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ABSTRACT

KARIM H. ERIAN. Autonomous Control of an All-terrain Vehicle using Embedded
Systems and Artificial Intelligence Techniques. (Under the direction of DR. JAMES

M. CONRAD)

The need for autonomous vehicles that do not operate on highways and can move off-

road is increasing. While there have been significant advancements in autonomous

passenger vehicles in the last couple of years, autonomous off-road vehicles have not

received as much of this attention. The demand to deliver emergency supplies to

areas unreachable by typical highways advocates the need for an off-road self-driven

vehicle.

This dissertation discusses transforming an All-Terrain Vehicle into a self-driven

off-road vehicle that can follow a path in a forest environment. The approach is to

install actuators, sensors, microcontrollers, and a graphical processing unit on top of

the ATV without changing the initial ATV architecture.

This research was composed of two phases. The first phase was to augment the

ATV with actuators and sensors to have a reliable base where digital signals control

the ATV. This phase focused on controlling the handlebar of the ATV in a forward

direction, having a feedback speed control system, and implementing a braking control

system. The second phase involved developing an Artificial Intelligence model with an

image processing system to compute the proper steering angle and control the ATV.

This phase consisted of an OpenCV module to read a camera feed and pass it to a

semantic segmentation deep learning model called SegNet, which helps identify the

paved path. The software received the semantic segmentation output data identified

by the ATV’s current position on the paved path and the expected trajectory of the

ATV. A trained Machine Learning Linear Regression model used this data to predict

the handlebar angle, pass the angle to a CAN bus to steer the ATV, and keep the

ATV on the paved path. The dissertation includes the data gathering process, the
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ML model training, and the LR model choice.

The research also included a testing method to check the ATV self-driving perfor-

mance when following a paved path in the forest referencing an experienced human

driver. The testing model adopts an Inverse Reinforcement Learning model that

learns the best driving policy from an experienced driver in the environment of the

paved path in the forest and outputs a reward function. The camera feeds the envi-

ronment into a semantic segmentation model. The output reward function delivered

a rating equation that can be applied to other driving techniques to measure the

performance.
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CHAPTER 1: INTRODUCTION

The worldwide automotive industry is moving toward autonomous self-driven cars.

The competition between inveterate mechanical car manufacturers and the new high

technological electrical car manufacturers is increasing daily. Autonomous vehicles

are still in an early phase of research, and those produced by some car manufacturers

are expensive [1, 2].

Self-driven cars have numerous benefits and applications. These state-of-the-art

machines save non-productive hours for drivers commuting daily to and from their

work area to use them in more valuable tasks. They contribute to public transporta-

tion and shipments deliveries. More essential features are traffic safety and a massive

reduction in the percentage of car accidents. All autonomous vehicles will be pro-

grammed to follow traffic laws. They will keep correct lane placement, respect the

speed limits and the traffic lights. They will also be able to detect road obstacles [3].

Autonomous vehicles will lead to a significant reduction in the number of car ac-

cidents [4]. Another application uses similar machines to deliver emergency supplies

in hurricanes areas, earthquake zones, and others. Those areas are not reachable

by conventional vehicles, and the roads may be dangerous for human drivers. An-

other usage to be considered would be the discovery of new locations in the woods

or deserts. While having autonomous off-road vehicles moving around, recording ev-

erything in their way, human operators can escape the danger of encountering wild

animals, fallen trees, treacherous land features, or others.

This research focuses on one type of autonomous vehicle, making an All-Terrain-

Vehicle (ATV) autonomous. The main goal is to make the ATV follow a paved path

in a forest environment without any human interface. It is about using a standard
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ATV and adds actuators and sensors to control the ATV and use Artificial Intelligence

(AI) techniques.

1.1 My Contribution

The main contribution of this research is to provide an autonomous ATV that can

follow a paved or gravel path using a camera and AI models and to provide a method

to localize the ATV with respect to the path using a camera, semantic segmentation

(SS), followed by an image processing model.

Another contribution is providing a new dataset gathered on a paved path in a

forested environment from the walking trail at The University of North Carolina

Charlotte that can help in more machine learning training and other type of research.

The following list illustrate my contributions:

• Created a new framework for training and implementation of an autonomous

ATV.

• Used an existing dataset (DeepScene) [5] for SS which save an enormous amount

of time and it was able to successfully represent the environment where the ATV

was tested. The SS segmentation output was used into a novel image processing

model to detect the ATV pose and orientation with respect to the paved path.

• Created a metric to quantify and compare the driving of an experienced to the

driving of an autonomously controlled ATV.

• Implemented a system to take real-time images and control the steering of an

autonomous ATV.

• Created a test bed for demonstrating these previous contributions.

• Provided a new dataset that contains 41059 entries. Each entry has a frame

from the ATV camera showing the paved path, the current pose of the ATV at
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this frame and the projection pose (both are calculated from the frame), and

the corresponding steering angle of the ATV.

1.2 Previous ATV Work at UNC Charlotte

The University of North Carolina at Charlotte started working with Zapata Engi-

neering in 2009 to make an Autonomous ATV. Zapata Engineering participated by

giving the University a Honda TRX420FE 2009 ATV. Since then, researchers have

placed a significant effort to make this ATV autonomous [2, 6].

In the previous research, the ATV had the actuators: throttle, braking, and steering

controllers attached to the ATV. It also had to read from stationary sensors to identify

the path. A hand-held remote control device commanded the vehicle over Controlled

Area Network (CAN) messages [7, 8, 9].

1.3 Problem Statement

This research addresses transforming the existing system into a fully autonomous

ATV without a human interface. Instead of controlling the ATV using a hand-held

remote control device, this research sought to make it self-controlled using AI and

Machine Learning (ML) techniques.

This research also addresses existing problems in the old system, like rebuild-

ing damaged or missing boards, standardizing connections, communications, boards,

power supply, the code used, and integrating the whole system.

In addition, this research addresses how to follow a paved path in a forest envi-

ronment. It introduces the utilization of ML techniques and other AI methods as

valuable methods of controlling the ATV steering angle and speed. It also addresses

the problem of identifying a path in the woods and how to follow this path.

This dissertation also discovered the need to measure the driving performance on a

forest path to evaluate the overall system for testing purposes. The research designed
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and implemented a measuring system that was built using inverse reinforcement learn-

ing from an experienced human driver and measuring the performance accordingly.

1.4 Significance of this Research

This dissertation shall contribute to a proof of concept that it is possible to trans-

form an ATV into an autonomous ATV with low-cost materials using AI modules.

As mentioned earlier, it is essential to have autonomous ATV for many reasons,

including but not limited to the need to deliver emergency supplies to locations suffer-

ing from any catastrophic circumstances like hurricanes, earthquakes, or others that

destroyed or blocked rural roads or when the roads are in an unsafe condition for

human drivers to reach the final destination. Another reason is the need to discover

non-rural areas like woods for civilization or search for lost campers.

1.5 Effort Toward My Contribution

The current research aims to build a fully automated ATV that follows a paved

path in the forest without human interaction. This purpose requires the ATV to

have a base architecture that digital signals from a processing unit can control. An

embedded Graphical Processing Unit (GPU) is needed to process the data from a

camera and take proper action in controlling the actuators installed on the ATV by

sending the correct signals.

The research contains several steps: building the base ATV architecture, then

building an AI model, which includes data gathering, choosing which models are

needed, and training the models that need training. Then for implementation and

testing, they are done first offline, followed later by real-time environment testing.

Then, an AI model is created to quantify the ATV driving performance.
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1.6 Effort Details

1.6.1 The ATV Architecture

The ATV architecture comprises a speed control system, a braking system, a steer-

ing module, a CAN network that connects everything, a camera, and an Nvidia

Jetson Nano GPU. All modules have their processing unit and power supply. The

effort includes enhancement and rebuilding of the existing braking system and throt-

tle module, and redesigning and building a new steering module and a new CAN

network.

• CAN Bus and Power distribution: Following the standard way of communi-

cation in the automotive industry, the different modules should be communicat-

ing using the CAN bus. The communication uses the CAN bus to connect all

modules to the central processing unit. It is a perfect way to use the same bus

to distribute power. This part of the research will be about physically designing

and implementing the bus and the power distribution network while preventing

the wrong connections.

• Speed Control module: The old throttle module controlled the ATV throttle

by applying a fixed duty cycle to the servo motor attached to the air valve

of the motor. This action gives constant power to the ATV to move forward.

The problem with this design is that constant power does not mean a constant

speed with the inclines in a forest. Therefore, the ATV needs the speed value as

feedback to change the duty cycle accordingly. Several methods are available to

get speed feedback. The first method used the encoders built before. Another

approach pursued used GPS data. Finally, a successful method is getting the

speed signal from the ATV primary shaft speed sensor. The signal is composed

of a square wave, and the frequency is the indication of the speed.

• Braking System: The braking system is composed of a hydraulic actuator con-
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nected to the braking pedal, a motor driver, and a microcontroller. The mechan-

ical design is adjusted to have two pads sandwich surrounding the braking pedal

where the hydraulic actuator is applied. This design is to protect the pedal from

braking by distributing the weight over the whole pedal. The implementation

of this system includes actuator calibration for the traveling distance.

• Steering Module: A problem appeared when using the old steering module.

The old steering module uses the main power assist motor fabricated with the

ATV. The power-assist motor works using a torque sensor that will define the

engagement of the motor to help the human driver turn the handlebar. The

motor is not powerful enough to turn the handlebar alone as Honda designed it

only to help the driver turn. With the castle angle of the ATV, the ATV weight

makes it very hard to turn the ATV right and left in a forward direction. To use

this motor alone to steer the ATV, the ATV should be moving backward. As a

solution, the research uses another controller with an external servo motor and

an aluminum wire attached to the handlebar to steer it. The motor here acts

like a human driver, and the power assist motor is just assisting in the usual

way. The module gets a feedback signal from the handlebar axis to determine

the current steering angle. The motor will adjust the direction accordingly to

reach the proper required angle.

• Base System integration: A vital part of this research is integrating all previ-

ous modules. The CAN bus connects the GPU to the other modules. The GPU

will handle the AI module and communicate with the steering, speed control,

and braking system accordingly. The ATV should only run on the first gear

with a maximum speed of 9 mph.

• System Testing: This implementation step includes three different types of test-

ing with different strategies. Mainly, module testing is used for each module to
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ensure it works alone without integrating it into the vehicle. Then, integration

testing will occur by integrating two modules, then integrating three modules

for testing until the integration is complete.

1.6.2 The AI Model and Image Processing System

The AI model and image processing system is reading a live stream from the camera

and process the stream on a frame-by-frame basis. An SS model processes each frame

to identify the path from the trees. The GPU processes the output segmented frames

to determine the current ATV position and the projected ATV position on the paved

path. An Linear Regression (LR) ML model uses the processed information and

outputs the handlebar required angle to stay on the paved path [10].

• Handling Camera Data: An Intel deep scene camera D435i is mounted on the

front of the ATV to gather the environment data needed. The research used

Intel libraries and OpenCV to read the camera stream and transform it into the

proper format needed.

• SegNet SS model: Nvidia Jetson Nano compatible SS model with CUDA en-

abled is used to determine the paved path in the forest. The model’s training

dataset is the DeepScene dataset which is a dataset for the forest environment.

The CUDA enabled is a method to use the GPU’s parallel cores in image pro-

cessing to reduce total processing time.

• Data gathering: Using the camera and a sensor mounted on the handlebar axis,

the ATV was driven on a forest paved path to collect data of the environment

and the steering angle.

• SS data processing: The GPU processes the output of the SegNet SS model to

get the ATV current and projected position. This dissertation defined an ATV

status chart where the GPU transforms the SS output into numerical values.
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• Machine Learning Model: A comparison between machine learning models.

The LR model with Least Squares error calculation had the best results; there-

fore, this research uses it. The model’s training uses 80% of the data gathered,

and the testing uses 20% of the data.

• AI Model Implementation and Testing: Implementation of the AI was com-

pleted in two phases. The first phase was an offline phase where the camera

captures the videos. The GPU applies the SS model to the videos. Then the

GPU processes the output data from the SS model, and the software trains the

ML using the training dataset and tests it using the validation dataset. The

next phase was a Real-time implementation. In real-time, the research imple-

mented a pipeline to treat frame-by-frame. This phase does not train the ML

model, and it uses the ML model training results of the offline phase to deter-

mine the angle after each frame. The steering module receives this angle over

the CAN bus.

1.6.3 Measuring Driving Performance

Measuring Driving Performance was the last step in this research. As a means

of testing, the dissertation designed and implemented an AI model to measure the

driving performance of the ATV. Its implementation uses the ENet SS model with

IRL model. The main idea is to learn from an experienced driver and compare the

driving technique to the experienced driver’s technique [11].

• Data gathering: This research used a camera mounted on the ATV to gather

data while an experienced driver was driving the ATV on a paved path in the

woods. The research divided the data 80% for training and 20% for testing.

The research gathered another dataset that does not represent good driving for

testing purposes.

• ENet SS: While driving the ATV, the camera feed constructs a video to use later
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to check the driving performance. The ENet SS model processes the video. The

ENet is a SS model built on the Cityscape dataset. It is built in an efficient way

to have a lite network with a relatively small size. The ENet is much slower

than the SegNet with approximately 1 fps, but there is no problem with the

slow performance because this one’s usage is offline.

• IRL: The IRL is an AI model that knows the action policy and the environment.

The IRL is trying to derive a reward function from the policy and the environ-

ment. This model’s training uses the 80% set of the dataset of the experienced

driver.

• Rating Equation: The reward function output of the IRL model concluded a

rating equation. The software applies this equation to the SS output of the

driving videos gathered and uses it to calculate the driving rating of the ATV.

1.7 Dissertation Limitations

This dissertation is limited to move the ATV following a paved path in a forest

environment autonomously. The dissertation only assumes trees, green areas, and

paths in the forest. This work assumes that are no obstacles on the paved path, like

animals, humans, or large forest debris.

Also, this ATV under test is a manual gear shift ATV. This dissertation does not

cater for automation of the manual gear transmission since the ATV will run on the

first gear only with a maximum speed of 9 mph.

1.8 Organization

This dissertation contains seven chapters. Chapter Two provides information about

the previous studies that already took place on this subject, the machine learning

technology used in this dissertation, and the ATV initial status at the beginning of

this research. Chapter Three describes the ATV architecture, the basic system on
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which the AI control is controlling. Chapter Four describes the integration, testings,

and results for the ATV base architecture. In contrast, Chapter Five illustrates the

machine learning system design and performance goals. Chapter Six demonstrates

the implementation and initial results of the AI system testing. Finally, Chapter

Seven summarizes the conclusion, the lessons learned, and the future work.



CHAPTER 2: TECHNICAL BACKGROUND AND RELATED RESEARCH

This chapter provides information about previous studies on all the used AI tech-

niques and related studies about controlling vehicles using ML and DL.

In order to understand the AI techniques used in this research, it is better to

give a quick definition of the topics used, Machine Learning, Semantic Segmentation,

and Inverse Reinforcement Learning, followed by a survey about the work related to

measuring driving performance, then the work related to controlling ATV or standard

vehicles using AI techniques.

Machine Learning is more concerned with learning from data to predict either

a class or a specific value. Predicting a class is considered a classification, while

predicting a value is categorized as a regression. In this research, ML is used to

predict the rotation angle of the ATV’s handlebar, which is considered a regression.

ML models have two essential steps, training the model and using it. This research

gathered a part of the data used for training the ML models used. The coming

chapters explain the data-gathering process. After data gathering, data preprocessing

may is essential to have the data ready for the training process. Examples of data

preprocessing are handling missing data [10] or changing data format.

Semantic Segmentation (SS) is the process of linking each pixel to a labeled class

[12]. It is a neural network that is composed of an encoder and a segmentation

decoder. The training data is labeled data or labeled by color code. The SS model

marks the output image with the required classes’ colors. Fig. 2.1 illustrates an

example for the SS output.

It is better to comprehend first Reinforcement Learning (RL) to understand the

Inverse Reinforcement Learning (IRL). RL is a model with an agent in an environ-
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Figure 2.1: Example for the Semantic Segmentation [12]

Figure 2.2: RL vs. IRL [15]

ment, a defined reward function, and an initial policy. The agent will act in the

environment to maximize the reward function with different techniques to reach an

optimum policy. In other words, the agent, the environment, and the reward function

are available and trying to determine what is the optimum policy [13]. The IRL has

the optimum policy as an input as well as the environment, and it aims to find the

best reward function [14]. Fig. 2.2 illustrates the difference between RL and IRL.

Below is a survey of other related research.



13

2.1 Finding Reward Function for Reinforcement Learning

Reward functions describe the agent’s best behavior. The reward functions explain

what the agent should accomplish.

According to the actions taken, the environment moves from one state to another,

determining the reward associated with the transition. The main goal of an RL agent

is to collect the maximum amount of rewards possible. The agent can choose any

action as a function of history or a randomized action.

2.1.1 RL with Unknown Reward Functions

The reward function is either precisely known or unknown. The authors of this

paper [16] contributed by the derivations of the Bayes-optimal and mini-max policies

in this setting and efficient algorithms for approximating these policies.

2.1.2 End-to-End Deep RL without Reward Engineering

Specifying a task to a robot for reinforcement learning requires substantial effort

[17]. Most prior work that had applied deep reinforcement learning to real robots uses

specialized sensors to obtain rewards or studies tasks that used the robot’s internal

sensors to measure reward.

2.1.3 Active Reward Learning

The authors of the paper [18] proposed learning the reward function through active

learning, querying human experienced knowledge for a subset of the agent’s rollouts.

They introduced a framework wherein a traditional learning algorithm interplayed

with the reward learning component. They demonstrated the results of this method

on a robot grasping task and showed that the learned reward function generalized to

a similar task.
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2.1.4 Hybrid Reward Architecture for RL

This paper [19] contributed to a new method called Hybrid Reward Architecture

(HRA). HRA took a decomposed reward function as input and learned a separate

value function for each reward function, enabling more effective learning.

2.1.5 Faulty Reward Functions in the Wild

In this post [20], the authors explored one failure mode, which was when miss-

ing specifying the reward function. They highlighted what happened when a miss-

specified reward function encouraged an RL agent to subvert its environment by

prioritizing the acquisition of reward signals above other measures of success.

2.2 Inverse Reinforcement Learning

Inverse reinforcement learning is a recently developed machine-learning framework

that can solve the inverse problem of RL. IRL is about learning from humans. IRL is

the field of learning an agent’s objectives, values, or rewards by observing its behavior.

2.2.1 Algorithm for IRL

Russell & Ng. 2000 is a paper [14] on one of the early well-established linear IRL

algorithms used to find the reward function. It had two different methods: one was a

direct method for the small states space, and one used an approximation for the large

states space. Their algorithm required as inputs the environment states, actions, and

transitional probability.

2.2.2 Apprenticeship Learning via IRL

Abbeel & Ng 2004 [21] described an algorithm based on using IRL to try to recover

the unknown reward function that terminated in a small number of iterations, and

that even though they showed that they might never recover the expert’s reward

function. However, the policy output by the algorithm attained performance close

to that of the expert, where here performance was measured referencing the expert’s
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unknown reward function.

2.2.3 Maximum Entropy IRL

Zibart et al. [22] developed a probabilistic approach based on the principle of

maximum entropy. They provided a distribution over decision sequences to find a new

approach to inferring destinations and routes based on partial trajectories. Mainly

their research was more about finding a policy similar to the optimum policy of the

expert behavior from the retrieved reward function.

2.2.4 Bayesian IRL

Ramachandran and Amir 2007 [23] showed how to combine prior knowledge and

evidence from the expert’s actions to derive a probability distribution over the space

of reward functions. They focused on finding solutions for reward learning and ap-

prenticeship learning tasks.

2.2.5 Relative Entropy IRL

In this paper [24], Boularias et al. studied imitation learning where the expert be-

havior covers only a tiny part of ample state space. They proposed a model-free IRL

algorithm. This algorithm minimized the relative entropy between the empirical dis-

tribution of the state-action trajectories under a baseline policy and their distribution

under the learned policy by stochastic gradient descent.

2.2.6 Nonlinear IRL with Gaussian Processes

Levine et al. 2011 [25] presented a probabilistic algorithm for nonlinear inverse

reinforcement learning using Gaussian processes to learn the reward as a nonlinear

function. Their probabilistic algorithm allowed complex behaviors to be captured

from suboptimal stochastic demonstrations to get a simplified reward function.
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2.3 Measuring Driving Performance using RL

2.3.1 Measuring Driving Performance by Car-Following

A new test [26] extended to measure impaired driving performance by such external

factors as alcohol, medicinal drugs, mobile telephoning, and other sorts of distractions.

Since attention and perception errors predominate over response errors in accident

causation, on-road studies should specifically examine deterioration in attention and

perception. Most existing methods of measuring impairing effects in the actual driving

environment had the drawback that, irrespective of high sensitivity, they measured

driving skills involved in only a low percentage of accident causes.

2.3.2 Standardized Definitions for Driving Performance

This research [27] developed names and definitions for 12 standard lateral and lon-

gitudinal driving performance measures relating to driving within and between lanes

(lane departure, lane change, lateral lane position); steering wheel reversal; headway

and gap (distance gap, time gap, distance headway, time headway); pedals (accel-

erator release time, accelerator to brake transition time, brake reaction time); and

time to collision. The research developed human factors and lexicographical criteria

for defining driving performance operational definitions. Based on the criteria and

literature, the research developed common measure names and definitions. Human

factors engineers and researchers would use these definitions for research and design,

providing more consistent and comparable evaluation processes.

2.3.3 RL and Deep-IRL Planning for Autonomous Vehicles

This paper [28] focused on the planning problem of autonomous vehicles in traffic.

The authors implemented a stochastic MDP representing the interaction between the

autonomous vehicle and the environment. They also considered the driving style of an

expert driver (i.e. experienced driver) as the target to be learned. The desired driving

behavior of the autonomous vehicle is obtained by designing the reward function
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and determining the optimal driving strategy for the autonomous vehicle using RL

techniques. They collected several demonstrations from an expert driver to learn the

optimal strategy using IRL. The research approximated the reward function of the

expert using a deep neural network. It used the maximum entropy principle to learn

the DNN reward function.

2.3.4 Driver Behavior Profiling

This paper [29] concentrated on driver behavior profiling. It aimed to find a low-

cost to do that. It presented an investigation with different Android smartphone

sensors and classification algorithms to assess which sensor/method assembly enabled

classification with higher performance.

2.3.5 Risk Anticipation and Defensive Driving with IRL

This paper [30] focused on risk anticipation and defensive driving to ensure safety

on residential roads. It provided a framework for modeling risk anticipation and

defensive driving with IRL.

2.3.6 Predicting Driving Behavior using IRL

A part of this research [31] about measuring the driving performance presented

an IRL framework with multiple reward functions to deal with environmental diver-

sity. The model used Dirichlet process mixtures as a Bayesian model to divide the

environment into clusters and simultaneously learned the parameters in each cluster.

2.4 Controlling Vehicles Using ML or AI

2.4.1 Automated Lane Detection by K-means Clustering

This paper [32] proposed an algorithm to detect lanes on roads using a camera in

real-time and applying the K-means clustering method. The paper used the physical

nature of the data to cluster the data. The paper interpolated the lanes to get

the correct markings. The paper testings took place in different environments and
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shadows [32].

2.4.2 Development of an Autonomous ATV for Surveillance

This paper [33] designed an autonomous ATV as a surveillance system remote

controlled or autonomously controlled to follow a path at a port. The ATV used

gears, a chain, and a motor to command the steering. A GPS and a compass planned

the navigation. The ATV used a motor and a sensor to control the modified throttle.

The ATV had audio-video feedback for the security system [33].

2.4.3 Fault Detection System for ATV

This paper [34] discussed the faults in diagnostics messages and the effect of the

ATV electromagnetic noise on those messages, and how to get better, not faulty

messages [34].

2.4.4 A Survey of DL Techniques for Autonomous Driving

This paper [35] surveyed the AI techniques used in autonomous driving cars and

compared the use of deep learning (DL) models like convolutional neural network

(CNN), recurrent neural network (RNN), and deep reinforcement learning (DRL).

The paper inferred that the car needed to understand the environment through sensors

like cameras and LiDar to have safe autonomous driving. As per this paper, the best

way to understand was to use DL techniques to understand the camera/LiDar input

and process it. DL techniques, including CNN, could help in building SS models like

ENet and SegNet. According to this paper, the data gathered and used to train the

model was the key to a good model. As there was no big problem in typical cases

using traditional methods, the corner cases in driving were the ones that needed

human intelligence. In this case, more training data were required [35].

2.4.5 DL for Obstacle Avoidance in Driverless Cars

This paper [36] used CNN with the internet of things (IoT) concepts to detect and

avoid obstacles for autonomous cars. The paper attained 88% accuracy to detect and
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avoid obstacles.

2.4.6 Road Tracking Using Deep RL for Self-Driving Cars

This research [37] used DL with RL, known as deep reinforcement learning (DRL)

in autonomous vehicles, to track roads by self-driving cars. The researchers proposed

a neural network to collect input states from the car’s facing and produce suitable

road tracking actions. This paper’s approach achieved 93.94% driving accuracy.

2.4.7 Target Tracking of Self-Driving Cars

This paper [38] discussed the benefits of camera and radar sensor fusion in detecting

missing objects in lousy weather. According to this paper, the fusion of the two sensors

was more effective than using only one sensor in autonomous driving applications.

2.4.8 Object Recognition Technologies for Self-Driving Cars

In this paper [39], the researchers discussed sensor and object recognition technolo-

gies for self-driving cars and their requirements in terms of accuracy, unambiguous-

ness, robustness, space demand, and of course, costs. The paper derived requirements

on sensor technologies for self-driving cars.

2.4.9 ML based Traffic Light Detection for Autonomous Cars

This research [40] discussed different methods to detect traffic lights between dif-

ferent OEM’s approaches of having a Google map with the traffic light locations or

using cameras with Open CV2 techniques to detect it and to use IR as a backup

method to detect the traffic light.

2.4.10 GPS-Based Steering Control for an Autonomous ATV

This paper [41] implemented an autonomous ATV with controllers for throttle,

brakes, and steering that follow a GPS signal to follow a path in a field. The motiva-

tion of this research was to have a platform to test a crash protection device (CPD) to

reduce injuries from ATV roll-over. In this research, the researchers used the electric



20

power steering motor to turn the handlebar. The main goal of the research was to

allow the ATV to roll over many times to allow researchers to implement a better

CPD [41].

2.4.11 Review on Navigation of Off-Road Autonomous Vehicles

The paper [42] categorized the navigation systems into six classes: image process-

ing, neural networks, dead reckoning, statistical-based algorithms, fuzzy logic, and

Kalman filters.

2.4.12 ATV Steering to Supplement Autonomous Functionality

In this project [43], the researchers proposed a modification to the mechanical

implementation of the steering module of an ATV in order to be able to make it

autonomous. Then the research considered the use of ML models as polynomial

regression models to control the ATV steering angle.



CHAPTER 3: ATV ARCHITECTURE

This chapter describes the research effort to control the ATV using external signals.

First, this chapter discusses what the previous researchers at the University of North

Carolina at Charlotte implemented on the ATV. Then the modifications performed

as a part of previous M.Sc. thesis and this dissertation work.

3.1 Previous ATV Work

The first paper published by the University of North Carolina at Charlotte in this

project was published in 2010 [44]. The Zapata Engineering company initiated the

research. They found the need for a Robot that can tow a trailer through non-urban

roads. The Zapata Engineering company provided the University of North Carolina a

Honda ATV for a senior design project in order to make it a remote-controlled device

[6, 2].

In the previous research, a handheld remote control unit allowed the user to oper-

ate the ATV by sending commands to an evaluation board. This evaluation board

controlled a throttle controller, a braking system, and a steering controller. The ATV

also had to read from stationary sensors to identify the road [9, 44].

Many papers and research took place in the domain of controlling the ATV before.

Below is a representation of some of the work done previously for different modules

currently implemented and used in this research:

3.1.1 Throttle System

The actual throttle in the Honda ATV is designed as a wire-driven throttle with

a spring return [44] where a wire is attached to a lever positioned at the right-hand

thumb. This wire is connected on the other side by the air valve. When the ATV
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Figure 3.1: Servo attached to the Throttle assembly [44].

operator presses the lever, the air valve opens, allowing air and gas to go to the engine.

The more pressure on the lever, the higher speed the ATV will acquire. In the first

paper addressing this project, published in 2010, a parallax servo motor controlled the

throttle. A bracket attached the servo motor to the factory original throttle assembly

[44] as shown in image Figure 3.1. This paper controlled the ATV using a remote

control that communicates with a Renesas evaluation board. The board was directly

controlling the throttle module.

The change to the throttle model in this dissertation was changing the microcon-

troller used. At the start of this research, the throttle parallax servo motor was

connected to the throttle original assemble as shown in Figure 3.1. It did not have

a controller. This dissertation introduced a feedback control system to support au-

tomatic control. In the previous research, when a remote control commanded the

ATV, the Pulse Width Modulation (PWM) duty cycle (DC) was enough to control

the speed as a human was in control of the ATV’s remote control.
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Figure 3.2: DC power steering motor [44].

3.1.2 Steering System

The Honda ATV has a Steering Assist module including a Torque sensor. This

sensor is responsible for making the Steering Assist module start engaging to assist

the steering or not. Figure 3.2 shows the motor implemented by Honda for the

steering assist module.

The first paper published 2010 [44] assumed it could function the system by sim-

ulating the signal values to make it take control. This first paper had found it chal-

lenging to establish because of electrical issues with accurate values provided, and for

the steering assistant, it depends not only on the torque sensor but also on the vehicle

speed and other factors. This paper used a dual H-bridge as a motor controller for

the steering assist motor. Figure 3.3 shows the circuit implemented in this research.

Another paper for the same ATV was published two years later [45]. This paper

addressed a problem in the old design. The main issue for the first design was that

the steering motor kept overheating. Overheating prevented the steering module from
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Figure 3.3: H-Bridge circuit attached to large heat sink [44].

Figure 3.4: Steering PWM test circuit [45].

responding to all commands, and controlling the ATV was not perfect. It also may

cause damage to initial ATV circuits. The second paper describes how the researchers

implemented a PWM signal as input to an H-bridge instead of a continuous power

signal. The PWM input signal reduces the amount of power input by the motor and

reduces the overheating. A microcontroller introduces the PWM instead of having a

constant voltage by a circuit. Figure 3.4 presents a diagram for testing the system

using a PWM signal. Also, Figure 3.5 demonstrates the circuit diagram using the

micro-controller.
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Figure 3.5: Steering circuit using micro-controller to control the motor using PWM
[45].

The steering assist module of the ATV kept overheating since its design does not

allow energizing the motor continuously. Honda planned this motor to work only in

need according to the torque of resistance. A newer paper focused on the steering

module [46] in which the torque sensor controlled the power assist module using the

Honda’s original controller. This design avoided overheating the motor by letting

Honda’s steering motor controller handle the motor as intended.

According to this paper [46], when the steering angle changes, detected on the

operator bar, a resistance change appears on the sensor’s output. The sensor has

three output wires representing two separate output resistors. One resistor is for the

clockwise angle value and another for the left side. The paper describes the usage

of resistors and switches to simulate the sensor output to implement this controller.

The researchers connected the neutral position resistance value replacing the actual

sensor, then used the switches to introduce parallel resistors to change the resistance

values.
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This system successfully turned the steering to the right and the left. The imple-

mentation used analog switches, resistors, and a PIC micro-controller. This circuit

could simulate the angle using a PWM signal to control the rate of opening and

closing the switch. Therefore, the parallel resistances appear with a particular value

that corresponds to a specific angle. The PWM signal is configurable using CAN

messages.

A problem occurred when using this module in the current research because of

the caster angle of the ATV [2, 6]. To obtain better control of the steering angle

with the power assist motor of the ATV, the ATV should be going backward to

use the instability of the wheel position as a helping force to control the handlebar.

The current research introduces another solution to control the steering angle while

moving forward.

3.1.3 Braking System

Two different braking systems exist in the Honda ATV. Two hand levers brakes

that control the front wheels and back wheels, and foot pedal brakes that controlled

the rear brakes.

The 2010 paper [44] provided a picture of the linear actuator used for the brak-

ing system with a customized H-Bridge. Figure 3.6 shows the braking system im-

plemented as the linear actuator attached to the foot pedal and controlled by the

customized H-Bridge.

Another paper published in 2014 [46] describes improvement of the braking system

in the ATV. This researchers implemented the braking system using the same linear

actuator in which a Pololu motor controller replaced the customized H-bridge to

overcome overheating problems in the old one. This paper controlled the brakes

using a Sakura micro-controller.

A recent paper in 2018 [8] mentions a study about controlling the ATV using

Robotic Operating System (ROS). Before this study, the braking system was only
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Figure 3.6: Old braking system applied in paper of 2010 [44].

either fully released or fully applied. In this research, using ROS, the braking system

had three other stages, as shown in Figure 3.7.

The current research used the linear actuator and the aluminum support used to

fix the linear actuator top end.

Figure 3.7: Braking system different stages table in previous research [8].
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3.1.4 CAN Network

The Control Area Network (CAN) bus is a multi-master bus communication. CAN

protocol is an asynchronous differential communication. It uses two signals for data:

CAN-H and CAN-L for CAN High and CAN Low. The value transmitted is measured

as the difference between the two signals. This communication protocol is advanta-

geous in the case of the ATV. As the ATV is a machine that has some motors and an

alternator to produce electricity, it is subject to electromagnetic interference. This

interference could affect a signal on a wire which may give false messages. However,

in differential communication, the interference will introduce noise to both wires in

nearly the same way. While only caring about the difference between both wires, the

difference value will not change as the noise adds a bias.

The automotive industry uses three major communication protocols: FlexRay,

CAN, and LIN communication protocols [3]. FlexRay is the fastest, but it is costly

compared to CAN and LIN. LIN is mainly used to communicate within one mod-

ule when it is a complex module with many components. LIN is a one-master to

many-slaves communication. The multi-masters communication employs the CAN

bus because it provides a reasonable speed for normal - none timely critical - com-

munications.

The CAN Bus consists of four wires, the CAN bus signals need two wires as men-

tioned above, and the power uses two wires. The first and last node should include

120 Ohm resistors between the CAN-H and CAN-L wires. If these resistors do not

exist, the CAN messages will fail to propagate. The CAN bus determines the end of

the bus by the resistance between CAN-H and CAN-L. If the resistance exists in the

middle of the bus, the rest will not receive proper messages.

The CAN frame consists of a start bit, control signals, destination address, data,

and a stop bit. There are two types of addresses: standard ID, an address of 11 bits,

and extended ID, which is an additional 18 bits to be added to the standard ID to
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Figure 3.8: Sample of a Standard ID CAN Frame with 2 bytes of data

have an address of 29 bits total. Using only standard or both should be specified in

the control signals. The data size in each frame can vary from 1 byte up to 8 bytes.

The data size should be specified in the control signals as well. Figure 3.8 shows a

sample of a CAN frame using Standard ID and sending 2 bytes of data.

The software must configure The CAN network to the same baud rate and sam-

pling point. The baud rate and sampling point are configurable; however, it is more

common in the automotive industry to use 250 kbps as baud rate and sample at

87.5%.

In the previous research, a paper written 2014 [46] was about using a CAN bus to

control the ATV. This paper used the SAE J1939 Standard for CAN communication.

The central processing unit communicates with the steering module using the CAN

bus with an extended ID of 29 bits. The link used 250 kbps as baud rate and 87.5%

as the sample point. This paper implemented a Sakura micro-controller with Texas

Instrument SN65HVD251 Industrial CAN Transceiver for communication between all

nodes with the central processing unit as Renesas RX63N. However, this implemen-

tation could not use the CAN APIs due to compatibility issues. The paper ended

by using the CAN communication only between the steering module and the Central

Control Unit board.
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3.1.5 The Stationary On-road Sensors

The ATV in the previous research used to communicate with on-road sensors used

as a SLAM solution for locations without Global Positioning System (GPS) signals.

The on-road sensors draw the vehicle’s path, and the human operator controlled the

vehicle using a remote control device. The current research is not integrating those

sensors [8, 9]. More recent research implemented stationary sensors for localization

known as bread crumbs. This research planned for the future deployment of a re-

ceiver on top of the ATV. The receiver should read the ATV location from previously

installed sensors in the ATV intended path when there is no GPS coverage [47].

3.1.6 The Speed Module - Wheel Encoders

As a way to communicate the ATV speed to be used with the steering module, a set

of 2 wheel encoders was implemented and connected to the two rear tires. They were

used to count the number of holes in the piece of plastic connected to the tire and

count holes. It detects the number of turns, which helps to calculate the rotational

speed. Knowing the tires dimensions and the rotation speed, it is simple to calculate

the ATV speed.

3.1.7 Central Control Unit

The Renesas board RX63N was previously used as a central control unit. A remote-

control receiver connected to the RX63N acquires the orders to control the throttle

module using the three wires of the parallax servo motor. The central control unit

also controlled the braking system by providing a signal for the H-bridge for the linear

actuator. Besides, the Renesas board was controlling the steering module by sending

the CAN messages to the steering module PCB [7, 8].

There was no physical connection between sensors and actuators at this point

except for the steering module that was getting readings from speed sensors. Also,

this central control unit does not make its own decisions to control the ATV as it
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was not processing the sensors data. Instead, it was getting the commands from the

remote control used by a human operator who processed the sensors data and acted

accordingly.

3.2 ATV Current Architecture

As previously mentioned, this research consists of two significant steps. The first

step is implementing a base ATV architecture that controls the basic driving func-

tionalities using digital signals. The second step is to implement an AI model to

control the ATV.

This section discusses the ATV architecture and the control of the fundamental

driving functionalities like the speed control illustrated in the throttle and the braking

system and steering control. It also discusses different ideas of implementations with

a comparison between them. This section also demonstrates the whole ATV CAN

network implemented.

As the main idea for this section is to mimic a human driver’s action. After ob-

serving the human driving behavior, it is evident that the human operator controls

the ATV using a throttle lever, braking levers and a breaking pedal, and the handle-

bar. The operator controls the speed by changing the throttle lever pressure, and in

some cases, the operator might need to press the brakes. The operator releases the

throttle’s lever and uses the brakes to stop the ATV. To change the ATV direction,

the operator turns the handlebar to the direction needed. The ATV driver uses their

eyes to gather data about the environment and then decide the proper action.

According to the observation and the target of this chapter, actuators are imple-

mented and installed to control the ATV in the same way a human operator will

be operating it. This dissertation implemented a throttle controller to control the

speed, a steering controller to control the steering angle of the ATV, and a braking

system to control the brakes. Similar to the human eyes, the ATV uses a camera to

gather data about the environment. The GPU processes the data gathered and makes
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Figure 3.9: System overview

proper decisions. The next chapter discusses decision-making. As in the observation,

only one operator is dealing with the ATV. Therefore, a CAN bus connects and syn-

chronizes all actuators, sensors, and the GPU. This dissertation chose the CAN bus

as it is a multi-master bus with a lower cost than the FlexRay. Its average speed

is currently suitable to the speed required for the planned system with the expected

data rates needed except for the camera connected directly to the GPU using a USB

3. Figure 3.9 illustrates the system overview for the current research.

As shown in Figure 3.9, the system consists of multiple nodes working with the

idea of decentralized processing units to reduce the processing power needed by the

central/graphical processing unit and reduce delays. A CAN bus connects the whole

system. It is responsible for data transmission and power distribution. The system

consists of actuators represented here as brakes, throttle, steering controllers, and

sensors represented by the camera. An Nvidia Jetson Nano is responsible for syn-

chronizing the system by reading the data from the camera and reacting by sending

orders to controllers through the CAN bus. Controllers are only receiving the CAN

messages as orders, and each controller is responsible for order execution. The sys-
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tem is implemented in phases, implementing standardization library first for MSP430,

then implementing the CAN module and testing it, followed by the implementation of

actuators in a standardized enhanced way [2, 6] illustrated in this dissertation, after

that adding the sensors one at a time.

As part of standardization, the design shown in Figure 3.9 includes in each node

an MSP430 microcontroller. An intermediate PCB connects the MSP430 to a CAN

shield with an MCP2515 CAN transceiver. This PCB is acting like a motherboard

with a power supply.

The sections below explain in detail each module design choice and implementation.

3.2.1 CAN Module

The CAN module implementation consists of: the physical bus wires, the CAN

shield connection to the MSP430, and the software configuration of the CAN Module.

Below is an illustration of the different parts of the CAN module implementation:

3.2.1.1 Physical Design and Implementation

The system designed has the primary processing unit, connected to separate small

processing units that control and handle different nodes. A CAN bus connects these

nodes and the primary processing unit as illustrated in Figure 3.9.

For this project which has been running for twelve years, to prevent effort loss and

repeating work, this implementation has Poka-Yoke CAN plugs that can be plugged-

in in only one way to prevent faulty connections. Figure 3.10 demonstrates the plugs.

Each plug has four twisted wires [48] to reduce interference: CAN High (Yellow),

CAN Low (Blue), High Voltage of 12 Volt (Red), and Ground (Black) as shown in

Figure 3.11.

3.2.1.2 Hardware Configurations

The hardware configuration uses a CAN shield with an MCP2515 CAN transceiver

chip that communicates via SPI with the MSP430F5529 microcontroller. A PCB acts
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Figure 3.10: CAN Bus physical implementation: CAN connectors

as a motherboard to connect the two boards and be used as a power supply to convert

the 12V ATV battery into 5V to supply the microcontroller, and the CAN shield.

3.2.1.3 Software Configurations

The software used SPI to write the configurations for the CAN Shield [46, 49, 50,

51, 52]. The software allows different configurations such as Standard ID or Extended

ID frames. The first configuration and testing used Standard ID frames. However,

when started to use the old steering module, it is configured to Extended ID [46].

The CAN transceiver configurations referred to the MCP2515 datasheet and to

some online examples that were modified to match this project [53, 54, 55].

To test the CAN module after the configuration, an MSP430 board sent 0xAA to

another, and the second board turned a LED on when it received 0xAA, which means

it works fine. Below is an image from the oscilloscope showing the full-frame used to

test the board. The image was using a standard address of 0x0181. The CAN module

has many factors that contribute to the proper functionality, and any of them may
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Figure 3.11: CAN Bus physical implementation: CAN Bus after assembly

lead to system failure. It is always preferred to configure and test only one factor at

a time.

3.2.2 The Braking System

The ATV used is a rear-wheel-drive vehicle, meaning the engine controls the rear

wheels. The research chose the rear braking system controlled by the foot pedal as

the braking control system. Therefore, stopping the rear wheels will help stop the

whole ATV. Furthermore, it is safer to stop the rear wheels first to prevent the ATV

from turning over. If the automated braking system were using the front brakes, the

front wheels would stop while the back wheels remain running with the engine power,

possibly causing the ATV to roll over toward the front direction.

A 12V linear actuator controls the foot brake. It is capable of 100 lbf with a 4-inch
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Figure 3.12: CAN frame on oscilloscope, the yellow wire is the CAN-H, and the green
wire is the CAN-L

travel range. The actuator is connected to a rigid mounting bracket affixed to the

chassis tube frame and a custom adapter bracket that mounts to the existing foot

brake pedal [6].

3.2.2.1 Actuator

The actuator is equipped with limit switches to restrict extension and retraction

to an appropriate range for the brake pedal. The brake pedal’s position with no load

applied and under full braking by a human operator determined the placement of

these switches.

An off-the-shelf dual H bridge motor controller commands the actuator. It is rated

for a maximum voltage of 30V and with average current outputs of 18A and stall

currents of 40A.

3.2.2.2 Actuator Extension

Quick-release pins pinned the actuator extension in place at the actuator and the

bottom mount bracket. Removing these pins allows a test operator to quickly dis-

engage the system and regain manual control over the brake system, as needed [6].

Figure 3.13 demonstrates the quick release pins holding the linear actuator in the two

pieces bracket sandwich implemented around the brake pedal. Figure 3.14 shows the
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Figure 3.13: Brake Pins fixing the linear actuator to the two-piece bracket sandwich-
ing the brake pedal

quick release pins released, and the braking system unmounted.

3.2.2.3 Bottom Mount Bracket

The bottom mount bracket ensures the force applied by the actuator is adequately

constrained, only influencing the rotation of the lever about its mounting axis and

not allowed to excerpt force in any out-of-plane direction. The stock brake lever is a

"free form" sheet metal part without constant geometry that would be suitable for

quickly mounting brackets. To solve this issue, a two-piece bracket that sandwiched

the lever using three bolts positioned in direct contact with the top and bottom of
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Figure 3.14: Quick release pins released and the braking system unmounted

the lever evenly distribute the force applied to the bracket through the quick release

pin linkage [6] as shown in Figure 3.13.

3.2.2.4 Software Design and Implementation

An MSP430 controls the braking system and uses a CAN Shield to connect it to the

ATV network. The MSP430 uses I2C communication to control the dual H bridge.

The MSP430 transmits signals to apply and release the brakes to the motor driver,

who sends PWM signals to the linear actuator. While the actuator has one start

point and one-stop point, the PWM involves the stop switch as it gives the motor a

sudden start with each new cycle of the PWM. The signals set the timing to apply

the brakes to 1.1 seconds and release the brakes to 1.7 seconds to prevent damage.

Consequently, applying the brakes for the same amount of time to release the brakes
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Figure 3.15: Braking system installed on the ATV

causes the start point to move slightly every time the braking system operates. That

is why the time the release signal is applied is more extended than when applying

the brakes. This timing difference ensures that the brakes will return to the same

initial point. After sending the release or the apply signal, the controller sends a

signal to stop the motor movement. The central processing unit sends the signals to

the MSP430 of the braking system.

The braking system sets a flag for the last status. If the status of the braking

system is the same as the command received by the central processing unit, the

braking system will not act. If the braking system status is different, it will apply the

new command and change the current status. For example, if the brakes are already

pressed, and the central processing unit sends a CAN message to the braking system

to press the brakes, the braking system will not perform any action. If the brakes

are pressed, and the Central Processing Unit sends a CAN message to release the

brakes, the braking system will send an I2C message to the dual H-bridge to release

the brakes for 1.7 seconds, then it will send another I2C message to stop the brakes

and will change the status flag to be released.
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Figure 3.16: Throttle wire and spring at the air valve side

3.2.3 Speed Control System

Honda manufactured the throttle in the ATV as a lever to be pressed by the right-

hand thumb. A wire connects it to the air valve that, when opened, leads to open

the gas valve and allows the gas pump to provide more fuel according to the angle

the lever moved. The more pressure the button, the more fuel is injected, the higher

speed the ATV should go. If the lever is free from pressure, it is equipped with a

metal spring to bounce back to the initial position. Figure 3.16 illustrates the original

part equipped by the ATV, Figure 3.17 shows the servo motor with the plastic casing

to mount it in the ATV. Figure 3.18 demonstrates the servo mounted on the ATV.

As the implementation is purely mechanical, the former team installed an electri-

cal servo motor at the air pump terminal of the wire as shown in Figure 3.17 and
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Figure 3.17: Servo motor used to control the throttle with a plastic casing to fix it
around the original throttle parts.

Figure 3.18. In the current implementation, a PWM signal controls the motor. Ac-

cording to the datasheet, it can have a duty cycle from 3.8% up to 11% to move

the motor 180 degrees. The original wheel shown in 3.16 can only move 90 degrees,

which is duty cycle from 3.8% up to 7.4%. However, because this research is only

using the first gear, and to avoid overloading the engine, a decision is made to limit

the duty cycle to 6% maximum.

This implementation controls the throttle by changing the duty cycle value. After

testing this implementation on a path in the forest, it is clear that the duty cycle only

controls the engine power, not the ATV speed. According to the area topography, if

the path is horizontal, there is no problem, but the speed will increase if it starts to

go down. If the path goes up, while the duty cycle is not high enough, the ATV will

stop moving as it is not getting enough power.

The conclusion was to change the model from a throttle control into a speed control

system, a closed-loop control system with feedback from the ATV speed. In order to

get the speed, the research considered the following approaches.
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Figure 3.18: Servo motor attached to the air valve controller

3.2.3.1 Using a GPS Module to Get the Speed

This part of the research used an Adafruit GPS to measure the speed from the

GPRMC messages from the GPS. Testing the GPS showed that the GPS provided

the speed successfully. The research implemented a module to control the duty cycle

for the servo motor using the speed from the GPS. This model was not that effective

for three reasons:

• The time the GPS can fix on satellites is between 30 seconds and 30 minutes.

This latency was not reliable.

• GPS update time was longer than required (5 seconds on average), which made

the idea of feedback impractical. The throttle controller may increase the

speed to the maximum allowed duty cycle value before getting feedback. A

workaround is to reduce the acceleration and deceleration time to match the



43

time of GPS speed updates; however, this workaround is impractical.

• The main research is to make the ATV follow a paved path in the forest. It is not

probable to fix GPS on satellites in a forest environment with all interleaving

leaves and trees.

Therefore, the research searched for another solution to get the speed.

3.2.3.2 Using the ATV Engine Speed Sensor to Get Speed

The research decided to use the signal from the speed sensor attached to the engine

to get the speed value, as shown in Figure 3.19. The sensor outputs signals in a square

wave format where the signal’s frequency represents the rotation speed of the motor

shaft before the gearbox. In this case, counting the pulses for a period of 350 ms

provided the speed. The closed-loop control system implementation using the speed

sensor must respect timing to avoid overshooting and follow the command in the

fastest stable time. In this case, the fastest time without overshooting is to read the

speed every 350 ms and adjust the duty cycle with 0.1% every 20 ms, resulting in

a step of 1.7% duty cycle change per reading and covering the maximum range in

0.7 seconds. While targeting a maximum speed of 6 mph (2.68 m/s) (at first) will

ensure the required speed to be achieved in less than 2 meters of travel (1.87 meters);

though, as shown later, the vehicle operated at a lower speed of 2.9 mph. This

final implementation is the most reliable method that does not depend on external

parameters; therefore, the dissertation uses it moving forward.

3.2.4 Steering Module

At the beginning of this research, this module was re-used from the old research

with minor enhancements for the connector to make the whole system use the same

CAN bus connections. The already-existing module implementation used a PIC mi-

crocontroller. The microcontroller receives messages using CAN transceiver MCP2551

to communicate the angle value to the PIC using SPI signals. The PIC controls an
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Figure 3.19: Speed sensor attached to the engine

analog switch that connects and disconnects some parallel resistors to simulate the

Torque sensor values using a PWM signal [45, 46]. The main idea is to simulate

the torque sensor output to trigger the system pretending to turn under high re-

sistance, which will lead the steering assist motor to engage and turn the steering

wheel. Figure 3.20 shows the old ECU used to control the steering, while Figure 3.21

demonstrates a CAN message used to control the steering.

After connecting the system to the vehicle, the controller over CAN bus can suc-

cessfully move to the right and stop at a certain angle, move to the left and stop at

a certain angle, and back to the center position and stop with the ATV suspended

above the ground.

A simple test for the steering module is to make the ATV turn in one complete

circle. Some calculations used the steering dynamics theories with the Ackerman

steering condition (having a different angle for the inner wheel different than the

outer wheel to all a turn with a slip-free) [56]. Figure 3.22 demonstrates a turning
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Figure 3.20: Steering module

vehicle. In Figure 3.22, L is the distance between the center of the front wheel and

the back wheel, in this case, L = 50". θ is also known to be 30◦ from the testing of

the ATV while suspended above the ground. The following calculations derived the

time to do one full circle:

b = 90− θ

b = 60◦

cos b =
L

H

H =
L

cos b

=
50′′

1/2

= 100′′ = 2.54m
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Figure 3.21: CAN message to turn steering right

CirclePerimeter = 2π × H

= 628.318′′ = 15.96m

Speed = RPM × TirePerimeter

=
80× 0.6× π

60 seconds
= 2.51m/sec

v =
∆d

∆t

∆t =
∆d

v
=

15.96

2.51
= 6.35sec

To turn in a circle, the ATV moves forward, turns for 6.4 seconds, then stops. The

ATV front tires rotated only 10◦ instead of 30◦ when the central unit instructed the

steering module to turn the maximum value to the right. The resulting circle was 15
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Figure 3.22: A turning vehicle

meters in radius, and it would take more time and distance to have the circle done.

The same test was done again while putting the ATV the reverse gear with the

maximum right angle steering value. The ATV steering angle was 30◦.

The researcher did further investigations to understand why the ATV has a larger

turning angle while going backward than forward. In conclusion, there are two main

reasons:

• The first one is that the ATV has a power assist module to help a human

operator turn the steering wheel easier when the ground resistance is high. The

EPS needs human operator applied torque to work. It can not move the steering

wheel alone, so the motor power is not strong enough to make it work by itself.

• The second reason, which makes it turn easier when the ATV is going backward,

is the Caster Angle [57]. The ATV front wheels axes are not perpendicular to

the ground. The axis has an angle called Caster Angel. This angle’s purpose
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Figure 3.23: Positive Caster Angle for the vehicle direction.

is to make it easier for the ATV to maintain a straight line position by making

the stable mechanical position for the front wheels in the center position while

going forward. Figure 3.23 demonstrates that the projection of the axis is in

front of the tangent point of the wheels on the ground. This position makes the

wheels follow the axis projection. Whenever the steering wheel moves to the

left or the right, the ATV weight will act as a force that pushes the steering

wheel back to the center position.

This phenomenon is not the case while going backward. When going backward,

the projection of the axis on the ground is behind the wheels’ tangent point to the

ground. This position is not a stable mechanical position for the wheels and leads

the wheels to try to go behind the axis’ projection. Consequently, when the steering

wheel moves a little bit away from the center position, the ATV weight will help the

steering wheel move more. Figure 3.24 demonstrates the Negative Caster Angle.

Another test was made to prove The Caster Angle reason theory. The test was to

manually move the steering wheel slightly to the right when the ATV runs backward

while disconnecting the steering module controller. As a result, the steering wheel
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Figure 3.24: Negative Caster Angle for the vehicle direction.

went to the maximum right position. This result proved that the stable point for the

wheels while going backward is behind the projection point of the axis on the ground.

As a conclusion to this phase, for the sake of the steering angle, the ATV should be

used backward, or the Caster Angle should be adjusted to be neutral Caster Angle,

or the EPS motor should be replaced with a more powerful motor, or apply external

torque to the handlebar similar to the human driver.

Because the next step will be about an ML model where a human needs to drive

the ATV to gather data using a camera mounted on the ATV, the backward solution

is not practical. Also, because this research is about not to change anything in the

ATV itself, the idea of replacing the EPS motor or adjusting the Caster Angle is not

acceptable.

As a solution, an external motor is deployed with a pulley and an aluminum wire

to mimic a human driver. Below are more details about the new design and im-

plementation. The design has a mechanical part, electrical and hardware part, and

software.
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Figure 3.25: Motor mounting design

3.2.4.1 Mechanical Design for the New Steering Module

The primary approach of the design is to have a robot similar to human arms to

move the handlebar. A motor Andymark am-0255 with a stall torque of 343.4 in-oz is

mounted at the rear of the ATV. The motor is connected to a gearbox am-4008_020

with a gear ratio of 20:1. Researchers machined a pulley and mounted it on the top

of the gearbox. A metal cable connects the two terminals of the handlebar, with the

two sides crossing each other and turning around the pulley. In this way, the new

motor controls the handlebar with the help of the EPS motor. The handlebar needs

50 lb-force to move it when the ATV is stationary, making this motor a matching

choice.

The module is mounted to the ATV using two aluminum pieces surrounding the

motor. An L-beam steal fixes the two aluminum pieces on an aluminum slab. Four

stainless steel bolts, washers, and knobs fix this structure on the ATV chassis as

illustrated in Figure 3.25

Figures 3.26 and 3.27 show the motor with the gear box and pulley mounted on

the ATV.

The motor moves the handlebar using a metal cable. The cable crosses itself to
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Figure 3.26: Motor mounted on the ATV

Figure 3.27: Motor mounted on the ATV - rear view
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Figure 3.28: Cable driver of the handlebar attached to the pulley in a cross position
to increase the range of motion

have a better angle with the handlebar to reach the maximum range of angles the

handlebar can turn. Figure 3.28 demonstrates the cable on the pulley. Figure 3.29

show how the cable connects to the two terminals of the handlebar.

3.2.4.2 Hardware Design and Implementation of the New Steering Module

The motor requires a current between 2.7A to 28A to run. This current needs a mo-

tor driver to supply. The motor driver used is am-2854, as shown in Figure 3.30. The

motor driver receives a PWM signal from the MSP430. The motor power equation

is stated below. The electrical power needed should be equivalent to the mechanical

output power.
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Figure 3.29: Cable driver attached to the handlebar

P =
RPM × T

5252
= V I, assuming no losses, where T is the torque

On the other side, a potentiometer is connected to the steering shaft to be able to

measure the current steering angle using an ADC.

3.2.4.3 Software and Control Model for the New Steering Control System

The motor driver has a built-in PID controller. The driver is configurable to receive

commands via CAN bus or PWM signals. In this research, a PWM signal with a duty

cycle between 7% and 9% controls the driver, where 8% will make the motor neutral,

and increasing or decreasing the duty cycle from 8% will make the motor rotate faster

in the two directions. The steering angle controller needs feedback from the steering
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Figure 3.30: Motor driver used to control the new steering motor

shaft with the current steering angle. A 12-bit ADC reads the steering angle’s value

as the feedback. The microcontroller receives a CAN message with the required angle

from the GPU. The software compares the required angle value with the current value

from the ADC and adjusts the PWM duty cycle value to move the motor toward the

correct angle.

When the engine is running, the motor and the EPS system can follow the command

angle with high precision of 99.3%, which was a designed acceptable accuracy to

maintain the steering wheel stable and resist the electric noise read by the ADC.



CHAPTER 4: INTEGRATION AND TESTING OF THE ATV BASE

ARCHITECTURE

Chapter 3 discussed the implementation and design of the base architecture of

the ATV. This chapter describes the integration and testing of the modules. Most

test cases were executed twice, with the ATV suspended on four automotive stands to

check the functionalities of the actuators and on the ground to test the environmental

effects on the controllers. Figure 4.1 shows the ATV suspended on stands.

The CAN bus power wires are connected to the ATV battery. Each module has its

MSP430 connected to the CAN Shield using a PCB. The CAN Bus power supplies

this PCB, which converts the 12V to 5V. The PCB has a place to mount the MSP430

and the CAN Shield. Figure 4.2 shows the PCB design Schematic. Figure 4.3 shows

the PCB layout. Figure 4.4 shows the manufactured board, while Figure 4.5 demon-

strates the MSP430 connected to the CAN shield using the fabricated board. It

passed all testings.

3D-printed boxes similar to Fig 4.6 contain the nodes to protect against the forest

environment.

The GPU is not included in this phase. Another MSP430 acts as the central

processing unit that provides commands to the actuators. The following chapters

will discuss GPU integration.

4.1 Safety

For safety, the researchers designed and equipped the ATV with two kill switches,

a wireless kill switch with a range exceeding 100 ft, and a hard-wired switch. These

switches are for emergency use to stop the ATV.
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Figure 4.1: The ATV suspended on stands

Figure 4.2: PCB design schematic
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Figure 4.3: PCB layout

Figure 4.4: Fabricated PCB
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Figure 4.5: MSP430 connected to CAN Shield through the fabricated PCB

Figure 4.6: The 3D printed boxes connected using CAN bus
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Figure 4.7: The ATV hard-wired safety kill switch.

Figure 4.7 shows the hard-wired switch. Wires connected the switch to the engine

ON/OFF switch. The ATV switch must be in the OFF position to use any two

switches.

The wireless switch is the same wire connected to a relay attached to a wireless

receiver. Figure 4.8 shows the wireless receiver attached to the ATV. A hand-held

remote controls the wireless receiver, which controls a relay attached to the wired kill

switch.

4.2 Speed Control Module Design, Integration and Testing

The first design for the speed module was open-loop throttle control. Testing

started by sending different duty cycle values from the central processing unit to the

throttle controller. For the next test, the central unit sent the values to the throttle

controller with the controller attached to the ATV’s pulley controlling the air valve.

The pulley rotated with the correct angles.

The researchers applied the test on the ATV while suspended on stands, on flat
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Figure 4.8: The ATV wireless safety kill switch.

ground, and in a forest environment. The ATV tires rotated at a speed that reflected

the duty cycle for the first two cases. While testing in the forest, the ATV speed

varied, reflecting the land topography and slopes when the duty cycle remained the

same. Therefore, the researcher concluded that the throttle control is not robust

enough, and the ATV needs a speed control with speed feedback. The research

started with implementing a GPS model. The GPS provides the current speed as

one of the GPS readings. The first test for the GPS speed reading was in a moving

car. The GPS read the correct speed value. The researcher designed a code that

compares the current speed from the GPS with the required speed and changes the

duty cycle value accordingly. Testing this implementation concluded that the GPS

data update rate is slower than needed leading to speed overshooting. Also, the GPS

could not acquire satellites signals in the forest environment. Another method to

measure the speed is the ATV velocity sensor. The velocity sensor allowed the ATV

to maintain the same speed in a forest environment with different topography. There

was no overshooting for a speed of 6 mph or higher.



61

4.3 Braking System Integration and Testing

The researcher integrated the braking system by mounting the linear actuator on

the ATV and attaching it to the rear brakes pedal using the pins mentioned in chapter

3. The CAN bus supplies the braking system with power and connects it to the central

processing unit. The following test was run twice, once with the ATV stationary, then

with the speed control system moving the ATV. The braking system response time

from sending the command till the brakes are fully applied is 1.1 seconds. The braking

system starts to slow down the ATV within 250 ms. If the ATV travels at 6 mph (2.68

m/s), the ATV will move 67 cm before it starts to slow down and reach a complete

stop within 1.2 meters on average. This value may vary with the path inclinations

from 1.03 m to 1.58 meters. However, as mentioned in the speed control section,

the central unit sends the stop command as a zero speed value, stopping the throttle

servo motor and applying the brakes.

If adding the processing time of the GPU to make a stop decision, running SegNet

at 24 fps with a reaction time of 50 ms, the ATV will reach a complete stop in 0.45

seconds. The average human reaction time is 1.19 seconds in a simple situation and

2.43 seconds in a complex situation [58], leading to a stopping distance of 3.7 meters

to 7 meters for cars on standard road [59].

The central unit sent a command to release the brakes over the CAN bus, and the

braking system worked as expected. The braking system response time from sending

the command till the brakes are fully released is 1.7 seconds.

4.4 Steering Module Integration

In Chapter 3, the first integrated steering module was described. When testing

this module on the ground with the speed module and the braking system, the ATV

turned with a radius of 15 meters while going forward. The ATV was able to turn

in a circle with a radius of 3 meters going backward. The ATV successfully did a
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Figure-8 with a 3 meters radius for each circle and stopped at the same starting

place while going backward. The gathering data for the ML model needed the ATV

to move forward for a human driver to drive the ATV. Another reason is that the

ATV should learn from the experienced driver driving forward and practice what the

ATV learned. Therefore, the researcher designed and implemented the new steering

module mentioned in Chapter 3. The new module could turn the handlebar in the

full range while the ATV is standing still with the engine running. The EPS system

helps the new motor to achieve full-range turning. The ATV made a circle forward

with 3 meters radius using the speed control system and the new steering model.



CHAPTER 5: MACHINE LEARNING SYSTEM DESIGN AND PERFORMANCE

GOAL

This chapter is about the AI models used to train the ATV to follow a path in

the forest. This chapter also discusses a proposed method to measure the system

performance using AI methods.

5.1 Controlling the ATV using AI Models

Executing algorithms for autonomous vehicle operation has shown success in typical

situations. However, while implementing algorithms, it appears that 35,000 use cases

are still not representing a sufficient number of situations that can happen in real life

[3]. Those situations vary from a simple "moving straight forward in a lane then a

light signal turns red" to a more complicated one like "a left turn into another street

where a ball is rolling in the middle of the street and a child running after it". Self-

driving cars algorithms were showing success for every added scenario. However, if

the designer does not conceive the scenario, then it is not solved. Therefore, observing

human driving behaviors to learn from them would be a better solution. Machine

Learning, in this case, seems to be the correct answer.

Because this research is about following a path in the forest using a camera, the

next step in this research needs the ATV to identify a paved path and identify its

position on the path. The step after is to understand how an experienced driver, with

highly desirable steering action, would steer the ATV to allow the system to learn

from the human driver [11, 60]. Therefore, to identify the path and learn from an

experienced driver, data gathering is mandatory.

The process to achieve the final goal is summarized in Fig. 5.1. As illustrated in the
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Figure 5.1: Implementation Process Summary

figure, data gathering is the first step in order to gather data to understand the ATV

location with respect to the paved path and data to understand the normal human

reaction in each location. Then the data should be prepared and preprocessed to the

proper format for each model used. Then path identification eventually is made using

semantic segmentation methods, and the last part of the process is to use a machine

learning regression model in order to identify the proper action to be made by the

ATV, in this case, what steering angle should be applied to the handlebar to stay on

the path.

5.1.1 Data Gathering

There are two different kinds of data needed: the first is the visual data from the

camera, and the other is the angular values from the steering wheel. The angular data

gathering used an encoder attached to the steering axis. This encoder is providing

analog values between 0 and 3.3V. An MSP430 microcontroller with ADC reads these

values and sends them to a laptop that saves them in a text file.

The visual data gathering uses an Intel Deep Sense i435 camera mounted on the

ATV. This camera has a wide-angle RGB 16MP camera, 2 IR sensors, LASER Depth

Sensor (LIDAR), and an IMU with gyro and accelerometer. Fig. 5.2 shows the camera

mounted on the ATV. An experienced human driver operated the ATV on the paved

path in the woods behind the UNC Charlotte EPIC building, as shown in Fig. 5.3.

This experienced driver’s steering actions are highly desirable steering actions. Fig.

5.4 demonstrated the driver operating the ATV in the center of the path for path
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Figure 5.2: The cameras mounted on the ATV

detection and as an example of good driving. The visual data gathered consisted of

six trials; all videos included the steering angle data recorded concurrently.

5.1.2 Data Pre-processing

The first step was to align the ADC samples with the camera frames. To do that,

a decision to visualize the values of the angles with the captured video seemed to be

the best idea to align them together. The visualization process uses iMovie software

from the Mac OSX to align all videos with the steering angle. The process starts

with MATLAB making a video of a rotating arrow with the angle value from the

data collected. Then iMovie overlaps this video with the video of the paved path

from the camera. Mainly iMovie was used to apply changes in the rotating arrow

angles video to the video speed, start, and end. Those changes were applied until the
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Figure 5.3: The route in the woods from google maps. Different routes were from B
to A, B to C and opposite direction.

Figure 5.4: The ATV driven in the center of the path
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Figure 5.5: Visualization of angles with image

rotating arrows matched all path turns in the camera videos. Fig. 5.5 illustrates an

overlapped frame.

Furthermore, after synchronizing the videos, the start and end were trimmed to

remove the parts of videos that do not match.

Finally, the last step of data preprocessing was to apply a down-sampling technique

to have the number of angle samples match the number of video frames per second.

The timing was taken into consideration while down-sampling. The problem was

that the angle data were recorded at 90, 97, and 112 samples per second, whereas

the camera videos were 30 fps. While 112 and 97 do not have a common factor of 30,

the technique applied a particular pattern of sample dropping. This downsampling

technique allowed the number of angle samples to match the camera video frame rates

of 30 samples per second.

5.1.3 Path Detection

This section illustrates different methods used to detect the path and their results.

The difference between a path in the forest and the city roads is that the forest path
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Figure 5.6: Sample of the path to follow in the forest

is not a standard road with a fixed width, and it does not have any painted lines on it.

Also, this path has some challenges like shadows, different light intensities, different

light distributions due to interleaving trees, cracks, and light reflection on the path.

Fig. 5.6 illustrates the paved path used for data collection with various lighting and

shadows.

5.1.3.1 Canny Edge Detection

The first trial used simple edge detection. The edge detection mechanism is similar

to a high-frequency filter that detects the sudden change in the image colors’ value.

The implementation used a code from the Mathworks repository and applied it to an

input RGB image. It follows the steps [61]:

1. Convolution with Gaussian Filter Coefficient

2. Convolution with Canny Filter for Horizontal and Vertical orientation

3. Calculating directions using atan2

4. Adjusting to nearest 0, 45, 90, and 135 degree

5. Non-Maximum Suppression
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Figure 5.7: The path using color masks

6. Hysteresis Thresholding

When applying this technique to the image in Fig. 5.6, the output image had all the

edges except the path’s edges. Therefore, this approach was deemed unsuccessful.

5.1.3.2 Color Filters

After observing the Canny edge detection results, the next approach was filter-

ing the image by colors. The Matlab Color Threshold app auto-generated code by

implemented different masks. The best results were when the filters from RGB repre-

sentation with HSV and LAB were combined. The results were more promising than

the output of the Canny Edge. Fig. 5.7 illustrates the results. This solution showed

acceptable results compared to the Canny Edge detection.

5.1.3.3 Combining Color Filter with Canny Edge Detection

Now having the path more evident in the image, the following approach applied

the Canny Edge detection the colored masked and combined with the original image

to find the path separated, as shown in Fig. 5.8
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Figure 5.8: Applying edge detection on the color masked frames

5.1.3.4 OpenCV Semantic Segmentation using CityScape

Cityscape [62] is a dataset with data from many different cities around the world.

The dataset consists of around 3700 labeled images. It contains 20 classes. Fig. 5.9

shows the network components.

In the next trial, Efficient Neural Network (ENet) light network design was used

[63]. ENet can process 0.25 frames per second to detect 20 classes. The results were in

the 90s percentile when only detecting four classes (roads, sky, trees, and vegetation).

The other classes are not necessary for this context as they would not appear in the

woods. Fig. 5.10 illustrates the output.

ENet is using Bottleneck layers instead of Convolutional Layers, according to [63],

it is 18x faster than an average CNN. The pretrained network is a light model of

3.4MB compared to Nvidia semantic segmentation for road detection. The next one

tried was 1.1 GB.

The processing time was decreased to 0.94 seconds per frame on average (approx-

imately 1.1 fps) using a standard MacBook Air with only four classes. The ENet

programming is not CUDA-enabled, which means using a GPU will not make it

faster.

5.1.3.5 SegNet ResNet18 DeepScene Semantic Segmentation

The research considered another model to optimize the SS computation time: Seg-

Net, also called the FCN-ResNet18-DeepScene S.S. model [64], which is trained on
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Figure 5.9: ENet Architecture [63]

Figure 5.10: ENet output
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Figure 5.11: Example for the SegNet S.S. [64], on the left it is the overlay of the mask
on the original image, while on the right, there is the mask used

ResNet18. An Nvidia team created this model for the Jetson hardware family. The

SegNet DeepScene model used the Freiburg Forest data set [5]. The data set was

collected in 2016 by a robot with cameras wandering around the Freiburg Forest.

This model has two options: a higher resolution and a lower resolution option. The

higher resolution is 864x480 and the lower resolution is 576x320. The advantage of

this model is that the Nvidia team designed it for the Jetson family GPUs. The

higher-resolution model realized a processing speed of 14 fps with GPU time per

frame varying between 84 and 90 ms. The lower resolution model was even faster

and had a rate of 24 fps, with a GPU time-varying around 45 to 50 ms per frame on

the Jetson Nano. The model is set only to classify paths, vegetation, and trees. This

setting did not have any adverse effect on results.

Fig. 5.11 illustrates the overlayed versus the masked output of the SegNet. Fig.

5.12 (LEFT) demonstrates the output mask for the low-resolution model, and Fig.

5.12 (RIGHT) illustrates the output mask for the high-resolution model for the same

path. The lower resolution seems to be smoother than the higher resolution in this

case.
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Figure 5.12: left: SegNet Low resolution output, right: SegNet High resolution output

5.1.3.6 Method Used to Detect the Road and the Decision Taken

The use of SS methods is more effective and reliable than the classical image pro-

cessing methods mentioned above, especially in contour detection.

The choice of an SS method considered two significant features: the precision of

finding the path and the real-time consideration. The model’s precision calculation

used 21 samples as the ground truth. Fig. 5.13 illustrates one of the 21 samples

used as ground truth for the semantic segmentation. The precision calculation of

finding the path compared the path area of the masks of ENet with the ground truth.

Then it compared the path area of the masks of ENet with the ground truth. It also

adjusted the ground truth resolution to the mask’s resolution to find the matching

percentage. It is critical to predict a true path. This information is essential because

if the model has a false positive, like detecting a path while it is a tree, then the

ATV will crash. However, if the model did not detect all the paths in the image, but

the path detected is true, this makes no safety issue even if it makes it harder for

the ATV to follow. Considering this criterion, the ENet has more precision, but the

precision of the SegNet is still close to the ENet.

For a real-time consideration, the SegNet is much faster as the SegNet is CUDA-

enabled and can use the GPU to have a parallel computation. The SegNet can do

24 fps while the ENet is 1.1 fps. The SegNet Low-Resolution model can process a

frame in less than 50 ms (41 ms and assume 9 ms for the software’s other calculations
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Figure 5.13: A sample of the ground truth for the S.S.

than SS), while the ENet can do a frame in 0.9s in addition to 9 ms for the other

calculations making it 0.909 seconds. If the ATV moves at 6 mph (2.68 m/s), the

ATV can see something new after traveling for 13.4 cm using the SegNet or 2.41

meters using the ENet.

With the ENet having higher precision but slower response time, the decision was

made to use the SegNet to detect the path.

5.1.4 Preparation for the Machine Learning Models

The output of the SS is six videos. The training process used five videos, and the

testing process used one, with a total of 33,316 frames for training and 7,743 frames

for testing. Each SS frame has a corresponding steering wheel angle. The machine

learning model needs the current ATV position on the path and the ATV trajectory

if the ATV continues straight which are calculated from the SS frames. The ATV

position is referred to as ATV current position or State 1, and the ATV predicted

trajectory if the ATV continues straight forward is referred to as ATV next position

or State 2 as illustrated in Fig. 5.14.
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Figure 5.14: ATV current state (State 1) verses ATV trajectory projection state
(State 2)

Seven sections divided the path to define State 1 and State 2, [-3,-2,-1,0,1,2,3] where

"-3" is outside the path from the left side, and "3" is outside the path from the right

side. 0 means the center of the path, the negative values are on the path to the left,

and the other positive values are on the path to the right. Fig. 5.15 represents the

different positions in details.

Each frame provided the two positions, State 1 and State 2, the software combined

them with the corresponding angle value for the steering axis orientation. The data

created two tables, one for training with a dimension of 33,316x3, and one for testing

with 7,743X3, where two are the input data, and one is the ground truth to check

the results.

5.1.5 Machine Learning Regression Models

A model can predict the angle value using the data table from the current position

and ATV trajectory position. A regression model is appropriate for this prediction

because the angle values are continuous. Since the data is simple, a linear model
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Figure 5.15: ATV position and state definition

should be sufficient.

The research considered two Linear Regression [65] models: the least-squares (LS)

regression model and least-mean-squares (LMS). Let the training data (State 1 and

State 2) be X, and the ground truth to be learned (the angle) is Y . We train the

model to reach the equation Y = WX, where W is a weight and bias matrix. For the

least-squares, we apply the equation: W = (XT ·X)−1XT ·Y to find the best suitable

W that will create a linear equation between samples of X and predicted angle Y .

For the Least Mean Square model, the equation is W = W − α · Error · X where

the Error is the difference between the predicted value WX and the ground truth

Y . This needs multiple iterations until it converges. The main difference between the

least-squares (LS) and the least-mean-squares (LMS) is calculating the error. The

research implemented both methods, and the next chapter will discuss the results.

5.2 Measuring Driving Performance Using AI

This section discusses a proposed method to measure the performance of machine

learning driving. The proposed solution starts with data gathering of an experienced
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driver’s behavior while driving at the center of a paved path in the woods, followed by

preprocessing data to extract the video frames from the ROS file (the data gathered).

An off-the-shelf light SS model finds the path and identifies the ATV states. Then, the

Linear IRL model for small states space by Russel & Ng [14] defines the rewards per

state from an experienced driver. The rewards help in deriving the rating function.

The idea for the rating function is not to judge the future intentions by using a

prediction model and compare the trajectory to the prediction. Instead, it gets the

performance from the true path the ATV already passed through.

The ATV gathered seven different datasets for different driving behaviors following

the same data-gathering technique. Matlab extracted the videos, and the research

applied the SS model to get the data under test. A rating function evaluated the

other drivers’ performances.

This section will go through the different phases of implementation. Fig. 5.16

illustrates the proposed solution architecture. First, the ATV gathered the data.

Then, the Rosbag output video is input to the ENet SS model. An IRL model -

explained below - used the output from the ENet SS network in order to extract the

system rewards. Then seven different driving attitudes were gathered as follows: right

inside (Ri), right partially outside (Ro), left inside (Li), left partially outside (Lo),

zig-zag inside (Zi), zig-zag inside and outside (Zo), and Random. The ENet S.S. used

the videos as the input. The rating function used the SS output with the outcome

rewards from the IRL as an input to obtain the performance rating for each driving

attitude.

5.2.1 Data Gathering

The same Intel Deep Sense i435 camera used before was mounted on the ATV,

as shown in Fig. 5.2. A human operator drove the ATV in the paved path in the

woods behind the EPIC building shown in Fig. 5.3 and gathered 120 GB of data.

The human operator drove the ATV in the path’s center to detect the path as an
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Figure 5.16: Rating driving method architecture

example of a good driving technique. Then they drove it at the right side of the path

with all wheels inside (Ri), and with one wheel outside (Ro), same on the left side of

the path (Li and Lo), then in a zig-zag shape inside the path (Zi) and another zig-zag

while getting in and out of the path (Zo), and finally in a randomized way.

In this section (Measuring Driving Performance), the research is only concerned

with the camera data as it cares about the results for the driving technique, not

about the actions taken to drive.

5.2.2 Road Detection

In this section (Measuring Driving Performance), ENet discussed before is used. It

has a better resolution, but it is slower than the SegNet. In the case of performance

measurement, it is not a real-time requirement. Therefore, spending 0.9 seconds per

frame is acceptable.
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5.2.3 IRL Design and Implementation

The first action is to choose between Ziebart et al. [22] and Ng & Russell [14]

and others mentioned in the background section above to implement the IRL model.

The Ziebart et al. model is more advanced and complex than needed, as they are

more focused after recovering the reward function about getting a similar optimum

policy - maximum entropy and deep maximum entropy methods. Therefore, choosing

to implement the IRL module per Ng & Russell paper [14]. Russell has two models

for IRL depending on the state space size, and as there are only five states in this

research, the small states space method for linear IRL was chosen, which is more

accurate than the large-state space method. This model requires both the optimal

policy and the transition probabilities for implementation.

5.2.3.1 The Mathematical Design and Implementation for IRL Model

Bellman equation is written in Matrix form as follows [14, 15]:

V π∗
=

(
I − γP a∗

)−1
R

In order to have an optimum policy:

∀a ∈ A\a∗, P a∗V π∗ ≥ P aV π∗

∀a ∈ (A\a∗) .
(
P a∗ − P a

) (
I − γP a∗

)−1
R ≥ 0

Another constraint should be added to remove the trivial solution of R = 0, which is

to Maximize: ∑
s∈S

(
Qπ∗

(s, a∗)− max
a∈(A\a∗)

Qπ∗
(s, a)

)
This means deviating from the optimum policy will reduce the value function and

total rewards.
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maximize
|S|∑
i=1

min
a∈(A\a∗)

((
P a∗

)
i
− (P a)i

) (
I − γP a∗

)−1 ·R− λ∥R∥1

s.t. ∀i ∈ 1, . . . , |S|.∀a ∈ (A\a∗) .

-
((
P a∗

)
i
− (P a)i

) (
I − γP a∗

)−1 ·R ≤ 0

and ∀i ∈ 1, . . . , |S| · |Ri| ≤ Rmax

In matrix form: (M & u are dummy vectors for the sake of matrix dimensions)

maximize


0

1

−λ1

 ·


R

M

u




(
P a∗ − P a

) (
I − γP a∗

)−1 −I 0(
P a∗ − P a

) (
I − γP a∗

)−1
0 0

−I 0 −I

I 0 −I


·


R

M

u

 ≤ 0

The python matrix solver finds R to recover the reward function/vector. The last

matrix is modified to positive transitional probability to maximize the rewards for

the most visited state by the agent.

The IRL model needs states, actions, and the transitional probability from one

state to another by applying a specific action to run.

The states were given from the video and translated by the code. Five states were

defined as shown in Fig. 5.17: Center, Right inside, Right outside, Left inside, and

Left outside.

The code checks the color value for the middle pixel of the frame’s x-axis and

1/3 from below the y-axis to determine the state. If it is the color defined as the

path, then it is inside, therefor it checks the distance to the left and the right path
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Figure 5.17: IRL states definition

Figure 5.18: IRL states calculation



82

boundaries, and according to the number of pixels to the left and right, it gets the

state. Otherwise, if the pixel’s color was outside the path, the code checks for the

previous state and determines the state. Fig. 5.18 illustrates the calculations of the

states from the input frame.

The mathematical conditions for the three middle states are as follows: The fol-

lowing condition is for the center position (R: distance to the right edge of the path,

W: is the path width in pixels):

R− 2w

3
< 0 & R− w

3
> 0

If the values do not fulfill the above condition, but they fulfill the condition below,

that means it is the Left inside state:

R− 2ω

3
> 0 & R− ω

3
> 0

Otherwise, it is in the right inside state.

The actions were recorded in a text file and used as input to the model. The avail-

able actions are Left, Forward, and Right assuming that the ATV is always moving

at the same speed and no need for brakes. The software calculates the transitional

probability from the experienced driver’s video input as a 3-D array with the count

of occurrence of each element (state, action, next state) (s, a, s’), then normalized to

have the sum of all elements equals to one. The optimal policy is to always aim at

the center of the path.

5.2.4 Driving Rating Calculation

The research compared between TD SARSA Prediction [13], and Reactive SARSA

[66]. Reactive SARSA may have an advantage in real-time applications for asyn-

chronous environments. However, after the research evaluated both methods, none
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of them is needed in this case. It only needed to calculate the accumulative rewards

from the start of driving until the current time. Then normalize it according to the

number of frames to get the rating as a percentage. This percentage is different from

the RL G variable, as G is the total expected return when following the policy. The

equation measures the performance according to what happened, not according to

what may happen. The following are the mathematical equations driven and used

to calculate the rating of the different driving paths recorded. Pi is noting the path

number i. The first frame uses this equation:

Rating = Reward Pi
X number of Frames

The following frames use:

Rating = Reward P1 +
Rating × (# of Fr.− 1)

# of Fr.

Then calculating the average rating:

Rating =
Rating
# of Fr.

× 100%



CHAPTER 6: IMPLEMENTATION AND INITIAL RESULTS OF THE AI

CONTROL MODEL

The previous chapters described the implementation of the base ATV architecture

to control the ATV using digital signals, and the AI models to drive the ATV. This

chapter will go through the AI offline implementation and testing results, the driving

performance results, and the real-time design and implementation of the AI model

to control the ATV. Performance comparison between this implementation and the

implementations discussed in the background chapter will conclude this chapter.

6.1 AI Model Offline Testing and Results

After implementing the LS and LMS models in Chapter 5, the dissertation applied

the following six different combinations:

• LS applied to the output of ENet S.S. model

• LS applied to the output of SegNet at low-resolution model

• LS applied to the output of SegNet with high resolution

• LMS applied to the output of ENet S.S. model

• LMS applied to the output of SegNet at low-resolution model

• LMS applied to the output of SegNet with high resolution

The first implementation used the ENet model S.S. on the MacBook Air. The ENet

processing speed was 1.1 fps. The performance of the same model using the Nvidia

Jetson Nano GPU was 1.4 seconds per frame (0.714 fps) which is too slow for ATV
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autonomous driving. As mentioned before, the ENet code is not CUDA-Enabled,

making the GPU features of parallel computing useless.

The subsequent trials used the SegNet with the low resolution on the Jetson Nano

Nvidia GPU. The SegNet at low resolution was much better with 24 fps, which is

acceptable for low-speed autonomous ATV navigation. This fact implies it can detect

a new event or change in the path once every 41 ms. Low-speed in this context means

an ATV can traverse a path with speed around 16 km/h (10 mph), which is equivalent

to 4.4m/s. At this speed, the SegNet can detect a new frame each 18 cm which is

acceptable in the forest environment. While in the case of the ENet, it will detect

one frame every 6.16 meters, which is not acceptable.

For the SegNet with high resolution on the Jetson Nano GPU, the GPU processed

the semantic segmentation at 14 fps with a detection of a new event every 31 cm,

assuming the same speed of 10mph, which is acceptable but not preferable.

For better rates, the research set the ATV to move at 6 mph (2.67 m/s), which

makes it detect a new frame every 13 cm in case of the low-resolution SegNet model.

The three SS models were examined for the performance once with the LS and once

with the LMS. Fig. 6.1 shows the results for the prediction of the LS regression model

when using ENet S.S. with the red line is the predicted angle by the ML model and

the blue line is the ground truth data gathered from the ATV. The results, in this

case, are quite promising as the red line is following the blue line. Note that the blue

and red lines are not supposed to be identically matched in this case, as the camera

feed was for the ATV while the ATV was driven and following the path, which makes

a slight angle toward the center for a correct prediction. However, if the ML model is

the ATV driver, the angles should go higher, as if it applies a slight angle, it might go

into one of the outer states, leading to more angle value. Fig. 6.2 shows the results

for using the LMS model with the ENet SS model. The LMS model shows a weaker

ability of the red line to follow the blue line than the LS model in the case of the



86

Figure 6.1: Prediction results for ENet S.S. with LS regression model

ENet SS.

Fig. 6.3 shows the results for using the LS model with the SegNet high-resolution

SS while Fig. 6.4 shows the results for using the LMS with the SegNet high-resolution

model. In the case of the high-resolution SegNet, both LS and LMS models show weak

performance in predicting the angles of the steering wheel.

Fig. 6.5 shows the results for using the LS model with the SegNet low-resolution

SS. As it appears in the plot, the LS with the SegNet low-resolution model has a good

prediction following the ground truth of the steering wheel angle, it may be a little

less accurate than the ENet, but it still can be considered as a good result. Fig. 6.6

shows the results for using the LMS with the SegNet low-resolution model. In this

case, it appears to have a very weak accuracy in predicting the angle, a bit similar to

the SegNet high-resolution performance.
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Figure 6.2: Prediction results for ENet S.S. with LMS regression model

Figure 6.3: Prediction results for SegNet High Resolution S.S. with LS regression
model



88

Figure 6.4: Prediction results for SegNet High Resolution S.S. with LMS regression
model

Figure 6.5: Prediction results for SegNet Low Resolution S.S. with LS regression
model
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Figure 6.6: Prediction results for SegNet Low Resolution S.S. with LMS regression
model

6.2 Testing Results for the AI Driving Performance Measurement Model

This method was applied to the experienced driver to measure his performance,

and it appeared 74.3% as shown in Fig. 6.7 on the left.

The researcher applied the model to the seven different driving methods mentioned

in Chapter 4, leading to the results in Fig. 6.8. It appears that the zig-zag inside

the path is a better driving technique than moving straight outside, as it is always

near the center, while the zig-zag outside is the worst as it always gets outside the

path. The other driving methods results fluctuate between the zig-zag outside value

and the experienced driver.

It appears that the experienced driver might not be efficient to get the rating.

However, from the output reward values from the IRL model, it appears that the

results were not symmetric around the center. The center was the highest, but the Ro

was higher than the Lo. The Lo was a pure zero. These values mean the experienced

driver visited the Ro but never the Lo. This proposed explanation could be why
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Figure 6.7: First experienced driver:
on the left: First experienced driver evaluation.
on the right: Old experienced driver rated on the average (final) rewards function.

Figure 6.8: Other Drivers Ratings: P1: Ri, P2: Ro, P3: Li, P4: Lo, P5: Zi, P6: Zo,
P7: Random
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Figure 6.9: Reward function as output of IRL by first experienced driver - 530 frames

Figure 6.10: Reward function as output of IRL by second experienced driver - 2859
frames

the Ri was higher than the experienced driver average as the right side had a higher

value. More experienced driver data may fix this issue. Fig. 6.9 shows the rewards

per state visited as the output of the IRL model.

The reward function in Fig. 6.9 shows the highest reward value is when the agent

stays in the center. The Ri and the Li have similar reward values. The outside

values are much lower. However, the Ro and Lo were not similar, and it shows the

experienced driver never visited the left outside state but did visit the right outside.

The researcher performed another data gathering with 2859 frames in addition to

the 530 frames used previously. Fig. 6.10 illustrates the reward function. In this case,

the rewards are similar for the ro, the ri, the li, and a bit lower for the center, while it

was negative for the lo. Applying the model to the new experienced driving attitude

using the new reward function and resulted in 99.899% as shown in Fig. 6.11 on the

left. This result makes more sense than the first 75% result.

However, to get better results, the two reward functions were weighted and averaged

to get the rewards in Fig. 6.12. The new one is much better than the others as the

center value is the highest. The Ri and Li had similar values and were higher than

the outside states.

The rating for the new experienced driver used the final rewards function (the
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Figure 6.11: Second experienced driver:
on the left: Rating of the second experienced data verses himself.
on the right: New experienced driver rated on the average (final) rewards function.

Figure 6.12: Average rewards for the 530 + 2859 frames



93

Figure 6.13: Test results for the average (final) rewards function: P1: Ri, P2: Ro,
P3: Li, P4: Lo, P5: Zi, P6: Zo, P7: Random

average). The result was 98.62%, as shown in Fig. 6.11 on the right. Fig. 6.7 on the

right shows the ranking for the old experienced versus the average rewards function.

Fig. 6.13 shows the results for all other driving techniques. The percentage was

higher than the first time. The results now seem more realistic than the first run as

the zig-zag in both cases (Zo 85% and Zi 88%) were the lowest results. The random

driving technique was the 3rd worst with 90% as it contains all the attitudes together.

Followed by the Ro 92%, the Li 93%, the Lo 94%, and the highest was the Ri with

97%. The results show that the new experienced driver is better than all the others,

while the Ri is better than the old experienced driver.

6.3 ATV AI Controller Model Real-Time Design and Implementation

After the AI model showed success in predicting the direction of the handlebar

in the offline mode, the researcher started to implement the real-time AI model to

control the handlebar. This model has a similar implementation as offline, except

that the model will work on a frame-by-frame basis instead of operating on the whole

video. The GPU used the "Intel Realsense 2" library to read a color frame from
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Figure 6.14: The Real-time AI model process to control the ATV handlebar

the D435i camera. The SegNet SS model processes the color frame, and the GPU

computes the current and projected positions of the ATV from the SS output. The

ML model uses the values of the weights from the training and uses the ATV states

to predict the correct angle. The GPU sends the angle and a speed of 2.9 mph using

the CAN bus to the ATV actuators. The steering module receives the value and acts

accordingly while the speed control system will move the ATV at the appropriate

speed. Figure 6.14 illustrates the process for the ATV AI control model.

6.3.1 Handling SS Noise and Path Irregularities

Testing in real-time at first showed some noise on the output of the SS. The cracks

and leaves on the paved path may appear as vegetation instead of the paved path.

This problem resulted in the ATV trying to avoid what seemed as not path. To

fix this problem, the researcher adjusted the image processing portion of the code.

Instead of calculating state 1 and state 2 from only one position, the software locates

state 1 by scanning the lower 50% of the frame, and the state 2 by scanning the upper

window from 50% to 20% of the frame.

6.3.2 Real-Time Testing Results and System Limitations

The researcher tested the ATV in different lightning and weather situations. The

results showed the system performs well in sunny weather with shadows on the ground,

cloudy weather, rainy weather, fog, and haze. The system performs poorly when

tested near sunset (starting an hour before sunset), in very low light conditions, and

during heavy rain. The system was not tested in snowing conditions.

The system relies on a camera; therefore, in low light condition, the camera sensor
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will not gather enough light and produces a dark image. In this case, the SS will not

detect the path contour.

The ATV has a minimum turning radius of 3 meters. On the test path, the sharpest

turn has a radius of 10 meters with a curve angle of 20 degrees and the ATV was able

to successfully follow the curve. The longest turn was a curved angle of 60 degrees

with a radius of 23 meters and the ATV successfully followed the curve.

Video in the reference section demonstrates the ATV moving in the middle of the

path most of the time in different locations along the path. This shows the ability of

handling turns, going up and down a hill, finding the path is different environments

with heavy trees or no trees [67, 68, 69, 70].

6.3.3 Single Run Analysis

For the 2700 frames during test trial, at 2.9 mph speed, in a curvy path with

different path elevations and combination of open skies, and between trees [67], the

results shows:

• The average position of the ATV is -0.00777 which means very close to the

center. The positions are illustrated in Fig. 5.15

• The ATV positions are illustrated in the Table 6.1

• By using the data from the location and apply them into the output of the IRL

with weights: 100% for center, 90% for states 1 and -1, 50% for states 2 and

-2, and 0% for states 3, -3 and 4, the system exhibits 91.51% of ideal pose as

compared to an experienced driving.

• To measure the driving smoothness, the standard deviation of the ATV location

was calculated and found to be 1.088 (out of 8 states with mean of -0.00778).

• The time spent on this path was 191 seconds with 9.26 cm per frame. This

means the ATV will take a new action after moving 9.26 cm.
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Table 6.1: Table illustrating ATV Positions.

ATV State/Position with respect to path Percentage

4 (path can not be located) 0.00%

3 (outside the path on the right 0.74%

2 (near the path edges but inside the path to the right) 11.52%

1 (slight right) 7.89%

0 (center) 57.78%

-1 (slight left) 10.30%

-2 (near the path edges but inside the path to the left) 11.70%

-3 (outside the path on the left) 0.07%

The upper part of Fig. 6.15 demonstrates the results for the 2700 frames. It shows

the current ATV location (state 1) in orange, the projection of the ATV if it continues

forward (state 2) in grey, and the steering angle as the output of the ML in blue. To

better understand the result, the lower part of Fig 6.15 focuses on only 200 frames, a

14 second section of the pass.

The image on the left represent the ATV on the path at the beginning of the 200

frames. In this picture, the ATV is in the center of the path (state 1 = 0) and the

path is going to the left in front of the ATV. Therefore, the ATV will be slightly on

the right of the path if it continues straight (state 2 = 1). As a reaction from the

ML model, the angle taken is to the left (the blue line is approximately -5 degrees)

to keep the ATV in the center of the path.

The graph illustrates that the ML angle is very related to state 2 but in the opposite

direction. It appears that the weight of state 2 is bigger than state 1 weight. The

graph also shows that the weight contributing in the angle calculation for state 1 is a
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positive weight but the state 2 is a negative weight. The weights are driven from the

ML model, which reacts to both states together to maintain the ATV on the path.

The LR ML model appears here to be beneficial as a trivial thought will be if the

current ATV location is on the right, the software should turn to the left to adjust

the ATV position. However, the LR ML trained model found that the experienced

driver will turn to the left or to the right according to the future trajectory of the

path. This means if the ATV is on the right but the path if going to the right, the

ATV might turn to the right with a certain angle to maintain the center location of

the path and not to go to the left. The LR ML model main purpose was to find the

correct equation to control the angle according to state 1 and state 2. Finally, the

picture on the right shows the ATV at the end of the 14 seconds section.
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Figure 6.15: Chart from the ATV log file data representing the ATV states (current
location and projection) and the angles output of the ML model



CHAPTER 7: CONCLUSION

7.1 Conclusion

An internal combustion engine Honda ATV was transformed into an autonomous

ATV that can follow a paved path in a forested environment using embedded systems

and AI. The embedded systems is composed of a series of nodes connected via a CAN

bus and controls the speed, the steering angle, and the braking system using messages

from the AI model. The AI model is implemented on an embedded GPU. The AI

model uses the data from a camera with a SS to define the path boundaries, and an

image processing model to localize the ATV pose and orientation with respect to the

path. A Linear Regression ML model then utilize the pose and orientation to detect

the proper steering angle for the ATV to keep following the path. The SS used is a

ResNet18 Deep Neural Network and trained using DeepScene dataset. The Linear

Regression ML model was trained on a dataset gathered during this research that

represents the ATV pose, orientation, and the angle taken by a human driver.

This dissertation demonstrates that it is feasible to control an ATV to follow a

paved path in a forested environment using a camera and AI models. The main

difference between this research and normal autonomous vehicles is the path detection

and vehicle localization. In a normal road, AI models benefit from road signs, lane

markings, and all other standardized traffic schemes. This dissertation showed that

it is feasible to define the path using a camera and a trained SS model. The main

challenge for this work was to position the ATV with respect to the path in different

lighting conditions with shadows, leaves, and pavement cracks. The ATV works

successfully as long as there is enough light to see which is a trivial condition when

using a normal RGB camera. The ATV was able to perform its task in rain, light
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fog, cloudy weather, and sunny weather. It currently cannot be operated in heavy

fog, heavy rain, or an hour before sunset and later. Offline and online experimental

testing took place on the course of this research. The offline testing showed success

and promoted the online real-time testing. The results of the real-time testing showed

the ATV was capable to move and maintain ideal center pose with 91.5% of the time

compared to an experienced driver. The drive showed smooth state transitions with

1.08 standard state deviation from the center of the path out of 8 different states.

The research showed the benefit of using linear regression machine learning model

to detect the correct angle for the ATV. The researcher applied a constant gain to

the ML weights to allow more turning in sharper turns, this gain does not affect the

normal turns as the ATV will adjust itself from the camera’s feedback.

7.2 Additional Lessons Learned

The ATV was capable of following the path in light foggy weather and in light rain.

The ATV functionality was successful as long as the vision range was more than 10

meters. The most important environmental condition for the ATV to perform well is

the light. The ATV currently cannot be operated in darkness or low light. Starting

one hour before sunset, the ATV capability to detect the path declines rapidly.

An important observation is that the dataset for the ML model was gathered in

September and October where the video recorded more green vegetation and trees.

Testing occurred at a different environment (at the end of the winter and start of

the spring) where the landscape was more grey. Still this condition did not affect the

performance of the ATV detecting its pose and orientation with respect to the paved

path.

Another observation was that the ML model put more weight on state 2 (ATV

projection position with respect to the path) and less on state 1 (current ATV location

with respect to the path). This showed the importance of state 2 as the ML model

will react more to state 2 and less to state 1. Another advantage from using the
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ML model training was to get the proper weights and the constant bias for the ATV

steering angle formula depending on the current pose and pose projection.

Since the dataset is composed of only 3 variables (inputs: state 1, state 2, and

output: the steering angle), a regression model was needed to calculate the value of

the angle. A linear regression model showed good results for angles calculation to

maintain the ATV on the paved path.

During testing, it was recommended to test the ML results after training the model

using more data. The results did not improve much after increasing the dataset size

from 33K entries to 128K entries.

For the ML to control the ATV steering angle, it was important to test the ATV

on lower speeds in order for the researcher to have more control over the ATV in

emergency situations and to allow the ML model more time to make a proper decision.

As mentioned before, the ATV engine is classified as an internal combustion engine.

It was noticed that controlling the speed on such an engine is a challenge. It would

be much easier if the ATV was an electric vehicle with electric motors. This would

allow more time to focus on the AI model instead of controlling the ATV speed. The

research showed a successful speed control of 2.9 mph and above (though, as shown

above, the vehicle operated at the low end of this range).

The steering control showed that the external motor was more powerful and able

to reach better accuracy from just relying on the vehicle power steering-assist motor.

The new implementation showed better accuracy reaching a specific angle than the

previous implementation mostly because of the caster angle. Also the tension of the

cable and any associated slack did not affect the performance of the steering because

of the feedback loop from the steering axis.

The SS model was trained using a similar but not the same environment (DeepScene

dataset) which is a forest environment in Germany. The results of the SS model

were not always as desired depending on the weather situation and the pavement
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cracks and otherwise. These results had some noise that needed more effort from the

image processing part of the model to remove and detect the correct ATV pose and

orientation.

The ATV was able to follow a gravel path as well, not only asphalt. This appeared

in one of the testing results. The main reason is that the SS model is trained to

classify everything as either trees, or vegetation, or paved path.

7.3 Future Work

For the future work, it is recommended that, since the world is moving toward

electrical vehicles, to perform the same tests on an electrical ATV.

More testing would add better understanding for the system limitation like testing

the ATV in the snow.

This dissertation focuses on the ATV following a single path in a forested environ-

ment. It does not handle a fork and making a choice. As a future investigation, using

the ML to choose which path to take by integration of this study with the breadcrumb

sensors [47, 71], a parallel study that had place in the same lab as this dissertation.

A good improvement is to use a more powerful GPU that can process the AI model

and gather more data at the same time.

Fine tuning the SS using local data might help eliminate the noise and reduce

the processing power needed by the image processing portion of the model. Besides,

increasing the number of classes to include other potential subjects and train the ML

accordingly may enhance the ATV performance to include different environment with

less limitations.

.
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