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ABSTRACT

TYLER AINSWORTH. Development and implementation of snowmelt simulations
in an augmented reality sandbox. (Under the direction of DR. ELIZABETH

SMITH)

In cold climates snowmelt runoff prediction is an important factor in the prediction

of seasonal flooding and springtime water availability. Engineers study snowmelt and

its effects on the environment, such as changes in stream flow, for this purpose. Typ-

ically, snowmelt is taught at the college level. This research creates a snowpack and

snowmelt simulation that can be used to introduce the concept to younger audience.

The Augmented Reality (AR) sandbox was created by University of California

(UC) Davis’ W.M. Keck Center for Active Visualization in the Earth Sciences (Keck-

CAVES). An AR sandbox includes an Xbox Kinect depth sensor, a short throw

projector, a computer with a graphics card, and a sand surface. The sandbox allows

users to move the sand that is then augmented in real time with a colored topographic

map and simulated water flow. AR sandboxes are a hands-on tool that can be used

to teach students concepts such as runoff, watersheds, and the reading topographic

maps. UC Davis has made the code and designs for their AR sandbox open source

and available online. Similar sandboxes can now be found around the world as both

a museum exhibit and as learning or research tools in schools.

A mathematical model snowpack and snowmelt simulation was developed for the

AR sandbox. The model implements a height-based freeze mechanism to generate

a snowpack based on a user created topography and a simulate time based melting

behavior. This set of equations used a percentage based system to remove an amount

from the existing snowpack and add that to the liquid water quantity. The level of

detail and complexity captured by this snowpack and snowmelt model is consistent

with the realtime nature of the AR sandbox and the overall level of detail in the

existing calculations. The new model was then implemented into the AR sandbox
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code. The software design supports easy implementation into other code bases in the

open source community.

To support the use of the snowmelt simulation as an educational tool, a set of

educational materials were created. These materials were made with the intent of

being used alongside the AR sandbox with the snowmelt simulation to create a semi-

guided hands-on display.

This research developed a numerically accurate snowmelt simulation with intuitive

visual effects for use as a research and education tool. The code developed for this

simulation can be extended further for other weather-based simulations. Possible

future additions could include frozen lakes, avalanches, and weather fronts.
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CHAPTER 1: INTRODUCTION

1.1 PROBLEM STATEMENT

In some parts of the United States, snowmelt runoff accounts for up to 75% of the

water supplies [1]. Snowmelt runoff is runoff that occurs when a buildup of snow, a

snowpack, melts. Engineers work to simulate snowmelt runoff in order to be able to

predict its effect on the environment. Some of these effects include impacts on the

environment and ecosystem through flooding and erosion.

Typically, snowmelt is taught within the hydrology curriculum in higher education.

However, the basic principles are taught earlier. In kindergarten through high school

the curriculum generally focuses on why ice melts and the water cycle through to the

effects of runoff and erosion as students progress.

In recent years schools have been acquiring new tools and equipment for use in

the classroom. One of these new tools is the Augmented Reality (AR) Sandbox.

Originally designed in 2014 by University of California, Davis (UC Davis) under Na-

tional Science Foundation (NSF) funding, the goal of the project was to "raise public

awareness and increase understanding and stewardship of freshwater lake ecosystems

and earth science processes. . . "[2]. In the design by UC Davis users can manipulate

sand within the sandbox to create a desired landscape that is sensed by an XBox

Kinect sensor and processed to create a colored topographic map of the sandscape.

This map is then projected back onto the sand and updated as users further modify

the sand topography. Users are also able to trigger simulated rainfall in the created

landscape.

While AR sandboxes are becoming more widely used for education, in museums

as well as schools, the base use case of simulating runoff remains largely unchanged.

The creation of a simulated snowpack and simulated snowmelt runoff would expand

the use of an AR sandbox as a hands on method of teaching these concepts. This
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research details the process through which a snow simulation was developed including

the mathematical expressions and their implementation into the existing AR sandbox

code.

1.2 LITERATURE REVIEW

1.2.1 Augmented Reality Sandbox

The AR sandbox utilizes a playsand surface, an Xbox 360 Kinect camera, a short

throw projector, and a computer to sense a user created topography and project a

colored height map onto the sand surface. UC Davis has made the code for the

project opensource and available on their website and provided general guidelines for

users to build the physical system [2]. In UC Davis’s design the AR sandbox code

uses the C++ coding language along with OpenGL, a graphics rendering Application

Programming Interface (API), to create the topographic map. Section 3 goes into

further detail on the method in which C++ and OpenGL are used.

The AR sandbox constructed at the University of North Carolina at Charlotte

consists of the basic required components along with an adjustable aluminum frame

and a thermoplastic tub instead of a more common cantilever electronics support and

solid wood construction. The overall Figure 1.1 shows a 3D render of the sandbox

with components labeled. Table 1.1 describes the numbered components.
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Figure 1.1: 3D model of the AR sandbox at UNCC with component labels.

Table 1.1: A list of the labeled components in UNCC’s AR sandbox.

Label Number Component Name

1 Short throw projector

2 Xbox Kinect depth camera

3 Extruded aluminum frame

4 Removable wooden ledge for display

5 Thermoplastic tub for playsand

6 Computer system

7 Wooden main sandbox body

Figure 1.2 displays and image of the sand while the AR sandbox is running.
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Figure 1.2: An image of the topographic lines and colors projected onto the sand by
the AR sandbox.

As can be seen in Figure 1.2, the colored height map of the AR sandbox starts

at red-orange at the highest point and blends into green and then shades of blue at

lower elevations. The abrupt shift from green to blue is where the water table begins.

Functionally this is a height of zero within the table and the topography is either

above (positive) or below (negative) relative to this value.

Another main feature of the sandbox is the ability to add simulated water that uses

the gathered topography data and runs shallow-water flow simulations. The sandbox

makes use of the Saint-Venant equations in order to run this simulation.

1.2.1.1 Saint-Venant Equations for Shallow Water Flow

The Saint-Venant equations are a set of unidirectional equations derived from the

Navier-Stokes equations. Also called the Shallow-Water Equations (SWE), these de-

rived equations are used in the modeling of shallow-water flow. The main requirement

of this being that the vertical scale is much smaller than the horizontal scale of the

problem. Developed over a century ago [3], this system of equations continues to be

in use today in a variety of applications. Equation 1.1 shows the set of equations for



5

one dimensional (1D) cases. Table 1.2 lists the included variables and their definition.

This system does not include the effects of friction between the water or fluid and the

topography.

 ht + (hu)x = 0,

(hu)t + (hu2 + 1
2
gh2)x = −ghB′

(1.1)

Table 1.2: List of variables and definitions used in Eqn: 1.1.

Variable Definition
B The bottom height or Bathymetry
h The height of the water column above B
hu The discharge in the x direction
g The gravitational constant.

In the approximately 150 years since their development, there have been further

derivations of these equations for various specific use cases. One such investigation

looks at the inclusion of a coefficient of friction and viscosity into a Saint-Venant

system [4]. In the standard derivation of the Saint-Venant equations there lacks

method in which to determine the main factor, either velocity or momentum, in

jumps in some one dimensional (1D) simulations. A dam break simulation using

the equations described were compared to a simulation performed to validate the

equations[4].

Another implementation, called the "positivity preserving central-upwind scheme"

[5] decreases numerical errors that can occur in ’dry’ conditions. Dry conditions are

described as when the fluid height, above the bottom topography, is equal to zero

or is calculated as a negative number. This specific derivation is highly useful for

applications were a variable bathymetry height can result in sections of the bottom

topography being above the fluid height during the simulation. In an AR sandbox a

large amount of the simulation area is considered dry. In Figure 1.2, the topographic

lines can be seen in areas where the water height is equal to zero. As such the AR
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sandbox makes use of this scheme.

Current Sandbox Algorithm

UC Davis’ AR sandbox utilizes the Saint-Venant equations for shallow-water flow.

The sandbox uses the the positivity-preserving scheme detailed in [5] in a two di-

mensional (2D) form. The equations used in the table are further detailed in Section

2.1.

When run, the AR sandbox only solves the SWE equations if simulated water

is present in the table. This means that before water is added or after the water

is ’drained’ or ’evaporated’ from the table the calculations are skipped to improve

improve performance.

1.2.1.2 Uses in Research and Industry

AR sandboxes can also be used in various research projects. One novel project

modified the UC Davis software to create an "empirically realistic ant colony foraging

simulation"[6]. Their software was created in Unity3D and C#[6] as opposed to

OpenGL and C++ as used in the original. A simulation was created in which ants

search for food and bring it back to the nest leaving pheromone trails. These trails

can be disrupted by the user and a set water level can be used to force the ants to

find different paths.

The technology and framework behind the AR sandbox hasn’t been limited to use

in schools and museums. A technical report by the US Army Research Lab utilizes

an Augmented REality Sandtable (ARES) and custom software to test the benefits

of an AR system on the users ability to "construct a sand table terrain model that

accurately depicts the terrain and tactical plan as outlined. . . " [7]. Participants used

either ARES or a traditional sandtable with no AR capabilities and were scored on

six accuracy based criteria. The study found that the use of ARES resulted in higher

scores in the accuracy of element placement and the perceived workload also resulted
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in ARES’ favor.

A version of the AR Sandbox technology called the Simtable has been developed to

simulate natural disasters such as wildfires and floods [8]. The Simtable is designed to

use Geographic Information Systems (GIS) with the sandtable and allow for natural

disaster response planning. Users can determine an area and, in the case of wildfire

simulation, select an ignition point and

Another use of the AR sandbox technology is its use in landscape design and

geodesign applications. One study investigates the possible benefits of using an AR

sandbox for outdoor trail design [9]. It was found that the sandbox provided both

a learning and design environment use for visualization and communication between

users.

1.2.1.3 Uses in Education

The AR sandbox framework has found multiple uses as a hands-on educational

and research tool since its creation. AR sandboxes can be found across the world in

multiple schools and museums with the UC Davis website listing locations such as

Ithaca High School, Somersworth High School, Fairmount Water Works Interpretive

Center and Catavento Cultural e Educacional science center [2].

Multiple studies have been conducted to determine the benefits of utilizing this

technology in the classroom. One such study looks into the effect that using a version

of the sandbox has on the spatial thinking and visualization of three dimensional

landscapes. This study was done at in the Department of Geological Sciences at East

Carolina University with an undergraduate class geology class. Based on the self-

reported survey taken by the students, the sandbox was highly effective in enhancing

student learning of the fluvial and coastal features as part of a lesson [10].
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1.2.2 Snowmelt Runoff

Snowmelt runoff is the runoff that occurs due to the melting of a snowpack or

accumulation of snow. This snow accumulation persists through the colder seasons

before melting in the spring. The rate at which the melt occurs can be dependent on

a variety of factors, including temperature and the amount of rainfall.

1.2.2.1 Importance of Modeling Snow and Snowmelt

In the northern parts of the US and colder climates world wide, the modeling and

prediction of snowmelt is a key factor in topics such as flood prevention. During

weather events where warm rain increases the melt rate of snow cover can create

sudden surges of runoff. A case study completed in 1998 models a flood event in the

Pacific Northwest in which the sensitivity of snowmelt to climate and land cover is

shown[11].

Modeling the current snowmelt is also a method in which scientists can look at even

larger scale phenomenon such as climate change. Due to snowmelt being dependant

on the temperature of a given region the period during the year in which the melting

occurs can give further insight into the the climate of the area. An investigation

into the timing of snowmelt and the resulting effects seen in streamflow in Colorado

shows how the snow cover in these high altitudes has been melting earlier in the year

[12]. Similarly, changing snowmelt patterns has the potential to have effect on food

productions in areas where snowmelt plays a large part in the irrigation system [13].

By creating a snowmelt simulation that is accessible for younger or less specialized

audiences it allows for an introduction into fairly complex topics. Being able to

interact in a hands-on manner can help garner interest in these topics that they

might not otherwise.
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1.2.2.2 Equations

There are multiple methods in which to calculate the amount of snowmelt gener-

ated. The US Department of Agriculture (USDA) lists both a degree-day method,

utilizing a temperature index, and a regression analysis method in the National Engi-

neering Handbook (NEH). The degree-day method for estimation utilizes a coefficient

Cm that varies depending on the amount of degree-days, days in which it has been

lower than the base temperature during the period, and the location [14]. Equation

1.2 shows this method where:

M = snowmelt (in/day)

Ta = mean daily air temperature(°F)

Tb = base temperature (65 °F)

M = Cm(Ta − Tb) (1.2)

The regression analysis method detailed in the NEH is more complex. The equation

is created using regression analysis to calculate the coefficients of the most relevant

parameters of a energy balance approach. This results in equations that can depend on

factors such as rainy or non-rainy periods, tree cover, and temperature. An example of

an equation created to calculate snowmelt during rainy periods in a partially forested

area [14] is shown in Equation 1.3,

M = C[0.09 + (0.029 + 0.00504v + 0.007P )(Ta − TF )] (1.3)

where:

M = snowmelt (in/day)

v = wind speed 50 feet above the snow surface (mph)

Ta = air temperature (°F)
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TF = freezing temperature (°F)

P = rainfall (in/day)

C = Coefficient to account for variations

Both Equations 1.2 and 1.3 are two of many possible equations that can be used to

calculate the amount of snowmelt in an area. Many equations can be created based

on the possible applications and goals of a study.
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CHAPTER 2: METHODOLOGY

The first step of this project is the development of the necessary equations. These

equations were initially created outside of the sandbox framework and were later

tailored to the base code of the sandbox. This was done to prove the equations and

negate any issues that could arise from coding errors as opposed to math related errors.

The equations created were placed into two categories based on their subtractive

(melting the snow) or additive (creating snow from rain) uses. These equations were

developed while keeping in mind the current equations being used in the AR sandbox

for the shallow water simulation.

2.1 AR Sandbox Saint-Venant Equations

The existing sandbox code uses a two dimensional (2D) implementation of the SWE

shown in Eqn 1.1. No new variables are introduced but the discharge now has both

u and v components, and the derivative of the bottom height must have a specified

direction. Equation 2.1 shows the 2D shallow water governing equations.


ht + (hu)x + (hv)y = 0,

(hu)t + (hu2 + 1
2
gh2)x + (huv)y = −ghBx,

(hu)t + (huv)x + (hv2 + 1
2
gh2)y = −ghBy

(2.1)

Dry conditions are handled by setting negative water heights to zero. The impact

of dry conditions on velocity are handled through desingularization using the ap-

proach in Kurganov and Petrov [5]. This approach updates the velocity components

using a correction factor based on the water height (h). As h approaches zero, the

denominator approaches zero as well. The epsilon term prevents the divide by zero

that would occur.
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
u =

1.41421356237309h(hu)√
h4 +max(h4, ε)

,

v =
1.41421356237309h(hv)√

h4 +max(h4, ε)

(2.2)

The 15 digit constant is the mathematical value of the square root two. The pro-

grammers used the constant as an efficiency measure since the square root operation

is one of the slower mathematical operations to perform computationally.

Epsilon (ε), Equation 2.3 is a function of the cell size. Since the table uses uniform

cell sizes in each direction the dimension of any cell can be used for this calculation.

ε = 0.1max(dx, dy, 1.0) (2.3)

The stability of the algorithm is maintained by limiting local speeds and using an

adaptable timestep size. The simulation uses the second-order strong stability pre-

serving Runge-Kutta (RK) temporal integration scheme with a second order positivity

preserving central-upwind scheme for spatial derivatives.

2.2 One Dimensional SWE Solver

Solving the Saint-Venant equations in one dimension allows for the simulation

of these equations in a less computationally intensive manner. This cuts down on

the time needed to develop and iterate the simulation while still generating a clear

and understandable simulation with necessary initial and boundary conditions. For

this SWE equation simulation two boundary conditions are considered: reflective or

zero gradient. A reflective or solid boundary condition occurs when the fluid that

would flow out of the simulation boundary is conserved. This results in the fluid

’bouncing’ off the edge of the simulation as if it was reflecting off of a wall. A zero

gradient boundary condition means that water that flows outside the boundary of

the simulation is not conserved or removed. The fluid in the simulation would appear

to ’flow off the table’. The will generally result in the total amount of fluid in a
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simulation to decrease over time depending on the bottom topography.

Another factor in SWE simulation solvers is what is known as ’dry’ conditions. As

the name suggests, occurs when there is no fluid in an area of the simulation when h

is equal to, or near to, zero. Depending on the derivation of the SWE equations this

can cause errors while attempting to run the simulation. There have been multiple

methods to negate these errors developed including those mentioned in [5].

2.2.1 Dam Break Simulation

A common means of using the 1D SWE equations is in a one dimensional dam

break simulation. These simulations are representations of a large amount of water

being released through a wall and the resulting water flow. For this research an

existing dam break simulation was found: "1D SWE dam break simulation" [15].

Made available by James Adams through MATLAB’s Central File Exchange in 2014,

this program allows for the solving of a dam break problem with four solving methods:

Lax-Friedrichs, Lax-Wendroff, MacCormack, or Adams Average scheme.

Along with the option of four methods to solve the SWE equations the dam break

simulation program also includes the options to solve with zero gradient or reflective

boundary conditions. The default values for the simulation include an overall water

depth of 0.1 meters, a water depth behind the dam (h) of 0.2 meters. Figure 2.1

shows the initial conditions when using the Lax-Wendroff Scheme.

This existing program was modified to better match the conditions found in the

AR sandbox. The first modification was to create a function to allow for a variable

bottom topography B. Another modification was made to allow the equations to be

solved with the ’dry’ condition. This was done by adjusting the SWE equations and

the dependant functions to implement the positivity-preserving scheme described in

[5].
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Figure 2.1: Default initial values of the one dimensional SWE program.

2.3 Snow Simulation

Based on other snowmelt runoff equations and with consideration to the limitations

of the sandbox, it was decided to create a simplified snowmelt equation for ease

of initial implementation and lower possible impacts on run-time. Despite being

simplified, there are some factors that occur in nature that were necessary to properly

simulate and visualize snowmelt and a snowpack. These factors that were included

are the presence of a snow line and the snow melting over time.

A snow line is the point at which permanent snow cover begins on a mountain. This

concept is visually distinct and evokes the desired look of snow capped mountains even

at the small scale of the AR sandbox. For most users it is fairly intuitive for snow to

develop on the top of a mountains. By including this it allows users to generate snow

in a predictable area without needing to include other more complicated factors such

as ambient temperature with corresponding visual indicators. As such, using this

concept to determine where snow in the sandbox will generate is a highly efficient

method.

The manner in which the snow line is represented in the new equations is through

the use of a variable called ’critical height’ or critHeight. This value represents the
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height above which any precipitation added to the simulation is generated as snow

rather than water. The inclusion of this variable would allow for the areas snow is able

to generate to be adjustable while still being a consistant height across the sandbox.

A pseudocode example implementation of the critical height value is shown below.

IF bathymetry Is Greater Than critical height
Precipitation is snow

ELSE IF bathymetry Is Less Than critical height
Precipitation is water

END IF

The other main effect included in the new equations and simulation is a melting

over time behavior. Ensuring that the snow in the table melted over time would result

in a more realistic simulation. If the melting step was not done as a function of time,

a timestep based loop, the total amount of snow would melt as one. This would be

the equivalent of a large block of water being released, similar to a dam break but

not similar to a snowpack melting. Additionally, the choice between a set amount

of snow being removed versus a percentage was considered. Both options provide a

method for melt over time but due to the variability of the amount of snow in a given

area it was decided to use a percentage based system. This would create a smooth

transition from snow to no snow at small amounts.

There are two main pieces taken into account to create the melting behavior: remov-

ing volume from the snow variable and adding equal volume to the water variable.

Two recursive equations were developed to remove or add a percentage of existing

snow. Equations 2.4 and 2.5 show the subtractive and additive equations respec-

tively where s is the snow height and h is the height of the water.

st = st−1 − (0.15st−1) (2.4)

ht = ht−1 + (0.15st−1) (2.5)

A 15% change was chosen based on the current snow depth and the length of time
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to reach approximately zero remaining snow. Figure 2.2 shows a snow height over

time graph of three melt rates.

Figure 2.2: Snow height over time at 10%, 15%, and 30% of snow removed per second.

Due to the snow amount being its own variable separate from the water amount,

the water added to that area persists. It was decided to remove the water in areas

where snow is created in order to keep the total amount of precipitation in the AR

sandbox consistent. This was done by once again using the critical height variable.

When the sandbox checks the bathymetry height to determine if snow should be

created, that same check can be used to remove the water in that area. In the AR

sandbox code the water amount, velocity, and acceleration are contained in a single

variable. When removing the water all of these values are set to zero. This stops
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the code from running the SWE equations when not needed and cutting down on the

processing required. An example of this can be seen below

IF bathymetry Is Greater Than critical height
Set water height to zero
Set water veolocit and acceleration to zero

END IF

2.3.1 Initial conditions for Snowmelt and Snowpack

In order to test the developed equations the 1D SWE Dam Break solver using the

Lax-Wendroff scheme was used. The following base initial conditions were used: an

initial depth (h) of 0.05 meters, a width (x) of 50 meters, and a sine wave as the

bathymetry height (B). The equation for B is shown in Equation 2.6. Figure 2.3

shows the initial conditions of the SWE model before the snowmelt and snowpack

equations were implemented.

B = (0.2sin(0.1(2x))) + 0.25 (2.6)

Figure 2.3: MATLAB plot showing the initial conditions with which the snowmelt
simulation is designed.

2.3.2 Snowmelt

The first piece of the snowmelt simulation to be tested was the melt behavior. The

initial conditions were modified to include a preexisting snowpack above a set height.
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The function that generates the initial water height was modified to instead generate

an amount of snow. Equation 2.7 shows the set of equations used and Figure 2.4

shows the new initial condition plot.

[h, s] =

 s = 0.05, h = 0, B ≥ 0.35

s = 0, h = 0.05, B < 0.35
(2.7)

Figure 2.4: Modified initial conditions to include an existing snowpack.

For all simulations done with the new equations the variables B, h, and w, are

consistant with the Saint-Venant equations listed in Eqn ??. New variables were

added to implement the snow, these being o and s. The two variables correlate

to their respective water counterparts where o is the height of the snow above the

bathymetry and s is the height of the snow including the bathymetry.

Beginning with the initial conditions shown in Figure 2.4, at t = 15 seconds the

snow begins to melt. Figure 2.5 shows MATLAB plots at t =14.5, 15, 20, & 25. At

14.5 seconds the water has moved down the slopes in the topography and w = B

at the peaks of the topogrpahy as seen by the overlap of the lines. When the snow

begins to melt there is a visible, if slight, difference between B and h as the initial

0.0075 meters of snow is melted and added to the water variable. After five seconds

approximately half of the initial snow value has melted and by t = 25 approximately
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two thirds has melted. After t = 25 seconds, 10 seconds after the melt behavior has

started, the amount of snow visible in the plots is very low. This is caused by the

low starting amount and as a result a cut-off volume is set for use in the sandbox to

prevent infinitely small, non-visible amounts of snow in the sandbox.

Figure 2.5: MATLAB plots displaying melt progress at t=14.5, 15, 20, and 25 seconds.
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In the model at t = 25 there is a good amount of noise present like that at approx-

imately x = 20. This likely due to the pool of water in the center, approximately x =

25, rising to a peak from the original volume of water before moving back outwards.

This water that is moving outwards collides with the continued snowmelt runoff and

the opposing motion causes relatively large amounts of noise.

2.3.3 Adding Snow

In order to add snow to the simulation, a set of equations similar to Eqn 2.5 needed

to be implemented. While an initial snowpack can be added to the table by modifying

the initial conditions as in Eqn 2.7, this does not allow for snow to be added while

calculations are being done and the simulation is running. A ’rain’ function was

created to house the set of equations used to add water or snow mid-calculation.

The initial conditions used in Section 2.3.2 were modified to not include a snowpack.

This results in a simulation that starts with portions of the bathymetry being dry.

Figure 2.6 shows the graph of these conditions with the initial water only being placed

below the assigned B = 0.35 critical height.

Figure 2.6: SWE simulation initial conditions not including an initial snowpack.

Equation 2.8 shows the equations used to add snow or water. Not utilizing the

melting behavior, snow and water were added every two seconds for ten seconds.



21

Figure 2.7 shows plots at t = 2, 6, and 10 seconds displaying the increasing volume.

[h, s] =

 h+ 0.01 B < 0.35

s+ 0.01 B ≥ 0.35
(2.8)

Figure 2.7: MATLAB plots showing increased snow and water at t = 2, 6, and 10
seconds.
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2.4 Simulation Accuracy

There are multiple methods with which to calculate the volume of snowmelt and

snowmelt runoff. Common methods, including degree day methods and regressive

methods, take into account factors that are not available within the sandbox frame-

work. Some of these factors include the air temperature, the albedo or reflectivity of

the snowpack, and wind [14]. While the inclusion of these factors can result in a more

accurate simulation of snowmelt runoff, they also increase the amount of processing

required for both the snowmelt calculations specifically and keeping track of these

variables within the sandbox.

These considerations were a large part of the decision to create a set of fairly

simplified snowmelt equations. The ability to integrate these variables, such as albedo

or ambient temperature, into the existing sandbox, without a large change in the base

functionality, limited the available information with which to base the calculations

on. Regardless of the limited available variables, an emphasis was put on creating a

simulation that was as functionally and visually accurate as possible. The developed

approach is time accurate and conserves water, along with being a consistent with

the current level of accuracy with the SWE simulation in the sandbox.
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CHAPTER 3: IMPLEMENTATION

The AR sandbox code distributed by UC Davis utilizes both C++ and OpenGL.

C++ being the coding language the bulk of the sandbox is written in and OpenGL is

the rendering Application Programming Interface (API). C++ is an International Or-

ganization for Standards (ISO) standardized coding language that is one of the most

frequently used languages [16]. OpenGL is an open source API used for rendering

graphics with specifications maintained by the Khronos Group [17]. OpenGL utilizes

the processing chip present on many high end graphics card. This Graphical Process-

ing Unit (GPU) is capable of doing many simultaneous calculations very quickly in

order to support graphical tasks such as animation in video games and rendering of

solid models in design programs. This API is not proprietary to a specific graphics

card brand, unlike Cuda which is specific to NVidia hardware. Unlike other some

other rendering APIs, OpenGL is strictly a graphics rendering system [17].

C++ and OpenGL are typically used together to create and run programs that

utilize the GPU on a graphics card to provide additional processing power to solve

mathematical equations and render images and textures. This is done by passing data

between the computer hard drive (C++) and the graphics card (OpenGL). Figure

3.1 shows this initial divide between the retrieved camera data in the computer and

the GPU. In order to move the data from one side to the other the programs use data

structures including framebuffer objects, texture objects, and samplers to transfer,

store, and calculate data as if they were graphical elements.

Initially the depth data from the camera (bathymetry) is stored in an array on the

hard drive in C++. In order to perform the required mathematical functions, the data

needs to be passed into a shader on the graphics card. This is done by passing the

data to a texture object. Texture objects can be ‘cell-centered’ or ‘vertex-centered’.

A cell-centered texture is when the point used for calculations is in the center of a

cell and vertex-centered is when points on the corners of the cell are used. When
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Figure 3.1: Flow chart displaying the separation of data between the hard drive and
the GPU.

the shader is created the name, data type, and order of input variables is defined.

Later, in the code when the shader is called the texture object is attached to an input

variable. These texture object variables are called samplers within the AR sandbox

code but other data types can also be used such as a float or other numerical data

type.

Shaders are small programs that are run on a computer’s graphics card and used for

computation in the AR sandbox. When initially created in C++, the shader is given

a footprint of the inputs it should receive. These inputs are given a name, such as

being given the name ‘sampler’, and these variables are used within the shader file. A

shader’s output uses the Vector4 (vec4) RGBA data type called gl_FragColor. This

output value is passed to the assigned framebuffer that is then passed to another data

structure, such as a texture object.

A framebuffer is created similarly to a shader in that it is created, data structures
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such as texture objects are attached, and it is later referenced within a function.

When used in the AR sandbox program the framebuffer is called prior the shader.

This is to ensure the proper data location is written to by the shader so the C++

program can access the data. Figure 3.2 shows an updated graphic of the computer to

graphics card transfer where gl_FragColor is the shader output being sent to C++.

Figure 3.2: Flow chart displaying how data is converted between OpenGL and C++.

This back and forth transfer of data is used for most of the calculations necessary

to run the AR sandbox as well as adding the color. The colors and contour lines

of the topographic map are generated in this manner. Figure 3.3 shows a simplified

example of how the depth data is passed between the computer hard drive and the

graphics card to achieve this effect. The final step shown in the figure is the texture

being sent to the projector to be viewed by the user.

3.1 Data Management

For the snowmelt simulation two sets of data structures were created: the ‘snow’ set

and the ‘freeze’ set. The snow set includes the shader, texture object, and framebuffer
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Figure 3.3: A flow chart displaying how the depth data is processed from C++ to
OpenGL.

involved with the creation of the snow, and the freeze set includes the shader and

framebuffer used to remove water once snow has been created. These two sets of

structures, along with both the quantity texture object and the Runge-Kutta (RK)

step shader, are used to simulate and visualize the snowmelt and snowpack in the

sandbox. The quantity texture object is used for the shallow-water simulation and

contains the three variables w, hu, and hv that are necessary for the SWE calculations.

Unlike the snow shader, the freeze shader does not have a corresponding texture

object. This is because the freeze shader modifies the quantity texture object as part

of the water to snow conversion process.

3.1.1 Data Flow

When simulated rainfall is added to the table, either through the rain gesture

or the rain function key, the program begins to run the shallow water simulation.

The majority of the calculations for this simulation occur within a function named

runSimulationStep. This function calls the shaders responsible for the math and

texture updates involved for each step in the process. There are eight total steps in
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the function. The shaders and their purpose is shown in Table 3.1.

Table 3.1: Shallow-water simulation steps from the AR Sandbox.

Number Step Description Shader

1 Calculate temporal derivative of most recent
quantities. N/A

2 Perform the initial Euler integration step. eulerStepShader

3 Calculate temporal derivative of intermedi-
ate quantities. N/A

4 Perform the final Runge-Kutta integration
step. rungeKuttaStepShader

5 Converts water to snow or removes snow
from areas below critical height. snowShader

6 Removes water from areas above critical
height freezeShader

7 Render all water sources and sinks additively
into the water texture. waterAddShader

8 Update the conserved quantities based on the
water texture. waterShader

The snowmelt simulation steps, running the snow and freeze shaders, takes place

between steps four and five. This was done so that the changes made to the quantity

values and the water in the table were rendered and updated properly without making

too many changes to the base code. Due to the new steps being included in the

function to run the shallow water simulation they aren’t active until water is added to

the table. This improves the program’s efficiency by preventing unneeded calculations

from being executed each timestep. Further discussion on the runtime impacts of the

added functionality is included in Section 4.1.

Figure 3.4 shows how the sandbox algorithm with the new snow and freeze calcu-

lations. The snowmelt simulation and the two main shaders involved create a second

branch in the shallow flow simulation. The main effects the snowmelt simulation has

on the shallow flow simulation are the changes to the quantity value when removing

or adding water in the freeze shader and Runge-Kutta shader respectively. With the

use of the critical height checks, the sandbox can run the shallow flow simulations in
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Water is added to the 
sandbox 

Calculate temporal 
derivative of most 
recent quantities [of 
water]

Euler Step Shader
Perform the Euler 
integration step on 
the quantities value

Calculate temporal 
derivative of 
intermediate 
quantities

Runge-Kutta Shader
Perform final Runge-
Kutta integration 
step on quantity

Render water 
sources together

Update quantities

Snow Shader
Copy quantity 
values into snow 
texture object

Freeze Shader
Remove water from 
quantity and set vel. 
and accel. to zero

Cell above 
critical height

Cell below 
critical height

Figure 3.4: A flowchart demonstrating the flow of information for the shallow-water
simulation.

areas below the critical height without needing to run through the snow and freeze

shaders unnecessarily.

Additionally, the inclusion of the snowmelt simulation does not impact the standard

functionality of the table. By setting the critical height above the max height of the

table, an educator could remove the snow simulation without having to modify the

code in any way.
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3.1.2 Snow Shader

The snow shader converts the water above the critical height to snow and stores

that value in the snow texture object. The snow texture object then holds the amount

of snow in each cell to use in the next timestep. The second step in this shader is

to remove the snow that exists below the critical height so that it can be treated as

water in a different shader. The main algorithm of the snow shader is shown below

as pseudocode.

IF bathymetry height Is Greater Than critical height
Add water quantity to snow texture object

ELSE
IF snow amount Is Greater Than minimum

Multiply snow amount by melt rate
Subtract from total snow amount

ELSE
Set snow amount to zero

END IF
END IF

The above code illustrates the main two calculations of the snow shader: accu-

mulating snow into a snowpack and removing snow from the snowpack. The outer

condition detects the bathymetry height whereas the nested statement determines if

the current snow amount is lower than a minimum amount. The use of these nested

statements allows one shader to perform two actions on the snow texture object as

opposed to two shaders, one accumulating snow and one melting it. The ’Set snow

amount to zero’ result of the nested statements ensures that there is not a continu-

ously smaller amount of snow that is no longer visible within the sandbox.

3.1.3 Freeze Shader

This shader and framebuffer pair are used to update the quantity vector once snow

has been added to the snow texture object. The main function of the shader is to

remove the water added above the critical height. The bathymetry height is compared

to the critical height value like in the snow shader and the amount of water in that

piece is set to zero.
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IF bathymetry height Is Greater Than critical height
Set quantity equal to bathymetry.

END IF

In the AR sandbox code the quantity texture object holds the water amount as

the combined value, w, of the bathymetry height and the water height. As such, in

order to set the water height to zero the variable is set to the current bathymetry

height. The water velocity and acceleration are also set to zero. The freeze shader

works to negate possible issues that could arise if the water wasn’t removed and only

its velocity was set to zero. This helps to maintain an accurate total precipitation

amount in the table and prevent errors such as Z-Fighting, where two overlapping

textures can begin to glitch through each other when rendered.

3.1.4 Runge-Kutta Step Shader

This original purpose of this shader is to run the calculations for the Runge-Kutta

integration step of the shallow water simulation. In order to run the second portion

of the melt step, this shader was modified to include the addition of water to the

quantity value. Two nesting if statements were added between the multiplication

step and the attenuation of the new calculated value. These statements check the

current bathymetry height against the critical height value similar to the snow and

freeze shaders. The amount of snow is then multiplied by the melt rate and added to

the value new quantity value. The full shader is shown in Appendix A.5.

3.2 Visualization

One of the objectives of this project was to develop the graphical texture for snow-

pack and melting snow. The snow texture needed to be distinct from the water and

topography textures while keeping within the ability of the graphics card and pro-

jector as well as being consistent with the aesthetics of the sandbox. The final snow

texture was generated utilizing a similar method as the water texture and the melting

behavior is displayed through the use of transparency in combination with the snow
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texture. An image of the final water and snow color textures are shown in Figure 3.5.

Figure 3.5: Picture of the snow and water colors as seen in the sandbox.

3.2.1 Color Mechanics

The AR sandbox uses multiple shaders to render the colors of the countour map

and the water. The main shader used to create the water color texture is the

’SurfaceAddWaterColor’ shader. This shader checks if there is water or snow at

a cell and then colors that cell according to the amount of water or snow present.

The main method used to determine if the snow or water is rendered in an area

within the AR sandbox is an If statement that checks if there is a volume greater

than 0.00001 of water or snow. This is the primary check to determine which color is

being rendered dependent on the volume of the specific type of precipitation. Within

these statements the color in a physical location can be further changed along with

the general precipitation color.

In the sand surface is discretized into cells based on the resolution of the camera.

The origin of the coordinate system is located at the bottom left of the table when

viewed from the projector side. Within the shader the coordinate of a cell can be

accessed in the gl_FragCoord variable that contains both x and y parts.
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When the color of the precipitation is changed dependent on the gl_FragCoord,

different sections of the sandbox can display different water colors. A pseudocode

example of this cell-based logic is shown below.

IF gl_FragCoord X Is Greater Than X Given

AND gl_FragCoord Y Is Greater Than Y Given

Display water color one

ELSEIF gl_FragCoord X Is Greater Than X Given

AND gl_FragCoord Y Is Less Than Y Given

Display water color two

END IF

Figure 3.6 shows the results of a similar logic structure. The four quadrants of the

table displaying water as four different colors. Using location to influence water color

is a useful tool in the development of future capabilities such as visualy depicting

ground cover or pollution.

(a) (b)

Figure 3.6: A picture (a) and screenshot (b) displaying four different water colors.

The color of the precipitation can also be changed based on the z direction. Using

a similar If-ElseIf method shown above using the gl_FragCoord variable, instead

the bathymetry height is used. This allows for the color of the water or snow to be
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changed as the height of the topography increases. Figure 3.7 shows this being used

to change the color of snow in the sandbox.

(a) (b)

Figure 3.7: A picture (a) and screenshot (b) displaying different colored stripes in
snow.

While the two methods to change the precipitation color based on location within

the table are not currently used, they are nonetheless useful and could be used to

highlight specific areas of the table during a demonstration.

3.2.2 Color Appearance

The sandbox uses the Vector RGBA datatype, specified as vec4 or vec3 in OpenGL,

format to specify the colors of the snow and water. This format is used as the output

for all shaders. In the water color shader the red, green, and blue values needed

to project on the sand surface are returned. The other shaders use the three or four

components to hold data such as snow quantity or discharge per cell. For the standard

water color the sandbox uses a blue base color (vec4(0.0, 0.0, 1.0, 1.0) or hex

#0000ff) and replaces the two zero value components with a variable that creates

white noise. This variable ’colorW’ uses a custom method to generate white noise

based on the volume of water in the table. This creates a shifting pattern that gives

the impression of ripples due to the variable volume. The code creates the variable

’wn’ using a normalized value of the cells surrounding and the current one. Equation
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3.1 shows the vec3 value that is then normalized to create the wn variable where Q

indicates a value in the quantity sampler and L being the x and y dimensions of the

cell.

[(Qx−1,y −Qx+1,y)Ly], [(Qx,y−1 −Qx,y+1)Lx], [2LxLy] (3.1)

The wn variable is then used in the equation for the variable colorW. The dot

product of wn and the normalized vec3 color code for light blue is found and then

raised to the power of 100.

The same method was used to color the snow texture with three main differences.

The first being that the base color used is white (hex #ffffff ) with the first two

variables being replaced with 1-colorW. Second, since there is no water in the quantity

texture object in most areas with snow, the quantity variable in the equation for wn

is replaced with the bathymetry height value. This results in a texture that has static

patches of color as seen in the snow color instead of the moving ripple effect. This

is due to the fact that unlike the quantity texture, the bathymetry texture does not

vary as much. The third change is the color value used for the dot product step. In

the water texture this value is a light blue (hex code #bfbfff) whereas in the snow

texture this value is replaced with a dark blue (hex #0d11bf). This value is one factor

that affects the color of the patches created with the white noise.

Both the water and snow color utilize the colorW, or 1-colorW, in at least one

position. Using the colorW variable in the color code is what allows for the generated

white noise to appear. Since colorW changes based on the cell where the color is

being calculated, where and how it is used in the waterColor variable changes the

resulting color. Figure 3.8 shows the difference in the snow texture when changing

the use of the waterColor variable.

The opacity of the water or snow is created by mixing the generated color with

the color of the topography at that cell. The amount that the colors are mixed is
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Figure 3.8: Snow color with the colorW variable used in four ways.

dependent on the amount of snow or water in that cell. This creates the effect of the

precipitation fading away as the volume decreases or slowly becoming opaque as it

builds up in different areas.

As seen in Figure 3.5 the final snow appearance is a solid white base with stationary

light blue patches. This is in contrast to the water that has a solid dark blue base

with varying light blue ripples. The final colors used were chosen for their similarity

to colors seen in snow and ice in nature while being within the ability of the sandbox.

The choice to use patches of color to highlight snow covered areas was made so that

users can visually differentiate between a snowy area and other effects such as very

high mountains or white sand with nothing projected onto it.

3.3 User Interface

In order to make the snowmelt simulation easier to use, a file was created to allow

the user to change the critical height and melt rate variables. Utilizing this file means

that a user would not need to adjust the two variables in all the locations they occur
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or need to restart the sandbox. Due to the main screen being the sand projection,

a second screen would be needed to display the terminal window and a text window

with the snow configuration file. The ’snowConfig.cfg’ file includes comments that

describes the two variables included and outputs the initial value to the terminal

window on sandbox start-up and when the configuration file is saved. An example of

the snow configuration file is included in Appendix A.3.

The snow configuration file works by using a file monitor system. While the AR

sandbox is running it checks to see if the configuration file is modified. When the file

is updated and saved the values of the critical height and melt rate are updated with

the configuration file values. If the variables are not required to change during the

use of the AR sandbox they can be set in the config file prior to startup using the

sand as a screen.

3.4 Model Limitations

The snowpack and snowmelt model makes use of the existing sandbox algorithm

and inputs to create the simulation described in this work. The shallow water simu-

lation in the AR sandbox is a qualitative simulation. This is largely due to the need

for the simulation to be real-time. The lower fidelity of the simulation allows for the

GPU to run the necessary calculations quickly and project the results onto the sand

without a large delay. The snowmelt simulation was created at a similar level of detail

to help ensure the sandbox continues to run real time.

Additionally, the shallow flow and snowmelt calculation are completed cell by cell.

Due to this, calculating the total volume of precipitation in the table can’t be calcu-

lated reliably as the simulation runs. Along with the cell based calculations, while

the snow volume is stored as only snow, the water volume is stored as the combined

water and bathymetry height values. The bathymetry height can be subtracted but

the result from quantity would not account for the changing discharge value and

would increase calculation time. Further development of the AR sandbox software
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outside the shallow water flow and snowmelt simulations would be necessary in order

to accommodate quantitative analysis.

3.5 Code Distribution

The bulk of the coding on this project is contained to six existing files and the

three new files. Table 3.2 shows the names of these files.

Table 3.2: Table showing the names of files that were created or modified.

Modified Files New Files
rungeKuttaStepShader.fs snowShader.fs
SurfaceAddWaterColor.fs freezeShader.fs

WaterTable2.cpp snowConfig.cfg
WaterTable2.h

SurfaceRenderer.cpp
SurfaceRenderer.h

A main factor of this project was to make sure that the snowmelt simulation was

easy and straight forward to implement into the existing sandbox framework. By

limiting the amount of files that were modified it allows owners of existing sandboxes

to easily include the snowmelt code. This could be done by simply replacing exist-

ing files with ones that include the edited code or by allowing users with existing

modifications to easily incorporate the new code as well.

All modifications to existing code are tagged with a comment listing them as

’Snow Supporting’ or simply ’Snow’. Searching for that keyword will allow users

to find any changes from the base sandbox code and implement them as they see

fit. All the code modified and created for this project is posted on GitHub at

https://github.com/esmit248/ARSandbox_Snow.
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CHAPTER 4: RESULTS

This project resulted in the creation of a working snowpack and snowmelt simula-

tion for use in augmented reality sandboxes. The simulation runs in the current AR

sandbox base code without needed to make any major modifications to allow for ease

of implementation and minimal impact on the usability. Resources were created to

show possible options for educational displays that can be used to alongside the new

simulation.

4.1 Run-time Impact

One of the main concerns while developing the snowmelt simulation was the effects

of the added code on the runtime of the sandbox. The goal was to have as little an

effect on the runtime of the sandbox as possible with the goal being no impact at

all. To quantify the runtime changes, both the original UC Davis sandbox code and

the new modified code were run for five minutes with simulated water in the table.

The new code was run with snow and without snow to asses the effects of just adding

extra code and adding more running code. The code base includes logic to notify

developers when the solution is processed too slowly to achieve realtime performance.

In these cases the current timestep is terminated and the solution moves to the next

timestep. These slow-downs can occur when there is a lot of fluid motion to resolve.

In this case the added logic structures where a concern for runtime. A script was used

to count the number of incomplete timesteps in the five minute duration of the test.

For each run, the the global add water tool was used to add water for two seconds

at ten seconds into the run. Each of the three variations was run ten times and the

average incomplete timesteps were found. Table 4.1 shows these averaged values.

It was found that the inclusion of the snowmelt simulation did not significantly

impact the runtime of the AR sandbox. The average number of incomplete timesteps

did not change greatly between the original code and the modified code. There was
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Table 4.1: Average number of incomplete timesteps in a five minute duration.

Code Iteration Average Incomplete Timesteps
Original 3450.1

Snow, Inactive 3471.3
Snow, Active 4401.4

an increase seen when the snowpack and snowmelt simulation was active. Since there

was no significant difference between the inactive modified code and original code,

this is likely due to the additional steps and logic added for the simulation. The main

impact to runtime that was found was the percent increase of water in the sandbox.

When large amounts of water were added, such as the amount added when using the

global tool, there is visible slow down in the shallow water simulation. This was found

to be true for all three variations of the code. Removal of water through the built-in

drain function lowers the visual lag caused by this.

4.2 Walk-through

The following section describes the usage and results of the added functions in-

cluded in the snowmelt code. Figures are included to further display the visual

aspects of these functions.

4.2.1 Adding snow to the sandbox

The simulated snowpack can be generated concurrently with adding water to the

table. This can be done through built-in functions, the global ’rain’ function or the

rain gesture. Figure 4.1 shows the sandbox with no precipitation and after snow and

water have been added to the table. The critical height used is 3.5. The blue contours

begin at zero and represent the water table. Critical height is measure with respect

to the water table line with positive values being above the water table and negative

values below it.
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Figure 4.1: Sandbox display with no precipitation (a) and precipitation (b).

4.2.2 Melting the snow

While there is snow in the sandbox, the critical height can be changed in the config

file to melt the snow. Figure 4.2 displays the melting behavior in four stages. The

critical height starts at 3.5 and is adjusted to 7.5 in order to melt the snow that exists

in the region between 3.5 and 7.5. As the snow melts the transparency of the snow

increases with time. In the final picture (4) the water level of the "lake" in the lower

right of the image is higher as a result of the snowmelt runoff.

Figure 4.2: Snowmelt displayed in four stages. 1: Starting height, 2 and 3: two stages
of melting in progress, 4: Fully melted at new height.
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4.2.3 Changing bathymetry in snow covered area.

When the sand topography is changed, the water and snow update based on the

new bathymetry value. In the case where the sand is moved in an area with snow,

the snow will melt. This is shown in Figure 4.3.

Figure 4.3: Snow melting due to a change in bathymetry: a) Before sand is moved
and b) After snow has melted.

In areas with water that are then built up to be above the critical height the water

will freeze into snow. This process can be seen in Figure 4.4 that shows the sandbox

before and after a pool of water is frozen by changing the bathymetry.

Figure 4.4: Water freezing to snow when sand topography is changed: a) before sand
is moved and b) after sand is moved.

4.2.4 Completely Freezing the Sandbox

The critical height value can be set much lower than the water table height. This

results in all existing water in the table to freeze. This is shown in Figure 4.5.
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Figure 4.5: Converting all water in the sandbox to snow: a) Sandbox with no snow
and b) Sandbox will all water turned to snow.

4.3 Educational Resources

A set of educational resources were created for the snowmelt simulation. These

include a poster with guiding questions for the snowmelt simulation that can be dis-

played alongside of the sandbox during use as an interactive display. The background

information can be used by parents or facilitators to encourage discussion on topics

including snowmelt flooding and how precipitation changes due to altitude. A facili-

tator could lead a discussion on water resources based on the amount of precipitation

that remains water or liquid with and without a snowpack. This displays how a snow-

pack acts as a battery for water and the availability of water at different times as well

as the effects of the snowpack lowering initial available resources or causing flooding

when that reservoir is melted. A similar method of generating a snowpack, discussing

available water sources, and generating a smaller snowpack at a higher critical height

can be used to display the impact of climate change on water resources and when

they’re available.

Full images of educational resources can be found in Appendix B.
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CHAPTER 5: CONCLUSIONS

This research produced a snowpack and snowmelt simulation that was implemented

within an AR sandbox. The real-time model is based on a critical or freeze height

and utilizes a time based melting model. The simulation can be used to teach the

concept of a snow line, a snowpack, and snowmelt runoff and its effects on stream

flow and flooding.

5.1 Summary

AR Sandboxes are useful hands-on tools that can be utilized in both research

and education. The base code developed by UC Davis was designed to be able to

teach geographical concepts such as watersheds and runoff. The expansion of the

AR sandbox code to include a simulated snowpack and snowmelt runoff allows for

both concepts to be introduced to a younger audience. The modifications to the base

code were contained to the minimum amount of files necessary in order to be easily

implemented into existing AR sandboxes in the open source community.

The snow simulation consists of two main pieces: the accumulation of snow and

the melting behavior. A new variable, critical height, was used to determine where

in the AR sandbox the snow would be generated. This variable is dependant on the

height of the sand topography (bathymetry) and allows for user-made changes in the

topography to be reflected in the snowpack. Depending on the changes to the sand

topography, existing snow may melt or be moved to a new location and existing water

may be convert to snow. The overall water quantity is conserved in the sandbox as

the freezing water is converted to snow and the melting snow is converted to water.

The melting behavior was created with a pair of recursive equations. One equation

removes a percentage of the existing snowpack and another to adds that amount to

the water variable. Utilizing a percentage value for the melting behavior creates a

smooth transition between there being a snowpack and the snow being completely



44

melted. This is very noticeable with small amounts of snow where if a set amount

melted per timestep there would be a more abrupt transition.

Educational resources were made as supplemental material for the snowpack and

snowmelt simulation. These can be used as part of a hands-on display to demon-

strate guiding questions for users to consider. The resources along with of the code

created for the snowpack and snowmelt simulation is available online on GitHub

at https://github.com/esmit248/ARSandbox_Snow. This continues the open source

precedent of the AR sandbox and allows others in the community to use, and poten-

tially build upon, the model.

It was found that the inclusion of the snowmelt did not have a noticeable impact

on sandbox performance. When the original UC Davis code was compared to the

modified code, with no snow being generated, the average amount of incomplete

timesteps taken was similar. Yet, when snow was being generated, the average amount

of incomplete timesteps was higher. It was found that this is The runtime test shows

that the main factor that causes lag in the sandbox program is an increase in simulated

water in the table and this consistent across both code versions.

5.2 Future Work

Further educational resources can be created for the simulation. These could in-

clude informative posters that display the use of the snowmelt simulation as a dis-

cussion tool for topics such as flooding, cyclical water resources, and climate change.

The creation of a basic snowmelt simulation for the AR Sandbox allows for more

simulation to be created within the same scope. Further developing the freezing

mechanic could lead to the creation of frozen lakes rather than the existing water being

turned to snow and the simulation of avalanches. In a similar vein, the combination of

the rain and snow mechanics could be combined with wind and temperature effects.

This could create weather fronts or other weather phenomenon that are dependent on

topography within the sandbox such as rain shadows, areas where mountains block
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precipitation on one side.
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APPENDIX A: C++ Code

A.1 Snow Shader code

#extension GL_ARB_texture_rectangle : enable
uniform float criticalheight;
uniform float meltRate;
uniform sampler2DRect snowSampler;
uniform sampler2DRect quantitySampler;
uniform sampler2DRect bathymetrySampler;
void main()

{\*Calculate if surface height is higher than the critical height*\
vec3 snowAmt = (0.0,0.0,0.0);
float B=(texture2DRect(bathymetrySampler,

vec2(gl_FragCoord.x-1.0,gl_FragCoord.y-1.0)).r+
texture2DRect(bathymetrySampler,
vec2(gl_FragCoord.x,gl_FragCoord.y-1.0)).r+
texture2DRect(bathymetrySampler,
vec2(gl_FragCoord.x-1.0,gl_FragCoord.y)).r+
texture2DRect(bathymetrySampler,
vec2(gl_FragCoord.xy)).r)*0.25;

vec3 q=texture2DRect(quantitySampler,gl_FragCoord.xy).rgb;
float w = q.r;
vec3 snow = texture2DRect(snowSampler, gl_FragCoord.xy).rgb;
float snowMelt = meltRate/100000;
if(B>=criticalHeight)

{snowAmt.r = snow,r + (w-B);
}else

{snowAmt.r = snow.r;
if(snowAmt.r>0.0001)

{
snowAmt.b = snow,r * snowMelt;
snowAmt.g = snow.g + snowAmt.b;
snowAmt.r = snowAmt.r - snowAmt.g;

}else
{snowAmt.r = 0.0;
}

}
gl_FragColor=vec4(snowAmt,0.0);
}

A.2 Freeze Shader Code

#extension GL_ARB_texture_rectangle : enable
uniform float criticalHeight;
uniform sampler2DRect quantitySampler;
uniform sampler2DRect bathymetrySampler;
void main()

{float B=(texture2DRect(bathymetrySampler,
vec2(gl_FragCoord.x-1.0,gl_FragCoord.y-1.0)).r+
texture2DRect(bathymetrySampler,
vec2(gl_FragCoord.x,gl_FragCoord.y-1.0)).r+
texture2DRect(bathymetrySampler,
vec2(gl_FragCoord.x-1.0,gl_FragCoord.y)).r+
texture2DRect(bathymetrySampler,
vec2(gl_FragCoord.xy)).r)*0.25;
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vec3 q = texture2DRect(quantitySampler,gl_Fragcoord.xy).rgb;
vec3 noHu;

gl_FragColor = vec4(q,0.0);
if(B>=criticalHeight)

{noHu = vec3(B,0.0,0.0);
gl_FragColor=vec4(noHu,0.0);
}

}

A.3 Snow Configuration File Code

/*The value below is the critical height or freeze line. The water
table is at 0. Positive values are above the water table.*/
3.5
/*The value below is the Melt Rate. The default value is 5.
Larger numbers will make the snow melt faster.*/
5.0

A.4 Precipitation Coloring Section of SurfaceAddWaterColor.fs

void addWaterColor(in vec2 fragCoord, inout vec4 baseColor)
{
/*Calculate the water column height above this fragment*/
float b=(texture2DRect(bathymetrySampler,
vec2(gl_FragCoord.x-1.0,gl_FragCoord.y-1.0)).r+
texture2DRect(bathymetrySampler,
vec2(gl_FragCoord.x,gl_FragCoord.y-1.0)).r+
texture2DRect(bathymetrySampler,
vec2(gl_FragCoord.x-1.0,gl_FragCoord.y)).r+
texture2DRect(bathymetrySampler,
vec2(gl_FragCoord.xy)).r)*0.25;
float waterLevel=texture2DRect(quantitySampler,waterTexCoord).r-b;
vec2 snow = texture2DRect(snowSampler,waterTexCoord).rg;
/*Check if surface is under water:*/
if(waterLevel>0.000001)

{vec3 wn=normalize(vec3((texture2DRect(quantitySampler,
vec2(waterTexCoord.x-1.0,waterTexCoord.y)).r-
texture2DRect(quantitySampler,
vec2(waterTexCoord.x+1.0,waterTexCoord.y)).r)
*waterCellSize.y,(texture2DRect(quantitySampler,
vec2(waterTexCoord.x,waterTexCoord.y-1.0)).r-
texture2DRect(quantitySampler,
vec2(waterTexCoord.x,waterTexCoord.y+1.0)).r)
*waterCellSize.x,2.0*waterCellSize.x*waterCellSize.y));

float colorW=pow(dot(wn,
normalize(vec3(0.075,0.075,1.0))),100.0)*1.0-0.0;

vec4 waterColor=vec4(colorW,colorW,1.0,1.0);
baseColor=mix(baseColor,waterColor,

min(waterLevel*waterOpacity,1.0));
}

/*Check if surface has snow:*/
if(snow.r>0.000001)

{vec3 wn=normalize(vec3((texture2DRect(bathymetrySampler,
vec2(waterTexCoord.x-1.0,waterTexCoord.y)).r-
texture2DRect(bathymetrySampler,
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vec2(waterTexCoord.x+1.0,waterTexCoord.y)).r)
*waterCellSize.y,(texture2DRect(bathymetrySampler,
vec2(waterTexCoord.x,waterTexCoord.y-1.0)).r-
texture2DRect(bathymetrySampler,
vec2(waterTexCoord.x,waterTexCoord.y+1.0)).r)
*waterCellSize.x,2.0*waterCellSize.x*waterCellSize.y));

float colorW=pow(dot(wn,
normalize(vec3(0.0529,0.0702,0.75))),100.0)*1.0-0.0;

vec4 waterColor=vec4(1-colorW,1.0,1.0,1.0);
baseColor=mix(baseColor,waterColor,

min(snow.r*waterOpacity,1.0));
}

}

A.5 Runge-Kutta Step Shader

#extension GL_ARB_texture_rectangle : enable
uniform float stepSize;
uniform float attenuation;
uniform float criticalHeight;
uniform float meltRate;
uniform sampler2DRect quantitySampler;
uniform sampler2DRect quantityStarSampler;
uniform sampler2DRect derivativeSampler;
uniform sampler2DRect snowSampler;
uniform sampler2DRect bathymetrySampler;
void main()

{/* Calculate the Runge-Kutta step: */
vec3 q=texture2DRect(quantitySampler,gl_FragCoord.xy).rgb;
vec3 qStar=texture2DRect(quantityStarSampler,gl_FragCoord.xy).rgb;
vec3 qt=texture2DRect(derivativeSampler,gl_FragCoord.xy).rgb;
vec3 newQ=(q+qStar+qt*stepSize)*0.5;
/* Adds melted snow to quantity: */
vec3 snow = texture2DRect(snowSampler,gl_FragCoord.xy).rgb;
vec3 holdMelt = vec3(0.0,0.0,0.0);
float B=(texture2DRect(bathymetrySampler,
vec2(gl_FragCoord.x-1.0,gl_FragCoord.y-1.0)).r+
texture2DRect(bathymetrySampler,
vec2(gl_FragCoord.x,gl_FragCoord.y-1.0)).r+
texture2DRect(bathymetrySampler,
vec2(gl_FragCoord.x-1.0,gl_FragCoord.y)).r+
texture2DRect(bathymetrySampler,
vec2(gl_FragCoord.xy)).r)*0.25;
float snowMelt = meltRate/100000;
if(B<criticalHeight)

{holdMelt.r = snow.r;
if(holdMelt.r>0.0001)

{holdMelt.g = holdMelt.g + holdMelt.r * snowMelt;
newQ.x = newQ.x + holdMelt.g;
holdMelt.r = holdMelt.r - holdMelt.g;
}

}
newQ.yz*=attentuation;
gl_FragColor=vec4(newQ,0.0);
}
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APPENDIX B: Educational Resources

B.1 Snowmelt Runoff Guiding Question Poster
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B.2 General Snow Simulation Poster


