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ABSTRACT 

 

 

SWATI JAIN.  Evaluation of Spatial Resolution and the Non-Linearity Analysis for 3-D 

Metrology.  (Under the direction of DR. ANGELA D. ALLEN) 

 

 

 Structured light systems (SLS) have become increasingly important for three-

dimensional shape measurements. A quantitative evaluation of the spatial resolution is also 

becoming increasingly important. The spatial frequency response of the instrument is a 

reasonable metric for resolution and is commonly referred to as the instrument transfer 

function (ITF). We used the ITF to determine the capability of a commercial SLS the 

EinScan-pro using a step artifact. The ITF is similar to the modulation transfer function 

(MTF) of an imaging system, which describes how well the system images an object as a 

function of spatial frequency.  Similarly, ITF describes the instrument response to the 

spatial frequency on the surface to be measured. Many optical measurement instruments 

use a camera for data acquisition and the optical transfer function will necessarily impose 

a limit on the instrument resolution. The ITF and the MTF metrics rely on the linearity of 

the measurement. Only a liner and shift-invariant system can be used to uniquely define 

ITF/MTF. In this dissertation, we describe the use of the step artifact to determine the 

spatial resolution of a commercial SLS the EinScan-Pro. We check the use of the ITF over 

the MTF of the imaging system. We present a methodology to check the combined 

uncertainty for the ITF measurements including a method to check the applicability of the 

step artifact for the ITF measurements, the impact of the use of step artifact with different 

surface finishes, and the effect of the tilt and disposition of the artifact during the 

measurement. We also, present the use of the bispectrum for the non-linearity check of any 

kind of measurement which is applicable for both ITF/MTF measurements.  
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INTRODUCTION 

 

In recent years, structured light systems (SLS) have become popular for acquiring 3D 

geometric measurements because they are non-contact and fast. The applications range 

from inspection of small-scale IC packages to large-volume metrology of power generators 

[1,2]. The advancement in several areas (such as cameras, computing power, processing 

hardware, projection, and illumination systems) enables higher density point cloud data, 

which can mislead the users in terms of the spatial resolution of the measurement. 

Therefore, there is a need to define and quantify the spatial resolution of these instruments. 

The conventional definition of spatial resolution is the ability of the instrument to detect 

two adjacent points [3]. According to Rayleigh, two points are said to be resolved if the 

center of the point spread function (PSF) of one point falls at the first zero of the PSF of 

the other point. This definition is reasonable for microscopic or biological imaging 

applications. For a surface or dimensional measurement, it is reasonable to define spatial 

resolution in terms of the spatial frequency response of the system. This is called the 

instrument transfer function (ITF) in the literature [3,4].  

The ITF is defined as the response of the instrument to the spatial frequency content 

of the object [3,4] and provides a complete description of instrument performance over the 

full range of spatial frequencies. The spatial frequency at which the ITF falls to 50% is 

called the lateral period limit and is the measure of spatial resolution of the instrument as 

defined in ISO 25178-604 [3,9]. The ITF is similar to the modulation transfer function 

(MTF) of an imaging system, which describes how well the system images an object as a 

function of spatial frequency.  Similarly, the ITF describes the instrument response to the 
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spatial frequency on the surface to be measured. Many optical measurement instruments 

use a camera for data acquisition and the optical transfer function will necessarily impose 

a limit on the instrument resolution. The study of the ITF for structured light systems (SLS) 

is relatively new with a few published studies [5-8]. Our first paper includes a methodology 

to estimate the ITF of a commercial SLS (the EinScan-Pro 3D Scanner) following the step-

artifact approach and its uncertainty. The ITF dependence on the position in the 

measurement volume is also investigated. More interestingly, a comparison of the 

measured ITF and MTF of the instrument is also presented which shows that the ITF is 

higher than the MTF at distances shorter than best focus.  

Our second paper extends this study and presents a complete survey of determining the 

uncertainty of the ITF measurements. Based on ISO standard the ITF predicts the 50% 

frequency cutoff 2.6 mm-1 which corresponds to a 50% cutoff wavelength of 0.38 mm 

which is approximately two times larger than the 0.16 mm point spacing, which would be 

a user’s estimate of the resolution. The second paper includes several factors that must be 

considered carefully while measuring an instrument’s ITF and processing the data. If care 

is taken with the alignment of the step artifact, the most important contributions to our 

uncertainty are the repeatability and the angle estimation to rotate back and align the 

measured step edge during data processing. Concerning alignment, the angle of the artifact 

to the projection axis (the angle of the normal vector of either terrace of the step artifact to 

the measurement axis) is important. A negative tilt angle leads to the shadowing effect 

which appears as data dropout. Tilt in the positive direction will cause an apparent undercut 

in the step profile in the case of the specular edge step artifact whereas a diffuse edge leads 

to an artificially improved ITF estimate.  This is purely a geometric projection effect.  The 
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sensitivity of the ITF to the step orientation of the artifact within the field of view was also 

discussed, and the ITF was found to be insensitive to this measurement condition. The 

choice of the resampling interval was also explored. In addition, the characterization and 

validation methods for the step artifact were discussed. 

The modulation transfer function and the instrument transfer function are practical 

metrics to quantify the spatial frequency response of imaging systems and three-

dimensional topographical measurements, respectively [4,5,9]. However, a frequency 

response based metric for the resolution relies on an assumption of measurement linearity.  

Without this assumption, the frequency response (and therefore resolution) becomes a 

function of the measured/imaged object itself and therefore cannot be universally 

quantified.  Most 3D topography measurements show non-linear behavior particularly for 

high spatial frequency components in the limit in particular where the resolution metric is 

needed [3-4,9-15].  Therefore for a valid resolution characterization, investigation of the 

presence of non-linearity is also important. In our third paper, we present a general 

methodology of identifying non-linearity in a measurement that can be used for both 

imaging systems as well as 3D topography instruments. 

A system is said to be linear if its response is the sum of the responses that each of the 

frequency component signals would produce individually, i.e., if two frequency 

components are present in an input signal, we can propagate them separately and add up 

the result [3,11]. For example, for a linear system, the output of a sinusoidal input would 

be sinusoidal with only a modified amplitude. However, a non-linear system will generate 

harmonics of a sinusoidal input, changing both the shape and the scale (e.g. reducing and 

flattening the peaks of the sinusoid). In general, surface topographic measurements are 
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non-linear, particularly for complex textures and high surface slopes, however, limits can 

be defined where measurements are approximately linear.  These conditions depend on the 

physical principle of the measurement and the instrument classes. Our analysis method can 

be used to determine if the instrument is operating in a nonlinear limit and can be applied 

to any instrument, and for both ITF and MTF characterization.  

Our third paper presents an analysis method to determine whether a measurement is 

approximately linear and applies to any optical topographic or optical imaging 

measurement. Our approach uses the coherence function calculation from the structure 

dynamics community for use with a sinusoidal-based artifact for the MTF/ITF 

measurement.  The coherence function calculation does not work for a step artifact, 

however, which is commonly used in the MTF/ITF measurements. For a step-based 

artifact, we present the use of a higher-order spectral function - the bispectrum - for non-

linearity detection.  The bispectrum can also be used with discrete sinusoidal based 

artifacts. 
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Chapter 1. EVALUATION OF THE SPATIAL FREQUENCY RESPONSE AND THE 

UNCERTAINTY FOR A COMMERCIAL STRUCTURED LIGHT SYSTEM 
 

ABSTRACT 

Structured light systems (SLS) have become increasingly important for three-

dimensional shape measurements. A quantitative evaluation of the spatial resolution is also 

becoming increasingly important. The spatial frequency response of the instrument is a 

reasonable metric for resolution and is commonly referred to as the instrument transfer 

function (ITF). In this paper, we present a methodology to estimate the ITF of a commercial 

SLS (the EinScan-Pro 3D Scanner) and its uncertainty. A measurement of a step artifact is 

used for the ITF estimation. We also discuss a method to check the validity of the artifact 

used for the measurement. The ITF dependence on step orientation and position in the 

measurement volume is also presented, in addition to a comparison between ITF and the 

modulation transfer function (MTF) for the cameras in the instrument.    

1.1 Introduction  

Structured light systems have become increasingly important in many manufacturing 

sectors [1,2]. The applications range from inspection of small-scale IC packages to large 

volume metrology of power generators [1,2]. The application growth is enabled by 

technology advances in several areas, such as high resolution, high sensitivity, megapixel 

cameras, computing power, processing hardware, digital projection system, and 

illumination systems1. These advances enable higher density point cloud data, which can 

mislead the user in terms of spatial resolution. Therefore, there is a need to define the spatial 

resolution of these instruments. The conventional definition of spatial resolution is the 

ability of the instrument to detect two adjacent points [3]. According to Rayleigh, two 

points are said to be resolved if the center of the point spread function (PSF) of one point 
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falls at the first zero of the PSF of the other point. This definition is reasonable for 

microscopic or biological imaging applications. For a surface or object dimensional 

measurement, it is reasonable to define spatial resolution in terms of the spatial frequency 

response of the system. This is called the instrument transfer function (ITF) in the literature 

[3,4].  

The ITF is defined as the response of the instrument to the spatial frequency content of 

the object [3,4] and provides a complete description of instrument performance over the 

full range of spatial frequencies. The spatial frequency at which the ITF falls to 50% is 

called the lateral period limit and is the measure of spatial resolution of the instrument (ISO 

25178-604) [3,9]. The study of the ITF for structured light systems (SLS) is relatively new 

with a few published studies [5-8]. The ITF dependence on experimental factors for 

commercial systems has not been investigated. 

In this paper, we present a methodology to estimate the ITF of a commercial SLS (the 

EinScan-Pro 3D Scanner) and its uncertainty. The ITF dependence on the tilt of the step 

artifact relative to the optical axis of the instrument was investigated and showed the 

importance of this alignment condition. The ITF dependence on the position in the 

measurement volume is also investigated. We found the ITF focusing distance is slightly 

different than the MTF. More interestingly, a comparison between ITF and Modulation 

transfer function (MTF) showed the ITF is slightly higher than the MTF at distances shorter 

than best focus. However, at the MTF’s best focus (390 mm), the ITF agrees well with both 

MTF curves. 
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1.2 Theory 

1.2.1  Definition of ITF 

The ITF quantifies the instrument response to the spatial frequency content on the 

surface. The ITF is similar to the MTF of an imaging system, which describes how well 

the system images an object as a function of spatial frequency10,11. Similarly, ITF describes 

the instrument response to the spatial frequency on the surface to be measured. Like MTF, 

ITF is the ratio of the measured amplitude to the actual amplitude on the surface as a 

function of spatial frequency [10,11].  

For a linear instrument response that is shift-invariant, the measurement can be modeled 

as the convolution of the height profile with the impulse response of the system: 

 ( ) ( ) ( )g x f x h x=  . (1.1) 

Where f(x) is the input height profile, h(x) is the impulse response function, and g(x) is 

the measured height profile. 

Taking the Fourier transform of Eq. (1), we get  

 ( ) ( ). ( )G f F f H f= , (1.2) 

where, G(f), F(f) and H(f) are the Fourier transform of g(x), f(x) and h(x), respectively. 

The function H(f) is called the instrument transfer function (ITF), and is given by 

rearranging eq. (1.2),              

 
( )

( )
( )

G f
H f

F f

 
=  
 

. (1.3) 
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1.2.2 Method of Calculating ITF 

Methodology to measure ITF depends on the choice of artifact and a discussion on the 

pros and cons of the artifacts is summarized in section 1.3. 

Two methods can be used to calculate the ITF, the ratio method and the derivative 

method,  

1.2.2.1  Ratio Method 

This approach is a direct statement of the definition of ITF as described in section 1.2.1. 

In this approach, the ITF is taken to be the ratio of the Fourier transform of the measured 

amplitude to the Fourier transform of an actual amplitude.  The advantage of using this 

approach is that any surface geometry can be used to measure instrument response. But 

this approach uses directly discrete Fourier transform of the surface geometry, which 

suffers from spectral leakage of the discrete Fourier transform. In addition to that this 

approach requires artifacts to be well-characterized.  

1.2.2.2 Derivative Method (MTF standard Method)  

The derivative method is the standard approach used for MTF measurements for digital 

imaging devices. It is well documented in ISO 1223 standards [12,13] and applies to only 

a step artifact for an ITF measurement or a knife-edge artifact in the case of the MTF 

measurement.  

To calculate ITF by the derivative method, we calculate the derivative of the step edge 

response and then calculate the FFT of this line spread function. The validity of this 

approach is apparent by first considering a step profile function as  

 ( ) ( )f x step x=  (1.4) 
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The output or measured step function is the input convolved with the impulse response 

function given by 

 ( ) ( ) ( )g x step x h x=   (1.5) 

The derivative of the measured step becomes 

 ( )   ( )( ) ( ) ( ) ( ) ( ) ( ) ( )
d d d

g x step x h x step x h x x h x
dx dx dx


 

=  =  =  
 

 (1.6) 

and taking the Fourier transform we see that 

  ( ) ( )
d

step x H f ITF
dx

= =  (1.7) 

With this methodology we can avoid the spectral leakage issue but taking derivative 

dominates the noise.  

1.3 Artifacts for ITF Measurement 

Several artifacts can be used to measure ITF according to the literature. Each artifact 

has its pros and cons. The simplest artifact is a delta function, but it is practically impossible 

to construct a physical artifact like a delta function [14]. A sinusoidal surface can also be 

used, but it is difficult and expensive to make such an artifact. Also, using a sinusoidal 

artifact will give the ITF information only at one frequency, therefore many artifacts would 

be needed to approximately characterize the transfer function [14]. Alternatively, a chirped 

surface with a continuously-varying spacing could be used, in this case, the spatial 

frequency will vary continuously, but such surface usually has small amplitude (typically 

few microns for all spatial frequencies) [9] and is difficult to fabricate. Some researchers 

have proposed measurement of the ITF by measuring the corner of a cuboid as well [7,8]. 

A high-quality, very sharp, single step artifact is somewhat easy to fabricate and 
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intrinsically covers a wide range of spatial frequencies [14]. This is valid as long as the 

step is sufficiently sharp, that is the frequency content of the step is significantly higher 

than the instrument bandwidth. 

The benefit of using a chirped surface is that they measure instrument response over the 

whole field of view, but there are several disadvantages as well. Artifacts like a chirped 

surface and the single sinusoid artifacts require that the artifacts be well-characterized. 

Also, from the above discussion, it is clear that these surfaces require the ratio approach 

for the ITF calculation, which suffers from spectral leakage due to the use of the discrete 

Fourier transform.  Whereas the step provides an intrinsic DC signal which is well 

calibrated with the standard step height measurements, so the need to characterize becomes 

only a need to ensure that the step is sufficiently sharp. Measuring the corner of a cube is 

also a better choice over a chirped surface since a sharp corner of a cube covers a wide 

frequency range like a step artifact. The data can also be processed in a way to avoid 

spectral leakage [7].  However, the ITF calculation using a cube corner must still be based 

on the ratio method, therefore the height and angles must be well characterized in addition 

to the edge being sufficiently sharp.  

1.4 Einscan-pro 3d scanner (A commercial structured light system) 

In this paper, we describe a demonstration of the ITF measurement on a commercial 

structured light system-the EinScan-Pro 3D Scanner. The EinScan-Pro is a portable, 

lightweight, multifunctional 3D scanner that can be used in four different scanning modes: 

the handheld high density (HD) scan, the handheld rapid scan, the fixed scan with the 

turntable (Auto Scan), and the fixed scan without the turntable (Free Scan) [15,16]. The 

EinScan-Pro uses white LED-based projection scanning and delivers ‘watertight’ or ‘non-
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watertight 3D data which can be used for 3D printing of real objects or can be used for 

reverse engineering applications [15,16] respectively. It uses two cameras and one 

projector to capture 3D point cloud data, and an optional external camera is available to 

enable full-color 3D [16]. Both cameras of the scanner were calibrated according to the 

scanner manual [15]. According to the manual, the suitable working distance is 350 to 

450mm, the range and location over which a projected cross on the object can be seen. The 

manufacturer quotes a point spacing of 0.16mm for the fixed scan (auto and free) and 

0.2~0.3mm for the handheld HD scan [15]. For our measurement, we used the fixed scan 

mode without activating the turntable. 

 

Fig. 1-1. EinScan-Pro 3D Scanner. 

1.5 Measurement object: step artifact 

Based on the discussion in section 1.3, we decided to use the step as an artifact for ITF 

measurement. For an instrument like the EinScan-Pro with a resolution limit no better than 

the point spacing of 0.16 mm at best, a step artifact for an ITF measurement should have 

step edges with rounding on the scale of ~10 micrometers or better. 

For the ITF to be a valid spatial resolution metric, the measurement must be within the 

linearity limits of the measurement.  This means the step artifact should satisfy the 

following conditions [5,6]: 
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1. Geometric linearity condition: The surface height variation of the artifact should 

be much less than the distance between the camera and the projector. 

2. Optical filtering linearity condition:  the surface height amplitude should be 

smaller than the effective wavelength of the structured light measurement. 

3. The artifact should contain a wide spatial frequency band. 

4. The amplitudes of the sinusoidal components should be large compared to the 

typical measurement noise of the system.  

No information about the effective wavelength and PSF of the EinScan was provided 

by the manufacturer. Visual inspection during a measurement of a flat plain white sheet 

provides an estimate of the effective wavelength and is about 2 mm for this system. The 

step artifact used for measurement was easy to make, contains a wide range of spatial 

frequencies, and had a step height of ~ 1 mm which meets the criteria of being much less 

than the working distance of the instrument (350-450 mm) and is less than the effective 

wavelength, satisfying both geometrical and optical filtering linearity conditions.  

We created our step artifact by using a single crystal single-side polished Si wafer. 

Cleaving the wafer provided a nice straight and sharp edge. We epoxied two cleaved pieces 

of the wafer, polished sides down, to create a measurable step artifact. The unpolished side 

of the wafers, while relatively smooth, provided ideal light-scattering characteristics for 

the scanner.  We measured the top and bottom terraces of the step with a scanning white 

light interferometer (SWLI) to characterize the artifact quality.  The rms of each terrace 

(the unpolished side of the wafer) is about 0.6 m. Assuming edge rounding on this same 
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scale, this artifact is well within the validity limits of the perfect step assumption as 

described above. Current edge measurements are underway to verify this assumption. 

 
Fig. 1-2. SWLI measurement of top surfaces of the step artifact: (a) top surface, and (b) line profile along the line shown in (a). 

For the measurements, the scanner was mounted on a heavy aluminum base and a 

precision rail and mount was used to quantify the position and orientation. The artifact was 

fixture to a prism table mount on the stage and a slight tilt angle could be varied. 

Measurement was taken at a different position in the measurement volume, which will be 

described in section 1.9. The working distance between the scanner and the artifact was 

measured to ±2mm.  The experimental setup is shown in Fig. 1-3. 
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Fig. 1-3.  Experimental Set-up for ITF Measurement. 

1.6 Data processing for The ITF measurement  

1.6.1 Coordinate Transformation 

The point cloud data from the scan was imported into MATLAB, an example of which 

is shown in Fig. 1-4. This data is in the EinScan-Pro global coordinate system and needs 

to be transformed into a local coordinate system on the sample. This conversion is carried 

out in several steps and is summarized below: 

 

Fig. 1-4. Measured Point Cloud Data. 

We first define the lower terrace as the reference plane by masking the lower level and 

fitting a plane. Conversion of data from the global to the local (see Fig. 1-5(a)) coordinate 

system to local coordinate system was done first rotation of the data about the z-axis and 

then the x-axis. For final rotation, we find the slope of the edge by picking two points close 
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to the edge and rotating the whole dataset about the z-axis such that the edge is parallel to 

the y-axis (Fig. 1-5 (b) and (c)). To find the correct alignment, we use a slope comparison 

approach [6], which uses the comparison of the slope of the step transition of the average 

step profile as a function of the angle used to align the edge of the step. 

 

Fig. 1-5. (a) Define Local Coordinate System with a plane fit to lower terrace, (b) Data in Local Coordinate System, (c) Top View of 

Data in Local Coordinate System and (d) Presence of high frequency shoulder. 

1.6.2 Average step profile to reduce measurement noise 

Once we make the edge of the step profile parallel to the y-axis, all x-direction line 

traces are superimposed together to get a high-density 1-dimensional step profile, similar 

to the standard slanted edge method used for an MTF measurement. To reduce the 

measurement noise, we resample the 1-dimensional step profile and average the height 

values in each resampling interval to get an average step profile, as shown in Fig. 1-6(b).  

The choice of the resampling interval is important [12,17, 18] should be fine enough to 

ensure that the ITF measurement is not re-sampling limited [12,17, 18]. The reported 

EinScan-Pro point spacing is at best x=0.16mm, corresponding to a Nyquist frequency of 
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3.12 cycles/mm. We oversampled our step profile by using a resampling interval of x/5, 

corresponding to a resampling frequency of 15.6 cycles/mm, which is well beyond the 

worst-case frequency limit of the instrument. Fig. 1-6(a) shows the resampled step profile 

with vertical lines showing the resampling intervals.  

 

 

A high-frequency shoulder is observable in the average step profile (see Fig. 1-6(b) and 

1-5(d)) that is not expected in a simple impulse response convolution model.  The structure 

is an artifact of the line profile averaging process and the discrete sampling interval in the 

point cloud data.  Since the step was at a slight angle to the global y-axis of the instrument, 

Moiré beating between the point cloud sampling period and the step angle causes finer 

structure in the average step profile.  This effect is discussed in the context of MTF 

measurements for a sampling-limited system and is best handled by filtering and/or 

averaging [17,18].   

We took a filtering approach in this analysis, and filter out this noise by modeling the 

convoluted step measurement with a Sigmoid function.  This analytic function is a good 

approximation to the convolution of an impulse response with a step function [19] to it, 

which will be the best estimate of the average step profile of step measurement. The fitting 

 
(a) (b) 

Fig. 1-6.  (a) Resampling of higher density 1-D step profile, and (b) Average step profile. 
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removes the shoulder artifact and reduces the noise. The Sigmoid fit to the average step 

profile is shown in Fig. 1-7. 

 

Fig. 1-7. Sigmoid Function fit to the measured step profile. 

 

1.6.3 Calculation of ITF 

Using the derivative approach discussed in section 1.2.2.2, we calculate the derivative 

of the Sigmoid function fit to the average step profile and use this to calculate the line 

spread function (LSF). Finally, the ITF calculates as the Fourier transform of the LSF. the 

LSF and ITF curves are shown in Fig. 8(a) and 8(b), respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) 
Fig. 1-8. (a) LSF by taking derivative of Sigmoid fit step profile, and (b) ITF estimation by taking Fourier transform of LSF. 
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1.7 Uncertainty Analysis for The ITF measurement 

Several quantities affect the ITF measurement including environmental factors (such as 

humidity, temperature, and vibrations, etc.), process parameters (such as estimation of 

angle for alignment), and instrument noise. Environmental factors and instrument noise 

can be evaluated with a repeatability test. We repeat the ITF measurement ten times and 

take the average of the ten measurements as the best estimate of the ITF. The repeatability 

uncertainty, then, is the standard deviation of the mean (the standard deviation of the ten 

results divided by √10  [20]).  

Process parameter choices also affect the ITF calculation and, in this case, dominate the 

combined uncertainty. The angle estimation for aligning the step edge is the largest 

contributor.  The best estimate of the optimum angle is 12.9  0.2 and the uncertainty 

due to this is estimated by repeating the ITF calculation using 12.7 and 13.1, respectively, 

and then taking the average of this change. The combined uncertainty for ITF at each 

frequency point is then estimated by combining the standard uncertainty due to 

repeatability with the Total uncertainty was estimated by calculated standard uncertainty 

for angle estimation in a root-sum-square fashion. 

The best estimate of ITF along with uncertainty (coverage factor=2) at a working 

distance of 380 mm is shown in Fig. 1-9. The spatial frequency at which ITF falls to 50%, 

the cutoff frequency, is 2.6 0.5 mm-1. The corresponding cutoff wavelength is around 0.38 

mm.  
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Fig. 1-9. The best estimate of ITF along with uncertainty at 380mm. 

1.8 ITF as a function of step orientation 

The tilt of the step with respect to the scanner is an important consideration.  A tilt in 

one direction will lead to shadowing (taken to be a negative tilt angle) and too much tilt in 

the other direction will violate the assumptions of the model.  The impulse response is 

defined along the measurement axis and the measurement is modeled as a convolution of 

this impulse response with a step profile.  This model will not match the measurement if 

the step is tilted too far from the measurement axis.  We explored these limits by repeating 

the ITF measurement for a range of step tilt angles varying from -25o to 20o in 5o 

increments. 

For negative tilt angles, shadowing is observed as data drop out.  This can be seen by 

plotting the number of points in each resampling interval (Fig. 1-10 (a)) and it is observed 

as a gap in data at an apparent step edge when the negative tilt angle becomes significant 

(see inset).  At positive tilt angles beyond 10 o the line profile data begins to show an 

undercut characteristic (Fig. 1-10 (b)) which we interpret to mean that the model 

assumptions are breaking down.  The trend can be seen by plotting the slope of the step 
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transition as a function of tilt angle (see Fig. 1-10(b)). The slope increases as the tilt angle 

increases up to 10o.  Beyond 10o the slope is negative (see inset for 20o in Fig. 1-10(b)), 

suggesting that the model assumption is not valid at higher positive angles.  Measurements 

and simulations are underway to investigate this in more detail.  For the data discussed 

here, a positive tilt angle of ~ 2 o was used for all measurements that follow.  

 

 
Fig. 1-10.  ITF dependence on step orientation. (a) No. of data points as a function of bin no. for negative angles and 

(b) Slope of the step transition as a function of angle for all tilt angles. 

1.9 ITF as a function of WORKING distance 

The ITF dependence on the position along the measurement axis was also investigated. 

The working distance was varied from 350 to 450 mm in steps of 10mm, covering the 

manufacturer’s recommended working distance range. The ITF is approximately the same 

from 350 mm to 410 mm, with the best ITF occurring at 380 mm, which we refer to as the 

best focus. The behavior over the full range can be appreciated from a plot of the 50% 

cutoff frequency as a function of distance (Fig. 1-11), emphasizing the best focus behavior 

for 380 mm. The ITF is approximately symmetric for an equal amount of defocus.  
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Fig. 1-11. The ITF cutoff frequency as a function of distance. 

1.10 MTF Vs ITF 

Many optical-based measurements use a camera for data acquisition and this will 

necessarily impose a limit on the instrument resolution. Based on literature for 

interferometery3,4 and deflectometry10, the ITF is expected to agree with the MTF of the 

camera within the linearity limits of the measurement. The theory has been discussed for a 

fringe projection system, predicting that the ITF and the MTF should be the same as long 

as 1) the surface variation is much smaller than the effective wavelength and 2) the width 

of the PSF is much smaller than the effective wavelength6. The instrument used here has 

two cameras, and the MTF of each camera was measured and compared to the ITF to 

evaluate this prediction. 

The standard slanted edge MTF testing method was followed (ISO 1223312-13). For each 

measurement, the projector of the scanner was blocked and pictures were taken with each 

camera of the back-illuminated razor blade. The edge of the razor blade was slightly tilted 

relative to the camera detector array axes to apply the slanted edge approach. An example 

of an image used for the MTF measurement is shown in Fig. 1-12. The processing steps 

for the MTF measurement can be found in the literature [12-13]. 
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Fig. 1-12. An image of the slanted knife edge for the MTF measurement. 

The MTF was also measured at different positions in the measurement volume at similar 

distances as used for ITF measurements. The best focus MTF of both cameras is at 

approximately 390 mm, which is about 10 mm shifted from the position where the best ITF 

was measured. However, similar to ITF, the MTF is also almost the same from 370 to 400 

mm. The comparison of the MTF of both cameras shows that the MTF of camera-2 is 

slightly better than the MTF of camera-1 from 380-450mm and that the MTFs of both 

cameras are approximately the same from 350-380 mm. Similar to the ITF, the MTF is also 

approximately symmetric about its best focus.  

A comparison between ITF and the MTF of both cameras shows that the ITF is slightly 

higher than the MTF at distances shorter than the best focus.  This may be a consequence 

of the phase-shifting algorithm’s insensitivity to fringe contrast and the MTF’s direct 

attenuation of irradiance contrast5. However, at the MTF’s best focus (390 mm), the ITF 

agrees well with both MTF curves. A comparison of the ITF and the MTF for each camera 

at 350 mm, 390mm, and 450mm is shown in Fig. 1-13.  
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Fig. 1-13. Comparison of ITF and MTF of Camera-1 and Camera-2. (a) At 350mm, (b) at 390mm (MTF best Focus), and (c) At 

450mm. 

 

To summarize this result, the cutoff frequencies for ITF and the two MTF curves were 

plotted against, including uncertainty estimates in both distance and cutoff value (Fig. 1-

14).  The plot shows that ITF shows better frequency response than either MTF at positions 

closer than 380 mm, and the ITF falls close to the MTF of camera-1 at distances beyond 

the best focus.  

 

Fig. 1-14. Comparison of ITF and MTF’s as a function of distance. 

1.11 Conclusion 

A methodology to measure the ITF of a commercial structured light system (the 

EinScan-Pro 3D Scanner) and its uncertainty has been developed. The ITF dependence on 
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the tilt of the step artifact relative to the optical axis of the instrument was investigated and 

showed the importance of this alignment condition. The investigation of ITF as a function 

of working distance shows that the best frequency response is found at 380 ± 30 mm and 

that the ITF reduces systematically about the best focus condition. The MTF of each 

camera was also examined as a function of working distance.  The best focus conditions 

for camera-1 and camera-2 are 390 ± 10 mm. A comparison of ITF with MTF shows that 

the ITF is slightly higher than the MTF at positions closer than best focus and the ITF is 

close to the lower MTF of camera-1 for distances beyond the best focus. 

As mentioned above discussions, in the literature suggest that the ITF follows the MTF 

and that the MTF can be used as the measure of spatial resolution.  The theoretical analysis 

by Zhang, et al. showed the equivalency of MTF and ITF in the limit that the PSF is small 

compared to the effective wavelength6 and this is the case over the defocus range 

investigated here.  A more rigorous comparison of ITF and MTF would require lower 

uncertainty ITF measurements.  Also, the use of MTF to estimate the spatial frequency 

response for an instrument like the EinScan that has two cameras, the MTF of both cameras 

should be measured and compared.  For applications that require a strong statement of 

spatial resolution with low uncertainty the question of a direct ITF measurement versus an 

MTF measurement of the cameras should be considered carefully. 
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7. Berssenbrügge, P., Dekiff, M., Kemper, B., Denz, C.., Dirksen, D., “Characterization 

of the 3D resolution of topometric sensors based on fringe and speckle pattern 

projection by a 3D transfer function,” Opt. Lasers Eng. 50(3), 465–472 (2012).  

8. Kellner, T., Breitbarth, A., Zhang, C. and Notni, G., “Characterizing 3D sensors using 

the 3D modulation transfer function,” Measurement Science and Technology, 29,1-8 

(2018). 



26 

 

9. Leach, R., Giusca, C., Henning, A., Sherlock, B. and Coupland, J., “ISO definition of 

resolution for surface topography measuring instruments,”, Fringe, 405-410 (2013). 

10. Tianquan, S., Maldonado, A., Su, P., Zhou, P. and Burge, J.H., “Study of the instrument 

transfer function of a free-form optics metrology system: SCOTS,” Proc. SPIE 

9046,904602, 904602-1-904602-7 (2013). 

11. Tianquan, S., Maldonado, A., Su, P., Zhou, P. and Burge, J.H.,” Instrument transfer 

function of slope measuring deflectometry systems,” Applled Optics, 2981-2990 (2015). 

12. Eichenbach, S.E., Park, S.K. and Naranswamy, R., “Characterizing digital acquisition 

devices,” Optical Engineering 30, 170-177 (1991). 

13. Masaoka, K., Yamashita, T., Nishida, Y. and Sugawara, M., “Modified slanted-edge 

method and multidirectional modulation transfer function estimation,” Optics Express 

22, 6040-6046 (2014). 

14. Takacs, P. Z., Li, M. X., K. Furenlid, and Church, E. L., “A step-height standard for 

surface profiler calibration,” Optical Scattering, 235–244 (1993). 

15. EinScan-Pro user manual 

16. <https://www.einscan.com/handheld-scanner/einscan-pro/> (14 July 2019). 

17. Boreman, G. D., [Modulation Transfer Function in Optical and Electro-Optical 

Systems], SPIE Press, Bellingham, Washington (2001).  

18. Park, S.K., Schowengerdt, R. and Kaczynski, M.A., “Modulation-transfer-function 

analysis for sampled image systems,” Applied Optics 23, 2572-2582 (1984). 

19. Iliev, A., Kyurkchiev, N. and Markov, S., “On the approximation of the step function 

by some sigmoid functions,” Mathematics and Computers in Simulation 133, 223-234 

(2017) 

https://www.einscan.com/handheld-scanner/einscan-pro/


27 

 

20. Bevington, P.R., Robinson, D.K., [Data Reduction and Error Analysis for The Physical 

Science], Mc Graw Hill, (2003). 

 

  



28 

 

Chapter 2. ESTIMATING UNCERTAINTY FOR THE INSTRUMENT TRANSFER 

FUNCTION MEASUREMENT OF 3D SCANNERS   
 

ABSTRACT 

 Spatial resolution is an important aspect of many optical instruments. It is defined as 

the ability to faithfully output the fine detail present in the input. Following convention, 

spatial resolution can be defined as the spatial frequency response of the instrument, known 

as the instrument transfer function (ITF). In this paper, we describe the step-artifact 

approach for estimating the ITF for 3D scanners, discuss step artifact characterization and 

validation approaches, and present a method to estimate the combined uncertainty of the 

ITF measurement. The approach is demonstrated using the EinScan Pro 3D scanner. A step 

artifact is used for the measurement that takes advantage of the cleaving properties of a 

single-side polished silicon wafer.  The uncertainty analysis includes simulations to 

estimate the contribution due to influencing factors such as the alignment of the step artifact 

to the measurement axis, the diffuse vs. specular scattering properties of the step edge, and 

various processing parameter choices. 

2.1 Introduction 

In recent years, structured light systems (SLS) have become popular for acquiring 3D 

geometric measurements because they are non-contact and fast. The applications are 

diverse, benefitting sectors such as medical, industrial automation, and entertainment 

technology [4,5]. The measurement is based on the principle of triangulation and a variety 

of commercial instruments are available. The quantitative measurement result is 

increasingly relied upon and the spatial resolution, or fidelity with which fine features on 

the surface are captured, is an important aspect to understand.  The point spacing 

specification of the instrument is often an optimistic prediction of the resolution.  A 
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measure of the spatial frequency response, known as the instrument transfer function (ITF), 

is the preferred metric [1-3]. The instrument transfer function is analogous to the 

modulation transfer function (MTF) of imaging systems, like the cameras used in 3D 

scanning devices [1-3,6-9]. The MTF captures the image contrast resolution whereas the 

ITF captures the height profile resolution. There is an ISO standard (ISO 25178-604) that 

defines the resolution limit for 3-dimensional measurements as the spatial frequency at 

which the ITF falls to 50%, known as the lateral period [1,12]. The study of ITF for 3D 

scanners is limited and only a few publications are available [3,10,11]. A complete 

discussion on estimating the combined uncertainty for an ITF measurement has not been 

discussed. 

In this paper, we present a methodology to estimate the ITF of a commercial SLS (the 

EinScan-Pro 3D Scanner) following the step-artifact approach with a complete uncertainty 

analysis.  We introduce the use of a step artifact that is fabricated from a single-side 

polished silicon wafer and include a discussion of characterizing and validating the step 

artifact.  The single crystal cleaving property of the wafer yields a very sharp step edge 

artifact, but the face of the step is specular rather than diffuse (the ideal surface 

characteristic for good 3D scanner measurements).   The consequence of a specular vs 

diffuse step face is considered in the comprehensive combined uncertainty analysis in 

addition to influence factors such as the focus condition, position in the measurement 

volume, step alignment, and various data analysis processing parameters.  

2.2 Theory 

The ITF is closely related to the MTF of an imaging system, with the ITF defining the 

spatial frequency response of the height information in the output rather than the spatial 
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frequency response of the irradiance profile in the image plane for MTF. Mathematically, 

the ITF is defined as the ratio of the measured height amplitude to the actual height 

amplitude as a function of spatial frequency [3,6,7,13]. 

For a linear and shift-invariant system, the output g(x) can be defined as the convolution 

of the input f(x) and the impulse response function h(x):  

 ( ) ( ) ( )g x f x h x=   (2.1) 

Taking the Fourier transform of Eq. (1), we get 

 ( ) ( ). ( )G f F f H f=  (2.2) 

where, G(f), F(f) and H(f) are the Fourier transform of g(x), f(x) and h(x), respectively. 

The function H(f) is called the instrument transfer function (ITF) and is given by 

rearranging Eq. (2),  

 
( )

( )
( )

G f
H f

F f
=  (2.3) 

Linearity of the measurement – a proportionality relationship between input and output 

- is an essential condition for the use of a frequency-response-based resolution description 

like the instrument transfer function. A consequence of linearity is that the frequency 

content simply adds without frequency mixing, i.e., if two frequency components are 

present in an input signal, the output is the simple sum of the response to each frequency 

component [7].  If a system is not linear, the output signal will contain spatial frequencies 

other than those of the input signal [5]. Structured light systems are approximately linear 

systems when the following two conditions are fulfilled [13,14]: 
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1. The amplitude of each sinusoidal component on the surface satisfies the geometric 

linear constraint, that is the surface height variation is much less than the working distance 

(distance between the camera and the object) [13,14].  

2. The width of the point spread function (PSF) is small compared to the carrier 

wavelength of the system [13,14]. 

We will discuss approaches to checking that the ITF characterization has been carried 

out in the linear limit of the instrument in a future publication.  

The ITF can be calculated in two ways [3,13], 1) the ratio method which uses artifacts 

with engineered and well-characterized frequency content (examples are given in 

references 7, 10, 12, 17, 18, 19, and 20) and 2) the derivative method which uses a step 

artifact [3,13]. Any type of artifact can be used for the ratio method provided it contains 

the frequency content of interest for the characterization, but it must be dimensionally well 

characterized and can be difficult to both fabricate and measure [3,22].  Also, the division 

operation with the ratio method leads to noise amplification in the high frequency limit [3]. 

With the derivative approach using a step artifact, the ITF is the normalized Fourier 

transform of the derivative of the step profile [3], and as such does not require a rigorous 

dimensional characterization, provided the step edge is sufficiently sharp [3]. Sufficiently 

sharp means that the frequency roll-off at high frequencies of the actual step must occur at 

frequencies well beyond the frequency cutoff of the instrument to be characterized, as 

shown in Fig. 1. The detail of checking the validity of the step artifact is discussed in 

section 2.4.1.1. The derivative method with the use of a step artifact is used for the analysis 

discussed here. 



32 

 

 

Fig.  2-1. Validity limit of a step artifact. 

For the uncertainty analysis, we start with a clear definition of the measurand – the goal 

is to estimate the instrument transfer function along the measurement axis at best focus 

within the measuring volume (X±10 mm Y±10 mm Z±5 mm) (see Fig. 2-3) under a 

specified environmental condition. The measuring volume is selected based on the size of 

the artifact used and a sensitivity investigation confirming that the ITF does not appreciably 

vary over the size of the artifact. We carry out the ITF measurement and demonstrate the 

uncertainty analysis for an EinScan-Pro 3D-scanner. The EinScan-Pro uses white LED-

based projection scanning and is a portable, lightweight, multifunctional 3D scanner that 

can be used in four different scanning modes: the handheld high density (HD) scan, the 

handheld rapid scan, the fixed scan with the turntable (Auto Scan), and the fixed scan 

without the turntable (Free Scan) [15,16]. We used the fixed scan mode without activating 

the turntable for the measurements discussed here. The EinScan-Pro uses two cameras and 

one projector to capture the 3D point cloud data. The scanner is calibrated according to the 
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scanner’s user manual [15]. The manufacturer quotes the working distance as 350 to 

450mm with a point spacing of 0.16 mm for the fixed free scan mode [15].  

We fabricated a step artifact for the measurement from cleaved pieces of a single-side 

polished silicon wafer. The unpolished wafer surface is oriented up and the surface 

roughness causes sufficient diffuse scattering for good fringe visibility without having to 

overcoat the sample (see Fig. 2-2(a)).  The cleaving process results in a very sharp edge, 

and the cleaved edge is used for the step by affixing a top cleaved piece upside down to a 

second upside down piece (see Fig. 2(a)). A cross-sectional schematic of the step artifact 

is shown in Fig. 2-2(b). Care is taken to minimize the gap between the pieces and ensure 

that the bottom edge of the step is not compromised with excess adhesive. The wafer is 1 

mm thick, resulting in a step height of ~1 mm, which satisfies the linearity requirements 

explained above for the system.  
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Fig. 2-2. (a) Photograph of the step artifact used for the ITF measurements and (b) cross-section schematic of the sample. 

2.3 Data Processing 

The details of the data processing for the ITF measurement are described in reference 

3. The main steps are i) calculate the average line profile of the step in a local coordinate 

system from the measured point cloud data, ii) fit a Sigmoid function to minimize the 

impact of high frequency noise, iii) take the derivative to estimate the line spread function 

(LSF), and iv) take the Fourier transform to estimate the ITF. The data processing steps 

must each be considered in the uncertainty analysis.  The main steps to consider are  

The coordinate transformation (masking the lower terrace, plane fit to masked region, 

and defining a local coordinate system). 

calculation of the average step profile (angle estimation to rotate the step parallel to the 

y-axis and the choice of the resampling interval). 
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impact of noise on the Sigmoid fit to the measured step data. (Repeatability) 

The experimental setup is shown in Fig. 2-3. 

 

Fig. 2-3. Experimental set-up for ITF measurement. 

2.4 Uncertainty Analysis 

Several quantities can affect the output probability distribution function (PDF) of our 

measurand including environmental factors, experimental procedure, and each step of data 

processing. We divided these contributors into five categories: model assumption (includes 

step artifact assessment), measurement (experimental procedure), environmental factors, 

coordinate transformation, and the calculation of average profile. The influence quantities 

in each category are summarized in the fishbone (Ishikawa) diagram shown in Fig. 2-4.  

Consideration of each is discussed below and the standard uncertainty estimated for those 

found to be significant.  Many of these contributors are negligible if care is taken in 

fabricating, positioning, and aligning the artifact as discussed below. 
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Fig. 2-4. The fishbone diagram 

2.4.1 Model Assumption 

The calculation of the ITF from a measurement of a step is based on the assumption that 

the step artifact is perfect – which is never the case. A perfect step has infinite frequency 

content (see a black curve in Fig. 2-1) and a real step is not perfectly sharp which means 

the rounded edge leads to a drop off of frequency content (see blue curve in Fig. 2-1). 

Another assumption is that the measurement responds equally to the surfaces of the step, 

meaning uniform scattering properties of the artifact. 

2.4.1.1  Radius of the corners of step artifact 

A real step artifact does not contain infinite spatial frequency content and therefore 

rigorously violates the model assumption, but it can be used to approximate a perfect step 

for the measurement as long as the frequency content drop off is far beyond the frequency 

response (ITF) of the instrument (see Fig. 2-1). The frequency at which the amplitude 

begins to drop below the expectation for a perfect step is related to the radius of curvature 
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of the step.   We measured the radius of the top corner of the step artifact and used this with 

simulation to estimate the frequency content of the artifact.  We used a scanning white light 

interferometer to measure the step edge, and the measurement is challenging due to the 

different scattering properties of the step edge and the surface and the numerical aperture 

constraint of the objective on the scanning white light interferometer. Hence the step edge 

is measured (Fig. 2-5(a)) by placing a similar cleaved wafer at a small ~5o angle, cleaved 

face up.  We estimate the radius by masking the corner and carrying out circular least-

squares fits.  We estimate the radius to be 1.8 ± 0.5 m (Fig. 2-5(c)). The lower corner is 

difficult to measure and we reasonably assume it is likely to undercut slightly as shown in 

Fig. 2-5 (b).  We can assess the potential impact of this finite-curvature step edge in a few 

ways.  First, we generate a 1-mm high step profile with a rounded ~2m radius corner.  We 

then process this profile as through it were a measurement output, thereby generating an 

ITF curve that would be the apparent frequency response (ITF) if the measurement were 

limited by the step artifact geometry.  This is the dotted gray curve shown in Fig. 2-6 (a).  

For a visual of the sensitivity to the corner radius, we repeated this process using a 1 mm 

height step profile with a 5X-larger corner radius (10-m corner radius). This is the black 

curve in Fig. 2-6 (a). 
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Fig. 2-5. (a) Measurement condition for the top corner of the step artifact, (b) The roundness of the bottom corner is undercut. and (c) 

Measured radius of the top corner. 

Now we assess these curves compared to a best-case prediction of the frequency 

response of the instrument – which is a frequency response limited by the point spacing of 

the measurement. We estimate this limiting frequency response (ITF) by generating a 

Gaussian line spread function (LSF) with a 0.16 mm width, the Fourier transform of which 

we take to be the best-case response of the system.  This is the gray curve in Fig. 2-6(a). 

The comparison of the three curves in Fig. 2-6(a) shows that a step artifact even with a 

corner radius of 10 m (higher than the measured corner radius (2 m)) can be used for the 

ITF measurement. 

We can also evaluate the quality of the step artifact in the spatial domain by generating 

a step profile with the 10 m radius corner and comparing it to a simulated measurement 

of a perfect step with the instrument when it is given the best-case impulse response for the 

instrument using the 0.16 mm FWHM Gaussian LSF.  The comparison of the step artifact 

profile with a 10-m radius corner and the convolution of this best-case LSF with a perfect 



39 

 

step (gray profile) is shown in Fig. 2-6(b).  This spatial domain comparison is also a good 

visual confirmation that our step is sufficiently sharp to be considered a perfect step for the 

ITF measurement.  This simulation exercise suggested a rule of thumb that the radius of 

the step artifact should be less than roughly half of the point spacing of the scanner.  In this 

limit, the finite curvature of the step edge will not significantly contribute to the ITF 

measurement uncertainty.   

 
Fig. 2-6. (a) The frequency response of the estimated step profile by measured radius and with 10 µm corner radius step profile is far 

beyond the best possible frequency response when limited by instrument LSF. (b) Two steps created using. (1) the artifact step radius 

(10 µm) and (2) the best possible step profile when a line-spacing-generated LSF is used. 

 

2.4.1.2 Alignment condition for a specular edge artifact 

Alignment is another important aspect of the ITF measurement.  The model assumes 

that the face of the step is aligned with the measurement axis.  This will never exactly be 

the case, so the impact of alignment uncertainty on the final ITF uncertainty must be 

considered.  Consideration of this uncertainty is especially important with our silicon-

cleaved artifact because the end face of the step is specular and is not directly detected by 

the instrument. We investigated this effect experimentally and with simulation. 
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Experimentally we repeat the ITF measurement for a range of step tilt angles varying from 

-20o
 to +20o

 in 5o
 increments and at +2o as shown in Fig. 2-7. 

 

Fig. 2-7. Tilt condition of the step artifact about the measurement axis. 

Tilt in the negative direction leads to shadowing and appears as a clear gap in the data 

at the step profile (see a middle figure in Fig. 2-8(a)). Presumably, this is because the 

instrument uses two cameras at slight angles to the measurement axis. For this reason, a 

slightly positive angle is best to avoid shadowing. This gap can be quantified by plotting 

the number of points in each resampling interval (bottom figure in Fig. 2-8(a)). Tilt in the 

positive direction leads to an undercut step profile (a negative slope at the step after the 

coordinate transformation data processing step (Fig. 2-8(b)). This is because of the imaging 

properties of the specular edge. The specular face of the step optically behaves like a mirror 

so the instrument will image and consequently measure the specular reflection of the 

bottom terrace diffuse surface as shown in Fig. 2-9(a).  This effect is observed with 

simulation, as well.  For the simulation, we start with a perfect step and rotate the step to 

different angles along the measurement axis in 5o increments from 0o until +25o and also at 

+2o. At each angle, the law of reflection is applied to the specular part of the profile as 

shown with the dotted gray line in Fig. 2-9(a).  The reflection-modified profile at each 

angle is then convolved with 0.16 mm FWHM Gaussian.  The simulated data is then rotated 
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back to a horizontal alignment, as would be done with the experimental data, resulting in a 

clear undercut step profile.  This shows that a specular edge artifact can be used, but the 

step must be carefully aligned to the measurement axis. From the simulation, we can 

estimate an alignment goal and uncertainty for a limit in which misalignment will not 

significantly contribute to the ITF measurement uncertainty.  We find this to be +1 o ± 1 o 

for our system.  

 

Fig. 2-8. (a) Tilt in the negative direction from the measurement axis leads to shadowing and appears as data drop out in the step 

profile. (b) Tilt in the positive direction leads to an undercut step profile. 
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Fig. 2-9. (a) Incident light on a specular edge (black profile) is reflected, resulting in the mirror image of the diffuse surface to the left 

(dashed gray profile). (b) An undercut step profile results after completing the coordinate transformation data processing step. 

2.4.2 Measurement conditions 

Measurement conditions such as focus, location of the step in the field of view, and the 

angle alignment relative to the measurement axis - even with a diffuse-edge step artifact – 

are important influence factors to consider. This section covers the impact of these 

measurement conditions on the resulting ITF.  

2.4.2.1 Focus condition  

The artifact should be well focused for a good ITF measurement. The focus condition 

becomes more important for an instrument like the EinScan Pro which does not have a 

particular manufacturer-quoted focus distance but rather a working distance range (350 – 

450 mm) is specified [15], as measured from the outermost mechanical surface on the 

measurement side of the EinScan. To assess the focus dependence, we varied the artifact 

position over the working distance from 350 mm to 450 mm in steps of 10 mm and measure 

the ITF at each position. The measured ITF at 380 mm is shown in the inset of Fig. 2-10, 

showing a 50% cutoff frequency of approximately 2.6 mm-1.  The measured variation over 

350 mm to 450 mm is summarized in Fig. 2-10 with a graph of the resulting 50% ITF cutoff 

frequency as a function of position.  The best resolution (highest cutoff frequency) occurs 
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at ~380 mm with a symmetric falloff with the position on either side. As expected, the ITF 

(spatial resolution) varies over the working distance.  This highlights the importance of 

clearly specifying the position along the measurement axis (focus condition) of the ITF 

measurand (defined as position 380 mm ± 10 mm, in our case), and subsequently 

appreciating that the resolution of a scanned measurement result will vary over the 3D 

geometry of a part if there is appreciable depth variation to the part. The horizontal error 

bars in the figure are due to the estimated standard uncertainty in the distance measurement 

while the vertical error bars are the combined uncertainty of the cutoff frequency in the 

ITF measurements which is dominated by repeatability and the uncertainty due to the step 

angle calculation (describe in section 2.4.5.1). 

 

Fig. 2-10. The 50% cutoff value of the ITF as a function of the artifact position along the measurement axis shows the best resolution 

is at 380mm. 

2.4.2.2 Position of the artifact in the field of view 

The ITF varies over the measurement volume, with the best resolution occurring at best 

focus along the measurement axis and centered in x and y on the measurement axis (see 

Fig. 2-3).  The sensitivity of the ITF to lateral positioning uncertainty must also be 

considered.  We test this by changing the position of the artifact right/left and up/down (the 
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x and y axes) in the field of view at 400mm along the measurement axis (see Fig. 2-11(a)), 

moving the artifact to 25 mm to left, 7 mm to right, 22 mm to up, and 8 mm down.  The 

ITF curves for these positions are shown in Fig. 2-11(b).  The error bars are the combined 

uncertainty in the ITF measurements which is dominated by repeatability and the 

uncertainty due to the step angle calculation (describe in section 2.4.5.1). As we will see, 

even these relatively large x/y offsets lead to small ITF variation on the scale of the final 

combined uncertainty.  We conclude for the EinScan then, that the lateral positioning 

uncertainty contribution is negligible as long as the step is positioned laterally within ± 10 

mm of the measurement axis.  

 

Fig. 2-11. (a) Location of artifact around the center of the FOV at 400 mm and (b) The ITF at different positions around the center of 

the FOV at best focus. 

2.4.2.3 Measurement axis alignment (projection angle) condition 

 In section 2.4.1.2, we discussed the importance of the artifact alignment with the 

measurement axis (the projection angle) when the step has a specular edge. In this section, 

we show that the projection angle is important even when the step edge is diffuse. This is 

explored with simulation.  With diffuse characteristics over the full step profile, the 

incident light scatters in all directions, thus the measurement becomes a direct mapping of 
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the angled profile along the measurement axis, then convolved with the LSF.  For negative 

projection angles, the same behavior is expected as discussed in section 2.4.1.2.  With a 

diffuse edge to the step, the positive projection angles now behave differently. 

We simulate the same positive angle positions as in section 2.4.1.2 from 0o to +15o in 

steps of 5o and also at +2o. We again use a 0.16-mm Gaussian LSF for the convolution (a 

model of the best-case resolution condition for the instrument). After the convolution, the 

1D profile is rotated back to horizontal relative to the measurement axis to match what is 

done in the experiment. Once rotated back to horizontal, the step profile is deceptive 

because of the angle misalignment, leading to an artificially better ITF curve, as shown in 

Fig. 2-12.  We can understand this trend as a simple projection of the LSF onto a 

measurement plane at an angle to the horizontal with a cosine dependence in essence, the 

LSF is effectively compressed by this factor, leading to apparently improved spatial 

resolution.  The inset in Fig. 2-12(b) shows the comparison of the simulated ITF curve for 

the +15  misalignment and a simple convolution of a perfect step with a Gaussian LSF 

with a FWHM 0.16 mm reduced by a factor of cos (15). Consideration of this effect leads 

to We conclude for the EinScan then, that the projection angle uncertainty contribution is 

negligible as long as the step is aligned +1 ± 1 relative to the measurement axis. 
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Fig. 2-12. (a) The simulated step profiles at zero and +15o show how the apparent corner curvature varies with misalignment angle, 

and (b) the ITF results show the ITF is lowest at 0o and highest at 15o 

2.4.2.4 Orientation of artifact in FOV 

We also explored the sensitivity of the measurement to the orientation of the step in the 

field of view (rotation about the measurement axis).  The EinScan uses two cameras, 

positioned at slight angles on either side of the projection (measurement) axis in a 

horizontal plane.  This configuration breaks the rotational symmetry about the 

measurement axis; therefore, the measurement could be sensitive to the step orientation 

relative to the plane of the cameras and projector.  The orientations considered are shown 

on the left in Fig. 2-13 with the resulting ITF curves on the right. The error bars are the 

estimated combined uncertainties for the ITF measurements. The orientation of the fringes 

compared to the step orientation is conveyed by the overlay of black lines (fringes) on the 

left. The data shows with our current level of uncertainty ITF is independent of the step 

orientation.  
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Fig. 2-13. The ITF at different rotation orientations at the 400 mm in the middle of the FOV. 

2.4.3 Environment factors 

The measurand can be affected by uncontrollable and small environmental changes such 

as mechanical vibration and/or electronic noise. We consider these environmental 

influence factors as causing random, zero-average, short-term variation in the measurand 

and therefore will be covered by experimental repeatability [23]. The results of the 

repeatability test are discussed in section 2.4.6. 

2.4.4 Coordinate Transformation 

A coordinate transformation is the very first data processing step, where we transform 

the data from a global coordinate system of the instrument to a local coordinate system on 

the point-cloud data (For detail see [3]).  This involves choices in defining an origin and 

orientation for the local coordinate system and this will influence the ITF results. We divide 

the coordinate transformation into two parts:  1) masking the lower terrace that defines the 

local coordinate system orientation and 2) the choice of the local coordinate system origin.  

Masking is used to extract the points belonging to the lower terrace for use with a best-fit 

plane calculation to determine the orientation of the step artifact.  We then choose one of 
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the points to define a local origin on the lower terrace, finally rotating the whole data set 

to this local coordinate system is done to remove the tip/tilt from the data.  Both of these 

influences are covered in the repeatability assessment because they are also intrinsically 

random as the measurement and data processing are repeated. 

2.4.5 Calculation of average step profile 

The same average-profile data processing is carried out as is done for MTF 

measurements, as described in the ISO standard [24,25].  The step is measured at a slight 

orientation angle about the measurement axes, the data is then rotated about the 

measurement axes then to align the step vertically in the local coordinate system, and 

finally resampled and averaged to collapse the data to a single line profile estimate.  We 

divide the average step profile calculation into two parts 1) angle calculation and 2) choice 

of the resampling interval. 

2.4.5.1 Angle Calculation  

After the coordinate transformation, we align the edge of the step artifact parallel to the 

y-axis of the local coordinate system and this requires an estimate of the angle for the 

rotation. The step angle estimate ends up being a dominant uncertainty contribution for our 

measurements.  We use the same method to estimate the rotation angle as described in 

reference 13. In essence, an incorrect choice of angle leads to an artificially broad average 

line profile with a correspondingly poor ITF.  The broadened line profile consequently has 

a large slope at the step transition.  We estimate the best rotation angle by systematically 

varying the rotation angle through a range of values near the best angle, and plot the slope 

of the step transition region as a function of the rotation angle.  A quadratic fit helps to 

estimate the optimum angle and it is 12.9o ± 0.2o for our measurements.  We estimate the 
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corresponding ITF uncertainty by repeating the ITF calculation using 12.7o and 13.1o, 

respectively, and then take the average of this change. 

 

Fig. 2-14. Slope comparison approach for the uncertainty calculations due to the choice of the process parameter (angle calculation) 

2.4.5.2 Resampling interval 

Once the step profile has been aligned to the y-axis, it is collapsed and averaged to a 

single profile with the choice of a resampling interval. Too coarse of a resampling interval 

will filter the profile and lead to an ITF that reflects the resampling size rather than the 

bandwidth of the instrument.  The resampling interval should be fine enough so the interval 

size choice does not affect the final ITF estimate.  The resampling intervals considered 

were the EinScan reported point spacing of △x = 0.16 mm and a range of smaller intervals: 

△x, △x/2, △x/3, △x/4, △x/5, △x/6, △x/7, and △x/8, where △x is the point spacing.  The 

corresponding ITF curves are shown in Fig. 2-15. The curves become indistinguishable 

with a resampling interval of △x/4 and finer.  We use △x/5 as the resampling interval for 

our data processing. 



50 

 

 

Fig. 2-15. The ITF for different resampling intervals 

2.4.6 Repeatability 

Repeatability is the variation in measurements taken by a single person or instrument 

on the same item, under the same conditions, and over a short time. A repeatability analysis 

will cover most of the uncertainties from our fishbone diagram, including uncertainty due 

to electrical noise, environment factors (short-term temperature variation and vibration, 

etc.), the masking and plane fit process, and the choice of the local coordinate system. To 

estimate repeatability, we repeat the ITF measurement ten times and take the average of 

the ten measurements as the best estimate of the ITF. The repeatability uncertainty, then, 

at each frequency value is the standard uncertainty in the mean which is the standard 

deviation of the ten values divided by √10 [23]. 

2.5 Measured ITF 

As long as care is taken in the positioning and alignment of the step artifact, the 

combined uncertainty is dominated by repeatability and the uncertainty due to the step 
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rotation angle estimation.  The combined uncertainty for ITF at each frequency is estimated 

by combining the standard uncertainty due to repeatability with the standard uncertainty 

estimated for the angle determination in a root-sum-square fashion. 

The best estimate of ITF along with uncertainty (coverage factor = 2) at a working 

distance of 380 mm is shown in Fig. 2-16. The spatial frequency at which the ITF falls to 

50%, the cutoff frequency, is 2.6 ± 0.5 mm-1. The corresponding cutoff wavelength is 

around 0.38 ± 0.03 mm which is the estimate of the spatial resolution of the instrument. 

The comparison of this cutoff wavelength with the point spacing of 0.16 mm 

(manufacturer’s metric to estimate resolution)) shows that the manufacture’s quoted point 

spacing is an overly optimistic estimate of the resolution.  The best possible ITF curve for 

the instrument, using the 0.16-mm FWHM Gaussian LSF is also shown in the figure for 

comparison. Interestingly the ITF predicted using the point spacing based LSF is a 

reasonable estimate of what we measured the ITF. Notice based on ISO standard the ITF 

predicts the 50% frequency cutoff 2.6 mm-1 which corresponds to a 50% cutoff wavelength 

of 0.38 mm which is approximately two times larger than the 0.16 mm point spacing, which 

would be a user’s estimate of the resolution. 
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Fig. 2-16. The final estimate of the ITF with the uncertainty 

2.6 Conclusion 

Measurement of the ITF of a structured light system is presented and the different 

factors which can contribute to uncertainty have been discussed. Several factors must be 

considered carefully while taking the ITF measurement and processing the data. If care is 

taken with the alignment of the step artifact, the most important contributions to our 

uncertainty are the angle estimation to align the step edge parallel to the y-axis during data 

processing and repeatability. With respect to alignment, the angle of the artifact to the 

projection axis (the angle of the normal vector of either terrace of the step artifact to the 

measurement axis) is important. A negative tilt angle leads to the shadowing effect which 

appears as the data drop in both cases. Tilt in a positive direction will cause an apparent 

undercut in the step profile in the case of the specular edge step artifact whereas a diffuse 

edge leads to an artificially improved ITF estimate.  This is purely a geometric projection 

effect.  The importance of the focus condition along with the lateral position of the artifact 
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in the field of view has been discussed. The best focus for the EinScan Pro is found to be 

380 ± 10 mm and the change in ITF is negligible within ± 10 mm lateral positioning around 

the measurement axis. The sensitivity of the ITF to the step orientation of the artifact within 

the field of view was also discussed, and the ITF was found to be not significantly affected 

by this measurement condition. The choice of the resampling interval was also explored. 

In addition, the characterization and validation methods for the step artifact were discussed. 
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Chapter 3. DETERMINATION OF NON-LINEARITY FOR 3D MEASUREMENTS 
 

ABSTRACT 

 In recent years, the modulation transfer function (MTF) and the instrument transfer 

function (ITF) have become popular metrics to characterize imaging and three-dimensional 

topographical measurement resolution, respectively. However, MTF and ITF resolution 

classification are spatial frequency based and they rely on the assumption of measurement 

linearity. Therefore, an approach for detecting the degree of measurement nonlinearity is 

useful to validate these frequency-based resolution metrics. In this paper, we present a 

general methodology of identifying the degree of non-linearity which can be used for both 

the imaging systems and 3D topography instruments. 

3.1 Introduction 

Only for a linear system (or approximately linear system) can spatial-frequency-based 

metrics like the instrument transfer function (ITF) for topographic measurements and the 

modulation transfer function (MTF) for imaging systems be used as a sensible metric of 

spatial resolution [1-3]. Such measurements are only approximately linear in some limit, 

hence a method of checking the measurement for non-linearity is important for validating 

the resolution characterization.  A system is linear if its response is the sum of the responses 

that each Fourier component signal would produce individually, i.e., if two frequency 

components are present in an input signal, we can propagate them separately and add up 

the result [3]. For example, for a linear system, the output of a sinusoidal input would be 

sinusoidal with a modified amplitude (see Fig. 3-1(a)). However, a non-linear system 

generates harmonics of the input frequency which modify the shape according to the type 

of non-linearity (see Fig. 3-1(b)) [4].  
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Fig. 3-1. (a) An example of a linear system and (b) an example of a non-linear system. 

 

Imaging and 3D topographic measurements are linear in specific limits and these have been 

investigated and theoretically defined in the literature. Theoretical studies on 

interferometers have suggested that measurements are linear under the following two 

conditions [1,2,5-9]: 

1. The optical system has a sufficiently large numerical aperture to capture the light 

scattered from the topography object, including the higher diffraction orders. 

2. The size of a step or steep sidewall is much less than one quarter of the mean 

wavelength. 

For a fringe projection system, the theory has been discussed showing that the system 

is linear if the surface height variation is small compared to the carrier wavelength and also 

much smaller than the working distance [4,10].  These considerations define practical 

regimes of linearity for traditional uses but are becoming increasingly challenged by 

applications involving complex textures and high surface slopes [11]. Only a few 
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publications are in the literature about non-linear analysis for imaging systems such as 

infrared imaging and detector array.  Becherb, et al. determined the non-linearity of the 

optical imaging system in terms of the ratio of the coherence interval of the object 

illumination to the size of the imaging system’s diffraction pattern and showed that imaging 

systems are linear as long as this ratio is less than 1 [12]. Orlando, et al. used a gamma 

correction method to remove the non-linearity of a forward-looking infrared system (FLIR) 

[13]. Boreman, et al. used a piecewise linear algorithm on each pixel for correcting the 

non-linearity of a HgCdTe IR CCD focal plane [15] and later on presented the use of spatial 

distortion test (Fourier analysis) for characterization of the non-linearity of a CID camera 

and vidicon tube camera [15].  For 3D topography measurements, approaches to detecting 

the presence of nonlinearity have not been addressed. Non-linearity will lead to incorrect 

MTF/ITF results and further, the MTF/ITF results will depend on the particular artifact 

used for the resolution characterization [12,16]. 

In this paper, we present a general methodology through theory and simulation to 

determine whether a measurement is linear.  The methodology can be applied to any 

topographic or optical imaging instrument. One aspect of the approach leverages the 

concept of the coherence function from the mechanical structure dynamics to check for 

non-linearity in the system.  This works for individual sinusoidal inputs but does not work 

for step-based artifacts which are commonly used to measure the MTF of imaging systems 

and the ITF of topographic instruments. We then present the use of a higher-order spectral 

function - the bispectrum - for non-linearity determination which works on both a 

sinusoidal and step input. 
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3.2 Coherence Function 

The coherence function measures the degree of mutual coherence or the likeness of two 

harmonic signals [17-20]. The coherence function is widely used in system identification, 

measurement of the signal to noise ratio, determination of linearity and non-linearity of the 

system, and the determination of time delay [17-20].  Most of the applications are for the 

signal is time-frequency based, but our application is instead spatial frequency based. 

Whether time or spatial frequency based, the output g(x) (using spatial-frequency-based 

here) can be written as the convolution of the input f(x) and the frequency response function 

h(x): 

 ( ) ( ) ( )g x f x h x=   (2.1) 

In the Fourier domain,   

 ( ) ( ). ( )G f F f H f=  (2.2) 

where, G(f), F(f), and H(f) are the Fourier transforms of g(x), f(x), and h(x), respectively. 

The function H(f) is called the frequency response or instrument transfer function. 

The coherence function between two functions f(x) and g(x) is defined as the cross-

power spectrum Sfg(f) divided by the square root of the product of two power spectrum 

Sff(f) and Sgg(f) [17-24].  

 2
( )

( )
( ) ( )

fg

fg

ff gg

S f
f

S f S f
 = . (2.3) 

where, Sfg(f) is the cross-power spectrum defined as: 

 
*( ) ( ) ( )fgS f F f G f= , (2.4) 
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Sff(f) and Sgg(f) is the auto-power spectrum defined as   

 *( ) ( )ffS F f F f= , (2.5) 

And  

 *( ) ( ) ( )ggS f G f G f= ,  (2.6) 

where, F*(x) and G*(x) are the complex conjugate of the Fourier transform of the f(x) 

and g(x) respectively. 

The coherence function is a normalized cross-spectral density function that can be used 

as a measure of the spectral similarity between two signals. The coherence function 

characterizes energy conservation. The value of the coherence function lies within 0 and 1. 

If a system is linear and in absence of noise energy is conserved and coherence is 1. The 

coherence function is sensitive to noise and system non-linearity which causes its value to 

be less than 1. However, two completely uncorrelated signals cause the coherence value to 

be 0 [17-24]. 

3.2.1 Use of the coherence function for determination of non-linearity with sinusoidal 

waves 

MTF/ITF both can be measured using a sine wave pattern or a step artifact 

[12,13,16,25], the only difference is that amplitude is the height for ITF and intensity for 

MTF measurements. We test the capability of the coherence function in both cases. 

Extending what has been done with the coherence function in the time domain [17,18,24], 

we applied the approach in the spatial domain by starting with a sinusoidal function, we 

create a linear input function which is the sum of two sine waves with frequencies of 25mm-
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1 and 100mm-1 And create a non-linear output which has non-linear interaction between the 

frequencies of the input signal, i.e., for the input,  

 0 1 1 2 2( ) sin(2 ) sin(2 )I x A A f x A f x = + +  (2.7) 

The nonlinear output is given by  

 
0 1 1 2 2 3 3

4 4 5 5 6 6

( ) [ sin(2 ) sin(2 ) sin(2 )

sin(2 ) sin(2 ) sin(2 ))

O x k A A f x A f x A f x

A f x A f x A f x

  

  

= + + +

+ + +
 (2.8) 

where, f1 =25 mm-1 and f2=100 mm-1, f3 is the sum of the frequencies f3=f1+f2=125 mm-

1, f4 is the difference if the frequencies, f4=f2-f1=75 mm-1, f5 and f6 are the double 

frequencies, f5=2f1=50 mm-1, and f6=2f2=200 mm-1. A zoomed view of both waves is shown 

in Fig. 3-2. 

 

Fig. 3-2. Input and output sinusoidal signals with input having the frequencies of 25mm-1 and 100mm-1 and the output signal contains 

additional harmonics of sum frequency 125mm-1, the difference of frequency 75mm-1, and double frequencies of 50mm-1 and 200mm-1 

Now, we calculate the coherence between two waves and since the coherence measures 

the likeness of the two signals, we expect the coherence to be 1 everywhere except at f3=125 

mm-1, f4=75 mm-1, f5=50 mm-1, and f6=200 mm-1 and the result agrees with our prediction 

shown in Fig. 3-3. (A zoomed view is shown in the inset of Fig. 3-3). 
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Figure 3-3. The coherence function calculated for a sinewave shows the presence of the harmonics. 

3.2.2  Failure of the coherence function for determination of non-linearity with a step 

artifact 

 Now through simulation, we applied the coherence function calculations on a step 

artifact. We first create a perfect step profile then convolve this profile to a Gaussian LSF. 

Then duplicate the convolved step and then duplicate the step 1000 times to generate a long 

signal input. Then we create a nonlinear output by applying a quadratic nonlinearity to the 

input. A zoomed view of both the input and output is shown in Fig. 3-4(a). The types of 

nonlinearity would be system dependent and an arbitrary 2nd order nonlinearity is used here 

for demonstration purposes. Regardless of the nonlinearity used, the coherence function 

value is one over the whole frequency range (Fig. 3-4(b)). This is because the input signal 

has infinite frequency content.  The coherence calculation detects the presence of 

nonlinearity by highlighting frequencies that should not be in the output, but this fails when 

all frequencies exist in the input and the output, regardless of the linearity condition.  Thus, 

a different analysis is needed when a step artifact is used, or any infinite-frequency-content 

artifact, for that matter. 
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Fig. 3-4. (a) Input and a non-linear output, and (b) The coherence function for a step function is one over the whole frequency range 

3.3 The Bispectrum 

Higher-order spectral analysis (HOSA) techniques can be used to identify the degree of 

non-linearity, the presence of non-Gaussian random processes, and phase coupling in wave 

interactions [26-29]. The high order spectra (HOS) are defined in terms of high order 

cumulants or moments of the random processes. The bispectrum is a third order spectrum 

and highlights information about the quadratic interaction and the phase coupling between 

two signals [26-32]. The bispectrum techniques for noise reduction and detection of 

quadratic non-linear phase coupling have been applied in several fields like astronomy 

[26,28], geographical [26 ,28], communication engineering [32], biomedical [32], 

electrical [26, 29, 32], mechanical [26, 29, 32], and interferometry [32], oceanography 

[28,29], coupled fluid mechanical [26,28], image processing [32,33] and plasma density 

fluctuation [28,29].  

The bispectrum is defined as the Fourier transfer of the third order cumulant or moment 

of a stationary process [26-34]. For a stationary signal with zero mean, the third order 

cumulant is the same as the moment and is defined as  

 ( , ) { ( ) ( ) ( )}C k l E x i x i k x i l= + +  (2.9) 
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where x is the value at index i, and k and l are shifted indices. The operator E{} is the 

expectation operation. 

The bispectrum is the Fourier transform of this function and is given by  

 
1 1

0 0

( , ) ( , )exp( 2 ( )) { ( , )}
N N

l k

B p q C l k j pl qk F C l k
− −

= =

= − + =  (2.10) 

where, N is the length of the signal and F{} represents the Fourier transform.  

For simplicity and a real discrete signal [32], we can write equation (9) as 

 ( , ) ( ) ( ) ( )B p q X p X q X p q= − −  (2.11) 

where, p and q are indices in the bispectrum domain and range from -N/2+1 to N/2-1. 

The term X() is the Fourier transform operator. 

The bispectrum has some useful properties [26,30-33]: 

1. For a stationary Gaussian signal with zero mean, the bispectrum is zero. Thus, 

the bispectrum removes or reduces the noise from a signal contaminated with 

zero mean Gaussian noise. 

2. A temporal or spatial shift does not affect the bispectrum. 

3. The bispectrum retains the phase and amplitude of the Fourier transform of the 

signal, which is not the case with the power spectrum calculation. 

4. If there exist three frequencies within a signal, where the sum of the two 

frequencies appears in the third frequency, then a non-zero value will appear in 

the bispectrum. 
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The 4th property is the most important for our application. Using this property one can 

identify the quadratic nonlinear interaction of the harmonic input components and hence 

identify the presence of non-linearity.   

3.3.1 Use of the bispectrum for determination of non-linearity with sinusoidal waves 

First, to highlight the features of a bispectrum calculation, we follow what has been 

demonstrated [37] in the literature but instead of the time domain we use the spatial domain 

and apply the bispectrum to a simple 2-frequency content signal [28-30,36]. We create two 

signals, signal 1 with frequency f1=25 mm-1 and signal 2 with frequency f2=2f1=50 mm-1 

(Fig. 3-5(a)).  We then sum the two to create a single signal having frequency f1 and 2 f1 

(double frequency), followed by the addition of significant random noise having a standard 

deviation of 10 times the amplitude of the frequencies. The final signal with the noise is 

shown in Fig. 3-5(b). We calculate the Fourier transform of the signal to check if the 

Fourier transform can identify the presence of both frequencies (Fig. 3-6) and we see that 

the Fourier transform fails to identify the existing frequencies in the signal when data is 

noisy. 

The bispectrum has the advantage over the Fourier transform and the coherence function 

as the bispectrum of Gaussian noise is zero and spreads the noise over a 2-dimensional 

plane.  This reduces the impact of the noise and makes it easier to identify the frequency 

for which the double (or the sum) frequency exists A line profile along the diagonal i.e., 

along the line where f1 = f2 is shown in Fig. 3-7. The bispectrum plot is shown as an inset 

in Fig. 3-7 showing the existence of the quadratic non-linearity by having a clear peak at f1 

= f2 =20 mm-1. The bispectrum is more helpful than a coherence function calculation, even 

for harmonic signals because the coherence function, unlike the bispectrum, is sensitive to 
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noise and causes an overall reduction in the coherence value, complicating the 

interpretation of the result. 

 
Fig. 3-5. (a) Two signals before adding noise having different frequencies of 25mm-1 and 50 mm-1, and (b) Total Signal sum of the two 

signals in (a) plus a random noise with a standard deviation of 20. 

 
Fig. 3-6. The Fourier transform of sinewave in Fig. 1(b) shows the difficulty to recognize the presence of inherent frequency in the 

signal due to noise. 
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Fig. 3-7. A line profile along the line f1=f2 (along diagonal), and the bispectrum show a strong peak at f1=25mm-1, confirming the 

existence of 2f1=50mm-1 in the signal. 

3.3.2 Use of the bispectrum to determine the non-linearity with a step artifact 

Through simulation, we applied the bispectrum calculation to a step artifact with and 

without noise to investigate the bispectrum analysis when a step artifact is used for the 

input. We apply a non-linearity to the output that is similar to what is observed for optical 

detector nonlinearity in cameras. Both cases are summarized below. 

3.3.2.1 Bispectrum with no noise added to the input function 

The bispectrum detects the presence of the double frequency in a signal.  A step artifact 

has an infinite frequency content with a well-defined amplitude dependence on frequency. 

Consequently, a double frequency exists for all frequencies in the input.  However, if the 

output is linear, the ratio of each frequency’s amplitude to the amplitude of 2f is well-

defined.  Detection of nonlinearity, then, can be highlighted by comparing a bispectrum 

calculation for a linear step output compared to a nonlinear step output.  To test this, we 

create a rect function (amplitude≈0.5) and convolve it with a Gaussian line spread function 

(LSF). To add non-linearity, we use a response curve measured for a DSLR camera shown 

in Fig. 3-8 where the output falls below the linear response curve with increasing intensity 

(slope = 1). In the case of a real image-system-based experiment, we would be comparing 
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the results from the linear region (low intensity) and the non-linear region (high intensity).  

Thus, in the simulation, we create another perfect step with an amplitude approximately 

equal to 1.4 greater than the linear step (to reflect the use of the higher nonlinear intensity 

level), convolve this step with the LSF, and then apply the nonlinearity using the fit to the 

curve in Fig. 3-8. The comparison of both linear and non-linear signals along with the 

amplitudes picked from the linear and non-linear region is shown in Fig. 3-8. 

Now the bispectrum was calculated for both the linear output and the non-linear output. 

The important step here is to normalize the bispectrum by the area under the curve for 

comparison.  The bispectrum is not inherently normalized. Both the linear and the non-

linear bispectrum were normalized by dividing by the area under the 2D bispectrum curve, 

respectively.  The normalized 2D bispectrum linear step artifact output is shown in Fig. 3-

9 and the profile along the diagonal is shown in Fig. 3-10. The two notable features in the 

line profile correlate to the frequency signatures of the width of the LSF and half the width 

of the LSF as labeled in the figure. of the linear and nonlinear comparison shows that the 

bispectrum along the diagonal of a non-linear step signal is higher in the mid-spatial 

frequency region than that of the linear signal. We further see the presence of the non-

linearity in the 2D bispectrum space by plotting the difference between the normalized 

linear and non-linear bi spectra as shown in the inset in Fig. 3-10.  

It is important to note that in practice if only a single artifact is experimentally used to 

measure the frequency response of the system, the ability to use this technique to check for 

nonlinearity is limited.  Knowledge of the line spread function of the system in the linear 

limit is needed to generate a simulated linear bispectrum for the comparison.  Naturally a 

step artifact with as large of a step as possible is desirable (whether actual height for 
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assessing topographic instrument or intensity for optical systems) because this generates a 

larger signal-to-noise MTF or ITF measurement.  But the use of an artifact with a large 

step amplitude runs the risk of crossing over into the nonlinear response limit.  The best 

approach would be to measure a second artifact that is clearly in the theoretical linear limit 

of the measurement and use this measurement to generate the normalized linear bispectrum 

for the difference assessment.   

 

Fig. 3-8. A linear camera model is shown in gray, and a non-linearity response curve in black, showing the linear response at low 

intensity and the nonlinear response with increasing intensity input due to camera saturation. The fir to the non-linear response curve 

if a 4th order degree polynomial. 
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Fig. 3-9. A comparison of linear (gray curve) and non-linear (black curve) steps. 

 

 
Fig. 3-10. The normalized bispectrum of the linear step. 
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Fig. 3-11. A line profile along diagonal showing the bispectrum of a non-linear step is higher than that of a linear step function. 

 
Fig. 3-12. The subtraction of non-linear and linear bispectrum showing the presence of non-linearity. Inset shows the zoomed view 

from f=0 mm-1 to 100 mm-1 showing a significant sign of non-linearity. 

 

3.3.2.2 Use of the bispectrum with the addition of noise 

A random noise of standard deviation of 0.02% of step height of nonlinear step and 

0.04% of step height of linear step were added to both the linear and the non-linear steps 

from Fig. 3-9 respectively.  Then the normalized bispectra were calculated and subtracted. 

The comparison of the line profile along the f1=f2 (the diagonal) is shown in Fig. 3-13 and 
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the difference of the both linear and the non-linear bispectrum as an inset is shown in Fig. 

13 and  

The difference between the linear and nonlinear behavior is impacted by the noise, but a 

difference is still observable.  Simulations over a range of noise levels would guide 

experimental choices on the signal to noise level needed to detect the nonlinearity. 

 

Fig. 3-13. A line profile along diagonal showing the bispectrum of a non-linear step is higher than that of a linear step function when a 

random noise is added, and the subtraction of non-linear and linear bispectrum when noise is added. The presence of non-linearity is 

still detectable. Inset shows the zoomed view from f=0 mm-1 to 100 mm-1 showing a significant sign of non-linearity. 

3.4 Conclusion 

The identification of non-linearity when characterizing the spatial frequency response 

of 3D topography measurements (called the instrument transfer function ITF) or imaging 

systems (called the modulation transfer function MTF) was discussed.  We propose the use 

of the coherence function and the bispectrum calculation to test for nonlinearity.  Through 

simulation, both methods were applied to the most commonly used artifact for these 

measurements, namely a step artifact. The bispectrum calculation has the advantage over 

the coherence function as it can be used both for the traditional step artifact and for 

sinusoidal artifacts, whereas the coherence calculation is only useful when using a 
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sinusoidal artifact. Even when using a sinusoidal artifact where the coherence calculation 

highlights the nonlinearity, it is also strongly impacted by noise, potentially obscuring the 

non-linearity. However, the noise reduction property of the bispectrum results in a clearer 

detection of nonlinearity alone.  This feature also makes the bispectrum analysis 

advantageous over a traditional Fourier approach.  One could consider even higher order 

spectral analyses like the tri-spectrum. Evan with the bispectrum analysis, noise degrades 

the ability to detect the nonlinearity, necessitating a consideration of desired experimental 

signal-to-noise levels to achieve a useful nonlinearity assessment. 
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CONCLUSION 

 

A methodology to measure the instrument transfer function (ITF) of a commercial 

structured light system (the EinScan-Pro 3D Scanner) and the different factors which can 

contribute to uncertainty have been researched. The importance of the focus condition 

along with the lateral position of the artifact in field of view has been investigated. The 

best focus for the EinScan Pro is found to be 380 ± 10 mm and the change in the ITF is 

negligible within ± 10 mm lateral positioning around the measurement axis. The MTF of 

each camera was also examined as a function of working distance.  The best focus 

conditions for camera-1 and camera-2 are 390 ± 10 mm. It is observed that both the ITF 

and the MTF reduce systematically about the best focus condition. A comparison of ITF 

with MTF shows that the ITF is slightly higher than the MTF at positions closer than best 

focus and that the ITF is close to the lower MTF of camera-1 for distances beyond best 

focus. As the literature suggests, we find that the ITF follows the MTF and that the MTF 

can be used as a reasonable measure of the spatial resolution.  The theoretical analysis by 

Zhang, et al. showed the equivalency of MTF and ITF in the limit that the PSF is small 

compared to the carrier wavelength [6] and this is the case over the defocus range 

investigated here.  A more rigorous comparison of ITF and MTF would require lower 

uncertainty ITF measurements.   

The second paper includes a discussion of characterizing and validating the step 

artifact where the step artifact is fabricated from a single-side polished silicon wafer. The 

implication of the scattering properties of the artifact surface (a diffuse step edge vs. a 

specular edge) and the dependence of the ITF measurement on the tilt of the step artifact 

relative to the optical axis of the instrument.  A diffuse edge and a specular edge artifact 
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through experiment and simulation shows the importance of the alignment condition as 

well as the scattering properties of the artifact. In addition, the influence factors such as the 

focus condition, position in the measurement volume, step alignment, and various data 

analysis processing parameters.  The sensitivity of the ITF to the step orientation of the 

artifact within the field of view was also discussed, and the ITF was found to be insensitive 

to this measurement condition. The choice of the resampling interval was also explored. In 

addition, the characterization and validation methods for the step artifact were discussed. 

The identification test of the non-linearity using the coherence function and the 

bispectrum was introduced. Both methods were applied to the most commonly used 

artifacts (sinewave and the step artifact) for MTF and ITF measurements. We show that 

the bispectrum has the advantage over the coherence function as it can be used for both 

types of artifacts. Even with a sinewave artifact, for which the coherence function 

calculation is valid, it is difficult to identify the presence of nonlinearity in the presence of 

noise. However, the impact of noise is reduced with the bispectrum calculation, improving 

the ability to detect the nonlinearity. The higher order spectrum calculations could be 

invested in future work such as the tri-spectrum. The bispectrum is beneficial but the 

identification of the non-linearity depends on the degree of the non-linearity compared to 

the noise level present in the signal.  

For future work, the fractional bispectrum (FBS) should be investigated as an 

alternative to the bispectrum.  The fractional bispectrum is similar to the bispectrum except 

that the calculation involves a frequency and a given multiple of the frequency (the 

fraction), whereas the bispectrum involves a frequency and twice the frequency.  In essence 

the bispectrum is looking at the comparison of each frequency in a step profile compared 
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to the expected amplitude of 2x that frequency.  The amplitude of each 2f is low compared 

to the amplitude at f for a step artifact, and this reduces the sensitivity of the bispectrum to 

this nonlinearity check.  The fractional bispectrum, on the other hand, can be defined to 

look at e.g. a frequency f and 0.9f, in which case the amplitudes at both frequencies 

naturally present in a step artifact are relatively closer (because the two frequencies are 

closer together), suggesting the impact of nonlinearity on frequency mixing will be more 

clear.  Also, once the nonlinearity has been estimated, approaches to removing the 

nonlinearity should be explored. Also, the approach described here for measuring the ITF 

and estimating the uncertainty could be used to then go back to a measurement and improve 

the resolution (with uncertainty) with a deconvolution operation.   Deconvolution 

approaches are widely used in the field of microscopy. 
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7. Berssenbrügge, P., Dekiff, M., Kemper, B., Denz, C.., Dirksen, D., “Characterization 

of the 3D resolution of topometric sensors based on fringe and speckle pattern 

projection by a 3D transfer function,” Opt. Lasers Eng. 50(3), 465–472 (2012).  

8. Kellner, T., Breitbarth, A., Zhang, C. and Notni, G., “Characterizing 3D sensors using 

the 3D modulation transfer function,” Measurement Science and Technology, 29,1-8 

(2018). 



86 

 

9. Leach, R., Giusca, C., Henning, A., Sherlock, B. and Coupland, J., “ISO definition of 

resolution for surface topography measuring instruments,”, Fringe, 405-410 (2013). 

10. Tianquan Su, Alejandro Maldonado, Peng Su, and James H. Burge, "Instrument 

transfer function of slope measuring deflectometry systems," Appl. Opt. 54, 2981-2990 

(2015). 

11. Torsten Glaschke, Leslie L. Deck, and Peter J. de Groot "Characterizing the resolving 

power of laser Fizeau interferometers", Proc. SPIE 10829, Fifth European Seminar on 

Precision Optics Manufacturing, 1082905 (7 August 2018). 

12. Daniel M. Sykora and Peter de Groot,  "Instantaneous measurement Fizeau 

interferometer with high spatial resolution", Proc. SPIE 8126, Optical Manufacturing 

and Testing IX, 812610 (27 September 2011). 

13. L. L. Deck and P. J. de Groot, "Using the instrument transfer function to evaluate 

Fizeau interferometer performance," in Optical Design and Fabrication 2017 

(Freeform, IODC, OFT), OSA Technical Digest (online) (Optical Society of America, 

2017), paper OM2B.7. 

14. Peter de Groot, Xavier Colonna de Lega, Rong Su, and Richard Leach "Does 

interferometry work? A critical look at the foundations of interferometric surface 

topography measurement", Proc. SPIE 11102, Applied Optical Metrology III, 111020G 

(3 September 2019. 

15. Richard J. Becherer and George B. Parrent, "Nonlinearity in Optical Imaging 

Systems*," J. Opt. Soc. Am. 57, 1479-1486 (1967). 

 

https://www.spiedigitallibrary.org/profile/Leslie.Deck-15872
https://www.spiedigitallibrary.org/profile/Peter-de-Groot
https://www.spiedigitallibrary.org/profile/Peter-de-Groot
https://www.spiedigitallibrary.org/profile/Peter-de-Groot
https://www.spiedigitallibrary.org/profile/Xavier.Colonna-de-Lega-14289
https://www.spiedigitallibrary.org/profile/Rong.Su-4037096
https://www.spiedigitallibrary.org/profile/Richard.Leach-569003

