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ABSTRACT

SWARNA NARASIMHAN. Dynamic response of a separately excited DC motor
using parameter identification

(Under the direction of DR. VALENTINA CECCHI)

DC machines are prone to oscillations or swings in angular speed and armature

current due to dynamic changes in the operating conditions, such as excitation and

mechanical transients from load or speed variations. In this thesis, a sensitivity

analysis-based parameter optimization is applied to a separately excited DC motor to

mitigate the swings. A gradient-based criterion minimization method is employed to

minimize the gradient of the performance index of the angular velocity and armature

current. The optimization is performed on the modeled system and the optimal gain

values are fed to the actual system for improved dynamic performance. The angular

speed (ω) and armature current (Ia)-based control approach converges faster reaching

optimal gain values compared to the existing ω only-based control approach. The

effectiveness of the proposed approach is quantified by comparing the integral squared

error of the performance index with that of the existing -based control approach. The

proposed approach results in a smaller time constant and reduced oscillation damping

time, and improves the response of both ω and Ia. The approach promises an efficient

swing mitigation in the actual physical system during excitation, speed variations and

mechanical transients.
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CHAPTER 1: Thesis Organization

1.1 Overview

A separately excited DC motor is a motor with separate control for armature and

field winding which makes it easier to vary one without influencing the other directly.

These motors are widely used for speed varying operations by using 2 methods, field

weakening and armature voltage control. In field weakening, the field current is de-

creased to vary speed of the motor. In armature control, armature voltage is varied.

In this study, field control is used by maintaining a constant voltage source to keep

the field current constant and hence the angular speed constant. The motor operates

in constant power region [13].

There are many methods to tune the parameters of a DC motor drive nowadays.

Using neural networks, controllers have been designed to achieve minimum steady

state error. The issue with neural network is it is complex and takes time to train

the network. There are different algorithms that search for the best set of values of a

system. Particle Swarm Optimization is a widely used algorithm that follows neigh-

borhood topology [1]. The value of one particle has influence on its neighbors and

the values are updated accordingly. Though, this algorithm has a high computation

speed, it has the disadvantage of falling in the local optimum of a population and has

a low convergence rate in iterative processes.

In industrial situations, Fuzzy Logic controllers are useful when mathematical model

of a process is not known [3]. Fuzzy Logic Controllers can control the system and

accommodate the functions of PID controllers. With the mathematical model known,

non-fuzzy methods perform better compared to intuitive fuzzy logic [6].

Genetic algorithms are evolutionary algorithms that use a heuristic approach when
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the information of a system is unknown. It typically consists of a population of

parameters with each parameter used in the next iteration if indicating a favorable

variation depending on the fitness function. They are used for obtaining multiple

solutions from a system. Hence they are suitable for parallel implementation. GA

has the disadvantage of randomness and hence has slow convergence [5].

For systems with mathematical model accurately known, using conventional control

methods yields accurate results in a short time [6][7]. In this thesis, the actual param-

eter values are used and is not done using a stochastic approach. The optimization

method in this work uses sensitivity analysis that takes the sensitivity coefficients

of the parameters with respect to the output and based on gradient method finds

the optimal value [13]. The PID controller is tuned with the optimal values. This

method is less explored and can be applied in industrial control. It also has a good

convergence rate. Also, the existing research was lacking the quality of dynamic con-

trol when compared with other known control approaches [13]. Hence, it provides the

scope of improvement. Present research dives in depth of the approach with an aim

of improving the quality of dynamic control of DC motor.

1.2 Objective

The purpose of this thesis is optimizing the parameter values in a DC motor drive

system with respect to the state variables angular velocity ω and armature current

Ia. The values so calculated are updated in the parameters of the real-time system

to improve the dynamic response by mitigating the initial oscillations in the system.

The Integral Squared Error obtained from this approach is analyzed to quantify the

improvement in the response of the system. The optimization strategy is implemented

for changes in dynamics of the operating condition like excitation, transient and speed

variation.
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1.3 Introduction: Chapters

The optimization strategy is divided in to 6 chapters, chapters 2 through chapter

7. They are explained in a compact form below for the readerś convenience.

In chapter 2, the criterion employed for the minimization of error for s number of

state variables is discussed [13][15]. The error in the case is the difference between

the actual motor response and the desired motor response. The error is minimized

by calculating the performance index J(q, qr) and gradient components of the per-

formance index ∂J
∂qj

. The formulation of equation for the calculation of performance

index values for 3 state variables is given in matrix form.

In chapter 3, the method for analyzing sensitivity of parameters of a system is dis-

cussed [12]. The procedure development to determine the sensitivity points and sensi-

tivity functions and calculate sensitivity coefficients is explained for a basic elementary

system and also for a multiloop system.

In chapter 4, sensitivity analysis is applied to the mathematical model of a DC Mo-

tor Drive [13]. The sensitivity model is developed from the mathematical model

to easily locate the sensitivity points. The sensitivity functions of the parameters

K1, K2, Kc, Ks considered are calculated. The product of sensitivity points and the

function gives the values of sensitivity coefficients for each parameter considered in

the system. Here, the concept of parameter update model is shown graphically, briefly

explaining how the parameter values are updated over a course of iterations to reach

their optimal values.

In chapter 5, the DC motor drive system [11] applied to the sensitivity based param-

eter optimization is discussed. The system consists of a separately excited DC motor

and speed and current controllers respectively. The equations governing the behav-

ior of the system and also their representation in a feedback loop control system is

explained. The block diagram reduction is shown in this chapter to obtain a suitable

form to develop sensitivity model [12].
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In Chapter 6, the Optimization strategy in real-time is discussed. It shows the interac-

tion between the optimization strategy used to find optimal values of the parameters

and how these values can improve the dynamic response of the system in a real-time

system. It gives a detail on the tolerance for the state variables and the weighing

factors used to compare angular velocity and armature current on a common scale. A

delayed step function is applied as an input to the actual real-time DC motor system

which is waiting for the optimized parameter values from the offline Optimization

process and runs with the optimal parameter values when obtained.

In chapter 7, the strategy discussed in the earlier chapters is applied in a test system.

The waveforms for sensitivity coefficients of the parameters K1, K2, Kc, Ks, their gra-

dient components with respect to ω and Ia, gain updates and system response for the

selected iterations are displayed and explained elaborately. The comparisons made

between the results of the prior approach [13] and the proposed approach demon-

strates the improvement in the dynamic response of the system. This optimization

process is implemented for different cases of dynamic changes in the system. It is im-

plemented for mechanical load transient and for speed variations in the drive system.

From the waveforms, it is evident that oscillations are mitigated effectively.

In chapter 8, the results from the test system are analyzed and discussed. It also

extends an idea on how the proposed approach can be applied to a non-linear system.



CHAPTER 2: CONCEPT OF PARAMETER OPTIMISATION APPLIED IN

THIS STUDY

2.1 Overview

This chapter discusses how to optimize parameters of the system by obtaining

their gradient values. A criterion is used to calculate these gradients. The factors

that determine the criterion and also the calculation of gradients are given in the

following sections.

2.2 Criterion

Criterion for the parameter optimization of the dynamic system considered is

the difference or mismatch between the reference system response or desired system

response and the actual system response, and the error between actual armature

current and armature reference current. If the behavior of the system is described

by the output of the system for a specific input system excitation, then the criterion

is chosen as the integral of the quadratic form of the error between system response

and reference model with desired system response.

In the time interval [t0, t0 + T ] [13,15], performance index is given by:

J =

∫ t0+T

t0

(ȳ(t, q̄)− ȳr(t))TQ(ȳ(t, q̄)− ȳr(t)))dt (2.1)

where

ȳ(t, q̄) = [yi(t, q)]s×1] =



y1(t, q̄)

y2(t, q̄)

...

ys(t, q̄)


: system output vector
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ȳr(t) = [yri(t)]s×1 =



yr1(t, q̄)

yr2(t, q̄)

...

yrs(t, q̄)


: reference model vector

Q = [Qii]s×s =


Q11 0 0

0 Q22 0

0 0
. . .Qss

 : positive definite matrix

T : interval in which we consider system dynamics

The system output vector ȳ(t, q̄) is the system response to the applied input. Step

function is used for exciting the system.

The desired system output vector ȳr(t) is a vector compared with the output of

the actual system, in fact it is the ideal output of the system. The length of the time

interval T, should be chosen long enough to cover the time of the system dynamics.

If the system dynamics caused by the system excitation, step function h(t − t0) is

considered, T may be very long. But practically T is chosen as the value after which

error between reference and actual system output is minimal.

Criterion given by the equation 2.1 depends on the output of the dynamic system,

the output of the reference system and the weighting matrix Q.

J = J(q̄, q̄r) (2.2)

where

q̄ = [qj]m×1 =



q1

q2

...

qm


: system parameters
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Here q̄ is the vector.

The problem of minimization of the criterion 2.1 is to determine q̄ such that integral

of the square error between the system output and reference model is the minimum.

2.3 Optimality Conditions

The first derivative of the performance index with respect to the system parame-

ters set to zero, if satisfied, defines the minimum of the index [13, 14, 15].

∂J

∂qj
= 0 j=1, 2.....m

or

gradJ = 0 (2.3)

where

gradJ = [
∂J

∂q1

,
∂J

∂q2

, ......,
∂J

∂qm
]

The equation for gradient component of the performance index is:

∂J

∂qj
=

∫ t0+T

t0

{[∂ȳ(t, q̄)

∂qj
]TQ(ȳ(t, q̄)− ȳr(t)) + (ȳ(t, q̄)− ȳr(t))TQ

∂ȳ(t, q̄)

∂qj
}dt (2.4)

As an example let’s look at the system with 3 state variables and 3 system outputs.

Assume that the system has 3 parameters that can be changed.

In expanded form, gradient component of the performance index in vector form is

∂J

∂qj
=

∫ t0+T

t0

{


∂y1(t,q̄)

∂qj

∂y2(t,q̄)
∂qj

∂y3(t,q̄)
∂qj



Q11 0 0

0 Q22 0

0 0 Q33



y1(t, q̄)− yr1(t)

y2(t, q̄)− yr2(t)

y3(t, q̄)− yr3(t)

 j = 1, 2, 3
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+

[
y1(t, q̄)− yr1(t) y2(t, q̄)− yr2(t) y3(t, q̄)− yr3(t)

]

Q11 0 0

0 Q22 0

0 0 Q33




∂y1(t,q̄)
∂qj

∂y2(t,q̄)
∂qj

∂y3(t,q̄)
∂qj

}dt
(2.5)

or multiplying expressions, gradient components are of the form

∂J

∂qj
=

∫ t0+T

t0

{
[
∂y1(t,q̄)

∂qj
Q11

∂y2(t,q̄)
∂qj

Q22
∂y3(t,q̄)

∂qj
Q33

]
y1(t, q̄)− yr1(t)

y2(t, q̄)− yr2(t)

y3(t, q̄)− yr3(t)



+

[
y1(t, q̄)− yr1(t) y2(t, q̄)− yr2(t) y3(t, q̄)− yr3(t)

]
∂y1(t,q̄)

∂qj
Q11

∂y2(t,q̄)
∂qj

Q22

∂y3(t,q̄)
∂qj

Q33

}dt

∂J

∂qj
= 2[

∂y1(t, q̄)

∂qj
Q11(y1(t, q̄)− yr1(t)) +

∂y2(t, q̄)

∂qj
Q22(y2(t, q̄)− yr2(t))

+
∂y3(t, q̄)

∂qj
Q33(yi(t, q̄)− yr3(t))]dt

∂J

∂qj
=

∫ t0+T

t0

[
(y1(t, q̄)− yr1(t)) (y2(t, q̄)− yr2(t)) (y3(t, q̄)− yr3(t))

]
2∂y1(t,q̄)

∂qj
Q11

2∂y2(t,q̄)
∂qj

Q22

2∂y3(t,q̄)
∂qj

Q33

 dt
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∂J

∂qj
=

∫ t0+T

t0

{
[
(y1(t, q̄)− yr1(t)) (y2(t, q̄)− yr2(t)) (y3(t, q̄)− yr3(t))

]

[


Q11 0 0

0 Q22 0

0 0 Q33

+


Q11 0 0

0 Q22 0

0 0 Q33


T

]


∂y1(t,q̄)

∂qj

∂y2(t,q̄)
∂qj

∂y3(t,q̄)
∂qj

}dt
and finally,

∂J

∂qj
=

∫ t0+T

t0

{
[
(y1(t, q̄)− yr1(t)) (y2(t, q̄)− yr2(t)) (y3(t, q̄)− yr3(t))

]

[


Q11 0 0

0 Q22 0

0 0 Q33

+


Q11 0 0

0 Q22 0

0 0 Q33


T

]


U1

U2

U3

}dt

Here U1, U2, U3 are partial derivatives of the three outputs with qj parameters, j=1,

2, 3, 4.

or

Ūij(t, q̄) = [
∂yi(t, q̄)

∂qj
]

where Ūij(t, q̄) [12] is the sensitivity function of the system with respect to the qj

parameters.

If the system has i state variables and j number of parameters,the performance

index gradient would be in matrix form.

∂J

∂q̄
=

∫ t0+T

t0

{[y1(t, q̄)− ȳr(t)]T [[Q] + [Q]T ][
∂y(t, q̄)

∂q̄
]}dt (2.6)

∂J

∂q̄
=

∫ t0+T

t0

{[y1(t, q̄)− ȳr(t)]T [[Q] + [Q]T ][U(t, q̄)] (2.7)
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Therefore, to determine the conditions for the optimality i.e., gradient J, it is neces-

sary to determine sensitivity coefficients for system parameters with respect to the

state variables being optimized. If the system with only one input with systemś initial

values equal to zero is considered, the sensitivity functions can be relatively easily

calculated.

Consider 2 state variables, the angular velocity ω and Ia. In this study, the sys-

tem considered is the DC motor drive. Four parameters considered in this study are

the gains. Notation for these parameters are K1,K2, Kc, Ks. The parameters qj,

j = 1, 2, 3, 4 are identified in the motor drive system as the gains K1,K2, Kc, Ks. The

gradient vector is with notation

gradJ = [
∂J

∂K1

∂J

∂K2

∂J

∂Kc

∂J

∂Ks

]

For a function, J =
∫ t0+T

t0
[ȳ(t, q̄) − ȳr(t)]TQ[ȳ(t, q) − ȳr(t)]dt, criterion with respect

to ω is:

∂J1

∂K1

=

∫ t0+T

t0

{[y1(t,K1)− yr1(t)]T [[Q] + [Q]T ][
∂y1(t,K1)

∂K1

]}dt

∂J1

∂K2

=

∫ t0+T

t0

{[y1(t,K2)− yr1(t)]T [[Q] + [Q]T ][
∂y1(t,K2)

∂K2

]}dt

∂J1

∂Kc

=

∫ t0+T

t0

{[y1(t,Kc)− yr1(t)]T [[Q] + [Q]T ][
∂y1(t,Kc)

∂Kc

]}dt

∂J1

∂Ks

=

∫ t0+T

t0

{[y1(t,Ks)− yr1(t)]T [[Q] + [Q]T ][
∂y1(t,Ks)

∂Ks

]}dt

or

∂J1

∂q̄
=

∫ t0+T

t0

{[y2(t, q̄)− ȳr2(t)]T [[Q] + [Q]T ]

[
∂y1(t,q̄)
∂K1

∂y1(t,q̄)
∂K2

∂y1(t,q̄)
∂Kc

∂y1(t,q̄)
∂Ks

]
}dt

(2.8)
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Criterion with respect to armature current Ia:

∂J2

∂K1

=

∫ t0+T

t0

{[y2(t,K1)− yr2(t)]T [[Q] + [Q]T ][
∂y2(t,K1)

∂K1

]}dt

∂J2

∂K2

=

∫ t0+T

t0

{[y2(t,K2)− yr2(t)]T [[Q] + [Q]T ][
∂y2(t,K2)

∂K2

]}dt

∂J2

∂Kc

=

∫ t0+T

t0

{[y2(t,Kc)− yr2(t)]T [[Q] + [Q]T ][
∂y2(t,Kc)

∂Kc

]}dt

∂J2

∂Ks

=

∫ t0+T

t0

{[y2(t,Ks)− yr2(t)]T [[Q] + [Q]T ][
∂y2(t,Ks)

∂Ks

]}dt

or

∂J2

∂q̄
=

∫ t0+T

t0

{[y2(t, q̄)− ȳr2(t)]T [[Q] + [Q]T ]

[
∂y2(t,q̄)
∂K1

∂y2(t,q̄)
∂K2

∂y2(t,q̄)
∂Kc

∂y2(t,q̄)
∂Ks

]
}dt

(2.9)

In the next chapter 3, calculations of the system sensitivities U1j and performance

index gradient components are shown.

2.4 Minimization of the criterion with multiple parameters

There are a number of iterative methods used for this purpose. All the methods

have developed algorithms which based on initial parameters selected q̄0, in an itera-

tive procedure calculate the parameters which are further moving the criterion to its

minimum. In k iterations, we calculate q̄0, q̄1, · · · , q̄k parameters are calculated where

k is the last computed iteration which gives the minimum of the criterion [13].

lim
k→∞

q̄k = q̄min (2.10)

where K is the number of iterations.

gradJ(q̄min) ' 0 (2.11)
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The iterations stop when the dynamic response of the system reaches its set tolerance

value. The value of the parameters then obtained are the optimal values, that are

applied to improve the dynamic response of the real-time system.

In the following chapter, sensitivity analysis of parameters in a basic elementary

control system is given and is further developed for complex multiloop control systems.



CHAPTER 3: SENSITIVITY ANALYSIS

3.1 Overview

The concept of sensitivity analysis is introduced here for elementary control sys-

tems and is further developed for multi-loop control systems. The sensitivity functions

for both feedforward and feedback loops are defined in this chapter.

3.2 Elementary System Analysis

The theory is fully presented in [12] where the method for evaluating the sensitivity

coefficients is developed for an elementary linear system with two parameters. The

method is not widely known and it is presented here to make it easier to follow the

development of the sensitivity model for this case study. The procedure enables us to

inquire sensitivity points in the system at which sensitivity signals of the parameters

under consideration can be picked. Sensitivity coefficients are obtained from the

model block diagram as the product of sensitivity signals and sensitivity functions.

3.3 The Procedure Development

Consider a system with a transfer function W (s1q1, · · · , qm). The transfer function

depends on the m parameters q1, q2 · · · , qm. The relation between the input and the

output of the system is represented as follows:

X(s, q1 · · · , qm) = Y (s)W (s, q1 · · · , qm) (3.1)

where X(s1, q1, · · · , qm) is response for the system to the input, as we apply unit step

function Y (s).

The sensitivity function Vr(s) is defined as partial derivative of the output with
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respect to the relative parameter [12].

Vr =
∂X(s, q1 · · · , qm)

∂lnqr
(3.2)

Consider a basic feedback system. The feedforward path and feedback path has q1

and q2 parameters as their gains respectively. The transfer functions are W1(s) and

W2(s) and are independent of the parameters. The closed-loop transfer function of

the system is

W (s, q1, q2) =
q1W1(s)

1 + q1W1(s)W2(s)
(3.3)

where this function is relative to the variation in parameter qr. The sensitivity func-

tion represented in the Laplace transform and the block diagram are given in Fig3.1

[12]. The sensitivity function in time domain can be determined by taking inverse

Laplace transform.

Figure 3.1: Basic Elementary Feedback System.

From equations 3.1 & 3.2 and the block diagram we get the sensitivity coefficients,

at the points S1 and S2 [12]

V1(s) = X(s)
1

1 + q1W1(s)W2(s)

V2(s) = X(s)
−q1W1(s)W2(s)

1 + q1W1(s)W2(s)

(3.4)
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To understand how sensitivity functions are calculated, consider the block diagram

given in Fig 3.1.

Figure 3.2: Sensitivity points of the feedforward and feedback path.

Sensitivity points are created as S1 and as S2 when input is applied in the sen-

sitivity model. The sensitivity coefficient for each parameter V1(s) and V2(s) can be

observed through these points.

Figure 3.3: Measurements of Sensitivity coefficients.

There are two ways in which we can supply input X(s) to the sensitivity model.

One method is by obtaining output from a generated mathematical model of the

system. The other method is to generate the output of the actual system working in
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real-time.

Consider the general case with multiple forward and feedback path with each transfer

function block and one parameter in each of the blocks. Fig 3.4 [12][13] is a block

diagram of the system with m parameters and a multiloop system structure. It may

be noted that the number of sensitivity points depends on the number of parame-

ters,and the number of feedback blocks.

3.4 The Analysis of a Multiloop Structure

The method of finding sensitivity coefficients for a basic feedback system was

discussed in the earlier section for two parameters only. For a multiloop system,

the sensitivity coefficients are obtained from the system block diagram based on an

analysis of m parameters [12].

Figure 3.4: Block diagram of Multiloop System.

The model consists of 2m blocks. The transfer functions in the forward and

feedback block are W2r−1(s, q2r−1) and W2r(s, q2r) respectively. Letś assume that
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there is only one parameter in each of the transfer function. All parameters from

q2r−1 to q2r, where r is the parameter for which the sensitivity coefficient is calculated.

The coefficients V2r−1 to V2r are the coefficients calculated for q2r−1 to q2r respectively.

This block diagram given maybe reduced to a compact form as shown in Fig 3.5 [12].

Figure 3.5: Reduced form of the block diagram.

where L(s) is closed loop transfer function between B2r−2 and B2r−3. M(s) and

N(s) are transfer functions given as [12]:

M(s) =
m∑

i=r+1

W2i−1(s)W2i(s) (3.5)

N(s) =
m∏
i=r

W2i(s)

and F (s) = M(s) +W2r(s, q2r)

The X(s, qr−1) the is

X(s, q2r−1) = Y (s)N(s)
L(s)W2r−1(s, q2r−1)

1 + L(s)W2r−1(s, q2r−1)
(3.6)



18

Using the above equation, V2r−1(s) is calculated

V2r−1(s) = X(s)
1

1 + L(s)F (s)W2r−1(s, q2r−1)

q2r−1

W2r−1(s, q2r−1)

∂W2r−1(s, q2r−1)

∂q2r−1

(3.7)

Now, to find the complex sensitivity coefficient V2r, keep the feedback path W2r(s, q2r)

and replace the blocks between B2r and B2r−1 by the closed loop transfer function.

G(s) =
L(s)W2r−1(s)

1 + L(s)M(s)W2r−1(s)
(3.8)

such that

X(s, q2r−1) = Y (s)N(s)
G(s)

1 +G(s)W2r(s, q2r)
(3.9)

we get for V2r

V2r(s) = X(s)
−W2r(s, q2r)G(s)

1 +G(s)W2r(s, q2r)

q2r

W2r(s, q2r)

∂W2r(s, q2r)

q2r

(3.10)

These equations represent the product of the system response and of the two transfer

functions. The first transfer function defines the location of sensitivity point. The

second transfer function is the sensitivity transfer function given by

Ti(s) =
qi

Wi(s, qi)

∂Wi(s)

∂qi
=
∂ln Wi(s)

∂ln qi
; i = 2r − 1, 2r (3.11)

In Fig 3.6 [12], we represent block diagram of calculating sensitivity coefficients.

The signal x(t) given as an input is obtained as the output for the system with

an input signal y(t) to the sensitivity model. As we can see, the signals from the

sensitivity points S1 · · · , S2m feed the sensitivity transfer functions T1(s) · · · , T2m(s)

so that the sensitivity coefficients V1(s) · · · , V2m(s) are obtained as outputs at the

end of this calculation.
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Figure 3.6: Block Diagram of Sensitivity Model of the system with 2m parameters

Generally, all the sensitivity coefficients of different parameters can be obtained

simultaneously. The following step is calculation of Ti(s) for every possible form of the

block transfer functions depending on how the parameters are placed in the transfer

functions. The parameter for which the sensitivity is analyzed is taken as gain factor

of the transfer function.

Wj(s, qi) = qjGj(s); j = 2r, 2r − 1 (3.12)

Tj(s) =
qj

qjG(s)

∂qjG(s)

∂qj
= 1 (3.13)

In this case, there is no need to add any more blocks. The sensitivity coefficient

is obtained directly as can be noticed. When the elementary transfer function is a

product of 2 transfer functions and the sensitivity of only one parameter is to be
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analyzed; then

Wj(s, qj) = Hj(s, qj)Dj(s) (3.14)

Tj(s) =
qj

Wj(s, qi)

∂Wj(s, qj)

∂qj
=

qj
H(s, qj)

∂H(s, qj)

∂qj
(3.15)

The equation 3.15 [12][15] exhibits that the sensitivity coefficient is dependent only

on the transfer function containing the parameter being investigated where H(s, qj)

is the transfer function having the parameter being investigated.

Separately excited DC motor drive system is used in this study is introduced in the

next chapter. Behavior of the system and modification of the motor drive control

block diagram to form the sensitivity model is shown.



CHAPTER 4: DC MOTOR DRIVE MODEL

4.1 Overview

A separately excited DC motor drive system is used to implement the proposed

approach. The equations governing behavior of the system and the assumptions made

for the design of the model are given in this chapter. General consideration of the

motor drive in this study is based on the references [11, 13].

4.2 Structure of the DC Motor Drive with Controllers

The motor drive model is used as known. Under the assumption of small vari-

ations around an equilibrium point and arbitrarily chosen reference operating state,

DC motor drive model is linearized and described as a set of first order Differen-

tial Equation with constant coefficients. For the parameter synthesis of the motor

drive, it is important to choose rational structure of the regulators and the values of

the regulator parameters in order to obtain high quality of transients and the small

steady state error. In simplified analysis, the parameters of the regulators can be

chosen on the basis of known relationship between transients and logarithmic AF

characteristics of the closed loop system. In that case optimal parameter values are

obtained on the basis of adjustment of logarithmic characteristics. In this analysis,

thyristor is considered as device without inertia or as device with very small time

constant. The thyristor as an element of DC motor drive is non-linear device that

has specific qualities affecting the whole transients as much as the bandwidth at the

linear part of the system constraining the bandwidth, these effects can be reduced to

the very low level. Under these assumptions, thyristor may be considered as a linear

device without inertia. These conclusions were studied in [11]. Hybrid diagram of a
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separately excited DC motor drive considered in this study is given in Fig. 4.1 [11].

Figure 4.1: Separately Excited DC Motor.

The essential part of the system under this study is the separately excited DC

motor supplied through a three-phase full wave thyristor converter. The thyristor

conduction angle is controlled so that the ratio of output DC voltage to thyristor

command signal is constant. Continuous conduction mode of operation is assumed

for converter and any effect of current harmonics to the system are made negligible.

Time constant of the thyristor converter is small compared to the time constant

of the drive and be ignored without significant error. It is supposed that the field

excitation of the motor is constant, although there is no difficulty to include variable

excitation in the analysis. The armature reaction is assumed to be negligible so that

the motor air gap flux is constant. Control loops are armature current and motor

speed. The current and speed regulators are PID type. The transfer functions in

the feedback loops are constant. Armature resistance is used as resistance of the

armature windings only. Its valu can be adjusted to include brush and connecting

lead resistances if higher accuracy is desired. Also adjusting resistance R will include

stray load losses. All of these have been presented in the references [13]. Next, the

block diagram of the motor drive is presented.
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4.3 DC Motor Drive Model Functions

The transfer functions of the current and speed regulators are as:

Wc(p) = K2
T2p+ 1

T2p
(4.1)

Ws(p) = K1
T1p+ 1

T1p
(4.2)

And the equations describing the motor drive are [11]

Uf = RfIf

Ua = ωCe + (Ra + Lap)ia

Ta = Ceia = TL + ω(B + Jp)

(4.3)

The block diagram is given as:

Figure 4.2: DC Motor Block Diagram.

The block diagram in Fig 4.2 can be modified as [8][10]:
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Figure 4.3: Modified Block Diagram.

The sensitivity block diagram for our motor drive required to develop the sensi-

tivity model is obtained in Fig 4.4 [13].

Figure 4.4: Block Diagram modified to develop Sensitivity Model.

The set of differential equations describing the behavior of the system:

dY (1)

dt
= −B

J
Y (1) +

Ce

J
Y (2)

dY (2)

dt
=
K1X(3)

T1
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dY (3)

dt
=
K2

T2

X(4) =
K2

T2

Y (4)

dY (9)

dt
=

1

Ta
[KaKtX(5)− Y (4)]

dY (5)

dt
= − Ce

2

JKt

Y (4) +
B

J
Y (5)

(4.4)

where

X(7) = ωr −Ks ∗ Y (1)

X(3) = Y (3) + Y (4) ∗K2

X(2) = Y (2) +X(3) ∗K1

X(6) = X(7)−Kc ∗X(3)

X(5) = Y (5) +X(6)

(4.5)

These differential equations are used to form differential equations of the sensitivity

model. In chapter 5, sensitivity model is developed for the drive system. The differ-

ential equations of the performance index (PI) is defined for ω and Ia respectively.

The equations required to find the gradients of PI with respect to the gains are also

defined.



CHAPTER 5: Sensitivity Model Applied To a Motor Drive System

5.1 Overview

The sensitivity model developed is based on the motor drive model. The motor

drive model used is developed in the literature references[11,13]. The same motor

drive model has been analyzed in different studies from several viewpoints. This

study focuses on parameter optimization by criterion minimization, which is defined

as the integral squared error of the motor speed and armature current. The output

from the mathematical model is applied into the systemś sensitivity model as the

input. From the modified model, in Fig 4.4, sensitivity points are located and the

sensitivity functions are calculated subsequently. Sensitivity functions actually help

in determining gradient components of the criterion for each of the parameters in the

optimization process. In the iterative process described earlier, performance index is

minimized and the optimal parameters are obtained. In this study, the parameters

are q̄ with the components q1, q2 · · · qm. The motor drive example has 4 gains that are

considered for parameter optimization. The gains analyzed are as follows. K1 is gain

of the speed regulator, K2 is gain of the current regulator, Kc is gain of the current

feedback loop and Ks is gain of the speed feedback loop.

Sensitivity points at j = 1, 2, 3, 4 are located following the rules developed in the

chapter 3 are shown in Fig. 5.1 [13]. Two of them are located before the transfer

functions in the forward path and another two are after the transfer functions in the

feedback path.
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Figure 5.1: Sensitivity Model .

After these sensitivity points, sensitivity functions are calculated to get the gra-

dient of the performance index with respect to the four gains under considerations

[12].

Tj =
qj

Wj(s, qj)

∂

∂t
[Wj(s, qj)]; j = 1, 2, 3, 4 (5.1)

All of our parameters considered K1, K2, Kc, Ks are gains.

5.2 Mathematical Model

The sensitivity model is represented by five differential equations. Referring to

the model the equations are [13]:

dY (6)

dt
= −B

J
Y (6) +

Ce

J
Y (9)
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dY (7)

dt
=
K1X(10)

T1

dY (8)

dt
=
K2

T2

X(11) =
K2

T2

Y (9)

dY (9)

dt
=

1

Ta
[KaKtX(12)− Y (9)]

dY (10)

dt
= − Ce

2

JKt

Y (9) +
B

J
Y (10)

(5.2)

where

X(14) = Y (1)−Ks ∗ Y (6)

X(10) = Y (8) + Y (9) ∗K2

X(9) = Y (7) +X(10) ∗K1

X(13) = X(14)−Kc ∗X(10)

X(12) = Y (10) +X(13)

(5.3)

As discussed earlier in this chapter, sensitivity functions are used to minimize per-

formance index. The performance index depends on the variation of the motor speed

and armature current[13] respectively and are given by the differential equations:

dJ1

dt
=

1

2
[ωr −KsY (1)]2 (5.4)

dJ2

dt
=

1

2
[X(7)−KcX(3)]2 (5.5)

The performance index is minimized using sensitivity functions by means of gradient

method. Sensitivity functions are given by [12, 13]:

V (1) = Y (13) V (2) = X(14)

V (3) = −Kc ∗X(10) V (4) = −Ks ∗ Y (6)

(5.6)
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Y(12) and Y(13) are obtained by solving the following two differential equations

dY (12)

dt
= −Y (12) +X(13)

T2

(5.7)

dY (13)

dt
= −Y (13) +X(12)

T1

(5.8)

To obtain the gradient component of performance index, the following set of differ-

ential equations is solved for each parameter

d

dt
(
∂J1

∂qj
) =

dY (I)

dt
=

[ωr −KsY (1)]Ks ∗ V (J)

qj
I = 14, 15 · · · 18 and j = 1, 2, 3, 4

(5.9)

d

dt
(
∂J1

∂Ks

) =
dY (19)

dt
= [ωr −KsY (1)] ∗ [Y (1) + V (4)] (5.10)

d

dt
(
∂J2

∂qj
) =

dY (I)

dt
=

[X(7)−KcX(3)]Kc ∗ V (J)

qj
I = 20, · · · 24 and j = 1, 2, 3, 4

(5.11)

d

dt
(
∂J2

∂Kc

) =
dY (25)

dt
= [ωr −KcX(3)] ∗ [X(3) + V (2)] (5.12)

All the differential equations obtained here are solved to get sensitivity coefficients,

value of performance index and gradients.

5.3 Optimization Concept and Block Diagram

In this block diagram, the concept of parameter update based on the theory

presented.
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Figure 5.2: Parameter Adjustment.

Each block in Fig 5.2 [13] is developed separately as the parameter adjustment

process. The Fig. 5.2 gives a visual picture of the iterative process consisting of

calculation of sensitivity coefficients, gradients and parameter or gain update.



CHAPTER 6: Optimization Strategy with the Proposed Approach

6.1 Overview

The procedure for optimization of the response of a system is given in detail

in the chapter. The blocks including motor drive system model, sensitivity model

and parameter update model are connected and synchronized to give an optimal

parameter values. A time delay is applied and the optimal parameter values is given

to the motor drive system to analyze the optimized response.

6.2 Optimization Strategy

In the following Fig 6.1, the concept of sensitivity analysis based optimization of

the system parameters is given and is explained in a step by step process below. The

Fig 6.1 shows the interaction between the optimization process employed to obtain

the optimal parameter values of a system and the actual system in real-time.

Block A is the optimization strategy used in our study. It consists of the mathe-

matical model of the system, the sensitivity model and the optimization algorithm.

Block B consists of the parameter gradient values from Block A, weighting factors for

scaling and the parameter value update process.

Block C represents the actual system operating in real-time, waiting to receive the

optimal parameter values calculated in A and B.

The offline system [13] minimizes the criterion of the state variables ω and Ia. The

criterion is the difference between the reference system desired response and the sys-

tem actual response. For the system response angular velocity is considered. The

criterion is taken as the performance index, which is the square error of the angular

velocity and armature current. Based on the performance index, gradient compo-

nents of the parameters are calculated. As discussed in Chapter 3, sensitivity of the
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parameters are analyzed to understand the influence on the system. Based on their

sensitivity coefficients, sensitivity functions are defined. Using the gradient method,

the gradient components of the parameters are calculated and used to minimize the

criterion.

A sequence of unit pulses is applied to the system model. When the first step pulse

u(t) is applied to the system model, we monitor the oscillations of the system model

response and observe these oscillations dampen to a value smaller than or equal to

the tolerance values ε1 and ε2 for ω and Ia, respectively. The time period in which

this condition is satisfied is defined as 4tk. For every pulse, a step input is given with

the same time interval 4tk.

For the first pulse given for time interval 4t1, initial values of the parameters are fed

to the system, gradient components of each parameter K1, K2, Kc, Ks are calculated

and the parameter values are updated as follows

K1new = K1old +4K1

K2new = K2old +4K2 (6.1)

Kcnew = Kcold +4Kc

Ksnew = Ksold +4Ks

The updated parameter values from the first interval are updated in the same interval

when the pulse goes to zero for a short period before the next pulse is triggered. The

updated k values are applied as input for the next interval.

A second pulse is applied for time interval 4t2, the mathematical model calculates

gradient components with the new K1, K2, Kc, Ks values. An improvement in the

response of the system is observed in the second interval. Hence, the parameter

values have improved from their initial values. For the second interval the parameter

values are updated as given in the aforementioned equations. This process continues
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for time intervals 4t1,4t2 · · · until the difference in the error of the reference value

and a particular iteration reach the tolerance values ε1 and ε2 i.e,

ωr − ω ≤ ε1

Iar − Ia ≤ ε2

This process produces an optimal response of the angular velocity ω of the system

under study.

The process of optimization of parameters in real-time is given in Fig 6.1 and is

explained in detail here. In each of the iterations, the model of the reference system in

block 1 gives the desired output ȳr(t). This output is compared with an output from

the mathematical model in block (2) y(t, q̄), defining the error. In further calculation

in blocks (3), (4), (6) and (7), criterion J(q̄k) is calculated according to equation 2.1.

The transpose of the error y(t, q̄) in block (4) is then multiplied with the product of

the error and the weighting matrix Q. The weighting matrix Q is used to normalize

the error on common scale.

With sensitivity model (3) and blocks (4) and (7), the criterion is calculated by multi-

plying the sensitivity function in block (3) and the error. The gradient of the criterion

(8) gradJ(q̄k) is calculated according to equation 2.4. These calculations are detailed

in the blocks A and B. After the simulation is finished at parameter q̄k, in the blocks

(9), (10) and (12), the new parameters q̄(k+1) are calculated and the procedure is

repeated until q̄k+1
min. It is convenient that all of the integrations in blocks (1), (2), (3),

(6) and (7) are done simultaneously, i.e, the part of the diagram, (A) is considered as

one system. Part B of the block diagram shows the iterative procedure for parameter

calculation. Part C is the system with the finally adjusted parameters and waits

with a delay of k4t ms during the calculation in (A) and (B), i.e, its not active until

the calculation in blocks (A) and (B) is complete. If A and B is complete in k4t
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ms where k is the number of iterations, block (C) will be activated in (k4t) + 1ms.

Initially, step function input will be time delayed into block (C) after k4t.

Starting from the initial parameters, gradient of the performance index are calcu-

lated and the parameters are changed by the gradient value of the performance index

to get improved parameters. This is the first iteration. The optimal parameter values

are obtained over a course of iterations until the criterion condition ( equation 2.1 )

is satisfied. For the k + 1 iteration, the parameter vector is calculated based on the

parameter vector in the previous k iteration.

q̄k+1 = q̄k − αk[gradJ(q̄k)]T (6.2)

Sequences of step input pulses are applied. Between each of the pulses there is a

dead zone of 1 ms. The system is excited with each separate step pulse with the

response just for the time interval 49 ms. In other words, the system has a sequence

of excitations and between these excitations, there is no interaction between the

system responses. The time interval of 49 ms depends on the system time constant

and is determined based on the angular velocity value at the end of each time interval

i.e.

ωr − ω ≤ ε1 (6.3)

Iar − Ia ≤ ε2

where ε1 is a set tolerance, the time interval 4t is determined as tk+1 − tk for

each step pulse starting with t0, k = 0, we have system response ω(tk) and the error

between reference response and the actual dynamic response. For the next pulse in the

sequence, the system response improves dynamically with changes in the parameter

values which are adjusted with the gradient components of the performance index

at each iteration. The parameter values are adjusted with the gradient components
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of performance index. Blocks A and B describe the structure consisting of these

parameter adjustments.

The third pulse applied and the following pulses coming in the sequence will pro-

duce response with new parameter adjustment. Continuing the parameter adjustment

a point will be reached at which the error ω(t) − ωr between two consecutive itera-

tions will change negligibly. The change in qj parameter values between consecutive

iterations will be minimal at this point and can be neglected.

When the gradient components of ω and Ia match the tolerance values, the pro-

cedure is stopped and the parameters are identified as optimal. After the optimal

results of the parameters from block A are evaluated offline, optimal parameter values

are sent to the system working in real-time to get an improved dynamic response for

both ω and Ia.

6.3 Time Delay Induced into the Real-Time System

The step response applied to the real-time system in block C has a time delay.

This time delay has the value k4t. The total time taken for parameter identification

is k4t. This ensures that system working in real-time, block C, will receive optimal

value of the parameters since k4t is the total time taken for the optimization of

parameters after which block C starts operating.

u(tk+1 − tk) (6.4)

where

4t = tk+1 − tk, for all k k = 0, 1, 2..... (6.5)



37

Figure 6.2: Delayed Input

In the next chapter, the proposed approach of ω and Ia based optimization is

implemented in a test case. The numerical results of parameter sensitivity analysis,

parameter gradient components, parameter value update and integral squared error

are shown and explained in detail. The proposed approach is compared to prior work

and the improvements are quantified.



CHAPTER 7: IMPLEMENTATION

7.1 Overview

In this chapter implementation of the optimization procedure proposed in this

thesis and numerical results are presented. Initial parameter values are taken from

reference [13]. Gains are the only parameters to be adjusted, the time constants are

not considered since this example is based on Fig 2.2 with the idea that adjustment is

made in real-time. However, a similar approach could be used for calculating optimal

parameters of the time constants. the only adjustment would consist o the fact that

selection of sensitivity variables and the blocks, which deliver the outputs for time

constant adjustment will be different. In that case, parameters will be optimized

during the design of the drive. The results from the proposed approach is quantified

and compared with the prior approach. It is also implemented in different scenarios

like mechanical transient and speed variation to analyze improvement in the dynamics

of the system.

7.2 Implementation in the Test System

The whole procedure is given in Fig 6.1. The system model will be excited with

the pulse generator length equal to the system settling time. For the case studies

presented, settling time with desired accuracy is less than 50ms. Let’s assume it to

be 49 ms. After 49 ms, the response reaches steady state with the expected accuracy.

The kth pulse between the time interval tk and tk+1 is given in Fig 6.1 in chapter 6

which is displayed again for convenience in Fig 7.1
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Figure 7.1: Delayed Input

Sequence of pulses will be applied until the parameters in two consecutive itera-

tions are close enough to each other, the difference between the parameter value in

two consecutive pulses are less than or equal to tolerance ε2

7.3 Numerical Results of the Proposed Approach

• Sensitivity Function and Gradient Component Changes of the System Gains

In this section, sensitivity coefficients V1, V2, Vc, Vs for gains K1, K2, Kc, Ks

respectively are given below. The sensitivity relative to the variation in the

output can be observed. Fig 7.2 shows the sensitivity coefficients for the 4 gains

for the first 12 pulses. The sensitivity functions for the gains are calculated

using equation 3.15 which is repeated here for convenience.

Tj(s) =
qj

Wj(s, qi)

∂Wj(s, qj)

∂qj
(7.1)

The sensitivity coefficients T1, T2, T3 and T4 of the parameters Kc, Ks, K1 and

K2 respectively are

T1 = T2 = T3 = T4 = 1 (7.2)
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Figure 7.2: Sensitivity coefficients V1, V3, V2, V4 for gains K1, K2, Kc, Ks

• Calculation of the Performance Index Gradient Component

In Fig 7.3, the gradient components are given for our parameters 4K1, 4K2,

4Kc, 4Ks over a course of 12 iterations.
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Figure 7.3: Gradient components dK1, dK2, dKc, dKs for gains K1, K2, Kc, Ks

At the end of each time interval 4tk = tk+1 − tk, gradient components of the

performance index for the 4 gains are calculated. We have sampled the output

of the zero-order hold final value of the gradient components. This final value

is the change in the gains at the end of each time interval. In our case, after

6 intervals the difference of the parameter changes between 6 and 5 iteration

is less than the desired accuracy; therefore, we stop iterating and the optimum

values for ω and Ia have been reached. We are interested in only the final value

of these changes at the end of the interval.

• Sampled values of the gradient components and parameter update
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Fig 7.4 shows the sampled values of the parameters using zero-order hold and

the parameter value updated over a course of 6 iterations here.

Figure 7.4: Updated parameter signals for gains K1, K2, Kc, Ks

The updated values of the gains after each iteration are plotted in Fig 7.4. The

values of 4K1, 4K2, 4Kc, 4Ks are sampled and held at 49 ms until the next

pulse is triggered.

• System Response of Angular Velocity and Armature Current

Improvement in the dynamic response of angular velocity ω and armature cur-

rent Ia is plotted over 10 time intervals with a time period of 49 ms each in Fig
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7.5 and Fig 7.6 respectively

Figure 7.5: Optimization of Angular speed ω

Figure 7.6: Optimization Armature Current Ia

7.4 Comparison of ω and Ia-Based Proposed Approach with ω-Based Existing Ap-

proach

In Fig 7.7, the results of angular velocity ω and armature current Ia for the

proposed approach ω and Ia method and the existing approach ω based method are
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given respectively in (a) and (c), and (b) and (d).

(a) Angular velocity ω (b) Angular velocity ω

(c) Armature current Ia
Proposed Approach

(d) Armature current Ia
Existing Approach

Figure 7.7: Comparison of optimization results

With the proposed approach, the optimal values for ω and Ia reach their optimal

values in 0.5 s with mitigated oscillations compared to the existing approach where

the optimal values are obtained in 1 s with significantly more oscillations.

Hence, the proposed approach has a better and higher convergence rate compared

to the existing one, and it also gives a better dynamic response with minimal initial
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swings.

• Comparison of Integral Squared Error of the Approaches

The Integral Squared Error (ISE) for the existing speed based approach and,

proposed speed and armature current approach were computed. The Integral

Squared Error is the performance index that is used to find the optimal values

of the gains K1, K2, Kc and Ks and is given by

J =

∫ t0+T

t0

e1
2ω + e2

2Iadt

• Comparison of Approaches: ISE of ω only

The waveform of ISE of angular velocity obtained for both the approaches are

analyzed in Fig 7.8.

(a) Angular velocity ω
Existing Approach

(b) Angular velocity ω
Proposed Approach

Figure 7.8: Comparison of Approaches: ISE of ω only

The peak error is reduced by a small value of 0.87 % and the steady state error

is considerably minimized by 55 %.The waveforms are quantified in the Table

7.1 below.
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Table 7.1: Analysis: ISE of ω

Parameter ω based control ω and Ia control

Error peak 0.581 0.5759
Time constant (s) 0.002 0.0031
Steady state error 1.9e-4 8.4e-5

• Comparison of Approaches: ISE of Ia only

The integral squared error of armature current only, for both the approaches is

given in Fig 7.9(a) and 7.9(b) respectively.

(a) Armature current Ia
Existing Approach

(b) Armature current Ia
Proposed Approach

Figure 7.9: Comparison of Approaches: ISE of Ia considered separately

With the proposed approach, the initial swings are considerably minimized and

the oscillations are also damped at a higher rate within a short period of time.

Table 7.2 below quantifies integral squared errors of both the approaches com-

paring their peak error, time constant, oscillation damping time and steady

state error.
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Table 7.2: Analysis:ISE of Ia

Parameter ω based control ω and Ia control

Error peak 50.97 50.97

Time constant (s) 0.002 0.0002

Oscillation damping time (s) 0.01 0.001

Steady state error (s) 0.05476 0.07211

• Comparison of Approaches: ISE of the Performance Index

The integral squared error in Fig 7.10 is the performance index used in this

thesis. It is the combined integral squared errors of ω and Ia.

(a) Angular velocity ω
Existing Approach

(b) Angular velocity ω
Proposed Approach

Figure 7.10: Comparison of Approaches: ISE of the Performance Index

The value of this performance index is used to calculate the optimal gain values.

Table 7.3 compares the parameters analyzed for both approaches, proving the

effectiveness of the proposed approach.
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Table 7.3: Analysis: ISE of the Performance Index

Parameter ω based control ω and Ia control

Error peak 50.97 50.94

Time constant (s) 0.002 0.0002

Oscillation damping time (s) 0.01 0.0001

7.5 Case Studies

The optimization of system parameters is implemented in 3 example cases:

1. real-time system

2. mechanical transient

3. variable speed control

7.5.1 Case 1: Real-Time System

When the parameters reach their optimal values after a course of iterations, their

optimum values are fed to the real-time system to obtain an optimized response.

Hence, initial swings in the real-time system are considerably minimized in Fig 7.11.

(a) Angular velocity ω (b) Angular velocity ω



49

(c) Armature current Ia
Proposed Approach

(d) Armature current Ia
Existing Approach

Figure 7.11: Comparison of Approaches: Real-Time System Output of ω and Ia

In Fig 7.11, the overshoot in angular velocity is reduced by 15% and the overshoot

in armature current is reduced by 76% compared to the existing approach , using the

proposed approach.

7.5.2 Case 2: Mechanical Transient Response in a Real-Time System

Under a sudden random change in the mechanical loading of the DC motor, may

be induced a transient in the normal operation.

(a) Angular velocity ω (b) Angular velocity ω
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(c) Armature current Ia
Proposed Approach

(d) Armature current Ia
Existing Approach

Figure 7.12: Comparison of Approaches: Transient Response of ω and Ia

The separately excited DC motor, being a constant speed motor, undergoes os-

cillations while recovering from transients. Optimized gain values of the regulator

parameters result in a quick recovery from the transient conditions with minimal

swings. This is shown in Fig 7.12. In Fig 7.12, the overshoot in angular velocity is

reduced by 76% and the overshoot in armature current is reduced by 42% using the

proposed approach.

7.5.3 Case 3: Speed control in a Real-time system

When speed control is employed for speed variation in the DC motor, the changes

are accompanied with initial swings because of the momentum. The optimal gain val-

ues are adjusted dynamically to provide a smooth angular speed shift. The responses

for angular speed and armature current are shown in Fig 7.13.
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(a) Angular velocity ω (b) Angular velocity ω

(c) Armature current Ia
Proposed Approach

(d) Armature current Ia
Existing Approach

Figure 7.13: Comparison of Approaches: Response of ω and Ia to speed variation

The angular speed is varied to 80% between 1 s to 1.5 s, 50% between 1.5 s to 2

s, 120% between 2 s to 2.5 s and 20% between 2.5 s to 3 s, of the reference speed.

In 7.15, the separately excited DC motor has a smooth angular shift and the system

copes with the changes quickly in Fig 7.16, the spikes are considerably reduced. It

can be seen that there is a smooth transition between speed changes in the responses

of both ω and Ia. When the speed change is applied via reference signal magnitude,
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the new gain values are computed in the simulation model and fed dynamically to

the real-time model and hence a spontaneous change in speed is observed.

In the next chapter, conclusion is given in detail with summary of contributions

made in this work. An idea of possible future work is also given in brief.



CHAPTER 8: CONCLUSION

8.1 Conclusion and Summary of Contributions

The dynamic response of the DC motor drive system was improved by optimizing

parameters with respect to angular velocity ω and armature current Ia when com-

pared to response of the system by optimizing the parameters with respect to ω only.

The parameter values were improved over a course of iterations via sensitivity based

parameter identification. The parameters under consideration were updated to a new

improved value by adding performance index gradient components of the parameter

in each iteration until the optimized response was achieved. This update was carried

out by calculating the sensitivity coefficients of the parameters and using them to de-

termine the gradient components. The performance index (PI) used in this approach

is the combined integral squared error of angular velocity ω and armature current Ia.

This PI gives a higher convergence rate and improves the dynamic response of the

system compared to the existing ω-based approach.

When the optimized parameter values were reached after a course of iterations, the

optimum values were fed to the actual system running in real-time to obtain an opti-

mized response. Hence, swings to the change in dynamic conditions of the real-time

system were considerably minimized.

A DC motor, when excited is observed to undergo initial swings before reaching a

steady state condition. Such swings are undesirable when precision in operation is

required. The oscillations are considerably minimized using the proposed optimal

parameter values obtained with respect to ω and Ia.

Under sudden changes in the mechanical loading of the DC motor, transients may be

induced in the normal motor operation. The separately excited DC motor, being a
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constant speed motor, undergoes oscillations while recovering from transients. The

optimized gain values of the regulator parameter help the motor recover quickly from

the transient condition with minimal swings.

When speed control is employed for speed variation in the DC motor, the changes are

accompanied with initial swings because of the momentum. The optimal gain values

are adjusted dynamically to provide a smooth angular speed shift.

Hence the method promises a fast approach for coping with dynamic changes in an

efficient way by significantly mitigating oscillations arising due to disturbances in the

DC motor system.

8.2 Future Work

The proposed approach is applied to a linearized mathematical model in this work.

The linear model is accurate as long as the motor rotates in a particular direction.

Non-linear parameters, such as dead zone and Coulomb friction, can be approximated

using the linear model. The model in this work is accurate for conventional control

scenarios. When the motor needs to be rotated in the opposite direction, it has to

cross the zero speed point and the non-linear parameters cannot be linearized.

These hard non-linearities cannot be neglected and will result in an inaccurate math-

ematical model. Hence, a non-linear mathematical model can be developed including

the non-linear parameters and the proposed approach can be applied to the model

to achieve optimal values of the unknown parameters using Parameter Identification

and hence to obtain an optimal dynamic response for the system.
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[12] R. Tomović, Sensitivity analysis of dynamic systems. McGraw-Hill, 1963.

[13] J. B. Hall, “Dc motor drive parameters adjustments and optimization in real time
control system,” Ph.D. dissertation, University of North Carolina at Charlotte,
2004.

[14] M. Zhuang and D. Atherton, “Tuning pid controllers with integral performance
criteria,” in Control 1991. Control’91., International Conference on. IET, 1991,
pp. 481–486.



56

[15] V. Lukic and J. Hall, “A new approach to an optimal adaptive real time dc motor
drive control,” analysis, vol. 539, no. 082, p. 363.

[16] A. M. Sharaf and A. A. El-Gammal, “An integral squared error-ise optimal
parameters tuning of modified pid controller for industrial pmdc motor based
on particle swarm optimization-pso,” in Power Electronics and Motion Control
Conference, 2009. IPEMC’09. IEEE 6th International. IEEE, 2009, pp. 1953–
1959.

[17] S. S. Saab and R. A. Kaed-Bey, “Parameter identification of a dc motor: an ex-
perimental approach,” in Electronics, Circuits and Systems, 2001. ICECS 2001.
The 8th IEEE International Conference on, vol. 2. IEEE, 2001, pp. 981–984.

[18] W. Wu, “Dc motor parameter identification using speed step responses,” Mod-
elling and Simulation in Engineering, vol. 2012, p. 30, 2012.

[19] M. George et al., “Speed control of separately excited dc motor,” American
journal of applied sciences, vol. 5, no. 3, pp. 227–233, 2008.

[20] T. Krishnan and B. Ramaswami, “A fast-response dc motor speed control sys-
tem,” IEEE Transactions on Industry Applications, no. 5, pp. 643–651, 1974.

[21] P. Meshram and R. G. Kanojiya, “Tuning of pid controller using ziegler-nichols
method for speed control of dc motor,” in Advances in Engineering, Science and
Management (ICAESM), 2012 International Conference on. IEEE, 2012, pp.
117–122.

[22] M. Krstic, I. Kanellakopoulos, and P. V. Kokotovic, Nonlinear and adaptive
control design. Wiley, 1995.

[23] T. Furuhashi, S. Sangwongwanich, and S. Okuma, “A position-and-velocity sen-
sorless control for brushless dc motors using an adaptive sliding mode observer,”
IEEE Transactions on Industrial electronics, vol. 39, no. 2, pp. 89–95, 1992.



57

APPENDIX A: MATLAB CODE AND MATLAB SIMULINK MODEL

A.1 MATLAB Code

K1=28.067;

K2=0.2715;

Kc=0.017;

Ks=1.01;

i n i t =0;

t imestep =.001;

t s top =0.3 ;

t =[0 : t imestep : t s top ] ;

T1=0.162;

T2=0.075609;

Ta=0.07561;

Kt=97;

J =1.5988;

B=2;

Ra=0.045;

CE=0.411;

Ce=3.92;

Ke=1;

wref =1;

Tref =1.09;

amp=1;

wi=0.1

ws=0.9

sim ( ’ Final1 ’ ) ;
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APPENDIX B: NOTATIONS

ωr : reference angular velocity

ω : Actual angular velocity

Iar : Reference armature current

Ia : Actual armature current

t0 : Initial start time

T : Total time period

K1 : Speed regulator gain

K2 : Current regulator gain

Ks : Angular speed feedback gain

Kc : Armature current feedback gain

T1 : Sensitivity function for K2

T2 : Sensitivity function for Kc

T3 : Sensitivity function for K1

T4 : Sensitivity function for Ks

V1 : Sensitivity coefficient for K2

V2 : Sensitivity coefficient for Kc

V3 : Sensitivity coefficient for K1

V4 : Sensitivity coefficient for Ks

r : Loops in the sensitivity model

l: Total number of loops in the sensitivity model

q(2r−1): Parameter for calculation of sensitivity coefficient in feedforward path

q2r : Parameter for calculation of sensitivity coefficient in feedback path

L(s) : Closed loop transfer function

F (s) : Transfer functions

W(2r−1)(s, q(2r−1)) : Transfer function of parameter in the feedforward path

W2r(s, q2r) : Transfer function containing parameter in the feedback path
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T(2r−1)(s) : Sensitivity function of the parameter in the feedforward path

T2r(s) : Sensitivity function of the parameter in the feedback path

Q : Weighing matrix

J : Performance index

Y (1) : Feedback signal for the speed loop

X(10) : Feedback signal for the current loop

X(14) : Input current signal


