be persistent time series and the risk of spurious regression exists. Looking at this the other

way around, i.e., if the expected returns are not persistent, the estimated results will not be

biased and spurious regression does not exist even though the regressors could be highly

autocorrelated (because the autocorrelation of the errors are the same as the autocorrelation

of the expected return). They continue to restate that this phenomenon causes the t-test
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to generate statistically significant values in some cases when the regressors actually are

independent. In their tests they conclude that the problem arises from the biased estimate

of the standard error.

In this study the explanatory variables are all fairly stationary and due to the use of

Fama-Macbeth regression methodology (sequential cross-sectional regression, not time se-

ries regression) the assumption will be made that the regressions are not spurious.

A second issue when working with conditional asset pricing models is data mining,

the process of finding variables that have a systematic and consistent relationship with the

dependent variable. The variables that in history have shown to be significant may not be

of value in the future and this is a crucial problem to solve when trying to find a model that

tries to predict excess stock returns in future periods. In this study, the included variables

have been closely examined so that they are chosen based on economic theory and not

solely based on the fact that the variables in historic periods seem to explain the excess

return.

10



CHAPTER 4: METHODOLOGY

4.1 Fama-Macbeth Replication

In the asset pricing literature the most common method for testing firm charac-

teristic variables, that could potentially explain anomalous returns, is by modeling a

regression based on Fama and MacBeth (1973). Fama and MacBeth (1973) tested their

theory on the Capital Asset Pricing Model (CAPM) and by combining two regressions

were able to explain the premium rewarded to one of the included risk factor’s expo-

sure to the market. The breakthrough combined two regressions, one cross sectional

regression capturing the firm characteristics effects on an individual stock return and a

time-series regression that makes predictions about the risk premium for each factor.

Step 1. For each period of time estimate a cross sectional regression relating the

stock return of a company to the chosen firm characteristics for the same time period.

By using a standard OLS regression the slope coefficient, beta, for the individual risk

factor, xi,t can be captured.

ri,t = α + βxi,t + εi,t; i = 1, 2, ..., N ; t = 1, 2, ..., T. (1)

This procedure will generate a vector for each intercept and slope coefficient that allow

one to compute the average of the slope coefficients over time. The elements that are

statistically significant, i.e., have predictive power in explaining stock returns, are kept

as explanatory variables for the second step of the model.

Further discussion from Cordis and Kirby (2015) confirms that the firm character-

istics are usually lagged in order to make sure that the changes in the variables reflect

public information at the beginning of the holding period. Cordis and Kirby (2015)



also add that even though the linearity assumption of the firm characteristics is violated,

the relation between the firm characteristic and the firm’s stock return only needs to be

monotonic (strictly increasing or strictly decreasing) to prove that the firm characteristic’s

contribution to the model is statistically significant when using a large cross-section of

firms.

The errors in a standard OLS regression are correlated across the individual firms. This

creates a problem because the t-statistics assume that the error terms are uncorrelated.

There exist two options to tackle this issue, either use Fama-Macbeth standard errors or

use a model that uses the cross sectional correlation. Petersen (2005) discusses the proper-

ties of the Fama-Macbeth standard errors and adds that the errors are biased downward and

increase along with the magnitude of the firm effect. Because the Fama-Macbeth regres-

sion tries to explain the time effect, not the firm effect, the Fama-Macbeth standard errors

are unbiased and more efficient than the OLS standard errors.

Step 2. The following time series regression uses the time estimated intercepts and the

time estimated betas generated from the OLS regressions, by using the previously discussed

Fama-Macbeth standard errors. Equation (2) captures the time series average:

E(ri) = E(α) +
K∑
j=1

E(βj)E(xj). (2)

Some firms in the cross-sectional average β̂ vector have a higher explanatory variable

than the average and some firms have a lower explanatory variable than the average. Taking

the estimated value of this vector, E(β̂), the sum is zero and can be thought of as a self-

financing portfolio, ”zero-cost hedge portfolio”, because you will buy the firms with the

higher expected return and finance the purchases by shorting the firms with lower expected

return.

By using the testable form of the CAPM model, in a multi-factor equilibrium setting,
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R̃i is defined as:

R̃i,t = Rf +
K∑
j=1

βi,j[R̃j,t −Rf ] + ε̃i,t. (3)

For each firm i and average j, we can continue discussing the relationship between the

average firm characteristic βj in time-series regressions and the average firm characteristic

βj in cross-sectional regressions. But before I discuss this it is crucial to state several as-

sumptions when using time-series regressions in an asset-pricing model. Dickson (2015)

lists the assumptions in the following order: 1) The multi-factor versions of the market

model must hold every period; 2) the equilibrium relationship must hold every period; and

3) the β̂′s are stable over time. In equilibrium we have β̂′s in both the cross-sectional set-

ting and in the time-series setting that are stable over time. In the multi-factor asset pricing

model, equation (3), β̂j is defined as a zero-cost hedge portfolio. In equilibrium, taking the

average firm characteristic beta, β̂j , relationship between the models into account with the

assumption mentioned above that β̂′js are stable over time, it is possible to assume that the

firm characteristic beta, β̂j in the time-series regression is equivalent to the firm charac-

teristics in the cross sectional regressions. Because of the earlier explained characteristics

of E(β̂) in equation (2), β̂j , is defined as the zero-cost hedge portfolio and with R̃j,t in

equation (3) that in asset pricing litterature is defined as the zero-cost hedge portfolio it is

possible to construct portfolios on the basis of factor loadings, when the factors are con-

structed as zero-cost hedge portfolios of the same firm characteristics which is the case in

these regressions.

4.2 Model Specification

The aproach I will use when trying to better explain the risk premium generated in

Dickson (2015) is to first use his existing regression model and experiment with the func-

tional form of the regressors and, second, measure how including interaction terms changes

the explanatory power.

The method to generate the output consists of a cross-sectional regression and a time-
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series regression described in section 4.1 above.

I will explain the cross sectional regression models that are used in Dickson (2015) and

introduce the changes made in order to determine if it is possible to increase the explanatory

power.

The cross sectional regression model is specified as:

ri,t+1 = α + β1ln(BE/ME)i,t + β2ln(ME)i,t + β3GPdati,t

+β4INVi,t + β5R1to0i,t + β6R12to2i,t + εi,t.

(4)

Where the α and β’s are parameters to be estimated and εi,t is a zero mean error term. The

dependent variable is the value of stock i in period t and the included explanatory vari-

ables are book-to-market (ln(BE/ME)), market capitalization (ln(ME)), gross profitability

(GPdat), investment (INV), short-term reversal (R1to0) and, momentum (R12to2).

I will modify the model by including the new interaction terms and changing the func-

tional form of the regressors in the cross sectional model. A rolling average of the monthly

data sample will be used:

r̂i,t+1 = α̂s + β̂1,sln(BE/ME)i,t + β̂2,sln(ME)i,t + β̂3,sGPdati,t+

β̂4,sINVi,t + β̂5,sR1to0i,t + β̂6,sR12to2i,t + εi,t.

(5)

In equation (5), all the variables are included. i.e., all the variables Dickson (2015) finds

have the best explanatory power when looking at individual excess stock return. The in-

cluded regressors can briefly be divided between the slow moving level variables (ME,

BE/ME, GPdat, and INV) and the short-lived regressors (short-term reversal and momen-

tum) whose persistence is more short-lived and their values are based on historic stock

returns causing higher variation and higher turnover in a portfolio.

The slow moving variables will be squared and interaction terms created between every

variable, except between log(BE/ME) and log(ME) because market equity is simply the
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denominator of the log(BE/ME) variable. The output will generate a total of nine new

regressions, one regression for each new variable, summarized in the Appendix.

4.3 Functional Form

When trying to find a functional form of an independent variable that better fits the data,

previous theory is a good starting point. When no previous theory exists, looking at the

data and experiment is the best way to determine if a functional form, other than the linear

functions, is better at explaining the data. I will experiment with the included regressors and

by looking at the generated statistics determine if there could exist an alternative functional

form that increases the variable’s explanatory power.

Previously mentioned is that Fama and MacBeth (1973) found nonlinearity characteris-

tics in the data from period to period, but not throughout the whole data set. I am working

with a different data set, which means that these nonlinearities could be present. By in-

cluding squared terms the nonlinearity condition can be tested. This approach allows me

to find new insights into how excess returns vary with firm characteristics.

4.4 Interaction Terms

When arguing for interaction terms that have not yet been discussed in the literature, it is

harder to argue for each interaction term (opposed to the functional form). It is not possible

to plot the data to determine if there exist another interaction term that may improve the

model. The approach I will use is to experiment by including interaction terms for all the

regressors and then subsequently drop one after one and look at the resulting statistics and

by that approach determine which interaction terms increase the explanatory power and

those variables that do not.

4.5 Incremental Contribution

Once the regressions have been set up with the new variables, the results will be spec-

ified in a table where I will be able to determine the effect each new regressor has on the

excess return and its explanatory power. In order to determine each individual variable’s
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incremental contribution to the overall result I will include several statistical variables for

each specific model. For instance, the R2 provides information how the explanatory vari-

ables explain the overall variance of the model. A higher R2 is indicated by a closer es-

timation of the independent values to the actual data and indicates a larger fraction of the

model’s overall return volatility.

I will be using the same R2 decomposition as in Greene (2002):

R2 = (ρ(y, ŷ))2

R2 = (ρ(y, ŷ))2 = β̂

(6)

R2 = (ρ(y, ŷ))2 =
cov(ŷ, y)2

var(ŷ)var(y)
(7)

β̂ =
cov(ŷ, y)

var(y)
(8)

The panel data set contains a different number of observations for each month of data

and in order to adjustR2 for this, I have to multiply the covariance for each month with that

month’s degrees of freedom, equation (9). The same procedure is done for the variance of

y, equation (10). This procedure will generate the appropriate sum of squares.

SSm = (N − 1)× cov(ŷ, y) (9)

SSt = (N − 1)× var(y) (10)

The sum of squares is added up and divided by the total number of sum of squares. This

will give me the approprate R2.

Even though the R2 is an important variable to look at the more interesting thing to

look at is how much each variable contributes to the excess return. All the variables have

already been proven in Dickson (2015) to have predictive power, so that part of the analysis
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will be ignored. The focus will instead be on whether the new interaction variables and the

functional forms improve the existing variables explanatory power and risk premium.

Because I will use various functional forms, I will conduct several tests similar to Clarke

(2014a), i.e., I will start with the full model, including all variables and the interaction

terms and then drop each interaction term. The output from each test will show how much

incremental contribution these variables have.

I define an increase in a firm characteristic’s incremental contribution to the model by

a better estimated risk premium for the firm characteristic, which is caused by a lower es-

timated standard error and a higher t-statistic, see equation (11). As an example, if the

true relationship between a firm’s market capitalization and a firm’s average stock return is

non-linear, including the squared regressor of market capitalization in the regression will

improve the explanatory power in how much of a firm’s risk premium is caused by the

market capitalization of the firm. With a better estimated regressor, the standard error will

be lower, hence, the t-statistic for the market capitalization regressor will be higher. The

opposite, or no effect, will occur if the included regressor does not improve the explanatory

power. In order to easily compare the added explanatory power in each new regression

model, the t-statistic is presented in parenthesis under each intercept and regressor, see out-

put tables in the Appendix. With the previously mentioned possibility to interpret the slope

coefficient as the marginal return in a characteristic-based portfolio, the corresponding t-

statistic can be used as proxy for the Sharpe ratio for that slope coefficient. The reason

to look at returns when considering risk is because a higher return is not always good. If

the higher return is achieved by undertaking much higher risk, the higher return may no

longer look very attractive. Therefore the Sharpe ratio, i.e., the risk-adjusted return, is a

good measure to use when comparing risk premiums, see equation (12).
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t =
β̂

σ(β̂)/
√
N

σ =
s√
N
.

(11)

From the t-statistic it is possible to calculate the risk adjusted return, that is, the Sharpe

ratio:

SR =
β̂

σ(β̂)

SR =
t√
N
.

(12)
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CHAPTER 5: RESULTS

The first results reported replicate Dickson (2015) to make sure I use the same pro-

cedure which will allow me to compare the original results with my new regressions. It

is important to restate that the results generated from this study, a version of the Fama-

Macbeth procedure, can not be used as an implementable trading strategy. For instance,

the generated expected return, the dependent variable, is calculated at t+1, hence, can

not be used in an actual trading strategy. Discussed by Fama (1976) the slopes of

Fama-Macbeth regressions can be proxies for the returns on characteristic-based stock

portfolios. Using these proxies, the following conclusion can be made as well; the

t-statistic for the slopes (proxy for return) can be used as a proxy for the Sharpe ratio

(risk adjusted return) of characteristic based stock portfolios. Higher t-statistics means

higher Sharpe ratio for the portfolio.

Once again, the aim of this study was not to generate a trading strategy, but to

explore the possibility that the chosen stock characteristic variables have non-linear

relationship with stock returns. Furthermore, these characteristics have properties that

better explain each variable’s added risk premium. By comparing my results, coeffi-

cients and t-statistics when including the new variables to Dickson’s original model, I

am able to draw conclusions about additional properties in these variables that previ-

ously have not been documented. Specifically, if the coefficient of the original regres-

sor increases when including the quadratic regressor, the regressor’s marginal effect on

the expected return is non-linear. If also the t-statistic increases in absolute values, the

explanatory power of the risk premium becomes more significant. The results will be

used as a proxy for deciding if the variables add significant value to an implementable



trading strategy. For example, lets say one of the new variables is statistically significant

and improves the t-statistics of the original model, this will indicate that trading strategies

including the linear variable should consider also including the new non-linear version of

the variable. The second benefit with the chosen methodology is to allow for comparison

with other studies that also use Fama-Macbeth regressions.

The following results refer to the tables in the Appendix, where I have located all the

regression outputs with corresponding t-statistics and R2. Highlighting a few things in the

data, in Panel A of Table (2), the mean return over the full sample is 1.273% per month,

where the highest mean regressor value stems from market capitalization of 4.750 and the

lowest mean value from book-to-market, -0.523. It is only in the 75th percentile and lower

that the mean value for book-to-market is positive. The remaining variables range between

0.124-0.332 as their mean values.

In Panel B of Table (2), the highest standard deviation among the variables is for in-

vestment, in the 99th percentile of 2.924, much higher than the other variables in the 99th

percentile, ranging from 0.058-0.961. In the full sample, market capitalization has the high-

est standard deviation of 2.051 compared to the other variables ranging from 0.262-0.854

with a full sample return standard deviation of 16.110.

Looking at the correlation between the variables, Panel C of Table (2), the lowest cor-

relation is between book-to-market and market capitalization of -0.321, not surprisingly

because market capitalization is the denominator in the book-to-market ratio. There is no

strong positive correlation between the variables; the highest positive correlation of 0.057

is between momentum and market capitalization. The positive correlation is not surprising

because momentum is calculated as the firm’s previous year’s 11 month stock return and

market capitalization is the stock price times the number of shares outstanding, hence, if

the stock price appreciates over a long period of time, the value of both regressors increase.

The initial model, Table (3), replicates Dickson (2015) and generates the same slope

coefficients and t-statistics. The interpretation of statistical significance in this study is at
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5% with a two-sided critical t-value of 1.96. All the variables with an absolute t-value over

1.96 are considered statistical significant. This study comes to the same conclusion as in

Dickson (2015) that the market capitalization variable is not statistically significant, but

will still be kept in the model due to it is fundamental importance in previous asset pricing

literature. The model generates positive and significant risk premium for book-to-market,

profitability, and momentum. The t-statistic for book-to-market and profitability is roughly

the same (6.52 and 6.05, respectively) which means that their Sharpe ratios are roughly

the same and have the same power in the model. The risk premiums for investment and

short-term reversal are negative and significant.

5.1 Functional Form

The first new regressor added to the model is squared market capitalization, see Ta-

ble (4). The risk premium for the market capitalization variable decreases from -0.066 to

-0.244 and the t-statistic increases from the previous -1.723 to -2.175. The market cap-

italization risk premium is no longer insignificant, also the squared market capitalization

risk premium has a significant t-statistic of 2.2. These results says that the market capi-

talization variable has non-linear marginal effects on the expected return and is better at

explaining the variability in the return related to the size of the firm. Once the linear mar-

ket capitalization regressor is removed from the regression, the t-statistic for the squared

term decreases to (-1.753) with a coefficient close to zero (-0.006). This reinforces the

non-linear marginal effect that market capitalization has on expected return. A potential

reason for this could be that small cap stocks have a higher variation in returns than large

cap stocks. The non-linear movement with a negative linear coefficient indicate that to a

certain breakpoint market capitalization, the return decreases with the size of the firm, but

the non-linear effect shows that the negative effect of the size of the firm changes and at a

breakpoint, larger firms yields higher return. Another significant effect is the change in the

intercept; from 1.387 to 1.726, both significant t-statistics (4.649 and 4.462, respectively).

The intercept, the average return not explained by the regressors, increases. If the aim
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of the model is to increase the average return (intercept), also called the abnormal return,

including the squared market capitalization regressor clearly improves the model.

Removing the squared market capitalization variable and instead including the squared

book-to-market variable, Table (5), the outcome is just a slight effect in the book-to-market

regressor. The risk premium decreases from 0.360 to 0.349 with a change in t-statistics

from 6.52 to 5.71. The squared book-to-market variable is only significant when excluding

the linear book-to-market variable and with no change in the intercept. The added ex-

planatory power of having the squared term is zero. This shows that there is no non-linear

marginal effect in the book-to-market variable.

When including the squared gross profitability regressor, Table (6), the gross profitabil-

ity regressor becomes less significant, but still significant (t-statistics go from 6.047 to

2.121) and with a slightly lower risk premium (0.608). Also, the squared term is not sig-

nificant, showing that adding the squared term does not add any value to the regression,

i.e. the marginal effect in gross profitability is not non-linear. The result does not show any

major effect in the intercept (the significant intercept goes from 1.387 to 1.360). The same

kind of result is generated when including the squared investment regressor, Table (7); no

t-statistic equal to significant effect in the risk premium or in the intercept. The squared

regressor is not significant (0.947) which indicates investment does not have a non-linear

marginal effect on excess return.

5.2 Interaction Terms

Looking at how interaction terms affect the explanatory power with the interaction be-

tween market capitalization and gross profitability, Table (8). The market capitalization

regressor becomes significant (t = -2.159) with a risk premium of (-0.091), but the gross

profitability regressor becomes insignificant (t = 1.817), when it was previously significant.

The interaction term itself is not significant and does not add any explanatory value to the

regression. The only situation where the interaction term is significant is when the linear

gross profitability regressor is excluded (t = 5.905).
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The second interaction term is between market capitalization and investment, Table (9).

The previous insignificant market capitalization regressor becomes significant (t = -2.118)

with a slightly lower risk premium (from -0.066 to -0.083). The risk premium for invest-

ment decreases as well (from -0.559 to -1.269), the interaction term itself has a positive

and significant risk premium (t = 4.383) and when included, the significant intercept in-

creases (from 1.387 to 1.453). The interaction term has explanatory power and a positive

risk premium. This relationship was discussed by Fama and French (2015) and explains

that the risk premium of investment decreases with the size of the firm. In other words,

the marginal effect of increased investment decreases with the size of the firm. The reason

why the market capitalization regressor becomes signifiant could be that more investment

increases the potential for future growth and the discounted value of this growth increases

the value of the firm, hence the risk premium for the market capitalization regressor is

better represented and the regressor becomes significant.

If looking at the interaction term between book-to-market and gross profitability, Table

(10), the new variable does not add any significant value itself (t = -1.694). The only

significant effect is in the intercept, which increases to 1.414. In order to get the interaction

term significant, either book-to-market or gross profitability needs to be excluded from

the regression. Similar results are found when including the interaction between gross

profitability and investment, Table (11), a slightly higher intercept, but the interaction term

itself is not significant (1.292).

The final interaction term, book-to-market and investment, Table (12), has the same

intercept as without the interaction term. Looking at the effect in investment, the t-statistic

decreases in absolute values (from -7.597 to -6.690) and for book-to-market, there is no

substantial effect in the coefficient or the t-statistic. The interaction term itself is not statis-

tically significant (t = -1.509).

The final output, Table (13) includes all variables, i.e., all the original variables and all

of the new variables. The only significant new variables are the squared market capitaliza-
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tion and the interaction between market capitalization and investment (t = 1.971 and 3.649,

respectively). These results are in line with the previous results when the variables were

included separately, see Table (3) and Table (9).
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CHAPTER 6: CONCLUSIONS

The purpose of this study was to take the existing conditional asset pricing model in

Dickson (2015) and explore if it was possible to better explain the added risk premium

for each firm characteristic variable. This was possible because of allowing the model

to include non-linear functional forms of the variables and/or by including interaction

terms between them. Previous literature discusses this potential relation between av-

erage return and a firm characteristic’s added risk premium, but the idea has not been

exclusively tested on an actual model. Previous studies are using linear variables and

no interaction terms. This is why this study adds new insights to the asset pricing liter-

ature. Using Fama-Macbeth regressions, the same methodology as in Dickson (2015),

including the new variables, and looking at the regression statistics it has been possible

to evaluate and conclude that risk premiums can be better explained when allowing for

interaction terms and non-linear functional forms.

The importance of this study is also in the easiness of replication. With the com-

monly used Fama-Macbeth regressions as methodology, this study allow others us-

ing Fama-Macbeth regressions to replicate the test into their conditional asset pricing

model, even if the included firm characteristics is not the same as in this study.

The only two new variables that improved the explanatory power of Dickson’s

model are the squared market capitalization regressor and the interaction between mar-

ket capitalization and investment. The squared market capitalization regressor adds a

non-linear marginal effect to the risk premium in the linear market capitalization re-

gressor and makes the regressor significant (previously insignificant). These findings

are important because if only including the linear market capitalization regressor the



interpretation is that the size of the firm does not add a significant risk premium to the

average return of the firm. The interaction between market capitalization and investment

makes the risk premium for market capitalization significant and the interaction term itself

adds a significant risk premium.

Most of previous literature includes market capitalization in the model even if their re-

sults show an insignificant risk premium with the argument that market capitalization is an

intuitively important variable and should be kept in the model. By including the interaction

term or the squared variable, the argumentation for including market capitalization can be

made based on intuition and because the variable is statistically significant. Apart from

the above two regressors, no other regressor improved the original model in any way (risk

premium or t-statistic). The findings in this study can be directly implemented in future

conditional asset pricing studies and be a good reference in the discussion on how firm

characteristic risk premiums vary with stock returns. A future avenue in this field is to use

the findings from this study in an actual simulated trading strategy. This is crucial to try

because it is important to see how the regressors behave in a realistic setting, considering

for instance transaction costs and portfolio turnover.
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APPENDIX A: TABLES

Table 1: Data description

All available firms between 1963 to 2013 for the exchanges; NYSE, NASDAQ, and AMEX have
been used. Microcap stocks are roughly 50% of all stocks traded at NYSE, NASDAQ, and AMEX
and represent 3% of total market capitalization. The historical stock price data have been collected
from the Center for Research in Security Prices (CRSP) and the accounting data have been col-
lected from Compustat. Annual accounting data for time period t is matched with the stock price
data for June t+1 to July t+2.

Log(BE/ME) The book-to-market regressor is calculated as the book value of the firm’s eq-
uity over the market capitalization of the firm. The book value of equity is
calculated as the shareholder’s equity, plus deferred taxes, and less preferred
stock. The market capitalization of the firm, price per share times the number
of shares outstanding, is taken from the month of June each year.

Log(Me) The market capitalization regressor is calculated by the same method as the
denominator in the book-to-market regressor, specifically it is the share price
times the number of shares outstanding for the firm in June each year.

GPdat The gross profitability regressor is the ratio of the firm’s gross profits to its
total assets. The gross profits are calculated as total revenue less cost of goods
sold (COGS).

Inv The investment regressor is the growth in investments from one year to the
next. The regressor is calculated as the change in total assets by dividing the
change in total assets in year It−1 by the total assets in year It−2.

R1to0 The short-term reversal regressor is the 1 month lagged return for time period
t.

R12to2 The momentum regressor is the previous year’s 11 month return. The 12th
month return is excluded in order to not capture any Short-term reversal effect
in the regressor.
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Table 2: Summary statistics

Panel A: Regressor values sorted in percentiles

Mean 1st 10th 25th 50th 75th 90th 99th

Log(BE/ME) -0.523 -2.927 -1.649 -1.023 -0.442 0.065 0.483 1.193
Log(Me) 4.750 0.665 2.133 3.227 4.630 6.194 7.509 9.673
Gpdat 0.332 -0.204 0.040 0.130 0.303 0.485 0.685 1.076
Inv 0.223 -0.359 -0.092 0.004 0.091 0.227 0.537 2.883
R12to2 0.124 -0.749 -0.421 -0.186 0.060 0.330 0.690 1.927
Return 1.273 -35.840 -14.174 -6.186 0.000 7.206 16.667 51.613

Panel B: Standard deviations for full sample and percentiles

Full sample 1st 10th 25th 50th 75th 90th 99th

Log(BE/ME) 0.854 0.811 0.657 0.539 0.422 0.334 0.274 0.187
Log(Me) 2.051 2.013 1.816 1.598 1.302 1.008 0.786 0.349
Gpdat 0.262 0.254 0.241 0.222 0.196 0.173 0.142 0.058
Inv 0.678 0.678 0.698 0.749 0.884 1.161 1.603 2.924
R12to2 0.523 0.517 0.491 0.480 0.497 0.559 0.659 0.961
Return 16.110 15.453 14.253 14.092 15.231 18.146 23.637 47.117

Panel C: Correlation matrix

Log(BE/ME) Log(Me) Gpdat Inv R12to2 Return

Log(BE/ME) 1.000 -0.321 -0.163 -0.181 -0.133 0.034
Log(Me) -0.321 1.000 -0.106 0.032 0.057 -0.018
Gpdat -0.163 -0.106 1.000 -0.056 0.042 0.012
Inv -0.181 0.032 -0.056 1.000 -0.068 -0.025
R12to2 -0.133 0.057 0.042 -0.068 1.000 0.006
Return 0.034 -0.018 0.012 -0.025 0.006 1.000
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Table 3: Statistical significance of the average estimated marginal effects

All firms Dickson (2015)
(1) (2) (3) (4) (5) (6) (7)

Intercept 1.387 1.513 1.096 1.634 1.302 1.440 1.508
(4.649) (5.12) (5.76) (5.496) (4.334) (4.734) (4.739)

Log(BE/ME) 0.360 . 0.446 0.302 0.426 0.351 0.280
(6.52) (.) (8.06) (5.49) (7.254) (6.106) (4.602)

Log(Me) -0.067 -0.106 . -0.077 -0.066 -0.083 -0.055
(-1.723) (-2.848) (.) (-2.007) (-1.698) (-2.068) (-1.359)

Gpdat 0.676 0.414 0.788 . 0.748 0.655 0.677
(6.047) (3.62) (6.808) (.) (6.777) (5.847) (5.879)

Inv -0.559 -0.746 -0.517 -0.580 . -0.519 -0.622
(-7.597) (-8.276) (-6.772) (-7.946) (.) (-6.946) (-7.857)

R1to0 -5.720 -5.523 -5.293 -5.616 -5.633 . -5.541
(-14.181) (-13.356) (-12.452) (-13.883) (-13.855) (.) (-12.809)

R12to2 0.750 0.676 0.841 0.761 0.807 0.757 .
(3.985) (3.557) (4.279) (4.037) (4.238) (3.925) (.)

R2 0.046 0.041 0.034 0.043 0.044 0.039 0.037

Table 4: Statistical significance when introducing squared market capitalization regressor

(1) (2) (3) (4) (5) (6) (7) (8)

Intercept 1.726 1.943 1.243 1.999 1.723 1.851 1.780 1.387
(4.462) (5.11) (5.2) (5.276) (4.456) (4.671) (4.48) (4.649)

Log(BE/ME) 0.351 . 0.374 0.293 0.413 0.341 0.271 0.360
(6.358) (.) (6.853) (5.357) (7.052) (5.937) (4.469) (6.52)

Log(Me) -0.244 -0.326 . -0.268 -0.280 -0.296 -0.193 -0.066
(-2.175) (-2.95) (.) (-2.413) (-2.496) (-2.574) (-1.726) (-1.723)

Gpdat 0.665 0.408 0.698 . 0.734 0.643 0.668 0.675
(5.891) (3.558) (6.312) (.) (6.563) (5.681) (5.756) (6.047)

Inv -0.541 -0.720 -0.563 -0.560 . -0.498 -0.608 -0.559
(-7.488) (-8.122) (-7.637) (-7.811) (.) (-6.819) (-7.794) (-7.597)

R1to0 -5.689 -5.489 -5.690 -5.585 -5.602 . -5.512 -5.719
(-14.207) (-13.371) (-14.024) (-13.903) (-13.887) (.) (-12.821) (-14.181)

R12to2 0.753 0.684 0.755 0.765 0.812 0.762 . 0.749
(3.987) (3.582) (4.012) (4.042) (4.25) (3.939) (.) (3.985)

Sqrd(Me) 0.019 0.023 -0.006 0.020 0.022 0.022 0.014 .
(2.2) (2.707) (-1.753) (2.371) (2.619) (2.593) (1.686) (.)

R2 0.049 0.044 0.044 0.046 0.047 0.042 0.040 0.045

30



Table 5: Statistical significance when introducing squared book-to-market regressor

(1) (2) (3) (4) (5) (6) (7) (8)

Intercept 1.389 1.533 1.078 1.631 1.303 1.438 1.511 1.387
(4.715) (5.175) (5.716) (5.561) (4.39) (4.796) (4.819) (4.649)

Log(BE/ME) 0.349 . 0.454 0.274 0.414 0.344 0.273 0.360
(5.711) (.) (6.532) (4.441) (6.44) (5.53) (4.016) (6.52)

Log(Me) -0.068 -0.098 . -0.079 -0.067 -0.084 -0.056 -0.066
(-1.785) (-2.569) (.) (-2.086) (-1.754) (-2.123) (-1.427) (-1.723)

Gpdat 0.653 0.513 0.761 . 0.727 0.633 0.653 0.675
(5.877) (4.576) (6.621) (.) (6.619) (5.679) (5.703) (6.047)

Inv -0.561 -0.661 -0.519 -0.582 . -0.520 -0.624 -0.559
(-7.622) (-7.927) (-6.819) (-7.976) (.) (-6.962) (-7.887) (-7.597)

R1to0 -5.744 -5.654 -5.331 -5.644 -5.658 . -5.574 -5.719
(-14.297) (-13.987) (-12.627) (-14.007) (-13.97) (.) (-12.956) (-14.181)

R12to2 0.742 0.721 0.830 0.753 0.800 0.751 . 0.749
(3.975) (3.816) (4.259) (4.026) (4.235) (3.93) (.) (3.985)

Sqrd(BE/ME) 0.010 -0.105 0.043 0.000 0.010 0.016 0.013 .
(0.464) (-4.488) (1.603) (0.008) (0.445) (0.712) (0.566) (.)

R2 0.047 0.044 0.035 0.044 0.045 0.039 0.038 0.045

Table 6: Statistical significance when introducing squared gross profitability regressor

(1) (2) (3) (4) (5) (6) (7) (8)

Intercept 1.360 1.495 1.067 1.470 1.274 1.411 1.476 1.387
(4.66) (5.157) (5.764) (4.947) (4.337) (4.736) (4.781) (4.649)

Log(BE/ME) 0.367 . 0.448 0.362 0.433 0.358 0.284 0.360
(6.733) (.) (8.114) (6.575) (7.472) (6.328) (4.725) (6.52)

Log(Me) -0.062 -0.103 . -0.064 -0.060 -0.078 -0.050 -0.066
(-1.628) (-2.825) (.) (-1.669) (-1.594) (-1.978) (-1.281) (-1.723)

Gpdat 0.608 0.437 0.835 . 0.675 0.577 0.677 0.675
(2.121) (1.481) (2.595) (.) (2.358) (2.006) (2.296) (6.047)

Inv -0.565 -0.752 -0.527 -0.552 . -0.524 -0.630 -0.559
(-7.735) (-8.426) (-7.045) (-7.566) (.) (-7.079) (-7.998) (-7.597)

R1to0 -5.777 -5.589 -5.366 -5.697 -5.692 . -5.602 -5.719
(-14.382) (-13.591) (-12.716) (-14.108) (-14.06) (.) (-13.017) (-14.181)

R12to2 0.745 0.666 0.835 0.753 0.803 0.753 . 0.749
(3.978) (3.518) (4.278) (4.005) (4.234) (3.922) (.) (3.985)

Sqrd(Gpdat) 0.137 -0.004 0.018 0.728 0.146 0.150 0.045 .
(0.543) (-0.017) (0.065) (7.114) (0.575) (0.593) (0.172) (.)

R2 0.047 0.042 0.036 0.045 0.045 0.040 0.038 0.045
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Table 7: Statistical significance when introducing squared investment regressor

(1) (2) (3) (4) (5) (6) (7) (8)

Intercept 1.388 1.514 1.122 1.635 1.353 1.440 1.508 1.387
(4.683) (5.155) (5.877) (5.523) (4.55) (4.767) (4.776) (4.649)

Log(BE/ME) 0.350 . 0.431 0.292 0.393 0.340 0.270 0.360
(6.381) (.) (7.914) (5.346) (6.945) (5.979) (4.481) (6.52)

Log(Me) -0.062 -0.099 . -0.073 -0.070 -0.079 -0.050 -0.066
(-1.644) (-2.722) (.) (-1.94) (-1.827) (-1.997) (-1.274) (-1.723)

Gpdat 0.679 0.426 0.791 . 0.694 0.658 0.680 0.675
(6.076) (3.729) (6.791) (.) (6.224) (5.872) (5.885) (6.047)

Inv -0.845 -1.090 -0.941 -0.838 . -0.793 -0.911 -0.559
(-6.12) (-7.251) (-5.909) (-6.068) (.) (-5.673) (-6.352) (-7.597)

R1to0 -5.748 -5.556 -5.338 -5.642 -5.687 . -5.574 -5.719
(-14.301) (-13.507) (-12.61) (-13.997) (-14.037) (.) (-12.964) (-14.181)

R12to2 0.740 0.667 0.831 0.753 0.780 0.748 . 0.749
(3.942) (3.525) (4.233) (3.998) (4.138) (3.896) (.) (3.985)

Sqrd(Inv) 0.149 0.165 0.422 0.131 -0.338 0.138 0.113 .
(0.947) (1.04) (1.966) (0.85) (-3.95) (0.885) (0.714) (.)

R2 0.047 0.042 0.035 0.044 0.045 0.039 0.037 0.045

Table 8: Statistical significance when introducing interaction term between market capital-
ization and gross profitability

(1) (2) (3) (4) (5) (6) (7) (8)

Intercept 1.497 1.498 1.116 1.617 1.427 1.562 1.587 1.387
(4.886) (4.822) (5.823) (5.46) (4.635) (5.007) (4.852) (4.649)

Log(BE/ME) 0.364 . 0.388 0.368 0.430 0.356 0.282 0.360
(6.576) (.) (7.097) (6.66) (7.297) (6.17) (4.613) (6.52)

Log(Me) -0.091 -0.103 . -0.112 -0.093 -0.110 -0.072 -0.066
(-2.159) (-2.455) (.) (-2.927) (-2.208) (-2.526) (-1.647) (-1.723)

Gpdat 0.368 0.478 1.021 . 0.395 0.310 0.471 0.675
(1.817) (2.373) (3.177) (.) (1.953) (1.504) (2.285) (6.047)

Inv -0.553 -0.742 -0.552 -0.559 . -0.512 -0.616 -0.559
(-7.539) (-8.264) (-7.427) (-7.604) (.) (-6.88) (-7.801) (-7.597)

R1to0 -5.736 -5.543 -5.581 -5.720 -5.651 . -5.557 -5.719
(-14.248) (-13.421) (-13.51) (-14.176) (-13.928) (.) (-12.872) (-14.181)

R12to2 0.748 0.674 0.783 0.756 0.804 0.756 . 0.749
(3.977) (3.548) (4.096) (4.02) (4.228) (3.925) (.) (3.985)

Log(Me)*Gpdat 0.071 -0.011 -0.087 0.138 0.081 0.080 0.049 .
(1.762) (-0.288) (-1.244) (5.905) (1.983) (1.97) (1.203) (.)

R2 0.047 0.042 0.041 0.045 0.045 0.039 0.037 0.045
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Table 9: Statistical significance when introducing interaction term between market capital-
ization and investment

(1) (2) (3) (4) (5) (6) (7) (8)

Intercept 1.453 1.562 1.115 1.700 1.314 1.502 1.583 1.387
(4.82) (5.219) (5.805) (5.657) (4.382) (4.889) (4.918) (4.649)

Log(BE/ME) 0.365 . 0.429 0.307 0.371 0.355 0.286 0.360
(6.646) (.) (8.208) (5.631) (6.774) (6.218) (4.732) (6.52)

Log(Me) -0.083 -0.117 . -0.094 -0.053 -0.098 -0.073 -0.066
(-2.118) (-3.124) (.) (-2.414) (-1.369) (-2.426) (-1.792) (-1.723)

Gpdat 0.669 0.405 0.763 . 0.687 0.648 0.669 0.675
(5.986) (3.551) (6.738) (.) (6.154) (5.788) (5.816) (6.047)

Inv -1.269 -1.319 -0.498 -1.317 . -1.207 -1.398 -0.559
(-7.594) (-7.855) (-1.888) (-7.881) (.) (-7.158) (-8.193) (-7.597)

R1to0 -5.729 -5.534 -5.388 -5.626 -5.715 . -5.553 -5.719
(-14.215) (-13.393) (-12.795) (-13.918) (-14.162) (.) (-12.85) (-14.181)

R12to2 0.746 0.671 0.816 0.757 0.764 0.753 . 0.749
(3.968) (3.539) (4.199) (4.02) (4.062) (3.911) (.) (3.985)

Log(Me)*Inv 0.165 0.127 -0.054 0.172 -0.097 0.160 0.181 .
(4.383) (3.245) (-0.803) (4.543) (-5.374) (4.222) (4.682) (.)

R2 0.046 0.042 0.037 0.044 0.045 0.039 0.037 0.045

Table 10: Statistical significance when introducing interaction between book-to-market and
gross profitability

(1) (2) (3) (4) (5) (6) (7) (8)

Intercept 1.414 1.317 1.111 1.633 1.331 1.460 1.550 1.387
(4.802) (4.333) (5.964) (5.496) (4.495) (4.88) (4.948) (4.649)

Log(BE/ME) 0.424 . 0.488 0.482 0.490 0.406 0.362 0.360
(6.279) (.) (7.219) (7.465) (6.903) (5.753) (4.96) (6.52)

Log(Me) -0.068 -0.080 . -0.078 -0.067 -0.084 -0.057 -0.066
(-1.778) (-2.137) (.) (-2.028) (-1.756) (-2.117) (-1.435) (-1.723)

Gpdat 0.625 0.960 0.745 . 0.690 0.620 0.586 0.675
(4.581) (7.288) (5.069) (.) (5.11) (4.516) (4.174) (6.047)

Inv -0.560 -0.662 -0.516 -0.569 . -0.519 -0.622 -0.559
(-7.639) (-8.379) (-6.796) (-7.81) (.) (-6.985) (-7.912) (-7.597)

R1to0 -5.735 -5.621 -5.324 -5.658 -5.650 . -5.558 -5.719
(-14.26) (-13.7) (-12.579) (-14.017) (-13.939) (.) (-12.889) (-14.181)

R12to2 0.747 0.713 0.835 0.755 0.804 0.756 . 0.749
(3.986) (3.788) (4.27) (4.014) (4.24) (3.933) (.) (3.985)

Log(BE/ME)*Gpdat -0.143 0.527 -0.092 -0.434 -0.145 -0.122 -0.192 .
(-1.694) (6.119) (-0.981) (-5.804) (-1.708) (-1.417) (-2.202) (.)

R2 0.046 0.043 0.035 0.044 0.044 0.039 0.037 0.045
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Table 11: Statistical significance when introducing interaction term between gross prof-
itability and investment

(1) (2) (3) (4) (5) (6) (7) (8)

Intercept 1.402 1.520 1.113 1.623 1.291 1.453 1.520 1.387
(4.691) (5.125) (5.825) (5.474) (4.292) (4.772) (4.772) (4.649)

Log(BE/ME) 0.362 . 0.448 0.320 0.388 0.353 0.282 0.360
(6.571) (.) (8.111) (5.831) (6.862) (6.148) (4.64) (6.52)

Log(Me) -0.066 -0.105 . -0.074 -0.065 -0.083 -0.054 -0.066
(-1.726) (-2.852) (.) (-1.952) (-1.694) (-2.073) (-1.361) (-1.723)

Gpdat 0.630 0.391 0.732 . 0.864 0.612 0.640 0.675
(5.66) (3.463) (6.367) (.) (8.025) (5.507) (5.624) (6.047)

Inv -0.642 -0.777 -0.635 -0.802 . -0.593 -0.694 -0.559
(-6.128) (-6.979) (-5.857) (-7.545) (.) (-5.603) (-6.455) (-7.597)

R1to0 -5.725 -5.528 -5.298 -5.650 -5.671 . -5.546 -5.719
(-14.197) (-13.373) (-12.467) (-13.985) (-13.991) (.) (-12.825) (-14.181)

R12to2 0.750 0.675 0.841 0.759 0.779 0.757 . 0.749
(3.99) (3.555) (4.283) (4.037) (4.112) (3.932) (.) (3.985)

Gpdat*Inv 0.271 0.092 0.363 0.745 -0.958 0.248 0.238 .
(1.292) (0.432) (1.7) (3.085) (-5.936) (1.174) (1.12) (.)

R2 0.046 0.041 0.034 0.044 0.045 0.039 0.037 0.045

Table 12: Statistical significance when introducing interaction term between book-to-
market and investment

(1) (2) (3) (4) (5) (6) (7) (8)

Intercept 1.387 1.490 1.098 1.631 1.318 1.438 1.513 1.387
(4.666) (5.023) (5.785) (5.511) (4.396) (4.749) (4.773) (4.649)

Log(BE/ME) 0.373 . 0.464 0.314 0.365 0.362 0.303 0.360
(6.568) (.) (8.059) (5.571) (6.522) (6.113) (4.875) (6.52)

Log(Me) -0.066 -0.103 . -0.076 -0.067 -0.082 -0.054 -0.066
(-1.71) (-2.793) (.) (-1.996) (-1.747) (-2.057) (-1.345) (-1.723)

Gpdat 0.672 0.431 0.782 . 0.707 0.651 0.674 0.675
(6.022) (3.83) (6.778) (.) (6.363) (5.822) (5.859) (6.047)

Inv -0.603 -0.568 -0.574 -0.620 . -0.555 -0.706 -0.559
(-6.69) (-6.365) (-6.157) (-6.893) (.) (-6.103) (-7.364) (-7.597)

R1to0 -5.725 -5.548 -5.298 -5.622 -5.659 . -5.547 -5.719
(-14.208) (-13.434) (-12.48) (-13.911) (-13.96) (.) (-12.84) (-14.181)

R12to2 0.744 0.681 0.836 0.756 0.795 0.752 . 0.749
(3.959) (3.591) (4.256) (4.015) (4.188) (3.906) (.) (3.985)

Log(BE/ME)*Inv -0.099 0.155 -0.142 -0.100 0.165 -0.087 -0.145 .
(-1.509) (1.9) (-2.05) (-1.508) (2.911) (-1.323) (-2.202) (.)

R2 0.046 0.042 0.034 0.044 0.045 0.039 0.037 0.045

34



Ta
bl

e
13

:S
um

m
ar

y
of

st
at

is
tic

al
si

gn
ifi

ca
nc

e
in

cl
ud

in
g

th
e

to
ta

ln
um

be
ro

fn
ew

re
gr

es
so

rs

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

(9
)

(1
0)

(1
1)

(1
2)

(1
3)

(1
4)

(1
5)

(1
6)

In
te

rc
ep

t
1.

79
1

1.
98

5
1.

22
9

1.
92

6
1.

70
0

1.
92

8
1.

79
7

1.
48

8
1.

78
1

1.
86

3
1.

80
5

1.
73

3
1.

75
0

1.
82

5
1.

77
7

1.
79

3
(4

.6
64

)
(5

.2
11

)
(5

.4
62

)
(5

.1
14

)
(4

.4
5)

(4
.9

02
)

(4
.6

14
)

(5
.1

08
)

(4
.5

43
)

(4
.8

02
)

(4
.6

87
)

(4
.6

44
)

(4
.5

69
)

(4
.7

57
)

(4
.6

43
)

(4
.6

58
)

L
og

(B
E

/M
E

)
0.

35
6

.
0.

41
3

0.
32

8
0.

40
7

0.
33

3
0.

30
9

0.
38

1
0.

41
6

0.
33

4
0.

37
6

0.
35

9
0.

36
3

0.
31

0
0.

36
0

0.
35

5
(5

.0
57

)
(.)

(5
.9

15
)

(4
.7

76
)

(5
.7

34
)

(4
.6

19
)

(4
.0

78
)

(5
.3

83
)

(5
.8

74
)

(4
.7

63
)

(5
.3

2)
(5

.1
62

)
(5

.1
73

)
(5

.0
98

)
(5

.1
96

)
(5

.1
37

)
L

og
(M

e)
-0

.2
48

-0
.3

03
.

-0
.2

72
-0

.2
52

-0
.3

05
-0

.1
85

-0
.0

88
-0

.2
46

-0
.2

63
-0

.2
62

-0
.2

34
-0

.2
40

-0
.2

50
-0

.2
45

-0
.2

48
(-

2.
17

5)
(-

2.
69

7)
(.)

(-
2.

45
8)

(-
2.

21
3)

(-
2.

59
7)

(-
1.

61
9)

(-
2.

14
6)

(-
2.

15
)

(-
2.

30
6)

(-
2.

29
4)

(-
2.

11
8)

(-
2.

10
2)

(-
2.

20
3)

(-
2.

15
2)

(-
2.

16
9)

G
pd

at
0.

46
3

0.
10

5
0.

85
9

.
0.

54
8

0.
36

2
0.

68
4

0.
50

2
0.

50
0

0.
34

2
0.

45
0

0.
61

4
0.

46
2

0.
29

1
0.

50
6

0.
46

3
(1

.3
09

)
(0

.3
08

)
(2

.4
59

)
(.)

(1
.5

59
)

(1
.0

16
)

(1
.8

86
)

(1
.4

43
)

(1
.4

18
)

(1
.6

26
)

(1
.2

72
)

(2
.0

73
)

(1
.3

07
)

(0
.8

62
)

(1
.4

49
)

(1
.3

11
)

In
v

-1
.4

31
-1

.7
22

-1
.4

34
-1

.4
63

.
-1

.3
53

-1
.5

27
-1

.4
92

-1
.4

22
-1

.4
24

-1
.1

14
-1

.4
37

-0
.8

45
-1

.4
95

-1
.4

06
-1

.4
56

(-
5.

92
)

(-
6.

97
9)

(-
5.

96
5)

(-
6.

08
)

(.)
(-

5.
55

)
(-

6.
24

4)
(-

6.
14

8)
(-

5.
84

9)
(-

5.
92

9)
(-

5.
91

8)
(-

5.
91

4)
(-

4.
85

2)
(-

6.
24

6)
(-

6.
85

8)
(-

6.
41

4)
R

1t
o0

-5
.8

46
-5

.7
74

-5
.8

60
-5

.8
01

-5
.8

25
.

-5
.6

91
-5

.8
79

-5
.8

19
-5

.7
93

-5
.8

21
-5

.8
35

-5
.8

34
-5

.8
34

-5
.8

41
-5

.8
40

(-
14

.8
48

)
(-

14
.5

69
)

(-
14

.6
72

)
(-

14
.6

85
)

(-
14

.7
67

)
(.)

(-
13

.5
56

)
(-

14
.8

04
)

(-
14

.7
21

)
(-

14
.6

48
)

(-
14

.7
46

)
(-

14
.8

1)
(-

14
.8

09
)

(-
14

.7
82

)
(-

14
.8

37
)

(-
14

.8
17

)
R

12
to

2
0.

72
6

0.
71

9
0.

72
8

0.
73

4
0.

75
0

0.
74

1
.

0.
72

1
0.

73
0

0.
73

2
0.

73
5

0.
72

9
0.

72
8

0.
72

7
0.

72
6

0.
72

7
(3

.9
21

)
(3

.8
59

)
(3

.9
41

)
(3

.9
54

)
(4

.0
42

)
(3

.9
2)

(.)
(3

.9
07

)
(3

.9
02

)
(3

.9
35

)
(3

.9
64

)
(3

.9
37

)
(3

.9
28

)
(3

.9
1)

(3
.9

14
)

(3
.9

22
)

Sq
rd

(M
e)

0.
01

7
0.

01
9

-0
.0

05
0.

01
7

0.
01

9
0.

02
0

0.
01

2
.

0.
01

7
0.

01
7

0.
01

8
0.

01
7

0.
01

7
0.

01
6

0.
01

6
0.

01
7

(1
.9

71
)

(2
.2

52
)

(-
1.

66
6)

(2
.0

78
)

(2
.2

58
)

(2
.3

58
)

(1
.4

11
)

(.)
(1

.9
93

)
(2

.0
33

)
(2

.1
1)

(1
.9

81
)

(2
.0

3)
(1

.9
41

)
(1

.9
44

)
(1

.9
59

)
Sq

rd
(B

E
/M

E
)

-0
.0

18
0.

05
5

0.
05

3
0.

05
6

0.
05

6
0.

05
0

0.
04

9
0.

05
4

0.
05

6
0.

05
6

0.
05

6
0.

05
6

0.
05

6
0.

05
6

0.
05

7
0.

05
6

(-
0.

78
4)

(-
2.

71
8)

(0
.0

75
)

(-
0.

91
)

(-
0.

21
8)

(-
0.

45
5)

(-
0.

78
1)

(-
0.

52
6)

(.)
(-

0.
78

9)
(-

0.
69

9)
(-

0.
77

6)
(-

0.
65

6)
(-

0.
32

2)
(-

0.
80

5)
(-

0.
87

9)
Sq

rd
(G

pd
at

)
-0

.0
03

0.
22

8
-0

.0
53

0.
20

9
0.

01
6

0.
03

1
-0

.1
32

0.
00

9
-0

.0
26

.
0.

02
7

0.
01

7
-0

.0
05

0.
09

2
-0

.0
3

-0
.0

04
(-

0.
01

2)
(0

.8
9)

(-
0.

20
4)

(1
.4

)
(0

.0
64

)
(0

.1
21

)
(-

0.
49

5)
(0

.0
35

)
(-

0.
10

3)
(.)

(0
.1

05
)

(0
.0

66
)

(-
0.

01
9)

(0
.3

68
)

(-
0.

12
)

(-
0.

01
6)

Sq
rd

(I
nv

)
0.

14
2

0.
21

2
0.

20
4

0.
11

7
-0

.0
92

0.
12

7
0.

1
0.

16
2

0.
15

6
0.

12
8

.
0.

14
5

0.
12

7
0.

13
8

0.
14

7
0.

12
1

(0
.8

22
)

(1
.2

24
)

(1
.1

52
)

(0
.6

87
)

(-
0.

69
)

(0
.7

41
)

(0
.5

79
)

(0
.9

38
)

(0
.9

04
)

(0
.7

44
)

(.)
(0

.8
36

)
(0

.7
6)

(0
.7

98
)

(0
.8

69
)

(0
.7

7)
L

og
(M

e)
*G

Pd
at

0.
04

0.
08

9
-0

.0
43

0.
09

2
0.

03
8

0.
05

7
0.

00
3

0.
03

0.
04

1
0.

06
0.

04
3

.
0.

04
5

0.
05

5
0.

03
8

0.
04

1
(0

.9
77

)
(2

.1
54

)
(-

0.
99

5)
(2

.4
53

)
(0

.9
13

)
(1

.3
57

)
(0

.0
92

)
(0

.7
42

)
(0

.9
81

)
(1

.4
41

)
(1

.0
34

)
(.)

(1
.0

87
)

(1
.4

22
)

(0
.9

3)
(0

.9
9)

L
og

(M
E

)*
In

v
0.

14
2

0.
15

3
0.

13
0.

14
1

-0
.0

43
0.

13
7

0.
15

0.
15

1
0.

14
3

0.
14

4
0.

13
4

0.
13

9
.

0.
13

9
0.

14
6

0.
14

3
(3

.6
49

)
(3

.9
06

)
(3

.2
9)

(3
.6

27
)

(-
1.

46
2)

(3
.5

14
)

(3
.7

81
)

(3
.8

04
)

(3
.6

47
)

(3
.6

83
)

(3
.5

27
)

(3
.5

66
)

(.)
(3

.5
92

)
(3

.8
19

)
(3

.8
92

)
L

og
(B

E
/M

E
)*

G
pd

at
-0

.1
12

0.
31

3
-0

.1
57

-0
.0

38
-0

.1
44

-0
.0

66
-0

.2
01

-0
.1

22
-0

.1
34

-0
.0

64
-0

.1
12

-0
.1

24
-0

.1
05

.
-0

.1
31

-0
.1

1
(-

1.
12

)
(3

.4
59

)
(-

1.
58

)
(-

0.
41

3)
(-

1.
44

7)
(-

0.
64

8)
(-

1.
92

9)
(-

1.
21

6)
(-

1.
38

9)
(-

0.
67

3)
(-

1.
12

)
(-

1.
34

7)
(-

1.
05

6)
(.)

(-
1.

36
7)

(-
1.

10
9)

G
pd

at
*I

nv
0.

13
0.

64
7

0.
08

4
0.

28
1

-0
.5

16
0.

15
1

0.
00

3
0.

11
6

0.
10

6
0.

10
5

0.
04

3
0.

16
9

0.
07

5
0.

35
2

.
0.

13
(0

.5
34

)
(2

.7
11

)
(0

.3
5)

(1
.1

75
)

(-
2.

56
7)

(0
.6

16
)

(0
.0

13
)

(0
.4

75
)

(0
.4

37
)

(0
.4

44
)

(0
.1

83
)

(0
.7

01
)

(0
.3

15
)

(1
.5

6)
(.)

(0
.5

65
)

L
og

(B
E

/M
E

)*
In

v
0.

01
2

0.
10

7
0.

03
0.

00
9

-0
.0

3
0.

02
7

-0
.0

37
0.

01
9

0.
01

5
0

-0
.0

07
0.

01
1

-0
.0

54
0.

01
8

0.
02

3
.

(0
.1

56
)

(1
.3

6)
(0

.3
81

)
(0

.1
26

)
(-

0.
41

6)
(0

.3
44

)
(-

0.
46

8)
(0

.2
4)

(0
.2

05
)

(-
0.

01
2)

(-
0.

10
5)

(0
.1

5)
(-

0.
74

5)
(0

.2
43

)
(0

.3
17

)
(.)

R
2

0.
05

7
0.

05
5

0.
05

3
0.

05
6

0.
05

6
0.

05
0.

04
9

0.
05

4
0.

05
6

0.
05

6
0.

05
6

0.
05

6
0.

05
6

0.
05

6
0.

05
7

0.
05

6

35


