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ABSTRACT

ALI MAHZARNIA. Multivariate functional predictor selection. (Under the
direction of DR. JUN SONG)

We propose methods for functional predictor selection and the estimation of smooth

functional coefficients simultaneously in a scalar-on-function regression problem un-

der a high-dimensional multivariate functional data setting. In particular, we develop

two methods for functional group-sparse regression under a generic Hilbert space of

infinite dimension. We show the convergence of algorithms and the consistency of

the estimation and the selection (oracle property) under infinite-dimensional Hilbert

spaces. Simulation studies show the effectiveness of the methods in both the selection

and the estimation of functional coefficients. The applications to functional magnetic

resonance imaging (fMRI) reveal the human brain regions related to ADHD and IQ.

In addition, we apply the proposed methods to an econometric data set to find the

related functional covariates to GDP of a country. To extend the results, we pro-

pose numerical algorithms for more complex models, such as nonlinear (via RKHS),

logistic, sparse function–on–function, and standardization the results of the sparse

scalar–on–function models before we list the applications of these extensions to the

brain image data analysis.
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PREFACE

In the past decades, functional data analysis (FDA) has received significant atten-

tion in which an entire function is an observation. (1) introduced a general framework

of FDA and many other researchers investigated the estimation and inference meth-

ods of functional data. See (2), (3), (4), and (5). More recently, FDA has been

extended to multivariate functional data that can deal with multiple functions as a

single observation. See (6; 7). However, the sparseness of functional predictors in

the multivariate model has not been studied well compared to the univariate case.

Hence, we aim to develop theories and algorithms for the sparse functional regression

methods with functional predictor selection when we have scalar data as response

values and high-dimensional multivariate functional data as predictors.

Under the multivariate setting, numerous sparse models have been studied with the

introduction of `1-penalty. Least absolute shrinkage and selection operator (LASSO)

introduces a penalty term to the least square cost function, which performs both

variable selection and shrinkage (8). The LASSO-type penalty, such as the Elastic Net

(9), the smoothly clipped absolute deviation (SCAD) (10), their modifications (the

adaptive LASSO (11) and the adaptive Elastic Net (12)) are developed to overcome

the lack of theoretical support and the practical limitations of the LASSO, such as

the saturation. These methods were developed to overcome the challenges and enjoy

asymptotic properties when the sample size increases, such as estimation and selection

consistency, also known as the oracle property.

Recently, the sparse models have been extended to the functional data. Initially, a

majority of the literature seeks the sparseness of the time domain. Examples include

(13) and related articles on univariate functional data and (14) multivariate functional

data. On the other hand, (15) proposed a model considering the sparseness in the

functional predictors under the multivariate functional data setting. In particular,

they introduced a model based on the least absolute deviation (LAD) and the group
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LASSO in the presence of outliers in functional predictors and responses. Its numer-

ical examples and data application show the effectiveness in practice, but theoretical

properties and detailed algorithms have not been explored. To this end, we develop

methods for the scalar-on-function regression model, which allows sparseness of the

functional predictors and the simultaneous estimation of the smooth functional coef-

ficients. To implement it with the actual data, we derive two algorithms for each of

the optimization problems. Finally, we show both the functional predictor selection

consistency and the estimation consistency.

One motivating example for the proposed methods is the application to functional

magnetic resonance imaging (fMRI). The dataset consists of the functional signals

of the brain activities measured by blood-oxygen-level-dependent (BOLD), which

detects hemodynamic changes based on the metabolic demands followed by neural

activities. There are pre-specified regions of the brain, and the BOLD signals as-

sociated with multiple voxels in each region are integrated into one signal for that

region. Thus, the fMRI data are considered to be multivariate functional data in

which each functional predictor represents the signals from a region of the brain. In

section 8.1, we regress the ADHD index to the regional BOLD activities of the fMRI

of the human subjects. There are 116 regions of the brain in the data, and the pro-

posed methods reduce the regions to 41 regions with significantly lower errors than

the linear functional regression. Figure 1displays the regions of the brain's atlas

that are identified by the proposed method. It shows that the methods simplify the

data analysis and provide clear representation while keeping the crucial information.

The study shows an urgent need for new approaches in the fields of medical and life

sciences and other related areas. The following quote from (16) further motivates to

study the applications of the sparse multivariate functional regression in fMRI.

Think of the challenge of the fMRI with the analogous situation one would have if, when
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flying over a city at night, an attempt is made to determine the city activities in detail by

simply observing where the lights are on. The information is extremely sparse, but with

time, specific inferences can be drawn. – Peter A. Bandettini, fMRI, 2020

Figure 1: The regions of interest, the BOLD activities of which correlate the most with
the ADHD score variability in a sample of subjects and achieve the lowest prediction
error. The regions associated with ADHD are colored red, those associated with
ADHD Hyper/Impulsive are blue, and those associated with ADHD Inattentive are
colored green.

The rest of the thesis is organized as follows. In chapter 1, we introduce a brief

history of brain imaging and a brief history of statistical methods. In chapter 2, we

illustrate the proposed methods’ general framework and the notations used in this

thesis. In chapter 3, we describe the model and the optimization problem that we

consider. Then, we develop an explicit solution to the optimization problem and illus-

trate a detailed procedure using alternating direction method of multipliers (ADMM)

in chapter4. We also derive another algorithm, called groupwise-majorization-descent

(GMD), along with the strong rule for faster computation in chapter 5. In chapter

6, we develop asymptotic results, including the consistency of the proposed methods

and the oracle property. In chapter 7, we show the effectiveness of the methods by

conducting simulation studies. In chapter 8, we apply the methods to a resting–state

fMRI dataset and an econometric data set. In chapter 9, we explore extensions in

different directions; we propose numerical algorithms for more complex models, such
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as nonlinear (via RKHS), logistic, function–on–function, and standardization of the

final results. The standardization of the sparse scalar–on–function models can be

done by estimation of the standard deviations of the norms of the functional coeffi-

cients. We list the applications of these extensions to the brain image data analysis

in this chapter as well. Concluding discussions are made in chapter 10. Finally, the

appendix includes all of the proofs, a 3–D displays of ROIs, the list of regions of the

brain associated with ADHD and the IQ scores, and the list of variables and countries

of the econometric data. We created an R package MFSGrp for the computation, and

it is available at https://github.com/Ali-Mahzarnia/MFSGrp.

https://github.com/Ali-Mahzarnia/MFSGrp


CHAPTER 1: A BRIEF HISTORY OF BRAIN IMAGING AND STATISTICAL

METHODS

In the first section of this chapter, we first briefly explain common knowledge of

fMRI with a brief history. In the second section, we will discuss the classical statistical

methods.

1.1 Functional magnetic resonance imaging (fMRI)

Most of the information in this section is common knowledge and can be found on

many resources such as (16).

Before brain imaging, researchers studied behaviors associated with brain injury

in patients. This approach was used in 1861 to determine the corresponding brain

regions to the ability of word production, in 1874 for the ability to understand sen-

tences, and 1909 for the visual cortex. In 1848, such a method was used to detect

the brain regions associated with the personality of an individual who survived an

accident on the train rail. The patient injured his frontal lobe.

In 1895, the X-ray was invented, and it was partially used for brain imaging; how-

ever, it could mainly detect bone structure instead of the soft brain tissues. In 1961,

Computed Tomography (CT), which is based on X-ray, was introduced. It produces

volumetric images. In 1970 the Magnetic resonance imaging (MRI) was introduced.

In 2003, the inventor of MRI won the Nobel prize for slice selection and echo plan-

ner imaging, which are non-invasive high-speed MRI-based imaging techniques and

detect soft tissues. The MRI detects tissue type as well as lesions (injured tissue). It

can detect white matter, gray matter, fat, Cerebrospinal Fluid (CFS), tumor, trauma

(injury), hemorrhage (internal bleeding), fiber tracts connections, iron concentration,
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blood flow, elasticity, and most importantly, BOLD. In addition, there are tissue–

specific MRI parameters that MRI machines control based on the target (anatomic,

contrast):

• T1: Longitudinal relaxation.

• T2, T2∗: Transitive relaxation.

• Proton density (SO).

• Flow velocity.

• Diffusion coefficients.

• Magnetic susceptibility.

Diffusion-weighted imaging (DWI) is an MRI derivative that was invented in 1980.

The word diffusion refers to random thermal motion. Another MRI derivative is

Diffusion Tensor Imaging (DTI) that was developed in 1990, as well as Tractography

which detects white matter and connectivity.

Before fMRI invention, there used to be other methods for brain imaging. Positron

emission tomography (PET) is an invasive method, and it provides spatial labels. It

has a higher resolution than the other methods but lower resolution than fMRI. It is

impossible to repeat it because it is invasive, i.e., radioactive materials are injected

or consumed and must be inside the human body.

Near-infrared (NIR) was used in 1970 to image the hemodynamic activities of

the human brain. Brain is semi-transparnet to NIR. Spectroscopy is the study be-

tween electromagnetic fields and matters. NIR spectroscopy (NIRS) is a non-invasive

method to detect oxygen concentration beneath the skull. The oxygen of the blood has

a light absorption feature. This method can be geared toward detecting hemoglobin

and total blood concentration. It is wearable with a bed–size producer; therefore, it

is movable.
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Following NIRS, functional NIRS (fNIRS) was introduced. There are similarities

between fMRI signals and fNIRS. However, unlike fMRI, fNIRS cannot detect the

activities deeper than 2-3 cm inside the skull, and due to the distance between the

skull and the equipment, it has a lower resolution than fMRI. However, fNIRS requires

much smaller equipment than fMRI.

In 1924 electroencephalogram (EEG) was introduced. Compared to fMRI, it is

inexpensive, and it has a lower resolution. In 1938, it was widely accepted and

used in the medical world. It catches the electrical activities of the brain, while

it is a non-invasive method. The detectors are electrodes placed on the skull that

capture the local saturation of electrical activities of the neurons. It is believed

that neurons depolarize to transfer information or activity to one another and then

depolarize to have the potential power for the subsequent depolarization. Hence, such

an imaging method catches these interactions. EEG is used to diagnose brain death,

coma, epilepsy, sleep disorder, and behavioral researches. However, it has limited

spatial resolution and limited certainty due to ambiguous localization. In addition,

other electrical sources can easily cast noise on this method’s output and estimation.

Event-related potential (ERP) is a derivative of EEG. It measures the average EEG

time-locked when a stimulus is present or when the subject does a task. It is used in

cognitive science.

Magnetoencephalography (MEG) measures magnetic fields on the scalp. Compared

to fMRI, it is expensive, and it has a lower resolution. Its advantage over EEG is that

it is not affected by the inhomogeneous electrical conductivity of the brain. Hence, it

is more precise in localization of the brain activity due to low distortion. It records the

parallel magnetic fields to the scalp’s surface, while EEG records the perpendicular

electrical. In 1980, the factories developed MEG devices with 3000 sensors that cover

the skull. They are mobile, so they can be used in the task–based brain imaging

experiments when subjects move naturally. One of the uses of this method is in
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pathology before brain surgery.

The history of brain imaging started with imaging animal subjects’ brains by an

invasive method. In 1880, Angelo Mosso published a book based on an experiment

in which a tilting bed would move toward the head when a stimulus was present. It

proved the blood flow of the brain when its regions are active. In 1945, invasive brain

imaging methods were used to map the blood flow in the human brain. Notably, in

1960 and 1970, Xenon inhalation was a newly invented method to enter radioactive

into the blood and track its path with the help of a scintillator (Luminescence) de-

tector. This approach helped to draw the first functional image of the human brain.

In 1980, the study of regional brain change of flow started by scientists. This study

was helpful to detect the activities such as speaking, reading, and more and their

associated brain regions.

Magnetic resonance spectroscopy (MRS) is another non-invasive method that de-

tects nuclear magnetic resonance (NMR). In chemistry, it is used to detect molecules

of an element in solid or liquid materials. MRI detects the abundance of protons

in the water, while MRS can be geared toward detecting compounds based on their

unique resonant spectroscopy. It can detect many different chemical elements; among

them, only hydrogen and phosphorus are present in the human body. It was first used

on a mouse head. It is sensitive to a magnetic field which makes the results noisy. It

is used in disease detection such as Cancer, Alzheimer’s, Parkinson’s, and epilepsy.

A chemical substance, Radioligand, was used in 1980 in brain research through

an invasive method. Two methods were associated with such a substance: Single-

photon emission computed tomography (SPECT) and Positron emission tomography

(PET). The first substance for PET was H2O
15. Fludeoxyglucose (FDG) could trace

radioactive sugar positron emission via PET. Sugar has a much longer half-life (110

minutes) than the other substances, which makes it suitable for these methods.

In 1991, the first fMRI results were introduced. Before that, magnetic resonance
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imaging (MRI) technology was available worldwide. In 1996, enough equipment was

available such as high-speed gradient, time–series, echo–planner imaging for fMRI to

become the most popular research brain imaging method. fMRI research produces

5,000 papers per year on average. There are 60,000 relevant papers since 1992.

fMRI technique determines activities through time by measuring Blood oxygen

level-dependent (BOLD). fMRI has two paradigms: resting-state fMRI and task

fMRI, which is done by the presence of a stimulus. However, it is the most dominant

brain research methodology, fMRI is still considered cartography (drawing map) be-

cause we cannot look at the actual neural activities so far. Instead, we look at the

regions to analyze local activities. Besides, fMRI data is a multi-subject database.

Due to the noise, individual variants, and unavailable real-time inferences techniques,

fMRI has only a few clinical applications. fMRI technique measures Hemodynamic

changes via BOLD.

1.2 Classical statistical models

This section is based on a comparison performed by many researchers. As an

example, read (17). Proofs at the end of the section are borrowed from different

papers that are referenced. Next, we consider and compare different multivariate

linear regression sparse models. The advantages and disadvantages of such models are

listed. Finally, various penalties are examined for high-dimensional linear regression

models.

1.2.1 Setup

As per notation in this section, consider a set of identically and independently

distributed (i.i.d) (xi, yi) ∈ Rp×R for i = 1, . . . , n. The equation, thus, assumes that

the relation between xi and yi is linear as follows:

yi = xTi β + εi, (1.1)
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where β ∈ Rp is the unknown coefficient vector, and εi are mean zero random errors.

For linear regression, we can ignore the intercept. Centering covariates and responses

before running regression would compute the coefficient’s vector in the same way as

if they had not been centered. However, if centered, the means can be added back

to the estimated model’s equation to make up the estimated intercept. This fact is

not valid- in generalized linear regressions models such as logistic, which is a type of

log–likelihood regression. In a matrix form, we have:

y = Xβ + ε, (1.2)

where y is column vector of responses yi, X is the design matrix with ith rows xTi ,

and ε is column vector of random errors εi. Take X1, . . . , Xp column vectors of X.

1.2.2 Assumptions

There are a few rather strong assumptions to be made.

• E(yi|xi) is a linear function of xi.

• xi are fixed and εi are i.i.d. This situation is equivalent to εi = yi − E(y|xi)

to be i.i.d mean zero Gaussian distributed random variable. As a result, ho-

moscedasticity holds.

1.2.3 Least square

The sample level least square coefficients are solutions to the following optimization

problem:

min
β
En(Y −Xβ)2, (1.3)
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where (X,Y) are population versions of (xi, yi), and En(·) is the empirical mean

operator. This problem is equivalent to:

min
β
‖y −Xβ‖2

2. (1.4)

The solution exists and is unique if rank(X) = p. This situation is equivalent to a

scenario where predictors Xj are linearly independent. In this case, the solution is

β̂ = (XTX)−1XTy. Fitted values are the projection of y onto the column space of X.

• Advantages:

– A closed-form solution exists if the above assumption regarding rank(X) is

justified in the data. Thus, there is no need to resort to iterative algorithms

to approximate the solution.

– No matter if the solution is or is not unique, fitted values are.

• Disadvantages:

– If p > n, there are multiple solutions (i.e. if rank(X) < p).

– If the solution is not unique, prediction values based on new data can

differ from one solution to another. Then, interpretation is meaningless

for out-of-sample predictions.

1.2.4 Sparsity

To motivate high dimensional regression models, consider estimating β whose

j1, . . . , jq-th components are zero. Support of the β denoted by Supp(β) is the com-

plement set of {j1, . . . , jq} with respect to the super set {1, . . . , p}.
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1.2.5 Oracle estimator

Oracle estimator is least square estimator as if one knows O = Supp(β) before

estimating. Least square estimation, in this case, will be

β =


β̂O = (XT

OXO)−1XT
Oy

β̂−O = 0,

where XO is column of X with indices contained in O, β̂O is elements of β̂ with indices

inside O, and β̂−O its complement.

Having oracle properties for an estimator of β usually refers to having root n consis-

tency and selection consistency (identifying the support correctly), asymptotic nor-

mality, or combinations of these properties. It means that the estimator would be

as good as if we knew the true support and ran least square on the true active set.

Thus, a valuable estimator has oracle properties without paying the price of testing

all combinations of covariates. Some models’ estimators have other features besides

selection consistency, while even oracle estimator does not have them. Estimation

shrinkage is one of these features.

1.2.6 Regularization: The penalty method

To perform a penalty method on the regression problem, one would start with fixing

(a) regularization parameter(s) such as λ. Suppose that we are interested in the least

square solution(s) of the problem (1.4) that are in a Cλ, (usually a convex) subset of

Rp. If none of the elements of Cλ is a solution to the least square problem, we seek

elements of it that minimize the least square problem the most. This approach is the

same as finding Cλ’s elements with minimum distance to the least square’s solutions

and equivalent to projecting the least square solution(s) onto Cλ. To measure how

close a solution to the least square regression is to the elements of Cλ, we can use a

distance function induced by the usual norm in Rp such as Euclidean.
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This method of measuring the distance allows us to aim for a solution that overcomes

the above problem- being close to elements of Cλ-and may slightly deviate from the

goal of the least square problem, which is to minimize the problem (1.4).

This technique is equivalent to adding a (usually convex) penalty term Pλ(·) applied

on the vector β to the optimization problem (1.4). We can apply different penalty

functions and different regularization parameters for each element of the coefficient

vector β by P j
λj

(·) for j = 1, . . . , p. However, to complete the regularization, this

setup requires a net search of p parameters λj (simultaneously) at the computational

level. Hence, it is computationally expensive, given that each λj takes a fairly long

computational time, especially if the penalized objective function does not have a

closed–form solution and requires an iterative algorithm to approximate its solution

numerically. Thus, we set all of the λj as a unique regularization parameter λ, and

all penalty functions the same as Pλ(·).

Mostly but not always, the regularization technique introduces a bias to the estima-

tion in return for a variance reductionâan estimation’s variance reduction results in

lower prediction error. In addition, there are various penalty terms with different

features; some lead the structure of the solution(s) to have asymptotic properties,

a closed-form solution, different rates of convergences, uniqueness, saturation, or a

combination of these features.

The main reason for regularizing the least square problem is often to reduce out–of–

sample error which is equivalent to shrinking the variance of the estimation. It can

be done through an estimation shrinkage or the sparsity (i.e., setting part of the esti-

mated coefficient vector as zero or removing extraneous covariates). It can be shown

that the in-sample error is always lower with a higher number of predictors. Thus,

regularization must be done based on a criterion representing the out-of-sample error

in the training data. The training data can be divided into two parts: one is used

to estimate the unknown coefficients, while the other is treated as the testing data
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set. There are various cross-validation methods such as the k–fold or leave one out

to partition the data.

1.2.7 Relation between Cλ and Pλ(·)

As pointed out, solving optimization least square problem (1.4) with constraint Cλ

is often equivalent to solving an unconstrained but penalized least square problem.

Often, the constraint is defined by a convex function Q(·) such that Cλ = {β ∈

Rp|Q(β) ≤ kλ}. It can be shown that the least square problem with such a con-

straint is equivalent to the unconstrained penalized least square problem where the

penalty term Pλ(·) = λQ(·) is applied to β and added to the least square objective

function. In other words, by making some assumptions about the data, (X, y), it can

be demonstrated that for every λ, there is one and only one constant kλ such that

the solutions to the optimization least square problem constrained by Cλ- with the

definition above-is the same as the solutions to the penalized least square problem

with penalty Pλ(·). Relaxing such assumptions, this conjecture holds not precisely

but approximately.

1.2.8 Regularization parameter

A regularization parameter can be found at the computational level through a line-

search with the minimum mean square error (MSE) criteria among all tested λs.

The following are some of the widely used cross-validation methods.

• The k–fold method divides the training data into k divisions. For each fixed

λ, we run the regression on one of the k-1 partitions of the kth divisions. It

then uses estimated coefficients to predict based on the rest of the data and

computes the MSE. The process will be completed when this is done for all of

the k combinations of k−1 partitions. The result is the mean of all k computed

MSEs. In the next step, the fixed λ would change to a different amount, taken

from the grid points of the line search. A λ with the minimum mean of MSEs
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would be chosen. Finally, a regression would be run on the whole training data

set with the chosen λ to compute the unknown coefficients.

• The leave–one–out cross–validation method is essentially the same as the n− 1

fold cross–validation. It leaves one data point out of the whole training data

in each step and treats it as a test set. It then computes MSE. After repeating

for all n data points, it takes the average of all such MSEs. Although it can be

computationally expensive to compute and find the best λ, it has a closed form

solution for some penalty forms. In some cases, reasonably accurate estimation

is available instead of a generalized cross-validation’s closed form solution of λ.

The existence of the closed-form or its approximation makes it preferable over

an often regular size of k (such as 10) in the k–fold cross-validation method.

1.2.9 Penalty terms

As stated, some penalized optimization problems do not have a closed–form solu-

tion and must be approximated via iterative algorithms. In addition, some of these

problems solve for sparse solutions. The active set or Supp(β̂) is a set of indices that

are involved in a regression’s estimation at the time the algorithm runs.

The solution path (regularization path) is the estimated coefficient values as a func-

tion of regularization parameter: β̂(λ) for λ ∈ [0,∞). In some cases, the closed form

of the solution path can be derived, and in others, it cannot.

1.2.9.1 Best subset selection

We can set Cλ = {β ∈ Rp; ‖β‖0 ≤ kλ}, where ‖.‖0 counts the number of non-zero

elements of a vector, and kλ is a natural number that depends on λ. We can take

Cλ as the space of constraint of the least square problem (1.4). This is equivalent

to solving an unconstrained but penalized least square problem with penalty term

Pλ(·) = λ‖.‖0 (applied on vector β). The solution to each regularization parameter

is basically a least square solution for some active estimated coefficients and zero for
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others.

• Advantages:

– The estimator is unbiased.

– The solution is sparse.

– The selection consistency holds for this estimator.

– If X is orthogonal, which is a strong assumption about a data set, a closed-

form solution exists: H√2λ(X
Ty), where Ht(·) is the hard–treshholding

function at level t.

• Disadvantages:

– Cλ is not convex, thus algorithmically, the convex feature does not apply;

a local minimum is not global, as opposed to the situation for a convex

optimization problem.

– It is computationally expensive. More precisely, 2p separate regressions

must be run. This is because the selection process and removal of the

covariates are not linear: if a regressor is selected at the current step where

a set of regressors produce the lowest MSE, there is no explicit instruction

to keep pr remove such regressors in the following steps. Thus, all possible

subsets of regressors must be tested for the final comparison.

– It behaves discontinuously with respect to the response values: when y

changes, so does the active set-unknown coefficients can be set to be non-

zero and estimated with a different set of response values y. As a result,

the estimated coefficients jump discontinuously.

– The above limitation leads to a high estimation’s variance, which is the

main reason for a high prediction error.
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– Although it has selection consistency, this estimator does not shrink the

estimated coefficients.

– The solution path cannot be derived mathematically.

1.2.9.2 Stepwise regression

Referred to (18) and (19) that it was appeared for the first time, the forward

and the backward selection can be seen as the best subset selection except for the

process of selection is sequentially and linear. It starts from an empty active set and

gradually enters new variables into the active set (forward) or from a complete set of

variables in the active set and removes them one by one (backward). Winner stays:

if a new regressor decreases out–of–sample MSE in the cross–validation, it stays in

the following steps; otherwise, it will be removed. There are different error criteria,

such as the Akaike information criterion (AIC) and Bayesian information criterion

(BIC). These criteria are equivalent to selecting a new variable that maximizes the

absolute correlation with the residual from that of the regression in the last step and

entering it into the active set. A modification of this method in signal processing is

the orthogonal matching pursuit that enters a new variable into the active set if the

variable maximizes the inner product with the residual. The final result is not as good

as the best subset selection because the active set is updating gradually throughout

the steps, while the best subset selection, at each step, finds the best subset over all

possible active sets of that step’s size. However, the computation is faster than the

best subset selection. (20) and (21) showed a modification of this algorithm called

infinitesimal stagewise, the s solution path of which can be as good as that of the

LASSO.

1.2.9.3 Stagewise regression

It is similar to the forward stepwise regression. The difference lies in the initial

estimation and the iterative algorithm. In order to perform the stagewise regression,
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we can start with a zero estimate for all coefficients. Then we find the coordinate(s)

that maximizes the absolute normal equation, which is the derivative of `2 norm,

with the currently estimated coefficients. This approach is equivalent to finding the

coordinate(s) such that the correlation between the covariate and the current residual

is the maximum that it can be. We can update that specific coordinate(s) of estimated

coefficients with a gradient descent–like procedure. In this procedure-gradient decent-

a term is added by a factor of learning rate. This term has the sign of the normal

equation with the currently estimated coefficients multiplied by a factor of the error

of the coordinates. We can stop when the difference is insignificant. This procedure

takes longer than the stepwise and shorter than the best subset selection. If we

replace the sign function with its input in the stagewise update algorithm, it is called

ε–boosting, gradient boosting, or least squares boosting regression.

1.2.9.4 Ridge regression

We can set Cλ = {β ∈ Rp; ‖β‖2
2 ≤ kλ}, where ‖.‖2 is `2 norm, and kλ is a non-

negative number that depends on λ. Here again, Cλ is the space of constraint of

the least square problem (1.4). This is equivalent to solving an unconstrained but

penalized least square problem with a penalty term Pλ(·) = λ‖.‖2
2 (applied on vector

β). To simplify the closed form solution, we can take Pλ(·) = λ
2
‖.‖2

2. The solution

for a fixed λ is (XTX + λI)−1XTy, where I is identity matrix. The regularization

parameter λ can be found through a cross–validations method.

• Advantages:

– The penalty term is convex, so the convex problems’ feature holds; local

minima is global.

– A closed–form solution exists and is unique.

– The term (XTX + λI) in the closed-form is always a non-singular term,

and so the existence of the solution does not depend on the rank(X) unlike
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in the least square.

– The estimation is performed with a shrinkage feature that can reduce es-

timation’s variance and out-of-sample error.

• Disadvantages:

– The solution is not sparse because the selection is not performed through

this regression.

– This estimator is asymptotically biased.

1.2.9.5 LASSO regression

Suppose that the constraint space of the least square problem (1.4) is Cλ = {β ∈

Rp; ‖β‖1 ≤ kλ}, where ‖.‖1 is `1 norm, and kλ is a non-negative number that de-

pends on λ. This is equivalent to solving an unconstrained but penalized least square

problem with a penalty term Pλ(·) = λ‖.‖1 (applied on vector β). In this case, the

penalty term is not differentiable around the zero vector and the behavior of the sub-

differential must be considered that would lead to a treshholding rule.

We can fix λ. The equi-correlation index set I = {j ∈ {1, . . . , p} : |XT
j (y−Xβ̂)| = λ}

is the active set of LASSO- Supp(β̂LASSO)-that is if j 6∈ I then β̂j = 0. Thus, LASSO

solution for a fixed λ is:

β =


β̂I = (XT

I XI)
−1(XT

I y − λsign(β̂I))

β̂−I = 0.

Of course, this form of the solution is not practical because sing(β̂I) is unknown.

Nevertheless, it helps develop the theoretical results.

• Advantages:

– The penalty term is convex, so the convex problem feature holds; local

minima is global.
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– If XTX is non-singular Cλ is strictly convex, and then the solution is

unique.

– Besides performing coefficient shrinkage, it selects covariates, while it is

not as computationally expensive as the best subset selection.

– Fitted values Xβ̂ are unique.

– Sings of coefficients are unique in different solutions if the solution is not

unique.

– Because the fitted values and the sub-differential is unique, the active set

for a fixed λ is also unique. I contains the indices of the LASSO solutions

that obtain the smallest `2 norm when plugged into the objective function.

These solutions are in the limiting neighborhood of the Elastic Net solution

path when `2 penalty is zero.

– Proven by (22), under a general condition, LASSO has a unique solution.

The condition is justified if X has a general position: a finite-dimensional

space with a dimension less than the rank of X includes at most the di-

mensions of positive and negative signs of columns of X (±Xj).

– The above condition is satisfied if Xij has an (absolutely) continuous joint

distribution (with respect to the measure). This assumption makes the

Theorem(22) useful when such a condition can be justified for a data set.

– LASSO is a combination of performing the least square on the active set

and ridge–type shrinkage on the estimation. Shrinkage is performed when

columns of X are orthogonal.

– If X is not orthogonal, shrinkage goes in the wrong direction and enlarges

the coefficients instead. However, even in this case, `1 norm of the coeffi-

cients of the LASSO estimation is always less than or equal to the that of

the least square estimation on the LASSO active set.
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– LASSO estimation is a continuous function of y: estimations gradually go

to zero or move away from it when changing response values. The best

subset selection is discontinuous, which leads to a high estimation’s vari-

ance and out-of-sample prediction’s error. This feature is because LASSO’s

fitted values are non-expansive in response values, nor are they Lipschitz

continuous with a constant 1 or smaller.

– The solution path is a piecewise linear function of λ, which is continuous.

Thus, if the solution is computed for grid points of λs, the whole path can

be estimated with an interpolation. The support set with respect to λ,

or I(λ) = Supp(β̂(λ)) changes. In other words, grid points of λ can be

picked between a large value of λ that forces all estimated coefficients to be

zero and a small value of λ for which none of the coefficients are estimated

as zero. To choose grid points, we only pick λ values at which |I(λ)|

changes by one unit. Then use these grids to estimate the regularization

parameter. This grid makes the cross-validation part of the algorithms that

approximate the solution as simple as a step-wise regression in practice.

The proof can be found in (17) as well as in (23), (24) and (20).

– Using the above feature, the least angle regression algorithm is developed.

However, this algorithm does not allow coefficients to pass below 0. Thus

it is not precisely solving for LASSO. See (20).

– We suppose that the following mild assumptions hold: Gaussianity or sub-

Gaussianity of the errors, homoscedasticity, and the design matrix X is

fixed. An oracle inequality holds even if the population model is not linear.

In other words, the distance between the fitted values under the population

model and the solution(s) of LASSO divided by the sample size is less than

or equal to a decaying term with the rate
√
n in probability plus a constant

term. ”In probability” refers to the fact that the chance that the inequality
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holds is (at least) 1 − δ for a fixed δ, where the decaying term goes from

infinity to a constant that decays at rate
√
n when δ moves from 0 to 1.

This equation shows that the distance between the best subset selection

solution and the LASSO solution have the same situation-a decaying upper

bound without the constant term. This inequality is referred to as the

oracle inequality.

– Proven by (25), LASSO can have faster convergence results than stated

in the disadvantage part-below. We can assume the assumptions in the

previous paragraph. Furthermore, we can assume that X has a compati-

bility condition with respect to the true support, then LASSO can have an

in–sample risk converging at a rate of n similar to that of the best subset

selection. It can also be shown that the `1 distance of the estimated values

and the true values of the coefficients, or error bound in `1 norm, converges

to zero in probability at a rate of
√
n.

– Instead of compatibility condition, we assume that the design matrix jus-

tifies the restricted eigenvalue condition. In this case, the error bound in

`2 norm converges to zero in probability at the rate of n.

– Proven by (26) through the primal-dual witness method, LASSO has a

support recovery feature. That is, if XI has full rank, the minimum eigen-

value condition holds, and the mutual incoherence condition is satisfied

on top of the above basic assumptions regarding errors’ distribution and

structure of X. Then, it can be shown that the active set of the solution(s)

is precisely the same as the true active set with a high probability for some

regularization parameters.

– Shown by (27) and justified by the worst-case of orthogonal X in (28), the

upper bound of the minimax prediction error decays in probability at a

rate of n. While under some eigenvalue restriction assumption, the upper
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bound would be equal to the minimax prediction error’s lower bound with

a probability of at least half.

• Disadvantages:

– The LASSO estimator is biased.

– Cλ is not strictly convex if XTX is singular (which is the case when p > n).

– The solution is not unique.

– The closed form solution does not exist.

– Iterative algorithms are used to approximate the solution(s) numerically.

– Due to the non-uniqueness of the solution, the out-of-sample prediction is

not well-defined.

– Saturation: While the general position of X guarantees uniqueness, it has

a drawback. The general position implies that XI has a full rank where

I = Supp(β̂LASSO). Then, |I| is less than or equal to the rank of the design

matrix. Therefore, the number of sparse coefficients in the solution cannot

be greater than the sample size. Thus, LASSO cannot achieve sparsity

more than the sample size under the general position’s assumption, which

guarantees uniqueness.

– Although in theory, LASSO performs a ridge–type shrinkage while running

the least square regression on the active set, the ridge shrinkage of LASSO

can go in a wrong direction due to a possible high correlation between

variables in the active set. Then it can enlarge the estimation instead.

– We can take the in-sample risk’s bound as the expected value of the `2

distance between the fitted values and the true response values, divided

by the sample size. We can suppose some mild assumptions hold: such as

Gaussianity or sub-Gaussianity of errors, homoscedasticity, and suppose



24

X is fixed. Then, it can be readily shown that the in-sample risk’s bound

with respect to the sample size decreases slower than the risk bound of the

best subset selection. Precisely one decreases
√
n faster than the other.

– Consider the out-of-sample or predictive risk in similar reasoning to the

above paragraph. On top of the above assumptions, we assume that a

new data point is independent of the design matrix but with the same

unknown distribution. (29) shows a similar result for the in-sample risk of

the LASSO. The bound is again slower than the bound of the least square

regression by a factor of
√
n.

– (30) and (31) show that the oracle property (defined below in the adaptive

LASSO) does not hold.

1.2.9.6 Relaxed LASSO

In order to perform the relaxed LASSO, we start with running the LASSO. We

then store its solution’s active set as well as the regularization parameter. Next, we

run another LASSO regression only on the stored active set while scaling the previous

regularization parameter by a new regularization parameter which is a number less

than 1. If this scale is zero, it is precisely running the least square regression on the

active set after the LASSO. (32) invented such a method to overcome the problem-

atic situation where the LASSO fails to shrink and instead enlarges the coefficients’

estimations.

1.2.9.7 Adaptive LASSO

To reduce the bias in LASSO estimation, adaptive LASSO was introduced by (31)

that penalizes the larger estimated coefficients-in terms of magnitude- heavier. It

uses a weight term for each variable, which is reciprocal power to a (second) regular-

ization parameter of the magnitude of an initial estimation. Initial estimation can be

least square, ridge, or LASSO. It is proven that if the initial estimation is
√
n con-
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sistent, adaptive LASSO enjoys the oracle property: The selection of the active set

happens correctly with a probability converging to one. At the same time, asymptotic

normality holds with the covariance of the oracle estimator.

1.2.9.8 Elastic net

Elastic Net is a combination of LASSO and ridge regression with two regularization

parameters for each penalty. The motivation behind (33)’s works were to overcome

the strict convexity of LASSO (which causes non-uniqueness) and saturation. It also

pulls variables with similar effects (strong correlation) to the same direction in or out

of the final active set.

1.2.9.9 Non-convex penalties with good theoretical properties

The least square optimization problem can be written with non-convex penalties

such as bridge or power penalties: `α norms for an α < 1. The SCAD and the MC+

are two common non-convex penalties that obtain oracle properties. However, local

minima are not global, and in general cases, an algorithm to compute the solutions is

not developed; the developed theory under some mild assumptions gives an algorithm

to approximate the solutions.

1.2.10 Group penalties

Suppose one would want to run a high–dimensional regression and select covariates,

and perhaps performs shrinkage as well. We can assume they take all of the powers

of each variable from one to ten and would want to know if any of these powers have

a significant role in the regression. In this situation, each variable and its powers can

be treated as a group. Penalties can be written with respect to these groups instead

of single coordinates. There are other scenarios where a group penalty can help the

investigation, such as functional regression that we will explore.

Grouping can be performed on most of the above penalty terms, such as LASSO,

Scad, and Elastic Net. In addition, some of the above modifications such as adaptive
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LASSO can also be performed via group penalties.

1.2.10.1 Group LASSO

Group LASSO was introduced by (34) and (35). We take β = ((β1)T , . . . , (βG)T )

where βg are partitions associated with groups of variables.

We suppose that the convex constraint space of the least square problem (1.4) is

Cλ = {β ∈ Rp;
G∑
1

√
pg‖βg‖2 ≤ kλ}, where ‖.‖2 is the `2 norm, kλ is a non-negative

number that depends on λ, and pg is the dimension of βg. This is equivalent to

solving an unconstrained but penalized least square problem with a penalty term

Pλ(β) = λ
G∑
1

√
pg‖βg‖2. We note that in this situation, X is divided to blocks Xj

that are matrices of n by pj for j = 1, . . . , G.

Multi-task learning is a similar method where grouping is based on different response

values from different multiple regression problems.

One of the main advantages is that it can be shown that the adaptive group LASSO

enjoys oracle property similar to the adaptive LASSO. See (36).

The first asymptotic property of the group LASSO was proven by (37). Furthermore,

it is shown that the group LASSO estimator under not-too–strong assumptions is

consistent both in terms of selection and estimation in the `2 norm.

1.2.10.2 Theoretical results: notations, assumptions, and the model

Since the regularization parameter λ depends on the sample size, we denote the

regularization parameter by λn.

The following three assumptions would be repeated in the upcoming Theorems, where

they would be referred to as the three basic assumptions.

Populations’ assumptions on the joint distribution of (X,Y).

• The fourth moments of X, and Y are finite. E(Y4) <∞, and E(‖X‖4) <∞.

• The covariance matrix of X is non-singular and is invertible ΣXX = E(XXT )−

E(X)E(XT ).
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• For any minimizer of E(Y−Xβ)2 with respect to β, E((Y−Xβ)2|X) is almost

surely positive, and greater than σmin > 0.

In the last assumption, we are not trying to fix the conditional variance. Instead,

it intuitively states that given the covariates, even using the best linear predictors

to explain the variability in the response value, there is a strictly positive variability

left at the population level. The second assumption guarantees uniqueness of the

population problem’s solution β = Σ−1
XXΣXY where ΣXY = E(XYT )− E(X)E(Y).

By centering, the constant is removed from the model. Thus, the theoretical results

are only stated for β- without the constant part. However, the same results for the

constant in the model would follow immediately after the results for β.

Denote the population error by ε = Y −Xβ.

Consider β̂, the solution to the optimization problem:

min
β

1

2n
‖y −Xβ‖2

2 + λn

G∑
1

wj‖βg‖2, (1.5)

where wj are fixed scalar weights. This problem is equivalent to:

min
β

1

2
Σ̂Y Y − Σ̂XY β +

1

2
βT Σ̂XXβ + λn

G∑
1

wj‖βg‖2. (1.6)

If the second assumption holds, with a probability tending to 1, the solution to (1.6)

exists uniquely.

We define the true support set (active set) of the coefficients with Supp(β). It is

a subset of indices j = 1, . . . , G of blocks of β such as βj (with size pj) such that

βj 6= −→0 . We define the Supp(β̂) similarly. Using sub–differential of (1.5), the support
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I = Supp(β̂) is such that for any j ∈ I, and i /∈ I


‖Σ̂XiXβ − Σ̂XiY ‖ ≤ λnwi

Σ̂XjXβ − Σ̂XjY = −λnwj
‖βj‖ β

j.

(1.7)

The following assumptions limit most of the population covariance norm only be-

tween the truly active variables XO which is a partition of random variable of X

associated with O = Supp(β). Take D = diag(wj/‖βj‖). For any j ∈ Oc:

Assumption 1. ‖ΣXjXIΣXOXODβO‖ < wj

Assumption 2. ‖ΣXjXIΣXOXODβO‖ ≤ wj

The first assumption is stronger. It is a necessary and a sufficient condition for

the group LASSO to have a consistent solution path proven by (38). It leads to

unbiasedness in `2 norm (consistency) as well as in `0 norm-selection consistency.

It is shown in (39) and (40) that if the dimension of the blocks is one, these

conditions are tightly similar to those of the LASSO consistency.

The notation f(n) = ω(g(n)) means lim
n−→∞ |

f(n)
g(n)
| =∞.

1.2.10.3 Theoretical results

Theorem 1. Suppose that the tree basic assumptions are hold as well as the strong

assumption 1. For any sequence of λn such that λn = o(1) and λn
√
n = ω(1), a

solution to (1.5) β̂n
p−→ β, and I = Supp(β̂n)

p−→ Supp(β) = O.

Theorem 2. Suppose that the tree basic assumptions are hold. If there is a sequence

of λn such that solution to (1.5) β̂n
p−→ β and I

p−→ O then the weak assumption (2)

must hold.

In general, M-estimation theory states that if the sample–level of an objective func-

tion converges uniformly to the population level of it, its optimizer will converge to
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the population’s optimizer in probability. The uniform convergence of such an objec-

tive function would be guaranteed by the Uniform Law of Large number that holds if

the function is continuous in βO, the parameter space is compact, and some technical

conditions on the measurability holds. More details can be found in the following

article. The asymptotic result of the M-estimation of Theorem 1 by (41) and (30) are

used. Here is a sketch of the asymptotic consistency proof of M-estimation in terms

of maximization.

Lemma 1. Suppose θ̂n maximizes Mn which is the sample level objective function of

M that is minimized by θ0. Assume that:

• sup
θ∈Θ
|Mn(θ)−M(θ)| p−→ 0 which is uniform convergence.

• ∀ε > 0 we have sup{M(θ)|d(θ, θ0) > ε} ≤ M(θ0). This is weaker than the

uniqueness of θ0. This is so called wide-spread maximum.

• Mn(θ̂n) ≥Mn(θ0)− op(1).

Then θ̂n
p−→ θ0.

Note that all three above assumptions would be justified if Θ is compact, M is contin-

uous, and θ0 is unique. The first two of these stronger alternative assumptions leads

to uniform convergence by The Uniform Law of Large Number.

Proof. By the second assumption for any ε > 0, there is a δ > 0 such that

P (d(θ̂n, θ0) ≥ ε) ≤ P (M(θ0)−M(θ̂n) ≥ δ) (1.8)

Inside the right hand side of the probability add and subtract two terms Mn(θ0)

and Mn(θ̂n). Finally, by the feature of the union and the rule of inclusion (ignoring

the subtraction of intersections), the above probability is less than or equal to the
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following summation of three probabilities:

P (M(θ0)−Mn(θ0) > δ/3) + P (Mn(θ0)−Mn(θ̂n) > δ/3) + P (Mn(θ̂n)−M(θ̂n) > δ/3).

(1.9)

The first and the third probability terms go to zero by the first assumption. Similarly,

the third assumption implies that the middle probability goes to zero.

The following Lemma helps to prove Theorem 1. It states that under the three

above basic assumptions, if the Supp(β) is known and is used accordingly, then β̂n
p−→

β for any λn = o(1).

Lemma 2. Suppose that the three basic assumptions hold. First, denote O = Supp(β)

and XO as the blocks of X associated with groups indexed in O. A minimizer of

min
βO

1

2n
‖y −XOβO‖2

2 + λn
∑
g∈O

‖βg‖2 =

min
βO

1

2
Σ̂Y Y − Σ̂XOY β

O +
1

2
(βO)T Σ̂XOXOβO + λn

∑
g∈O

wj‖βg‖2. (1.10)

converges to βO in probability if λn −→ 0.

Proof. If λn
n−→∞−−−−→ 0, the objective function (1.10) converges to an objective function

of βO such as:

1

2
ΣYY − ΣXOYβ

O +
1

2
(βO)TΣXOXOβO + λn

∑
g∈O

wj‖βg‖2. (1.11)

The global minimum of such an objective function is uniquely the vector of true

coefficients βO. This is because by the basic assumption 2, ΣXOXO is positive definite.

Thus, the function is quadratic form and strictly convex. Using the results of M-

estimation, the proof is complete.

We take a minimizer of (1.10). First, we denote such vector with β̂O. Later, we
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extend it with zero on coordinate blocks associated to OC to have a vector with the

exact size of β.

Proof of Theorem 1.

Proof. Lemma 2 shows that β̂O is an `2 consistent estimator of β. We show that the

probability that β̂O is optimal for (1.6) tends to one. As a reminder, because of the

second basic assumption that ΣXX is non-singular, solution of (1.6) exists uniquely

with probability tending to 1. We need to show that β̂O satisfies two conditions in

(1.7) with probability tending to one. By definition of β̂O, it must satisfy the second

condition of (1.7). The first one needs to be established.

A simple algebra shows:

Σ̂XY = Σ̂XY β + Σ̂Xε, (1.12)

where ε = Y −Xβ. By the third basic assumption ΣεX = 0. Thus,

Σ̂XY = (ΣXY +Op(n
−1/2))β +Op(n

−1/2). (1.13)

This is because of the convergence of the empirical covariances to population covari-

ances (41) that can be applied due to the first basic assumption–the fourth population

moments are bounded. We can change the notation to βO, which has a smaller vec-

tor size–limited to the true nonzero partitions of true coefficients. A simple algebra

shows:

Σ̂XY = ΣXXOβO +Op(n
−1/2). (1.14)

Recall that β̂O is consistent and bounded in probability. Thus, we have:

Σ̂XY − Σ̂XXO β̂O = ΣXXO(βO − β̂O) +Op(n
−1/2). (1.15)
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By removing appropriate rows from each side, we modify the previous equation (1.15)

to the following two equations:

Σ̂XOY − Σ̂XOXO β̂O = ΣXOXO(βO − β̂O) +Op(n
−1/2). (1.16)

Σ̂XCY − Σ̂XCXO β̂O = ΣXCXO(βO − β̂O) +Op(n
−1/2), (1.17)

where C = OC is the complement of Supp(β). The second condition of (1.7) which

is already satisfied according to the definition of β̂O is

Σ̂XOXO β̂O − Σ̂XOY = −λnDOβ̂O (1.18)

where DO = Diag(
wj

‖β̂j‖) for j ∈ O. Multiplying equation (1.18) by Σ−1
XOXO we have:

Σ−1
XOXO(Σ̂XOXO β̂O − Σ̂XOY ) = −λnΣ−1

XOXOD
Oβ̂O (1.19)

Using (1.16) and (1.18):

β̂O − βO = −λn(ΣXOXO)−1DOβ̂O +Op(n
−1/2). (1.20)

Then, we use (1.17) and (1.20):

Σ̂XCY − Σ̂XCXO β̂O = λnΣXCXO(ΣXOXO)−1DOβ̂O +Op(n
−1/2). (1.21)

In particular, for any i ∈ C:

Σ̂XiY − Σ̂XiXO β̂O = λnΣXiXO(ΣXOXO)−1DOβ̂O +Op(n
−1/2). (1.22)

We can divide both sides of (1.22) by wiλn before taking the limit. Left hand side
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1
λnwi

(Σ̂XiY − Σ̂XiXO β̂O) would converge to the following in probability:

1

wi
ΣXiXO(ΣXOXO)−1DβO (1.23)

where D is defined in assumption 1. This is because of the consistency of β̂O and

Op(n−1/2)

λn
= op(1) due to the fact that fact that λn

√
n = ω(n). We use assumption 1

which states that the norm of (1.23) is strictly less than one-divide both sides by wj.

Thus, the probability of β̂O being feasible for (1.6) is:

lim
n−→∞P{∀i ∈ OC , ‖ 1

λnwi
(Σ̂XiY − Σ̂XiXO β̂O)‖ ≤ 1} = 1. (1.24)

Because if lim
n−→∞P(An) = lim

n−→∞P(Bn) = 1, by contradiction it can be proven that

lim
n−→∞P(An ∩ Bn) = 1. The fact from the assumption 1 that for each i ∈ C,

lim
n−→∞P{‖ 1

λnwi
(Σ̂XiY − Σ̂XiXO β̂O)‖ ≤ 1} = 1 was used.

Note that this Theorem is proved ∀i ∈ OC , which is the set of indices such that

β̂i = 0. It is the support of β̂O by construction. Thus, the optimality condition

related to the sub-differential holds for such a vector.

1.2.10.4 Logistic group LASSO

A group penalty can be applied to regression models other than the least square. An

example is the generalized linear model and, in particular logistic regression. When

penalizing this regression model, it becomes a penalized likelihood logistic regression.

Applications arise when the response values are binary in a classification problem. It

is shown in (42) that the group LASSO estimate is consistent in this case.

1.2.10.5 Theoretical results: notations, assumptions, and the problem

We assume that Y follows a Bernoulli distribution. We denote P(Y = 1|X) = P.

We suppose that log of odds is linear in X: log(P/(1 − P)) = α + Xβ. P can

be written as function of β and X. Denote it by Pβ(X). This is equivalent to
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setting Pβ(X) = S(α + Xβ) where S(·) is the Sigmoid function. As opposed to

the least square regression, it is not possible to remove the intercept by centering the

populating variables (X,Y) or their sample level counterparts. In this set of notations,

we consider the groups as: β = (α, (β1)T , . . . , (βG)T ). In the sample level, the group

penalized problem is to find the minimizer of the following objective function:

min
β
−l(β) + λn

G∑
1

w(pg)‖βg‖2, (1.25)

where l(β) is the log-likelihood and w(pg) =
√
pg. The scalars w(pg) =

√
pg re-scales

the penalty term: the larger the partition the heavier the penalization on them.

Intuitively, the larger the partition size, the more variables or function of them are in

that partition. Thus, it must contribute more to the correlation. As a result it must

be penalized more and this procedure would still give a reasonable estimate. We note

that that the intercept is not penalized. The log–likelihood loss can be written in

alternative forms. One of these forms is as follows:

n∑
i=1

yi(ηβ(xi)− log(1 + exp(ηβ(xi))), (1.26)

where the link function ηβ(xi) is α+xTi β. Because β is grouped, we use the following

notation. We consider ηβ(xi) = α +
G∑
g=1

(xgi )
Tβg, where xgi is a partition of vector xi

associated with the group g.

Lemma 3. If 0 <
n∑
i=1

yi < n the minimum in the optimization problem (1.25) is

attained.

Proof. Let β1, . . . , βG be fixed. Intercept α is the minimizer of

g(α) = −
n∑
i=1

[yi(α + ci)]− log(1 + exp(α + ci))], (1.27)
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where ci =
G∑
g=1

(xGi )TβG. The derivative of g(·) is:

g′(α) = −
n∑
i=1

{yi −
exp(α + ci)

1 + 1 + exp(ci)
} (1.28)

We have lim
α−→∞ g

′(α) = n−
n∑
i=1

yi that is assumed to be positive in this lemma. Also,

lim
α−→−∞ g

′(α) = −
n∑
i=1

yi is assumed to be negative. In addition, g′(·) is continuous and

strictly increasing. The second derivative is g′′(α) =
n∑
i=1

{S(α + ci)(1 − S(α + ci))}

where S(·) is the Sigmoid function that is bounded between zero and one. Therefore,

the second derivative is strictly positive. Thus, by the mean value Theorem there

must be a unique α∗ ∈ R such that g′(α) = 0. This value-α-is a function of fixed

β1, . . . , βG. We denote such a function with α∗(β1, . . . , βG). We replace α in (1.25)

with α∗(β1, . . . , βG). This lets us eliminate the intercept in Lemma regarding ob-

taining the minimizer. The optimization problem (1.25) with such a notation can be

written as an optimization problem with new sets of variables β1, . . . , βG and with-

out a penalty term. Instead of the penalty term, the optimization problem is under

constraint
G∑
1

w(pg)‖βg‖2 < t, for some t > 0. This is an optimization problem of a

continuous function over a compact and convex set. Thus, by the theory of duality,

the minimum is attained.

If X is of full rank, the minimizer of (1.25) is unique; otherwise, the minimizer

is an element of a convex set. This convex set is such that all of its elements mini-

mize the objective function with the same objective value. This assumption at the

population level would be equivalent to the second population assumption in the the-

oretical results of the group LASSO section 1.2.10.2. If such an assumption holds for

the population-the covariance matrix is non-singular- the solution is unique for the

population level optimization problem of the logistic regression model as well.
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1.2.10.6 Consistency

We take the negative log–likelihood as the loss function. We define the function

γβ(·, ·) as follows.

γβ(x, y) = −(yηβ(x)− log(1 + exp{ηβ(x)}).

We define the population (or theoretical) risk as R(β) = E[γ(X,Y)]. It follows

that the empirical counterpart of the population risk is Rn(β) = E[γ(X,Y)] =
n∑
i=1

1
n
ηβ(xi, yi). For now, we remove n from λn and divide the optimization problem

(1.25) by the sample size:

β̂λ = min
β

−l(β)

n
+
λ

n

G∑
1

w(pg)‖βg‖2 = Rn(β) +
λ

n

G∑
1

w(pg)‖βg‖2. (1.29)

As it can be seen, with such a notation, the penalized empirical risk is the same

as the optimization problem (1.25) divided by the sample size. We consider β0 =

arg min
β
R(β). If the model is well–specified, the distribution of Y is as it is supposed

to be in the population before taking a sample. Thus, if the model is well–specified

we have; E[Y|X] = Pβ0(X). We use the following distance function to measure the

distance between the estimation and true value.

d2(ηβ̂, ηβ0) = E[|ηβ̂λ(X)− ηβ0(X)|2]. (1.30)

The following three assumptions are necessary for the next theoretical results.

Assumption 3. For some constant 0 < ε ≤ 0.5:

ε ≤ Pβ0(X) ≤ 1− ε.

Assumption 4. The covariance matrix of X is non-singular and invertible: ΣXX =
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E(XXT ). We denote the smallest eigenvalue of it by ν2.

Assumption 5. We normalize Xg so that E[Xg(Xg)T ] = Ipg for g = 1, . . . , G. In

addition, we assume that there is a constant Ln such that:

max
X

max
g

((Xg)TXg) ≤ nL2
n. (1.31)

The smallest-fastest-possible rate of Ln is O(1/n) due to the normalization. Intu-

itively, the expected value of the normalized matrix is the identity where the trace of

it is pg. Thus, the maximum of the summation over squared of elements on average

(: divided by n) cannot approach zero faster than a constant divided by n ( O(1/n)).

If some covariates are categorical then Ln = O(1/n). This means that the probability

of at least one incident different from others is bounded away from 0 and 1.

We denote N0 as the number of nonzero elements of β0. There exist global constants

C1, C2, C3, C4 and constants c1, c2 depending on ε and ν and max
g

(pg) such that when

two following conditions are satisfied:

Assumption 6. C1(1 +N2
0 )L2

n log(G) ≤ c1 and C1 log(G) ≤ λ ≤ c1/(1 +N2
0 )L2

n,

then it can be shown that:

P{d2(ηβ̂, ηβ0) ≥ c2
(1 +N0)λ

n
} ≤ C2{log(n) exp(− λ

C3

) + exp(− 1

C4L2
n

)} (1.32)

Proof. The argument of this result is similar to one in (43). In this paper, a hing

loss function is considered instead of logistic, which can be extended to a logistic

model. The reason is that the only thing about the loss function used in the proof

is its Lipschitz property. By the assumption 3, the logistic loss function is quadratic

near its (set of) minimizer(s). In the above paper’s proof, there is a difficulty due

to the unknownness of the marginal behavior of the hinge loss. However, due to the

quadratic behavior of the logistic, it is not an issue here. The group LASSO problem
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is reduced to `1 penalty similar to that of LASSO if each pg = 1. The extension of the

consistency results from the LASSO to group LASSO is possible if max
g
pg does not

depend on n. Furthermore, the group LASSO uses a normalization of partitions of

the design matrix. To extend the consistency results from LASSO to group LASSO,

it is necessary to show that such normalization is uniformly close (or converging) to

the theoretical normalization in the population. It means that it must be shown that

the empirical and the theoretical eigenvalues of the design matrix per group cannot

be too far uniformly over the groups.

The equation (1.32) can complete the asymptotic consistency result by assuming

that ε, ν, and max
g

(pg) are fixed and that G � log(n). We take λ ∼ log(G). We

suppose thatN0 = O(1) and L2
n = O(1/ log(G)) which means it is≤ O(1/log(log(n))).

This bound is larger than O(1/n). Thus, this assumption is

O(1/n) ≤ L2
n ≤ O(1/ log(log(n))).

Then, we have

d2(ηβ̂, ηβ0) = OP (log(G)/n),

which is the parametric rate. This is because if the inequality inside P is divided by

log(G)/n, the limit of the right hand side when n −→ ∞ would go to zero which is

the definition of d2(ηβ̂, ηβ0)/(log(G)/n) = OP (1). The limit of the right hand side

is readily seen to be zero due to above assumptions. If Ln = O(1/n), the maximal

growth of N0 is O(
√
n/ log(G)). When N0 is exactly of such order:

d2(ηβ̂, ηβ0) = OP (
√

log(G)/n).

This result can be proven by replacing N0 by number of best approximations of ηβ0 .

This approximation balances estimate’s and approximation’s error. Such results can
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be proven for a Gaussian regression as well.



CHAPTER 2: FUNCTIONAL REGRESSION

2.1 Preliminary and notation

Let (Ω,F , P ) be a probability space. Let Tj be a compact set in Rdj for j = 1, . . . , p.

Let H1, . . . ,Hp be separable Hilbert spaces of functions from Tj to R with an inner

product 〈·, ·〉Hj . Let H = H1 × · · · × Hp be endowed with the inner product

〈f, g〉H = 〈f 1, g1〉H1 + . . .+ 〈f p, gp〉Hp ,

for any f = (f 1, . . . , f p)T ∈ H, and g = (g1, . . . , gp)T ∈ H. Then, H is also a separable

Hilbert space. Let X : Ω→ H be a measurable function with respect to FX/BX where

BX is the Borel σ-field generated by open sets in H.

Let X be a random element in H. If E‖X‖H < ∞; then, the linear functional

f 7→ E〈f,X〉H is bounded. By Riesz’s representation Theorem, there is a unique

element in H, say µX, such that 〈µX, f〉H = E〈f,X〉H for any f ∈ H. See (44).

We call µX the mean element of X or expectation of X. If we can further assume

E‖X‖2H <∞, the operator H → H,

ΓXX = E[{X − E(X)} ⊗ {X − E(X)}], (2.1)

exists and is a Hilbert-Schmidt operator, where ⊗ indicates a tensor product com-

puted in a way that for x, y, z ∈ H, (x⊗ y)(z) = 〈y, z〉Hx. See (45).

Let Y be a random element in HY . Subsequently, we can define the covariance
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operator between X and Y by

ΓYX = E[{Y − E(Y )} ⊗ {X − E(X)}],

which maps fromH toHY . ΓXY can be similarly defined. For convenience, throughout

this thesis, we assume that E(X) = 0 and E(Y ) = 0 without loss of generality. Hence,

the regression model is

Y = 〈X, β〉H + ε,

where β ∈ H is the unknown coefficient function, and ε is an error term which is a

mean zero random variable and independent of X. Consider Y as a scalar random

variable. We can rewrite β(·) = (β1(·), . . . , βp(·)) and

〈X, β〉H =
∑

p

j=1
〈X j, βj〉Hj .

2.2 Sample level

We observe n random copies from the model denoted by (X1, Y1), . . . , (Xn, Yn), and

we observe X j
i on {tji1, . . . , tjiai} for each i = 1, . . . , n and j = 1, . . . , p. We assume

that Hj is spanned by a finite given set of basis functions, B = {b1, . . . , bm}. For

example: Fourier, B-spline, or other basis. The coordinate representation of each

elements with respect to this basis is as follows. For any f ∈ Hj, there exist a unique

vector a ∈ Rm such that f(·) =
∑

m

k=1
akb

j
k(·). We call the vector a, the coordinate of

f and denote it [f ]Bj . We assume that Hj has L2-inner product with respect to the

Lebesgue measure,

〈f, g〉Hj =

∫
Tj

f(t)g(t)dt, for any f, g ∈ Hj.
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Let Gj be a m ×m matrix whose (i, k)-th entry is 〈bi, bk〉Hj =
∫
Tj
bi(t)bk(t)dt. This

is called the graham matrix. Let G be a mp×mp block-diagonal matrix with blocks

Gj. The inner product with respect to this set of finite basis is:

〈f, g〉H = [f ]TBG[g]B, for any f, g ∈ H.

2.3 Functional OLS and functional ridge

We consider [X1:n]B to be a n by m∗p matrix constructed by stacking the coefficients

of each functional covariates. Its first row from column 1 to m is [X1
1 ]. We take [β]

as mp vector, the first m elements of which are [β1]. We denote Q = I −n−11n1
T
n and

[X̃1:n]B = [X1:n]BQ—the centered design matrix. The sample–level matrix form of the

linear model with such a notation is:

Y = [X̃1:n]BG[β] + ε

The least square estimation [β̂] = arg min
β

1
2
En(Y − 〈X, β〉H)2 is:

arg min
β

1

2n
‖Y − [X̃1:n]BG[β]‖2

2 = ([X̃1:n]
T
B [X̃1:n]BG)−1([X̃1:n]

T
BY ).

Similarly, the ridge estimation [β̂] = arg min
β

1
2
‖Y − [X1:n]BG[β]‖2

2 + λ
2
〈β, β〉H is:

([X̃1:n]
T
B [X̃1:n]BG+ λI)−1([X̃1:n]

T
BY ).

2.4 Penalizing the curvature

We suppose that a simulation is run with the following settings. The time period

is T = [0, 1], and the unknown coefficients are β1(t) = sin(11πt
2

), β2(t) = sin(5πt
2

),

β3(t) = t2. The number of covariates are p = 3 and they are Brownian motions
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Xj(t∗i ) =
i∑

k=1

N j
k , where 1 ≤ i ≤ 500, N j

k ∼ N(0, 1). We take n = 200 of such a

simulation model. We use %80 of the data as the train set and the %20 rest as the

test set. The population model is Y =< X, β > +2.2 + ε where ε ∼ N(0, 0.05).

Figure 2.1 shows the difference of OLS estimations for the curve in two scenarios-

m = 5 B-spline basis and m = 31 basis. When the number of basis is not adequate,

the estimations of the true coefficients- the green curves- are well only for true curves

that are not too complicated and wiggly: In the first three figures, we note that

the second and the third curves that are fairly simple are estimated well enough.

However, for the coefficients that are not so simple such as β1, this number of basis

is not enough, as seen in the left panel of the first three figures. On the other hand,

if there are too many basis used for functional conversion—m = 31 basis—the first

coefficient is estimated well. However, the estimation of the second and the third is

too wiggly—the second and the third figures from left in the second rows of figures. As

a result, the RMSE for a higher number of basis is lower, while the curve estimations

for simple curves are poor. Therefore, we need a new method to overcome curvature

over-fitting while using too many basis.
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(a) m = 5 B–spline OLS. Root mean squared error (RMSE) = 0.81
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(b) m = 31 B–spline. RMSE = 0.184

Figure 2.1: OLS with 5, and 31 basis for comparison.

2.4.1 Curvature penalty

We can achieve smoother estimation even with a high number of basis by penalizing

the second derivative of the final estimated curve. The sample level least square

objective function with the curvature penalty is as following:

arg min
β

1

2n
‖Y − [X1:n]BG[β]‖2

2 +
λder

2
‖β′′‖2H,

where ‖β′′‖2Hj = [β]TG′′[β], and G′′ is a block diagonal matrix with blocks G′′j that

are m × m matrix. The (i, k)-th entry of G′′j is 〈b′′i , b′′k〉Hj =
∫
Tj
b′′i (t)b

′′
k(t)dt which

is the inner product of the second derivative of the basis elements. The closed-form
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solution to this objective function is:

β̂(λder) = (G[X̃1:n]
T
B [X̃1:n]BG+ λderG

′′)−1(G[X̃1:n]
T
BY ).

We regularize λder with a k–fold cross-validation on the train set. Figure 2.2 shows

the difference of OLS when penalizing the second curvature with large number of

basis, m = 51 B–splines. Although there are too many basis the curve estimations

for the second and the third coefficients are smooth when OLS is equipped with a

curvature penalty. In addition, the RMSE result of the OLS regression with the

curvature penalty is the best among all four situations in figures 2.1 and 2.2.
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(a) m = 51 B–spline OLS. RMSE = 0.48
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(b) m = 51 with penalizing the second derivative of estimations. RMSE= 0.168
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(c) Cross-validation and λder tuning

Figure 2.2: OLS estimation without and with the second derivative penalty for
comparison. The figure at the bottom is the cross-validation results for λder.
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2.5 Penalizing the curvature while the population is sparse

Before proposing the sparse functional regression models, we consider a sparse

simulation model to test the effect of the curvature penalty when applied to the OLS

regression model. We consider p = 35 number of covariates. The true coefficients

are β1(t) = sin(11πt
2

), β2(t) = sin(5πt
2

), β3(t) = t2, and β4(t) = . . . = β35(t) = 0.

The population is sparse and the active set is {1, 2, 3}. The population model is

Y =< X1, β1 > + < X2, β2 > + < X3, β3 > +2.2 + ε where ε ∼ N(0, 0.05).

Figure 2.3 shows that when penalizing the curvature, OLS works better in terms of

RMSE and curve estimations. Except for β1, the rest of the coefficients are estimated

well with the curvature penalty in the second panel. Conversely, non-regularized

functional OLS in the first panel performs poorly. Hence, we will keep the curvature

penalty when we introduce the sparse functional regression models.
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(a) m = 31 B–spline OLS. RMSE = 7.149
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(b) m = 31 B–spline OLS while Penalizing the curvature. RMSE= 2.041

Figure 2.3: Comparison of OLS with and without curvature penalty when the pop-
ulation is sparse.



CHAPTER 3: SPARSE FUNCTIONAL MODEL: MODEL DESCRIPTION

We are interested in the situations where the predictors are multivariate functions,

but only a few functional predictors affect the response. i.e., a random variable Y

and random functions X j ∈ Hj have the following relation,

Y =
∑
j∈J

〈X j, βj〉Hj + ε, (3.1)

where J ⊆ {1, . . . , p} is an unknown active set of indices involved in this regression

model, and ε is a mean zero error term that is independent of X.

Assume that we have a random sample of size n from the model (3.1). To estimate

β and the active set J , we consider the following objective function.

L(β;λ1n) =
1

2
En(Y − 〈X, β〉H)2 + λ1n

∑
p

j=1
‖βj‖Hj , β ∈ H, (3.2)

where En is the expectation with the empirical distribution. We added the group-

LASSO type penalty so that each group includes one functional component in the

infinite–dimensional Hilbert space, Hj, j = 1, . . . , p. Note that the norm in the

penalty term is L2-norm which makes the objective function convex. In addition, we

propose an alternative objective function to gain a more stable solution path.

L(β;λ1n, λ2n) =
1

2
En(Y − 〈X, β〉H)2 + λ1n

∑
p

j=1
‖βj‖Hj + λ2n

∑
p

j=1
‖βj‖2Hj , β ∈ H,

(3.3)
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The quadratic term allows us to have a stable solution path and encourages further

grouping effects. It is similar to the Elastic Net proposed by (9), but it is different

in that the norm in the first penalty term uses L2-norm, and both the two penalties

are applied group-wisely. The group-wise second penalty also gives us a substantial

computational advantage.

Furthermore, we also consider the smoothing penalty of the functional coefficients

β ∈ H by adding the term, λ3n‖β′′‖2
H to the objective functions, (3.2) and (3.3).

It allows us to estimate smooth functional coefficients and to select the functional

predictors simultaneously. In addition, it provides a better interpretation of the

functional coefficients in this linear functional regression model.



CHAPTER 4: ESTIMATION: ADMM

In this section, we develop the algorithm for solving the optimization problems in-

troduced in the section 3 via the alternating direction method of multipliers (ADMM),

popularly used in a general convex optimization problem. See (46). Consider the fol-

lowing optimization problem.

arg min
β,γ

f(β) + g(γ) (4.1)

s.t. β − γ = 0,

where γ is duplicate variable inH, f(β) = 1
2
En(Y−〈X, β〉H)2, and g(γ) = λ

∑p
j=1 ‖γj‖Hj .

Blocks γj are associated with their counterparts’ blocks βj. The augmented La-

grangian with its parameter ρ > 0 is

Lρ(β, γ, η) = f(β) + g(γ) + 〈η, β − γ〉H +
ρ

2
‖β − γ‖2

H, (4.2)

where the Lagrangian multiplier is η ∈ H. The ADMM update rules are

βnew : = arg min
β
Lρ(β, γ, η)

γnew : = arg min
γ
Lρ(β

new, γ, η)

ηnew : = η + ρ(βnew − γnew).

(4.3)

For computational convenience, it is a usual practice to consider the scaled dual

parameter of the ADMM. Let u = 1
ρ
η. It is straightforward to verify that the update
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rules (4.3) with a scaled dual parameter are equivalent to

βnew : = arg min
β

(
f(β) +

ρ

2
‖β − γ + U‖2

H

)
γnew : = arg min

γ

(
g(γ) +

ρ

2
‖βnew − γ + U‖2

H

)
U new : = U + βnew − γnew.

(4.4)

4.0.1 Coordinate representation of functional data

Our method is based on the basis-expansion approach to the functional data. Sup-

pose that we have n random copies from the model (3.1) denoted by (X1, Y1), . . . , (Xn, Yn)

and we observe X j
i on {tji1, . . . , t

j

ia
j
i

} for each i = 1, . . . , n and j = 1, . . . , p.

At the sample level, we assume that Hj is spanned by a given set of basis functions,

Bj = {bj1, . . . , bjmj}. Thus, for any f ∈ Hj, there exists a unique vector a ∈ Rmj such

that f(·) =
∑

mj
k=1

akb
j
k(·). We call the vector a, the coordinate of f and denote it [f ]Bj .

We also assume that Hj is constructed with the L2-inner product with respect to the

Lebesgue measure,

〈f, g〉Hj =

∫
Tj

f(t)g(t)dt, for any f, g ∈ Hj.

Let Gj be mj × mj matrix whose (i, k)-th entry is 〈bji , bjk〉Hj =
∫
Tj
bji(t)b

j
k(t)dt, and

let G be M ×M block-diagonal matrix whose j-th block is Gj where M =
∑

p

j=1
mj.

Consequently, for any f, g ∈ H,

〈f, g〉H =
∑

p

j=1

∑
mj
i=1

∑
mj
k=1

([f j]Bj)i([g
j]Bj)k〈bji , bjk〉Hj =

∑
p

j=1
[f j]TBjG

j[gj]Bj = [f ]TBG[g]B,

where [f ]B, [g]B are the RM-dimensional vectors obtained by stacking [f j]Bj and [gj]Bj

respectively. We use the basis-expansion approach for each functional covariate X j
i

for i = 1, . . . , n and j = 1, . . . , p, which is also used in (47; 48). Without loss of
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generality, we assume m = m1 = · · · = mp and M = pm.

Suppose that A is a linear operator from H1 to H2 in which the basis for H1

is B = {b1, . . . , bm} and the basis for H2 is C = {c1, . . . , ck}. Then, we define the

coordinate representation of the operator A to be k × m matrix, say C[A]B, whose

(i, j)-th entry is ([Abj]C)i. It can be easily shown that C[Ax]B = C[A]B[x]B for any

x ∈ H1. For notational convenience, if the basis system is obvious in the context, we

remove the subscripts of the coordinate representation throughout this thesis. The

following lemma provides a further simplification for easy computations.

Lemma 4. Let Q = I − n−11n1
T
n . Let [X1:n]B be the pm× n matrix, the k-th column

of which is [Xk]B. Then

B[Γ̂XX]B = n−1[X1:n]BQ[X1:n]
T
BG = n−1[X̃1:n]B[X̃1:n]

T
BG,

where [X̃1:n]B = [X1:n]BQ. In addition, let Y be the n-dimensional vector, the elements

of which are the observations Y1, . . . , Yn. Then

[Γ̂YX] = n−1Y T[X̃1:n]
T
BG.

4.0.2 Orthogonalization

To achieve computational efficiency, we orthonormalize the basis system via Karhunen-

Loève expansion of the covariance operator of each of the functional predictors. For

each j = 1, . . . , p, define Γjj to be the covariance operator of X j. Consequently, we

have the following lemma.

Lemma 5. Let (λj1, v
j
1), . . . , (λ

j
m, v

j
m) be the pairs of eigenvalues and vectors of

(Gj)1/2[X̃ j
1:n]Bj [X̃

j
1:n]

T
Bj(G

j)1/2 with λj1 ≥ . . . ≥ λjm, and let [φjk]Bj = (Gj)−1/2vjk for k =
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1, . . . ,m. Then, the Karhunen-Loève expansion of Γ̂jj is

Γ̂jj =
m∑
k=1

λjkφ
j

k ⊗ φjk.

Define a m×m matrix

Φj =

(
[φj1]Bj · · · [φjm]Bj

)
.

Since φjm’s are the eigenfunctions of a self-adjoint operator, they are orthonormal.

Thus, for any x ∈ Hj,

x(·) =
m∑
k=1

〈x, φjk〉Hjφjk(·)

=
m∑
k=1

[x]TBjG
j[φjk]Bjφ

j

k(·).

Define Cj = {φj1, . . . , φjm} to be the new basis system for Hj. Then, we have

[X j

i ]Cj = (Φj)TGj[X j

i ]Bj , i = 1, . . . , n, j = 1, . . . , p.

We assume that the coordinate of H is based on the orthonormal basis system

throughout this section. Thus,

[Γ̂XX] = diag(λ1

1, . . . , λ
1

m, . . . , λ
p

1, . . . , λ
p

m), [X1:n] = diag(ΦT
1 , . . . ,Φ

T
p )G[X1:n]B,

and 〈f, g〉H = [f ]T[g] for any f, g ∈ H.



55

4.0.3 Estimation

Using the representation, we can express the optimization (4.4) as follows.

[βnew] : = arg min
β∈H

(
f(β) +

ρ

2
([β]− [γ] + [U ])T([β]− [γ] + [U ])

)
[γnew] : = arg min

γ∈H

(
g(γ) +

ρ

2
([βnew]− [γ] + [U ])T([βnew]− [γ] + [U ])

)
[U new] : = [U ] + [βnew]− [γnew],

(4.5)

where

f(β) =
1

2
En(Y − 〈X, β〉H)2 = (2n)−1

∑
n

i=1
{Y 2

i − 2(Yi ⊗Xi)β + 〈β, (Xi ⊗Xi)β〉H}

=
1

2
σ̂Y Y − Γ̂YXβ +

1

2
〈β, Γ̂XXβ〉H =

1

2
σ̂Y Y − [Γ̂YX][β] +

1

2
[β]T[Γ̂XX][β],

and g(γ) = λ
∑

p

j=1
‖γj‖Hj = λ

∑
p

j=1

√
[γj]T[γj].

Under the finite-dimensional representation of the functional elements in H, one

can see that the optimization in (4.5) is a convex optimization problem.

Theorem 3. The solution to the optimization problem (3.2) can be achieved by iter-

ating over the following update rules.

[βnew] = ([X̃1:n][X̃1:n]
T + nρIM)−1([X̃1:n]Y + nρ([γ]− [U ]))

[(γj)new] = SH
j

λ
ρ

([(βj)new] + [U j]) j = 1 . . . p (4.6)

[U new] = [U ] + [βnew]− [γnew],

where [γj], [U j] are corresponding blocks to [βj], and SH
j

λ (h) = 1{‖h‖Hj>λ}

(
1− λ

‖h‖Hj

)
+
h

for h ∈ Hj.

If we do not consider orthogonalization, Theorem 3 would contain element Gj in

the updates. In this case, the proof of numerical convergence of the update rules

is slightly different from that of (46). However, due to the orthogonalization, the
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proof of the numerical convergence of the updates in Theorem 3 to the solution of

the optimization problem (3.2) is identical to that of the ADMM in (46). Hence, it

is omitted.

4.0.4 Different penalty terms

In this section, we investigate the different penalty terms in two directions: one for

the functional predictor selection and the other for the smooth coefficient functions

β.

4.0.4.1 Multivariate functional group elastic net

LASSO does not provide a unique solution. To achieve uniqueness and overcome

the saturation property, the Elastic Net penalty has been introduced by combin-

ing the `1-norm and `2-norm by (9) for the multivariate data. Functional data are

intrinsically infinite-dimensional objects. Thus, we propose a multivariate functional-

version optimization problem for the Elastic Net penalty by grouping each functional

predictor as follows.

1

2
En(Y − 〈X, β〉H)2 + λ(1− α)

∑
p

j=1
‖βj‖Hj + αλ

∑
p

j=1
‖βj‖2

Hj , (4.7)

where α ∈ [0, 1] and λ > 0 are the tuning parameters.

This optimization problem still follows the structure of the ADMM algorithm in

(4.1) with g(γ) = λ(1− α)
∑

p

j=1
‖γj‖Hj + αλ

∑
p

j=1
‖γj‖2

Hj . It can be easily shown that

the only difference from the original version is the γ-update in Theorem 3. Hence,

we have the following update rules.

Theorem 4. The solution to the optimization problem (4.7) can be achieved by iter-
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ating over the following update rules.

[βnew] = ([X̃1:n][X̃1:n]
T + nρIM)−1([X̃1:n]Y + nρ([γ]− [U ]))

[(γj)new] =
ρ

ρ+ 2αλ
SH

j

λ(1−α)
ρ

([(βj)new] + [U j]) j = 1 . . . p (4.8)

[U new] = [U ] + [βnew]− [γnew].

Regularization parameters can be adjusted through a net search cross–validation.

4.0.4.2 The smoothness of functional coefficients β

According to the simulation, the previous algorithm provides a wiggly estimation

of functional coefficients β most of the time. It might be fine if we are only interested

in the prediction; however, it is not the case because we consider the linear functional

regression. We propose an algorithm that controls the roughness of β simultaneously

to avoid the over-fitting problems and obtain smooth functional coefficients. In par-

ticular, we impose the penalty on the curvature of the coefficients by adding λder
2
‖β′′‖2

H

to the objective function (4.4). We include this term in f(·) function in the ADMM

structure. Finally, the first update rule (4.6) in Theorem 3 becomes

[βnew] := ([X̃1:n][X̃1:n]
T + nρIM + λderG

′′)−1([X̃1:n]Y + nρ([γ]− [U ])), (4.9)

where G′′ is a block-diagonal matrix whose j-th block matrix is

((Gj)′′)ik =
∫
Tj

(φji)
′′(t)(φjk)

′′(t)dt = 〈(φji)′′, (φjk)′′〉Hj for i, k = 1, . . . ,m, j = 1 . . . , p.

For each j, (Gj)′′ can be derived from the second derivative Gram matrix for the

original basis, say (Bj)′′, where ((Bj)′′)ik =
∫
Tj

(bji)
′′(t)(bjk)

′′(t)dt = 〈(bji)′′, (bjk)′′〉Hj .

Note that

[φji ]Bj = (Gj)−1((Φj)−1)T[φji ]Cj = (Gj)−1((Φj)−1)Tei,
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where ei is i-th standard basis in Rm. Then,

〈(φji)′′, (φjk)′′〉Hj = 〈
∑

m

`=1
([φji ]Bj)`(b

j

`)
′′,
∑

m

`=1
([φjk]Bj)`(b

j

`)
′′〉Hj

= eTi (Φj)−1(Gj)−1(Bj)′′(Gj)−1(Φj)−1)Tej.

4.0.4.3 Tuning

The initial values for γ and U are zero, and the initial β is the ridge regression

estimation in the first update rule (4.6). Then, we set the augmented parameter or

the step size, ρ, to be 1 and stay the same through the algorithm. The different values

of ρ only change the optimal λ values on the grid or optimal (1−α)λ on the net. The

larger the ρ, the smaller the optimized regularization parameter of the soft threshold

operator. In some practices of augmented Lagrangian, it is possible to choose a small

step size and gradually increase it to 1 in each iteration. It is also stated in (46) why

ρ = 1 is a suitable choice in the ADMM algorithm.

I use the k-fold cross–validation for choosing the mixing parameter α, the regular-

ization parameter of the second derivative penalty λder, and the main regularization

parameter λ. In particular, for each α and each λder on the net, we search for the

optimal λ. To pick the initial λ, we first find the ridge estimation β with parameter

ρ = 1. We then compute the norm of each group of functional coefficients, ‖βk‖.

Note that in the second update of Theorem 3, the soft threshold operator would

eliminate all blocks if λ is slightly higher than the maximum of these norms. On the

other hand, this update would keep all the coefficients if λ is slightly lower than the

smallest norm. Therefore, a reasonable procedure is to design a grid of λs between a

number slightly lower than the minimum norm of the blocks and a number slightly

higher than the maximum norm of these block coefficients.



CHAPTER 5: Estimation: GMD

This section derives the groupwise-majorization-descent (GMD) algorithm for solv-

ing the objective functions in chapter 3. Unlike the ADMM, this algorithm is geared

toward the objective function with group-wise penalty terms. Motivated by (49),

we derive the GMD algorithm under our setting. In addition, we do not force the

basis functions to be orthogonal, which allows us to have more flexibility. Thus, we

use the coordinate system based on the original basis B without orthogonalization

throughout this section.

5.1 Algorithm

The MFG-Elastic Net problem without the orthogonalization is

arg min
β

1

2
‖Y − [X̃1:n]

TG[β]‖2
2 +

λder

2
[β′′]TG[β′′] + λ(1− α)

∑
p

j=1
‖βj‖Hj + αλ

∑
p

j=1
‖βj‖2

Hj ,

(5.1)

where the coordinates are associated with the original basis B. This optimization

problem and the following derived algorithm include the steps that also solve for the

MFG-LASSO (α = 0) and the ridge regression (α = 1). In equation (5.1), we remove

n for computational convenience. It will be adjusted when we seek the λder and λ in

the grid construction. We define the loss function as follows.

L(β) =
1

2
‖Y − [X̃1:n]

TG[β]‖2
2 +

λder

2
[β′′]TG[β′′]. (5.2)

Consequently, the objective function (5.1) is L(β) + g(β) where

g(β) = λ(1− α)
∑

p

j=1

√
[βj]TGj[βj] + αλ

∑
p

j=1
[βj]TGj[βj].
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Lemma 6. The loss function (5.2) satisfies the quadratic majorization (QM) condi-

tion with H = G[X̃1:n]
T[X̃1:n]G+ λderB

′′. In other words, for any β, β∗ ∈ H,

L(β) ≤ L(β∗) + ([β]− [β∗])∇L(β∗) +
1

2
([β]− [β∗])TH([β]− [β∗]), (5.3)

where,

∇L(β∗|D) = G[X̃1:n]([X̃1:n]
TG[β]− Y ) + λderB

′′[β∗], (5.4)

where |D refers to condition given data, or given the design matrix.

Let U = −∇L(β∗). In addition to Lemma 6, it is straightforward to see that if

β 6= β∗, we have the strict inequality,

L(β|D) < L(β∗|D)− ([β]− [β∗])TU(β∗) +
1

2
([β]− [β∗])TH([β]− [β∗]). (5.5)

Thus, it leads to the strict descent property of the updating algorithm. Let β∗ be the

current solution to the optimization problem and β be the next update. Assume that

we update the β for each functional predictor j = 1, . . . , p. In other words, [β]− [β∗]

has a form of (0, . . . , 0, [βj] − [(β∗)j], 0, . . . , 0)T, which leads to simplification of the

objective function in the new optimization problem. Let U j be the sub-vector of U

with the indices (m(j − 1) + 1, . . . ,mj). Let Hj be the j-th block diagonal matrix of

H. Then, (5.3) is

L(β) ≤ L(β∗)− ([βj]− [(β∗)j])U j +
1

2
([βj]− [(β∗)j])THj([βj]− [(β∗)j])

≤ L(β∗)− ([βj]− [(β∗)j])U j +
1

2
γj([β

j]− [(β∗)j])T([βj]− [(β∗)j]),

where γj is a value slightly larger than the largest eigenvalue of Hj, which further

relaxes the upper bound. In practice, we take γj = (1 + ε∗)ηj with ε∗ = 10−6 where
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ηj is the largest eigenvalue of Hj. Finally, the update rule for βj is the solution to

the following optimization problem.

arg min
βj∈Hj

−([βj]− [(β∗)j])U j +
1

2
γj([β

j]− [(β∗)j])T([βj]− [(β∗)j]) + gj(β), (5.6)

where gj is the j-th term of g(·). We have a closed-form solution to this problem

using a similar trick of Lemma 15.

[βj](new) =
1

2αλ+ γj
SH

j

λ(1−α)(U
j + γj[β

j](old)), j = 1, . . . , p, (5.7)

where U j = −∇L(βj
(old)

) and ∇L(β) = G[X̃1:n]([X̃1:n]
TG[β]− Y ) + λderB

′′[β].

5.1.1 Tuning parameter selection

While iterating over this GMD update rule, we can reduce the computational bur-

den more efficiently during the tuning parameter selection with the strong rule tech-

nique. See (50).

Step 1. (Initialization) Given α ∈ (0, 1), the largest λ in the grid points is the

smallest value of λ such that all its associated coefficients are zero. In particular,

using the KKT condition (see Lemma 15), the largest λ in the grid points is

λ(1) = max
j

‖U j(0)‖
1− α

.

Therefore, the initial β is zero. Then, the smallest λ of the grid points is set to be

a certain small number to include all the functional predictors, usually a fraction of

the largest λ value of the grid. The process of searching for the optimal λ starts with

the largest value of the grid points and moves backward to the smallest value.

Step 2. (Iteration) At λ(k), we add j-th functional predictor to the active set if it
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satisfies the strong rule condition,

‖U j([βj(λ(k))])‖ > (2λ(k+1) − λ(k))(1− α),

for j = 1, . . . , p. Subsequently, we update β with these reduced predictors by iterating

the update rule (5.7) until numerical convergence. The stopping criteria for this

iterative process can be chosen the absolute or relative. Next, to make sure that the

strong rule does not leave out some of the worthy coefficients, we check the KKT

condition on the rest of the blocks of the current solution,

‖U j([βjupdate(λ
(k+1))])‖ < λ(k+1)(1− α),

where βjupdate(λ
(k+1)) is the updated βj when the iterative GMD algorithm hits the

stopping criteria on the result of the strong rule screening. If j-th functional coefficient

violates the KKT condition, we add it to the active set and update β using (5.7). This

process of checking the KKT condition and updating continues until no functional

coefficient violates the KKT condition. We store the solution of the final updated

value to βj(λ(k+1)). We use βj(λ(k+1)) to repeat (Step 2) for the next value of λ (warm

start).

5.2 Comparison of the two estimation methods

It is worth mentioning that the strong rule does not allow the main regularization

for λ to be computed in parallel because of the warm start, i.e., We search for λ

sequentially. However, the main computational cost is paid in this regularization.

The strong rule allows the algorithm to enjoy predictor screening, which leads to a

cost-effective computation by storing and computing on a smaller vector size. On the

other hand, the strong rule does not seem valid for the ADMM algorithm because

there are two objective functions involved in this algorithm. Hence, it is possible to
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tune the regularization parameters in parallel via ADMM.



CHAPTER 6: ASYMPTOTIC RESULTS

In this section, we derive the consistency of the multivariate functional group

LASSO (MFG-LASSO) when functions are fully observed. It is worth mentioning

that the second derivative penalty term in the loss function has zero regularization

parameter when the number of time points and the number of basis are infinity, i.e.,

fully observable. Therefore, the asymptotic properties of such a model are not consid-

ered with the curvature penalty for the asymptotic properties when we assume fully

observable functional covariates. In particular, the consistency breaks down to the

selection consistency and the estimation consistency, which is known as the oracle

property.

We first illustrate the consistency of the operators used in the estimation procedure.

Since the implementation in the section 4.0.1 is based on the method of moments

estimate, the following lemma is an immediate result from the functional-version of

the central limit Theorem in a separable Hilbert space. See (45).

Lemma 7. If E‖X‖4H <∞ and EY 4 <∞, then

1.
√
n(Γ̂XX − ΓXX)

D−→ N(0,ΣXX),

2.
√
n(Γ̂YX − ΓYX)

D−→ N(0,ΣYX),

3.
√
n(Γ̂Y Y − ΓY Y )

D−→ N(0,ΣY Y ),

where ΣXX = E[{(X −EX)⊗ (X −EX)−ΓXX}⊗ {(X −EX)⊗ (X −EX)−ΓXX}]

and ΣYX, ΣY Y are similarly defined.

Now, we limit our index to J , the true active set of the population functional

coefficient β. For convenience, we use the notation for truncated-version by the



65

superscript J such that βJ = (βj : j ∈ J) ∈ HJ .

Lemma 8. In addition to the assumptions in Lemma 7, assume that for any j, there

exists gj ∈ Hj such that βj = Γ
1/2

XjXj(g
j). This means each βj is in the range of

Γ
1/2

XjXj . Consider βJn as a minimizer of

1

2
En[(Y − 〈XJ , βJ〉)2] + λn

∑
j∈J

‖βj‖Hj . (6.1)

If λn −→ 0 and λn
√
n −→∞, then ‖βJn − βJ‖H converges to zero in probability, slightly

slower than
√
λn + λ−1

n n−1/2.

The above lemma illustrates that if we know the true functional predictors, the

solution to the optimization problem (3.2) achieves consistency. Let Mn(·) be the

objective function in (6.1). Then,

Mn(β) =
1

2
Γ̂Y Y − Γ̂Y XJβ +

1

2
〈β, Γ̂XJXJβ〉 + λn

∑
j∈J

‖βj‖H. (6.2)

Note that (6.2) is asymptotically strictly convex as long as we can assume that ΓXJXJ

is a positive-definite operator. Similarly, the original objective function (3.2) also has

a unique solution if we can assume that ΓXX exists and is positive definite. Finally,

using Lemma 8 as a bridge, we prove the consistency of the proposed estimate in the

following Theorem.

Theorem 5. Assume that

1. The fourth moments of X and Y are bounded.

2. For any j, there exists gj ∈ Hj such that βj = Γ
1/2

XjXj(g
j).

3. In the population, we have such a condition that,

max
i∈Jc
‖Γ1/2

XiXiCXiXJC−1
XJXJdiag((·)/‖βj‖H)(gJ)‖HJ < 1,
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where CXiXJ and CXJXJ are the correlation operators defined in (51)-

ΓXiXJ = Γ
1/2

XiXiCXiXJΓ
1/2

XJXJ .

Then, the multivariate functional group LASSO estimate satisfies the following.

1. Let β̂ be the solution minimizing (3.2), and Ĵ = {j; β̂j 6= 0} be the estimated

active set. Then, P (Ĵ = J) converges to 1.

2. ‖β̂−β‖H → 0 in probability if λn approaches zero slower than the rate of n−1/2.

Assumption 1 is commonly used in the condition for the functional central limit

Theorem. In addition, such an assumption guarantees the decay of the eigenvalues

of the covariance of X. Assumption 2 states that the functional coefficients βj lie

in the support of the functional predictor X, which means that we restrict the po-

tential range of β to be in the range of ΣXX . Assumption 3 is a modified version of

the necessary condition for the LASSO to be consistent that is derived in (11). In

fact, this assumption states intuitively that the correlation between zero covariates

and all nonzero covariates is bounded by an upper bound, so the active covariates

do not drag or pull the indices of non-active covariates in the final active set when

sample size grows. This assumption will be used in the proof of selection consistency.

The rate of convergence is at most Op(
√
λn + n−1/2λ−1

n ). This is the upper bound of

the rate of estimation convergence in Lemma 8 when the true active set is known and

indices are limited to it.

It is worth mentioning that the natural rivals of the proposed models, such as group

sparse regression models (group LASSO and group Elastic Net) without basis trans-

formation, do not provide a smooth estimation. In addition, they are extremely slow

to estimate due to a large number of time points in the data; hence, in the following

two chapters (simulation and application), we do not include them for comparison

with the proposed methods.



67

In addition, the choice of the number of basis in simulation and application-the

next two chapters-is based on the second derivative penalty and cross-validation.

The curvature penalty and smooth estimation would assure us that we do not have

too many basis because the curve estimation results stay the same at some number of

basis when increasing the number of basis-the population coefficients can be expanded

by a finite number of basis. Hence, we only need to find the smallest number of basis

that would work the best. To do that, we increase the number of basis until there

is no further enhancement in terms of the in-sample prediction error. For example,

in the application chapter, we used m = 31 basis because any number of basis fewer

than that has a larger in-sample prediction error, and every basis larger than that up

to even m = 110 has almost the same in-sample prediction error. Naturally, we tend

to use the fewest number of basis between 31 and 110 to reduce the complexity of the

final model.



CHAPTER 7: SIMULATION STUDIES

In this section, we investigate the performance of the proposed method for scalar on

functional penalized regressions through a simulation study. Consider T = [0, 1] with

a hundred observed time points equally-spaced, {t1, . . . , t100}. Suppose that there are

p = 19 random functional covariates, Xj, for j = 1, . . . , 19, observed on a hundred

time points equally-spaced in T = [0, 1], say {t1, . . . , t100}. For i = 1, . . . , n, we first

generate Xi = (X1
i , . . . , X

p
i ) on 500 time points, {t∗1, . . . , t∗500}, where X j

i is from a

form of the Brownian motion,

Xj(t∗i ) =
i∑

k=1

N j
k ,

where 1 ≤ k ≤ 500, N j
k ∼ N(0, 1). We generate the response values following the

model

Y = 〈X1, β1〉 + 〈X2, β2〉 + 〈X3, β3〉 + σε,

where ε ∼ N(0, 1), β1(t) = sin(3πt
2

), β2(t) = sin(5πt
2

), and β3(t) = t2 that are elements

of Hj for j = 1, 2, 3. Therefore, there are three functional predictors out of 19 in the

population active set, J = {1, 2, 3}. We drop 400 observed time points so that the

remaining 100 time points are equally spaced over [0, 1]. To compute the inner product

with more accuracy, we used 500 points in Riemann sum approximation of the inner

product integrals before dropping the 400 time points.

To investigate the method thoroughly, we applied different numbers of observations

(100, 200, 500) and different standard deviations for the residual term σ = 0.01, 0.1, 1.

In each sample, we divide the observations into two sets for training and test sets (80%

for the training set and 20% for the test set). We measure the root mean squared
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error (RMSE) of the prediction for the response values of the test set. In addition,

we measure the number of functional predictors that are chosen correctly. More

specifically, we count the correctly identified functional predictors in the population

active set, the size of which is 3, and in the population inactive set, the size of which is

16, while predicting the test response values. With a cross-validation on the number of

basis between 5 and 110, and the prediction error criteria, we choose m = 21 B-spline

basis functions to convert the observed values to functional objects and coordinate

representations. The second derivative penalty would guarantee that we do not overfit

the curve estimations -after some number of basis, the curve estimations remain the

same. We use 5-fold cross–validation to tune the regularization parameters on a net.

In each scenario, we generate 100 samples, compute the percentages of correctly

selected functional predictors that are tabulated in Table 7.1, and compute the mean

and standard deviation of the test RMSE in Table 7.2. Furthermore, we compare

the sparse methods and the scalar on functional ordinary least square method (OLS),

ridge regression, and the oracle procedure in which only the functional predictors

in the population active set are used in the OLS. For the sparse models, we apply

the multivariate functional group LASSO (MFG-LASSO) and the MFG-Elastic Net

(MFG-EN). The two algorithms, GMD with the strong rule and ADMM, provide

similar results while the GMD algorithm is much faster on serial systems and ADMM

is faster on parallel computational systems. Thus, we show the results using the GMD

and strong rule algorithm in this thesis.

From Table 7.1, we can see that the MFG-sparse methods effectively select the

correct functional predictors. It also shows consistency in an empirical way. In par-

ticular, they always select the active set correctly even with a large noise, but the

selection performances of eliminating the inactive set predictors are poor with a small

sample or large noise. The MFG-EN tends to choose more functional predictors than

others. It is an expected result since the MFG-EN penalty includes the quadratic
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Table 7.1: Percentages of correct selection in the test set under various simulation
scenarios. In each case, 100 random samples are used. In each sample, we count
the correctly identified functional predictors for the active set of the size three and
the inactive set of the size 16. Then, we compute the overall percentage out of 100
samples.

Parameters
Selection

Methods
σ n OLS Ridge MFG-LASSO MFG-EN

0.01

100
Inactive 0 0 76 66
Active 100 100 100 100

200
Inactive 0 0 93 88
Active 100 100 100 100

500
Inactive 0 0 100 99
Active 100 100 100 100

0.1

100
Inactive 0 0 73 64
Active 100 100 100 100

200
Inactive 0 0 92 86
Active 100 100 100 100

500
Inactive 0 0 100 99
Active 100 100 100 100

1

100
Inactive 0 0 25 21
Active 100 100 100 100

200
Inactive 0 0 29 24
Active 100 100 100 100

500
Inactive 0 0 51 44
Active 100 100 100 100

term, giving more stability but choosing more predictors. Because the oracle estima-

tor assumes that the true active and inactive sets are known before OLS is run on the

sample with the indices of the true active set, it always hits 100 percent for selection

of active and inactive incises in this table; hence, we do not display this estimator in

this table.

Table 7.2 illustrates the estimation performance using the test RMSE. The over-

all behavior of the methods in terms of prediction errors is similar to that of the

selection performance. As the sample size grows, the RMSEs are closer to the ora-

cle estimator’s, and their standard deviations decrease. Compared to the OLS, the

sparse methods outperform when there are not enough observations, or the func-

tions are noisy. The OLS performs slightly better than the sparse methods with large
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Table 7.2: Average test RMSE of different methods under different simulation scenar-
ios. In each case, 100 random samples are used to compute the mean and standard
deviation with parentheses.

Parameters Methods
σ n OLS Ridge MFG-LASSO MFG-EN Oracle

0.01

100
1.57 2.41 1.01 1.02 0.9

(0.47) (0.54) (0.55) (0.55) (0.61)

200
0.7 1.22 0.75 0.76 0.66

(0.45) (0.35) (0.43) (0.43) (0.47)

500
0.48 0.72 0.56 0.57 0.47
(0.3) (0.22) (0.26) (0.26) (0.31)

0.1

100
1.6 2.41 1.02 1.03 0.91

(0.47) (0.55) (0.55) (0.54) (0.6)

200
0.73 1.22 0.76 0.77 0.67

(0.44) (0.35) (0.43) (0.42) (0.47)

500
0.5 0.73 0.58 0.58 0.49

(0.29) (0.22) (0.26) (0.26) (0.3)

1

100
2.99 2.82 1.64 1.67 1.5

(0.65) (0.57) (0.44) (0.45) (0.44)

200
1.95 1.8 1.37 1.38 1.32

(0.32) (0.31) (0.31) (0.31) (0.31)

500
1.38 1.37 1.21 1.21 1.18

(0.19) (0.17) (0.17) (0.17) (0.18)

enough n and small noises. However, the standard errors of the OLS RMSE are larger

than that of the MFG-methods. The ridge method is worse than the OLS with the

small noise, but it is better than the OLS with the large noise. Overall, the sparse

methods, MFG-LASSO and MFG-EN, perform the best in general because their re-

sults are very close to the oracle estimations. Considering that the sparse methods

use much fewer functional predictors, the simulation results illustrate the remarkable

effectiveness of the proposed methods in reducing both the model complexity and the

prediction error.

Figure 7.1 shows the estimated functional coefficients β̂1(·), . . . , β̂6(·) from the

MFG-LASSO in a hundred simulation samples when n = 100, σ = 1, the worst perfor-

mance case. It must be mentioned that the estimations are individually smooth (for

each of the 100 simulations) as they should be because of the curvature penalty. How-
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Figure 7.1: This figure displays the estimated functional coefficients by the MFG-
LASSO from a hundred simulated data sets when n = 100, σ = 1. The green curves
are the true coefficient curves, and the grey curves are the estimated coefficients. The
estimated curves for the remaining of the coefficients from the seventh to the nine-
teenth are very similar to the fourth, fifth , and sixth functions (inactive coefficients)
displayed in this figure.

ever, the estimated curves for 100 samples are highly variant due to the large noise.

Thus, the curves do not look smooth when they are displayed in a single figure. The

green curves are the true functions, and the rest of the curves are the estimations.

Figure 7.2 shows the results when n = 500, σ = 0.01, the best performance case.
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Figure 7.2: This figure displays the estimated functional coefficients by the MFG-
LASSO from a hundred simulated data sets when n = 500, σ = 0.01. The green
curves are the true coefficient curves, and the grey curves are the estimated coeffi-
cients. The estimated curves for the remaining of the coefficients from the seventh
to the nineteenth are very similar to the fourth, fifth , and sixth functions (inactive
coefficients) displayed in this figure.



CHAPTER 8: APPLICATIONS

In this chapter, the proposed methods are applied to fMRI and econometric data.

8.1 Applications to fMRI

We apply the proposed methods to a human brain fMRI data set collected by the

New York University. This data set is part of the ADHD-200 resting-state fMRI and

anatomical datasets. The parent project is 1000 Functional Connectomes Project.

The fMRI machine measures the BOLD-contrast activities of the brain during a 430

seconds period of time. To extract the time courses, 172 equally-spaced signal values

were recorded as the observed points within the 430 seconds period of time. Before the

analysis, the automated anatomical labeling (AAL) (52) was applied to the raw fMRI

data by averaging the BOLD activities of the clusters of voxels in p = 116 regions of

the brain, the regions of interest (ROI). This procedure is called masking, clustering

the voxels by regions and averaging the time series signals within the region. The

data consists of between five to seven brain resting–state fMRI records taken from 290

human subjects. We randomly chose two brain images from each human subject and

cleaned the data by removing missing response values. We choose different response

values in each regression analysis, such as the subjects’ intelligence quotient (IQ)

scores, verbal IQ, performance IQ, attention deficit hyperactivity disorder (ADHD)

index, ADHD Inattentive, and ADHD Hyper/Impulsive. Then, we split the data

by 80% for the training set and 20% for the test set. Using cross-validation on the

number of basis between 10 and 110 and the prediction error criteria, we choose

m = 31 Fourier basis functions in the function approximation procedure.

Table 8.1 describes the test RMSE and the sparsity of the regression models. The

http://fcon_1000.projects.nitrc.org/indi/adhd200/
https://www.nitrc.org/projects/fcon_1000/
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results show that the scalar on function OLS does not work in that the RMSE is

higher than the standard deviation of the response values in the test set. The ridge

regression has a significantly lower RMSE while it does not select functional covari-

ates. The MFG-LASSO eliminates more than half of the brain regions except for the

performance IQ, while its RMSE is slightly higher than the MFG-EN in most cases.

The MFG-EN performs the best in terms of the RMSE while it selects more functional

predictors than the MFG-LASSO. It is worth mentioning that when we change the

proportion of the train and test data set to 90% and 10%, the ratio RMSE
σ̂Ytest

decreases

significantly for sparse regressions; however, to be consistent with the simulations, we

keep the 80% to 20% proportions for the train and test sets.

At the time of writing, no research study uses the same data. However, there

are articles on predicting the IQ score based on human brain measurements. (53)

predicted IQ score based on structural magnetic resonance imaging (MRI). In order

to predict the IQ score, they use two methods: Principal component analysis on gray

matter volume of each voxel and Atlas-based grey matter volume while adjusting for

the brain size in both methods. The reported RMSE with 90% to 10% train to test

proportions in this study is 13.07 at its best, while the standard deviation of the

IQ scores in the whole sample including the test set is σ̂Y = 12.94. Nevertheless,

the MFG-LASSO provides an RMSE of 6.32, and the MFG-EN provides 5.91. In

addition, to the higher accuracy, the proposed methods have much less complexity of

the model. (53) selects more than 20, 000 principal features among all of the features

associated with 556, 694 voxels in the data. Meanwhile, the proposed methods use 53

functional predictors for MFG-LASSO and 106 functional predictors for MFG-EN.

In each functional predictor, we use 172 time points in the raw data. Therefore,

the proposed methods have obvious advantages in reducing the model complexity

and achieving higher accuracy. Running one regression analysis with the proposed

methods using the GMD/Strong Rule is on average around two to three minutes
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Table 8.1: The results of applying the proposed methods to the fMRI data when
predicting the IQ and ADHD scores.

Response value Method RMSE Zero curves of 116 ROI
Y=IQ score Least square 19.01 0

Range: 73− 142 Ridge 5.98 0
σ̂Ytest = 13.45 MFG-LASSO 6.32 63

MFG-EN 5.91 10
Y= Verbal IQ Least square 23.03 0

Range: 65− 143 Ridge 7.02 0
σ̂Ytest = 13.25 MFG-LASSO 6.98 68

MFG-EN 6.44 16
Y= Performance IQ Least square 19.69 0

Range: 72− 137 Ridge 6.27 0
σ̂Ytest = 13.89 MFG-LASSO 6.79 40

MFG-EN 6.06 10
Y=ADHD Index Least square 28.86 0
Range: 40− 99 Ridge 8.18 0
σ̂Ytest = 15.22 MFG-LASSO 8.49 75

MFG-EN 8.06 25
Y=ADHD Inattentive Least square 27.81 0

Range: 40− 90 Ridge 8.40 0
σ̂Ytest = 15.30 MFG-LASSO 9.21 75

MFG-EN 8.67 30
Y=ADHD Hyper/Impulsive Least square 26.47 0

Range: 41− 90 Ridge 7.66 0
σ̂Ytest = 14.66 MFG-LASSO 8.42 60

MFG-EN 8.54 52
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on a dual Core-i7 CPU with 16 GB memory, while the mentioned article claims an

equivalent computation of 36, 000 hours using two CPU kernels and 5 GB RAM.

In addition, there is another research study, (54). In this article, the RMSE does

not get any better than around 14 while data is from a combination of resting–state

and task fMRI, and the sparse method uses voxels’ functional connectivities (Pearson

correlation between BOLD time series signals) as the input features.

In figure 8.1 and figure 8.2, we display the regions associated with the estimated

active sets for IQ and ADHD by the MFG-LASSO, respectively. The final active sets

of the algorithms were extracted and matched with the AAL’s atlas, where each of

the regions has a label. The regions were manually entered into the WFU picked

atlas (55) tool of the SPM-12 ran on MATLAB 2020b to produce mask.nii files. The

mask files were imported on MRIcron software to produce the multi-slice images.

The active sets cover the regions associated with IQ in (56) , such as the cerebello-

parietal component and the frontal component. It is mentioned in the paper that

the parietal and the frontal regions are strongly associated with intelligence by main-

taining a connection with the cerebellum and the temporal regions. The shaded

areas cover the ones mentioned in (57) as well. We provide the name of the regions

associated with these active sets in the appendix.

Interestingly, ADHD and IQ share a large proportion of common active sets. For

instance, when MFG-LASSO is applied, they overlap in 35 ROIs where the size of

active sets are 53 and 41 for IQ and ADHD, respectively. On the other hand, the

ROIs that are associated with ADHD but not with IQ are the middle and superior

frontal, the Parahippocampal, the inferior parietal, and the superior temporal pole

gyri. In addition, the ratio of the number of right hemisphere regions to the left ones

associated with IQ is significantly greater than that of ADHD.

http://www.fil.ion.ucl.ac.uk/spm/
https://people.cas.sc.edu/rorden/mricron/index.html
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Figure 8.1: The multi-slice display (Axial, Coronal, Sagittal) of the regions of interest,
the BOLD activities of which achieves the lowest prediction error and correlate the
most with the IQ score variability in the sample when the MFG-LASSO is used.
The regions associated with the IQ score are colored red, those associated with the
performance IQ are blue, and those associated with the verbal IQ are colored green.

Figure 8.2: The multi-slice display (Axial, Coronal, Sagittal) of the regions of interest,
the BOLD activities of which achieves the lowest prediction error and correlate the
most with the ADHD score variability in the sample when the MFG-LASSO is used.
The regions associated with the ADHD score are colored red, those associated with the
ADHD Hyper/Impulsive are blue, and those associated with the ADHD Inattentive
score are colored green.
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Table 8.2: The results of applying the proposed methods to the econometric data
while predicting Per Capita GDP.

Response value Method RMSE Zero curves of 111 variables
Y=GDP Least square 422312610.3 0

Range: 260− 85135 Ridge 8582.6 0
σ̂Ytest = 20258.1 Group LASSO 6998.8 95

Group Elastic Net 7448.2 46

8.2 Application to econometric: Per capita GDP

In this section, we report the results of the proposed methods when they were

applied to an econometric data set. We choose p = 111 functional variables, the

list of which is in the appendix section. These variables are annually recorded from

1995 − 2018 at 24 equally spaced time points for n = 137 countries; therefore, we

consider these time-series signals as the observed points of the functional covariates.

The list of the countries is mentioned in the appendix as well. These countries’ per

capita Gross Domestic Product (GDP) at 2019 are taken as the response values.

The records of ”Per Capita GDP in US Dollars” are from United Nations Statistics

Division extracted in December 2020. In order to convert the time series, m = 13

Fourier bases are used after a cross–validation on the number of basis. The train

and the test data sets are randomly chosen with a proportion of eighty to twenty

percent. The results are reported in the table 8.2. The results show a significant

proportion of variability in the response values of the test set is explained by its

linear relationship with only 16 functional variables. We list the functional predictors

selected by the functional group LASSO method. In addition, we categorize the signs

of the estimated coefficient curves if they are entirely below or above the x-axis with

”negative” and ”positive” labels. This sign can be interpreted as the overall linear

functional (through the time) contribution of the variable to the response variability.

We denote (+) and (−) for the curves that show increasing or decreasing behaviors.

This behavior, along with the sign of the curve, can be interpreted as the direction

https://unstats.un.org/home/
https://unstats.un.org/home/
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of the linear functional contribution of the variable within time. For instance, the

increasing percentage of the rural population through time correlates negatively with

the per capita GDP of a country. Figures 8.3 display these curves where the period

of time is scaled to the range (0, 1).

• Negative curves: [2] Rural population (+), [10] Age dependency ratio (young)

(+), [60] Contributing family workers (male) (−), [66] Employment in agricul-

ture (female) (−), [96] Unemployment (total), [97] Unemployment (youth fe-

male), [99] Unemployment (youth total), [101] Vulnerable employment (male),

[102] Vulnerable employment (total) (−).

• Positive curves: [3] Urban population (−), [58] Survival to age 65 (male) (−),

[73] Employment in services (male) (+), [90] Ratio of female to male labor force

participation rate (−).

• None: [7] Immunization (DPT), [78] Employment to population ratio (young

male), [110] Inflation (GDP deflator).
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Figure 8.3: The estimated curves of coefficients among p = 111, selected by the group
LASSO when predicting per capita GDP.



CHAPTER 9: FUTURE DEVELOPMENTS

In this chapter, we explain some of the future developments.

9.1 Sparse nonlinear scalar-on-function regression and predictor selection

We can assume that we have scalar responses and the predictors are multivariate

functional data. i.e., Y is a random variable and X is a random element in H1× . . .×

Hp. Then, we consider that only a few sets of functional predictors are related to

Y . The model complexity is too high since it includes higher-order interaction terms

between functional predictors. Thus, we can suppose that the functional space for f ,

{g : H → R} has an additive structure in the following way.

Assumption 7. There exists f : H → R and a set A = {a1, . . . , ad} ⊆ {1, . . . , p}

such that

Y = f1(Xa1) + . . .+ fd(X
ad) + ε, (9.1)

where ε is a mean-zero random variable that is independent of X.

We can further modify the model to be a non-parametric one.

Assumption 8. There exists f : H → R, g : HY → R and a set A = {a1, . . . , ad} ⊆

{1, . . . , p} such that

g(Y ) = f1(Xa1) + . . .+ fd(X
ad) + ε, (9.2)

where HY is the space for Y . ε is a mean-zero random variable that is independent

of X.
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For each j = 1, . . . , p, define Mj to be the reproducing kernel Hilbert space (RKHS)

over Hj with a reproducing kernel κj. If we choose a Gaussian radial basis function

(RBF) as the reproducing kernel, it can be shown that Mj is a dense subset in L2(Hj),

which is a rich enough space to search for the f j(·).

Lemma 9. Let Mj be a reproducing kernel Hilbert space (RKHS) with κj for j =

1, . . . , p. Define M = M1 × · · · ×Mp with the inner product,

〈f, g〉M =
∑p

j=1〈f
j, gj〉Mj , f, g ∈M

Then M is also a RKHS with the reproducing kernel, κ(f, g) =
∑p

j=1 κ
j(f j, gj).

Note that, in addition to Lemma 9, M is a dense subset of L2(H) if we use the

Gaussian RBF as the reproducing kernel.

The Sample level loss function with the sparse penalty is

Ln(f ;λn, X, Y ) = En(Y − f(X))2 + λn
∑p

j=1‖f
j‖Mj . (9.3)

Given a random element X ∈ H, κ(·, X) is another random element in M. We define

the covariance operator for κ(·, X) by

ΓXX = E[{κ(·, X)− Eκ(·, X)} ⊗ {κ(·, X)− Eκ(·, X)}].

Note that this is equivalent to assuming that ΓXX is a unique element satisfying

〈f,ΓXXg〉M = cov(f(X), g(X)),

for any f, g ∈M.
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9.1.1 Nonlinear functional sparse group LASSO

Let (X1
1 (·), . . . , Xp

1 (·)), . . . , (X1
n(·), . . . , Xp

n(·)) be the n-random copies of X ∈ H =

H1×· · ·×Hp. Define Mj
n to be the RKHS over {Xj

1 , . . . , X
j
n} ⊆ Hj with a reproducing

kernel κj(·, ·), for j = 1, . . . , p. In other words, Mj
n = span({κj(·, Xj

i ) : i = 1, . . . , n})

with the inner product,

〈κj(·, Xj
i ), κ

j(·, Xj
k)〉Mj = κj(Xj

i , X
k
i ).

Define Mn =
⊕

j M
j
n. Then, Mj

n and Mn are the subspaces of Mj and M respectively.

The following Theorem justifies the sample-level estimation.

Theorem 6. Let f̂ ∈M be the solution to the following optimization problem,

minimize En(Y − f(X))2 + λn
∑p

j=1‖f
j‖Mj , (9.4)

subject to f ∈M.

f̂ is the solution to optimization problem over the restricted space, Mn,

minimize En(Y − f(X))2 + λn
∑p

j=1‖f
j‖Mj ,

subject to f ∈Mn.

Proof: Let M⊥
n ⊆M be the orthogonal complement of Mn. For any f ∈M, there

exist fn ∈Mn and f⊥n ∈M⊥
n such that f = fn + f⊥n . Then, (9.4) is

∑n
i=1(Yi − 〈fn + f⊥n , κ(·, Xi)〉M)2 + λn

∑p
j=1(‖(fn)j‖Mj + ‖(f⊥n )j‖Mj)

=
∑n

i=1(Yi − 〈fn, κ(·, Xi)〉M)2 +
∑p

j=1(‖(fn)j‖Mj + ‖(f⊥n )j‖Mj)

≥
∑n

i=1(Yi − 〈fn, κ(·, Xi)〉M)2 +
∑p

j=1(‖(fn)j‖Mj .
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Thus, the minimizer of the last equation over fn ∈Mn is the minimizer of the original

optimization problem over f ∈M. �

9.1.2 Implementation and Coordinate representation of Hilbertian element

For the first level Hilbert space, suppose that we have n random copies from the

model (9.2) denoted by (X1, Y1), . . . , (Xn, Yn) and we observe X j
i on {tji1, . . . , tjiai} for

each i = 1, . . . , n and j = 1, . . . , p.

At the sample level, we assume that Hj is spanned by a given set of basis functions,

Bj = {bj1, . . . , bjmj}. Thus, for any f ∈ Hj, there exist a vector in a ∈ Rmj uniquely

such that f(·) =
∑

mj
k=1

akb
j
k(·). We call the vector a the coordinate of f and denote

it by [f ]Bj . We also assume that Hj is constructed with the L2-inner product with

respect to the Lebesgue measure,

〈f, g〉Hj =

∫
Tj

f(t)g(t)dt, for any f, g ∈ Hj.

Let Gj

Bj
be mj ×mj matrix whose (i, k)-th entry is 〈bji , bjk〉Hj =

∫
Tj
bji(t)g

j
k(t)dt. Then

for any f j, gj ∈ Hj,

〈f j, gj〉Hj = [f j]TBjG
j

Bj
[gj]Bj .

We use the basis-expansion approach for each functional covariate in the first level

Hilbert space, X j
i for i = 1, . . . , n and j = 1, . . . , p, which was also used in (47; 48).

Without loss of generality, we assume m = m1 = · · · = mp and M = pm.

For j = 1, . . . , p consider the second level (reproducing) Hilbert space with respect

to Gaussian radial basis functions κj(X j
i , X

j
l ) = exp(−γj‖X j

i − X j
l ‖2Hj) for i, l =

1 . . . n. We need to first compute 〈X j
i , X

j
l 〉Hj for all possible values of i, l = 1, . . . , n

as described above in order to compute the ‖X j
i −X j

l ‖2Hj .
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Given a vector of Γ = (γ1, . . . , γp), the sample level problem in the second level

Hilbert space is defined as follows. Next, we define the loss function:

L([f ]) =
1

2
‖Y −G[f ]‖2

2, (9.5)

where [f ] ∈ Rnp and G ∈ Rn×np has vertical blocks Gj ∈ Rn×n for each j = 1, . . . , p

that are Gj = (G){i,(l−1)p+1:lp} = κj(X j
i , X

j
l ) for i, l = 1, . . . , n. The sample level opti-

mization problem 9.4 is arg min[f ] L([f ]) + g(f) where g(f) = λ
∑

p

j=1

√
[f j]TGj[f j] +

α
∑

p

j=1
[f j]TGj[f j].

Lemma 10. The loss function (9.5) satisfies the quadratic majorization (QM) con-

dition with H = GTG. In other words, for any f, f ∗ ∈ H,

L([f ]) ≤ L([f ∗]) + ([f ]− [f ∗])∇L([f ∗]) +
1

2
([f ]− [f ∗])TH([f ]− [f ∗]), (9.6)

where ∇L(f ∗|D) = GT(G[f ]∗ − Y ).

9.1.2.1 Non-linear group majorization decent: The first algorithm

Lemma 11. Gradient Decent Threshold: Suppose that a positive definite matrix

G ∈ Rn×n, vector y ∈ Rn, and constants λ, α ∈ R are known. Consider the objective

function:

h(x) =
1

2
‖x− y‖2 + λαxTGx+ λ(1− α)

√
xTGx. (9.7)

If
√
yTGy < λ(1− α) then the minimizer of h(·) is 0 ∈ Rn. Otherwise, if

√
yTGy >

λ(1−α), the minimizer of h(·) can be approximated via gradient decent by initializing

x and updating xnew = x−∇h(x) where ∇h(x) = (I + 2αλG + λ(1−α)√
xGx G)x− y.
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Proof. The sub–gradient of h(·) is

∇h(x) = x− y + 2αλGx+ λ(1− α)s,

where s ∈ Rn is the sub–differntial of (xTGx)
1
2 . By Cauchy–Schwartz (CS) inequality:

s =


Gx

(xTGx)
1
2

x 6= 0

{z ∈ Rn|(zTGz) ≤ 1} x = 0

(9.8)

Therefore, x = 0 ∈ Rn if and only if 0 ∈ Rn is in the sub–differntial of h(·). This is

equivalent to the treshholding rule that x = 0 if
√
yTGy < λ(1 − α). On the other

hand, if
√
yTGy > λ(1 − α), h(·) is a convex problem. Hence, its solution can be

approximated via gradient decent.

Note that in the above Lemma, the stopping criteria can be based on the distance

of the x updates in Rn and the absolute difference of the objective function h(·) within

updates. Let f ∗ be the current solution to the optimization problem and f be the

next update. Assume that we update the f for j = 1, . . . , p. In other words, [f ]− [f ∗]

has a form of (0, . . . , 0, [f j] − [(f ∗)j], 0, . . . , 0)T, which leads to simplification of the

objective function of the new optimization problem. Let U = −∇L(f ∗) and U j be

the sub-vector of U with the indices (n(j − 1) + 1, . . . , nj). Let Hj be the j-th block

diagonal matrix of H in lemma 10. Then, the problem is

L([f ]) ≤ L([f ∗])− ([f j]− [(f ∗)j])U j +
1

2
([f j]− [(f ∗)j])THj([f j]− [(f ∗)j])

≤ L([f ∗])− ([f j]− [(f ∗)j])U j +
1

2
ηj([f

j]− [(f ∗)j])T([f j]− [(f ∗)j]),

where ηj is a value slightly larger than the largest eigenvalue of Hj, which further

relaxes the upper bound. In practice, we take ηj = (1 + ε∗)ζj with ε∗ = 10−6 where ζj

is the largest eigenvalue of Hj. Finally, the update rule for f j is the solution to the
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following optimization problem:

arg min
fj∈Hj

−([f j]− [(f ∗)j])U j +
1

2
ηj([f

j]− [(f ∗)j])T([f j]− [(f ∗)j]) + gj(f), (9.9)

where gj is the j-th term of g(·). We use a similar trick of Lemma 11. Consider

U j = −∇L([f j](old)), ∇L(f ∗|D) = G(GT[f ]−Y ), and e = U j+γj[f
j](old). If

√
eTGe <

λ(1−α), [f j](new) = 0. Otherwise, if
√
eTGe > λ(1−α), [f j](new) can be approximated

as following. First initialize [f j], then until convergence [f j](update) = [f j] − (I −
λ√

[fj ]G[fj ]
)[f j] + e. The convergence criteria can be a combinations of the absolute

difference of the objective function 9.9 at each step and the euclidean distance of

[f j](update) with [f j]. After convergence, update [f j](new) = [f j](update).

Initialization;

Compute H = GTG, and ηj;

while the stopping criteria does not meet for [f ] do

for j = 1, . . . , p;

Compute U = −GT(G[f ]− Y ), and e = U j + ηj[f
j] ;

if eTGje < (λ(1− α)/ηj)
2 then

[f j] = 0 ∈ Rn;

else

[f j] = e;

while the stopping criteria does not meet for [f j] do

[f j](update) = [f j]− (I + 2αληjG
j + λGj√

[fj ]TGj [fj ]
)[f j] + e

end

end

end

Algorithm 1: Nonlinear GMD
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9.1.2.2 Alternative algorithm

The following lemma help to develop a second algorithm.

Lemma 12. Take x, y ∈ Rm where y is known.

arg min
x

(
1

2
‖x− y‖2 + λ‖x‖

)
= Sλ(y), (9.10)

where Sλ(y) := 1{‖y‖>λ}

(
1− λ

‖y‖

)
+
y is the block soft threshold operator in real space.

Proof of Lemma 12. Observe that

arg min
x

(
1

2
(x− y)T(x− y) + λ‖x‖

)
= arg min

x

(
1

2
(xTx− 2xTy) + λ‖x‖

)
.

To satisfy the Karush-Kuhn-Tucker (KKT) stability condition, the derivative of the

above objective function with respect to x must be equal to zero. If the derivative

does not exist, subdifferential must include zero. The derivative is x− y+λsx, where

sx is the subdifferential of ‖x‖ at x.

If x 6= 0, sx = x/‖x‖ and the KKT condition gives

x(1 + λ/‖x‖) = y.

Compute the ‖y‖ in preceding equation and solve for ‖x‖. Plugging it back into the

equation gives us,

x = (1− λ/‖y‖)y.

The condition x 6= 0 is equivalent to ‖y‖ > λ. On the other hand, x = 0 is equivalent

to 0 ∈ −y + λsx, or y ∈ λsx. In this case sx = {z ∈ Rm|‖z‖ ≤ 1}. Therefore,

‖y‖2 ≤ λ2 which completes the proof. �
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Lemma 13. For x, y ∈ Rm where y is known and constants a, b:

arg min
x

(
1

2
(x− y)T(x− y) + a(xTx)

1
2 +

b

2
xTx

)
=

1

b+ 1
Sa(y).

Proof of Lemma 13.

The proof is similar to the one in lemma 12. The only difference is the derivative of

the objective function. It is: x− y+ as+ bx, where s is the sub–differential. The rest

of the proof is straight forward. If x 6= 0 we see that x(1 + b+ a
‖x‖) = y. Taking norm

‖.‖ from both sides, solving for ‖x‖, and plugging it back we have x = ( 1
1+b

)(1− a
‖y‖)y.

Note that this is only possible when ‖x‖ > 0, which means ‖y‖ > a. If x = 0, it results

in 0 ∈ −Gy+ as, or Gy ∈ as. Thus, since in this case s = {[Z]|Z ∈ Hl &‖Z‖Hl ≤ 1},

‖Gy‖ ≤ a, which completes the derivation above.

�

The quadratic form in g(·) allows the following inequality:

gj(f) < λ
√
ωj
∑

p

j=1

√
[f j]T[f j] + αωj

∑
p

j=1
[f j]T[f j],

where ωj are slightly larger than the maximum eigenvalues of Gjs. Hence, it is

possible to extend the inequality 9.9 to:

−([f j]− [(f ∗)j])U j +
1

2
ηj([f

j]− [(f ∗)j])T([f j]− [(f ∗)j]) + gj(f) <

−([f j]− [(f ∗)j])U j +
1

2
ηj([f

j]− [(f ∗)j])T([f j]− [(f ∗)j])

+λ
√
ωj
∑

p

j=1

√
[f j]T[f j] + αωj

∑
p

j=1
[f j]T[f j].
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This algorithm finds the minimizer of the right-hand side of such inequality.

arg min
fj∈Hj

− ([f j]− [(f ∗)j])U j +
1

2
ηj([f

j]− [(f ∗)j])T([f j]− [(f ∗)j])+ (9.11)

λ
√
ωj
∑

p

j=1

√
[f j]T[f j] + αωj

∑
p

j=1
[f j]T[f j]

Similar to the Lemma 13, the optimizer has a closed form solution:

[f j](update) =
1

2αωj + ηj
Sλ√ωj(U

j + ηj[f
j](old)), j = 1, . . . , p, (9.12)

where U j = −∇L([f j](old)).

The numerical convergence of such an algorithm is proven similar to that of the

first one due to the strictly descending property. However, the advantage of the

second algorithm over the first one is that although it requires more iterations for

overall group updates to converge, it has a closed-form solution to update each of the

groups. In other words, the inner loop in the first algorithm is removed; therefore,

when p is large, it is expected that the alternative algorithm converges faster.

9.1.2.3 Strong rule

While iterating one of the two above algorithms, we can reduce the computational

burden more efficiently based on the tuning parameter with the Strong Rule tech-

nique. See (50).

Step 1. (Initialization) Given α ∈ (0, 1), we search for the smallest value of λ such

that all coefficients are zero. Using the KKT condition (see Lemma 12), this value

which is the largest among the grid points, is

λ(1) = max
j

‖U j(0)‖
(1− α)

√
ωj
.

Therefore, the initial f is zero. Then the smallest λ of the grid points are set to be
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a certain small number to include all functional predictors. This process starts from

the largest value in the grid point and moves backward to the smallest value.

Step 2. (Iteration) At λ(k), we add the j-th functional predictor to the active set

if it satisfies the Strong Rule condition,

‖U j([f j(λ(k))])‖ > (2λ(k+1) − λ(k))(1− α)
√
ωj,

for j = 1, . . . , p. Then, we update f with this reduced predictors using one of the two

algorithms in previous sections. Next, in order to make sure that the Strong Rule

does not leave out some of the worthy coefficients, we check the KKT condition on

the rest of the blocks of the current solution,

‖U j([f jupdate(λ
(k+1))])‖ < λ(k+1)(1− α)

√
ωj,

where f jupdate(λ
(k+1)) is the updated f j from the Strong Rule screening. If the j-th

functional coefficient violates the KKT condition, we add it to the active set and

update f using the algorithms. This process of checking the KKT condition and

updating continues until there is no functional coefficient that violates the KKT

condition when we store the solution of the final update as the f j(λ(k+1)).

9.1.3 Prediction

In algorithm 1, [f ] is computed which is the estimation of the coordinate rep-

resentation of f ∈ M with respect to basis κ(·, X1), . . . κ(·, Xn) that are elements

in the RKHS at the population level. Let new observations X∗ = (X∗1 , . . . , X
∗
ntst)

be in the test or validation set for Y ∗ = (Y ∗1 , . . . , Y
∗
ntst). Then, the estimation of

f(X∗i ) is a linear combination of κ(X∗i , X1), . . . , κ(X∗i , Xn) for i = 1, . . . , ntst. In

other words, to use the computed [f ] in the prediction of new response values, we

must first compute the coordinate representation of the new observed covariates in
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the first level Hilbert space as explained in the subsection 9.1.2, then, compute a

matrix G∗ ∈ Rntst×np that has vertical blocks Gj ∈ Rntst×n for each j = 1, . . . , p that

are Gj = (G){i,(l−1)p+1:lp} = κj((X j
i )
∗, X j

l ) for i = 1, . . . , ntst and l = 1, . . . , n. The

prediction is Ŷ ∗ = G∗[f ].

9.1.4 Γ tuning

The hessian of G with respect to Γ is a diagonal matrix with strictly positive

values. Hence G is convex with respect to Γ. In addition, GTG is convex in Γ, and its

inverse is bounded; hence, the minimizer of 5.2 is convex in Γ. The G∗ and the norm

operation are convex, so the out-of-sample error is convex in Γ if G is of full rank.

If the model is correctly specified as in 9.1, the non-linearity of f j is not affected by

the inactive functional predictors. Therefore, we can rely on coordinate descent to

optimize for coordinates of Γ based on the cross-validation with the non-penalized

model. In addition, we can randomly set the initial states of the coordinate descent

on the net to converge to the solution. This optimization problem is strictly convex

with respect to individual γj; hence, a reasonable point estimate to determine the

boundaries of the net grids can be found by validating via a simple non-penalized

least square estimation for individual f j.

Instead of a fixed net, we can use the partial derivative of the in-sample mean

squared error with respect to γj and use it in a gradient coordinate descent method.

This method is similar to coordinate descent, while to minimize with respect to each

coordinate, we employ this partial derivative instead of optimizing over a grid. The

in-sample mean squared error is strictly convex with respect to individual γj if G is

or is not of full rank.

∂

∂γj
‖Y −GΓ[f ]‖2

2 = 2 ∗ (Y −GΓ[f ])TG′jΓ [f j], (9.13)

where G′jΓ ∈ Rn×n with elements (G′jΓ ){i,l} = ‖X j
w−X j

l ‖2
Hκ

j(X j
i , X

j
l ) for i, l = 1, . . . , n.
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Hence, on each coordinate of the Γ we move toward the minimizer by:

γjupdate = γj − α ∂

∂γj
‖Y −GΓ[f ]‖2

2, (9.14)

where α is the learning rate. It is worth mentioning that only a part of G must be

updated: Gj after γj updates. After stopping, we would do it with the next coordinate

until all coordinates are minimized. Then, after updating all coordinates, we check

the in-sample mean squared error update with the last time that all coordinates were

updated. The stopping criteria are when these two errors are close enough, or when

‖Γupdate − Γ‖2 is small enough

9.2 Sparse logistic scalar-on-function regression

Logistic regression can be seen as a modification of functional linear regression

model and a particular case of penalized likelihood regression used to analyse binary

dependent variable Y ∈ {0, 1}. The population model is assumed to be:

log(
P

1− P
) = α + 〈X, β〉H, (9.15)

where P = P (Y = 1|X), and α ∈ R. This can be also written as

P = S(α + 〈X, β〉H), (9.16)

where S(·) is one dimensional Sigmoid function S(z) = (1 + e−z)−1.

Thus, Y assumed to have Bernoulli distribution with parameter S(α + 〈X, β〉H).

The joint likelihood of α and β given a random sample (X1,Y1), . . . (Xn,Yn) is:

L(α, β) = Πn
i=1S(α + 〈Xi, β〉H)Yi(1− S(α + 〈Xi, β〉H))1−Yi , (9.17)
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Hence, the log–likelihood is:

l(α, β) =
n∑
i=1

Yi log(S(α + 〈Xi, β〉H)) + (1−Yi) log(1− S(α + 〈Xi, β〉H)). (9.18)

We can look at L(α, β) := −l(α, β) as the cost function of this model. This means in

the original optimization problem f(·) is substituted. The sample level of gradient is:

∇L(α, [β]) = −
n∑
i=1

{yi log(S(α + [xi]G[β])) + (1− yi) log(1− S(α + [xi]G[β]))}.

Consequently, the objective function is L([β]) + g(β) where

g(β) = λ(1− α)
∑

p

j=1

√
[βj]TGj[βj] + αλ

∑
p

j=1
[βj]TGj[βj].

9.2.1 First algorithm

The following Lemma shows that a similar iteration rule to that of (5.7) with the

Strong Rule can numerically solve for the Functional Logistic model solution.

Lemma 14. The loss function (9.17) satisfies the quadratic majorization (QM) con-

dition with H = 1/4(G[X̃1:n]
T[X̃1:n]G) + λderB

′′. In other words, for any β, β∗ ∈ H,

L([β]) ≤ L([β∗]) + ([β]− [β∗])∇L([β∗]) +
1

2
([β]− [β∗])TH([β]− [β∗]). (9.19)

The proof is similar to that of (58). Thus, the logistic optimization problem can

be numerically solved by iterating on the following update rule.

[βj](new) =
1

2αλ+ γj
SH

j

λ(1−α)(U
j + γj[β

j](old)), j = 1, . . . , p, (9.20)

where U j = −∇L([βj](old)).
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9.2.2 Second algorithm

We can consider f(α, β) := −l(α, β) as the cost function of this model, and find

its minimizer. This means that in the original optimization problem (4.1), f(·) is

substituted. The sample version of Lagrangian problem, f(·) would be replaced by

f(α, [β]) = −
n∑
i=1

{yi log(S(α + [xi]G[β])) + (1− yi) log(1− S(α + [xi]G[β]))}.

For convenience, we denote the vector b = (α, [β]T )T , block matrix F =

1 0

0 G

, and

vector qi = [1, [xi]]. With the above notation, the loss function is:

f(b) = −
n∑
i=1

{yi log(S(qiFb)) + (1− yi) log(1− S(qiFb))}.

[β]–update in scaled ADMM procedure would be an α and a [β]–update simultane-

ously or a b–update. Note that we would not penalize α.

Proposition 1. An α–update and [β]–update for the optimization problem (3.2) in

the Logistic regression case using gradient descent method is :

αnew := α− aDα([X], Y,G, ρ, α, [β]) (9.21)

[βnew] := [β]− bD([X], Y,G, ρ, α, [β], [γ]− [U ]), (9.22)

where a and b are appropriate learning rates, and

Dα([X], Y,G, ρ, α, [β]) :=
n∑
i=1

{S(α + [xi]G[β])− yi)[xi]T}

D([X], Y,G, ρ, α, [β], θ) := G

(
n∑
i=1

{S(α + [xi]G[β])− yi)[xi]T}+ ρ[β]− ρθ

)

until ‖[βnew]− [β]‖2
2 and |αk+1−αk| are smaller than desired algorithm’s thresholds,
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or justify the relative criterion instead-specially in the case of applying line search

backtracking to find the optimal learning rates.

Proof. The convergence of above algorithm is guaranteed by the fact that he input of

− log(S(·)) and − log(1− S(·)) (which are already convex) is linear (affine function)

in α and [β], thus f(α, [β]) is convex.

For [β]-update we have:

(αnew, [βnew]) : = arg min
α,[β]

(
f(α, [β]) +

ρ

2
([β]− [γ] + [U ])TG([β]− [γ] + [U ])

)

It is straightforward to differentiate with respect to α, [β] which completes the deriva-

tion of a gradient descent algorithm.

It is well known that gradient descent is an appropriate start for a convex opti-

mization problem; however, after multiple steps, the updated values can fall into a

neighborhood of the solution and continue toward it slowly. On the other hand, if the

current value is in a closed neighborhood of the solution, the Newton method-Hessian

matrix- converges faster. A combination of Gradient descent to approach a neigh-

borhood of the solution, then a Newton method that converges quickly is suggested.

Denote Q = (qT1 , . . . , q
T
n )T .

Proposition 2. A gradient descent b–update for the optimization problem (3.2) in a

Logistic regression is:

bnew := b− aD(Q, Y,F , ρ, bk), (9.23)

with

D(Q, Y,F , ρ, b) = F{QT (S(QFb)− Y ) + ρ(b− θ)},
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where a is appropriate learning rate, S(QFb) is element–wise Sigmoid function, and

θ = (α, ([γk] − [Uk])T )T . The iterations continue until ‖bnew − b‖2
2 is smaller than

the desired algorithm’s threshold. Alternatively they continue until relative stopping

criteria is justified. The relative stopping criteria is a more reasonable approach in

case of line search backtracking in order to update learning rates.

On the other hand, a b–update with the Newton method is

bnew := b− a′H(Q, Y,F , ρ, bk)−1D(Q, Y,F , ρ, b) (9.24)

where a′ is the appropriate learning rate and

H(Q, Y,F , ρ, b) = F{QT (diag(S(QFb))(1− S(QFb))QF + ρImp+1}.

Note that diag(S(QFb)) is a diagonal matrix of element-wise applying Sigmoid

function on QFb.

Proof. The convergence of the algorithm is guaranteed by the fact that input of

− log(S(·)) and − log(1−S(·)) (which are already convex functions) are linear (affine

function) in b, thus, f(b) is convex. We have:

b : = arg min
b

(
f(b) +

ρ

2
(b− θ)TF(b− θ)

)
.

It is straightforward to differentiate twice with respect to b, which completes the

derivation of the gradient descent and Newton algorithm above.

9.2.3 fMRI applications

The application of the sparse functional logistic regression can be found in the fMRI

experiments. Analyzing the resting-state fMRI data for a diseased classification is one

of them. For example: Alzheimer +1, Healthy -1 is a binary variable. Through such
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an analysis, we can select the ROIs associated with such a disease. In addition to this

application, we can use such a model in the following paradigm in a blocked designed

analysis of a task fMRI experiment. If stimuli are presented for all subjects at the

same time, we can analyze the associated ROI activities when the stimulus is on as

+1, and otherwise -1. Then, it is possible to select the ROIs associated with such

stimuli.

While the code implantation and the estimation consistency can be straightfor-

ward, it seems that the selection consistency is not already developed for the classical

multivariate version of such a model, so verifying the oracle property of the functional

version would be a challenge.

9.3 Sparse function-on-function regression

We can consider the situations where the response value is a function and the

predictors are multivariate functions, but only a few functional predictors affect the

response. i.e., a random function Y and random functions X j ∈ Hj have the following

relation,

Y =
∑
j∈A

βj(X j) + ε, (9.25)

where A ⊆ {1, . . . , p} is an unknown active set of indices involved in this regression

model.

Assume that we have a random sample of size n from the model (9.25). Then, we

propose the following objective function to estimate the unknown operator β and the

active set A .

L(β;λ1n) =
1

2
En(Y − β(X))2 + λ1n

∑
p

j=1
‖βj‖F , β ∈ H. (9.26)
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9.3.1 Iterative algorithm

The following can be an algorithm to solve the problem.

[βj](new) =
1

2αλ+ γj
SH

j

λ(1−α)(U
j + γj[β

j](old)), j = 1, . . . , p. (9.27)

where U j = −∇L([βj](old)) and the norm is Frobenius norm and soft treshholding

rule is with respect to this norm.

9.3.2 fMRI application

An important application can be analyzing random event-related designs in a task

fMRI experiment. For example, the response value can be taken as a binary time

series of stimuli that are on or off randomly for each individual. Through such an

analysis, we can select ROIs that are associated with the stimulus.

9.4 Standardization

Suppose the scalar on function penalized regression (3.2) through ADMM. Consider

Theorem 3. The following algorithm estimates the standard deviations of the norm

of the coefficient curves in the final active set.

9.4.1 Algorithm

The only update that would result in different norms for each functional coefficient

is the second update, γ–update. Hence we can estimate the standard deviation of the

norm of [β] and finally threshold it in the γj update for each j. The third update

would affect all functional coefficients’ standard deviations with the same amount;

hence, we ignore it. Denote:

[βnew

i ] = ([X̃i][X̃i]
T + nρIM)−1([X̃i]Yi + nρ([γ]− [U ])) i = 1, · · · , n (9.28)
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For each functional coefficient j = 1, · · · , p, we can estimate the standard deviation

of ‖βj‖ based on variation of ‖βji ‖ for i = 1, · · · , n.

9.4.2 fMRI Applications

Such estimations for the standard deviations of the norm of the estimated functions

in the active set can be used to rank the output of the penalized group LASSO

regression with respect to the ratio of the norms of estimations and their standard

deviations. This can be used to rank the importance of final ROIs or voxels. On

the other hand, it can be used to remove the estimated curves that are not already

removed through the sparse regression but have significant noise and weak signal.

Except for theoretical verification of such a method, there is not much challenge in

the implementation and code.



CHAPTER 10: CONCLUSION

We propose new methods for scalar-on-function regression with the functional pre-

dictor selection and the estimation of smooth coefficient functions when the predictors

are multivariate functional data. We derive the algorithm for the implementation and

develop the consistency of the methods by showing its oracle property. The simula-

tion and real data application show the effectiveness of the methods with the superior

performance of the proposed penalized methods over the functional regression model

with the OLS. Furthermore, the proposed methods provide higher accuracy and low

complexity of the model in the fMRI study. It shows that there is an urgent need in

the fields of medical sciences and other related areas.

The manuscript also has a potential impact on the field of statistical research for

more advanced sparse functional models. Considering that there is not enough in-

vestigation into sparse modeling of multivariate functional data, the computation

algorithm derived in this thesis will pave the way to develop other novel sparse meth-

ods. In addition, the methods can be extended to the nonlinear regression model via

the reproducing kernel Hilbert space (RKHS). Since the theoretical justification is

constructed under the infinite-dimensional setting, the extension on the RKHS can

adopt the results from this thesis. Furthermore, the proposed methods are based on

groups such that a single functional predictor forms a group. Hence, it can be easily

extended to the sparse models where multiple functional predictors form a group. For

example, instead of averaging out fMRI signals of voxels over the brain regions, we

would keep the original data and apply the MFG methods with groups formed by

each region’s voxels activities. Then, we might figure out a new foundation that has

been removed in the masking procedure.
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In addition, extensions of the proposed methods can be applied to a wide range of

research areas. For example, extending the result to binary response values can have

applications in block design fMRI experiments where a stimulus status is on or off

for all subjects simultaneously. This model can then select ROIs or voxels associated

with the stimulus. Furthermore, such an extension can be used to classify the ROI

or voxels associated with a disease in a case-control study. Standardizing the results

by estimating the standard deviation of the norm of the estimated coefficient curves

can lead to a rank analysis of the ROI or voxels in the final active set of the sparse

models. Such a rank analysis determines the importance of each ROI or voxel in

the final active set and reveals the weak signal and large noise curves. Aside from

these two potential extensions and their fMRI applications, extension to functional

response values can have an essential application in event-related design task fMRI

experiment data analysis where response values are a binary time series of a stimulus

status that is randomly on or off for each subject in time.
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APPENDIX A: PROOFS

Proof of Lemma 4 The representation of [Γ̂XX] can be shown by the relation between

the two following equations.

〈f, Γ̂XXg〉H = [f ]TBG[X1:n]BQ[Γ̂XX]B[g]B = En(〈f,X − EnX〉H〈g,X − EnX〉H),

〈f, Γ̂XXg〉H = [f ]TB [Γ̂XX][g]B,

for any f, g ∈ H. The second equation can be shown as following. For any β ∈ H,

Γ̂Y Xβ = En{(Y − EnY )⊗ (X − EnX)}β = En{(Y − EnY )〈X − EnX, β〉H}

= En{(Y − EnY )[X − EnX]TG[β]}.

We can also see that Γ̂XY = n−1[X̃1:nY ]. �

Lemma 15. Take x, y ∈ Rm where y is known.

arg min
x

(
1

2
‖x− y‖2 + λ‖x‖

)
= Sλ(y), (A.1)

where Sλ(y) := 1{‖y‖>λ}

(
1− λ

‖y‖

)
+
y is the block soft threshold operator in real space.

Proof of Lemma 15. Observe that

arg min
x

(
1

2
(x− y)T(x− y) + λ‖x‖

)
= arg min

x

(
1

2
(xTx− 2xTy) + λ‖x‖

)
.

To satisfy the KarushâKuhnâTucker (KKT) stability condition, the derivative of

the above objective function with respect to x must be equal to zero. If the derivative

does not exist, the subdifferential must include zero. The derivative is x − y + λsx,

where sx is the subdifferential of ‖x‖ at x.
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If x 6= 0, sx = x/‖x‖ and the KKT condition gives

x(1 + λ/‖x‖) = y.

Compute the ‖y‖ in the preceding equation and solve for ‖x‖. Plugging it back into

the equation gives us,

x = (1− λ/‖y‖)y.

The condition x 6= 0 is equivalent to ‖y‖ > λ. On the other hand, x = 0 is equivalent

to 0 ∈ −y + λsx, or y ∈ λsx. In this case sx = {z ∈ Rm|‖z‖ ≤ 1}. Therefore,

‖y‖2 ≤ λ2 which completes the proof. �

Proof of Theorem 3.

1) β-update.

Consider the objective function for β in (4.5). After removing the constant terms

with respect to β, with the help of Lemma 4, we have

[βnew] := arg min
β

(
f(β) +

ρ

2
([β]− [γ] + [U ])T([β]− [γ] + [U ])

)
= arg min

β

(
1

2n
([β]T[X̃1:n][X̃1:n]

T[β]− 2[β]T[X̃1:n]Y ) +
ρ

2
{[β]T[β]− 2[β]T([γ]− [U ])}

)
.

Differentiate with respect to β, and set the derivative equal to zero to satisfy the

KKT conditions. The result is:

n−1[X̃1:n][X̃1:n]
T[β]− n−1[X̃1:n]Y + ρ([β]− ([γ]− [U ])) = 0.

Solve for β, which completes the derivation. Note that the result is similar to the

functional ridge regression.

2) γ-update.
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Similarly, if we remove the constant terms with respect to γ and expand the objective

function for γ, we have

[γnew] := arg min
γ

(
g(γ) +

ρ

2
([βnew]− [γ] + [U ])T([βnew]− [γ] + [U ])

)
=

arg min
γ

(
p∑
j=1

{λ([γj]T[γj])
1
2 +

ρ

2
([γj]− ([(βj)new] + [U j]))T([γj]− ([(βj)new] + [U j]))}

)
.

Note that the objective function is now additive, which allows us to optimize γ for

each γj, j = 1 . . . , p. Thus, the above optimization is equivalent to

[(γj)new] := arg min
γj

(
λ([γj]T[γj])

1
2 +

ρ

2
([γj]− ([(βj)new] + [U j]))T([γj]− ([(βj)new] + [U j]))

)
,

for j = 1, . . . p. Applying Lemma 15 completes the proof. �

Lemma 16. For x, y ∈ Rm where y is known and a, b are constants

arg min
x

(
1

2
(x− y)T(x− y) + a(xTx)

1
2 +

b

2
xTx

)
=

1

b+ 1
Sa(y).

Proof of Lemma 16.

The proof is similar to that of lemma 15. The only difference is the derivative of the

objective function. It is x−y+as+ bx, where s is the subdifferential. The rest of the

proof is straightforward. If x 6= 0 we see that x(1+b+ a
‖x‖) = y. Taking norm ‖.‖ from

both sides, solving for ‖x‖, and plugging it back, we would have x = ( 1
1+b

)(1− a
‖y‖)y.

Note that this is only possible when ‖x‖ > 0, which means ‖y‖ > a. If x = 0, it

results in 0 ∈ −y + as, or y ∈ as. Since in this case s = {[Z]|Z ∈ Rm&‖Z‖ ≤ 1},

‖y‖ ≤ a, which completes the derivation above. �

Proof of Theorem 4. The proof is a direct result of the combination of Theorem 3
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and Lemma 16. �

Lemma 17. Assume that ΓXX is a positive definite operator and when n approaches

infinity, λn approaches zero slower than the rate at which
√
n approaches infinity.

Then, ‖(Γ̂XX + λnI)−1ΓXX − (ΓXX + λnI)−1ΓXX‖H = Op(λ
−1
n n−1/2), and ‖(Γ̂XX +

λnI)−1Γ̂XX − (ΓXX + λnI)−1ΓXX‖H = Op(λ
−1
n n−1/2), where ‖ · ‖H is the operator

norm.

Proof of Lemma 17. Note that ΓXX(ΓXX + λnI) = I − λn(ΓXX + λnI)−1 and

(Γ̂XX + λnI)Γ̂XX = I − λn(Γ̂XX + λnI)−1. Therefore,

(Γ̂XX + λnI)−1 − (ΓXX + λnI)−1 = (Γ̂XX + λnI)−1(ΓXX − Γ̂XX)(ΓXX + λnI)−1.

To be specific, if we add and subtract λn(Γ̂XX +λnI)−1(ΓXX +λnI)−1 in the left-hand

side of the above equation, we can easily derive the right-hand side of the equation.

In addition, we have

(Γ̂XX + λnI)−1ΓXX − (ΓXX + λnI)−1ΓXX (A.2)

= (Γ̂XX + λnI)−1(ΓXX − Γ̂XX)(ΓXX + λnI)−1ΓXX .

Note that (Γ̂XX + λnI)−1 = (ΓXX + Op(n
−1/2) + λnI)−1 by Lemma 7. Thus, its

norm is ‖(Γ̂XX + λnI)−1‖H = Op(λ
−1
n ). By Lemma 7, ‖(ΓXX − Γ̂XX)‖H = Op(n

−1/2).

The norm of product of the last two parentheses is bounded by 1. Hence, ‖(Γ̂XX +

λnI)−1ΓXX − (ΓXX + λnI)−1ΓXX‖H = Op(λ
−1
n n−1/2).
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For the second convergence rate, note that

(Γ̂XX + λnI)−1Γ̂XX − (Γ̂XX + λnI)−1ΓXX

= (Γ̂XX + λnI)−1(Γ̂XX − ΓXX) = Op(λ
−1
n n−1/2).

Therefore,

‖(Γ̂XX+λnI)−1Γ̂XX − (ΓXX + λnI)−1ΓXX‖H

≤ ‖(Γ̂XX + λnI)−1Γ̂XX − (Γ̂XX + λnI)−1ΓXX‖H

+ ‖(Γ̂XX + λnI)−1ΓXX − (ΓXX + λnI)−1ΓXX‖H

= Op(λ
−1
n n−1/2).

�

Proof of Lemma 8.

The following proof is similar to the proof mentioned in (37) which considers a

different penalty term that is square of the group LASSO penalty. Then, they proved

the consistency by stating that the solution path of the group LASSO will be the

same. Instead, we consider a different optimization problem M̃n(·) proposed below,

which directly leads to the consistency of multivariate functional group LASSO.

Denote β̃Jn as the unique minimizer of the following objective function.

M̃n(α) =
1

2
Γ̂Y Y − Γ̂Y XJ (α) +

1

2
〈α, Γ̂XJXJ (α)〉 +

λn
2

∑
j∈J

‖αj‖2
Hj

‖βj‖Hj
, α ∈ H,

where βj is the j-th functional component of βJ in the population model. β̃Jn has a

closed-form solution similar to the solution of a functional predictor ridge regression

β̃Jn = (Γ̂XJXJ + λnD)−1(Γ̂XJY ),
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where D is a diagonal operator, diag((·)/‖βj‖). We can replace Γ̂XJY by the following

expression, after adding and subtracting Γ̂XJXJ (βJ).

β̃Jn = (Γ̂XJXJ + λnD)−1(Γ̂XJXJβJ + Γ̂Xε), (A.3)

where Γ̂Xε is the empirical covariance operator between observed functional data X

and the population error, ε = Y −〈X, β〉 = Y −〈XJ , βJ〉. D is a self-adjoint operator,

and ‖βj‖H 6= 0 for all j ∈ J by the definition of the population active set J . This

means there are positive constants Dmin = 1/max
j∈J
‖βj‖H and Dmax = 1/min

j∈J
‖βj‖H

such that DmaxI < D < DminI. The closed-form solution (A.3) can be broken down

into multiple terms. One of the terms is

(Γ̂XJXJ + λnD)−1(Γ̂Xε). (A.4)

Applying the same technique in the proof of Lemma 17 and using the result of Lemma

7, we can see that ‖Γ̂XJXJ + λnD
−1‖H ≤ D−1

minλ
−1
n , and

(Γ̂XJXJ + λnD)−1(Γ̂Xε) = Op(n
−1/2λ−1

n ).

Hence, we have

β̃Jn − βJ = (Γ̂XJXJ + λnD)−1(Γ̂XJXJβJ + Γ̂Xε)− βJ

= (Γ̂XJXJ + λnD)−1(Γ̂XJXJβJ)− (ΓXJXJ + λnD)−1ΓXJXJβJ

+ (ΓXJXJ + λnD)−1ΓXJXJβJ − βJ +Op(n
−1/2λ−1

n )

(A.5)

The first two terms of the last equation in (A.5) is Op(n
−1/2λ−1

n ) by Lemma 17. By

using (ΓXJXJ +λnD)−1ΓXJXJ = I−λn(ΓXJXJ +λnD)−1D, we can simplify the third
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and fourth terms of (A.5) as

(ΓXJXJ + λnD)−1ΓXJXJβJ − βJ = (−λn(ΓXJXJ + λnD)−1D)βJ . (A.6)

Consequently, we have

β̃Jn − βJ = (−λn(ΓXJXJ + λnD)−1D)βJ +Op(n
−1/2λ−1

n ). (A.7)

Now, we show the norm of λn(ΓXJXJ +λnD)−1D is Op(
√
λn+n−1/2λ−1

n ). Let hJ ∈ HJ

be the element in the assumption such that βJ = Γ
1/2

XJXJh
J . Then,

‖λn(ΓXJXJ + λnD)−1DβJ‖2
HJ

= λ2
n〈βJ , D(ΓXJXJ + λnD)−2DβJ〉HJ

≤ λ2
nD

2
max〈βJ , (ΓXJXJ + λnDminI)−2βJ〉HJ

≤ λnD
2
maxD

−1
min〈βJ , (ΓXJXJ + λnDminI)−1βJ〉HJ

= λnD
2
maxD

−1
min〈Γ

1/2

XJXJh
J , (ΓXJXJ + λnDminI)−1Γ

1/2

XJXJh
J〉HJ

≤ λnD
2
maxD

−1
min‖hJ‖2

H.

The third line of the above equation is valid because ‖ΓXJXJ +λnDminI‖HJ ≥ λnDmin.

Combining the results above, we have

‖β̃Jn − βJ‖H = Op(
√
λn + n−1/2λ−1

n ).

Now, let’s compare β̃Jn and βJn where βJn is the solution to the optimization problem

of Mn(α). Consider the following equation.

Mn(α)− M̃n(α) = λn
∑
j∈J

(
‖αj‖Hj −

‖αj‖2
Hj

2‖βj‖Hj

)
. (A.8)
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The partial Fréchet derivative of the equation (A.8) with respect to αi for an i ∈ J is

Dαi(Mn(α)− M̃n(α)) = λn

(
〈αi, ·〉Hi
‖αi‖Hi

− 〈α
i, ·〉Hi
‖βi‖Hi

)
. (A.9)

Since βJ are nonzero, (A.9) is continuously differentiable around βJ , andDαiM̃n(β̃Jn )) =

0, we have

‖DαiMn(β̃Jn ))− 0‖ = λn

∥∥∥∥∥〈β̃in, ·〉Hi‖β̃in‖Hi
− 〈β̃

i
n, ·〉Hi
‖βi‖Hi

∥∥∥∥∥ ,
where the ‖ · ‖ is the operator norm. In addition, since βi 6= 0 for i ∈ J , it can be

easily shown that

‖DαiMn(β̃Jn ))− 0‖Hi ≤ Cλn‖βJ − β̃Jn‖HJ ,

for some constant C > 0. Thus, we have

‖DαiMn(β̃Jn ))‖Hi = λnOp(λ
1/2
n + n−1/2λ−1

n ). (A.10)

Now, since Mn is strictly convex near the true βJ , its second-order Fréchet derivative

has a lower bound. Consequently, we have

Mn(αJ) ≥Mn(β̃Jn ) + 〈DαJMn(β̃Jn ), (αJ − β̃Jn )〉HJ + C ′λn‖αJ − β̃Jn‖2
HJ ,

for some C ′ > 0. Suppose that αJ is near β̃Jn and let ηn = ‖αJ − β̃Jn‖2
HJ which tends

to zero. Subsequently, we can rewrite the lower bound such that

Mn(αJ) ≥Mn(β̃Jn ) + ηnλnOp(
√
λn + n−1/2λ−1

n ) + C ′λnη
2
n, (A.11)

If the last term is tending to zero slower than the second term, we can conclude
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that all minima of Mn(·) are inside the ball {αJ : ‖αJ − β̃Jn‖2
HJ < η} with proba-

bility tending to one. This is because Mn(·), on the edge of the ball, takes values

greater the ones inside the ball. i.e., the global minimum of Mn(·) is at most ηn

away from β̃Jn . Thus, the necessary condition for the proof is ηnλ
3/2
n = o(λnη

2
n) and

n−1/2ηn = o(λnη
2
n). Alltogether, we have the consistency results if ηn converges to

zero slower than λ
1/2
n + n−1/2λ−1

n . �

Proof of Theorem 5. We rewrite the multivariate functional group LASSO objec-

tive function (3.2) as,

M̂n(α) =
1

2
Γ̂Y Y − Γ̂Y Xα +

1

2
〈α, Γ̂XXα〉H + λn

p∑
j=1

‖αj‖Hj .

Denote a minimizer of M̂n(·) by β̂n. Since it is a convex function, it has a unique

minimizer. In addition, if λn goes to zero, the objective function converges to the

regression problem without the penalty whose unique minimizer is β. Thus, it is easy

to see that Ĵ = {j : β̂jn(·) 6= 0} converges to J via the M-estimation theory. See (59)

and (60).

Now, we extend βJn in Lemma 8 with zero functions as βin for i ∈ J c, name it

βn ∈ H. Note that, it is a consistent estimator of β by Lemma 8. Since both of

the Mn(·) and M̂n(·) have unique minimizers and the βn is a consistent estimator of

β, the consistency of β̂n can be shown, if we can show that βn satisfies the optimal

conditions for M̂n(·) with a probability tending to one. The (asymptotically) optimal

conditions of M̂n(·) are


‖Γ̂XiXα− Γ̂XiY ‖Hi ≤ λn i /∈ J

〈Γ̂XjXα, ·〉Hj − Γ̂Y Xj(·) = − λn
‖αj‖Hj

〈αj, ·〉Hj j ∈ J.

The second equation is immediately satisfied with α = βn, since it satisfies the KKT
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condition for Mn(·). We focus on the above inequality of the optimal condition.

The first derivative condition for minimizing Mn(·) implies that βJn should justify the

following equation.

−Γ̂Y XJ (·) + 〈Γ̂XJXJβJn , ·〉HJ + λn
∑
j∈J

〈βjn, ·〉Hj
‖βjn‖Hj

= 0.

Define Dn be an operator from HJ to HJ such that Dn(αJ) = diag(αj/‖βjn‖) for

j ∈ J . We rewrite the above equation as

−Γ̂Y XJ (·) + 〈(Γ̂XJXJ + λnDn)βJn , ·〉HJ = 0.

In addition, note that

Γ̂Y XJ (·) = 〈Γ̂XJY , ·〉HJ = 〈Γ̂XJXJβJ + Γ̂Xε, ·〉HJ .

Thus, we have

〈βJn , ·〉 = 〈(Γ̂XJXJ + λnDn)−1(Γ̂XJXJβJ + Γ̂XJ ε), ·〉HJ .

Furthermore, by using a similar technique used in (A.6),

(Γ̂XJXJ + λnDn)−1Γ̂XJXJβJ = βJ − (Γ̂XJXJ + λnDn)−1λnDnβ
J .
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Thus, for an i ∈ J c:

Γ̂XiY − Γ̂XiXJβJn = Γ̂XiY − Γ̂XiXJβJ + λnΓ̂XiXJ (Γ̂XJXJ + λnDn)−1Dnβ
J

− Γ̂XiXJ (Γ̂XJXJ + λnDn)−1Γ̂XJ ε

= λnΓ̂XiXJ (Γ̂XJXJ + λnDn)−1Dnβ
J + Γ̂Xiε

− Γ̂XiXJ (Γ̂XJXJ + λnDn)−1Γ̂XJ ε,

by using the fact that Γ̂XiY − Γ̂XiXJ (βJ) = Γ̂Xiε. At this point, the formulation has a

similar form, derived in Theorem 11 of (37). Furthermore, Lemma 8 satisfies the con-

dition necessary to derive the rest of the proof so that they can be derived similarly. �
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APPENDIX B: LISTS AND 3D DISPLAY

Figure B.1 displays the regions of interests associated with the active sets similar

to that of figures 8.1 and 8.2 but in three dimensions. The colors match those of

figures 8.1 and 8.2.

List of regions of interests: The following are the lists of the regions of interest of

the human brain used in the application section 8.1. The atlas labels of the human

brain and full names can be found at Atlas Label.

The list of the regions of interest associated with the active set of MFG-LASSO when the

response value is IQ score:

”Frontal–Mid–Orb–L”, ”Frontal–Mid–Orb–R”, ”Frontal–Inf–Oper–L”, ”Frontal–Inf–Oper–R”,”Frontal–Inf–Tri–L”,

”Frontal–Inf–Tri–R”, ”Frontal–Inf–Orb–L”,”Frontal–Inf–Orb–R”, ”Rolandic–Oper–R”, ”Supp–Motor–Area–L”,

”Olfactory–L”, ”Olfactory–R”, ”Frontal–Sup–Medial–L”,”Frontal–Med–Orb–L”, ”Frontal–Med–Orb–R”, ”Rectus–

L”, ”Cingulum–Ant–L”, ”Cingulum–Post–L”, ”Cingulum–Post–R”, ”Amygdala–L”, ”Amygdala–R”, ”Calcarine–L”,

”Calcarine–R”, ”Cuneus–L”, ”Cuneus–R”, ”Lingual–L”, ”Occipital–Sup–L”, ”Occipital–Sup–R”, ”Occipital–Mid–R”,

”Occipital–Inf–L”, ”Occipital–Inf–R”, ”Parietal–Sup–L”, ”Parietal–Inf–R”, ”SupraMarginal–L”, ”SupraMarginal–

R”, ”Angular–L”, ”Angular–R”, ”Precuneus–L”, ”Paracentral–Lobule–L”, ”Paracentral–Lobule–R”,”Putamen–L”,

”Pallidum–R”, ”Heschl–R”, ”Temporal–Sup–L”, ”Temporal–Pole–Mid–L”, ”Cerebellum–3–L”, ”Cerebellum–3–R”,

”Vermis–1–2”, ”Vermis–3”, ”Vermis–4–5”, ”Vermis–6”, ”Vermis–9”, ”Vermis–10”.

The list of the regions of interest associated with the active set of MFG-LASSO when

the response value is Verbal IQ:

”Frontal–Sup–R”, ”Frontal–Mid–Orb–L”,”Frontal–Mid–Orb–R”, ”Frontal–Inf–Oper–R”,”Frontal–Inf–Tri–L”,

”Frontal–Inf–Tri–R”, ”Frontal–Inf–Orb–L”,”Frontal–Inf–Orb–R”,”Rolandic–Oper–R”, ”Supp–Motor–Area–L”,

Figure B.1: Three-dimensional display of figures 8.1 and 8.2. The results when the
ADHD score is the response value are in the right panel and the results when the IQ
score is the response value are in the left panel.

journals.plos.org/plosone/article/file?type=supplementary&id=info:doi/10.1371/journal.pone.0088690.s001
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”Olfactory–L”, ”Frontal–Sup–Medial–L” ”Frontal–Med–Orb–L”,”Frontal–Med–Orb–R”,”Rectus–L”,

”Cingulum–Ant–L”, ”Cingulum–Post–L”, ”Cingulum–Post–R”, ”Amygdala–L”, ”Amygdala–R”, ”Calcarine–L”,

”Calcarine–R”, ”Cuneus–L”, ”Cuneus–R”, ”Occipital–Sup–L”, ”Parietal–Sup–L”, ”Parietal–Sup–R”,

”Parietal–Inf–L”, ”Parietal–Inf–R”, ”SupraMarginal–L”, ”SupraMarginal–R”, ”Angular–L”, ”Precuneus–L”,

”Precuneus–R”, ”Paracentral–Lobule–L”,”Paracentral–Lobule–R” ”Putamen–L”, ”Pallidum–R”, ”Heschl–R”,

”Temporal–Sup–L”, ”Temporal–Pole–Mid–L”,”Cerebellum–3–L”, ”Vermis–1–2”, ”Vermis–3”, ”Vermis–4–5”,

”Vermis–6”, ”Vermis–9”, ”Vermis–10”.

The list of the regions of interest associated with the active set of MFG-LASSO when

the response value is Performance IQ:

”Frontal–Sup–Orb–L”,”Frontal–Mid–Orb–L”,”Frontal–Mid–Orb–R”, ”Frontal–Inf–Oper–L”,”Frontal–Inf–Oper–R”,

”Frontal–Inf–Tri–L”, ”Frontal–Inf–Tri–R”,”Frontal–Inf–Orb–L”,”Frontal–Inf–Orb–R”, ”Rolandic–Oper–R”, ”Supp–

Motor–Area–L”,”Olfactory–L”, ”Olfactory–R”, ”Frontal–Sup–Medial–L”,”Frontal–Sup–Medial–R”, ”Frontal–Med–

Orb–L”,”Frontal–Med–Orb–R”,”Rectus–L”, ”Insula–R”, ”Cingulum–Ant–L”, ”Cingulum–Mid–L”, ”Cingulum–Post–

L”, ”Cingulum–Post–R”, ”ParaHippocampal–L”, ”ParaHippocampal–R”,”Amygdala–L”, ”Amygdala–R”, ”Calcarine–

L”, ”Calcarine–R”, ”Cuneus–L”, ”Cuneus–R”, ”Lingual–L”, ”Occipital–Sup–L”, ”Occipital–Sup–R”, ”Occipital–

Mid–L”, ”Occipital–Mid–R”, ”Occipital–Inf–L”, ”Occipital–Inf–R”, ”Postcentral–L”, ”Postcentral–R”, ”Parietal–

Sup–L”, ”Parietal–Sup–R”, ”Parietal–Inf–L”, ”Parietal–Inf–R”, ”SupraMarginal–L”, ”SupraMarginal–R”, ”Angular–

L”, ”Angular–R”, ”Precuneus–L”, ”Precuneus–R”, ”Paracentral–Lobule–L” ”Paracentral–Lobule–R”,”Caudate–L”,

”Putamen–L”, ”Pallidum–R”, ”Thalamus–L”, ”Heschl–L”, ”Heschl–R”, ”Temporal–Sup–L”, ”Temporal–Pole–Sup–

L”, ”Temporal–Pole–Sup–R”,”Temporal–Mid–L”, ”Temporal–Pole–Mid–L”, ”Temporal–Pole–Mid–R”,”Cerebellum–

3–L”, ”Cerebellum–3–R”, ”Cerebellum–4–5–R”, ”Cerebellum–6–L”, ”Cerebellum–6–R”, ”Vermis–1–2”, ”Vermis–3”,

”Vermis–4–5”, ”Vermis–6”, ”Vermis–7”, ”Vermis–9”, ”Vermis–10”.

The list of the regions of interest associated with the active set of MFG-LASSO when

the response value is ADHD score:

”Frontal–Mid–L”, ”Frontal–Mid–Orb–L”,”Frontal–Mid–Orb–R”, ”Frontal–Inf–Oper–L”,”Frontal–Inf–Oper–R”,

”Frontal–Inf–Tri–L”, ”Frontal–Inf–Orb–L”,”Frontal–Inf–Orb–R”,”Supp–Motor–Area–L”, ”Olfactory–L”, ”Frontal–

Sup–Medial–L”,”Frontal–Sup–Medial–R” ”Frontal–Med–Orb–L”,”Rectus–L”, ”Cingulum–Ant–L”, ”Cingulum–Post–

L”, ”ParaHippocampal–R”,”Amygdala–L”, ”Calcarine–L”, ”Cuneus–L”, ”Cuneus–R”, ”Occipital–Inf–L”, ”Occipital–

Inf–R”, ”Parietal–Sup–L”, ”Parietal–Inf–L”, ”SupraMarginal–L”, ”SupraMarginal–R”, ”Angular–L”, ”Angular–R”,

”Precuneus–L”, ”Paracentral–Lobule–L”,”Paracentral–Lobule–R”,”Putamen–L”, ”Heschl–R”, ”Temporal–Sup–L”,

”Temporal–Pole–Sup–R”, ”Temporal–Pole–Mid–L”,”Cerebellum–9–L”, ”Vermis–1–2”, ”Vermis–4–5”, ”Vermis–10”.

The list of the regions of interest associated with the active set of MFG-LASSO when

the response value is ADHD Inattentive:

”Frontal–Mid–Orb–L”,”Frontal–Mid–Orb–R”,”Frontal–Inf–Oper–L”, ”Frontal–Inf–Oper–R”,”Frontal–Inf–Tri–L”,

”Frontal–Inf–Orb–L”, ”Frontal–Inf–Orb–R”,”Supp–Motor–Area–L”,”Frontal–Sup–Medial–L” ”Frontal–Sup–Medial–

R”,”Frontal–Med–Orb–L”,”Rectus–L”, ”Cingulum–Ant–L”, ”Cingulum–Post–L”, ”Cingulum–Post–R”,

”ParaHippocampal–R”, ”Amygdala–L”, ”Calcarine–L”, ”Cuneus–L”, ”Cuneus–R”, ”Lingual–L”, ”Occipital–Inf–L”,

”Occipital–Inf–R”, ”Parietal–Sup–L”, ”Parietal–Inf–L”, ”SupraMarginal–L”, ”SupraMarginal–R”, ”Angular–L”,
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”Angular–R”, ”Precuneus–L”, ”Precuneus–R”, ”Paracentral–Lobule–L”,”Paracentral–Lobule–R” ”Heschl–R”,

”Temporal–Sup–L”, ”Temporal–Pole–Sup–R”, ”Temporal–Pole–Mid–L”,”Cerebellum–4–5–R”, ”Vermis–1–2”,

”Vermis–4–5”, ”Vermis–10”.

The list of the regions of interest associated with the active set of MFG-LASSO when

the response value is ADHD Hyper/Impulsive:

”Frontal–Mid–Orb–L”,”Frontal–Mid–Orb–R”,”Frontal–Inf–Oper–L”, ”Frontal–Inf–Oper–R”,”Frontal–Inf–Tri–L”,

”Frontal–Inf–Orb–L”, ”Frontal–Inf–Orb–R”,”Rolandic–Oper–R”, ”Supp–Motor–Area–L”, ”Olfactory–L”, ”Frontal–

Sup–Medial–L”,”Frontal–Sup–Medial–R” ”Frontal–Med–Orb–L”,”Frontal–Med–Orb–R”,”Rectus–L”, ”Rectus–R”,

”Cingulum–Ant–L”, ”Cingulum–Mid–L”, ”Cingulum–Post–L”, ”ParaHippocampal–R”,”Amygdala–L”, ”Amygdala–

R”, ”Calcarine–L”, ”Cuneus–L”, ”Cuneus–R”, ”Occipital–Sup–R”, ”Occipital–Mid–R”, ”Occipital–Inf–L”, ”Occipital–

Inf–R”, ”Parietal–Sup–L”, ”Parietal–Inf–L”, ”Parietal–Inf–R”, ”SupraMarginal–L”, ”SupraMarginal–R”, ”Angular–

L”, ”Angular–R”, ”Putamen–L”, ”Pallidum–R”, ”Heschl–L”, ”Heschl–R”, ”Temporal–Sup–L”, ”Temporal–Pole–

Sup–R”, ”Temporal–Pole–Mid–L”,”Temporal–Pole–Mid–R”,”Cerebellum–3–R”, ”Cerebellum–4–5–R”, ”Cerebellum–

9–L”, ”Vermis–1–2”, ”Vermis–3”, ”Vermis–4–5”, ”Vermis–6”, ”Vermis–7”, ”Vermis–10”.

The list of the regions that are associated with IQ but not with ADHD by the MFG-LASSO:

”Frontal–Inf–Tri–R”,”Rolandic–Oper–R”,”Olfactory–R”, ”Frontal–Med–Orb–R”,”Cingulum–Post–R”, ”Amygdala–

R”, ”Calcarine–R”, ”Lingual–L”, ”Occipital–Sup–L”,”Occipital–Sup–R”, ”Occipital–Mid–R”,”Parietal–Inf–R”,

”Pallidum–R”, ”Cerebellum–3–L”, ”Cerebellum–3–R”, ”Vermis–3”, ”Vermis–6”, ”Vermis–9”.

The list of the regions that are associated with ADHD but not with IQ by the MFG-LASSO:

”Frontal–Mid–L”, ”Frontal–Sup–Medial–R”,”ParaHippocampal–R”,”Parietal–Inf–L”, ”Temporal–Pole–Sup–R”,

”Cerebellum–9–L”.

List of variables and countries in the econometric data: The following are the lists

of the countries and functional covariates used in the application section 8.2.

List of functional covariates in the econometric data:

[1] Population growth (annual %), [2] Rural population (% of total population), [3] Urban population (% of total

population), [4] Urban population growth (annual %), [5] Rural population growth (annual %), [6] Adjusted savings:

education expenditure (% of GNI), [7] Immunization, DPT (% of children ages 12-23 months), [8] Age dependency

ratio (% of working-age population), [9] Age dependency ratio, old (% of working-age population), [10] Age depen-

dency ratio, young (% of working-age population), [11] Immunization, measles (% of children ages 12-23 months), [12]

Population ages 00-04, female (% of female population), [13] Population ages 00-04, male (% of male population),

[14] Population ages 0-14 (% of total population), [15] Population ages 0-14, female (% of female population), [16]

Population ages 0-14, male (% of male population), [17] Population ages 05-09, female (% of female population), [18]

Population ages 05-09, male (% of male population), [19] Population ages 10-14, female (% of female population),

[20] Population ages 10-14, male (% of male population), [21] Population ages 15-19, female (% of female population),

[22] Population ages 15-19, male (% of male population), [23] Population ages 15-64 (% of total population), [24]

Population ages 15-64, female (% of female population), [25] Population ages 15-64, male (% of male population),
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[26] Population ages 20-24, female (% of female population), [27] Population ages 20-24, male (% of male population),

[28] Population ages 25-29, female (% of female population), [29] Population ages 25-29, male (% of male population),

[30] Population ages 30-34, female (% of female population), [31] Population ages 30-34, male (% of male population),

[32] Population ages 35-39, female (% of female population), [33] Population ages 35-39, male (% of male population),

[34] Population ages 40-44, female (% of female population), [35] Population ages 40-44, male (% of male population),

[36] Population ages 45-49, female (% of female population), [37] Population ages 45-49, male (% of male population),

[38] Population ages 50-54, female (% of female population), [39] Population ages 50-54, male (% of male population),

[40] Population ages 55-59, female (% of female population), [41] Population ages 55-59, male (% of male population),

[42] Population ages 60-64, female (% of female population), [43] Population ages 60-64, male (% of male population),

[44] Population ages 65 and above (% of total population), [45] Population ages 65 and above, female (% of female

population), [46] Population ages 65 and above, male (% of male population), [47] Population ages 65-69, female (%

of female population), [48] Population ages 65-69, male (% of male population), [49] Population ages 70-74, female (%

of female population), [50] Population ages 70-74, male (% of male population), [51] Population ages 75-79, female (%

of female population), [52] Population ages 75-79, male (% of male population), [53] Population ages 80 and above,

female (% of female population), [54] Population ages 80 and above, male (% of male population), [55] Population,

female (% of total population), [56] Population, male (% of total population), [57] Survival to age 65, female (% of co-

hort), [58] Survival to age 65, male (% of cohort), [59] Contributing family workers, female (% of female employment)

(modeled ILO estimate), [60] Contributing family workers, male (% of male employment) (modeled ILO estimate),

[61] Contributing family workers, total (% of total employment) (modeled ILO estimate), [62] Employers, female

(% of female employment) (modeled ILO estimate), [63] Employers, male (% of male employment) (modeled ILO

estimate), [64] Employers, total (% of total employment) (modeled ILO estimate), [65] Employment in agriculture

(% of total employment) (modeled ILO estimate), [66] Employment in agriculture, female (% of female employment)

(modeled ILO estimate), [67] Employment in agriculture, male (% of male employment) (modeled ILO estimate),

[68] Employment in industry (% of total employment) (modeled ILO estimate), [69] Employment in industry, female

(% of female employment) (modeled ILO estimate), [70] Employment in industry, male (% of male employment)

(modeled ILO estimate), [71] Employment in services (% of total employment) (modeled ILO estimate), [72] Em-

ployment in services, female (% of female employment) (modeled ILO estimate), [73] Employment in services, male

(% of male employment) (modeled ILO estimate), [74] Employment to population ratio, 15+, female (%) (modeled

ILO estimate), [75] Employment to population ratio, 15+, male (%) (modeled ILO estimate), [76] Employment to

population ratio, 15+, total (%) (modeled ILO estimate), [77] Employment to population ratio, ages 15-24, female

(%) (modeled ILO estimate), [78] Employment to population ratio, ages 15-24, male (%) (modeled ILO estimate),

[79] Employment to population ratio, ages 15-24, total (%) (modeled ILO estimate), [80] Labor force participation

rate for ages 15-24, female (%) (modeled ILO estimate), [81] Labor force participation rate for ages 15-24, male (%)

(modeled ILO estimate), [82] Labor force participation rate for ages 15-24, total (%) (modeled ILO estimate), [83]

Labor force participation rate, female (% of female population ages 15+) (modeled ILO estimate), [84] Labor force

participation rate, female (% of female population ages 15-64) (modeled ILO estimate), [85] Labor force participation

rate, male (% of male population ages 15+) (modeled ILO estimate), [86] Labor force participation rate, male (% of

male population ages 15-64) (modeled ILO estimate), [87] Labor force participation rate, total (% of total popula-

tion ages 15+) (modeled ILO estimate), [88] Labor force participation rate, total (% of total population ages 15-64)

(modeled ILO estimate), [89] Labor force, female (% of total labor force), [90] Ratio of female to male labor force

participation rate (%) (modeled ILO estimate), [91] Self-employed, female (% of female employment) (modeled ILO
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estimate), [92] Self-employed, male (% of male employment) (modeled ILO estimate), [93] Self-employed, total (%

of total employment) (modeled ILO estimate), [94] Unemployment, female (% of female labor force) (modeled ILO

estimate), [95] Unemployment, male (% of male labor force) (modeled ILO estimate), [96] Unemployment, total (%

of total labor force) (modeled ILO estimate), [97] Unemployment, youth female (% of female labor force ages 15-24)

(modeled ILO estimate), [98] Unemployment, youth male (% of male labor force ages 15-24) (modeled ILO estimate),

[99] Unemployment, youth total (% of total labor force ages 15-24) (modeled ILO estimate), [100] Vulnerable em-

ployment, female (% of female employment) (modeled ILO estimate), [101] Vulnerable employment, male (% of male

employment) (modeled ILO estimate), [102] Vulnerable employment, total (% of total employment) (modeled ILO

estimate), [103] Wage and salaried workers, female (% of female employment) (modeled ILO estimate), [104] Wage

and salaried workers, male (% of male employment) (modeled ILO estimate), [105] Wage and salaried workers, total

(% of total employment) (modeled ILO estimate), [106] Merchandise trade (% of GDP), [107] GDP growth (annual

%), [108] Inflation, GDP deflator (annual %), [109] GDP per capita growth (annual %), [110] Inflation, GDP deflator:

linked series (annual %), [111] Adjusted savings: carbon dioxide damage (% of GNI).

List of couturiers in the econometric data:

”Albania”, ”Algeria”, ”Angola”, ”Argentina”, ”Armenia”, ”Australia”, ”Austria”, ”Azerbaijan”, ”The Bahamas”,

”Bahrain”, ”Bangladesh”, ”Barbados”, ”Belarus”, ”Belize”, ”Benin”, ”Bhutan”, ”Bolivia”, ”Botswana”, ”Brazil”,

”Brunei”, ”Bulgaria”, ”Burundi”, ”Cabo Verde”, ”Cambodia”, ”Cameroon”, ”Canada”, ”Central African Republic”,

”Chad”, ”Chile”, ”China”, ”Colombia”, ”Comoros”, ”Dem. Rep. Congo”, ”Congo”, ”Costa Rica”, ”Cyprus”, ”Czech

Republic”, ”Denmark”, ”Dominican Republic”, ”Ecuador”, ”Egypt”, ”El Salvador”, ”Eswatini”, ”Ethiopia”, ”Fiji”,

”Finland”, ”France”, ”Gabon”, ”The Gambia”, ”Georgia”, ”Germany”, ”Ghana”, ”Greece”, ”Guatemala”, ”Guinea”,

”Guinea-Bissau”, ”Guyana”, ”Haiti”, ”Honduras”, ”Hungary”, ”Iceland”, ”India”, ”Indonesia”, ”Ireland”, ”Israel”,

”Italy”, ”Jamaica”, ”Japan”, ”Jordan”, ”Kazakhstan”, ”Kenya”, ”Korea”, ”Lebanon”, ”Lesotho”, ”Madagascar”,

”Malawi”, ”Malaysia”, ”Mali”, ”Malta”, ”Mauritania”, ”Mauritius”, ”Mexico”, ”Mongolia”, ”Morocco”, ”Mozam-

bique”, ”Namibia”, ”Nepal”, ”Netherlands”, ”New Zealand”, ”Nicaragua”, ”Niger”, ”Nigeria”, ”North Macedonia”,

”Norway”, ”Oman”, ”Pakistan”, ”Panama”, ”Papua New Guinea”, ”Paraguay”, ”Peru”, ”Philippines”, ”Poland”,

”Portugal”, ”Romania”, ”Russia”, ”Rwanda”, ”Saudi Arabia”, ”Senegal”, ”Slovak Republic”, ”Slovenia”, ”Solomon

Islands”, ”South Africa”, ”Spain”, ”Sri Lanka”, ”St. Lucia”, ”St. Vincent and the Grenadines”, ”Sudan”, ”Swe-

den”, ”Switzerland”, ”Tajikistan”, ”Tanzania”, ”Thailand”, ”Togo”, ”Tonga”, ”Trinidad and Tobago”, ”Tunisia”,

”Turkey”, ”Turkmenistan”, ”Uganda”, ”Ukraine”, ”United States”, ”Uruguay”, ”Uzbekistan”, ”Vanuatu”, ”Viet-

nam”, ”Zambia”, ”Zimbabwe”.
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