
EVALUATION OF CURVED SURFACES WITH X-RAY REFLECTOMETRY

by

Jacob A. Cole

A dissertation submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in

Mechanical Engineering

Charlotte

2022

Approved by:

Dr. Stuart T. Smith

Dr. Chris J. Evans

Dr. Greg Gbur

Dr. Jimmie Miller

Dr. Greg Snyder



ii

©2022
Jacob A. Cole

ALL RIGHTS RESERVED



iii

ABSTRACT

JACOB A. COLE. Evaluation of curved surfaces with x-ray reflectometry. (Under
the direction of DR. STUART T. SMITH)

This dissertation presents a body of work developing novel models and methods for

surface evaluation with X-ray reflectometry (XRR). At the time of this work, XRR is

a highly used tool for the measurement of flat wafers and laminated semiconductors

and surfaces having additional geometric features have not been addressed. Surfaces

having mid-spatial frequency features at the scale of several millimeters per cycle and

surface having constant curvature are measured with XRR and models are developed

to predict the effect of surface roughness on the measurements of these surfaces.

First, a model is developed to investigate the effect that mid-spatial frequency

errors have on the X-ray reflectivity of a surface. The model predicts the effect of RMS

surface roughness, RMS surface waviness, and the cutoff spatial frequency between

the feature bandwidths. Measurements on BK7 glass samples are used to verify the

ability to simultaneously measure RMS surface roughness at spatial wavelengths less

than 16 µm within 0.5 nm of AFM measurements and within 1.1 nm of surface

profilometry measurements and the RMS surface waviness at spatial wavelengths

greater than 16 µm and less than 4 mm within 7.0 nm of Fizeau interferometry and

surface profilometry measurements. The result of this development is to extend the

use case of X-ray reflectometry to include the measurement of longer-range surface

waviness.

Additionally, a comprehensive model for the evaluation of surface roughness of

curved surfaces is presented. This work explores X-ray reflectometry as a technique

for measuring the surface roughness of cylinders and spheres as well as the surface

roughness of the inner surface of hollow cylinders and spherical shells. Measurements

are presented on polished Silicon wafers having different surface roughness as mea-
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sured by AFM that are bent to various radii to verify the ability of this model to

predict the surface roughness of the curved surface. XRR RMS surface roughness

measurement results from Silicon wafers bent between 1.5 and 2.5 m deviate less

than 1.1 nm from AFM measurements.
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CHAPTER 1: INTRODUCTION

1.1 Research Objectives and Outline

The main objective of this work is to expand the types of surfaces and surface

geometries measurable with X-ray reflectometry.

First, based on a model of a surface as a distribution of surface slopes, the effect

of surface features of distinct spatial wavelengths on X-ray reflectivity is developed

and validated with experiments at the Advanced Light Source at Berkeley National

Laboratory [3].

Additionally, theoretical models for reflectivity from curved external and internal

surfaces are presented for the extraction of surface roughness. This model can be used

for the reversal of radiographs to extract internal and external surface features from

spheres and cylinders. Experiments conducted on incrementally bent wafers provide

results for a comparative study.

This opening chapter provides the necessary theoretical background in the form of a

historical review of the major advances in the field of X-ray reflectivity. Additionally,

relevant concepts, definitions, and their mathematical formulation are addressed to

provide the foundation for subsequent chapters.

1.2 A History of X-Ray Reflectometry

The discovery of X-rays by Wilhelm Conrad Röntgen on 8 November 1895 instantly

revolutionized the fields of medicine and physics. In February of the following year, the

first radiographs of a wrist fracture were made by Edwin Brant Frost in Dartmouth,

MA [4]. A radiograph taken by Röntgen is shown in Figure 1.1.

Despite the excitement around this new type of radiation, Röntgen did not believe
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Figure 1.1: Radiograph taken by Wilhelm Röntgen of his wife Anna’s hand, December
1895 [1].

that reflections of X-rays were possible [5], stating

...the conclusion is reached that there is, as before remarked, no regular

reflection, but that the bodies behave toward X-rays in the same matter

as a turbid medium with no reference to light.

Partly due to this stance, the topic of X-ray reflectivity remained absent until Comp-

ton [6] in 1923 ascertained that the index of refraction for X-rays is less than one

(for most light, the index of refraction is greater than one, allowing for, for example,

total internal reflection in fiber optics). With this information, it was postulated that

the X-rays would experience total external reflection from a smooth surface. In 1928,

Compton’s theory was experimentally proven when Prins [2] measured some of the

first rocking curves, reflectivity curves, and total external reflections as functions of

incident angle of iron samples. The experimental setup for these measurements is

shown in Figure 1.2.

From there, work continued resulting in an abundance of theory among which was

evidence that X-ray reflection and refraction was consistent with the general Fresnel

equations for light [7]. Kiessig [8] made many measurements of the reflection of X-rays
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Figure 1.2: (left) J. A. Prins [2] experimental setup for measuring the first reflections
of X-rays and (right) the recorded reflections from a steel mirror. The incident (direct)
beam is labeled d and the reflected beam is labeled r. The labeled lines are the X-ray
transition wavelengths associated with FeKβ1 (1753), FeK-edge (1739), WLl (1675),
and WLα (1473).

from thin nickel films evaporated on glass which resulted in the discovery of "Kies-

sig fringes" allowing for the measurement of thin film thickness, a vital measurement

technique in semiconductor manufacturing [9,10]. In 1954, Parratt [11] published piv-

otal work on measurements on the reflection of X-rays from oxidation layers on copper

films. These oxidation layers were porous which lead to a reduction of density at the

surface as the layers grew which would change the shape of the reflectivity curve. This

connection between surface density and reflectivity opened an enormous amount of

work on surface density distribution and its effects on reflectivity and transmission of

X-rays with the most dramatic of these effects being asymmetric reflections on either

side of the specular peak known as Yoneda wings [12]. The theoretical foundation

for the analysis of this off-specular reflection (subsequently named diffuse scatter)

was developed in 1972 by Croce et al. [13]. With the development of neutron reflec-

tometers and the emergence of second and third generation synchrotrons, the late

1980’s and 1990’s brought about a large number of studies using X-ray and neutron

reflection [14–30].
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With the theoretical foundation for the measurement of smooth, thin multilayers

being mostly complete, X-ray reflectometry has been used extensively in the semi-

conductor manufacturing industry for the last three decades. During this time, the

literature remained relatively unchanged. The use of multipixel detectors with scin-

tillating crystals has seen, lately, a rise in the number of studies aimed at "quick"

X-ray reflectometry (qXRR); a new method of X-ray reflectometry used to study

fast processes. This method requires fast collection of reflectivity than traditional

scanning-type XRR [31–35]. This method uses the geometry of surfaces, typically

curved mirrors of several 100’s to 1000’s of meters in radius, to capture the entire

reflectivity curve in one image. Fast data collection enables the measurement of time

varying chemical, thermal, and mechanical changes to the surface or interfaces of

materials.

1.3 Definitions and General Principles

To understand the models developed in this thesis it is important to first define

the parameters used and the foundational principles for predicting the reflection of

X-rays. A plane wave of one frequency (monochromatic) is typically written with the

equation

ψ = a exp(ik · r), (1.1)

where k is the wave vector (in radians per meter) and r is the position vector (in

meters) of the wave. In a scattering event, the transfer of momentum is given by the

wave vector transfer or scattering vector,

q = k′
0 − k0, (1.2)

usually expressed in Å−1. The wave vectors for a typical scattering event are depicted

in Figure 1.3.

The index of refraction n for a material changes with the frequency of the light.
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Figure 1.3: Light will change direction at an interface. Continuity of the wave and its
derivative at the interface is the basis for the derivation of Snell’s law and the Fresnel
coefficients.

For frequencies of light that are lower than the resonant frequency of the electronic

transitions of the atoms in a material, the index of refraction increases with fre-

quency (e.g. blue light refracts more than red light). The index of refraction begins

to decrease with frequency immediately above the resonance and decreases more with

every resonance passed. X-ray frequencies are typically higher than all of the transi-

tion frequencies; thus, the index of refraction for X-rays is less than unity. The phase

velocity c/n therefore is greater than the speed of light; however, the group velocity

dω/dk is still less than c.

For X-ray frequencies, the index of refraction can be written as

n = 1− δ, (1.3)

where the deviation of the index of refraction from unity is called the unit decrement δ

and is very small; on the order of 10−5. The result of an index of refraction less than

one is a phenomenon called total external reflection where, for incident angles less

than a critical angle θc, the wave will no longer penetrate into the medium and will

instead propagate along the surface as a so-called evanescent wave. The amplitude

of the evanescent wave depends on the phase difference between the incident and
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reflected wave and becomes almost twice that of the incident wave when the incident

and reflected waves are in phase at θ0 ≈ θc. The X-ray properties for some common

materials are tabulated in Table 1.1.

Table 1.1: X-ray properties of selected elements at 10 keV (1.2398 Å).

Z
Mass Density

(kg/m3) Dispersion δ Absorption β Critical Angle θc

Si 14 2330 4.8889×10−6 7.3544×10−8 0.179◦ [3.12 mrad]
W 74 19250 2.7946×10−5 1.7778×10−6 0.428◦ [7.47 mrad]
Ir 77 22560 3.4163×10−5 2.3386×10−6 0.474◦ [8.27 mrad]

Au 79 19300 2.9912×10−5 2.2073×10−6 0.443◦ [7.73 mrad]

X-rays transmitted into a material will undergo photoelectric absorption; X-ray

photons are absorbed by atoms in the material and the excess energy is transferred

to an electron which is subsequently ejected from the atom, leaving it ionized. This

absorption will attenuate the amplitude of the X-rays by a factor e−µz/2 where z is

the distance travelled through the material and µ is called the absorption coefficient.

Inside of the medium, the wave vector is nk and, allowing the index of refraction to

be complex

n = 1− δ − iβ, (1.4)

the wave equation becomes

exp(inkz) = exp(i(1− δ)kz) exp(−βkz). (1.5)

From above it can be inferred that βk = µ/2; therefore,

β =
µ

2k
. (1.6)

β is referred to as the coefficient of absorption and is typically in the range of 10−8,

depending on the electron density of the material.
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At a penetration distance z = (2βk)−1, the intensity is reduced to 1/e. This

distance is typically referred to as the attenuation length. For X-rays having energy

of 10 keV incident upon Silicon, using the values in Table 1.1, the attenuation length

is approximately 134 µm.

1.4 Snell’s Law and the Fresnel Equations

Light propagating through a medium will change direction when it enters another

medium. This change in direction, depicted in Figure 1.4, is described quantitatively

by Snell’s law.

z

θ0

θ1
x

z

θ0

θ1

x
visible light n > 1

x-rays n < 1

Figure 1.4: The index of refraction indicates the amount the light will be refracted
by an interface. For visible light, the index of refraction is greater than 1 (typically
1.2 - 2); for X-rays, the index of refraction is less than 1. The result of this difference
is that X-rays will refract at a smaller angle than incidence.

For an interface, the boundary conditions require that the light wave is continuous

at the interface, i.e. the sum of the transmitted (a1) and reflected (a′0) amplitudes

must equal the incident amplitude (a0). This relationship can be written as

a0 = −a′0 + a1. (1.7)
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Additionally, taking the condition that the derivative of the wave at the interface

must also be continuous; remembering that the wave equations are

ψ0 = a0 exp (ik0 · r) (1.8)

ψ′
0 = a′0 exp (ik

′
0 · r) (1.9)

ψ1 = a1 exp (ik1 · r) , (1.10)

the relationship between the derivatives is

a0k0 = −a′0k′
o + a1k1. (1.11)

The wavelength of the light does not change at the interface; therefore, the wave

vector for the two materials is

|k0| = |k′
0| = n0k (1.12)

|k1| = n1k; (1.13)

thus, the x-component (parallel to the interface) can be written, using Equation 1.7,

to derive Snell’s law

(a0 + a′0)n0k cos θ0 = a1n1k cos θ1

n0 cos θ0 = n1 cos θ1. (1.14)

The critical angle is the angle for which the reflected X-rays are parallel to the surface

(θ1 = 0). Using Equation 1.14,

n0 cos θc = n1. (1.15)
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Using the index of refraction for the material n1 = 1− δ and assuming that n0 ≈ 1,

cos θc = 1− δ. (1.16)

The critical angle for a material is small (typically less than 1◦); therefore it can be

approximated to be

θc ≈
√
2δ. (1.17)

The z-component (perpendicular to the interface) of the wave vector is

(a0 − a′0)n0 sin θ0 = a1n1 sin θ1. (1.18)

Rearranging Equation 1.7,

a1 = a0 + a′0; (1.19)

therefore,
a0 − a′0
a0 + a′0

=
n1 sin θ1
n0 sin θ0

. (1.20)

This can be re-written to solve for the Fresnel equations of the reflected and trans-

mitted amplitudes;

r =
a′0
a0

=
n0 sin θ0 − n1 sin θ1
n0 sin θ0 + n1 sin θ1

(1.21)

t =
a1
a0

=
2n0 sin θ0

n0 sin θ0 + n1 sin θ1
. (1.22)

These Fresnel equations form the geometric basis for the natural reduction of re-

flectivity as a function of incident angle and are used as the framework for the models

presented in the following chapter. Chapters 3 and 4 expand upon these models for

the application to non-planar surfaces.



CHAPTER 2: X-RAY INTERACTION WITH MATTER

The theory developed in the previous Chapter is used below to address the effect

of interface interactions between X-rays and material. In particular, the influence of

interface roughness and stratified layers is presented.

2.1 Reflection from a Homogeneous Slab

When X-rays are incident upon a surface at small angles above the critical angle,

there are two major types of scatter; shown in Figure 2.1. One can observe specular

reflections or diffuse (off-specular) scatter; the ratio of specular to diffuse scatter will

give an indication of the surface texture as rough surfaces will have more diffuse

scatter than smooth surfaces. For a single, homogeneous slab, X-rays will interact

with the interface as shown in the previous section.

For samples of finite thickness or multiple layers, there will be interference between

specular scatter from the top surface and specular scatter from subsequent interfaces

(layers). Models for determining these interactions as well as the influence of surface

roughness are developed in this chapter.

Incident beam
SpecularDiffuse

Refracted beam

Scatter Reflection

Figure 2.1: Diagram of the diffraction processes in X-ray reflectivity.
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2.2 Reflection from Multilayers

For a single plate of homogeneous material and finite thickness ∆, there will be

an infinite number of reflections from the top and bottom surfaces; this will create a

kind-of Fabry-Pérot cavity between the interfaces. The first three of these reflections

are shown in Figure 2.2 can be summarized:

1. A reflection off of the top interface r01,

2. A transmission into the plate t01, reflection at the bottom of the plate r12, then

a transmission through the top of the plate t10. There will be a phase difference

φ = exp (i (k ·∆0)) exp(i2k1 sin θ1∆0) between the exiting X-rays in this case

and the X-rays reflected from the interface in the previous case,

3. A transmission into the plate t01, a reflection off of the bottom of the plate

r12, a reflection at the top back into the plate r10, a second reflection off of the

bottom of the plate r12, and finally a transmission through the top of the plate

t10. As twice the distance was travelled, there will be twice the phase change

in this case as the previous case.

0

1

2

r01 t01

t01 r12 r10 r12

t10

φ

2φ

Figure 2.2: Diagram of the first three reflections in a multilayer reflection scenario.
The outgoing X-rays will have a phase difference nφ depending on the total distance
travelled. Dashed lines indicate continuity of the ray through a reflection.



12

The total reflectivity of the plate is the sum of all of the reflections and is therefore

rtotal = r01 + t01r12t10φ+ t01r12r10r12t10φ
2 + · · ·

= r01 + t01r12t10φ
∞∑
j=1

(
r10r12φ

)j
. (2.1)

Using the identity
∞∑
j=1

xj =
1

1− x
, (2.2)

the total reflectivity of the plate becomes

rtotal = r01 + t01r12t10φ
1

1− r10r12φ
. (2.3)

Recalling that, from Equation 1.22, for small angles,

r01 =
n0θ0 − n1θ1
n0θ0 + n1θ1

= −r10, (2.4)

and

r201 + t01t10 =
(n0θ0 − n1θ1)

2

(n0θ0 + n1θ1)2
+

4n0θ0n1θ1
(n0θ0 + n1θ1)2

= 1. (2.5)

Hence Equation 2.3 can be simplified to

rtotal =
r01 − r01r10r12φ+ t01r12t10φ

1− r10r12φ

=
r01 + r12φ

1 + r01r12φ
. (2.6)

The method for extending this formalism to a slab of N layers was first introduced

by Parratt [11]. Here the n-th layer is directly on top of an infinitely thick slab and

each layer has refractive index nj = 1− δj + βj and thickness ∆j.
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Ignoring multiple reflections, the reflectivity of each layer is

rj,j+1 =
njθj − nj+1θj+1

njθj + nj+1θj+1

, (2.7)

where θj =

√
2
(
1− nj

nj+1

)
. For the n-th layer, there will be no multiple reflections

and thus the reflectivity is

rN,∞ =
nNθN − n∞θ∞
nNθN + n∞θ∞

. (2.8)

The reflectivity of the layer on top of the n-th layer is

rN−1,N =
rN−1,N + rN,∞φN

1 + rN−1,NrN,∞φN

, (2.9)

where φj = exp(2xkj sin θj∆N). This process can be repeated recursively until the

total reflectivity is obtained. Figure 2.3 shows a plot of the calculated reflectivity for

an Iridium/Silicon multilayer having 10 bilayers each being 1 nm Iridium and 4 nm

Silicon illuminated by a 10 keV X-ray source. The material parameters are taken from

Table 1.1 in Chapter 1. Figure 2.4 depicts how surface roughness, density, and layer

thickness effect the reflectivity curve of a multilayer. Layer thickness will spread the

fringes, surface density will increase the depth of the valleys, and surface roughness

will increase the decay rate of the reflectivity.
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Figure 2.3: Specular reflectivity from a Iridium/Silicon multilayer calculated using
the Parratt formalism. There are 10 bilayers consisting of 1 nm Ir on 4 nm Si.

Incident Angle [deg]

R
efl

ec
ti

vi
ty

Thickness

Roughness

Density

Figure 2.4: The XRR curve for multilayers is effected by surface roughness, layer
thickness and layer density. These variables can be determined from the XRR curve
to characterize a sample.

2.3 Rough Surfaces and Interfaces

The presence of surface roughness causes the reflections from an interface to develop

a diffuse component called off-specular scatter. This diffuse component reduces the in-



15

tensity of the specularly scattered radiation by a factor f(σ) where σ is the root-mean-

square (RMS) roughness of the interface. There are many factors that can be used to

approximate the change in intensity due to surface roughness; common factors are: the

Névot and Croce (NC) factor [13,22] f(σ) = exp(−2k0(z)k1(z)σ
2) which holds for small

k0 such that kσ ≤ 1, the Debye-Waller factor (DWF) [36] f(σ) = exp(−2k0(z)
2σ2)

which is a good approximation for large k0 such that kσ >> 1, the second-order dis-

torted wave Born approximation (DWBA) factor [28] f(σ) = exp(1−2k0(z)
2σ2) which

holds for most k0, and a factor by Sinha [18] f(σ) = exp(−4k2 sin θ0 sin θ1σ
2) which

tends to be an accepted general formula that slightly under-estimates reflectivity at

low k0 and slightly over-estimates reflectivity at high k0.

For a gold sample having constant surface roughness, Figure 2.5 shows the effect

of RMS roughness from perfectly smooth to σ = 4 nm.

R
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10−4
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10−2
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= 1 nm
= 2 nm
= 4 nm

Figure 2.5: Calculated specular reflectivity vs. normalized incident angle for Mo Kα1

radiation on a gold sample with average roughness σ = 0 nm, 1 nm, 2 nm, 4 nm using
the NC factor. Surface roughness has a dramatic effect on the intensity of the specular
reflections.
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Figure 2.6 compares the output of different roughness models for a gold surface

having RMS roughness σ = 5 nm.
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Figure 2.6: Calculated specular reflectivity vs. normalized incident angle for Mo Kα1

radiation on a gold sample with RMS roughness σ = 5 nm using the Névot-Croce
(NC), Debye-Waller (DW), distorted wave Born approximation (DWBA) and Sinha
models. Each model over estimates or under estimates the reflectivity. Selection of
the correct model depends on the parameters of the surface and the X-ray wavelength.

2.4 Alignment and Experiment Guide

This section serves to assist in the setup and execution of a standard X-ray reflec-

tivity measurement for the purpose of surface roughness extraction. Experimentally

the relatively low grazing incidence angles requires precise alignment and positioning

of the sample relative the incident beam. These procedures are critical for matching

results to theoretical models.
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2.4.1 Sample Alignment

The goal of the sample alignment procedure is to align the sample face parallel to

the incoming X-ray beam, with the center of rotation about the sample face, and for

the sample face to be in the center of the beam. Figure 2.7 depicts the ideal alignment

of the sample after the sample alignment procedure and Figure 2.8 represents a typical

orientation after mounting a sample for the first time.

Sample Mount

Incident Beam

Sample

Camera

Sample XY Stage

Y

X

Ideal Sample Alignment

Figure 2.7: Ideal sample alignment after alignment procedure has been completed.
The sample face is in the center of and parallel to the beam.

Y

X

Sample Mount

Incident Beam

Sample

Sample XY Stage

Sample Alignment After Mounting

Camera

Figure 2.8: Initial sample alignment before alignment procedure has been completed.
The sample face is not in the center of and is not parallel to the beam. A "Y-scan"
and "θ-scan" is necessary to correct the alignment.

Alignment: Y-Scan

The first step in the alignment process is to roughly place the sample in the center

of the incident beam. To do this the sample is translated in the Y direction in
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sufficiently small steps (approximately 50 steps depending on required exposure time)

while logging the integrated detector intensity. A plot of the Y displacement verses

Integrated Detector Intensity can then be used to find a first estimate for the Y

displacement value associated with the center of the beam, indicated in Figure 2.9 as

Y1/2.

Y

X

A

B

I

0

/2

Y

1/2

Figure 2.9: Performing a Y scan will provide a graphical representation of the beam
size as a function of Y displacement of the sample. When the sample is blocking half
of the X-ray beam, the detector will measure half the initial intensity, A depicts the
starting position of the scan; B depicts a position during the scan.

Alignment: θ-Scan

A θ-scan or "rocking scan" consists of rocking the sample surface in the X-ray beam

(approximately ± 1◦) and recording the detector intensity for each step in θ. Figure

2.10 shows the typical result from a θ-scan. The location where the sample surface is

most parallel to the beam will correspond to the maximum intensity in the detector.

Alignment: Fine Alignment

After the initial Y- and θ- scans, additional scans may be performed with smaller

step sizes to fine-tune the sample alignment. It is suggested that at least two Y-

and θ- scans be performed; typically three to four scans with converging limits are

necessary.
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Figure 2.10: A θ scan will result in an intensity versus θ plot where the maximum
intensity corresponds to the θ value where the sample surface is most parallel to the
incident X-ray beam. After the θ scan, the position corresponding to the maximum
intensity on the plot should be set to the starting angle, θ0.

2.4.2 Experimental Procedure

The goal of an XRR experiment is to obtain the reflectivity intensity vs θ plot and

fit the measured plot to a model of a surface that includes roughness. An example

reflectivity curve is shown in Figure 2.11. Two pieces of information must be gathered

for each step in θ: the angle relative to the incident beam (relative to θ0 set in the

alignment procedure) and the intensity of the reflected X-ray beam measured using

an X-ray camera.

Figure 2.11: A small step size in θ is important to gathering enough information in
a reflectivity scan. The data above is for a Tungsten Carbide surface and was taken
with 0.005◦ steps.

For most materials with reasonable roughness, the first ∼ 0.2◦ of the scan will



20

produce strong reflections after which the intensity will drop with ∼ θ4. Because of

this strong drop-off in intensity, most reflectivity scans span only 1 - 5◦ of rotation of

the sample. Small steps in θ typically around 0.001◦−0.005◦ must be taken to obtain

sufficient data to estimate the parameters of the model.

Reflectivity Intensity Extraction from Multi-pixel Detectors

The simplest data collection method for XRR experiments is to use a single-pixel

detector and correct geometry to separate the incident beam from the reflected beam;

however, for very small angles, it can be difficult to ensure that the incident beam is

not on the detector. Figure 2.12 depicts the relatively small separation between the

incident beam and the reflected beam on the detector.



Y

X

Incident Beam

Reflected

Beam

Incident

Beam

Reflected

Beam

Figure 2.12: At low angles, the incident beam and reflected beams are not separated.
Images can be summed in the Z direction without losing information.

On a multi-pixel detector, the reflectivity can be extracted by summing in the

direction parallel to the rotation axis (Y axis in the example figures), subtracting the

image of the incident beam, and integrating over all intensity that is greater than

zero. When the incident beam is subtracted from an image, only light that has been

reflected off of the part will remain. This process is shown in Figure 2.13.
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(A) (B)

Reflected – Incident

Reflectivity

Intensity

A B

Figure 2.13: Once the images are summed (A), the image with reflections has a visible
"hump" where the incident beam is being diverted in another direction. Subtracting
the incident beam from the reflected beam (B) leaves only the reflectivity intensity
above zero. Summing under this curve gives the reflectivity intensity for any given
angle.



CHAPTER 3: THE INFLUENCE OF MID SPATIAL FREQUENCY ERRORS ON

X-RAY REFLECTIVITY MEASUREMENTS

In the previous Chapters, reflectivity models are presented that are based on flat

surfaces with small perturbations (roughness). This chapter addresses the effect of

features having larger spatial wavelength than that of the high-frequency roughness

considered above.

3.1 Motivation

Mid Spatial Frequency (MSF) errors are geometrical errors on a surface that are

in a spatial wavelength range of approximately 0.08 mm to 3 mm and can have peak-

valley (PV) amplitudes of several nm up to approximately 100 nm. MSF wavelengths

fall between the features of form and roughness as broadly specified in ISO 4287

for profile measurements and ISO 25178 for areal measurements. These errors are

often remnants of non-uniform material removal during final grinding and polishing

operations [37,38]. MSF errors decrease the performance of optical components and,

while in-process mitigation is important but not yet fully developed, failure to quantify

these errors can lead to over specification of ineffective components [39, 40]. Optics

that are of particular relevance for these tolerance specifications can be found in

many critical applications such as X-ray optics, lithography, and precision imaging

applications. Many anecdotal experiences with optics meeting both figure and finish

specification yet are "useless for its intended purpose" can be found in [41]. Therefore,

tools that measure MSF errors are particularly relevant to many fields where optical

components having complex surfaces are becoming more common and topographic

tolerances are increasingly critical to function.
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Many tools exist and are commonly used for MSF error measurement such as laser

Fizeau interferometers for areal characterization and tactile profilometers for profile

traces. Typically instruments that are capable of MSF error measurement are also ca-

pable of figure measurement but, for surface roughness measurement, often a second

instrument such as atomic force microscopy (AFM) or scanning tunneling microscopes

(STM) must be used and instrument transfer function matching must be considered.

A non-contact tool for simultaneous measurement of MSF and finish statistics would

be highly effective in the field of optical metrology and manufacturing and can be

achieved with a standard X-ray reflectivity (XRR) measurement if a different ap-

proach to analysis is used. X-ray reflectivity is known to be a highly sensitive surface

roughness measurement tool, even more sensitive than STM [25] with its ability to

probe surface features on the sub-nanometer level. However, X-ray reflectivity is

traditionally limited to flat and smooth surfaces with mid-spatial "ripples" affecting

the ability for fitting algorithms. This hindrance has limited XRR measurements to

the spatial wavelength region that is occupied by AFM and, with the added setup

complications of XRR, AFM is often chosen as industry standard. A novel reflec-

tivity model presented here addresses this limit and allows surfaces containing larger

spatial wavelengths to be fit to traditional XRR models and provides a measure of

the surface roughness and mid-spatial frequency errors. Using this model does not

change the experimental procedure of XRR but rather expands the capabilities of

XRR to simultaneous measurement of both high- and mid-spatial frequency errors of

high-performance surfaces.

3.2 Model Formalism

Modelling of X-ray specular and diffuse scatter from surfaces having nanometer

level surface roughness can be considered relatively well understood [11,13,18,26,27,

30]. To determine the effect of longer-range waviness features on these measurements,

it is reasonable to consider a surface initially having a uniform spectral density, S0(ω),
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for which the higher frequency components are substantially attenuated using a low

pass filter. In terms of a manufacturing process this smoothing might correspond to

a final fine finishing process where roughness values are reduced to a few nanometers

or less but waviness features remain. In this case, the reduction of the high-frequency

components will result in a shorter correlation length surface roughness that is con-

sidered in most reflectivity models, for a review see [42]. Typically, the longer-range

features that remain from previous surface modification processes are considered to

represent the waviness features of the final surface. Such a surface is modeled as two,

superposed topographies, one containing relatively long correlation lengths and large

amplitude; the other being the short spatial wavelengths representing the nanometer

or sub-nanometer roughness of the final finishing process. Modelling the long wave-

length features by a first order filter with a spatial frequency cut-off at ω0, the spectral

density Sf of the filtered surface profile is given by

Sf (ω) =
S0(ω)

1 +
(

ω
ω0

)2 . (3.1)

Using the Weiner-Kintchine theorem, the auto-correlation function RL(τ) correspond-

ing to this spectral density is given by the inverse Fourier transform

RL(τ) = 2ω0
2

∫ ∞

0

S0

ω0
2 + ω2

ejωτ dω

= 2ω0
2

∫ ∞

0

S0

ω0
2 + ω2

cos(ωτ)dω

=


S0πω0e

−ω0τ if τ > 0;

S0πω0e
ω0τ if τ < 0.

(3.2)

This can be written in the form

RL(τ) = σL
2e−|ω0τ |, τ > 0, (3.3)
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where

σL
2 = S0πω0 (3.4)

is the root-mean-square (RMS) of the waviness. Therefore, ω0 can be considered as the

correlation length of the filtered surface. From Longuet-Higgins [43], for small slopes,

the probability density p(ζ) of the local slope ζ of a random surface is approximately

Gaussian,

p(ζ) =
1√

2πm2

e
− ζ2

2m2 , (3.5)

where m2 is the mean square surface slope that can be computed from the integral

of the second moment of the power spectral density, see [44,45]. Hence

m2 =

∫
ω2Sf (ω) dω

=
σL

2ω0

π

∫
ω2

ω0
2 + ω2

dω. (3.6)

This integral does not converge over all limits. However, it is reasonable to consider

only the spatial frequencies longer than the correlation length corresponding to the

X-ray scale surface roughness (or integer divisors thereof). Based on this assumption,

the mean slope is given by

m2 =
2σL

2ω0

π

∫ ω0
n

0

ω2

ω0
2 + ω2

dω

=
2σL

2ω0

π

[
1

n
− tan−1

(
1

n

)]
. (3.7)

For n = 1 the mean slope is given by

m2 = σL
2ω0

2

[
4− π

2π

]
= 0.137σL

2ω0
2. (3.8)
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To determine the influence of these waviness features on X-ray reflectivity, it is nec-

essary to consider the distribution of slopes encountered by a beam incident at an

angle θ. For a flat surface with RMS roughness σ greater than about 3 nm, first-order

distorted wave Born approximation (DWBA) models break down and the specular

reflectance R(θ) can alternatively be obtained analytically with a hyperbolic tangent

interface function from [26],

R(θ) =
sinh

[
σ
(

π
2

3
2 (qz(θ)− qz,t(θ))

)]
sinh

[
σ
(

π
2

3
2 (qz(θ) + qz,t(θ))

)]G. (3.9)

For engineering surfaces with high polish, i.e. σ < 10 nm, the phase factor G ≈ 1 [22].

In the above equation, qz and qz,t are the normal components of the wave-vector

transfers in and out of the medium shown in Figure 3.1 and are given by

qz = k− k′ = 2k0 sin θ (3.10)

qz,t = kt − k′
t = 2k0 sin θ

′, (3.11)

where θ and θ′ are the incident and refracted angles of interaction by the X-rays,

related by

cos θ′ =
cos θ

cos θc
. (3.12)

The critical grazing incidence angle, θc =
√
2δ, is the angle below which the X-rays

experience total external reflection where δ is the refractive index unit decrement

corresponding to the specific material and X-ray energy.

The intensity of the reflected X-rays can be determined from the square of the

reflectance. To determine the effect of the waviness on the measured intensity, it is

necessary to determine the scattering by this mosaic of slopes that will result in an

effective specular blurring over the range of surface slopes which can be considered

to span ±3
√
m2. So, for any incident angle θ, the effect of the surface mosaic on the
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Figure 3.1: Diagram of the reflection and refraction of X-rays about an interface. x
is along the surface average, z is normal to the surface, θ is the angle of incidence
and angle of reflection, and θ′ is the angle of refraction.

measured intensity can be determined from the integral

I(θ) =

∫ 3
√
m2

−3
√
m2

R(θ) ∗R(θ)P (ζ) dζ

= 2

∫ 3
√
m2

0

|R(θ + ζ)|2P (ζ) dζ. (3.13)

Equation 3.13 contains both of the surface roughness and waviness terms and is used

to fit the experimental data. A comparison of Equations 3.9 and 3.13 are presented

in Figure 3.2.

Figure 3.2: The computed reflectivity of Schott glass at 14 keV using Equation 3.9 and
Equation 3.13. Surface properties were σ = 2 nm, σL = 20 nm, and ω0 = 1/15µm.
The waviness contributes to an overall decrease in reflectivity and a rounding-off at
the critical angle.
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3.3 Experiments

Measurements were carried out at the Advanced Light Source at Lawrence Berkeley

National Laboratory, Micro-CT Beamline 8.3.2 [46]. Shown in Figure 3.3.

θ

source pinhole detector

Figure 3.3: Experimental setup at Beamline 8.3.2 at the Advanced Light Source. The
source beam passed through a 100 µm Tungsten pinhole, the sample was mounted
on an air bearing rotary stage and the radiographs were collected on a detector that
imaged a scintillator with a 2 X magnification objective lens.

X-ray energies from 14 - 22 keV were selected with a monochromator. The beam was

constrained with a 100 µm Tungsten pinhole and had a flat intensity distribution.

The sample to detector distance was 250 mm. The optical system consisted of a

50 µm LuAG scintillator and 2 X objective with a multipixel detector (PCO Tech

PCO.Edge) , resulting in a pixel size of 3.22 µm. For each reflectivity scan, 100

images were collected over 0.5◦ of total rotation with an angular resolution of 0.005◦

using up to 500 ms exposure time depending on the energy selected.

A reference image of the beam was collected for the use of normalization. Starting

with the sample face parallel to the axis and located at the center of the beam, the

sample angle was incremented and a single image collected for each point on the re-

flectivity curve. From each image, the initial (θ = 0◦) reference image was subtracted
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and the image was summed in the vertical direction. Non-negative intensity in the

subtracted, vertically summed images, was integrated to extract the total intensity

of the reflected beam for each incident angle.

A BK7 optical flat was chosen for measurement. This sample had a nominal flat-

ness of λ/4 (λ = 633 nm) and a sinusoidal profile was polished into the planar surface

using magnetorheological finishing [47]. To test the robustness of the theory, a large

amplitude (approximately 75 nm P-V) and relatively high frequency (approximately

0.5 cycles/mm) waviness was polished into the surface; providing an extreme example

of the type of surface that might be seen in high-performance optics. The reflecting

surface was measured using atomic force microscopy (AFM) with a Dimension 3100

manufactured by Digital Instruments to investigate the high-frequency, low ampli-

tude roughness. Profile traces, performed with a Mahr MarSurf LD260 profilometer

capable of 0.8 nm resolution, were taken along the beam footprint path to measure

the higher amplitude, lower-frequency waviness features. 2D areal measurements of

the waviness were performed with a Zygo Verifire Fizeau interferometer with a 4 inch

field of view and RMS repeatability of < 0.06 nm. Measurement results from the pro-

filometer are presented in Figure 3.4 and Fizeau interferometer results are presented

in Figures 3.5 and 3.6.
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Figure 3.4: Filtered profilometer results, filtered at (1/16)µm−1. While the pro-
filometer could easily measure the waviness features (a), the high frequency content
includes instrument noise (b).

3.4 Results

The extracted reflectivity information for various energies is shown in Figure 3.7.

All data was normalized to the reference image for each energy data set. A MAT-

LAB program was used to iteratively search for best fit of the experimental data

against Equation 3.13. The fitting algorithm consisted of a Nelder-Mead simplex

multi-dimensional unconstrained optimizer to minimize a squared cost function solv-

ing for RMS surface roughness σ, RMS surface waviness σL and cut-off frequency ω0.

Data obtained below 0.05◦ do not lie on the curve fit due to the beam footprint being

larger than the sample at these small incident angles. The resulting fit is presented

with experimental results in Figure 3.7.

The extrapolated parameters from the best fit for each of the four energies were

averaged resulting in σ = 2.9± 0.2 nm, σL = 14.6± 0.5 nm with a cut-off frequency
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Figure 3.5: Result from the 2D areal Fizeau interferometer measurement of the BK7
flat. The highlighted trace is along the path that the XRR measurement was per-
formed.

Figure 3.6: Decomposed and filtered Fizeau measurement data. The data was filtered
at (1/16)µm−1; however, the Fizeau interferometer cannot measure frequencies in the
higher, roughness range and therefore the roughness plot contains no information.

between roughness and waviness of ω0 = 1/(18 ± 2) µm−1. Table 3.1 displays the

results from the fitting algorithm for each energy.

The sample was also subject to AFM, Fizeau interferometry, and surface profilom-

etry measurements. These measurements were bandwidth limited to extract both the

surface roughness and waviness at the average frequency based on the XRR data fit

results above.
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Figure 3.7: Experimental result of reflectivity for the measurement of a BK7 surface
with roughness and waviness features for E = 14 − 22 keV. Theoretical fits to the
data using Equation 3.13 are shown as solid lines.

Table 3.1: Tabulated results from the XRR curve fits in Figure 3.7.

σ (nm) σL (nm) ω0 (µm−1)
14 keV 2.8 14.2 1/17
16 keV 3.1 14.0 1/20
18 keV 2.8 15.3 1/20
22 keV 3.1 14.8 1/15

When limited to feature frequencies of (1/20) µm−1 or greater, the AFM mea-

surements resulted in an average roughness of σAFM = 3.4 ± 0.4 nm. When lim-

ited to frequencies of (1/16)µm−1 to (1/4)mm−1, the Fizeau measurements resulted

in a waviness of σL,Fizeau = 21.6 nm. When limited to frequencies of (1/16)µm−1

to (1/4)mm−1, the profilometry measurements resulted in an average roughness of

σProf = 4.0± 0.1 nm and a waviness value of σL,Prof = 21.4± 0.1 nm.

A summary of the AFM and profilometry measurements is shown in Table 3.2.

Spurious scattering and absorption of higher slopes on the surface will impact the

reflectivity and influence the waviness result which could explain differences seen here

and must be investigated in further studies. Additionally, the roughness values from

X-ray reflectivity are sensitive to the reflectivity intensity being artificially high due to

unfiltered diffuse scatter reaching the detector. This will cause the measurement result

to be smoother and may contribute to variations seen in this work. Additions of slits
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Table 3.2: Tabulated results from the AFM measurements and the profilometry mea-
surements. It is important to note that all XRR and profilometry measurements were
taken along a single, longitudinal trace across the surface; while the AFM measure-
ments are at 5 different 40 µm × 40 µm patches along the same trace.

σAFM (nm) σprof (nm) σL,prof (nm)
Run 1 2.7 3.8 21.4
Run 2 3.3 4.0 21.5
Run 3 4.0 4.0 21.2
Run 4 3.5 4.1 21.6
Run 5 3.4 4.1 21.5

or longer sample to detector distance may reduce the collected diffuse scatter. The

model presented here assumes both the roughness and waviness are approximately

Gaussian whereas some processed surfaces may have a height distribution that is

non-Gaussian. This is a known disadvantage with XRR due to the dependence of the

extracted parameters on the theoretical model of the surface [48]. As mentioned in

the introduction, many models for simulating X-ray reflectivity exist with different

interface probability density functions: Gaussian [13], tanh [26], cos−2 [49]. It is

important to use the correct model to approximate the reflectivity of the surface;

however, surfaces subject to many fine finishing steps such as mechanical, ion beam,

elastic emission, and magneto-rheological polishing will approach Gaussian height

distributions as the ’fingerprints’ of previous processes are removed.

Upper limits on roughness amplitude typically are related to the radiation wave-

length [18], and the application of this method with soft X-ray sources could extend

the range of amplitudes measurable but will increase the low spatial wavelength cut-

off. Further evaluation of more complex surfaces is required to set formal limits on

this technique.

3.5 Remarks on Instrument Comparisons

XRR measurements are laterally averaged over 10’s of mm and often are influenced

by large amplitude surface asperities; whereas, AFM measurements are typically ac-
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quired in a small region (i.e. 40 µm × 40 µm in this experiment). Given a stationary,

ergodic surface, the larger area averaging of the XRR measurement will result in

lower variance than AFM measurement. With this large difference in measurement

area, comparison between measurements at these levels is difficult. Profilometry mea-

surements use a tactile probe with a finite radius, typically around 1 µm or larger

and considerably larger than AFM tip radii. This stylus probe tip size will apply a

low-pass filter to the measurement; whereas, XRR measurements, due to the short

wavelengths of X-rays, can probe surface features having significantly higher spatial

frequencies than AFM and profilometry. Optical surface measuring instruments such

as Fizeau interferometers are typically unable to resolve lateral features comparable

or smaller than the optical wavelength or features containing large slopes and are

typically only used for mid-spatial frequency and form measurements. Figure 3.8

shows the power spectral density (PSD) for the Fizeau and profilometer. The PSDs

of these instruments overlap in the waviness region, but the profilometer measures

well into the roughness region but with additional electrical noise. While there are

many nuances to these statements the above comments are reflected by the occupied

regions of these instruments on a Stedman [50–52] (Amplitude-Wavelength) map.

In this case, the profilometry and Fizeau bandwidth limited waviness values agreed

within about 1%.
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Figure 3.8: The power spectral density of the Fizeau interferometer and the stylus
profilometer overlap in the waviness region; however, the profilometer is capable of
measurements in the higher-frequency roughness region. The main MSF error in the
optic is in the 0.5 mm/cycle region and is shown by a peak in the PSD.



CHAPTER 4: X-RAY REFLECTIVITY OF CURVED SURFACES

As with the previous Chapter, the following discusses the effect of non-traditional

surface geometry on traditional X-ray reflectivity models. Here, surfaces having con-

stant curvature are considered to explore the effect of form error on X-ray reflectivity.

4.1 Motivation

Advances in manufacturing have made it possible to control surface topography

across spatial wavelength scales. In particular, recent developments in ultra precision

manufacturing processes such as ion beam machining, diamond turning, magneto-

rheological finishing, elastic emission machining, and small pad polishing for mid-

spatial frequency control combine to provide methods for surface modification across

these scales. Modern applications include freeform optics, smart phone micro op-

tics, internal confinement fusion targets, and liquid droplet devices, all of which have

relatively high curvature (mm - cm) and require precise topographical control. For

fine surfaces, determination of localized surface topography is challenging for tradi-

tional surface finish measurement devices such as atomic force microscopy (AFM) and

stylus profilometry; whereas, these small surface perturbations still significantly influ-

ence small angle scattering of X-ray beams suggesting that this could be an important

diagnostic tool. These tight-radius, typically convex, surfaces cannot be treated as

flat reflectors for the purpose of established grazing incidence X-ray reflectivity mea-

surements. The purpose of this work is to expand XRR models to include the effect

of surface curvature; allowing the extraction of X-ray reflectivity information. In

this study, we confine ourselves to two-dimensional geometries (i.e. single curvature);

however, in the development of this model, a vector approach has been used that also
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enables future extension to surfaces with arbitrary, localized curvature.

Objects having curved surfaces have many applications in optics, biophysics, high

energy physics, and chemistry. In all of these fields, surface roughness and compo-

sition has significant influence on function, often at nanometer scales. An example

that forms the motivation for this study is the evolution of the functional require-

ment for fusion target ablator layer surface roughness. In the mid-1990’s the influence

of surface roughness on hydrodynamic instabilities during the ablation phase of im-

plosion was identified as a major factor limiting neutron yield. Cook [53] identified

that high frequency surface perturbations are associated with large Rayleigh-Taylor

instability growth and low frequency surface perturbations have little-to-no effect on

implosion. The same year, Haan [54] postulated a maximum tolerable ablator rough-

ness of 50-80 nm RMS. Seven years later, Dumay [55] revised the surface roughness

requirement to less than 20 nm. Since this time, measurements have revealed that

capsules can be manufactured with sub-10 nm RMS surface roughness [56]; however,

significant surface imperfections arise during cooling (from 14 K to 12 K), a necessary

part of capsule preparation prior to implosion [57]. In present day, concerns remain

about the adequacy of the surface roughness requirements to obtain desired neutron

yield [58, 59]. Smooth curved surfaces are also used for studying intermolecular and

surface forces and have been since the 1970’s. Early studies used cleaved mica surfaces

bent over cylindrical forms to create ideal surface-to-surface interactions [60]. Today,

available AFM probes with attached microspheres provide a substantially more sensi-

tive measure of forces. Recent work has identified the need for ultrasmooth (sub-nm

RMS roughness) microspheres to improve precision and accuracy of modern surface

interaction force measurements [61].

X-Ray reflectivity (XRR) is an established, non-destructive tool for evaluating the

surface and interfaces of highly polished optics, semiconductor wafers, and multi-

layered thin films used for many decades; for broad reviews, see [42, 62]. XRR is
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one of the most sensitive methods for average roughness measurements, even more

sensitive than scanning tunneling microscopes [20]. The upper spatial wavelength

cut-off is proportional to the X-Ray beam size and the lower cut-off is on the order of

the X-Ray wavelength (∼ 1Å). This sensitivity to roughness makes XRR a powerful

tool for the measurement of precision processed surfaces [27]. At glancing angles, X-

Rays are totally reflected from solid surfaces [6]. For incident angles larger than the

so-called critical angle, XRR intensity falls approximately with θ−4 for ideally smooth

surfaces. The rate of decay of reflectivity is exceptionally sensitive to, and increases

with, micro-scale roughness of the reflecting surface [11]. To extract quantitative

topographical values, it is necessary to compare the measured decay with theoretical

models of the reflectivity. Most models utilize the Born approximation for modelling

reflection from weakly interacting rough surfaces and, while this is valid for incidence

angles greater than the critical angle, a perturbation approach called the distorted

wave Born approximation (DWBA) is typically used to determine both specular and

diffuse scatter throughout the region of grazing-incidence angles [16, 18, 22]. While

further, higher-order approximations have demonstrated increased accuracy [28], the

first-order DWBA approximation remains a common approach for many applications

[63–65].

Recent approaches to the calculation of X-Ray reflectivity from multilayers includ-

ing interface roughness effects have employed Fresnel tensors based on the original

Paratt formalism [66]. These methods, unlike other roughness considerations, take

into account the effect of roughness-induced diffuse scattering in the combined signal.

This approach is used in the models developed in this work. With very few exceptions,

X-ray reflectivity studies have concentrated on measuring flat surfaces and stratified

media to evaluate surface and interface roughness. Large radius curved surfaces have

been utilized for beam conditioning for some time, for example soft X-ray telescopes

such as the Chandra X-ray Observatory and Kirkpatrick-Baez focusing mirrors. Only
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recently have papers emerged addressing the direct extraction of topographic infor-

mation from substantially curved surfaces for which changes in the incident angle

over the beam footprint and propagation through the curved portion are significant

in the detected image. Little experimental data was found for curvatures relevant to

the engineering applications discussed above. In an indirect effort to evaluate surface

layer topography on Silicon spheres for the redefinition of atomic mass in terms of the

newly defined Avogadro’s number, Busch et al. [67] utilized X-ray reflectivity to cali-

brate an ellipsometer. Calibration was on a flat Silicon wafer with varying thickness

Silicon Dioxide layers. As indicated in the article, it would have been desirable to have

used the traceable XRR system. The large sphere and its curved surface could not

be directly measured and therefore it was necessary to use an ellipsometer calibrated

from the XRR system. Clearly, the direct measurement of curved surfaces using XRR

would be of great benefit in this and related applications. A more applicable example

is the work of Festersen [68] who theorized the geometric effect of XRR from the

curved surface of a liquid droplet for the proposed use as liquid X-ray diffractometer.

Measurements on free sessile droplets are discussed but not performed. Instead, the

liquids that were measured were contained in large cells such that the center surface

had low curvature; the values of which are not discussed. Stoev [33] proposed the

utilization of large radius mirrors to create a divergent beam to measure all angles

of an XRR curve in a single measurement named quick-XRR (qXRR). Using this

method, it is proposed that a complete XRR curve can be extracted from a single

image and a sequence of measurements can be used to measure dynamically varying

surface effects. While this is extensively modelled for large concave mirrors, at the

time of this study, experimental results have yet to be reported.
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4.2 Geometry

Presented in the following sections is an approach for the measurement of surface

roughness of curved surfaces with X-ray reflectivity which requires the modelling of

both the geometry and the electric field of X-rays as they reflect from and pass through

a part of circular cross-section. This section is broken into three subsections in which

the propagation vectors (denoted r) are derived for X-rays that are; (1) reflecting

from the surface, (2) transmitting through the object, and (3) reflecting from an inner

surface inside the object. In this section, positions are typically denoted as non-bold,

italicised letters (e.g. P ) and vectors are presented as bold, lowercase letters (e.g.

r). Additionally, in some diagrams, vector endpoints are shown as filled circles where

arrows would occlude details relevant to the figure. The propagation vectors in this

section are used in the following section to define the electric field of the X-rays as

they propagate through the part.

For a surface of constant curvature such as a sphere or cylinder, there are three

possible paths a monochromatic, collimated beam of X-rays will take: first, X-rays

can scatter from the outer surface, second, X-rays can transmit through the part, and

third, in the case of thin shells, X-rays can transmit through the outer surface, reflect

off the inner surface, and transmit back through the outer surface. These interactions

occur simultaneously for each incoming X-ray with reflections dominating at small

incident angles and transmission dominating at high incident angles. The paths,

depicted in Figure 4.1, will converge on the detector. Proper geometrical modelling

of the X-ray interactions is required to determine where the X-rays will interact at

the detector.
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A

B

C

Figure 4.1: Three paths that X-rays will take when incident upon a cylindrical part
of constant curvature. Path A is scattered from the exterior surface, Path B is trans-
mission through the bulk material, and Path C is transmission through the material
that is incident upon and scatters from an internal surface. These components will
combine at the detector.

Consider a curved surface of constant radius Router (hereafter radii of surfaces is

denoted by a roman R to distinguish from reflectivity R) with X-rays originating

from a point Psource and incident at a point Pi shown in Figure 4.2. The X-rays are

incident at varying angles from parallel (θ0 = 0) at the top of the part (z = Router)

to perpendicular (θ0 = π/2) at the center of the part (z = 0). The position of the

source X-rays is tracked from the radius of the part in the x-direction and is related

to the incident angle by

Psource = Router

 −1

0

cos θ0

 . (4.1)

The incident position is a function of the incident angle and is given by

Pi = Router

− sin θ0
0

cos θ0

 ; (4.2)

therefore, the vector from the source to the point of incidence is

r0 = Pi − Psource = Router

1− sin θ0
0

0

 . (4.3)
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Figure 4.2: The location of incidence is a function of the incident angle and outer
radius of the part. The coordinate system is defined with origin at the center of the
part.

4.2.1 External Surface Reflection Measurement

X-rays specularly scatter at angle θ0 from the surface tangent. If a detector is

placed at a distance ODD (object-detector-distance) from the center of the part, the

location of the scattered beam for case A Pd,A, from Figure 4.3, is

Pd,A =

 ODD

0

Pi(z) + (−Pi(x) +ODD) tan 2θ0

 . (4.4)

2θ0

ODD

detector
Pd,A

Pi

z

x

r0

r′0

Figure 4.3: The location of the scattered beam for case A (Pd,A) is related to the
incident position (Pi) and the distance between the object and the detector (ODD).
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The distance from the point of reflection to the detector can be defined

r′0 = Pd,A − Pi. (4.5)

In experiments, ODD, Router and the z-component of Pd,A can be determined. The

object-detector-distance can be physically measured, or, more precisely, a crystal of

known scattering angle can be placed at the object center and the diffraction pattern

observed. The crystal will diffract the X-rays at a known angle, and the diffraction

pattern position on the detector will give the distance of the detector from the object.

The height of the scattered beam on the detector can be found by measuring the

number of pixels between the beam and a reference point and multiplying by the

pixel size. Typically this reference point can be the shadow of the top of the sphere.

The part radius can be measured using a number of methods which must be selected

based on the size and material of the part. Using these known parameters, the incident

angle θ0 can be determined.

For small incident angles, an approximation for θ0 is

Pd,A(x) = Pi(z) + (−Pi(x) +ODD) tan 2θ0,

= Router cos θ0 + (Router sin θ0 +ODD) tan 2θ0,

≈ Router

(
1− θ0

2

2

)
+ (Routerθ0 +ODD)2θ0. (4.6)

Rearranging terms into a quadratic,

θ0
2 +

4

3

ODD

Router

θ0 +
2

3

(
1−

Pd,A(z)

Router

)
= 0, (4.7)
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then,

θ0 = −2

3

ODD

Router

+

√(
2

3

ODD

Router

)2

− 2

3

(
1−

Pd,A(z)

Router

)
,

= −2

3

ODD

Router

+
2

3

ODD

Router

√
1 +

3

2

Router
2

ODD2

(
Pd,A(z)

Router

− 1

)
. (4.8)

Using the approximation of
√
1 + x,

θ0 ≈ −2

3

ODD

Router

+
2

3

ODD

Router

[
1 +

1

2

3

2

Router
2

ODD2

(
Pd,A(z)

Router

− 1

)
− · · ·

]
,

=
1

2

Router

ODD

(
Pd,A(z)

Router

− 1

)
. (4.9)

Thereby, the incident angle is

θ0 =
Pd,A(z) − Router

2ODD
. (4.10)

Using Equations 4.4 through 4.10, intensity seen on the detector at a given height

can be related to the incident angle on the irradiated surface.

4.2.2 Unobstructed Transmission Measurement

To further determine the complete image on the detector, the following subsections

address the geometric equations for the remaining two beam paths.

In the case of transmissions that do not interact with an inner surface or in

the absence of one, there are two interface refractions: one from the environment

(n0 = 1 − δ0 − iβ0) into the solid (n1 = 1 − δ1 − iβ1) and one from the solid back

into the environment. These refractions follow Snell’s law with the recognition that

the refractive index for X-rays is always less than one. This will lead to upward re-

fractions as X-rays follow the opposite lensing to visible light; therefore, a constant

radius convex lens will cause the beam to diverge. Figure 4.4 traces the rays through

the material and depicts the angles that must be solved to find the location of the
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transmitted rays at the detector.

θ0

θ1

θ2
θ3

part, n1

environment, n0

Figure 4.4: Tracing the transmitted ray through the part indicates two surface inter-
actions for which the incident and refracted angles must be calculated. In this system,
the index of refraction for the part environment is n0 and the index of refraction for
the homogeneous part material is n1.

The relationships between θ1 with respect to θ0 and θ3 with respect to θ2 follow

Snell’s law:

cos θ1 =
n0

n1

cos θ0, (4.11)

cos θ3 =
n1

n0

cos θ2. (4.12)

The vector between the incident position and the output position, shown in Figure

4.5, can be defined as

R12 = R01 + r1, (4.13)

where R01 and R12 are the vectors from the center of the part to the incident and

output points, respectively. Additionally, it can be shown that the direction of the

X-rays traveling through the material with respect to the x-axis is θ0 − θ1.
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R01 R12

r1

φ

θ0 − θ1r0

r2

Figure 4.5: The full geometric representation of the transmitted rays; the definition
of the vector r1 is necessary for the calculation of the path length and location of the
transmitted X-rays when they interact with the inner surface of the part.

Figure 4.6 isolates the triangle formed by R01, R12, and r1. The magnitudes of

R01 and R12 are the radius Router and the angle π
2
− θ1 is known; therefore, θ2 can be

determined using the law of sines:

R01

R12

=
Router

Router

=
sin

(
π
2
− θ2

)
sin

(
π
2
− θ1

) = 1.

θ2 = θ1. (4.14)

Having identified the other two angles, the central angle can be defined:

φ = π −
(π
2
− θ1

)
−
(π
2
− θ1

)
= 2θ1. (4.15)



47

θ0

θ1

θ1
θ3

x

z

R01 R12

r1

φ

r0

r2

π
2
− θ1

π
2
− θ1

Figure 4.6: Isolating the triangle formed by R01, R12, and r1 allows for the definition
of the subtended angle between the point at which the X-rays transmit into the part
and the point at which the X-rays exit the part.

Therefore, the magnitude of r1 is

r1 = Router
sin 2θ1
cos θ1

= 2Router sin θ1, (4.16)

and the vector between the entrance and exit points for unobstructed transmitted

X-rays is

r1 = 2Router sin θ1

cos (θ0 − θ1)

0

sin (θ0 − θ1)

 ; (4.17)

where, the output position for case B is

Po,B = Pi + r1. (4.18)
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Using Snell’s law, θ3 can be related to θ2:

n1 cos θ2 = n0 cos θ3. (4.19)

Additionally, from Equation 4.14, θ2 = θ1; therefore,

n1 cos θ1 = n0 cos θ3. (4.20)

From Equation 4.11, cos θ1 = n0

n1
cos θ0. This yields

n1

n0

n0

n1

cos θ0 = cos θ3;

θ0 = θ3. (4.21)

Focusing on the second interface, Figure 4.7, the angle of the X-rays exiting the

part with respect to the incident beam (x-axis) for case b θout,B can be determined.

θ1
θ0

θout,B

z

x
θ1

θ0 − θ1
r1

r2

Figure 4.7: An isolated view of the second interface from which the output position
for case b can be determined.

It can be seen that

θout,B = θ0 − θ1 + θ0 − θ1

= 2θ0 − 2θ1. (4.22)
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Figure 4.8 defines the geometry of a transmitted beam as it travels through the

part where Pd,B is the position of the output X-rays for case B on the detector for a

given ODD.

2θ1 − θ0

θout,B

Pd,B

ODD

z

x

r2

r1

r0

Psource Pi

Po,B

Figure 4.8: Full definition of the path a transmitted X-ray will take through a circular
part. To trace the path, the exit point Po,B and the point of interaction with the
detector Pd,B must be determined.

From Figure 4.8, the location of the unobstructed transmitted X-rays as they arrive

at the detector can be determined. The detector is at x-coordinate ODD and the z-

component can be found with the position and the angle of the exiting X-rays. The

position of the transmitted X-rays for case b on the detector is

Pd,B =

 ODD

0

Po,B(z) + (ODD− Po,B(x)) tan θout,B

 . (4.23)

Therefore, the vector from the exit point to the detector is defined

r2 = Pd,B − Po,B. (4.24)

4.2.3 Internal Surface Reflections

For a circular part having an internal, concentric shell with material index of re-

fraction n2 = 1 − δ2 − iβ2, X-rays transmitted into the part may reflect off of this

shell and transmit out of the part to the detector. Figure 4.9 depicts the path that
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X-rays reflected from the inner surface will follow and the angle definitions needed to

determine this path.

θ0

θ1
θ4

θ4

θ6 θ7

r0
r3

r′3

r5

θ5
r4

environment, n0 part, n1

internal, n2

Figure 4.9: The geometric representation of an X-ray reflection from the inner surface
of a part of constant curvature. As in the previous sections, the index of refraction
of the environment is n0 and the part is n1. The index of refraction of the internal
material is n2. Incident X-rays transmit through the outer surface, reflect from the
inner surface, and transmit back through the outer surface. Proper modelling of the
direction and distance traveled of these rays is required to determine the amplitude,
phase, and position of the resulting X-rays at the detector.

The first concern is the condition in which the X-rays will be incident upon the inner

surface. Not every transmitted X-ray will interact with a shell of a given radius; only

cases for which the angle between the initially transmitted light and the inner surface

θ4 is greater than zero. Figure 4.10 defines the path between the outer interface

and the inner face for transmitted X-rays r3. This path definition can be used to

determine θ4 given the inner radius Rinner and outer radius Router are known.

θ0

θ1
θ4

θ4

θ6 θ7

Router Rinner

r3

Figure 4.10: The path between the outer surface and the inner surface is defined as
r3. This is only a plausible path if the transmitted ray will be incident upon the inner
surface.
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The triangle created with Rinner, Router, and r3 can be isolated to solve for θ4. This

isolation is shown in Figure 4.11.

Router

Rinner

r4

θ4
π
2
− θ1

θ1

γ

Figure 4.11: An isolated view of the path between the outer surface and the inner
surface. To solve for θ4, the angle subtended by r3 from the center of the part must
be determined.

Employing the law of sines, the relationship for θ4 is

Router

Rinner

=
sin

(
θ4 +

π
2

)
sin

(
π
2
− θ1

) =
cos θ4
cos θ1

.

cos θ4 =
Router

Rinner

cos θ1. (4.25)

From Snell’s Law, the refracted angle θ5 is

cos θ5 =
n1

n2

cos θ4. (4.26)

Solving for θ4 allows for the condition for internal reflections to be made. The X-rays

will be incident upon the inner surface only if θ4 ≥ 0; therefore, the lower-bound of

the condition for incidence is

Router

Rinner

cos θ1 = 0

cos θ0 =
Router

Rinner

n1

n2

. (4.27)
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Physically, θ4 will not exceed π/2; therefore, the condition for incidence is

arccos

(
Router

Rinner

n1

n2

)
≤ θ0 ≤

π

2
. (4.28)

From Figure 4.11, it can be seen that the angle spanning Rinner and Router is

γ = π −
(π
2
− θ1

)
−
(
θ4 +

π

2

)
= θ1 − θ4. (4.29)

Again employing the law of sines, the magnitude of the path from the outer surface

to the inner surface r3 can be determined

r3 =
sin γ

sin
(
π
2
− θ1

)Rinner =
sin (θ1 − θ4)

cos (θ1)
Rinner. (4.30)

The direction of r3 is the same as r1 from the previous section; therefore,

r3 = r3

cos (θ0 − θ1)

0

sin (θ0 − θ1)

 . (4.31)

Figure 4.12 defines the exit path between the inner surface and the outer surface

for X-rays that scatter from the inner surface.

θ0

θ1
θ4

θ4

θ6 θ7

Router

Rinner

r3

r′3

Figure 4.12: For X-rays scattered from the inner surface, the exit path from the inner
surface to the outer surface is defined as r′3.
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Figure 4.13 shows an isolated view of the triangle created by Router, Router, and r′3.

r5

Router
Rinner

ϑ

θ4 +
π
2

θ5

π
2
− θ5

Figure 4.13: An isolated view of the exit path between the inner surface and the outer
surface. The magnitude and direction of this exit path can be found by solving for
the subtended angle ϑ.

Employing the law of sines, the relationship between θ4 and θ6 is

Rinner

Router

=
sin

(
π
2
− θ5

)
sin

(
θ4 +

π
2

) =
cos θ6
cos θ4

.

cos θ6 =
Rinner

Router

cos θ4. (4.32)

It follows that the angle spanning Rinner and Router is

π = θ4 +
π

2
+
π

2
− θ6 + ϑ

ϑ = θ6 − θ4; (4.33)

therefore, the magnitude of the exit path from the inner surface to the outer surface

r′3 is

r′3 =
sinϑ

sin
(
π
2
− θ6

)Rinner =
sin (θ6 − θ4)

cos (θ6)
Rinner. (4.34)

The direction of r′3 is the direction of r3 increased by 2θ4 in the z-direction. The

propagation vector for scattered X-rays from the inner surface to the outer surface is



54

therefore:

r′3 = r′3

cos (θ0 − θ1 + 2θ4)

0

sin (θ0 − θ1 + 2θ4)

 . (4.35)

From Snell’s law, the relationship between θ6 and θ7 can be determined:

cos θ7 =
n1

n0

cos θ6. (4.36)

From Figure 4.14, it can be seen that the output angle for case c between the x-axis

and r5 is

θout,C = θ0 − θ1 + 2θ4 + θ7 − θ6. (4.37)

θ6
θ7

θout,C

z

x
θ0 − θ1 + 2θ4

r′3

r5

Figure 4.14: An isolated view of the outer interface allows for the determination of
the output angle of r5 with respect to the x-axis.

The position of the X-rays exiting the part can be determined by following the

path vectors through the part:

Po,C = Pi + r3 + r′3. (4.38)

Additionally, the horizontal distance from the part center to the detector is defined

ODD (object detector distance) and can be used to find the height of the X-rays on
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the detector

Pd,C =

 ODD

0

Po,C(z) +
(
ODD− Po,C(x)

)
tan θout,C

 . (4.39)

The vector from the exit point to the detector is then

r5 = Pd,C − Po,C . (4.40)

Finally, Figure 4.15 can be fully defined for the path X-rays will travel through a shell

of circular cross-section.

θout,C

Pd,C

ODD

z

x

r5

r′3

r0

Psource Pi

Po,C

r3

Figure 4.15: Full definition of the path taken by X-rays transmitted into the part
and reflected from the inner surface.
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4.3 Field Calculations

To determine the intensity of the X-rays at the detector, it is necessary to model

the field amplitude and phase for each ray as it interacts with the part. There are

three cases considered: case A defines reflections from the exterior surface (interface

01), case B defines transmissions into the part (interface 01) and transmissions back

out of the part (interface 12), and case C defines transmissions into the part (interface

01) followed by reflections from an internal surface (interface 34) and transmissions

back out of the part (interface 3′5). Figure 4.16 depicts the electric field definitions

for the three cases.

E0

E0

E0

E′
0

E2

E5

E1

E3

E4

E′
3

A

B

C

Figure 4.16: As the X-rays propagate through the part, the electric field vector
changes. These changes are tracked in the subscripts of the field vector symbol.

4.3.1 External Surface Reflections

First, the reflections from the outer surface can be defined, shown in Figure 4.17.

The incident X-ray beam can be defined using the incident wave-vector k0 and the

incident electric field E0.
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E0

E0

E0

E′
0

E2

E5

E1

E3

E4

E′
3

A

B

C

Figure 4.17: Emphasized view of Case A, tracing the path of the reflected X-rays.

Figure 4.18 defines the incident, reflected, and transmitted X-rays for interface 01.

x

zE0

k0

k′
0

k1

θ1

θ0

θ0

E′
0

E1

Figure 4.18: Geometric representation of the X-ray interaction with interface 01. E0 is
the electric field of the incident X-rays, E′

0 is the electric field of the reflected X-rays,
and E1 is the electric field of the refracted X-rays. k0, k′

0, and k1 are the wave-vectors,
and θ0 is the incident and specular reflection angle with respect to the interface, and
θ1 is the refracted angle.

The electric field vector for the X-rays from the source at the part is given by

E0 = A0 exp (ik0 · r0) . (4.41)

The incident radiation is assumed to be linearly polarized and can be decomposed

into electric field components parallel to the scattering plane E0(x) and E0(y) (p-

polarization) and perpendicular to the scattering plane E0(z) (s-polarization). As-

suming a linear polarization angle of χ, the components of the incident amplitude
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are

A0 = A0

− sinχ sin 2θ0
cosχ

sinχ cos 2θ0

 . (4.42)

From Figure 4.18, the incident wave vector can be defined as

k0 =

k0(x)k0(y)
k0(z)

 =

k0
0

 , (4.43)

where k is the wave number of the incident radiation given by

k =
2π

λ
=
ω

c
, (4.44)

for which λ is the source wavelength, ω is the source frequency, and c is the constant

speed of light. The phase of the incident light, given by the second term in Equation

4.41, changes with distance r0 between the source and the surface.

In general, the wave-vector is related to the refractive index by

kj · kj

n2
j

=
ω2

c2
= constant; (4.45)

therefore, the magnitude of the transmitted wave-vector, k1, can be found using the

incident wave-vector, the index of refraction of the part, n1, and the index of refraction

of the environment, n0. Using Equation 4.45,

∥k1∥2

n2
1

=
∥k0∥2

n2
0

; (4.46)

therefore, the magnitude of the transmitted wave-vector is

∥k1∥ =
n1

n0

k, (4.47)
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and
∥k′

0∥
n2
0

=
∥k0∥
n2
1

= k. (4.48)

From Figure 4.18, and Equations 4.47 and 4.48, the wave-vectors can be defined:

k′
0 = k

cos 2θ00

sin 2θ0

 , (4.49)

k1 =
n1

n0

k

cos(θ0 − θ1)

0

sin(θ0 − θ1)

 . (4.50)

The amplitude of the reflected A′
0 and transmitted A1 components of the incident

beam are found using the Fresnel coefficients represented here as a tensor of reflection

Ψ and refraction Φ components. The amplitudes are related by

[
A′

0

A1

]
=

[
01Ψ 10Φ
01Φ 10Ψ

][
A0

A′
1

]
. (4.51)

The coefficient superscripts denote the direction of the X-rays with respect to the

interface, i.e. Ψ01 refers to the reflection coefficient matrix for X-rays travelling

from layer "0" (the environment) toward layer "1" (the part). Additionally, A′
1 is

considered to be the amplitude of X-rays incident upon the interface from below and is

referred to as the time-reversed scattered beam which in this case has zero amplitude.

Hence, the amplitudes of the reflected and refracted beams are

A′
0 =

01ΨA0; (4.52)

A1 =
01ΦA0. (4.53)
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The Fresnel coefficient tensor for the reflection is given by

01Ψ =

01Ψ(x) 0 0

0 01Ψ(y) 0

0 0 01Ψ(z)

 , (4.54)

with

01Ψ(x) =
01k1(z)(k0 · k0)− 01k0(z)(k1 · k1)
01k0(z)(k1 · k1) + 01k1(z)(k0 · k0)

,

01Ψ(y) =
01k0(z) − 01k1(z)
01k0(z) + 01k1(z)

,

01Ψ(z) = −01Ψ(x). (4.55)

Here, the components of the wave-vectors denoted with a superscript 01 refer to the

wave-vector with respect to the first interface. These wave-vectors are

01k0 = k

 cos θ0
0

− sin θ0

 , (4.56)

01k1 =
n1

n0

k

 cos θ1
0

− sin θ1

 . (4.57)

Additionally,

k0 · k0 = k2 (4.58)

k1 · k1 = k2 (n1/n0)
2 . (4.59)

From which the coefficients can be solved

01Ψ(x) =
n0 sin θ1 − n1 sin θ0
n0 sin θ1 + n1 sin θ0

= −01Ψ(z), (4.60)

01Ψ(y) =
n0 sin θ0 − n1 sin θ1
n0 sin θ0 + n1 sin θ1

. (4.61)
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Surface roughness will reduce the intensity of the scattered radiation by a factor

f(σ) where σ is the root-mean-square (RMS) roughness of the interface. The con-

sequence of surface roughness is the scatter is no longer strictly specular but also

has an off-specular (diffuse) component. There are many models that can be used to

approximate the change in intensity due to surface roughness, Table 4.1 lists a few

common factors.

Table 4.1: Common roughness models in literature with the ranges of k for which
they fit best. These factors influence the intensity of the reflected light from a surface
having RMS surface roughness σ. The reflected amplitude therefore is reduced by√
f(σ).

Névot and Croce (NC) [13,22] f(σ) = exp(−2k0(z)k1(z)σ
2) kσ ≤ 1

Debye-Waller (DW) [36] f(σ) = exp(−2k0(z)
2σ2) kσ >> 1

second-order distorted wave
Born approximation (DWBA) [28]

f(σ) = exp(1− 2k0(z)
2σ2) most k0

Sinha et al. [18] f(σ) = exp(−4k2 sin θ0 sin θ1σ
2)

low at small k0,
high at large k0

The phase of the reflected light at the detector depends on the path length r′0 of

the reflected rays, defined in Equation 4.5. The field of the X-rays reflected from the

outer surface is

E′
0 =

01ΨE0 exp (ik′
0 · r′0)

√
f(σ). (4.62)

4.3.2 Unobstructed Transmissions

Next, the field at the detector for X-rays that transmit through the part must be

found. Figure 4.19 shows the fields that must be defined to determine the final field

at the detector E2. The Fresnel coefficient tensor for refraction at the interface is

given by

01Φ01 =

01Φ(x) 0 0

0 01Φ(y) 0

0 0 01Φ(z)

 , (4.63)
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Figure 4.19: Emphasized view of case B, tracing the path of the transmitted X-rays.

for which, using Equations 4.58 and 4.59,

01Φ(x) = 2
01k1(z) (k0 · k0)

01k0(z) (k1 · k1) + 01k1(z) (k0 · k0)
=

2n0 sin θ1
n0 sin θ1 + n1 sin θ0

, (4.64)

01Φ(y) = 2
01k0(z)

01k0(z) + 01k1(z)
=

2n0 sin θ0
n0 sin θ0 + n1 sin θ1

, (4.65)

01Φ(z) = 2
01k0(z) (k0 · k0)

01k0(z) (k1 · k1) + 01k1(z) (k0 · k0)
=

2(n0/n1) sin θ0
(n1/n0) sin θ0 + sin θ1

. (4.66)

The X-rays that travel through the part in case B uninterrupted by the inner shell

(or in the absence of one) will be attenuated as they travel through the material. This

attenuation is a function of an absorption coefficient, µ, and the distance the X-rays

travel through the material. The absorption coefficient is a function of the radiation

wavelength and the material refractive index and is given by

µ = kβ1. (4.67)

Recalling that the distance the X-rays travel through the material, r1, is derived in

Equation 4.17, the transmitted amplitude attenuation factor is exp(−µr1/2).

The field at the second interface can now be defined as:

E1 =
01ΦE0 exp (ik1 · r1) exp (−µr1/2) . (4.68)
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To determine the field at the detector for case B, E2, the field interactions at the

12 interface must be determined. Figure 4.20 defines the second interface.

2θ0 − 2θ1

θ0

k2E2

E1k1

θ1
θ0 − θ1

z

x

Figure 4.20: Definition of the field interactions at the second interface. The wave-
vectors can be defined with the angles of interaction of the incident and refracted
X-rays.

From Figure 4.20, the transmitted wave-vector k2 can be defined

k2 = k

cos(2θ0 − 2θ1)

0

sin(2θ0 − 2θ1)

 . (4.69)

As before, the reflection and refraction of the X-rays at the second interface can be

found by multiplying by the Fresnel coefficient tensors for the 12 interface,

[
A′

1

A2

]
=

[
12Ψ 21Φ
12Φ 21Ψ

][
A1

A′
2

]
. (4.70)

A′
1 is the amplitude of the X-rays reflected from the second interface. These X-rays

will not reach the detector and are therefore irrelevant to the measurement. Addi-

tionally A′
2 is the time-reversed scattered beam and has zero amplitude. Therefore,

A2 =
12ΨA1. (4.71)
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The coefficient for refraction at the interface is

12Φ =

12Φ(x) 0 0

0 12Φ(y) 0

0 0 12Φ(z)

 . (4.72)

The Fresnel coefficients of refraction for the 12 interface are

12Φ(x) = 2
12k2(z) (k1 · k1)

12k1(z) (k2 · k2) + 12k2(z) (k1 · k1)
(4.73)

12Φ(y) = 2
12k1(z)

12k1(z) + 12k2(z)
, (4.74)

12Φ(z) = 2
12k1(z) (k1 · k1)

12k1(z) (k2 · k2) + 12k2(z) (k1 · k1)
(4.75)

Here, the superscript 12 represents the wave-vector as defined with respect to the

second interface. The dot product k1 · k1 is solved in Equation 4.59. Furthermore,

from Figure 4.20, the wave-vectors with respect to the interface are

12k1 =
n1

n0

k

cos θ10

sin θ1

 , (4.76)

12k2 = k

cos θ00

sin θ0

 . (4.77)

Thus, the coefficients of 12Ψ can be simplified

12Φ(x) =
2(n1/n0) sin θ0

sin θ1 + (n1/n0) sin θ0
, (4.78)

12Φ(y) =
2(n1/n0) sin θ1

(n1/n0) sin θ1 + sin θ0
, (4.79)

12Φ(z) =
2(n1/n0)

2 sin θ1
sin θ1 + (n1/n0) sin θ0

. (4.80)

The field at the detector for the X-rays transmitted through the part and unob-
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structed by an inner surface is:

E2 =
12ΦE1 exp (ik2 · r2) . (4.81)

The intensity of the X-rays at the detector is magnitude of the electric field such

that the intensity of the reflected radiation is:

I′0 = E′
0 · E′

0, (4.82)

and the intensity of the transmitted radiation is

I2 = E2 · E2. (4.83)

Figure 4.21 presents the intensity of the reflections and the transmission from a

Silicon part of 1.5 m radius having no surface roughness. These two component

intensities overlap on the detector to give a total measured intensity.
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Figure 4.21: Output intensity of the reflected, I′0, and transmitted, I2 X-rays from a
Silicon part of 1.5 m radius with no surface roughness.
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From Equation 4.62, surface roughness plays an important role in the intensity

of the reflections and therefore the image on the detector. Figure 4.22 depicts the

influence of surface roughness on the intensity on the detector. As reflections dominate

the intensity on the detector for large detector height, surface roughness contributes

to a reduction of the overall intensity.
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Figure 4.22: The comparison of various surface roughness on a Silicon part of 1.5 m
radius. Higher surface roughness contributes to a higher decay rate of reflectivity.
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For a part of large radius, finite steps in z result in small steps in incident angle;

whereas, for small radii the incident angle changes quickly with z. Hence, the aver-

age incident angle for a finite percentage of beam is larger for parts of small radius

therefore spreading the same amount of beam over a larger area on the detector and

reducing the part’s reflectivity. Figure 4.23 depicts the influence of outer radius on

the reflectivity of the part. It is noted that for large changes in part radius there

are large changes in the reflectivity signal. This is a result of the amount of surface

footprint presented to the incident X-ray beam.
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Figure 4.23: The effect of changing external radius is presented. Higher curvature
leads to a reduction in reflectivity.
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Finally, X-ray wavelength will contribute to the interaction between the X-rays

and certain features of similar spatial frequency. Figure 4.24 details the effect that

energy has on the reflectivity of a curved part. It can be seen that energy has minor

impact on the reflectivity of a surface having evenly distributed surface roughness;

however, it is yet to be determined if varying X-ray energy will improve measurement

of surfaces having heterogeneous spatial spectral content.
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Figure 4.24: The reflectivity of a part having 1 m radius and 1 nm RMS surface
roughness for several common X-ray energies: 8 keV (Cu Kα1), 10 keV, 12 keV, and
17.4 keV (Mo Kα1).
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4.3.3 Internal Surface Reflections

Finally, the field at the detector for X-rays that scatter an internal surface can be

found. Figure 4.25 shows the fields that must be solved for to define the final field

at the detector E5. For X-rays that transmit through the part and will be incident
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Figure 4.25: Emphasized view of case C, tracing the path of the internally reflected
X-rays.

upon an inner surface, recall the condition for incidence from Equation 4.27, there

will be a reflection from the inner surface. This interface, noted interface 34, is shown

in Figure 4.26.
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E′
3
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Figure 4.26: Definition of the field interactions at the inner surface interface.

The electric field of X-rays incident upon the inner surface is given by

E3 =
01ΦE0 exp (ik3 · r3) exp (−µr3/2) , (4.84)
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where

k3 = k1. (4.85)

The amplitudes of the reflected and refracted X-rays at this interface are given by

the Fresnel coefficients [
A′

3

A4

]
=

[
34Ψ 43Φ
43Φ 34Ψ

][
A3

A′
4

]
. (4.86)

The Fresnel coefficient of reflection for X-rays incident upon the inner surface is

34Ψ =

34Ψ(x) 0 0

0 34Ψ(y) 0

0 0 34Ψ(z)

 , (4.87)

where,

34Ψ(x) =
34k4(z) (k3 · k3)− 34k3(z) (k4 · k4)
34k3(z) (k4 · k4) + 34k4(z) (k3 · k3)

= −34Ψ(z) (4.88)

34Ψ(y) =
34k3(z) − 34k4(z)
34k3(z) + 34k4(z)

. (4.89)

The magnitude of the reflected wave-vector will be the same as the magnitude of the

incident wave-vector:

k3 · k3 = k1 · k1 =

(
n1

n0

k

)2

, (4.90)

and the magnitude of the refracted wave-vector is, from Equation 4.45,

k4 · k4 =

(
n2

n0

k

)2

. (4.91)
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Additionally, from Figure 4.26, the wave-vectors with respect to the 34 interface are

34k3 =
n1

n0

k

 cos θ4
0

− sin θ4

 , (4.92)

34k4 =
n2

n0

k

 cos θ5
0

− sin θ5

 . (4.93)

The Fresnel coefficients can then be simplified to:

34Ψ(x) =
n1 sin θ5 − n2 sin θ4
n1 sin θ4 + n2 sin θ5

= −34Ψ(z), (4.94)

34Ψ(y) =
n1 sin θ4 − n2 sin θ5
n1 sin θ4 + n2 sin θ5

. (4.95)

The reflected field from the inner surface E′
3 will be diffused by the surface rough-

ness and will be attenuated by the part material along the exit path. As before, the

attenuation factor for the part material is µ = kβ1, and the inner surface roughness

is σ2. Therefore, the reflected field incident upon the outer radius of the part is

E′
3 =

34ΨE3 exp(ik
′
3 · r′3) exp(−µr′3/2)

√
f(σ2). (4.96)

Figure 4.27 shows interface 3′5 where the reflected X-rays from the inner surface

are incident upon the outer surface.
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Figure 4.27: Definition of the field interactions at the outer surface interface.

To determine the field at the detector, E5, the Fresnel coefficients of refraction for

this interface must be derived:

3′5Φ =

3′5Φ(x) 0 0

0 3′5Φ(y) 0

0 0 3′5Φ(z)

 , (4.97)

where,

3′5Φ(x) = 2
3′5k5(z) (k

′
3 · k′

3)
3′5k′3(z) (k5 · k5) + 3′5k5(z) (k′

3 · k′
3)
, (4.98)

3′5Φ(y) = 2
3′5k′3(z)

3′5k′3(z) +
3′5k5(z)

, (4.99)

3′5Φ(z) = 2
3′5k′3(z) (k

′
3 · k′

3)
3′5k′3(z) (k5 · k5) + 3′5k5(z) (k′

3 · k′
3)
. (4.100)

From Equation 4.45,

k′
3 · k′

3 = n1
2k0 · k0

n0
2

=

(
n1

n0

k

)2

, (4.101)

k5 · k5 = n0
2k0 · k0

n0
2

= k2, (4.102)
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and, from Figure 4.27, the wave-vectors with respect to the 3′5 interface are

3′5k′
3 =

n1

n0

k

cos θ60

sin θ6

 , (4.103)

3′5k5 = k

cos θ70

sin θ7

 . (4.104)

Recalling Equation 4.37, θout,C = θ0 − θ1 + 2θ4 + θ7 − θ6, the exiting wave-vector is

k5 = k

cos θout,C0

sin θout,C

 ; (4.105)

therefore, the Fresnel coefficients for refraction can be rewritten

3′5Φ(x) =
2n1 sin θ7

n0 sin θ6 + n1 sin θ7
, (4.106)

3′5Φ(y) =
2n1 sin θ6

n1 sin θ6 + n0 sin θ7
, (4.107)

3′5Φ(z) =
2(n1/n0)

2 sin θ6
sin θ6 + (n1/n0) sin θ7

. (4.108)

Finally, having defined all of the components of the field at the detector of X-rays

reflecting from an inner surface,

E5 =
3′5ΦE′

3 exp (ik5 · r5) , (4.109)

and the intensity of this component is given by

I5 = E5 · E5. (4.110)
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Naturally, the distance between the inner and outer radii will have an effect on the

intensity of the reflections from the inner surface. At small shell thickness, approach-

ing zero thickness, there will be little-to-no transmitted X-rays and, thus, no X-rays

reflected from the inner surface. As the shell thickness increases, more X-rays will

transmit through the outer surface and reflect from the inner surface; however, the

path lengths for internal reflections will become large and approach the extinction

length of the material. This gradual increase, then decrease in reflectivity can be

seen in Figure 4.28 where the total intensity is affected by the internal reflections.
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Figure 4.28: Comparison of the effect of shell thickness (Router − Rinner) for a 1.5 m
outer radius Silicon sample. Curves are offset one order of magnitude for clarity. The
intensity of reflections from the inner surface increases as the shell thickness increases
until the path lengths for reflections get too large.
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As shown in Figure 4.29, the internal surface roughness affects the total intensity by

exponentially reducing the reflectivity of the inner surface. Radiograph measurements

of shells can be fit to these curves to determine the internal surface roughness.
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Figure 4.29: Comparison of the implication of various internal surface roughness for
a 1.5 m radius Silicon sample having outer roughness σ1 = 1 nm.
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4.4 Experiments

To verify the model presented in the previous section, experiments are conducted

in a purpose built X-ray facility at The University of North Carolina at Charlotte.

An overview photograph of the system is shown in Figure 4.30. The experiments

are performed on polished Silicon wafers, some of which are coated, that are bent to

various curvature to test the robustness of the model.

z

x

y

x-ray source
sample
staging

imaging
system

Figure 4.30: Overview of the X-ray facility at The University of North Carolina at
Charlotte configured for XRR measurements. From left-to-right is the X-ray source,
sample staging with y, z, and θ control, and the imaging system with a scintillator
and multipixel CCD camera on y and z stages.

4.4.1 Microsource X-Ray System

The X-ray source is a 25 W microsource (Bede Scientific) with a Molybdenum

target having peak output emission along the Kα1 line (17.4 keV). A polycapillary

optic collimates the output beam into a 2 mm diameter, Gaussian beam. A visible

light laser aligner on a tip-tilt flexure can be attached to the polycapillary optic

housing and aligned to the X-ray beam for easier alignment of optics and samples.
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4.4.2 Specimen Handling

All samples are mounted in a flexure guided bending fixture, detailed in Section

4.4.4, that is mounted on a series of alignment and positioning stages. The stages are

shown in Figure 4.31.

Sample z

Stage z

Sample θ

Stage y

Bending
Fixture

Figure 4.31: A photograph of the sample staging in the X-ray system. Stage y and
Stage z are used to position the sample in the X-ray beam. Sample θ is used to align
the sample parallel to the beam and Sample z (behind the bending fixture) is used
to position the sample in the center of rotation.

Two 150 mm range linear stepper motor translation stages (Newport UTS150PP),

"Stage y" and "Stage z" in Figure 4.31, are used to position the sample in the center

of the beam in the y and z directions. The "Sample θ" stage (Newport URS100BPP)

is a stepper motor rotation stage with 0.017 mrad resolution that is used to align

the sample parallel to the beam. The "Sample z" stage is a 25 mm range step-

per motorised actuator (Thorlabs ZST225B) on a linear translation stage (Thorlabs

XR25P/M) used to align the sample face to the center of rotation of the "Sample θ"
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stage. An additional 150 mm linear translation stage can be added to the sample sys-

tem to provide translation in the x direction to adjust the object-detector-distance

and is not shown in the figure. The Newport translation and rotation stages are

controlled with two 3-axis motion controllers (Newport ESP301) and the Thorlabs

actuators are controlled with Kinesis K-Cube stepper motor controllers (Thorlabs

KST101).

4.4.3 X-Ray Imaging System

The imaging system is shown in Figure 4.32. A filter wheel (Thorlabs FW120C)

holds several scintillators, a lead shield, and a USAF test target for camera calibration.

Each scintillator is fit with a carbon fiber window preceding the crystal to block visible

light from leaking into the imaging system.

z

x

y

y and z translation
stages

AB C D

E

F

A B C

D

E

F

Figure 4.32: Diagram (left) and photograph (right) of the imaging system. Compo-
nents: (A) carbon fiber window to block visible light, (B) filter wheel for changing
various LuAG and LuAg:Ce scintillators, (C) 4X infinity corrected objective lens, (D)
dielectric-coated turning mirror, (E) wide field lens, and (F) multipixel CCD camera.
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For all measurements a custom 50 µm thick LuAG:Ce scintillator (CRYTUR) is

used with a 100 nm Aluminum coating on the X-ray side of the crystal. The Aluminum

coating allows the X-rays to pass through to the scintillator but will reflect any

emission that scatters away from the objective lens thereby increasing the signal.

The wavelength of maximum emission for the LuAG:Ce scintillator is 535 nm. A 4X

infinity corrected objective lens (Olympus UPLXAPO) is focused on the scintillator

and collects the emission. The image is turned to the camera with a dielectric-coated

turning prism mirror (Thorlabs CCM1-E02) with >99 % reflectance between 400

and 750 nm. The purpose of this mirror is to separate any radiation that might

have passed through the scintillator from the visible emission. This also protects the

camera from any high energy radiation. The image is collected with a wide field

tube lens (Olympus SWTLU-C) and is projected onto the multipixel CCD camera.

The camera is an Atik 428EX monochromatic CCD camera with 4.54 µm pixels, a

resolution of 1932× 1452 pixels, and a 16-bit ADC.

4.4.4 A Fixture for Constant Curvature Bending of Silicon Wafers

A flexure-based fixture was designed and manufactured to ensure that Silicon wafer

samples are bent at a constant radius. The principle of four point bending is used

to ensure that the sample is under a constant bending moment between the loading

pins. Figure 4.33 is a CAD drawing of the fixture. A symmetric double compound

rectilinear flexure design was chosen to constrain the motion of the lower jaw to the

z-direction. Figure 4.33(B) shows the channel cut into the upper, fixed jaw of the

fixture which allows reflected X-rays to pass unobstructed. A micrometer or actuator

can be fixed in the bottom of the fixture for precise adjustment of the bottom jaw

displacement.
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A B

z

beam channel

moving pins

fixed pins

Figure 4.33: Drawing of the flexure based four point wafer bending fixture. View A is
the front view of the fixture where the symmetric double-compound rectilinear flexure
can be seen. View B is the trimetric view where the channel through the upper jaws
can be seen which allows the reflected X-rays to pass.

To determine the relationship between the beam radius and the actuator displace-

ment, Figure 4.34 shows the geometry of the system.

L s

∆z

θ

θ

R

Figure 4.34: Geometric representation of four point beam bending. Adjustment of
the distance between the pins, s and L, allows for the change in relationship between
the deflection ∆z and the beam radius R.
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It can be easily seen that

tan θ =
∆z

s
, (4.111)

and the radius,

R =
L

2 sin θ
. (4.112)

Recognizing that sin(arctanx) = x/
√
x2 + 1,

R =
Ls

2∆z

√(
∆y

s

)2

+ 1. (4.113)

To determine the pin spacing, the fracture condition for the Silicon samples can be

considered. For a beam under bending, recall that

2σ

t
=
E

R
, (4.114)

where σ is the strength, t is the beam thickness, E is Young’s modulus, and R is the

bending radius. Therefore, the maximum radius before the wafer breaks is

Rmax =
Et

2σmax

. (4.115)

Relating this condition to Equation 4.113 for small ∆z,

Rmax =
Et

2σmax

≈ Ls

2∆z
. (4.116)

The 1 mm thick Silicon wafers used were diced into 50 mm strips. For constant

bending across the entire sample, the ideal distance between the outer jaws (L+ 2s)

would be 50 mm. For this reason, the fixture was designed with L = 40 mm and s = 5

mm. With these parameters and the material parameters of Silicon, see Chetwynd
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and Smith 1990 [69], the maximum displacement before fracture can be determined

∆zmax =
Lsσmax

Et
=

(0.040 m)(0.005 m)(170× 106 Pa)
(140× 109 Pa)(0.001 m)

= 210µm. (4.117)

A photograph of the fixture with a sample loaded is shown in Figure 4.35.

motor driven
micrometer

jaw
actuator

stage z

sample z

jaw

bent wafer

Figure 4.35: Photograph of the wafer bending fixture with motorized stepper actuator.

4.4.5 Silicon Wafer Samples

Experiments were conducted to measure the surface roughness of Silicon wafers

as they were bent to various radii with the wafer bending fixture in the previous

subsection. Measurements of three samples are presented: a 380 µm thick polished

Silicon wafer, a 2 mm thick Chromium coated Silicon wafer, and a 2 mm thick Copper

coated Silicon wafer.
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Each sample was measured with an atomic force microscope (Nanoscope Dimension

3100) to determine the surface roughness. Measurements were taken over a 5× 5µm

area. The results from these measurements are presented in Table 4.2.

Table 4.2: Roughness results from AFM measurements of Silicon wafer samples.

Sample RMS Roughness (nm)

Uncoated Silicon Wafer 0.9

Chromium Coated Silicon Wafer 1.9

Copper Coated Silicon Wafer 6.5

4.4.6 XRR Measurement Setup

XRR measurements were performed on all samples with 60 second exposures. Sam-

ples were bent such that the full beam footprint was incident upon the surface. The

X-ray source is a collimated microsource (Bede Scientific) with Molybdenum target

producing X-rays at 17.4 keV. The beam control is set at 50 kV and 0.50 mA for a

total of 25 W. After collimation, the beam diameter is 2 mm and is approximately

Gaussian. For more details on the X-ray facility, see [70]. The object to detector

distance is 200 mm. Table 4.3 lists the bending deflection and radius for each sample.

Table 4.3: Measurement parameters for the bent wafer samples.

Sample Deflection, ∆z (µm) Radius (m)

Uncoated Silicon Wafer 40 2.5

Chromium Coated Wafer 67 1.5

Copper Coated Wafer 50 2.0
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4.5 Results and Conclusions

Images (I) are corrected for the incident beam and detector with the collection

of Flat and Dark images. Flat (F ) images are taken of the X-ray beam without

the presence of the sample. Dark (D) images are taken of the detector without the

presence of the X-ray beam. The corrected images (C) are then determined by

C =
I −D

F −D
. (4.118)

When an image is collected, the signal is discretized into bins (pixels) on the de-

tector. This discretization must be modelled to properly fit the experimental data.

To do this, the computed heights of the reflections and transmissions on the detector

are sorted into bins according to the detector pixels. To include phase information,

the field of each ray arriving at overlapping bins are summed and then squared to

compute the resulting intensity for each bin (pixel).
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Figure 4.36 shows the measurement results from the uncoated Silicon wafer after

cleaning using hydroflouric acid (HF) to remove oxide layer and contaminants. Prior

to etching, this sample produced no measurable reflections. Computed curves from

the model for various RMS surface roughness are superimposed to determine the

best fit between the measurement and the model. It can be readily seen that all fits

overestimate the image intensity as the incident angle approaches the critical angle

for the material. The computed curve for 2 nm RMS surface roughness appears to fit

the decay rate of the data the best.
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Figure 4.36: Measurement result for an uncoated Silicon wafer bent to 2.5 m radius
with computed fits for several RMS surface roughness values. The fit for 2 nm RMS
surface roughness appears to match the image intensity best.
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The measurement of the Chromium coated wafer, bent to 1.5 m radius, is shown

in Figure 4.37. The best fit between the measurement and model-generated curves

can be seen to be 3 nm RMS.
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Figure 4.37: Measurement result for a Chromium Coated Silicon wafer bent to 1.5 m
radius with computed fits for several RMS surface roughness values. The fit for 3 nm
RMS surface roughness appears to match the image intensity best.



87

A third sample measurement of a Copper coated wafer is shown in Figure 4.38.

The best fit between the data and the computed curves is 5 nm RMS.
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Figure 4.38: Measurement result for a Copper Coated Silicon wafer bent to 2.0 m
radius with computed fits for several RMS surface roughness values. The fit for 5 nm
RMS surface roughness appears to match the image intensity best.
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At present, the "plateau" and rounded appearance of the data around the critical

angle in the image is repeatable but not well understood. This is a significant issue as

the break point in the intensity and the decay immediately following hold the most

valuable surface roughness information and heavily influence the model fitting. An

additional area of interest could be effects on the surface of the Silicon wafer due

to the strain during bending. This strain could affect the crystal structure at the

surface and possibly change the refractive index of the material. Effects of surface

reconstruction on the refractive index is not well studied at this time. This effect is

expected to be minimal in metals and is not reported in literature; however, there

are many studies using XRR to determine the effect of surface contamination and

oxide growth/modification under different environmental conditions. In these mea-

surements, the surfaces are clean and mostly free of oxide and stored in a temperature

and humidity controlled environment typical of a science laboratory setting. There-

fore surface conditions are not expected to change significantly in these measurements.

Strain due to bending the wafer will induce Poisson’s ratio dependant density change

that may also influence specular scatter where density gradients have a direct effect

on specular reflection intensity. This effect is expected to be minimal as the strains

on the wafer are relatively low (approximately 0.25 millistrain) for maximum bending

of the Silicon specimen.

These measurements are obtained using the Bede microsource using a Molybdenum

Kα target. This source is not optimized for minimum blur and beam divergence.

Additionally, energy contributions from the Kβ line of the source, which is not filtered,

are not considered in the models. The use of advanced X-ray sources such as emerging

fourth generation synchrotrons will mitigate these source effects.

For the significantly rougher Copper coated specimen, a known issue in literature

is the breakdown of common approximation based roughness models, such as the

one used here, at high surface roughness. The Copper coated wafer is near the
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upper bound of the capability of these models and could explain the departure of the

simulated curve from the data at the higher angles.

Table 4.4 summarizes the XRR measurement results and the AFM measurement

results for comparison.

Table 4.4: Summary of the XRR RMS roughness measurement results in comparison
to the AFM RMS roughness measurement results. The XRR measurement results
are higher than the AFM for "smooth" surfaces, but has high departure from the
AFM result for the "rough" surface.

Sample XRR AFM

Uncoated Silicon Wafer 2 nm 0.9 nm

Chromium Coated Wafer 3 nm 1.9 nm

Copper Coated Wafer 5 nm 6.5 nm

From the XRR and AFM measurement results, it can be speculated that the sig-

nificantly higher measurement area of XRR could contribute to the higher roughness

result. The AFM measurement is of a 5 µm × 5 µm area; whereas, the XRR mea-

surement area is approximately 2 mm × 30 mm. High amplitude surface asperities

not included in the AFM measurement would contribute to a reduction in surface

reflectivity and a higher roughness result with XRR.

The desired outcome of this work is the measurement of surface roughness of small

spheres. For this reason, measurements were attempted on polished spheres of var-

ious radii from 2 mm to 5 mm and various materials including steels and ceramics.

Measurements on these spheres were attempted using the facilities at The Univer-

sity of North Carolina at Charlotte, The Advanced Light Source (ALS) at Lawrence

Berkeley National Laboratory, and The Advanced Photon Source (APS) at Argonne

National Laboratory. Experiments at the ALS tomography beamline yielded no mea-

surable reflections from the samples as the radius was too small for adequate reflective

surface area. Even with synchrotron radiation intensity the signal to noise was too

low to separate reflections from background.
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Measurements at the APS grazing incidence small-angle X-ray scattering (GISAXS)

beamline did result in measurable scatter from a 5 mm Tungsten Carbide ball, see

Figure 4.39.
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Figure 4.39: Measurement data from APS beamline 12-ID-B. (top) line-out from
sector analysis on sphere burst pattern. The gap on the left side corresponds to
the beamstop blocking the direct beam and specimen to protect the high sensitivity
detector. Intensity oscillations to the right of the beamstop could be near-surface
oscillations from reflection-transmission interference. (bottom) image of the sphere
measurement. The burst pattern created from reflections off of the sphere can be seen
on either side of the sphere resulting in a cone of reflections from the surface.

This measurement was complicated by the need to block the main X-ray beam.

The GISAXS beamline consists of a high intensity beam and a sensitive CCD and

direct measurement of the beam was not possible. This did not allow for near-surface

scatter measurement making it difficult to determine where the sample surface was

located in the image. The surface location and the distance of the scattered light

from the surface are required for proper analysis. These measurements did show

that scatter can be seen from small spheres with very sensitive detectors. With
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experimental refinements, this could be a viable path for the measurement of highly

curved surfaces using synchrotron radiation.

An effect that can be explored with additional experimental setup is the effect of

interference due to the asymmetric path lengths of the reflections and transmissions

through the curved part. Potentially, these phase differences should cause fringes in

the detector image but they were not observed in current experiments. Additional

X-ray flux, source coherence, and detector dynamic range are expected to increase

the possibility of observing this effect. The models developed here incorporate phase

effects and can be used directly.

In experiments, it is noted that the sample must be aligned parallel to the beam

prior to bending. If the sample is facing away from the beam (negative angle), small

deflections will be occluded by the tilt of the sample. Furthermore, if the sample is

tilted toward the beam (positive angle), the X-rays will reflect from the surface prior

to bending the sample and effect the image normalization.
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APPENDIX A: BEAM FOOTPRINT CORRECTION IN X-RAY REFLECTIVITY

MEASUREMENT

Due to the small angles of incidence in X-ray reflectivity measurements, if a sample

face is small, the footprint of the X-ray beam will overfill the surface as illustrated

in Figure A.1. The result of this overfill is a reduction in the incident intensity that

must be corrected for; otherwise, the reflectivity will erroneously appear too low for

incident angles less than the critical angle.

Sample
θ = θB

0% overfill, B = 1
Sample

θ

50% overfill, B = 2

Figure A.1: At low angles of incidence, the beam will overfill the reflector surface
resulting in erroneous normalization of the reflectivity curve.

To correct for the beam footprint reduction at low angles, the intensity reduction

B must be determined as a function of the incident angle θ. The width of the beam

footprint F on the part depends on the beam diameter d, sample reflector length L,

and the incident angle θ, see Figure A.2.

The beam footprint is

F =
d

sin θ
. (A.1)

The incident angle for which the beam is entirely on the sample face θB occurs

when F is equal to L,

L =
d

sin θB

θB = arcsin
d

L
. (A.2)
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θ

d

L
F

Figure A.2: System diagram of the beam footprint on the sample face as a function
of the incident angle. The beam footprint F is a function of the incident angle θ, the
beam diameter d, and the sample face length L.

For all angles less than θB, the incident beam intensity will be reduced by a factor B

that is determined from the ratio of the reflector surface length and the total beam

footprint

B =
L

F
=

d sin θ

d sin θB

=
sin θ

sin θB
. (A.3)
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APPENDIX B: SUCCESSFUL SYNCHROTRON BEAMLINE PROPOSALS

B.1 Advanced Light Source RAPIDD Proposal: Beamline 8.3.2

Beamline 8.3.2 at the Advanced Light Source is a Synchrotron-based Hard X-ray

Micro-Tomography instrument. It allows non-destructive 3-Dimensional imaging of

solid objects at a resolution of approximately 1 micron. (microct.lbl.gov)

Proposal Date: September 2021

1. Title of Experiment: Characterization of Curved Surfaces by X-Ray Reflectivity

2. Discipline of your proposal: Physics

3. Indicate the beamline required to perform the work described in your proposal:

8.3.2 (Tomography)

4. Indicate the earliest date you will be ready to collect data. If the beamtime is

no longer useful after a certain date, the enter this also: Earliest 2 Sept 2021 -

No longer useful after 15 Nov 2021

5. Number of shifts (8 hours beam time) requested: 1

Abstract 600 characters max including spaces

The proposed research aims to validate a new model for the determination of surface

roughness on curved surfaces using X-ray reflectivity. The motivation for this study is

to determine surface perturbations on fusion capsule ablator layers that are known to

create instabilities that significantly reduce yield in fusion reactions. This model will

be evaluated by measuring small, highly polished spheres of known surface roughness.

Data from these measurements will provide information spanning all parameters of

the model, resulting in a new tool for mapping the roughness of polished spheres.

Proposal

The purpose of this work is to expand and validate a new X-ray reflectivity (XRR)

model that includes the effect of high surface curvature; enabling the extraction of
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XRR information. Objects having curved surfaces have many applications in op-

tics, biophysics, high energy physics, and chemistry. In all of these fields, surface

topography (roughness and waviness) has significant influence on function, often at

nanometer scales. An example that forms the motivation for this study is the increas-

ingly stringent functional requirement for fusion target ablator layer surface rough-

ness. Reviews of current literature indicate that the influence of surface roughness

on hydrodynamic instabilities during the ablation phase of implosion is a recurring,

major factor limiting neutron yield for nuclear fusion energy production.

This model uses a method based on the original Parratt formalism employing Fres-

nel tensors including the effects of surface roughness induced specular and diffuse

scattering. Due to the geometrical effects of curved surfaces, the combination of ex-

ternal surface roughness and transmission through the sample creates interference

patterns at the detector; these patterns have been observed in previous experiments.

The model developed in our work captures these additional effects and can be used

to extract surface roughness from measurements of curved surfaces.

Due to the curvature of the surface, the contents of a single image include reflected

and refracted X-rays from a continuum of incident angles. Modelling the surface and

acquiring multiple measurements around the specimen provides the unique possibility

of mapping localized surface topographic variations.

The proposed experiments will measure two spheres. The first sample is a pol-

ished, 2 mm, Silicon sphere provided by the National Ignition Facility and measured

by General Atomics. The second sample is a 2 mm, SiC sphere that has been se-

lectively polished to different roughnesses on two hemispheres. By measuring these

samples, along with the variable parameters of the beamline, the datasets from these

experiments will contain the information needed to fully evaluate the geometric and

surface topographic components of the model.

Beamline Justification and Shift Requirement
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The Advanced Photon Source has been successfully used in previous experiments for

this project. These experiments have provided preliminary data containing interfer-

ence effects that are predicted by our model; however, limitations at ALS Beamline

7.3.3 and APS Beamline 12-ID-B, which are both grazing-incidence X-ray small an-

gle scattering (GIXSAS) beamlines, required substantial apparatus modifications and

were determined to be not ideal for this study. One particular limitation in previous

measurements was establishing reference datums due to the type of detector used

where the sample surface was occluded; this information is necessary for direct com-

parison of the data with the model. Beamline 8.3.2 is a tomography beamline with the

capability of imaging the direct X-ray beam alongside the sample and therefore does

not have this limitation. At Beamline 8.3.2, variable X-ray energies, object-detector-

distances (ODD), field of view, and beam size control will also enable a parametric

study to evaluate our model. Additionally, we are familiar with the operation of this

beamline, and the beamline scientists are familiar with the experimental requirements

for this proposal.

The proposed experimental setup will require no modification to the beamline

equipment and the samples will be pre-mounted on compatible fixtures to allow for

quick set-up. Two samples will be measured, all operations on each sample can be

automated, and the only manual interventions will be switching samples. Mounting

and alignment is, from previous experience, expected to take approximately 2 hours

for each sample. Measurement at 10 orientations, 4 energy levels, and 4 ODD’s for

a total of 160 images is expected to take 1 hour per sample. We are proposing one,

eight-hour shift to complete the measurements.
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B.2 Advanced Photon Source General User Proposal (GUP): Beamline 12-ID-B

Beamline 12-ID-B is a dedicated X-ray scattering beamline at APS. It routinely

runs simultaneous small- and wide-angle X-ray scattering (SAXS/WAXS), grazing

incidence small-angle X-ray (GISAXS), and grazing incidence wide-angle X-ray (GI-

WAXS). (12id.xray.aps.anl.gov)

Proposal Date: October 2020

Proposal Number: GUP-71407

Grazing Incidence Small-Angle X-ray Scattering Studies on Nanometer Scale

Spherical Surface Roughness

Kathryn Harke1, Jefferson Cuadra1, Brian Rogers1, Jacob Cole2, Stuart Smith2

11Nondestructive Evaluation Group, Lawrence Livermore National Laboratory,

Livermore, CA

2Center for Precision Metrology, University of North Carolina, Charlotte, NC

This work was performed under the auspices of the U.S. Department of Energy by

Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and

was supported by the LLNL-LDRD Program under Project No. 19-ERD-022.

Proposal Abstract

The purpose of the proposed research is to validate a new model to determine the

roughness of a solid, spherical surface using X-ray reflectivity (XRR). Previous XRR

work has focused almost exclusively on flat surfaces and has established this method

as a powerful tool for extracting the surface statistics of highly polished surfaces and

smooth internal interfaces. However, today there are a large number of highly pro-

cessed curved surfaces (e.g. EUV lithography, freeform, and X-ray optics, precision

bearings, and internal confinement fusion targets) that require topographic measure-

ment at the nanometer or sub-nanometer scale. Regarding internal confinement fusion
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targets, a spherical shell from each batch is sacrificed to destructive testing to obtain

the same information that is aimed be extracted non-destructively using this method.

A model has been developed using the propagation of X-rays reflecting from, and re-

fracting through, a specimen of constant curvature. This model will enable extraction

of surface finish (roughness and waviness) from the internal and external surfaces of

curved solids and shells. Figure B.1.a is a cartoon of the proposed experiment and

Figure B.1.b is a simplified diagram of the propagation model that has been devel-

oped.

b

b

beamline source

cameracamera

Mixed reflections and transmission

Only reflections

a

Figure B.1: Overview of experimental and theoretical goals of GISAX measurement.
(a) Proposed experimental setup. Due to the constant curvature of the sphere, X-
rays will be reflected from varying incident angles. Additionally X-rays will transmit
through the sphere creating an interference pattern on the detector. (b) Propagation
model diagram.

Beamline 12-ID-B has the capability to perform the proposed experiments which

require high-resolution grazing incidence small angle scattering measurements at mul-

tiple energies from a high flux source on both solid and hollow spherical and cylindrical
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samples. Our samples consist of;

1. one, G25, 2 mm diameter, solid tungsten carbide sphere polished on one hemi-

sphere from UNCC;

2. two, polished 2 mm diameter Silicon spheres from the National Ignition Facility

(NIF);

3. two, polished G5, 2 mm diameter 440c stainless steel spheres from Bal-tec;

4. two each, 2 mm diameter, SiC and Si3N4 spheres lapped on one hemisphere

( 80 nm RMS roughness) and polished on one hemisphere (5 - 10 nm RMS

roughness) from Diamond Product Solutions (DPS);

5. two, 10 µm thick, diamond coated SiC spheres from DPS with the same size

and surface specifications;

6. two 1 mm diameter epoxy resin hollow cylinders from LLNL NanoScribe;

7. and two, 2 mm diameter, high density carbon spherical shells.

The samples will be characterized using AFM, profilometry, and traditional mi-

croscopy. By studying these proposed samples we can validate the XRR method

for surface roughness measurements on external curved surfaces at 12-ID-B, which

can be used with our model to look at applying the X-ray Reflectivity method to

probe internal surface roughness of a thin spherical shell, the ultimate goal of the

project, which has never been accomplished before. A related study to determine

surface roughness and waviness on a glass optic in which a novel model for extract-

ing these features was developed by the authors and experiments were performed at

The Advanced Light Source Beamline 8.3.2, a dedicated tomography beamline [1].

Notwithstanding differing instrument bandwidth capabilities, the XRR model was
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validated experimentally with AFM, Fizeau interferometry, and surface profilome-

try measurements. Synchrotron experiments required non-traditional XRR measure-

ments, and experience with designing and fabricating apparatus for incorporation

into synchrotron facilities uniquely prepare us for the proposed experiments.

Table B.1: Summary of results from previous work with XRR on surfaces containing
roughness and waviness components. A novel model was developed to extract surface
statistics from distinct surface wavelengths.

Roughness [nm] Waviness [nm]
XRR 2.9± 0.2 14.6± 0.5
Profilometry 4.0± 0.1 21.4± 0.1
AFM 3.4± 0.4
Fizeau 21.6

If this work is a continuation of work done under a previous proposal, give

the previous proposal number and indicate what changes have been made.

(REQUIRED FIELD)(limit : 3000 characters)

This is a new beamtime proposal.

What is the scientific or technical purpose and importance of the proposed

research? (REQUIRED FIELD)(limit : 500 words)

For certain parts where nanometer scale surface roughness directly determines the

performance and the potential for failure of a component during application, the

measurement of internal and external surface roughness information before subjecting

the component to application can have significant and beneficial outcomes. As inertial

confinement fusion experiments and studies in high energy density science continue to

seek fusion ignition, the inspection requirements of the capsule ablators, i.e. hollow

spheres, are becoming more stringent. Qualities such as surface finish and particle

contaminants are especially important. Currently, targets are sacrificed to destructive

testing to determine a representative measure of the internal surface. This method is

undesirable as significant manufacturing resources are lost and the quality of specific

targets can only be inferred. Without the knowledge of the quality of each target

used, performance metrics such as neutron yield cannot be correlated with direct
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measurements.

Traditional, surface metrology measurement tools such as profilometry, atomic force

microscopy (AFM), and scanning white light interferometry are limited by finite probe

size, and contact-based profiling methods (AFM, stylus) while potentially damaging

the surface also require stitching of 2D profiles resulting in slow measurement times

for high lateral spatial resolution. These current methods are also only applicable

to external sample surfaces, and internal defects and surface structure remain unde-

tected.

To address these issues, we propose a method utilizing X-ray scattering from curved

surfaces in the region near grazing incidence. Grazing incidence small angle X-ray

scattering has the potential to non-destructively measure the surface structure of both

the outside and inside surfaces of hollow spheres. This builds upon current methods

of sub-surface X-ray measurement commonly used to evaluate the roughness of layer

interfaces in the semiconductor and optical coating industries; almost exclusively on

flat surfaces. The detection and characterization of these physical features is on the

lateral scale of the X-ray wavelength which can be at ångström levels. The intensity

of the scattered light from a surface is directly related to the surface features of the

scattering interface.

The development of a model for the extraction of surface features from non-flat

specimens represents a novel technique in X-ray reflectometry. This work has the

potential to open a field of studies on the extraction of functional measurement in-

formation from non-traditional surface shapes in emerging fields. Examples include

freeform and engineering surfaces important to defense, virtual and augmented real-

ity systems, and compact smartphone camera optics as well as catadioptric lenses for

EUV lithography and X-ray optics for microscopes and telescopes.

Why do you need the APS for this research? (REQUIRED FIELD)(limit:100

words)
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While it is possible to obtain preliminary single-energy data from lab-based X-ray

facilities, the features of the Advanced Photon Source such as high flux, tunable

energy, long flight-path, and high-fidelity detection are necessary for rigorous evalu-

ation of this new model. Additionally, high flux sources enable rapid data collection

for numerous measurements. This is often necessary due to the statistical nature of

surface roughness and surface roughness variations. Furthermore, long flight paths

enable large spread in the scattered light, increasing the effective spatial resolution

of measurements.

Why do you need the beamline you have chosen? (REQUIRED FIELD)(limit

: 100 words)

Beamline 12-ID-B has the desired angular resolution needed to obtain meaningful

data to compare with our models. The angular region of interest for this study is

below 3◦, with greater importance in the sub 0.5◦ range. This beamline has the

capability to study this angular region of interest with sufficient object-to-detector

distance. The energy range, 7.9−14 keV and the focused beam size, 200 µm x 40 µm,

available at 12-ID-B are ideal for this experiment. Previously, preliminary measure-

ments were fixed to 10 keV, 176 µm/pixel, and 0.001◦ steps to 0.5◦ at ALS Beamline

8.3.2.

Describe the participants’ previous experience with synchrotron radiation

and the experimental results obtained. (If you refer to previous publica-

tions, be sure to include complete citations.) (REQUIRED FIELD)(limit

: 100 words)

After consultation with beamline scientists (Dr’s B.Lee and C.Kurtz), two types of

experiments will be performed:

The first experiments will perform X-ray reflectivity measurements of outer surfaces

of spheres (Samples 1− 4). The experiment will require a rotary stage with angular

resolution of at least 0.010◦ ideally with 360◦ of rotation, a collimated beam with
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multiple energies from 7− 14 keV, and ODD of at least 3 m. We will scan with fine

resolution up to an angle of 3◦ for each measurement; however, due to the intentionally

varied surface of Samples 1 and 4, it will be necessary to coarsely index 360◦ at

approximately 1◦ increments. If sample rotation is not possible, it would be necessary

to measure each side of the sphere, remove and rotate the sample holder 180◦, then

re-measure the back side of the sphere to obtain two pairs of measurements.

Experimental parameters will be predetermined using our model but may need

to be adjusted during experiments. Additionally, we plan to work with the beamline

scientists to ensure that sample fixturing will be compatible with the designed sample

holder. To avoid damage to the Pilatus 2M detector, the sample must always occlude

the direct beam. Initially, the sample will be placed at the center of rotation of

the rotary table directly in front of the beam. The sample will be translated across

the beam allowing for more scattered light to reach the detector until a maximum

intensity is achieved. It is important that there be minimal run-out in the rotation to

ensure that the detector is not exposed to the direct beam during sample rotation. To

measure this run-out, the beamstop image can be monitored as the sample is rotated

and the x-y stages used to correct for position variations.

Additionally, the center-of-the-beam must be aligned to the center of the sphere.

This will result in an uneven scattering pattern on the detector. Translation of the

z-stage will correct for this error. This alignment process may need to be repeated

until the beam-sphere alignment is optimized.

Images will be collected of the scattered light and transferred for post-processing

on another computer. Any extraction methods (header files or programs) will need

to be made available so that data can be imported into Matlab.

The second experiments will measure both internal and external surfaces of spheres

and cylinders (Samples 5− 7) and will require the same setup, equipment and align-

ment requirements as the exterior surface experiments. The measurement process for
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Samples 5 and 7 will be the same as before; however, the printed epoxy resin partial

hollow cylinders will be pre-mounted to align the arc of the cylinder to the sample

holder. The translation across the beam to optimize the inclusion of low angle scatter

will be the same for this sample.

All samples, both solid and hollow, will also be measured at LLNL using AFM,

white light interferometry and profilometry methods to compare and validate our

theoretical X-ray reflectivity models when applied to the experimental data acquired

at this beamline.

Provide an overall estimate of the amount of beam time you will need to

accomplish the goals of your proposed experimental program. How many

visits during the two-year proposal period do you expect to need? How

many shifts will you need during each visit (approximately)? (REQUIRED

FIELD)(limit : 500 words)

Based on previous experience fielding experiments on similar samples, it is expected

that six 8-hour shifts are needed for the full lifetime of the proposal. During the first

shift, we aim to establish ideal experimental set-up and procedures (3 − 6 hours) as

well as measuring Sample 1. The second shift will use the established parameters

and protocols to measure Samples 2 − 4. It is possible that upon analysis of data

additional measurements for the solid samples might be needed. This could require

part of an additional shift. Hollow shells will require significantly more setup and

measurement times. We plan to use shift 3 for possible additional measurement of

Samples 1−4 and the remaining of the shift dedicated to shell setup and measurement

of Sample 5. The following shift (shift 4) will consolidate measurements on Sample 5

if necessary and complete measurements on Sample 7. Sample 6, the printed partial

cylinder, will require the majority of the final two shifts as measurements will need

to be acquired from both the front and back sides of the sample.

We are asking for three 8-hour shifts in the first quarter to complete measurement
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of the solid samples with a minimum of two 8-hour shifts required should scheduling

constraints arise. We are asking for three 8-hour shifts in the second quarter for

the measurement of Samples 5 − 7 where a minimum of two 8-hour shifts would be

required. The minimum times required assume that all experiments work out as

planned and there are no interruptions in beamtime.

In summary, the six 8-hr beamtimes would consist of

1. Setup, parameter refinement, measurement of Sample 1;

2. Setup, measurement of Samples 2− 4;

3. Setup, measurement of Sample 5;

4. Setup, measurement of Sample 7;

5. Setup, measurement of Sample 6 front;

6. Setup, measurement of Sample 6 back.

List publications resulting from work done at the APS. Please identify the

beamline(s) where the work was done (REQUIRED FIELD)(limit: 2000

characters)

Beamline 16-BM-B:

Publications:

A. Andrew A. Wereszczak, Kathryn J. Ham, Yogesh K. Vohra, Georgiy M. Tsoi,

Brian A. Oistad, Brett S. Kuwik, Emily F. Steiner, Osama M. Jadaan, Benjamin

L. Hackett. Oak Ridge National Laboratory Report No. ORNL/TM-2018/1019,

High-Pressure Mechanical Response of Two Vitreous Silicates, (2018).

B. Ham, K. J.; Kono, Y.; Patel, P. J.; Kilczewski, S. M.; Vohra, Y. K. Pressure

Induced Densification and Compression in a Reprocessed Borosilicate Glass.

Materials. 11, 114 (2018). doi: 10.3390/ma11010114
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C. Kathryn J. Ham, Yogesh K. Vohra, Yoshio Kono, Andrew A. Wereszczak, and

Parimal Patel, "White-beam X-ray diffraction and radiography studies on high-

boron-containing borosilicate glass at high pressures", High Pressure Research

2017. http://dx.doi.org/10.1080/08957959.2017.1287263

Manuscript in preparation:

D. Kathryn J. Harke, Rostislav Hrubiak, Curtis Kenney-Benson, and Yogesh Vohra.

High-Pressure, High-Temperature White-Beam X-ray Diffraction and Radiogra-

phy Studies on a Zr-Based Bulk Metallic Glass. Journal of Materials Research.

(July 2020).

M.S. in Physics thesis:

E. Kathryn Jinae Ham. "White-Beam X-Ray Diffraction and Radiography Studies

on High-Boron Containing Borosilicate Glass at High Pressures". (July 14,

2017).

Ph.D. in Physics dissertation:

F. Kathryn Jinae Ham. "High-Pressure Studies on Borosilicate and Bulk Metallic

Glasses". (May 16, 2019).

*Kathryn Harke was previously known as Kathryn Ham prior to marriage.

References (limit : 2000 characters)

1. J. A. Cole, J. A. Cuadra, R. M. Panas, S. T. Smith. The Effect of Longer-

Range Waviness on X-Ray Reflectivity Measurements. Journal of Synchrotron

Radiation (at press). 2020.

2. K. Mohan, R. Panas, and J. Cuadra. "SABER: A Systems Approach to Blur

Estimation and Reduction in X-ray Imaging." arXiv preprint arXiv:1905.03935.

(Under Review).
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3. B. Liang, J. Cuadra, et al. "Stress field analysis in a stony meteorite under

thermal fatigue and mechanical loadings." Icarus 335. 2019.

4. J. Indeck, J. Cuadra, C. Williams, K. Hazeli. "Accumulation and evolution of

elastically induced defects under cyclic loading: quantification and subsequent

properties." International Journal of Fatigue. 2019.

5. S.K. Saha, J. Oakdale, J. Cuadra, et al. "Radiopaque resists for two-photon

lithography to enable submicron 3D imaging of polymer parts via X-Ray com-

puted tomography." ACS Applied Materials & Interfaces 10, no. 1. 2018.

6. S.K. Saha, C. Divin, J. Cuadra, R.M. Panas. "Effect of proximity of features on

the damage threshold during submicron additive manufacturing via two-photon

polymerization." ASME. J. Micro Nano-Manuf. 2017.
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B.3 Advanced Light Source Rapid Access Proposal: Beamline 7.3.3

Beamline 7.3.3 is a SAXS/WAXS/GISAXS/GIWAXS beamline, covering a wide q

range (0.004 - 3 Å−1) and length scale (2 - 1500 Å). (saxswaxs.lbl.gov)

Proposal Date: February 2020

Nanometer Scale Surface Roughness Measurement of Spherical Surfaces

via XRR

As inertial confinement fusion (ICF) experiments and studies in high energy density

(HED) science continue to seek fusion ignition, the inspection requirements of the

capsule ablators, i.e. hollow spheres, are becoming more stringent, e.g. high sur-

face quality finish and minimal particle contaminants. Traditional, non-destructive

measurement techniques such as profilometry, AFM, and scanning white light inter-

ferometry are limited due to the high surface slopes and relatively large surface area

requirements to map these spheres. To address these needs, a method utilizing X-

ray scattering by the modifying existing theories for scattering from flat surfaces is

attempted. In particular, the goal is to create and experimentally validate a model

that circumvents the challenges of studying reflections from the interior and exterior

surfaces of cylindrical and spherical shells. Because the model calculates reflectivity

as a function of surface roughness it is necessary to obtain preliminary experimental

measurements to evaluate the model’s predictive value. The expected outcome of

the measurement using this beamline is a demonstration of differences in reflectiv-

ity for regions of different roughness on a spherical surface. Therefore, during this

beamtime, spheres made from SiC and Si, will be studied. These spheres have been

selectively polished to optical smoothness (e.g. > 5 nm RMS) on one side while the

other side is left rough from the manufacturer (∼ 100 nm RMS); and its surface has

been characterized using atomic force microscopy.

For each angular position, X-rays will scatter from the surface with their intensity

decreasing and take-off angle increasing as the radiation is incident upon the sphere
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Figure B.2: (a) Simplified diagram of the experimental method depicting only one
ray of the X-ray beam. The incident beam I will be incident upon the sphere and the
reflected ray R will arrive at the detector at a position h depending on the location of
incidence ( xi, yi ) and the sample to detector distance l. (b) By scanning vertically
with the detector, the intensity of the reflected X-rays can be mapped as a function of
height. The decay of the reflectivity is a function of the roughness of the surface. (c)
Experimental reflectivity data obtained at beamline 8.3.2 on a flat surface. Angular
resolution and positioning accuracy are major issues as well as low integration times
leading to noise floor at low angles.

at higher angles. A scan in the vertical direction will provide a map of the intensity of

the reflections as a function of height above the surface (denoted as h in Figure 1a).

The intensity of the reflected X-rays will provide information about the surface finish

of the sample surface. The use of beamline 7.3.3 will be crucial for this study

since its configuration for reflectivity measurements could potentially provide addi-

tional key information for the model under development. Also compared to previous

measurements using beamline 8.3.2, which produced measurements for flat sur-

faces [1], the limiting angular resolution and restricted sample to detector distance

can be alleviated at beamline 7.3.3 for the curved surface work. This is especially

important as measurement ranges are typically 2−3 deg with the first 0.5 deg having

the most signal and information.

Based on previous experience, allowing time for setup and alignment (typically 3 to

4 hours for a new experiment), it is possible to measure around regions of the sphere
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with small step sizes with 2 shifts at the beamline 7.3.3. The sphere is mounted

on a post that must be installed into the system and its central axis aligned to the

rotation axis. Once aligned, the measurement will require multiple steps to scan the

reflections at several positions around the sphere.

Principle investigator (PI), Dr. K. Aditya Mohan

Dr. Aditya Mohan is a Signal and Image Processing Engineer with the Computa-

tional Engineering Division at LLNL and the PI for an LDRD project investigating

high resolution inspection methods via X-ray phase contrast imaging and reflectom-

etry, which supports this proposed work. He completed his Ph.D. in electrical and

computer engineering from Purdue University. His expertise includes computational

imaging, inverse problems, and machine learning.

References (project team members’ names underlined)

1. J. A. Cole, J. A. Cuadra, R. M. Panas, and S. T. Smith, "The effect of longer-

range waviness on X-ray reflectivity measurements," Journal of Synchrotron

Radiation, vol. 28, 2021.

2. K. A. Mohan, R. M. Panas, and J. A. Cuadra. "SABER: A Systems Approach

to Blur Estimation and Reduction in X-ray Imaging." in IEEE Transactions on

Image Processing, vol. 29, pp. 7751-7764, 2020.
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APPENDIX C: MATLAB SCRIPTS AND FUNCTIONS

C.1 Figure 2.3 Multilayer Reflections

1 % ------------------------------------------------------ %

2 % Jacob Cole -- 7 January 2021 %

3 % MATLAB program generating Kiessig fringes from a %

4 % multilayer using the Parratt reflectivity model. %

5 % Adapted from "Elements of Modern X-Ray Physics" by Als %

6 % Nielson and Des Morrow. %

7 % -------------------------------------------------------%

8

9 clearvars

10 r0 = 2.82e-6; % Thompson scattering length [nm]

11 theta0 = 20e-6:20e -6:50000e-6; % incident angles [rad]

12 lambda = 0.12398; % radiation wavelength [nm]

13 Delta = [1 4]; % Ir and Si bilayer thickness [nm]

14 k = 2*pi/lambda; % [nm]

15 beta = [2.3386e-6 7.3544e-8];

16 mu = 2*k*beta; % absorption coefficient of Ir and Si

17 rho = [22560 2330]; % Ir and Si density [kg/m^3]

18

19 Q = 2*k*sin(theta0); % wavevector transfer [nm]

20 bl = rho*r0 + 1i*mu; % bilayer scattering vector

21 % multilayer scattering vector

22 ml = [bl bl bl bl bl bl bl bl bl bl 0.1e-20];

23 delta = lambda*lambda*real(ml)/(2*pi);

24 beta_ml = lambda /(4*pi)*imag(ml);
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25 % multilayer layer thickness

26 Delta_ml = [Delta Delta Delta Delta Delta...

27 Delta Delta Delta Delta Delta ];

28 N = length(ml);

29

30 % wavevector transfer for each layer

31 Q = reshape(Q,1,length(Q));

32 for ii = 1:N

33 Qj(ii ,:) = sqrt(Q.^2 - 8*k*k*delta(ii) +...

34 1i*8*k*k*beta_ml(ii));

35 end

36 Qj = [Q;Qj];

37

38 % reflectivity coeff

39 for ii = 1:N

40 r(ii ,:) = ((Qj(ii ,:)-Qj(ii+1,:))./...

41 (Qj(ii ,:)+Qj(ii+1,:)));

42 end

43

44 % first layer reflectivity

45 I = r(1,:);

46 if N > 1

47 R(1,:) = (r(N-1,:)+r(N,:).*exp(1i*Qj(N,:)*...

48 Delta_ml(N-1)))./(1+r(N-1,:).*r(N,:)....

49 *exp(1i*Qj(N,:)*Delta_ml(N-1)));

50 end

51
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52 % reflectivity from other layers

53 if N > 2

54 for ii=2:N-1

55 R(ii ,:) = (r(N-ii ,:)+R(ii -1,:).*...

56 exp(1i*Qj(N-ii+1,:)*Delta_ml(N-ii)))./...

57 (1+r(N-ii ,:).*R(ii -1,:).*...

58 exp(1i*Qj(N-ii+1,:)*Delta_ml(N-ii)));

59 end

60 end

61

62 % reflectivity intensity

63 if N == 1

64 I = r(1,:);

65 else

66 I = R(N-1,:);

67 end

68

69 I = abs(I).^2;

70 semilogy(theta0 *180/pi,I)

71 ylim ([1e-6 1.5])
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C.2 Figure 2.5 Reflectivity for Various Surface Roughness

1 clearvars

2 chi = pi/4; % incident radiation polarization

3 Energy_eV = 17479.34; % MoKa source [eV]

4 h_pc = 6.62607e-34; % Planks constant [J*s]

5 eV = 1.602176634e-19; % [J/eV]

6 c = 299792458; % velocity of light [m/s]

7 delta =2.3e-6; % real part of refractive index unit

decrement

8 beta =1.25e-8; % imaginary part of refractive index unit

decrement

9 sigma = 1e-9; % RMS roughness [m]

10 thetac = sqrt (2* delta);

11 thetastart = 0;

12 thetastop = 6* thetac;

13 N = 1000;

14

15 Energy_J = Energy_eV*eV; % incident radiation energy [

Joules]

16 frequencyLambda = Energy_J/h_pc; % incident radiation

frequency [Hz]

17 omegaL = 2*pi*frequencyLambda; % incident radiation

frequency [rad/s]

18 lambda = c/frequencyLambda; % incident radiation

wavelength (vacuum) [m]

19 k = 2*pi/lambda; % wave -number [1/m]
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20 n1 = 1 - delta + 1i*beta; % material refractive index (

complex)

21 theta0 = linspace(thetastart ,thetastop ,N); % incident

angle [rad]

22 theta1 = acos(cos(theta0)/n1); % refracted angle [rad] (

complex)

23 k0z = k*sin(theta0); % z component of the incident

radiation

24 % wave -vector [1/m]

25 k1z = k*sqrt(n1*n1 -cos(theta0).*cos(theta0)); % z

component of the

26 % transmitted radiation wave -vector [1/m] (complex)

27 Psi_01x = (k1z - n1*n1*k0z)./(n1*n1*k0z + k1z); % x

component

28 % of the reflection tensor

29 Psi_01y = (k0z - k1z)./( k0z + k1z); % y component of the

reflection

30 % tensor (compex)

31 f_sigma = @(sigma) exp(-2*k0z.*k1z*sigma*sigma);

32 f_sigma1 = f_sigma(sigma); % surface roughness

33 f_sigma2 = f_sigma (2* sigma); % surface roughness

34 f_sigma4 = f_sigma (4* sigma); % surface roughness

35

36 % reflectivity intensity no roughness

37 R = Psi_01x .*conj(Psi_01x)*sin(chi)*sin(chi) + ...

38 Psi_01y .*conj(Psi_01y)*cos(chi)*cos(chi);

39 T_fujii = 1 - R;
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40 % reflectivity intensity roughness

41 R_rough1 = f_sigma1 .*R;

42 R_rough2 = f_sigma2 .*R;

43 R_rough4 = f_sigma4 .*R;

44

45 figure (1);

46 clf

47 semilogy(theta0/thetac ,R,'k','DisplayName ','smooth ')

48 hold on

49 semilogy(theta0/thetac ,R_rough1 ,'.-k','MarkerIndices '

,1:20:N,...

50 'MarkerSize ',9,'DisplayName ','\sigma = 1 nm')

51 semilogy(theta0/thetac ,R_rough2 ,'o-k','MarkerIndices '

,1:20:N,...

52 'MarkerSize ',6,'DisplayName ','\sigma = 2 nm')

53 semilogy(theta0/thetac ,R_rough4 ,'*-k','MarkerIndices '

,1:20:N,'DisplayName ','\sigma = 4 nm')

54 hold off

55 legend show

56 ylim ([1e-4 1.1])
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C.3 Figure 2.6 Comparison of Roughness Models

1 clearvars

2 chi = pi/4; % incident radiation polarization

3 Energy_eV = 17479.34; % MoKa source [eV]

4 h_pc = 6.62607e-34; % Planks constant [J*s]

5 eV = 1.602176634e-19; % [J/eV]

6 c = 299792458; % velocity of light [m/s]

7 delta =2.3e-6; % real part of refractive index unit

decrement

8 beta =1.25e-8; % imaginary part of refractive index unit

decrement

9 sigma = 4e-9; % RMS roughness [m]

10 thetac = sqrt (2* delta);

11 thetastart = 0;

12 thetastop = 6* thetac;

13 N = 100000;

14

15 Energy_J = Energy_eV*eV; % incident radiation energy [

Joules]

16 frequencyLambda = Energy_J/h_pc; % incident radiation

frequency [Hz]

17 omegaL = 2*pi*frequencyLambda; % incident radiation

frequency [rad/s]

18 lambda = c/frequencyLambda; % incident radiation

wavelength (vacuum) [m]

19 k = 2*pi/lambda; % wave -number [1/m]
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20 n1 = 1 - delta + 1i*beta; % material refractive index (

complex)

21 theta0 = linspace(thetastart ,thetastop ,N); % incident

angle [rad]

22 theta1 = acos(cos(theta0)/n1); % refracted angle [rad] (

complex)

23 k0z = k*sin(theta0); % z component of the incident

radiation

24 % wave -vector [1/m]

25 k1z = k*sqrt(n1*conj(n1)-cos(theta0).*cos(theta0)); % z

component of the

26 % transmitted radiation wave -vector [1/m] (complex)

27 Psi_01x = (k1z - n1*n1*k0z)./(n1*n1*k0z + k1z); % x

component

28 % of the reflection tensor

29 Psi_01y = (k0z - k1z)./( k0z + k1z); % y component of the

reflection

30 % tensor (compex)

31 Psi_01z = -Psi_01x; % z component of the reflection tensor

32

33 Phi_01x = (2*k1z)./(n1*conj(n1)*k0z + k1z); % x component

of the refraction

34 % tensor

35 Phi_01y = (2*k0z)./(k0z + k1z); % y component of the

refraction

36 % tensor (compex)
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37 Phi_01z = (2*k0z)./(n1*conj(n1)*k0z + k1z); % z component

of the refraction

38

39 A0dash = [-Psi_01x*sin(chi).*sin(theta0)

40 Psi_01y*cos(chi)

41 Psi_01z*sin(chi).*cos(theta0)];

42 A1 = [-Phi_01x*sin(chi).*sin(theta0)

43 Phi_01y*cos(chi)

44 Phi_01z*sin(chi).*cos(theta0)];

45 A1 = A1.*sqrt(real(k1z)./k0z);

46

47 f_NC = @(sigma) exp(-2*k0z.*k1z*sigma*sigma);

48 f_DW = @(sigma) exp(-2*k0z.*k0z*sigma*sigma);

49 f_DWBA = @(sigma) exp(1-2*k0z.*k0z*sigma*sigma);

50 f_Sinha = @(sigma) exp(-4*k*k*sin(theta0).*sin(theta1)*

sigma*sigma);

51 A1_sigma = @(sigma) A1.*exp((k0z -k1z).*sigma*sigma /2);

52

53 R = dot(A0dash ,A0dash);

54 R_NC = R.*f_NC(sigma);

55 R_DW = R.*f_DW(sigma);

56 R_DWBA = R.* f_DWBA(sigma);

57 R_Sinha = R.* f_Sinha(sigma);

58

59 figure (1);clf

60 semilogy(theta0/thetac ,R_NC ,'k','linewidth ',1,'DisplayName

','NC')
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61 hold on

62 semilogy(theta0/thetac ,R_DW ,'.-k','linewidth ',1,...

63 'MarkerIndices ' ,1:1000:N,'MarkerSize ',9,'DisplayName ',

'DW')

64 semilogy(theta0/thetac ,R_DWBA ,'o-k','linewidth ',1,...

65 'MarkerIndices ' ,1:1000:N,'MarkerSize ',6,'DisplayName ',

'DWBA')

66 semilogy(theta0/thetac ,R_Sinha ,'*-k','linewidth ',1,...

67 'MarkerIndices ' ,1:1000:N,'DisplayName ','Sinha')

68 hold off

69 legend show

70 ylim ([1e-4 10])
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C.4 Figure 3.2 Comparison of Waviness Model with Traditional Model

1 % Effect of surface mosaic on the measured intensity ...

2 % Jacob Cole

3

4 clearvars

5 energies = [14];

6 for ienergy = 1: length(energies)

7 h = 4.136e-15; % planck constant [eV*s]

8 c = 3.000e+08; % speed of light [m/s]

9 d = @(E) 556.25*E^( -2.01); % delta of BK7

10 ac = sqrt (2*d(energies(ienergy)*1000)); % critical

angle [rad]

11

12

13 sigma = 2E-9; % RMS surface roughness [m]

14 sigmaL = 20E-9; % RMS surface waviness [m]

15 w0 = 1/(15e-6); % spectral density filter cutoff

frequency [m^-1]

16

17 a_start = 0; % starting incident angle [deg]

18 a_stop = 0.5; % ending incident angle [deg]

19 N_a = 1000; % number of incident angle points to

calculate

20

21 alpha = linspace(a_start*pi/180, a_stop*pi/180, N_a);

% vector of incident angles [rad]
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22 lambda = h*c/( energies(ienergy)*1000); % source

wavelength [m]

23 S0 = sigmaL*sigmaL /(pi*w0); % initial spectral density

24 m2 = 0.429* S0*w0*w0*w0; % mean square surfa ce slope

25

26 tol = 1e-9;

27 lb = -3*sqrt(m2); % lower integration bound

28 ub = -lb; % upper integration bound

29

30 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

31 % R(alpha) returns the Bahr reflectivity amplitude for

a given incident

32 % angle , alpha. Use R(alpha)*conj(R(alpha)) to return

the reflectivity

33 % intensity.

34

35 ap = @(a) acos(cos(a)./cos(ac)); % refracted angle [

rad]

36 qz = @(a) 2.*pi.*sin(a)./ lambda; % wave -vector

transform (incident)

37 qzt = @(a) 2.*pi.*sin(ap(a))./ lambda; % wave -vector

transform (inside)

38

39 R = @(a) sinh((pi./2) .^1.5 .* sigma .* (qz(a) - qzt(a)

))./...

40 sinh((pi./2) .^1.5 .* sigma .* (qz(a) + qzt(a)

));
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41

42 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

43 % P(zeta) returns the probability density given a mean

slope , zeta.

44

45 P = @(zeta) exp(-zeta.*zeta ./2./m2)./sqrt (2.*pi.*m2);

46

47 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

48

49 Q = @(a,zeta) R(a + zeta).*conj(R(a + zeta)).*P(zeta);

50 I = @(a) quad (@( zeta) Q(a,zeta),0,ub ,tol);

51

52 for i = 1:N_a

53

54 r_bahr = R(alpha(i));

55 R_bahr(i) = r_bahr*conj(r_bahr);

56 R_wav(i) = 2*I(alpha(i));

57

58 end

59 R_wav = R_wav/max(R_wav);

60 alphadeg = alpha .*180/ pi;

61 figure

62 semilogy(alphadeg ,R_wav ,'linewidth ',2,'displayname ','

Equation 13')

63 hold on

64 semilogy(alphadeg ,R_bahr ,'linewidth ',2,'displayname ','

Equation 9')
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65 legend show

66 ylabel('Intensity ')

67 xlabel('Incident Angle , \alpha [deg]')

68 ylim ([0 1.5])

69 savefilename = strcat('wavinessTheory ',num2str(

energies(ienergy)),'keV.mat');

70 save(savefilename ,'alphadeg ','R_wav');

71 end
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C.5 Figure 3.4 Profilometer Measurement Data Decomposition

1 clearvars

2 % load in data from data files

3 datain = dlmread('12 _18_2019_back_morph5.txt',' ' ,59,2);

4 hsf_range = [1e-6 16e-3]; % range of roughness spatial

wavelengths [mm]

5 msf_range = [16e-3 4]; % range of waviness spatial

wavelengths [mm]

6

7

8 % split data into x and height

9 xdata = datain (1+221:end -221 ,1); % x data [mm]

10 xdata = xdata - xdata (1); % shift x data to zero [mm]

11 hdata = datain (1+221:end -221 ,3); % height data [mm]

12

13 hdata_form_removed = dt(xdata ,hdata ,' ' ,[0 50 500 500]); %

remove form [mm]

14 [h_rough ,h_wav] = freq_dom_filt(xdata , hdata_form_removed ,

hsf_range ,msf_range); % frequency filter heights

15

16 Rq = sqrt(sum(h_rough .^2)/length(xdata)); % RMS Roughness

[mm]

17 Wq = sqrt(sum(h_wav .^2)/length(xdata)); % RMS Waviness [

mm]

18

19 fprintf('Rq = %0.3f nm \n',Rq*1e6)

20 fprintf('Wq = %0.3f nm \n',Wq*1e6)
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21

22 figure (1);

23 subplot (211)

24 plot(xdata ,h_rough *1e6,'k','displayname ','roughness ');

25 xlabel('x, mm');ylabel('height , nm')

26 title('roughness , \omega < 1/16 \mu{}m^{-1}')

27 ylim ([-30 30])

28 subplot (212)

29 plot(xdata ,h_wav*1e6,'k','displayname ','waviness ')

30 xlabel('x, mm');ylabel('height , nm')

31 title('waviness , 1/4 mm^{-1} < \omega > 1/16 \mu{}m^{-1}')

32

33

34

35

36 function [hsf_height ,msf_height] = freq_dom_filt(xdata ,

hdata ,hsf_range ,msf_range)

37

38 dx = xdata (2)-xdata (1);

39 num_points = length(xdata);

40 hf = fft(hdata);

41 lambda = ((1/dx)*(0: floor(num_points /2))/num_points).^-1;

42

43 % roughness exraction

44 Sf = zeros(size(hf ,1) ,1);

45 k = find(lambda >= hsf_range (1) & lambda <= hsf_range (2));

46 Sf(k) = 1;
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47 hsf_heightf = hf.*Sf;

48 hsf_height = real(ifft(hsf_heightf));

49

50

51 % waviness exraction

52 Sf = zeros(size(hf ,1) ,1);

53 k = find(lambda >= msf_range (1) & lambda <= msf_range (2));

54 Sf(k) = 1;

55 msf_heightf = hf.*Sf;

56 msf_height = real(ifft(msf_heightf));

57 end

58

59 function dt_hdata = dt(xdata ,hdata ,info ,outerposition)

60

61 % detrend data

62 polynomial_order = 4;

63 [p,~,mu] = polyfit(xdata ,hdata ,polynomial_order);

64 f_y = polyval(p,xdata ,[],mu);

65 dt_hdata = hdata - f_y;

66

67 end
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C.6 Figure 3.6 Fizeau Measurement Data Decomposition

1 clearvars

2 hsf_range = [1e-6 16e-3]; % range of roughness spatial

wavelengths [mm]

3 msf_range = [16e-3 4]; % range of waveiness spatial

wavelengths [mm]

4 filename = 's10_back_mrfprocessed_1_dec6_pistontiltremoved

.datx';

5

6 % surface data in fringes

7 surface = h5read(filename ,'/Data/Surface /{AE3FB081 -FD1A

-4740-ABE7 -7383615 C2442}');

8 % intensity map

9 intensity = h5read(filename ,'/Data/Intensity /{E7567CF2 -8

B6E -4023-AD80 -0 C5BE0A9398E}');

10 %% Measurement info

11 % number of averages

12 phase_averages = h5readatt(filename ,'/Attributes /{A478AA13

-3F59 -4355 -8598 - A411B75371D2}','Data Context.Data

Attributes.Phase Averages ');

13 % wavelength

14 wavelength = h5readatt(filename ,'/Data/Surface /{AE3FB081 -

FD1A -4740-ABE7 -7383615 C2442}','Wavelength ');

15 % from wavelength to fringes

16 int_scale_factor = h5readatt(filename ,'/Data/Surface /{

AE3FB081 -FD1A -4740-ABE7 -7383615 C2442}','Interferometric

Scale Factor ');
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17 %% trim and add NaN

18 [n,m] = size(surface);

19 for i = 1:n

20 for j = 1:m

21 if surface(i,j) > 1000

22 surface(i,j) = NaN;

23 else

24 surface(i,j) = surface(i,j);

25 end

26 end

27 end

28 %% convert fringes to mm

29 height = wavelength*int_scale_factor*surface;

30

31 %% change to nm from m

32 height = height * 1e9;

33

34 %% select data along a trace

35 trace = height (: ,500);

36 trace_start = find(~isnan(trace) ,1);

37 trace_end = find(~ isnan(trace),1,'last');

38 trace = trace(trace_start:trace_end);

39 trace = trace -mean(trace);

40 xdata = trace_start:trace_end;

41 xdata = xdata /10;

42

43 %% detrend trace
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44 trace_dt = dt(xdata ,trace ',' ' ,[0 50 500 500]);

45 [h_rough ,h_wav] = freq_dom_filt(xdata ,trace_dt ',hsf_range ,

msf_range);

46 Rq = sqrt(sum(h_rough .^2)/length(xdata)); % [mm]

47 Wq = sqrt(sum(h_wav .^2)/length(xdata)); % [mm]

48

49 fprintf('Rq = %0.3f nm \n',Rq)

50 fprintf('Wq = %0.3f nm \n',Wq)

51

52 figure (1);clf

53 subplot (211)

54 plot(xdata -xdata (1),h_rough ,'displayname ','roughness ');

55 xlabel('x, mm');ylabel('height , nm')

56 title('roughness , \omega < 16 \mu{}m')

57 ylim ([-30 30])

58 subplot (212)

59 plot(xdata -xdata (1),h_wav ,'displayname ','waviness ')

60 xlabel('x, mm');ylabel('height , nm')

61 title('waviness , 4 mm < \omega > 16 \mu{}m')

62

63 function dt_hdata = dt(xdata ,hdata ,info ,outerposition)

64

65 % detrend data

66 polynomial_order = 4;

67 [p,~,mu] = polyfit(xdata ,hdata ,polynomial_order);

68 f_y = polyval(p,xdata ,[],mu);

69 dt_hdata = hdata - f_y;
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70

71 end

72

73 function [hsf_height ,msf_height] = freq_dom_filt(xdata ,

hdata ,hsf_range ,msf_range)

74

75 dx = xdata (2)-xdata (1);

76 num_points = length(xdata);

77 hf = fft(hdata);

78 lambda = ((1/dx)*(0: floor(num_points /2))/num_points).^-1;

79

80 % roughness exraction

81 Sf = zeros(size(hf ,1) ,1);

82 k = find(lambda >= hsf_range (1) & lambda <= hsf_range (2));

83 Sf(k) = 1;

84 hsf_heightf = hf.*Sf;

85 hsf_height = real(ifft(hsf_heightf));

86

87

88 % waviness exraction

89 Sf = zeros(size(hf ,1) ,1);

90 k = find(lambda >= msf_range (1) & lambda <= msf_range (2));

91 Sf(k) = 1;

92 msf_heightf = hf.*Sf;

93 msf_height = real(ifft(msf_heightf));

94

95 end
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C.7 Figure 4.21 Externally Reflected and Transmitted Intensity

1 %% Frontmatter

2 clearvars

3

4 h = double (4.135667e-15); % planck constant [eV*s]

5 c = double (299792458); % speed of light [m/s]

6

7 %% System Parameters and Material Properties

8 chi = single(pi/4); % incident radiation

polarization

9 E = double (17400.00); % source energy [eV]

10

11 delta1 = double (1.6021E-06); % refractive index unit

decrement

12 % of silicon at 17.4 keV

13 beta1 = double (8.0730E-09); % absorption part of

refractive index

14 % of silicon at 17.4 eV

15

16 n0 = 1; % external index of refraction

17 n1 = 1 - delta1 - 1i*beta1; % internal index of

refraction

18 n2 = 1; % inner core index of

refraction

19 R_outer = double (1.5); % object radius [m]

20 ODD = double (0.200); % object -detector -distance [m]

21 beamWidth = 0.001;
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22 sigma = double (1e-9); % RMS surface roughness [m]

23

24 %% Program Parameters

25 thetaStart = 0;

26 thetaStop = 3*sqrt (2* delta1);

27 nDataPoints = 1e5;

28 theta0 = linspace(thetaStart ,thetaStop ,nDataPoints);

29

30 onesVec = ones(1, nDataPoints);

31 zerosVec = zeros(1, nDataPoints);

32

33

34 %% Geometry

35 z0 = R_outer*cos(theta0);

36 dz = zeros(1, nDataPoints);

37 dz(2:end) = abs(z0(2: end) - z0(1:end -1));

38

39 theta1 = real(acos(n0/n1*cos(theta0)));

40 pSource = R_outer*[-onesVec; zerosVec; cos(theta0)];

41 pIn = R_outer*[-sin(theta0); zerosVec; cos(theta0)];

42 r0 = pIn - pSource;

43 zd_a = pIn(3,:) + (-pIn(1,:) + ODD*onesVec).*tan(2* theta0)

;

44 pd_a = [ODD*onesVec; zerosVec; zd_a];

45 r0dash = pd_a - pIn;

46 r1 = 2* R_outer*sin(theta1).*...

47 [cos(theta0 -theta1); zerosVec; sin(theta0 -theta1)];



140

48 pOut_b = pIn + r1;

49 thetaOut_b = 2* theta0 - 2* theta1;

50 zd_b = pOut_b (3,:) + (ODD*onesVec -pOut_b (1,:)).*tan(

thetaOut_b);

51 pd_b = [ODD*onesVec; zerosVec; zd_b];

52 r2 = pd_b - pOut_b;

53

54 %% Field Calculations

55 a0 = zeros(1, nDataPoints);

56 a0(R_outer -z0 <= beamWidth) = sqrt (4.5*dz(R_outer -z0 <=

beamWidth)/beamWidth);

57 A0 = a0.*[-sin(chi)*sin(2* theta0)

58 cos(chi)*onesVec

59 sin(chi)*cos(2* theta0)];

60

61 k = 2*pi*E/h/c;

62 k0 = k*[ onesVec; zerosVec; zerosVec ];

63 k0dash = k*[cos(2* theta0); zerosVec; sin(2* theta0)];

64 k1 = k*n1/n0*[cos(theta0 -theta1); zerosVec; sin(theta0 -

theta1)];

65 k2 = k*[cos(2* theta0 -2* theta1); zerosVec; sin(2* theta0 -2*

theta1)];

66

67 Psi01x = (n0*sin(theta1)-n1*sin(theta0))./(n0*sin(theta1)+

n1*sin(theta0));

68 Psi01y = (n0*sin(theta0)-n1*sin(theta1))./(n0*sin(theta0)+

n1*sin(theta1));
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69 Psi01 = [Psi01x; Psi01y; -Psi01x ];

70

71 E0 = A0.*exp(1i*dot(k0 ,r0));

72 I0 = dot(E0,E0);

73

74 f_sigma = exp(-4*k*k.*sin(theta0).*sin(theta1)*sigma*sigma

);

75 E0dash = Psi01.*E0.*exp(1i*dot(k0dash ,r0dash)).*sqrt(

f_sigma);

76 I0dash = dot(E0dash ,E0dash);

77

78 Phi01x = 2*n0*sin(theta1)./(n0*sin(theta1)+n1*sin(theta0))

;

79 Phi01y = 2*n0*sin(theta0)./(n0*sin(theta0)+n1*sin(theta1))

;

80 Phi01z = 2*(n0/n1)*sin(theta0)./((n1/n0)*sin(theta0)+sin(

theta1));

81 Phi01 = [Phi01x; Phi01y; Phi01z ];

82

83 mu = k*beta1;

84 E1 = Phi01 .*E0.*exp(1i*dot(k1 ,r1)).*exp(-mu*R_outer*sin(

theta1));

85

86 Phi12x = 2*(n1/n0)*sin(theta0)./(sin(theta1)+(n1/n0)*sin(

theta0));

87 Phi12y = 2*(n1/n0)*sin(theta1)./((n1/n0)*sin(theta1)+sin(

theta0));
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88 Phi12z = 2*(n1/n0)^2*sin(theta1)./(sin(theta1)+(n1/n0)*sin

(theta0));

89 Phi12 = [Phi12x; Phi12y; Phi12z ];

90

91 E2 = Phi12 .*E1.*exp(1i*dot(k2 ,r2));

92 I2 = dot(E2,E2);

93

94 %% discretize data

95 edges = (0:0.002:2) /1000 + R_outer;

96

97 X = discretize(zd_a ,edges);

98 Y = discretize(zd_b ,edges);

99

100 Itot_a = zeros(1,length(edges));

101 Itot_b = Itot_a;

102 for ii = 1: length(edges)

103

104 Itot_a(ii) = (sum(I0dash(X==ii) ,2))*( length(edges) -1);

105 Itot_b(ii) = (sum(I2(Y==ii) ,2))*( length(edges) -1);

106

107 end

108

109 %% plotting

110

111 figure (1);clf

112 plot((edges -R_outer)*1000 ,Itot_a ,'-k','linewidth ',2,...

113 'displayname ','Reflected Intensity , I_0''')



143

114 set(gca , 'YScale ', 'log','FontSize ' ,18)

115 xlabel('Detector Height , mm');ylabel('Normalized Intensity

')

116 xlim ([0 2]);ylim ([1e-5 1e-1])

117 legend show

118

119 figure (1);hold on

120 plot((edges -R_outer)*1000 ,Itot_b ,'--k','linewidth ',2,...

121 'displayname ','Transmitted Intensity , I_2')

122 figure (1);hold off
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C.8 Figure 4.22 External Roughness Comparison

1 %% Frontmatter

2 clearvars

3

4 h = double (4.135667e-15); % planck constant [eV*s]

5 c = double (299792458); % speed of light [m/s]

6

7 %% System Parameters and Material Properties

8 chi = single(pi/4); % incident radiation

polarization

9 E = double (17400.00); % source energy [eV]

10

11 delta1 = double (1.6021E-06); % refractive index unit

decrement

12 % of silicon at 17.4 keV

13 beta1 = double (8.0730E-09); % absorption part of

refractive index

14 % of silicon at 17.4 eV

15

16 n0 = 1; % external index of refraction

17 n1 = 1 - delta1 - 1i*beta1; % internal index of

refraction

18 n2 = 1; % inner core index of

refraction

19 R_outer = double (1.5); % object radius [m]

20 ODD = double (0.200); % object -detector -distance [m]

21 beamWidth = 0.001;
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22 sigma = [0 2 4 10]*1e-9; % RMS surface roughness [m]

23

24 %% Program Parameters

25 thetaStart = 0;

26 thetaStop = 3*sqrt (2* delta1);

27 nDataPoints = 1e5;

28 theta0 = linspace(thetaStart ,thetaStop ,nDataPoints);

29

30 onesVec = ones(1, nDataPoints);

31 zerosVec = zeros(1, nDataPoints);

32

33

34 %% Geometry

35 z0 = R_outer*cos(theta0);

36 dz = zeros(1, nDataPoints);

37 dz(2:end) = abs(z0(2: end) - z0(1:end -1));

38

39 theta1 = real(acos(n0/n1*cos(theta0)));

40 pSource = R_outer*[-onesVec; zerosVec; cos(theta0)];

41 pIn = R_outer*[-sin(theta0); zerosVec; cos(theta0)];

42 r0 = pIn - pSource;

43 zd_a = pIn(3,:) + (-pIn(1,:) + ODD*onesVec).*tan(2* theta0)

;

44 pd_a = [ODD*onesVec; zerosVec; zd_a];

45 r0dash = pd_a - pIn;

46 r1 = 2* R_outer*sin(theta1).*...

47 [cos(theta0 -theta1); zerosVec; sin(theta0 -theta1)];
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48 pOut_b = pIn + r1;

49 thetaOut_b = 2* theta0 - 2* theta1;

50 zd_b = pOut_b (3,:) + (ODD*onesVec -pOut_b (1,:)).*tan(

thetaOut_b);

51 pd_b = [ODD*onesVec; zerosVec; zd_b];

52 r2 = pd_b - pOut_b;

53

54 %% Field Calculations

55 a0 = zeros(1, nDataPoints);

56 a0(R_outer -z0 <= beamWidth) = sqrt (4.5*dz(R_outer -z0 <=

beamWidth)/beamWidth);

57 A0 = a0.*[-sin(chi)*sin(2* theta0)

58 cos(chi)*onesVec

59 sin(chi)*cos(2* theta0)];

60

61 k = 2*pi*E/h/c;

62 k0 = k*[ onesVec; zerosVec; zerosVec ];

63 k0dash = k*[cos(2* theta0); zerosVec; sin(2* theta0)];

64 k1 = k*n1/n0*[cos(theta0 -theta1); zerosVec; sin(theta0 -

theta1)];

65 k2 = k*[cos(2* theta0 -2* theta1); zerosVec; sin(2* theta0 -2*

theta1)];

66

67 Psi01x = (n0*sin(theta1)-n1*sin(theta0))./(n0*sin(theta1)+

n1*sin(theta0));

68 Psi01y = (n0*sin(theta0)-n1*sin(theta1))./(n0*sin(theta0)+

n1*sin(theta1));
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69 Psi01 = [Psi01x; Psi01y; -Psi01x ];

70

71 E0 = A0.*exp(1i*dot(k0 ,r0));

72 I0 = dot(E0,E0);

73

74 figure (1);clf

75 lineType = ["-k" "-.k" ":k" "--k"];

76 lineName = [" smooth" "\sigma = 2 nm" "\sigma = 4 nm" "\

sigma = 10 nm"];

77

78 Phi01x = 2*n0*sin(theta1)./(n0*sin(theta1)+n1*sin(theta0))

;

79 Phi01y = 2*n0*sin(theta0)./(n0*sin(theta0)+n1*sin(theta1))

;

80 Phi01z = 2*(n0/n1)*sin(theta0)./((n1/n0)*sin(theta0)+sin(

theta1));

81 Phi01 = [Phi01x; Phi01y; Phi01z ];

82

83 mu = k*beta1;

84 E1 = Phi01 .*E0.*exp(1i*dot(k1 ,r1)).*exp(-mu*R_outer*sin(

theta1));

85

86 Phi12x = 2*(n1/n0)*sin(theta0)./(sin(theta1)+(n1/n0)*sin(

theta0));

87 Phi12y = 2*(n1/n0)*sin(theta1)./((n1/n0)*sin(theta1)+sin(

theta0));
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88 Phi12z = 2*(n1/n0)^2*sin(theta1)./(sin(theta1)+(n1/n0)*sin

(theta0));

89 Phi12 = [Phi12x; Phi12y; Phi12z ];

90

91 E2 = Phi12 .*E1.*exp(1i*dot(k2 ,r2));

92 I2 = dot(E2,E2);

93

94 for ii = 1: length(sigma)

95

96 f_sigma = exp(-4*k*k.*sin(theta0).*sin(theta1)*sigma(

ii)*sigma(ii));

97 E0dash = Psi01.*E0.*exp(1i*dot(k0dash ,r0dash)).*sqrt(

f_sigma);

98 I0dash = dot(E0dash ,E0dash);

99

100 %% discretize data

101 edges = (0:0.002:2) /1000 + R_outer;

102

103 X = discretize(zd_a ,edges);

104 Y = discretize(zd_b ,edges);

105

106 Itot = zeros(1,length(edges));

107 for jj = 1: length(edges)

108

109 Itot(jj) = (sum(I0dash(X==jj) ,2) + sum(I2(Y==jj)

,2))*( length(edges) -1);

110
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111 end

112

113 %% plotting

114

115 figure (1);hold on

116 plot((edges -R_outer)*1000 ,Itot ,lineType(ii),'linewidth

',2,...

117 'displayname ',lineName(ii))

118 set(gca , 'YScale ', 'log','FontSize ' ,18)

119 xlabel('Detector Height , mm');ylabel('Normalized

Intensity ')

120 xlim ([0 2]);ylim ([1e-5 1e-1])

121 legend show

122 drawnow

123

124 end

125 figure (1);hold off
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C.9 Figure 4.23 External Radius Comparison

1 %% Frontmatter

2 clearvars

3

4 h = double (4.135667e-15); % planck constant [eV*s]

5 c = double (299792458); % speed of light [m/s]

6

7 %% System Parameters and Material Properties

8 chi = single(pi/4); % incident radiation

polarization

9 E = double (17400.00); % source energy [eV]

10

11 delta1 = double (1.6021E-06); % refractive index unit

decrement

12 % of silicon at 17.4 keV

13 beta1 = double (8.0730E-09); % absorption part of

refractive index

14 % of silicon at 17.4 eV

15

16 n0 = 1; % external index of refraction

17 n1 = 1 - delta1 - 1i*beta1; % internal index of

refraction

18 n2 = 1; % inner core index of

refraction

19 R_outer = [0.5 1 2 4]; % object radius [m]

20 ODD = double (0.200); % object -detector -distance [m]

21 beamWidth = 0.001;
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22 sigma = 1e-9; % RMS surface roughness [m]

23

24 %% Program Parameters

25 thetaStart = 0;

26 thetaStop = 3*sqrt (2* delta1);

27 nDataPoints = 1e5;

28 theta0 = linspace(thetaStart ,thetaStop ,nDataPoints);

29

30 onesVec = ones(1, nDataPoints);

31 zerosVec = zeros(1, nDataPoints);

32 figure (1);clf

33 lineType = ["-k" "-.k" ":k" "--k"];

34 lineName = [" Radius: 0.5 m" "Radius: 1 m" "Radius: 2 m" "

Radius: 4 m"];

35

36 for ii = 1: length(R_outer)

37 %% Geometry

38 z0 = R_outer(ii)*cos(theta0);

39 dz = zeros(1, nDataPoints);

40 dz(2:end) = abs(z0(2: end) - z0(1:end -1));

41

42 theta1 = real(acos(n0/n1*cos(theta0)));

43 pSource = R_outer(ii)*[-onesVec; zerosVec; cos(theta0)

];

44 pIn = R_outer(ii)*[-sin(theta0); zerosVec; cos(theta0)

];

45 r0 = pIn - pSource;
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46 zd_a = pIn(3,:) + (-pIn(1,:) + ODD*onesVec).*tan(2*

theta0);

47 pd_a = [ODD*onesVec; zerosVec; zd_a];

48 r0dash = pd_a - pIn;

49 r1 = 2* R_outer(ii)*sin(theta1).*...

50 [cos(theta0 -theta1); zerosVec; sin(theta0 -theta1)

];

51 pOut_b = pIn + r1;

52 thetaOut_b = 2* theta0 - 2* theta1;

53 zd_b = pOut_b (3,:) + (ODD*onesVec -pOut_b (1,:)).*tan(

thetaOut_b);

54 pd_b = [ODD*onesVec; zerosVec; zd_b];

55 r2 = pd_b - pOut_b;

56

57 %% Field Calculations

58 a0 = zeros(1, nDataPoints);

59 a0(R_outer(ii)-z0 <= beamWidth) = sqrt (4.5* dz(R_outer(

ii)-z0 <= beamWidth)/beamWidth);

60 A0 = a0.*[-sin(chi)*sin(2* theta0)

61 cos(chi)*onesVec

62 sin(chi)*cos(2* theta0)];

63

64 k = 2*pi*E/h/c;

65 k0 = k*[ onesVec; zerosVec; zerosVec ];

66 k0dash = k*[cos (2* theta0); zerosVec; sin(2* theta0)];

67 k1 = k*n1/n0*[cos(theta0 -theta1); zerosVec; sin(theta0

-theta1)];
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68 k2 = k*[cos(2* theta0 -2* theta1); zerosVec; sin(2* theta0

-2* theta1)];

69

70 Psi01x = (n0*sin(theta1)-n1*sin(theta0))./(n0*sin(

theta1)+n1*sin(theta0));

71 Psi01y = (n0*sin(theta0)-n1*sin(theta1))./(n0*sin(

theta0)+n1*sin(theta1));

72 Psi01 = [Psi01x; Psi01y; -Psi01x ];

73

74 E0 = A0.*exp(1i*dot(k0 ,r0));

75 I0 = dot(E0,E0);

76

77 Phi01x = 2*n0*sin(theta1)./(n0*sin(theta1)+n1*sin(

theta0));

78 Phi01y = 2*n0*sin(theta0)./(n0*sin(theta0)+n1*sin(

theta1));

79 Phi01z = 2*(n0/n1)*sin(theta0)./((n1/n0)*sin(theta0)+

sin(theta1));

80 Phi01 = [Phi01x; Phi01y; Phi01z ];

81

82 mu = k*beta1;

83 E1 = Phi01 .*E0.*exp(1i*dot(k1 ,r1)).*exp(-mu*R_outer(ii

)*sin(theta1));

84

85 Phi12x = 2*(n1/n0)*sin(theta0)./(sin(theta1)+(n1/n0)*

sin(theta0));
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86 Phi12y = 2*(n1/n0)*sin(theta1)./((n1/n0)*sin(theta1)+

sin(theta0));

87 Phi12z = 2*(n1/n0)^2*sin(theta1)./(sin(theta1)+(n1/n0)

*sin(theta0));

88 Phi12 = [Phi12x; Phi12y; Phi12z ];

89

90 E2 = Phi12 .*E1.*exp(1i*dot(k2 ,r2));

91 I2 = dot(E2,E2);

92

93 f_sigma = exp(-4*k*k.*sin(theta0).*sin(theta1)*sigma*

sigma);

94 E0dash = Psi01.*E0.*exp(1i*dot(k0dash ,r0dash)).*sqrt(

f_sigma);

95 I0dash = dot(E0dash ,E0dash);

96

97 %% discretize data

98 edges = (0:0.002:2) /1000 + R_outer(ii);

99

100 X = discretize(zd_a ,edges);

101 Y = discretize(zd_b ,edges);

102

103 Itot = zeros(1,length(edges));

104 for jj = 1: length(edges)

105

106 Itot(jj) = (sum(I0dash(X==jj) ,2) + sum(I2(Y==jj)

,2))*( length(edges) -1);

107



155

108 end

109

110 %% plotting

111

112 figure (1);hold on

113 plot((edges -R_outer(ii))*1000,Itot ,lineType(ii),'

linewidth ',2,...

114 'displayname ',lineName(ii))

115 set(gca , 'YScale ', 'log','FontSize ' ,18)

116 xlabel('Detector Height , mm');ylabel('Normalized

Intensity ')

117 xlim ([0 2]);ylim ([1e-5 1])

118 legend show

119 drawnow

120

121 end

122 figure (1);hold off
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C.10 Figure 4.24 External Energy Comparison

1 %% Frontmatter

2 clearvars

3

4 h = double (4.135667e-15); % planck constant [eV*s]

5 c = double (299792458); % speed of light [m/s]

6

7 %% System Parameters and Material Properties

8 chi = single(pi/4); % incident radiation

polarization

9 E = [8 10 12 17.4]*1000; % source energy [eV]

10

11 delta1 = double (1.6021E-06); % refractive index unit

decrement

12 % of silicon at 17.4 keV

13 beta1 = double (8.0730E-09); % absorption part of

refractive index

14 % of silicon at 17.4 eV

15

16 n0 = 1; % external index of refraction

17 n1 = 1 - delta1 - 1i*beta1; % internal index of

refraction

18 n2 = 1; % inner core index of

refraction

19 R_outer = 1.5; % object radius [m]

20 ODD = double (0.200); % object -detector -distance [m]

21 beamWidth = 0.001;
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22 sigma = 1e-9; % RMS surface roughness [m]

23

24 %% Program Parameters

25 thetaStart = 0;

26 thetaStop = 3*sqrt (2* delta1);

27 nDataPoints = 1e5;

28 theta0 = linspace(thetaStart ,thetaStop ,nDataPoints);

29

30 onesVec = ones(1, nDataPoints);

31 zerosVec = zeros(1, nDataPoints);

32 figure (1);clf

33 lineType = ["-k" "-.k" ":k" "--k"];

34 lineName = [" Energy: 8.0 keV" "Energy: 10.0 keV"...

35 "Energy: 12.0 keV" "Energy: 17.4 keV"];

36

37

38 %% Geometry

39 z0 = R_outer*cos(theta0);

40 dz = zeros(1, nDataPoints);

41 dz(2:end) = abs(z0(2: end) - z0(1:end -1));

42

43 theta1 = real(acos(n0/n1*cos(theta0)));

44 pSource = R_outer*[-onesVec; zerosVec; cos(theta0)];

45 pIn = R_outer*[-sin(theta0); zerosVec; cos(theta0)];

46 r0 = pIn - pSource;

47 zd_a = pIn(3,:) + (-pIn(1,:) + ODD*onesVec).*tan(2* theta0)

;
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48 pd_a = [ODD*onesVec; zerosVec; zd_a];

49 r0dash = pd_a - pIn;

50 r1 = 2* R_outer*sin(theta1).*...

51 [cos(theta0 -theta1); zerosVec; sin(theta0 -theta1)];

52 pOut_b = pIn + r1;

53 thetaOut_b = 2* theta0 - 2* theta1;

54 zd_b = pOut_b (3,:) + (ODD*onesVec -pOut_b (1,:)).*tan(

thetaOut_b);

55 pd_b = [ODD*onesVec; zerosVec; zd_b];

56 r2 = pd_b - pOut_b;

57

58 %% Field Calculations

59 a0 = zeros(1, nDataPoints);

60 a0(R_outer -z0 <= beamWidth) = sqrt (4.5*dz(R_outer -z0 <=

beamWidth)/beamWidth);

61 A0 = a0.*[-sin(chi)*sin(2* theta0)

62 cos(chi)*onesVec

63 sin(chi)*cos(2* theta0)];

64

65 for ii = 1: length(E)

66

67 k = 2*pi*E(ii)/h/c;

68 k0 = k*[ onesVec; zerosVec; zerosVec ];

69 k0dash = k*[cos (2* theta0); zerosVec; sin(2* theta0)];

70 k1 = k*n1/n0*[cos(theta0 -theta1); zerosVec; sin(theta0

-theta1)];
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71 k2 = k*[cos(2* theta0 -2* theta1); zerosVec; sin(2* theta0

-2* theta1)];

72

73 Psi01x = (n0*sin(theta1)-n1*sin(theta0))./(n0*sin(

theta1)+n1*sin(theta0));

74 Psi01y = (n0*sin(theta0)-n1*sin(theta1))./(n0*sin(

theta0)+n1*sin(theta1));

75 Psi01 = [Psi01x; Psi01y; -Psi01x ];

76

77 E0 = A0.*exp(1i*dot(k0 ,r0));

78 I0 = dot(E0,E0);

79

80 Phi01x = 2*n0*sin(theta1)./(n0*sin(theta1)+n1*sin(

theta0));

81 Phi01y = 2*n0*sin(theta0)./(n0*sin(theta0)+n1*sin(

theta1));

82 Phi01z = 2*(n0/n1)*sin(theta0)./((n1/n0)*sin(theta0)+

sin(theta1));

83 Phi01 = [Phi01x; Phi01y; Phi01z ];

84

85 mu = k*beta1;

86 E1 = Phi01 .*E0.*exp(1i*dot(k1 ,r1)).*exp(-mu*R_outer*

sin(theta1));

87

88 Phi12x = 2*(n1/n0)*sin(theta0)./(sin(theta1)+(n1/n0)*

sin(theta0));



160

89 Phi12y = 2*(n1/n0)*sin(theta1)./((n1/n0)*sin(theta1)+

sin(theta0));

90 Phi12z = 2*(n1/n0)^2*sin(theta1)./(sin(theta1)+(n1/n0)

*sin(theta0));

91 Phi12 = [Phi12x; Phi12y; Phi12z ];

92

93 E2 = Phi12 .*E1.*exp(1i*dot(k2 ,r2));

94 I2 = dot(E2,E2);

95

96 f_sigma = exp(-4*k*k.*sin(theta0).*sin(theta1)*sigma*

sigma);

97 E0dash = Psi01.*E0.*exp(1i*dot(k0dash ,r0dash)).*sqrt(

f_sigma);

98 I0dash = dot(E0dash ,E0dash);

99

100 %% discretize data

101 edges = (0:0.002:2) /1000 + R_outer;

102

103 X = discretize(zd_a ,edges);

104 Y = discretize(zd_b ,edges);

105

106 Itot = zeros(1,length(edges));

107 for jj = 1: length(edges)

108

109 Itot(jj) = (sum(I0dash(X==jj) ,2) + sum(I2(Y==jj)

,2))*( length(edges) -1);

110
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111 end

112

113 %% plotting

114

115 figure (1);hold on

116 plot((edges -R_outer)*1000 ,Itot ,lineType(ii),'linewidth

',2,...

117 'displayname ',lineName(ii))

118 set(gca , 'YScale ', 'log','FontSize ' ,18)

119 xlabel('Detector Height , mm');ylabel('Normalized

Intensity ')

120 xlim ([0 2]);ylim ([1e-5 1e-1])

121 legend show

122 drawnow

123

124 end

125 figure (1);hold off



162

C.11 Figure 4.28 Shell Thickness Comparison

1 %% Frontmatter

2 clearvars

3

4 h = double (4.135667e-15); % planck constant [eV*s]

5 c = double (299792458); % speed of light [m/s]

6

7 %% System Parameters and Material Properties

8 chi = single(pi/4); % incident radiation

polarization

9 E = 17400; % source energy [eV]

10

11 delta1 = double (1.6021E-06); % refractive index unit

decrement

12 % of silicon at 17.4 keV

13 beta1 = double (8.0730E-09); % absorption part of

refractive index

14 % of silicon at 17.4 eV

15

16 n0 = 1; % external index of refraction

17 n1 = 1 - delta1 - 1i*beta1; % internal index of

refraction

18 n2 = 1; % inner core index of

refraction

19 R_outer = double (1); % object radius [m]

20 shellThickness = [0 10 100 1000]*1e-9;

21 R_inner = R_outer - shellThickness;
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22 ODD = double (0.200); % object -detector -distance [m]

23 beamWidth = 0.001;

24 sigma = double (1e-9); % RMS surface roughness [m]

25 sigma2 = double (1e-9);

26

27 %% Program Parameters

28 thetaStart = 0;

29 thetaStop = 3*sqrt (2* delta1);

30 nDataPoints = 1e5;

31 theta0 = linspace(thetaStart ,thetaStop ,nDataPoints);

32 offset = [1 10 100 1000];

33

34 onesVec = ones(1, nDataPoints);

35 zerosVec = zeros(1, nDataPoints);

36 figure (1);clf

37 lineType = ["-k" "-.k" ":k" "--k"];

38 lineName = ["Shell Thickness: 0 nm" "Shell Thickness: 10

nm"...

39 "Shell Thickness: 100 nm" "Shell Thickness: 1000 nm"];

40

41 for ii = 1: length(R_inner)

42 %% Geometry

43 z0 = R_outer*cos(theta0);

44 dz = zeros(1, nDataPoints);

45 dz(2:end) = abs(z0(2: end) - z0(1:end -1));

46

47 theta1 = real(acos(n0/n1*cos(theta0)));
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48 theta_c = real(acos(n1/n2*R_outer/R_inner(ii)));

49 theta4 = real(acos(R_outer/R_inner(ii)*cos(theta1)));

50 theta5 = real(acos(n1/n0*cos(theta4)));

51 theta6 = real(acos(R_inner(ii)/R_outer*cos(theta4)));

52 theta7 = real(acos(n1/n0*cos(theta6)));

53 pSource = R_outer*[-onesVec; zerosVec; cos(theta0)];

54 pIn = R_outer*[-sin(theta0); zerosVec; cos(theta0)];

55 r0 = pIn - pSource;

56 zd_a = pIn(3,:) + (-pIn(1,:) + ODD*onesVec).*tan(2*

theta0);

57 pd_a = [ODD*onesVec; zerosVec; zd_a];

58 r0dash = pd_a - pIn;

59 r1 = 2* R_outer*sin(theta1).*...

60 [cos(theta0 -theta1); zerosVec; sin(theta0 -theta1)

];

61 pOut_b = pIn + r1;

62 thetaOut_b = 2* theta0 - 2* theta1;

63 zd_b = pOut_b (3,:) + (ODD*onesVec -pOut_b (1,:)).*tan(

thetaOut_b);

64 pd_b = [ODD*onesVec; zerosVec; zd_b];

65 r2 = pd_b - pOut_b;

66 r3 = R_inner(ii)*sin(theta1 -theta4)./cos(theta1).*...

67 [cos(theta0 -theta1); zerosVec; sin(theta0 -theta1)

];

68 r3dash = R_inner(ii)*sin(theta6 -theta4)./cos(theta6).*

...
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69 [cos(theta0 -theta1 +2* theta4); zerosVec; sin(theta0

-theta1 +2* theta4)];

70 thetaOut_c = theta0 -theta1 +2* theta4+theta7 -theta6;

71 pOut_c = pIn + r3 + r3dash;

72 zd_c = pOut_c (3,:)+(ODD -pOut_c (1,:)).*tan(thetaOut_c);

73 pd_c = [ODD*onesVec; zerosVec; zd_c];

74 r5 = pd_c - pOut_c;

75

76 %% Field Calculations

77 a0 = zeros(1, nDataPoints);

78 a0(R_outer -z0 <= beamWidth) = sqrt (4.5*dz(R_outer -z0

<= beamWidth)/beamWidth);

79 A0 = a0.*[-sin(chi)*sin(2* theta0)

80 cos(chi)*onesVec

81 sin(chi)*cos(2* theta0)];

82

83

84 k = 2*pi*E/h/c;

85 k0 = k*[ onesVec; zerosVec; zerosVec ];

86 k0dash = k*[cos (2* theta0); zerosVec; sin(2* theta0)];

87 k1 = k*n1/n0*[cos(theta0 -theta1); zerosVec; sin(theta0

-theta1)];

88 k2 = k*[cos(2* theta0 -2* theta1); zerosVec; sin(2* theta0

-2* theta1)];

89 k3dash = k*n1/n0*[cos(2* theta4); zerosVec; sin(2*

theta4)];

90 k5 = k*[cos(thetaOut_c); zerosVec; sin(thetaOut_c)];
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91

92 Psi01x = (n0*sin(theta1)-n1*sin(theta0))./(n0*sin(

theta1)+n1*sin(theta0));

93 Psi01y = (n0*sin(theta0)-n1*sin(theta1))./(n0*sin(

theta0)+n1*sin(theta1));

94 Psi01 = [Psi01x; Psi01y; -Psi01x ];

95

96 E0 = A0.*exp(1i*dot(k0 ,r0));

97 I0 = dot(E0,E0);

98

99 f_sigma = exp(-4*k*k.*sin(theta0).*sin(theta1)*sigma*

sigma);

100 E0dash = Psi01.*E0.*exp(1i*dot(k0dash ,r0dash)).*sqrt(

f_sigma);

101 I0dash = dot(E0dash ,E0dash);

102

103 Phi01x = 2*n0*sin(theta1)./(n0*sin(theta1)+n1*sin(

theta0));

104 Phi01y = 2*n0*sin(theta0)./(n0*sin(theta0)+n1*sin(

theta1));

105 Phi01z = 2*(n0/n1)*sin(theta0)./((n1/n0)*sin(theta0)+

sin(theta1));

106 Phi01 = [Phi01x; Phi01y; Phi01z ];

107

108 mu = k*beta1;

109 E1 = Phi01 .*E0.*exp(1i*dot(k1 ,r1)).*exp(-mu*R_outer*

sin(theta1));
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110

111 Phi12x = 2*(n1/n0)*sin(theta0)./(sin(theta1)+(n1/n0)*

sin(theta0));

112 Phi12y = 2*(n1/n0)*sin(theta1)./((n1/n0)*sin(theta1)+

sin(theta0));

113 Phi12z = 2*(n1/n0)^2*sin(theta1)./(sin(theta1)+(n1/n0)

*sin(theta0));

114 Phi12 = [Phi12x; Phi12y; Phi12z ];

115

116 E2 = Phi12 .*E1.*exp(1i*dot(k2 ,r2));

117 I2 = dot(E2,E2);

118

119 E3 = Phi01 .*E0.*exp(1i*dot(k1 ,r3)).*...

120 exp(-mu*R_inner(ii)*sin(theta1 -theta4)./cos(theta1

)/2);

121

122 Psi34x = (n1*sin(theta5)-n2*sin(theta4))./(n1*sin(

theta4)+n2*sin(theta5));

123 Psi34y = (n1*sin(theta4)-n2*sin(theta5))./(n1*sin(

theta4)+n2*sin(theta5));

124 Psi34 = [Psi34x; Psi34y; -Psi34x ];

125

126 f_sigma2 = exp(-4*k*k.*sin(theta4).*sin(theta5)*sigma2

*sigma2);

127 E3dash = Psi34.*E3.*exp(1i*dot(k3dash ,r3dash)).*...

128 exp(-mu*R_inner(ii)*sin(theta6 -theta4)./cos(theta6

)/2).*...
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129 sqrt(f_sigma2);

130

131 Phi3dash5x = 2*n1*sin(theta7)./(n0*sin(theta6)+n1*sin(

theta7));

132 Phi3dash5y = 2*n1*sin(theta6)./(n1*sin(theta6)+n0*sin(

theta7));

133 Phi3dash5z = 2*(n1/n0)^2*sin(theta6)./(sin(theta6)+(n1

/n0)*sin(theta7));

134 Phi3dash5 = [Phi3dash5x; Phi3dash5y; Phi3dash5z ];

135

136 E5 = Phi3dash5 .* E3dash .*exp(1i*dot(k5,r5));

137 I5 = dot(E5,E5);

138

139 %% discretize data

140 edges = (0:0.002:2) /1000 + R_outer;

141

142 X = discretize(zd_a ,edges);

143 Y = discretize(zd_b ,edges);

144 Z = discretize(zd_c ,edges);

145

146 Itot = zeros(1,length(edges));

147 for jj = 1: length(edges)

148

149 Itot(jj) = (sum(I0dash(X==jj) ,2) + sum(I2(Y==jj)

,2) + sum(I5(Z==jj) ,2))*...

150 (length(edges) -1);

151 end
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152

153 %% plotting

154

155 figure (1);hold on

156 plot((edges -R_outer)*1000 , Itot*offset(ii),lineType(ii)

,'linewidth ',2,...

157 'displayname ',lineName(ii))

158 set(gca , 'YScale ', 'log','FontSize ' ,18)

159 xlabel('Detector Height , mm');ylabel('Normalized

Intensity ')

160 xlim ([0 2]);ylim ([1e-5 1e2])

161 legend show

162 drawnow

163

164 end

165

166 figure (1);hold off
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C.12 Figure 4.29 Internal Roughness Comparison

1 %% Frontmatter

2 clearvars

3

4 h = double (4.135667e-15); % planck constant [eV*s]

5 c = double (299792458); % speed of light [m/s]

6

7 %% System Parameters and Material Properties

8 chi = single(pi/4); % incident radiation

polarization

9 E = 17400; % source energy [eV]

10

11 delta1 = double (1.6021E-06); % refractive index unit

decrement

12 % of silicon at 17.4 keV

13 beta1 = double (8.0730E-09); % absorption part of

refractive index

14 % of silicon at 17.4 eV

15

16 n0 = 1; % external index of refraction

17 n1 = 1 - delta1 - 1i*beta1; % internal index of

refraction

18 n2 = 1; % inner core index of

refraction

19 R_outer = double (1); % object radius [m]

20 shellThickness = 10e-9;

21 R_inner = R_outer - shellThickness;



171

22 ODD = double (0.200); % object -detector -distance [m]

23 beamWidth = 0.001;

24 sigma = double (1e-9); % RMS surface roughness [m]

25 sigma2 = [1 2 5 10]*1e-9;

26

27 %% Program Parameters

28 thetaStart = 0;

29 thetaStop = 3*sqrt (2* delta1);

30 nDataPoints = 1e5;

31 theta0 = linspace(thetaStart ,thetaStop ,nDataPoints);

32 offset = [1 10 100 1000];

33

34 onesVec = ones(1, nDataPoints);

35 zerosVec = zeros(1, nDataPoints);

36 figure (1);clf

37 lineType = ["-k" "-.k" ":k" "--k"];

38 lineName = ["\ sigma_2 = 1 nm" "\ sigma_2 = 2 nm" "\ sigma_2

= 5 nm"...

39 "\ sigma_2 = 10 nm"];

40

41 %% Geometry

42 z0 = R_outer*cos(theta0);

43 dz = zeros(1, nDataPoints);

44 dz(2:end) = abs(z0(2: end) - z0(1:end -1));

45

46 theta1 = real(acos(n0/n1*cos(theta0)));

47 theta_c = real(acos(n1/n2*R_outer/R_inner));



172

48 theta4 = real(acos(R_outer/R_inner*cos(theta1)));

49 theta5 = real(acos(n1/n0*cos(theta4)));

50 theta6 = real(acos(R_inner/R_outer*cos(theta4)));

51 theta7 = real(acos(n1/n0*cos(theta6)));

52 pSource = R_outer*[-onesVec; zerosVec; cos(theta0)];

53 pIn = R_outer*[-sin(theta0); zerosVec; cos(theta0)];

54 r0 = pIn - pSource;

55 zd_a = pIn(3,:) + (-pIn(1,:) + ODD*onesVec).*tan(2* theta0)

;

56 pd_a = [ODD*onesVec; zerosVec; zd_a];

57 r0dash = pd_a - pIn;

58 r1 = 2* R_outer*sin(theta1).*...

59 [cos(theta0 -theta1); zerosVec; sin(theta0 -theta1)];

60 pOut_b = pIn + r1;

61 thetaOut_b = 2* theta0 - 2* theta1;

62 zd_b = pOut_b (3,:) + (ODD*onesVec -pOut_b (1,:)).*tan(

thetaOut_b);

63 pd_b = [ODD*onesVec; zerosVec; zd_b];

64 r2 = pd_b - pOut_b;

65 r3 = R_inner*sin(theta1 -theta4)./cos(theta1).*...

66 [cos(theta0 -theta1); zerosVec; sin(theta0 -theta1)];

67 r3dash = R_inner*sin(theta6 -theta4)./cos(theta6).*...

68 [cos(theta0 -theta1 +2* theta4); zerosVec; sin(theta0 -

theta1 +2* theta4)];

69 thetaOut_c = theta0 -theta1 +2* theta4+theta7 -theta6;

70 pOut_c = pIn + r3 + r3dash;

71 zd_c = pOut_c (3,:)+(ODD -pOut_c (1,:)).*tan(thetaOut_c);
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72 pd_c = [ODD*onesVec; zerosVec; zd_c];

73 r5 = pd_c - pOut_c;

74

75 %% Field Calculations

76 a0 = zeros(1, nDataPoints);

77 a0(R_outer -z0 <= beamWidth) = sqrt (4.5*dz(R_outer -z0 <=

beamWidth)/beamWidth);

78 A0 = a0.*[-sin(chi)*sin(2* theta0)

79 cos(chi)*onesVec

80 sin(chi)*cos(2* theta0)];

81

82

83 k = 2*pi*E/h/c;

84 k0 = k*[ onesVec; zerosVec; zerosVec ];

85 k0dash = k*[cos(2* theta0); zerosVec; sin(2* theta0)];

86 k1 = k*n1/n0*[cos(theta0 -theta1); zerosVec; sin(theta0 -

theta1)];

87 k2 = k*[cos(2* theta0 -2* theta1); zerosVec; sin(2* theta0 -2*

theta1)];

88 k3dash = k*n1/n0*[cos(2* theta4); zerosVec; sin(2* theta4)];

89 k5 = k*[cos(thetaOut_c); zerosVec; sin(thetaOut_c)];

90

91 Psi01x = (n0*sin(theta1)-n1*sin(theta0))./(n0*sin(theta1)+

n1*sin(theta0));

92 Psi01y = (n0*sin(theta0)-n1*sin(theta1))./(n0*sin(theta0)+

n1*sin(theta1));

93 Psi01 = [Psi01x; Psi01y; -Psi01x ];
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94

95 E0 = A0.*exp(1i*dot(k0 ,r0));

96 I0 = dot(E0,E0);

97

98 f_sigma = exp(-4*k*k.*sin(theta0).*sin(theta1)*sigma*sigma

);

99 E0dash = Psi01.*E0.*exp(1i*dot(k0dash ,r0dash)).*sqrt(

f_sigma);

100 I0dash = dot(E0dash ,E0dash);

101

102 Phi01x = 2*n0*sin(theta1)./(n0*sin(theta1)+n1*sin(theta0))

;

103 Phi01y = 2*n0*sin(theta0)./(n0*sin(theta0)+n1*sin(theta1))

;

104 Phi01z = 2*(n0/n1)*sin(theta0)./((n1/n0)*sin(theta0)+sin(

theta1));

105 Phi01 = [Phi01x; Phi01y; Phi01z ];

106

107 mu = k*beta1;

108 E1 = Phi01 .*E0.*exp(1i*dot(k1 ,r1)).*exp(-mu*R_outer*sin(

theta1));

109

110 Phi12x = 2*(n1/n0)*sin(theta0)./(sin(theta1)+(n1/n0)*sin(

theta0));

111 Phi12y = 2*(n1/n0)*sin(theta1)./((n1/n0)*sin(theta1)+sin(

theta0));
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112 Phi12z = 2*(n1/n0)^2*sin(theta1)./(sin(theta1)+(n1/n0)*sin

(theta0));

113 Phi12 = [Phi12x; Phi12y; Phi12z ];

114

115 E2 = Phi12 .*E1.*exp(1i*dot(k2 ,r2));

116 I2 = dot(E2,E2);

117

118 E3 = Phi01 .*E0.*exp(1i*dot(k1 ,r3)).*...

119 exp(-mu*R_inner*sin(theta1 -theta4)./cos(theta1)/2);

120

121 Psi34x = (n1*sin(theta5)-n2*sin(theta4))./(n1*sin(theta4)+

n2*sin(theta5));

122 Psi34y = (n1*sin(theta4)-n2*sin(theta5))./(n1*sin(theta4)+

n2*sin(theta5));

123 Psi34 = [Psi34x; Psi34y; -Psi34x ];

124

125 for ii = 1: length(sigma2)

126

127 f_sigma2 = exp(-4*k*k.*sin(theta4).*sin(theta5)*sigma2

(ii)*sigma2(ii));

128 E3dash = Psi34.*E3.*exp(1i*dot(k3dash ,r3dash)).*...

129 exp(-mu*R_inner*sin(theta6 -theta4)./cos(theta6)/2)

.*...

130 sqrt(f_sigma2);

131

132 Phi3dash5x = 2*n1*sin(theta7)./(n0*sin(theta6)+n1*sin(

theta7));
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133 Phi3dash5y = 2*n1*sin(theta6)./(n1*sin(theta6)+n0*sin(

theta7));

134 Phi3dash5z = 2*(n1/n0)^2*sin(theta6)./(sin(theta6)+(n1

/n0)*sin(theta7));

135 Phi3dash5 = [Phi3dash5x; Phi3dash5y; Phi3dash5z ];

136

137 E5 = Phi3dash5 .* E3dash .*exp(1i*dot(k5,r5));

138 I5 = dot(E5,E5);

139

140 %% discretize data

141 edges = (0:0.002:2) /1000 + R_outer;

142

143 X = discretize(zd_a ,edges);

144 Y = discretize(zd_b ,edges);

145 Z = discretize(zd_c ,edges);

146

147 Itot = zeros(1,length(edges));

148 for jj = 1: length(edges)

149

150 Itot(jj) = (sum(I0dash(X==jj) ,2) + sum(I2(Y==jj)

,2) + sum(I5(Z==jj) ,2))*...

151 (length(edges) -1);

152 end

153

154 %% plotting

155

156 figure (1);hold on
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157 plot((edges -R_outer)*1000 ,Itot ,lineType(ii),'linewidth

',2,...

158 'displayname ',lineName(ii))

159 set(gca , 'YScale ', 'log','FontSize ' ,18)

160 xlabel('Detector Height , mm');ylabel('Normalized

Intensity ')

161 xlim ([0 2]);ylim ([1e-4 1e-1])

162 legend show

163 drawnow

164

165 end

166

167 figure (1);hold off
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