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ABSTRACT 

 
RAGHUVEER PRASAD GOURIBHATLA. Modeling the Effects of Advanced Driver 

Assistance Systems on Driver Behavior. (Under the direction of DR. SRINIVAS S. 

PULUGURTHA) 

 
About 38,000 fatalities are reported every year in the United States and traffic 

crashes (referred to as crashes) are the leading cause of deaths among people up to 54 years. 

Additionally, economic loss due to crashes is estimated equal to $380 million, annually, in 

direct medical bills. Further, new vehicles are added to the roads every year increasing the 

traffic exposure and vehicle miles traveled. Driver errors are the leading cause of crashes 

and contribute to about 94% of crashes. Automobile manufacturers are striving to enhance 

the vehicles to eliminate driver errors, which can help avoid the major chunk of crashes. 

These enhancements include development of various types of advanced driver assistance 

systems (ADAS) that are designed to assist or in some cases also take over certain driving 

maneuvers. They include lane departure warning (LDW), blind spot warning (BSW), over 

speeding warning (OSW), lane keep assist (LKA), front collision warning (FCW), adaptive 

cruise control (ACC), and automatic emergency braking (AEB). Each of these features are 

focused at addressing a particular task of driving, thereby, reducing the driving load on the 

driver and also enhancing safety. 

The ADAS are expected to reduce crashes and yet a 14% increase in crashes was 

observed from the year 2014 to the year 2016. On the other hand, the acceptance levels of 

ADAS among drivers are questionable. Many surveys determined that the drivers are 

unaware of the applications and limitations of ADAS. To catalyze the issue, drivers 

admitted to blindly trusting such features which makes the problem critical. Hence, there 
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is a need to understand how the driver behavior is influenced when driving a vehicle with 

ADAS compared to when driving a vehicle without ADAS.  

The National Advanced Driver Simulator (NADS) miniSimTM driver simulator was 

used to capture driver behavior in this research. Three different driving scenarios namely; 

urban, rural and freeway scenarios were developed to test on the drivers (participants) with 

varying weather and lighting conditions. Other variables like the demographic 

characteristics of the participants were also considered for analyzing and modeling the data. 

This enabled an extensive analysis of the effects of ADAS on driver behavior while also 

magnifying the applicability of this research. 

The research can be categorized into four vital stages. The first stage is to develop 

appropriate driving scenarios to test the effects of ADAS in all driving conditions 

experienced in the real-world. The second stage involves the careful selection of 

participants such that the sample population is an accurate representation of the general 

population. The third stage involves the data processing and analysis of data to derive 

meaningful results. The fourth stage involves the identification of changes in driver 

behavior and applying them to propose any possible changes that could further enhance 

ADAS. 

LDW was observed to reduce lane departure events in all the three scenarios (rural, 

urban, and freeway). OSW reduced the average and maximum speeds making driving less 

aggressive in rural and urban scenarios only, indicating they were not as effective in the 

freeway scenario. Similarly, BSW was also observed to affect the brake pedal force and 

influence aggressive driving. Providing two advanced features at a time also affected brake 

pedal force indicating they were effective in influencing aggressive driving. Further, none 
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of the warning features were observed to influence the participant following behavior as 

the average headway difference between with and without ADAS was not found to be 

statistically significant. 

Driving behavior improved further when vehicles with automated features like 

ACC and LKA were provided individually or in combination to the participants. 

Automated features improved braking, vehicle handling, and lane-following behaviors in 

all the three driving scenarios. However, more aggressive car-following behavior was 

observed with the automated features. The variation in driving behavior among participants 

when provided with automated features reduced drastically. The effects of automated 

features were influenced by the type of driving scenario. The intervention of ADAS with 

driving tasks led to safer driving conditions. The driving safety improved with the level of 

assistance provided to the drivers. 

While the ADAS is effective in meeting their intended objectives, they seem to 

inadvertently affect other driving behaviors. The type of driving scenario (rural, urban, or 

freeway) also influenced the way an advanced feature affects the driver behavior. Braking 

behavior is predominantly affected by the presence of an advanced feature in most cases, 

which also influenced vehicle handling events like lane-following, turning, and car-

following in some cases. Lighting and weather conditions had similar effects on driver 

behavior when not provided with any advanced features, when provided with warning 

features, and when provided with advanced features as well. Longer headways were 

observed in nighttime conditions and rainy conditions. However, less aggressive lane-

following, braking, and vehicle handling behavior was observed. Also, more speeding was 

observed on freeways in clear weather. Male drivers displayed aggressive driving 
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maneuvers when provided with both warning and automated features. On the other hand, 

female drivers maintained smaller headways in urban scenario and longer headways in 

rural and freeway scenario. Similarly, drivers aged under 25 years maintained smaller 

headways in urban scenario but maintained longer headways in rural and freeway 

scenarios. Further, drivers aged above 25 years showed more aggressive braking and 

speeding behavior with both warning and automated features in urban scenario. 

The type of ADAS provided, the type of driving scenario, the lighting and weather 

conditions, as well as the age and gender of the participants affected the driver’s behavior. 

The nature of the effects of ADAS, however, varied by the type of driving scenario. 

Further, the effects of all these factors varied when segregated by the type of ADAS 

(warning or automated feature) provided compared to when not provided with any 

advanced features. The effects of both warning and automated features varied when 

provided individually and in combination. However, warning features had limited 

behavioral changes when provided in combination, but automated features displayed 

evidently different driving behavioral changes in combination and individually.  

Based on the observations made from this research, it is suggested to accommodate 

both operational and safety standpoints while developing ADAS. Further, developing 

adaptive ADAS, formulating educational policies, and developing methods to collect 

naturalistic driving data are also emphasized.  

The findings can be used to define vehicle parameters within microscopic simulation software 

and mimic the effect of vehicles with and without advanced features on transportation system 

performance. Additional samples can be collected and other advanced features may also be tested 

and compared using the driver simulator.  
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CHAPTER 1: INTRODUCTION 

The background, motivation to conduct this research, problem statement, and 

research objectives are presented in this chapter. 

 

1.1 Background and Motivation 

Traffic deaths are a major issue in the United States today, and they are the leading 

cause of deaths among people up to 54 years in age (Association for Safe International 

Road Travel, 2020). More than 38,000 people are killed in road crashes annually in the 

United Sates, which equals to a rate of 12.4 deaths per 100,000 population (Association for 

Safe International Road Travel, 2020). An estimated $380 million/year is lost in direct 

medical bills while total economic impacts of the crashes, be they direct or indirect, account 

to roughly $871 million/year (Association for Safe International Road Travel, 2020). To 

magnify the problem, new vehicles are added to the roads with every passing year, with 

more than 17.6 million passenger cars and trucks sold in 2016 alone (Garcia, 2017) and a 

total recorded 3.21 trillion miles of vehicle miles traveled in 2018 (Alternative Fuels Data 

Center, 2020). The increase in the traffic exposure is expected to contribute to an increase 

in the number of crashes. 

It is estimated that 94% of crashes occur due to driver error (Injury Facts, 2020). 

The nature of the driver errors varies widely and has been broadly classified into four types; 

recognition errors, decision errors, performance errors, and non-performance errors (Bellis 

& Page, 2008).  Recognition errors account for about 41% of the crashes making them the 

most common reason of getting involved in a crash (Bellis & Page, 2008). These could be 

errors such as incorrectly estimating the distance or speed of the vehicle. Decision errors 



2 

 

account for about 34% of the crashes (Bellis & Page, 2008) and include speeding, 

following too closely or making illegal actions. Performance errors account for about 10% 

of the crashes (Bellis & Page, 2008), and encompass issues such as losing control of the 

vehicle. Non-performance issues like health issues account for about 7% of the crashes 

(Bellis & Page, 2008). 

Although it is not possible to address the non-performance issues owing to their 

random nature, the majority (85%) of errors can be handled effectively using advanced 

features. The advanced driver assistance systems (ADAS) enhance or automate the driving 

tasks and are aimed at achieving safety. Figure 1 shows a schematic of different types of 

ADAS. 

 

Figure 1 Schematic of advanced driver assistance systems  

All the external advanced features are driven by sensors with varying detection 

ranges. The smallest range of detection is for parking assist system as they are mostly 
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engaged in low speeds in parking lots that do not require long stopping distances. On the 

other hand, adaptive cruise control (ACC) has the lowest detection range as it is mostly 

engaged at higher speeds and on freeways. The cone of detection is narrow as the vehicle 

acts in response to its leading vehicle. Blind spot warning (BSW) also has a smaller 

detection range as it responds to the vehicle in the adjacent lane. ADAS like emergency 

braking and collision avoidance are powered by medium range sensors to best suit their 

purpose. 

Overall, different types of sensors are used to suit the purpose of the advanced 

features. ACC uses long range radar systems while emergency braking and collision 

avoidance systems use light detection and ranging (LiDAR). The warning or alerting 

features use sensors that have smaller detection ranges while partially automated features 

use sensors with longer detection ranges. These features also deliver progressive levels of 

assistance based on the user needs. The levels are classified next (Safelite, 2020). 

• Adaptive features – these are features that can trigger actions based on input from 

close vicinity of the vehicle (examples: ACC, adaptive head lights, and adaptive 

light control). 

• Automated features – these are features that can perform certain actions without the 

intervention of the driver (examples: automated parking, automatic emergency 

braking - AEB, and collision avoidance system). 

• Monitoring features – these features essentially monitor the conditions in the 

vicinity of a vehicle and evaluate if a corrective action needs to be carried out 

(examples: parking assist, speed monitoring, pedestrian monitoring, and proximity 

monitoring). 
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• Warning features – these features actively monitor the conditions in the vicinity of 

a vehicle and warn the drivers of any potential safety hazards (examples: BSW, 

forward collision warning - FCW, and lane departure warning - LDW). 

The advanced features are targeted at addressing the first three types of driver-

related errors, that contribute to majority of the crashes. Extensive efforts are being made 

every day to improve traffic safety, especially in the automotive market where new warning 

and automated features are evolving. Despite these efforts, a 14% increase in road related 

deaths were recorded from 2014 to 2016 (Naughton, 2017). 

There have also been many debates over ADAS making drivers more reluctant and 

distracted, resulting in unwanted side effects (Naughton, 2017). Past studies revealed that 

70% of drivers preferred ADAS for their vehicles (McDonald et al., 2018). However, the 

question of whether they understand the functionality and purpose of these features still 

remains. 

A survey by the American Automobile Association (AAA) revealed that 21% of 

vehicle owners assisted with BSW did not understand the limitations of the feature while 

Fleet Manager expected the number to be about 80% (McDonald et al., 2018, Fleet 

Manager, 2019). On the other hand, 33% of the vehicle owners did not understand that the 

sensors engaging the Emergency Braking System (EBS) could be blocked (McDonald et 

al., 2018). Also, 40% of drivers misunderstood the application of FCW believing that FCW 

would automatically apply brakes (Fleet Manager, 2019). While the extent of driver 

understanding of ADAS is evident, what magnifies the issue of driver safety is their 

reliance on such features. It was reported that 29% of the respondents to a survey felt 

comfortable engaging in other activities when provided with ACC, 30% did not do 
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shoulder checks when provided with BSW, and 25% did not look back over their shoulder 

when provided with rear cross traffic alert (McDonald et al., 2018). 

ACC and active lane keeping/ lane keeping assist (LKA) were tested under multiple 

driving conditions by the Insurance Institute for Highway Safety (IIHS) in a series of track 

tests.  ACC is an automated feature that maintains a designated speed and following 

distance from the leading vehicle. This feature can adjust its speed based on the leading 

vehicle and can also make a complete stop if required. LKA is another automated feature 

that maintains the vehicle in its respective lane by steering control. However, these features 

do have some limitations. The tests by IIHS revealed ACC reacted aggressively in some 

scenarios while failing to react to already stopped vehicles. Similarly, LKA was also 

observed to steer over the shoulder in some cases where the lanes were not detected. 

In addition to this, a survey revealed that 74% of the respondents were very satisfied 

with LKA while 85% of the respondents were very satisfied with ACC (Consumer reports, 

2017a).  While 65% of the respondents trusted LKA to work every time, ACC was trusted 

by 72% of the respondents (Consumer reports, 2019).  Most tests on ADAS like ACC and 

LKA are performed under safer conditions compared to real-world traffic conditions and 

with better trained drivers (Consumer reports, 2019). Also, it is possible that such features 

make drivers more reluctant and less prompt when driving. Further, a few consumers also 

complained of LKA not working properly at nighttime and during rain (Consumer reports, 

2019). 

The percentage of users relying on ADAS, the limitations that apply to various 

advanced features, and the lack of knowledge of the application of ADAS among drivers 

can lead to many unsafe driving conditions. While on the one hand, these ADAS make 
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driving tasks easier, they may also make driving more difficult at the same time. The ADAS 

takes up certain driving tasks making a driver’s job easier to some extent, but the driver 

needs to be cautious at all times to take over driving as soon as any of these features fail to 

react or disengage. 

This brings forth the argument whether ADAS lead to other unforeseen effects on 

drivers. This can be assessed by evaluating the behavior of drivers using vehicles with 

advanced features and comparing with drivers using vehicles without ADAS to better 

understand the driving patterns and safety implications. 

While it is difficult to precisely capture driver behavior in the real-world, there have 

been few research studies where drivers were provided with a test vehicle to capture and 

analyze driving behavior (Dunn et al., 2019) or by conducting surveys (Kim et al., 2019). 

Though these research studies captured some aspects of the driver understanding, they are 

not entirely accurate, limited to selected scenarios, and may involve a long and 

cumbersome process. Privacy may also be a trade-off. This brings the application of a 

driver simulator into the play. 

Driver simulator is a platform that can address this issue as it can be used to capture 

driver behavior, and at the same time ensure safety and privacy of the drivers (participants). 

Driver simulators also enable researchers to capture a wide range of driving characteristics, 

which are customizable, in a shorter span of time. Hence, capturing driving behavior with 

the aid of a driving simulator may bridge the knowledge gaps which are relatively hard to 

capture in the field. Therefore, the focus of this research is to evaluate drivers’ response to 

scenarios when driving vehicles with and without advanced features like LDW, BSW, 

OSW, ACC, and LKA. 
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The response or behavior could vary with the advanced feature, driving scenario, 

and driver characteristics. They also could depend on lighting and weather condition. 

Therefore, rural, urban and freeway driving scenarios were developed in a driver simulator 

and tested on drivers (participants) in the age groups of sixteen years to sixty-five years. 

Some drivers were provided a vehicle with advanced features, while other drivers were 

provided a vehicle without advanced features. This study aims at capturing general driving 

behavior in all types of settings as discussed later in detail. 

 

1.2 Need for Research and Problem Statement 

Human errors are the major contributor of road crashes. A constant effort is being 

made by automobile manufacturers and researchers every year to reduce human 

intervention in driving that will help improve safety with the ultimate goal of complete 

automation in the future. The National Highway Traffic Safety Administration (NHTSA) 

and Federal Highway Administration (FHWA) have also been investing efforts to 

constantly monitor the performance of various emerging advanced features (Learner et al., 

2020) and also to evaluate their acceptance and ease of use via testing procedures (NHTSA, 

2019; IIHS, 2020). Further, NHTSA constantly publishes articles and publicizes the 

advantages of ADAS while explaining their working mechanisms and limitations to help 

educate drivers (NHTSA, 2020). 

Considerable research efforts have been expended to investigate the effectiveness 

of ADAS. The data collected for these evaluations mainly stems from the reported 

incidents. Despite the proven records of these features, a low level of acceptance seems to 

exist among drivers. Many drivers are confused with the application of ADAS, which could 
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lead to drastic outcomes and is alarming. 

The ADAS cannot be assessed for specific driving conditions in a real-world and 

their effects can only be anticipated or can be collected only post-event. Employing a driver 

simulator helps design specific driving condition scenarios that can test the limits of such 

features and help analyze their applicability at a deeper level. A wide range of testing 

conditions can be simulated which otherwise may be difficult to analyze. 

Although there have been significant efforts to evaluate the effectiveness of ADAS, 

a model with a broad sense of applicability does not exist in the literature. Past studies on 

the effects of ADAS on drivers are limited to very specific conditions or to a defined set of 

parameters. However, the driving behavior, use of ADAS, and effectiveness could vary 

based on the road functional class (freeway compared non-freeway roads) and area type 

(urban compared to rural) when driving. There is a need to evaluate the effect of ADAS on 

driving behavior under various driving conditions. The findings from such a study would 

guide policymakers and automotive companies to formulate well-defined testing criteria. 

Therefore, this research focuses on developing driver behavior models for different driving 

condition scenarios such as urban, rural, and freeway. 

Younger drivers may be more comfortable using advanced features while older 

drivers may not be equally comfortable or even familiar with advanced features. Thus, the 

socio-economic aspects and driving history also have a bearing on driving behavior and 

the use of ADAS. Therefore, considering variables such as demographic, socio-economic, 

driving history, and their prior understanding of ADAS during sampling and data collection 

could allow researchers to better understand their role, generate defined parameters, and 

design optimal ADAS for the drivers. 
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The purpose of this research is to evaluate the effects of ADAS on driver behavior. 

The advanced features are tested in different driving conditions that include urban, rural 

and freeway scenarios. Further, lighting conditions (daytime and nighttime) and weather 

conditions such as rain or snow are also included in the research. This enables the 

comparison of the effects of ADAS across multiple facets and also identify any gaps with 

a high degree of applicability that encapsulates multi-faceted situations that arise in real-

world.  

 

1.3 Research Objectives 

The objectives of this research are: 

1. to model and evaluate the effects of ADAS on driver behavior for different area 

types (urban, rural and freeway),  

2. to model and evaluate the effects of ADAS on driver behavior for different weather 

and lighting conditions, and, 

3. to model and evaluate the effects of ADAS on driver behavior for different age and 

gender. 

 

1.4 Organization of the Report 

The remainder of the report is organized as follows. Chapter 2 presents an extensive 

review of the various methods adopted to evaluate ADAS. The chapter discusses survey 

methods, field test methods, microsimulation methods, and driver simulator methods and 

identifies prevailing gaps. Chapter 3 synthesizes the driver simulator system. The various 

tools involved in developing the simulation conditions and participant selection criteria are 
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discussed in detail. Chapter 4 discusses the methodology adopted along with data collection 

and processing efforts. Chapter 5 presents results from the research, while conclusions and 

scope for further work are discussed in Chapter 6.  
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CHAPTER 2: LITERATURE REVIEW 

Investigating previous research efforts invested into addressing any issues related 

with ADAS is vital to understand the advancements in this area. Also, at the same time, 

this exercise will help in identifying any prevailing gaps as well as methodologies adopted 

by previous researchers which will serve as a guiding platform to establish a more specified 

modeling framework. An extensive synthesis of previous literature was, therefore, carried 

out. This chapter presents an overview of the past studies categorized based on the research 

areas. 

 

2.1 Surveys and Mathematical Methods to Assess Driver Behavior 

Abdul et al. (2007) investigated driver behavior based on the pressure applied on 

brake and gas pedals. They employed a cerebellum model articulation controller (CMAC) 

to model driver behavior. They observed the application of CMAC to be reasonable for 

predicting various driver behavior characteristics and understand the effects of a drivers’ 

emotion and subconscious mind. Similarly, Wang et al. (2014) evaluated driver behavior 

based on the acceleration and brake force parameters and steering wheel angle using 

mathematical models. They used these parameters to incorporate into ADAS and observed 

that driver behavior varies for different driving actions and generalizing driver behavior 

based on only a few actions is not ideal. 

Kuge et al. (2000) evaluated driver behavior using hidden Markov models (HMM). 

They demonstrated the efficiency of HMM in both application and in modeling driver 

behavior, particularly for lane change behaviors. Similarly, Sathyanarayana et al. (2008) 

developed framework using HMM to assess driver behaviors and distractions. 
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Kamarudding et al. (2010) tried predicting driver behavior based on speech configuration. 

They evaluated driver behavior based on the emotion conveyed in their speech patterns and 

observed that it can be used to profile driver behavior, especially when they are sleepy. 

Yannis et al. (2010) investigated the acceptance of ADAS among older drivers via surveys 

from 23 European countries.  They developed ordered logit models, and the results showed 

relatively better acceptance of ADAS among older drivers and females. Tran et al. (2012) 

used vision-based foot gestures and HMM to analyze and predict braking behaviors of 

drivers.  While they used visual methods to capture driver behavior data, they employed 

HMM to predict the pedal pressing gestures, and achieved a 94% accuracy by this method. 

Morignot et al. (2014) evaluated the effectiveness of and acceptance of ADAS via a 

surveying method. They presented results to enhance ADAS. 

 

2.2 Field Test Methods to Assess Driver Behavior 

Alkim et al. (2007) investigated the effects of ADAS on driver behavior using a 

field vehicle in Netherlands. They employed ACC and LDW in full traffic conditions with 

mixed traffic. They observed 8% improvement in traffic safety, while the fuel consumption 

reduced by 3%. Additionally, the estimated reduction in emissions was about 10%. 

McCall et al. (2007) focused on developing human-centric ADAS like predictive 

braking and ACC, and its effects on driver behavior using a test vehicle in real-world 

driving conditions. Cognition-based adjustments were made to the vehicle to capture driver 

behavior and the framework showed promising results. Ziefle et al. (2008) evaluated the 

effects of visual and auditory ADAS on older drivers. They observed better driving 

performance in the absence of any ADAS while auditory systems contributed the highest 

to distraction. Their findings indicate that older drivers preferred auditory systems over 
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visual systems. 

Inata et al. (2008) modeled driver behavior using micro-electric sensors mounted 

on vehicles which were driven in real-world traffic environment. The sensing equipment 

recorded the pedal operation of the vehicle, which was used for analyses. They developed 

a theoretical model to estimate driver behavior and then compared it to the collected urban 

driving data to distinguish hurried driving from relaxed driving. Angkititrakul et al. (2009) 

used mathematical models (Gaussian mixture model) and algorithms (piecewise auto 

regressive exogenous) to understand driver behavior and incorporate them into car-

following models. The data used was obtained from real-world driving conditions. They 

captured the braking and acceleration parameters in response to the distance from leading 

vehicle. The framework was then used to evaluate and model driver behavior. 

Kondyli et al. (2009) investigated driver behavior using data obtained from driver 

responses to various questions that addressed their thinking while merging from a ramp 

onto a highway. They tried to correlate the driver’s behavioral thinking to driver 

characteristics. Pauwelussen et al. (2010) investigated the effect of ADAS like ACC and 

LDW on driver behavior in real-world driving conditions. They observed that the ACC led 

to larger headways between vehicles while manual override of the feature resulted in 

shorter headways.  

Farah and Koutsopoulos (2014) probed into the effect of infrastructure to vehicle 

(I2V) assistance systems on the drivers using test vehicles. They observed reduced ranges 

of acceleration and deceleration while the car-following was more synchronized. Monreal 

et al. (2014) probed into the effect of the location and angle of in-vehicle displays on driver 

safety. They observed the driver gaze when looking at driver information systems (DIS) in 
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the vehicle that are currently existing in the market and inferred that they meet the NHTSA 

guidelines for the gazing away from road values. The driver preferences with the in-vehicle 

display and location converged with that in the market while mobile applications and social 

media were not found to be necessary in the vehicle. 

Son et al. (2015) employed a road-testing method to evaluate the acceptance of 

FCW and LDW based on the age and gender of the driver. While females and younger 

drivers showed lowest acceptance for ADAS, males and late middle-aged drivers showed 

higher likelihood of acceptance. Miyajima et al. (2016) developed machine learning 

models to analyze data collected from real-world driving conditions over 15 years. They 

observed various driver behavior like lane changes, car-following and pedal operation. 

They developed statistical models to predict risky driving and frustrated driving behaviors. 

Sieber et al. (2016) investigated driver behavior in collision avoidance using a field test 

study. They observed driver behavior and perception with different times of collision and 

observed that the movement speed of the obstacle had the greatest effect on driver behavior.  

Cades et al. (2017) investigated the effects of LDW on driver behavior while the 

participants performed a secondary task. They observed no significant effect of LDW on 

reducing workload on driver cognition while performing secondary tasks. Lyu et al. (2019) 

investigated the effect of ADAS on driver behavior using field operational tests in China 

on a test route. The effects of FCW and LDW were primarily assessed in their study. They 

observed increased braking time and decreased relative speed when provided with ADAS. 

Also, higher acceptance of FCW was observed over LDW. The acceptance was higher on 

freeways compared to urban roads. 
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2.3 Microsimulation Methods to Assess Driver Behavior 

Kikuchi et al. (2003) probed into the effects of using ACC in platooning based on 

the different positions of the vehicle using microsimulation. They observed reduced 

reactions times to achieve stability in the platoon. Both, ACC equipped and non-ACC 

vehicles were observed to display enhanced safety. Derbel et al. (2012) investigated the 

effect of mixed traffic, comprising of vehicles equipped with ACC in a crash scenario. 

Enhanced safety and reduced crash risk were observed when vehicles equipped with ACC 

were involved in a crash. 

Jeong et al. (2014) investigated the effect of an inter-vehicle safety warning 

information system (ISWS), which communicates hazardous maneuvers of vehicles that 

could lead to a crash. The driver behaviors captured using probe vehicles were fed into 

VISSIM simulation while the Surrogate Safety Assessment Model (SSAM) was used to 

measure safety. Rear-end conflicts were observed to reduce with penetration rates, while 

congestion increased. The standard deviation of speed was observed to decrease by 40%. 

Researching the effectiveness of multiple integrated systems, Li et al. (2016) 

evaluated the effect of integrating I2V with ACC and variable speed limit (VSL) in 

different combinations on traffic safety. The time exposed time to collision (TET) which 

indicates the total time spent by a vehicle in safety-critical situation and time integrated 

time to collision (TIT) which is time remaining for a collision to occur if two vehicles 

continue to maintain the same speed were used as surrogate safety measures in their study. 

The effect of integrating technologies led to better results when compared to individual 

effects. Employing a similar methodology, Li et al. (2017) evaluated the effects of ACC 

on safety of freeways. Enhanced safety was observed with the increase in penetration rates, 
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while the combination of ACC and VSL were observed to produce best results. Li et al. 

(2017) also investigated the effect of cooperative adaptive cruise control (CACC) on rear-

end crash risk on freeways. A significant reduction in crash risk was observed with CACC 

while the TET and TIT reduced by over 90%. 

Cicchino (2017) analyzed the effectiveness of FCW, AEB, and a combination of 

both in reducing rear-end crashes. FCW, AEB and combination of both reduced rear-end 

crashes by 27%, 43% and 50%, respectively. The vehicles themselves being struck in rear-

end crashes reduced in case of vehicles with individual features but increased when the 

vehicles were equipped with both the features. In an attempt to investigate the effects of 

integrating connected vehicles technology with advanced features, Yue et al. (2018) probed 

into integrating connected vehicles with different ADAS. About a 70% reduction in crashes 

was achieved by the integration, while FCW could reduce rear-end crash risk by 35% in 

foggy conditions. 

 

2.4 Driver Simulator Methods to Assess Driver Behavior 

Kaptein et al. (1996) revealed that driver simulator-based study results are valid 

and the validity increases with the resolution of the simulation and the presence of a moving 

base. Strayer and Johnston (2001) investigated the effect of conversing on cellular phones 

while driving using a driver simulator. They observed longer reaction times to traffic lights 

while conversing irrespective of hand-held or hands-free devices. Similarly, in another 

driver simulator-based study, involving in conversations using hands-free devices was 

observed to increase reaction times when stopping at intersections, due to reduced visual 

attention (Strayer et al., 2003). The effect of cell phone conversations was higher on young 
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drivers compared to older drivers (Strayer and Drew, 2004). It was also observed that the 

drivers were involved in comparatively higher number of crashes when talking on cell 

phones owing to elongated reaction times to braking while intoxicated driving led to 

smaller headways from leading vehicles (Strayer et al., 2006). Overall, the effect of 

conversing and intoxication were observed to have similar effects when the driving 

conditions and time to task were the same in their study. Text messaging also constrains 

the driver attention to braking lights significantly, leading to crashes (Drews et al., 2009). 

Lundgren and Tapani (2006) investigated the safety effects of ADAS using a driver 

simulator. They observed that the functionalities of ADAS and changes in driver behavior 

for ADAS equipped vehicles could affect safety. Driver-vehicle behavior was observed to 

substantially affect safety. Driel et al. (2007) evaluated the effectiveness and acceptance of 

congestion assistant using a driver simulator. They observed improved driving safety 

behavior in drivers when approaching a traffic jam. Lee and Abdel-Aty (2008) captured 

driver responses to warning messages and VSL using a driver simulator. They observed 

that the variation in driving speeds reduced, leading to better traffic flow and reduced 

congestion. 

Hoogendoorn and Minderhoud (2002) investigated the effect of intelligent cruise 

control and intelligent speed adaptation on driver behavior. They observed improved 

capacities and reduced reliability at bottlenecks when cruise control was deployed while 

no improvement in either capacity or reliability was observed in the case of intelligent 

speed adaptation. No improvement in safety was observed. Martin and Elefteriadou (2010) 

researched the effect of ADAS on driver behavior using a driving simulator. They observed 

changes in driver behavior when using vehicles equipped with ACC and lane change on 
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arterials/ freeways. Calvi and Blasis (2011) evaluated the driver behavior on acceleration 

lanes. They observed that merging behavior was dictated by the traffic volume on main 

road and not the length of acceleration lane. Son et al. (2011) assessed the effect of voice 

recognition system on driver distraction, especially older drivers. The distraction effects 

were evaluated for both urban and highway sections, and it was observed that both age and 

environmental conditions effected the driving behavior when the driver had to perform two 

tasks. 

Maag et al. (2012) investigated the effects of ADAS on drivers using single and 

multi-driver simulators. They evaluated the effects of merging systems and advanced 

features and supported the use of multi-driver simulators to understand and capture driver 

behavior. Saleh et al. (2013) probed into the compatibility of driver and ADAS with LKA 

using driver simulator. They observed improved lane keeping when the feature was 

engaged despite varied driver behavior. Aziz et al. (2013) investigated the understanding and 

effects of LDW on driver behavior using a driver simulator. They found that the dynamic nature 

of the driving environment could limit the driving cognitive model leading to cautious 

driving scenarios that could result in a tragedy, irrespective of any secondary tasks 

performed by the drivers. 

Rommerkirchen et al. (2014) investigated the human-machine interaction to 

understand the effect of ADAS on drivers using a driver simulator. They observed that 

game-time (interaction) reduced in complex driving situations. In a similar study, Biondi 

et al. (2014) investigated the effect of a beeping ADAS on driver behavior using driver 

simulator. They observed that the beeping sounds disrupted the vehicle trajectory as the 

drivers deviated from the lane. They observed such sounds to be distracting for the driver 
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in contrast to their original functionality. 

Using a low fidelity simulator, Spivey and Pulugurtha (2016) evaluated the 

visibility of two-wheelers encountered by left-turning motorists at urban intersections in 

nighttime conditions, compared to other hazards. The observed response times to a two-

wheeler were not different from the response times to a passenger car with two headlights. 

However, the response times were significantly shorter than the times to recognize no 

hazard or a two-wheeler with no headlight. Differences were observed when response times 

were compared for daytime and nighttime conditions.  

Gasper et al. (2016) evaluated driver behavior when provided with FCW and LDW 

using a driver simulator. They compared the effect on both distracted and undistracted 

drivers and observed that the driver behaviors fell into categories based on distraction. 

Significant variation in driver lane-changing behavior was also observed in their research. 

Mas et al. (2016) investigated the effect of lateral control assistance systems on driver 

behavior in avoiding obstacles using driver simulator. They observed an equal effect from 

both assisted and non-assisted drivers in avoiding obstacles. However, the lateral control 

assistance feature contributed to faster reaction times. Choudhary and Velaga (2017) 

investigated the effects of talking and texting on phone on driving behavior in a suddenly 

arising situation (pedestrian crossing) using driver simulator. The mean speeds were 

observed to be lower when the drivers were on phone, while the probability of a crash 

increased by 3 to 4 times. Witt et al. (2018) investigated the effect of driver characteristic 

and personality on their driver behavior using virtual and driving simulations. They 

attempted to develop a driver cognitive model to help design ADAS. Phone use was found 

to significantly affect driving for both younger and older drivers with younger drivers 
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having a higher crash risk compared to experienced drivers in a driver simulator study by 

Choudhary and Vengala (2019). 

 

2.5 Effectiveness of ACC and LKA 

ACC maintains a designated speed and distance for a vehicle with respect to its 

leading vehicle, while the LKA ensures that the vehicle stays in its respective lane. 

Consumer Reports (2017b) considers ACC to be more of a luxury feature than a safety 

feature due to its functionality (Consumer reports, 2017b).  Combining ACC with other 

ADAS may mask the minimal effectiveness of the system. Further, ACC functionality 

seems to vary across automotive makers (Consumer reports, 2017c).  ACC has been 

observed to be jerky with acceleration and braking maneuvers, and its response to already 

stopped vehicles was identified as a limitation. Additionally, it was observed that drivers 

with ACC were driving at higher speeds compared to drivers without ACC (IIHS, 2021).  

Similarly, there are anticipated advantages and limitations of the LKA feature. The 

LKA and LDW were expected to mitigate over half a million crashes in 2016 alone 

(Benson et al., 2018).  The LKA performs a lane keeping test every five to fifteen seconds 

and provides a stipulated steering torque to maintain the vehicle in its lane, allowing the 

driver to take over if required (VDA, 2020).  It is expected to have significant effects on 

safety especially on run-off and head-on crashes (Tan et al., 2020, TAC, 2020).  It is 

estimated that a 100% effective lane departure prevention system could reduce single 

vehicle run-off crashes by 65% (Penmetsa et al., 2019).  

The ACC and LKA features in combination control both the longitudinal and lateral 

movements of a vehicle and provide a basis for a more advanced automated driving 
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version. The reliability of drivers on these features also plays a vital role in their 

effectiveness, as it dictates the attention they are paying while driving. Many studies have 

highlighted the direct impacts of these features but a deeper understanding of their effects 

on driving behavior needs to be investigated. This will help establish parameters that can 

be used as inputs to evaluate the effects of vehicles with advanced features in a traffic 

stream using microsimulation software. 

 

2.6 Limitations of Past Research 

Extensive research has been done in the direction of addressing the issues related 

with the effects of various tasks that could be influencing driver behavior. Various 

methodologies have been adopted to investigate the effects of ADAS on driver behavior. 

Surveys and mathematical models aimed at researching the adaptability of the methods in 

modeling driver behavior, though some researchers focused at studying the acceptance 

levels of different ADAS. Some of these studies also focused at predicting driver behavior, 

which yielded reasonable results. However, these methods rely on self-reporting and the 

participants could be biased when answering questions, especially when they are being 

scrutinized by another person. Further, most of the past studies focused on participants 

response to the questions and their comfort-level with ADAS. This is more of a perspective 

driven approach while the effects of ADAS is not captured. 

Field test methods were conducted to capture driver behavior in some cases, while 

some researchers focused at capturing acceptance rates of the ADAS. Some researchers 

looked at the acceptance rates of different ADAS based on the age and gender while some 

investigated the focused effects of ADAS on driving behavior. Some researches focused 

on capturing the effect of ADAS on traffic safety rather than on the driver behavior. A few 
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researchers probed into understanding the acceptance of ADAS while some researchers 

looked into the design criteria. Further, some researchers focused on the performance of 

ADAS on traffic operational performance, but the effect of ADAS specifically on driver 

behavior was seldom captured in the reviewed field tests. Hence, there still persists a gap 

to identify the effect of ADAS on driver behavior. 

Microsimulation-based studies were also conducted to research the effect of 

vehicles and driver behavior on safety or operational performance of traffic stream. CACC, 

BSW, FCW, or AEB were evaluated in the past studies. While these studies highlight the 

effectiveness of such ADAS, evaluating driver behavior may not be possible with the aid 

of microsimulation. On the other hand, microsimulation platforms do not provide the 

ability to investigate the effects of ADAS in specific scenarios and can only be observed 

from a one-dimensional perspective (improvement or degradation). In addition to this, 

currently available traffic simulation software cannot incorporate many variables like 

demographic or socio-economic characteristics, weather conditions, or lighting conditions. 

The ADAS evaluated are pre-designed to behave in a certain way in a conflict situation 

which may limit the nature of data captured in micro-simulation-based studies. 

Driver simulator studies focused on evaluating the effect of ADAS in only certain 

conditions (weather or traffic). Most of the driver simulator studies did not take 

demographic characteristics into consideration, while some past studies just compared the 

driver behavior across two demographic groups of participants (young and old). Some past 

studies probed into the level of acceptance of the ADAS and the optimal designing of the 

ADAS for better user-friendly experience. 

Some researchers investigated the effects of ADAS under a pre-defined set of 
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conditions or evaluated their effect across some demographic characteristics like age or 

gender. A few researchers reviewed the applicability of ADAS when drivers were engaged 

in secondary tasks. Some researchers focused only on the effectiveness of ADAS only 

during certain traffic maneuvers (merging or turning) which only represents ADAS to 

certain extent. Overall, majority of the past research was under very controlled conditions 

that lead to tunneled application.  

The results from the past driver simulator studies captured the effect of ADAS on 

driver behavior in a comparison style of representation. They addressed how one category 

of participants responded in comparison to another group. Some studies evaluated their 

effect on safety in specific weather conditions. Also, many of the researchers did not 

capture the driving history or the familiarity of participants to ADAS. 

Overall, a persisting gap was observed in the previous studies as they seem to be 

more hypothesis driven, which leads to concentrated research and their applicability is 

limited. This research focuses at capturing driver behavior under various driving situations 

(urban/rural and freeway/arterial) and also includes different types of ADAS to arrive at 

conclusions with a broader perspective. This will help design ADAS or develop models 

that can be applied in a multitude of cases. 

Driver simulator provides a perfect platform to simulate different driving 

conditions while ensuring precision. The results can be deliberated and extracted per need 

to develop an accurate model of driving behavior. This methodological approach was 

explored in this research. 

This research also accounts for variables like previous driving history and 

demographic data, which have been seldom ventured in previous researches. The 
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familiarity of an ADAS or similar technology are important and were also captured in this 

research. In short, evaluating the effectiveness of ADAS on driver behavior in all types of 

driving conditions (urban, rural, and freeway), weather conditions (rain or snow), and 

lighting conditions (day or night) reinforces the applicability of this research to a larger 

audience. The gathered results can help understand the effect of ADAS from a proper driver 

perspective. 
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CHAPTER 3: DRIVER SIMULATOR AND DRIVING CONDITION SCENARIOS 

The National Advanced Driver Simulator (NADS) miniSimTM was used for this 

study.  The information provided in this section is based on the user guide manuals 

provided for each of the tools associated with the process. The driver simulator was used 

as it provides a perfect platform to replicate real-world conditions. It helps record driver 

behavior when they are subjected to driving conditions that are very close to the real-world. 

The other advantage of the driver simulator is the ability to simulate desired conditions that 

can help assess driver behavior in response to the pre-defined driving conditions. However, 

developing the desired driving conditions in the simulator involves multiple processes. 

Figure 2 summarizes the functional flowchart of the process involved in developing 

simulated driving condition scenarios. 

 

Figure 2 Functional flowchart of driving simulation development 

 

As displayed in Figure 2, three tools are required to develop the final driving 

simulation scenarios. The initial step involved developing a road network, which is handled 

in the Tile Mosaic Tool (TMT). The initial road network along with terrain conditions was 

built in the TMT. After developing the road network, it was imported into the Interactive 

Scenario Authoring Tool (ISAT). This tool allows users to define various driving 
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conditions including weather conditions (rain, snow, fog, or clear weather), lighting 

conditions (day or night), traffic lights, or for a specific type of vehicle with a desired level 

of traffic. The output file from ISAT is then imported into miniSimTM which then simulates 

the scenario to test driving behavior. The development process to attain the final simulation 

product is discussed next in detail. 

 

3.1 Tile Mosaic Tool (TMT) 

The TMT allows users to generate world or database files. The world files are 

constructed using tile models, where each tile model contains information about the roads, 

terrains, and feature objects. Placing tile models adjacent to each other in a desired pattern 

forms a road network. There are multiple categories including city, commercial, fillers, 

freeway, industrial, mountain, railroad, residential, rural, urban, special, and suburb. The 

tiles are named for the type of road they depict. For example, freeway tiles contain roads 

that replicate freeway conditions, whereas residential tiles represent local roads that are 

typically found in residential areas. Commercial tiles have terrains with commercial blocks 

with trading and shopping locations. Filler tiles can be used to fill in gaps between other 

tiles, varying from small road sections to intersections. Special tiles are similar to filler tiles 

and create locations such as interchanges. 

The TMT offers several types of roads that exist in the real-world, while also 

providing special tiles that create conditions such as snowy or wet roads. The tiles also 

display road markings, terrain conditions, and vegetation. The more complex tiles display 

both traffic signs and control devices such as signals and stop/yield signs. Figure 4 shows 
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a screenshot of a road network created with a set of tiles. 

 

The tiles need to be attached such that the roads align to ensure no gaps prevail 

when they are visualized in the simulator. The road in the blue colored tile looks thin 

compared to its adjacent tiles, which is an implication that it is a two-lane curved road 

connected to a four-lane road at the end. This may lead to small inconsistencies in 

visualization and proper care needs to be taken. The red colored line surrounding the tiles 

is the boundary of the tiles that can be displayed using the red colored square symbol in 

the menu bar as seen Figure 3. 

The grid in the background helps place tiles easily when developing a network file 

and can be activated using the grid symbol. However, it is important that the tiles are 

created while developing the world files within the TMT so that they can be adjusted in 

ISAT before the simulation. The green cross seen in the tiles indicates that they have been 

Figure 3 Screenshot of a sample road network in the TMT 
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created in TMT and can be activated using the traffic light symbol. Examples include 

changing a Stop sign to a Yield sign or assigning signal timings. 

TMT is initially set up as a grid on which the tiles are placed. There are a few 

important points to be remembered while developing world files in the TMT. Firstly, not 

all tiles can be placed adjacent to each other. For example, one cannot place a two-lane 

rural road tile adjacent to a four-lane urban road tile. A dialog box with the list of 

compatible tiles with their categories, rotation, and size is displayed when the right mouse 

button is pressed after selecting the adjacent tile, which is then added from the list. A non-

compatible tile may also be added forcefully by pressing the Shift key. Some issues such 

as a gap showing empty space or a failed visualization may occur in such cases. 

There are certain tiles that have unique controls, such as tiles that contain traffic 

signs, traffic lights, or road signs that need to be changed in ISAT or while visualizing. For 

example, all the roads are given the same road name in the default condition that can be 

changed while visualizing. Similarly, speed limit signs can be altered to change speed 

limits. To edit the tiles, the unique controls need to be enabled in the TMT by clicking the 

right mouse button and selecting the appropriate option. After the completion of a desired 

world file, a set of commands need to be run in the “command prompt” window that 

generates a set of visual and logical files to capture information from the TMT. It is 

important to generate both visual and logical files in the same session to maintain 

consistency of information and avoid any mismatches. The TMT tool generates a file in 

the “.mos” format, or the mosaic file. This mosaic file is then imported into ISAT for 

further development. 
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3.2 Interactive Scenario Authoring Tool (ISAT) 

The ISAT puts together all the information designed by users and generates a 

scenario file (.scn) that can be imported into miniSimTM for simulated driving. 

Additionally, the ISAT is also capable of extracting data from the final output files. 

Developing a scenario file involves multiple processes, which starts with defining the 

traffic conditions. Figure 4 shows a screenshot of the same road network imported into the 

ISAT. The task bar to the left shows a list of different elements that can be added into the 

scenario using icons available in the menu bar at the top of the screenshot. 

The icons highlighted using the gray circle deal with the navigation through the 

map or network, including zooming in or out, viewing the entire network, finding any 

element, or using the undo or redo options. The icons highlighted by black circle show the 

different modes offered by the ISAT that allow users to play, record, and analyze driving 

conditions. The red circle highlights icons that are used to add dynamic and static objects 

such as vehicles, traffic signs, and virtual objects to the simulation. The blue circle shows 

icons that represent different types of weather conditions such as rain, snow, lightning, and 

fog. The green circle represents triggers that are used to simulate driving, while the orange 

circle shows the traffic and traffic light manager that controls traffic in the simulation, as 

desired by the user. The boxes by the side of the road network add certain actions into the 

scenario. 
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Figure 4 Screenshot of a road network in ISAT 

 

3.2.1 Traffic Conditions 

ISAT allows users to select pedestrians or any type of vehicle ranging from bicycles 

to trains. Additionally, multiple features such as color, speed, tire condition, brake 

condition, etc. can also be specified. ISAT also allows users to also select the type of drivers 

in the vehicles, which are in turn deemed to be dynamic objects in the ISAT. There are two 

types of dynamic objects that can be added into a scenario. The first type is the 

Deterministic Dynamic Object (DDO) whose actions are pre-determined by the user. These 
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objects simply follow a path that is pre-defined and the speed of the DDO can be set at 

each node of the path. These objects do not follow traffic rules and cannot avoid collisions 

and, as such, can be called intuition-less objects. The second type of dynamic object is the 

Autonomous Dynamic Object (ADO). These objects resemble human drivers and follow 

traffic rules. However, they can be instructed to perform certain actions that defy the traffic 

rules. 

Adding each vehicle individually in the scenario is a tedious and time-consuming 

process. The ISAT offers a “traffic source” option that allows users to add multiple vehicles 

at regular intervals throughout the simulation from a designated point in the network. 

Multiple vehicles can be added to each traffic source that are generated in a loop. For 

example, if five vehicles are added to a traffic source, it generates the same five vehicles 

once it has generated all of them. 

Pedestrians can be added into the scenario as DDOs, defining their path to cross a 

road. There are multiple ways to generate an object in a simulation. By default, the 

simulation generates objects at the start, but this may not work under some conditions. For 

example, if the user wants to simulate a pedestrian crossing the road at a mid-block section 

when the driver is at the location, the default case may generate the pedestrian as soon as 

the simulation starts, and the pedestrian may have already crossed the road by the time the 

driver reaches the specific point. To overcome such challenges, the simulation can also 

delay the generation of the object in a simulation. There is an “activation delay” option 

available when adding objects to the scenario. This allows the object to be generated after 

a specified period of time. This is a good approach; however, the driving time may differ 

from one driver to another driver, thus each driver may be at a different point in the 
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simulation at the given time and as such the previously mentioned simulation may work 

only in some of the cases. The third way of generating an object in a simulation is to define 

the “creation radius” of the object which works with reference to the location of external 

driver who is driving in the simulator simulation. This is a good way to ensure that a desired 

scenario is executed with reference to the location of the driver. 

The lifetime option allows users to determine how long an object remains in the 

simulation. For example, a car may be temporarily inserted behind another vehicle to create 

a lane-changing scenario. Static objects can also be added into the scenario to convey 

additional information like the speed of the road, traffic cones, warning signs, etc. While 

the TMT already provides sign information (speed, curve, etc.), more can be added using 

static objects if the user feels they are not abundant enough. However, it is important to 

remember that these only provide visual information and do not play a role in defining the 

simulation’s behavior. For example, if an ADO is set to follow the speed limit, it follows 

the speed limit set on the default signs imported from the TMT. 

The next step in defining traffic conditions is to allocate the traffic signal split times. 

Figure 5 shows a screenshot of the “traffic light manager” which shows a list of all the 

traffic signals available in the network. Upon selecting a signal, all the traffic lights 

associated with the signal are shown. The user can configure the desired number and 

duration of states using the “add state” option. It is important to remember that when a light 

is green, only its complementing light or all the other lights are red. Figure 5 depicts a 

traffic signal head which controls traffic movements on the right side. This helps users to 

determine the cycle of the traffic signal. The other signal heads turn red when one is green 

or yellow. 
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Figure 5 Traffic light manager for a four-legged intersection 

While this scenario only contains one traffic signal, the window shows all the 

available signals which can be assigned cycles as necessary, turned off, or triggered when 

a driver is nearby, at a distance determined by the users. 

 

3.2.2 Weather Conditions 

The ISAT allows the user to select weather conditions from rain, snow, fog, and 

lightning. Further, the ISAT lets users simulate weather conditions at specific stretches or 

for the whole network route. Upon selecting the weather option, the user can draw a 

polygon to define the area. Varying levels of intensity (for example, light vs. severe 

rainfall) are also configurable options. 
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3.2.3 Light Conditions 

The “initial conditions” tab allows users to configure light conditions according to time of 

day, and the appropriate lighting for that time of the day can be seen in the simulation. This is where 

other vehicle conditions of the external driver can be specified as well. Light conditions cannot 

change during a simulation and remains constant throughout. The properties tab allows the users to 

configure headlight options for all the vehicles in the scenario. Figure 6 shows the “initial 

conditions” tab that allows users to configure the light and vehicle conditions. The first 

option is to select the type of vehicle and users can choose between cab and trailer options 

for certain types of vehicles. 

Users can also configure tire and brake conditions. The headlights of the vehicle 

can also be turned on in the “initial conditions” tab. They can be turned on while driving 

as well using a button available on the driver simulator. Various characteristics of the 

headlights can be defined as well. The vehicle can also be assigned a failure type that allows 

users to observe behavior of participants in failed conditions. The simulation can also be 

prompted to stop on the detection of a collision. Light conditions and the date of the 

simulation can also be changed.  
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Figure 6 Defining initial conditions 

 

3.2.4 Scenario Fabrication 

After all the required elements have been added to the simulation, the simulation 

conditions can be fabricated as desired using triggers. While all the previous sections 

simply add elements to the simulation that would just normally follow the pre-defined 

rules, this is where they can be instructed to perform certain actions that would help create 

testable driving conditions for the participants. There are different types of triggers that 

perform various functions. A few terms that help define the actions associated with triggers 

are: firing which refers to performing any action defined by a trigger; target set is any set 

of elements that would be affected by the trigger’s action; and instigator set is the set 

elements whose actions fire a trigger. 

The ISAT offers six different types of triggers that can be used to define the actions 
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for various elements in a simulation. They are the global time trigger, roadpad trigger, time 

to arrival trigger, follow trigger, traffic light trigger, and expression trigger. Figure 7 shows 

an image of a roadpad trigger. 

 

Figure 7 “Road Pad” trigger in ISAT 

Figure 7 depicts the roadpad which fires when the vehicle is on the pad. The 

roadpad needs to be placed on the driver side to trigger the action while the external driver 

is placed on the road before the roadpad. Other triggers can also be observed to the right of 

the image. Additionally, there are a few more settings that can be explored related to each 

type of trigger. 

Figure 8 shows the steps involved in setting up a trigger, which in this case is the 

roadpad trigger. There are four tabs in a trigger window. They are predicate, general, 

action, and comment. The instigator set can be assigned in the predicate tab which could 

be a designated ADO, the external driver, or any other desired element in the scenario. 



37 

 

 

Figure 8 Setting up a trigger 

Figure 8 depicts the general tab on the left-hand side. The one-shot option deletes 

a trigger from the simulation after an action has been fired once. The fire-delay option can 

be used to delay the actions that are fired by a trigger until after all the necessary conditions 

are met as set by the instigator. The default value used by the ISAT is ‘0’, which 

immediately fires the actions. A trigger can be prompted to perform an action multiple 

times during a simulation using the debounce option. The default value is usually set to ‘0’ 

and can be changed as required, which dictates the time gap between each action. The 

effects of activation delay and creation radius options were discussed previously and the 

action tab defines the action that need to be fired by the trigger, which prompts the system 

to capture the event information in post-simulation reports. The comment tab allows users 

to make notes for future simulations or other users. When there are multiple triggers in a 
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scenario, they can be assigned priorities, allowing one trigger to fire after another. 

The global time trigger follows the time of the simulation and fires when the 

simulation reaches a specific time. This trigger does not require any other settings by the 

instigator and solely follows the clock. The roadpad trigger designates actions to objects at 

certain points in the simulation. Actions can be specific to certain objects—for example, if 

the user requires a vehicle to drive in the opposite lane, they can name and add an ADO to 

the trigger so only that the vehicle performs the specified action. The time to arrival trigger 

is very similar to a roadpad trigger but in addition to a pad, the time taken by the instigator 

set to reach a designated point is less than or equal to a defined value. These triggers are 

typically used to create near collision scenarios. The follow trigger allows the user to define 

the firing conditions when a vehicle follows another vehicle for a specified period and 

distance. In this case, the instigator set could be either the leading or the following car. The 

trigger also allows users to define tolerance levels in the specified values, and also enables 

the vehicles to follow the same or different lanes. 

For example, this function can be used to generate a BSW condition in the simulation. The 

traffic light trigger performs actions that can be fired based on signal changes. In this case, the 

traffic lights in the scenario make up the instigator set. Users can select the traffic light and define 

the color (green, red, or yellow) to trigger an action. In addition to all the aforementioned triggers, 

small expressions can also be written in the scenario using the expression trigger where the system 

can be prompted to read if a value is equal to, more, or less than a defined value for a variable. This 

trigger can be fired at the beginning of the simulation or by a creation radius. For example, an 

expression trigger may be used to alert a driver if they cross a speed limit. 
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3.2.5 Data Verification/ Extraction 

The ISAT allows for the verification of created scenarios and the extraction of data 

from the simulation. The ISAT provides four different modes that target different levels of 

scenario development. The authoring mode enables users to add new elements to the 

scenario or edit the existing elements. The rehearsal mode generates a walkthrough of the 

conditions in a scenario. The rehearsal mode runs the scenario on the ISAT platform using 

an autonomous driver model and any element can be followed. Since the driver is an 

autonomous model (similar to an ADO), it is more precise than a human participant in the 

simulation. 

The driving behaviors and dynamics are stored as frames that encompass a defined 

time-period of the run and a collection of such frames is called a buffer. The ISAT also 

allows users to record the rehearsal to be stored for reference in the future. The ISAT also 

plays the simulations that were driven by human drivers in miniSimTM to observe and 

extract data from the files. The simulations are then stored as data acquisition (DAQ) files 

that can be imported into the ISAT using the playback mode. Additionally, the movie 

option records parts of the simulation that captures desired time frames. 

The ISAT also displays certain variables of the external driver during the playback 

to observe how their behaviors were changing at any point of interest. As previously 

mentioned, the behaviors are stored as frames which can be searched for information or 

conditions. For example, the frames could be extracted if speed limits exceed a certain 

value. The ISAT offers multiple variables that can be extracted from the simulation DAQ 

file using the playback mode. It can also be exported in various formats. 
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3.3 MiniSimTM 

Along with participant simulations, miniSimTM offers several options that can be 

handy for users. Every simulation automatically generates DAQ files with time and date 

stamps. In addition to this, a text file is generated that can capture eleven different variables. 

The authoring needs to be done in the ISAT to prompt the capture of the variables. 

However, only up to twenty events can be captured by this method. The driving report can 

be viewed immediately on the screen at the end of a simulation by selecting the option in 

miniSimTM. 

MiniSimTM also enables users to specify multiple levels of selection paradigms by 

defining the priority levels. Additionally, users can select the type of vehicle at the start 

of the simulation, such as a passenger car, pickup truck, or a luxury car. The default 

vehicle type assigned to a simulation is a passenger car. Figure 9 shows a screenshot of 

the window in miniSimTM. 
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Figure 9 Initialization window in miniSimTM 

The scenario and the type of vehicle can be selected from the available drop-down 

menus. The DAQ tab allows users to specify the name of the participant and scenario type. 

A unique folder is created for each test subject or participant which is especially helpful 

when each participant tests multiple scenarios. The DAQ output is generated at the end of 

a simulation. The screensaver mode simply activates a screensaver when the simulator is 

not in use. The data collection mode lets users collect data while the playback option lets 

them record the simulation. The message tab displays the success or failure messages of a 

simulation. The DAQ tab names the files and segregates them appropriately. The settings 

tab enables users to select options related to the simulation while the system tab indicates 
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that the associated systems are online and communicating. 

 

3.4 Technical Paradigm 

While the different stages handled by each tool were discussed in the previous 

section, a set of files carries the information forward, putting together information from 

these platforms towards a final focal point. This section discusses the technicalities and 

needs for the three tools to work together. Figure 10 shows a schematic of the transfer of 

files that handle the data. 

 

Figure 10 Technical interaction schematic of driver simulator 

 

The tile library contains information of different types of tiles offered in the TMT 

to build a road network. After putting the tiles together in the TMT, the output generated 

from the TMT is a project file in the “.mos” format. This file holds the information of 

elements used in a project file and acts as an information holding file. The information is 

passed both ways from the TMT to the project files, as depicted in Figure 10. After 

developing a complete project file, several other files also need to be generated from the 

TMT to access the data in the ISAT and miniSimTM. One such file created in this process 

is a logical road information (LRI) file that stores information about the types of roads and 
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the type of authoring that can be allowed for the tiles to be edited in the ISAT. This file is 

further converted into a binary LRI file called the BLI that stores the same information in 

a binary format. It optimizes the memory used to store information to be later accessed by 

the ISAT or miniSimTM. 

Other files that are created in the process include a “scenario control list” (SCL) 

file that summarizes the elements used in the TMT. The open flight or FLT files are 

necessary to convert the 2D tiles into 3D for visualization in miniSimTM. The other file 

required in this process is the “tile reference” (FTR) file that stores information on tile 

combinations required to configure a terrain along with the coordinate information, the 

rotation angle of a tile, and the category of the tile. Additionally, the system creates a three-

dimensional model binary file (with “IVE” as the file extension) that optimizes the storage 

of the necessary information for miniSimTM to access later. As per Figure 10, the ISAT 

uses the logical database to carry the operations further as it only handles 2D portions of 

the process, while miniSimTM uses a combination of both logical and visual databases to 

configure simulation settings. 

Additionally, there are many other files that are generated by default when TMT 

outputs are created. It is important to create both the logical and visual databases at the 

same time while building scenarios to maintain the consistency of information and avoid 

mismatches. Although the TMT allows users to copy built tiles from one file to another, 

copying large files may cause disruptions that needs to be carefully monitored to avoid 

losing work. 

The ISAT uses the BLI file from the TMT to further add additional elements that 

have been discussed in the functional section. While the BLI files hold the logic of 
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information from the TMT, additional layers are added to the same file to keep the 

comparative information constant. The ISAT then generates a scenario file that contains 

the additional information added while pointing to the base file adopted from the TMT. 

This allows for miniSimTM to cross reference with the other visual files that are developed 

in the TMT. This scenario (SCN) file is delivered to miniSimTM as shown in Figure 10. 

The miniSimTM then generates DAQ files that are sent back to the ISAT for analysis. The 

features and purpose of these files were discussed in the previous section. A DAQ viewer 

can also be used to explore the data individually as shown in Figure 11. 

3.5 Driving Simulator 

The driver simulator simulates the driving scenarios which are used to capture 

driving behavior under different conditions. It resembles the interior of a vehicle to give an 

accurate driving feel to the participants. Figure 11 shows the driving simulator setup. 

 

Figure 11 Driver simulator setup 

 

The setup of the driver simulator consists of five screens, seating, and a panel with 

a driving wheel, brake, and accelerator, as well as buttons that handle certain functions in 
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the simulation. While the tab in Figure 11 is handled on the screen placed on the table in 

the left picture, the four screens seen in the right picture simulate the scenarios. The three 

adjacent screens are placed such that they cover the vision cone of the participants to 

emulate the feel of driving in the real-world. The screen placed below the three screens 

displays the vehicle panel and contains the speedometer, fuel gauge, etc. The driving wheel 

and panel buttons are placed in front of the bottom screen. Figure 12 shows the panel 

buttons and steering wheel. 

 

Figure 12 Driving wheel and panel buttons 

 

There are multiple panel buttons that handle multiple actions in the simulation. The 

first picture from the left shows the orientation of the steering wheel within the simulator 

setup. The two buttons highlighted by red circles in the first picture have three buttons on 

each side of the wheel. The first button on the top on each side can be used for turning 

signals, the second button can be used for making half shoulder checks that pan until the 

first side window, and the third button can be used for a complete shoulder check/view 

rotation until the rear passenger window. These can be used in case of lane-changing for 

shoulder checks. 
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The second picture shows the left panel which contains the mirror adjustment panel. 

The white button in the center toggles the mirror selection to left and right, and rear mirrors 

can be adjusted using the four surrounding black buttons. The green button is used to turn 

on the headlights while the blue button turns on the high beam. The two black buttons 

handle the auxiliary input for two input points. 

The third picture shows the right panel buttons of the simulator. The big red button 

turns on the vehicle in the simulation and a vibration is generated when the vehicle is turned 

on, like in the real-world. The two small red buttons beside the power buttons allow the 

participant to switch between parking, reverse, neutral, and driving gears. The yellow 

button is used for parking lights and the black button is used for wipers. The related 

symbols are also shown beside each button to provide general information for participants. 

The fourth picture shows the brake and accelerator that are set up at the bottom of 

the screens highlighted by a red circle. They operate the movement of the vehicle in the 

simulation. 

Figure 13 shows the setup of buttons to activate and control ACC and LKA during 

the simulation. The functions of the buttons as discussed from Figure 12 were revised in 

order to achieve the functions as shown in Figure 13. Activating one of these systems 

enables control of the vehicle at a level 1 automation stage, while activating the systems 

simultaneously simulates the vehicle at level 2 automation stage. 
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Figure 13 Buttons to control ACC and LKA during simulation  

 

As can be observed from Figure 14, the simulation is set in daylight conditions 

where the vehicle is stopped at an intersection. The traffic lights are red while other vehicles 

are crossing the intersection from right side of the driver. The bottom screen can also be 

seen displaying the panel of the vehicle. The fifth screen in the left picture can be seen 

recording the time, featuring information on the type of scenario and vehicle as well. 

 

Figure 14 Simulating a Scenario in Driver Simulator  
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CHAPTER 4: METHODOLOGY 

This chapter provides an overview of the methodology adopted in this research. A 

flowchart outlining the methodology is presented in Figure 15. The first stage involved 

developing appropriate driving scenarios. In order to improve the applicability of the 

results, rural, urban, and freeway driving scenarios were simulated as these are the typical 

settings encountered by a driver. The second stage involved the careful selection of driver 

participants so that the sample population is an accurate representation of the general 

population. The participants in the age group of sixteen to sixty-five years were selected 

for the study. Each participant was provided with all the three driving scenarios while a 

vehicle with or without advanced features was allocated to them at random. 

The third stage involved data processing and analysis to derive meaningful results. 

The analysis of variance (ANOVA) test was performed to evaluate the effectiveness of 

advanced features. Parameters of driver behavior like hard braking, hard cornering, lane 

departures, speeding events, average headway, and brake pedal force were assessed. The 

fourth stage involved the identification and application of changes in driver behavior to 

identify the behavioral differences among vehicles with and without advanced features. 
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Figure 15 Methodological framework 

 

4.1 Scenario Fabrication 

As stated previously, three types of driving scenarios were developed—the rural 

scenario, the urban scenario, and the freeway scenario. These scenarios were developed 

with the intention of mimicking real-world conditions. The idea of developing them was 

to allow the results to be attributed to general driving behavior rather than one type of 

scenario. Since the focus of this study is to test the effect of different types of advanced 

features on driver behavior, various conditions were simulated as follows. 

• The rural scenario was set up with two-lane undivided roads (one lane in each 

direction) later extending into four-lane undivided roads (two lanes in each 

direction). The scenario consists of only one traffic signal and one intersection with 

an all-way stop. The remaining route mostly represents county roads. The vehicles 
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in this scenario consist of passenger cars, pickup trucks, and trucks. The speed 

limits were set at 55 mph. The simulation also consists of a gravel road for a small 

portion, which was intended to capture driver behavior (changes in speeding or 

braking). This scenario was developed to last for seven to eight minutes. 

• The urban scenario was set up for drivers to interact with the elements that are 

typical of urban conditions, such as traffic signals, passenger cars, trucks, school 

buses, motorcycles, and pedestrians. The speed limits were set at 45 mph or 50 

mph. The scenario is developed to last seven to eight minutes and consisted of four-

lane undivided roads (two lanes in each direction). 

• The freeway scenario was developed to last for six to seven minutes and consists 

of two interchanges that allow drivers to transition from one freeway to another 

freeway. The freeways were designed to be four-lane divided roads (two lanes in 

each direction). The speed limits were set at 65 mph for the first freeway and 70 

mph for the second freeway. The vehicles in this scenario mostly comprise trucks 

and passenger cars. The simulation was set up to force interactions between the 

drivers and trucks while merging onto another highway. 

• The scenarios used clear weather and daytime conditions—typically referred to as 

base conditions—until they were specifically set to display other weather or light 

conditions. 

• The simulator provides the option to also simulate the same driving scenarios under 

varying weather and light conditions. Varying weather conditions like rain, snow, 

and fog can be simulated and compared to the clear weather condition. Further, 

varying lighting conditions (dawn, dusk, and night) can also be used during the 
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simulation. 

• The primary focus of the study is to evaluate the effect of advanced features on the 

driver behavior. Therefore, the simulations are generated with LDW, BSW, and 

OSW as the warning features. They are used individually and in combination and 

are then compared to simulations without advanced features. The simulator allows 

users to assign advanced features to scenarios rather than vehicles which can be 

enabled via expressions that can be added prior to a simulation. The participants 

are provided with a vehicle with or without advanced features at random. 

• The LDW displays a warning on the screen when the vehicle departs from its lane. 

BSW displays a warning light on the mirror when another vehicle is detected in a 

blind spot of the car, and the OSW displays a text alerting the driver of over-

speeding. The overspeed limit can be set using “expression”. 

• Additionally, LKA and ACC were provided as a part of the automated features to 

the participants which can be activated during a simulation using the appropriate 

buttons on the wheelbase. Once the LKA is activated, it maintains the vehicle in 

the travel lane during the simulation. Likewise, ACC maintains a designated 

headway from the leading vehicle during the simulation. 

• The navigation instructions are provided to the participants as text on the driving 

screen, which represents a heads-up display (HUD). 

 

4.2 Selecting Participants 

Permission was obtained from the Institution Review Board (IRB) to conduct this 

study. Drivers between sixteen and sixty-five years of age with a valid driver’s license were 
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determined as the target participant population. The selection of participants was 

scrutinized carefully such that the sample is an accurate representation of the general 

population. The selection criteria included many factors, including demographic and 

socioeconomic characteristics of the participants. While the selection cannot be pre-

controlled, identifying gaps in the data (demographic and socioeconomic) at every stage of 

the data collection process and selecting participants to accommodate for the missing data 

points is necessary. This was done throughout the data collection. 

Once a participant was finalized for the study, they were given a small survey that 

captured demographic information. No personal information was collected in the survey to 

maintain anonymity. Participants were also informed that their participation was 

completely voluntary and they could choose to drop out of the study at any point. Similarly, 

if desired, they could opt to skip questions in the survey if they were not comfortable 

answering it. 

Three types of driving conditions were provided to the participants—rural, urban, 

and freeway. The vehicle type was assigned based on the type of vehicle the participant 

drives for their regular commutes. This was captured from the responses to the survey 

questions before the start of simulated driving. The consent forms were provided to the 

parent/guardian for participants below the age of eighteen.  

The survey provided to the participants captured information including their 

education, income, gender, and driving experience. Along with such information, other 

information like their driving history (previous crash involvement/ citations), vehicle 

ownership, and if they have already driven a vehicle with any kind of advanced features 

was gathered. This type of information was used to account for the driving behaviors based 
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on their previous experience to different conditions. 

Other information like alcohol consumption or lack of sleep on the previous day, that 

could affect the driving behavior were also collected in the survey. The participants were also 

given consent forms for them to understand their rights before participating in the survey. 

 

4.3 Data Collection 

The data collected from two sources were combined to form a single database. The 

socioeconomic and demographic data was collected from the survey questionnaire that the 

participants answered during the simulator study, as depicted in Figure 15. The 

questionnaire also collected participants’ driving history, as well as variables such as age, 

gender, type of vehicle owned, race, education, household income, any record of prior 

crashes or citations, alcohol consumption in the last twenty-four hours, hours of sleep, 

medication, marital status, and any advanced safety features in their personal vehicles. This 

data was used to determine the type of vehicle and advanced features to be assigned 

randomly to the participants. Data on participants’ driving behavior was collected by the 

driver simulator and extracted using the ISAT via the DAQ file viewer. 

 

4.4 Data Processing 

Ensuring that the right data extracted from ISAT is assigned to the right participant 

is very vital for the research. Considering the diversity of various variables from the 

questionnaire, any mismatch of data will lead to faulty results. Each participant is awarded 

the same participant ID, both, on the questionnaire and the DAQ files that are generated 

from their driving profiles. Each DAQ file was changed and assigned the corresponding 

participant ID immediately after driving each scenario to avoid any confusion later. The 
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DAQ files allow users to extract a wide range of variables that capture driving behaviors 

like hard braking, hard cornering, maximum speed, minimum speed, average speed, 

average headway, lane departures, speeding events, and hard cornering. This data was 

combined with the data from the survey questionnaire for further analysis. This enables an 

in-depth analysis of driver behavior considering the extent of information collected. 

Table 1 summarizes the distribution of samples collected for this research. The 

participant selection is made with an intent to fill any gaps to ensure a representation of the 

actual population. This is to warrant the applicability of the research results to typical rural, 

urban, and freeway areas. 

As can be observed from Table 1, about 54% of the participants are within the age 

range of 16 – 25 years, about 26% are within the age range 25 – 45 years, 11.5% are within 

the age range 46 – 55 years, and about 9% are within the age range of 56 – 65 years. The 

average age of the participants involved in the research is 30 years. The gender distribution 

is 60% male and 40% female for the participant group. Similarly, about 57.2% of the 

participants are Caucasians, 22.8% are African-Americans, 5.7% are Hispanics, and 14.3% 

are Asians. 

Table 1 Data distribution of collected data 

Variable Category Frequency Percentage 

Age 

16–25 years 28 47.7 

25–45 years 20 33.3 

46–55 years 8 13.3 

56–65 years 4 6.7 

Gender 
Male 36 60 

Female 24 40 

Race 

Caucasian 29 48.3 

African–American 12 20 

Hispanic 5 8.3 

Asian 14 23.3 

Education High School 15 25 
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Associate 5 8.3 

Bachelor’s 23 38.3 

Master’s 16 26.7 

Doctorate 1 1.7 

Income 

Less than 25k 11 18.3 

25k–49k 8 13.3 

50k–75k 2 3.3 

75k–99k 6 1 

100k–150k 11 18.3 

150k or more 14 23.3 

 

 

4.5 Data Analysis 

Carefully studying the data once all the data is combined is important to understand 

and propose appropriate data analytical methods that yield meaningful results. The 

variables that can be used to evaluate the effectiveness of the advanced features were 

selected. For example, average speed and maximum speed were used to analyze OSW. 

Similarly, lane departures were used to analyze LDW. 

The primary aim of the research is to capture differences in driving behavior when 

driving a vehicle with advanced features compared to driver behavior when driving a 

vehicle without advanced features. Given the number of groups to compare and relevant 

variables, an ANOVA test was applied. ANOVA compares the mean values of multiple 

groups and determines if they are statistically different (SPSS Tutorials, 2020).  An 

example hypothesis for ANOVA test is as follows. 

• Null hypothesis: The number of times participants exceed the speed limit with 

OSW is the same as the number of times participants exceed the speed limit without 

OSW. 

• Alternate hypothesis: The number of times participants exceed the speed limit with 
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OSW is less than the number of times participants exceed the speed limit without 

OSW. 

An ANOVA test determines if we reject or fail to reject this hypothesis. The 

expected outcome is a rejection of the hypothesis, due to the difference in driving behavior 

with advanced features. Once the results from ANOVA are established, evaluating the 

magnitude of the difference helps capture the nature of effects of advanced features.  
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CHAPTER 5: DESCRIPTIVE STATISTICS 

Tables 2, 3, and 4 depict descriptive statistics for various driving behaviors in rural, 

urban, and freeway scenarios, summarizing the following variables: number of hard 

braking events; number of hard cornering events; number of lane departure events; average 

speed; average headway; maximum speed; and brake pedal force. Hard braking represents 

the total number of times a participant applied sudden brakes during a simulation. 

Similarly, hard cornering is the total number of times a participant made sudden turns in 

the simulation. The number of times the participant deviated from their lane is represented 

by lane departures. These variables indicate aggressive or unsafe driving behaviors. 

The average speed is the speed maintained by a participant throughout a simulation 

and is measured in miles per hour. Similarly, the maximum speed is the maximum speed 

reached during a simulation by a participant in miles per hour. The average headway is 

measured in feet and is the distance maintained by a participant from the leading vehicle. 

The brake force is the average force applied on the brake by a participant during a 

simulation and is measured in pounds. 

Table 2 Driver behavior parameters (rural) 

Driver Behavior Minimum Mean Maximum Std. Dev. 

Hard Braking 0.00 1.47 4.00 0.97 

Hard Cornering 0.00 2.73 12.00 2.33 

Lane Departures 0.00 6.08 30.00 6.18 

Average Speed (mph) 14.60 40.96 62.10 7.29 

Average Headway (ft) 49.50 319.56 853.70 223.89 

Maximum Speed (mph) 42.80 61.41 107.50 12.77 

Brake Force (lbs) 0.33 16.29 60.00 14.06 

Note: Braking, cornering and lane departures are numbers without units. They are the number of times the 

corresponding action was performed per participant per simulation. 
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Table 3 Driver behavior parameters (urban) 

Driver Behavior Minimum Mean Maximum Std. Dev. 

Hard Braking 0.00 1.58 4.00 1.06 

Hard Cornering 0.00 1.74 5.00 1.10 

Lane Departures 0.00 4.57 21.00 4.76 

Average Speed (mph) 30.50 42.35 55.30 5.13 

Average Headway (ft) 94.00 550.33 1660.20 444.20 

Maximum Speed (mph) 49.40 62.15 102.20 7.59 

Brake Force (lbs) 1.09 15.92 61.20 15.96 

Note: Braking, cornering and lane departures are numbers without units. They are the number of times the 

corresponding action was performed per participant per simulation. 

 

Table 4 Driver behavior parameters (freeway) 

Driver Behavior Minimum Mean Maximum Std. Dev. 

Hard Braking 0.00 0.35 2.00 0.53 

Hard Cornering 0.00 2.88 10.00 1.68 

Lane Departures 0.00 12.12 39.00 9.79 

Average Speed (mph) 40.40 56.59 67.80 5.21 

Average Headway (ft) 77.30 304.89 823.70 182.98 

Maximum Speed (mph) 61.50 76.29 95.50 7.38 

Brake Force (lbs) 0.03 6.76 41.00 8.58 

Note: Braking, cornering and lane departures are numbers without units. They are the number of times the 

corresponding action was performed per participant per simulation. 

 

Table 5 Provision of vehicles with or without advanced features to participants 

ADAS Rural Urban Freeway 

LDW 6 7 7 

BSW 7 7 7 

OSW 7 6 5 

LDW & BSW 2 2 5 

LDW & OSW 7 8 4 

BSW & OSW 5 4 4 

All 2 3 5 

ACC 9 9 9 

LKA 8 8 8 

ACC & LKA 17 17 17 

None 7 6 6 
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5.1 Rural Driving Scenario 

The descriptive statistics are provided as a side-by-side comparison to show the 

values across the groups with the ADAS and the group without the ADAS. Table 6 shows 

the descriptive statistics comparing the participant group provided with one of the warning 

features (LDW, BSW, and OSW), the participant group provided with one of the automated 

features (ACC and LKA) and the participant group not provided with any ADAS. The 

mean values for hard braking, hard cornering, and lane departures for the participant group 

without LDW are higher, as indicated in Table 6. Additionally, the average headway for 

the participant group without LDW was lower than for the participant group with LDW. 

This indicates aggressive driving behaviors from participants without LDW while 

participants with LDW demonstrated safer driving behaviors. On the other hand, average 

speed, maximum speed, and brake force have similar values between the two participant 

groups. 

The average headway and brake pedal force values are different between the 

participant groups while the other parameters are similar. The participants with BSW seem 

to maintain shorter headways, while the other behavior parameters such as hard braking, 

lane departures, and average speed have lower values compared to participants driving a 

vehicle without BSW. It can be observed that hard braking, average speed, average 

headway, and maximum speed have higher mean values for the participant group without 

OSW compared to the participant group driving a vehicle with OSW. On the other hand, 

hard cornering events, lane departure events, and brake pedal force have higher mean 

values for the participant group driving a vehicle with OSW. 

The mean values of lane departures, average speed, average headway, and brake 
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force are lower for the participant group with LKA compared to the participant group with 

LDW. The standard deviation for these driver behaviors is also low, which shows lower 

variation in participants’ driving behavior. The mean values of average headway and brake 

force are lower for the participant group that drove a vehicle with ACC compared to the 

participant group that drove a vehicle with BSW or OSW. 

Table 6 Driver behavior parameters - ADAS (rural) 

Parameters Statistics LDW BSW OSW ACC LKA No ADAS 

Braking 

Minimum 

0.00 0.00 0.00 1.00 0.00 1.00 

Cornering 0.00 0.00 0.00 2.00 2.00 1.00 

Lane Departures 0.00 1.00 0.00 8.00 2.00 2.00 

Avg_Speed (mph) 14.60 33.40 14.6 35.30 39.80 29.90 

Avg_Headway (ft) 49.50 65.50 49.50 94.30 383.80 89.50 

Max_Speed (mph) 42.80 48.30 42.80 55.40 61.60 50.00 

Brake Force (lbs.) 3.20 0.33 0.33 1.19 14.60 10.30 

Braking 

Mean 

0.88 1.06 1.00 2.25 1.50 2.14 

Cornering 2.24 3.38 4.19 2.50 2.75 3.00 

Lane Departures 5.65 7.75 10.38 10.25 3.50 8.57 

Avg_Speed (mph) 41.14 40.59 37.02 36.53 41.43 45.20 

Avg_Headway (ft) 478.71 370.56 412.25 97.15 440.30 421.71 

Max_Speed (mph) 59.05 64.59 53.48 57.35 68.20 69.20 

Brake Force (lbs.) 26.01 19.58 26.72 1.29 19.60 22.64 

Braking 

Maximum 

3.00 3.00 4.00 3.00 3.00 3.00 

Cornering 6.00 10.00 12.00 3.00 4.00 10.00 

Lane Departures 16.00 27.00 30.00 13.00 5.00 23.00 

Avg_Speed (mph) 60.30 55.6 47.60 38.20 43.40 62.10 

Avg_Headway (ft) 853.70 664.80 853.70 102.80 506.50 631.30 

Max_Speed (mph) 107.50 95.40 56.90 59.10 73.40 89.00 

Brake Force (lbs.) 48.50 36.40 60.00 1.46 23.40 38.00 

Braking 

Standard 

Deviation 

0.93 0.85 1.14 0.96 1.29 0.69 

Cornering 1.60 3.26 3.49 0.58 0.96 3.11 

Lane Departures 4.18 7.15 7.99 2.22 1.29 7.14 

Avg_Speed (mph) 9.89 6.67 7.10 1.21 1.64 12.46 

Avg_Headway (ft) 240.40 217.67 246.10 3.88 50.74 181.18 

Max_Speed (mph) 18.10 16.56 4.08 1.70 5.08 15.33 

Brake Force (lbs.) 9.37 11.94 14.26 0.12 3.75 8.80 

Note: Braking, cornering and lane departures are numbers without units. They are the number of times the 

corresponding action was performed per participant per simulation. 

 

Young people are classified as people aged ten to twenty-five years by the World 

Health Organization. The participant groups were segregated accordingly to evaluate their 

driving behavior. Table 7 shows descriptive statistics of driving behavior parameters 
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comparing young (fifteen to twenty-five years) and adult participants (above twenty-five 

years), male and female participants, daytime and nighttime conditions, and clear weather 

and rainy weather conditions for the rural scenario. The mean of hard braking events is 

higher for adult participants compared to young participants. The mean values of average 

speed and maximum speed are also higher for adult participants whereas the mean values 

of other driving behavior parameters are similar in the rural driving scenario. 

The mean values of the average headway and brake force are slightly higher for 

female participants compared to male participants. The other driver behavior parameters 

are similar in the rural driving scenario. The mean values of hard cornering, lane 

departures, and average headway are higher for the participants group who drove in 

nighttime conditions compared to the participant group who drove in daytime conditions. 

The mean values of average speed and maximum speed are higher for daytime conditions. 

More aggressive driving was observed during daytime conditions, while risky driver 

behaviors like hard cornering and lane departures are higher during nighttime. The mean 

values of average headway and brake force are higher for the participant group that drove 

in rainy conditions compared to the participant group that drove in clear weather. The mean 

values of other parameters such as hard braking, hard cornering, and lane departures are 

higher for participants who drove during in clear weather conditions. More aggressive 

driving behavior was observed during clear weather conditions while rain tended to make 

participants more careful. 
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Table 7 Driver behavior parameters - age, gender, lighting condition, and weather 

condition (rural) 

Driver Behavior Minimum Mean Maximum Std. Dev. 

Age 
≤ 25 

Years 

> 25 

Years 

≤ 25 

Years 

> 25 

Years 

≤ 25 

Years 

> 25 

Years 

≤ 25 

Years 

> 25 

Years 

Hard Braking 0 0 1.28 1.62 4 3 1.02 0.91 

Hard Cornering 0 0 2.71 2.74 12 10 2.28 2.39 

Lane Departures 0 1 5.69 6.4 30 27 6 6.38 

Avg. Speed (mph) 14.6 29.9 39.6 42.09 55.6 62.1 6.31 7.92 

Avg. Headway (ft) 49.5 72.3 319.98 319.2 853.7 664.8 244.79 207.89 

Maximum Speed 

(mph) 42.8 47.7 58.95 63.46 92.5 107.5 11.11 13.79 

Brake Force (lbs.) 1.26 0.33 15.73 16.76 48.5 60 13.91 14.33 

Gender Male Female Male Female Male Female Male Female 

Hard Braking 0 0 1.47 1.47 4 3 0.99 0.95 

Hard Cornering 0 0 2.82 2.59 10 12 2.34 2.34 

Lane Departures 1 0 6.53 5.44 27 30 6.13 6.29 

Avg. Speed (mph) 29.9 14.6 41.44 40.28 62.1 55.6 7.06 7.68 

Avg. Headway (ft) 49.5 49.5 324.7 312.32 853.7 757.6 224.05 227.04 

Maximum Speed 

(mph) 46.1 42.8 60.69 62.42 95.4 107.5 11.55 14.44 

Brake Force (lbs.) 1.11 0.33 15.39 17.56 37.1 60 12.57 16.04 

Lighting Condition Day Night Day Night Day Night Day Night 

Hard Braking 0 0 1.42 1.56 3 4 0.93 1.05 

Hard Cornering 0 0 2.5 3.15 10 12 2.1 2.68 

Lane Departures 0 1 4.34 9.29 16 30 3.66 8.35 

Avg. Speed (mph) 14.6 29.9 41.42 40.09 62.1 51.6 7.93 6.01 

Avg. Headway (ft) 49.5 81.5 273.67 404.53 625.9 853.7 193.01 254.5 

Maximum Speed 

(mph) 42.8 46.1 63.25 57.99 107.5 101.1 13.39 10.93 

Brake Force (lbs.) 0.33 1.11 15.36 18.03 60 42 14.26 13.77 

Weather Condition Clear Rain Clear Rain Clear Rain Clear Rain 

Hard Braking 0 0 1.53 1.33 4 3 1.01 0.87 

Hard Cornering 0 0 2.28 3.71 6 12 1.23 3.6 

Lane Departures 1 0 5.47 7.42 23 30 5.19 7.91 

Avg. Speed (mph) 29.9 14.6 41 40.86 62.1 60.3 6.59 8.83 

Avg. Headway (ft) 49.5 72.3 291.79 380.88 757.6 853.7 213.39 238.7 

Maximum Speed 

(mph) 48.3 42.8 61.73 60.69 107.5 101.1 12.94 12.62 

Brake Force (lbs.) 1.11 0.33 14.97 19.22 38 60 12.84 16.35 

Note: Braking, cornering and lane departures are numbers without units. They are the number of times the 

corresponding action was performed per participant per simulation. 

 

When a vehicle engages both LKA and ACC while driving, a level 2 vehicle is 

simulated. Table 8 compares descriptive statistics between participant groups who drove 

vehicles with automated features, warning features and without any ADAS for the rural 
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scenario. The mean values of lane departures, average headway, maximum speed, and 

brake force are lower for the participant group who drove a vehicle with automated features 

compared to the participant group who drove a vehicle with warning features or without 

ADAS. Further, the standard deviation for all driver behavior parameters is low for the 

participant group who drive a vehicle with automated features compared to warning 

features or without ADAS i.e. lower variation in driving behavior. 

Table 8 Driver behavior parameters - no ADAS, warning and automated features (rural) 

Driver Behavior Statistic No ADAS Warning Automated 

Hard Braking 

Minimum 

1.00 0.00 1.00 

Hard Cornering 1.00 0.00 1.00 

Lane Departures 2.00 0.00 1.00 

Avg. Speed (mph) 29.90 14.60 36.90 

Avg. Headway (ft) 89.50 49.50 94.00 

Maximum Speed (mph) 50.00 42.80 52.80 

Brake Force (lbs.) 10.30 0.33 1.11 

Hard Braking 

Mean 

2.14 1.06 2.14 

Hard Cornering 3.00 3.30 2.14 

Lane Departures 8.57 8.31 1.43 

Avg. Speed (mph) 45.20 40.33 39.46 

Avg. Headway (ft) 421.71 433.12 112.00 

Maximum Speed (mph) 69.20 61.33 57.56 

Brake Force (lbs.) 22.64 24.85 1.67 

Hard Braking 

Maximum 

3.00 4.00 3.00 

Hard Cornering 10.00 12.00 4.00 

Lane Departures 23.00 30.00 3.00 

Avg. Speed (mph) 62.10 60.30 41.60 

Avg. Headway (ft) 631.30 853.70 175.40 

Maximum Speed (mph) 89.00 107.50 61.20 

Brake Force (lbs.) 38.00 60.00 2.72 

Hard Braking 

Std. Dev. 

0.69 1.01 0.69 

Hard Cornering 3.11 2.94 1.07 

Lane Departures 7.14 7.05 0.79 

Avg. Speed (mph) 12.46 8.47 1.72 

Avg. Headway (ft) 181.18 223.99 28.68 

Maximum Speed (mph) 15.33 16.61 2.99 

Brake Force (lbs.) 8.80 12.87 0.56 

Note: Braking, cornering and lane departures are numbers without units. They are the number of times the 

corresponding action was performed per participant per simulation. 
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5.2 Urban Driving Scenario 

Table 9 depicts descriptive statistics comparing the participant group with one of 

the warning features (LDW, BSW, and OSW), the participant group with one of the 

automated features (ACC and LKA) and without any ADAS in the urban scenario. Hard 

cornering and lane departures have lower mean values for the non-ADAS participant group 

while the average headway is higher when compared to the LDW participant group. On the 

other hand, hard braking, average speed, maximum speed, and brake force are similar in 

values for both participant groups. The difference in the mean values indicate non-

aggressive driving behaviors among participants provided with LDW, but these 

participants also tended to speed more compared to the participants who did not have any 

ADAS. 

The mean values for hard braking, hard cornering, lane departures, average speed, 

and maximum speed for participants without ADAS are lower compared to participants 

provided with BSW. Further lane departures, average headway, and brake pedal force for 

participants without ADAS are higher compared to participants provided with BSW. 

Overall, BSW seems to make participants’ car-following and speeding behavior more 

aggressive as they also exhibited fewer safe driving maneuvers such as speeding, braking, 

and handling the vehicle. Similar to the rural scenario, the mean values of the number of 

lane departure events and brake force are higher for the participant group provided with 

OSW but the mean of average headway is lower for the participant group provided with 

OSW. Other driving behaviors like handling the vehicle, speeding, turning, and sudden 

braking seem to be more frequent among drivers for the participant group that drive a 

vehicle without ADAS. 



65 

 

Table 9 Driver behavior parameters - ADAS (urban) 

Parameters Statistics LDW BSW OSW ACC LKA No ADAS 

Braking 

Minimum 

0.00 0.00 0.00 1.00 1.00 0.00 

Cornering 0.00 0.00 0.00 1.00 1.00 0.00 

Lane Departures 0.00 1.00 0.00 7.00 1.00 0.00 

Avg. Speed (mph) 31.50 35.50 30.50 44.60 36.90 37.20 

Avg. Headway (ft) 157.70 282.60 356.00 97.60 311.20 616.70 

Max. Speed (mph) 49.40 49.40 49.40 59.30 64.20 51.90 

Brake Force (lbs.) 6.10 3.90 3.90 1.11 15.60 18.30 

Braking 

Mean 

1.45 1.75 1.24 2.00 2.00 1.50 

Cornering 0.90 1.94 1.33 3.00 2.25 1.50 

Lane Departures 3.50 4.50 6.86 10.50 1.75 6.83 

Avg. Speed (mph) 40.35 44.33 39.35 45.77 40.53 41.72 

Avg. Headway (ft) 904.86 750.15 979.27 102.55 363.75 937.93 

Max. Speed (mph) 62.87 63.63 58.40 61.10 68.25 59.22 

Brake Force (lbs.) 26.82 19.63 25.58 1.44 19.00 38.48 

Braking 

Maximum 

4.00 4.00 4.00 3.00 3.00 3.00 

Cornering 2.00 5.00 5.00 2.00 3.00 3.00 

Lane Departures 11.00 10.00 21.00 14.00 3.00 20.00 

Avg. Speed (mph) 53.90 53.90 50.30 47.10 44.70 55.30 

Avg. Headway (ft) 1432.20 1460.80 1660.20 108.10 432.60 1170.30 

Max. Speed (mph) 102.20 89.70 61.8 62.10 71.00 75.40 

Brake Force (lbs.) 49.30 49.30 60.30 1.63 22.20 61.20 

Braking 

Standard 

Deviation 

1.36 1.24 1.37 0.82 0.82 1.05 

Cornering 0.79 1.53 1.28 0.82 0.96 1.22 

Lane Departures 3.09 2.99 5.50 3.11 0.96 7.94 

Avg. Speed (mph) 6.27 6.06 5.32 1.10 3.29 6.88 

Avg. Headway (ft) 345.18 411.27 337.14 4.93 51.42 218.89 

Max. Speed (mph) 12.40 9.61 3.66 1.26 3.13 8.21 

Brake Force (lbs.) 12.73 15.37 17.75 0.23 3.03 17.10 

Note: Braking, cornering and lane departures are numbers without units. They are the number of times the 

corresponding action was performed per participant per simulation. 

 

The mean of the number of hard cornering events is higher for LKA which also 

yielded lower mean values for lane departures, average headway, and brake force. The 

mean values of hard braking and hard cornering are higher for the participant group that 

drove a vehicle with ACC compared to BSW and OSW, whereas the mean values of 
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average headway and brake force are lower. 

Table 10 depicts descriptive statistics of driver behavior parameters comparing 

participant groups containing young and adult participants, male and female participants, 

daytime and nighttime conditions, and clear weather and rainy weather conditions in the 

urban scenario. The mean values of hard braking are higher for the adult participant group 

compared to the young participant group. On the other hand, the mean values of lane 

departures, average headway, and brake force are higher for the young participant group 

compared to the adult participant group. Higher braking force was applied by younger 

participants along with a greater frequency of lane departures. The mean values of hard 

braking, average headway, maximum speed, and brake force are higher for the male 

participant group compared to the female participant group. The other driver behavior 

parameters are similar for both the participant groups. The male participants seem to apply 

hard brakes and more pressure while braking. They also drove at higher speeds compared 

to female participants. The higher speeds seem to lead to maintaining a higher average 

headway in urban conditions. 
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Table 10 Driver behavior parameters - age, gender, lighting condition, and weather 

condition (urban) 

Driver Behavior Minimum Mean Maximum Std. Dev. 

Age 
≤ 25 

Years 

> 25 

Years 

≤ 25 

Years 

> 25 

Years 

≤ 25 

Years 

> 25 

Years 

≤ 25 

Years 

> 25 

Years 

Hard Braking 0 0 1.34 1.78 4 4 1.06 1.02 

Hard Cornering 0 0 1.77 1.71 4 5 1.03 1.17 

Lane Departures 0 0 4.77 4.4 21 19 5.59 4.01 

Avg. Speed (mph) 31.6 30.5 42.56 42.17 55.3 53.6 5.32 5.02 

Avg. Headway (ft) 94 95.6 570.83 533.25 1460.8 1660.2 443.64 449.31 

Maximum Speed 

(mph) 50.8 49.4 61.94 62.34 89.7 102.2 6.7 8.35 

Brake Force (lbs.) 1.09 1.23 17.83 14.34 61.2 50.3 18.13 13.96 

Gender Male Female Male Female Male Female Male Female 

Hard Braking 0 0 1.89 1.15 4 4 0.98 1.02 

Hard Cornering 0 0 1.62 1.91 5 4 1.09 1.12 

Lane Departures 0 0 4.8 4.25 20 21 4.81 4.76 

Avg. Speed (mph) 31.5 30.5 42.3 42.41 55.3 53.6 4.93 5.47 

Avg. Headway (ft) 95 94 622.19 449.28 1460.8 1660.2 466.15 396.58 

Maximum Speed 

(mph) 51.9 49.4 62.97 61 102.2 78.7 8.65 5.74 

Brake Force (lbs.) 1.09 1.11 18.56 11.91 61.2 60.3 16.54 14.38 

Lighting Condition Day Night Day Night Day Night Day Night 

Hard Braking 0 0 1.45 1.87 4 4 0.95 1.23 

Hard Cornering 0 1 1.72 1.79 5 4 1.21 0.83 

Lane Departures 0 1 3.24 7.5 14 21 3.31 6.09 

Avg. Speed (mph) 31.6 30.5 42.77 41.41 53.9 55.3 4.94 5.52 

Avg. Headway (ft) 94 96.1 465.23 738.27 1432.2 1660.2 388.21 507.66 

Maximum Speed 

(mph) 49.4 55.4 61.43 63.77 89.7 102.2 6.52 9.52 

Brake Force (lbs.) 1.11 1.09 12.72 22.87 48.8 61.2 12.27 20.6 

Weather Condition Clear Rain Clear Rain Clear Rain Clear Rain 

Hard Braking 0 0 1.47 1.81 4 3 1.1 0.94 

Hard Cornering 0 0 1.76 1.69 4 5 0.97 1.35 

Lane Departures 0 0 4.57 4.58 21 20 4.83 4.73 

Avg. Speed (mph) 30.5 31.6 42.62 41.82 53.9 55.3 4.92 5.57 

Avg. Headway (ft) 94 94.8 472.88 702.26 1660.2 1432.2 408.32 479.74 

Maximum Speed 

(mph) 49.4 51.9 62.49 61.49 102.2 78.7 8.11 6.57 

Brake Force (lbs.) 1.11 1.09 12.94 21.64 60.3 61.2 13.9 18.26 

Note: Braking, cornering and lane departures are numbers without units. They are the number of times the 

corresponding action was performed per participant per simulation. 

 

Table 11 compares descriptive statistics between the participant group that drove a 

vehicle with automated features compared to the participant group that drove a vehicle with 

warning features or without any ADAS in the urban scenario. The mean values of lane 
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departures, average headway, and brake force are lower for the participant group who drove 

a vehicle with automated features. Lower standard deviation values for lane departures, 

average speed, average headway, maximum speed, and brake force indicated less variance 

in participants’ driving behavior. 

Table 11 Driver behavior parameters - no ADAS, warning and automated features 

(urban) 

Driver Behavior Statistic No ADAS Warning Automated 

Hard Braking 

Minimum 

0.00 0.00 0.00 

Hard Cornering 0.00 0.00 0.00 

Lane Departures 0.00 0.00 0.00 

Avg. Speed (mph) 37.20 30.50 34.77 

Avg. Headway (ft) 616.70 157.70 94.00 

Maximum Speed (mph) 51.90 49.40 57.90 

Brake Force (lbs.) 18.30 3.90 1.09 

Hard Braking 

Mean 

1.50 1.51 1.71 

Hard Cornering 1.50 1.54 2.14 

Lane Departures 6.83 5.16 1.43 

Avg. Speed (mph) 41.72 42.00 43.66 

Avg. Headway (ft) 937.93 838.35 126.44 

Maximum Speed (mph) 59.22 62.29 61.23 

Brake Force (lbs.) 38.48 23.03 1.65 

Hard Braking 

Maximum 

3.00 4.00 3.00 

Hard Cornering 3.00 5.00 4.00 

Lane Departures 20.00 21.00 4.00 

Avg. Speed (mph) 55.30 53.90 45.80 

Avg. Headway (ft) 1170.30 1660.20 230.90 

Maximum Speed (mph) 75.40 102.20 64.40 

Brake Force (lbs.) 61.20 60.30 2.69 

Hard Braking 

Std. Dev. 

1.05 1.28 0.95 

Hard Cornering 1.22 1.28 1.21 

Lane Departures 7.94 4.88 1.27 

Avg. Speed (mph) 6.88 6.31 3.93 

Avg. Headway (ft) 218.89 386.39 49.34 

Maximum Speed (mph) 8.21 9.94 2.10 

Brake Force (lbs.) 17.10 14.99 0.55 

Note: Braking, cornering and lane departures are numbers without units. They are the number of times the 

corresponding action was performed per participant per simulation. 

 

5.3 Freeway Driving Scenario 

Table 12 depicts descriptive statistics comparing the participant group with one of 

the warning features (LDW, BSW, and OSW) compared to the participant group with one 
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of the automated features (ACC and LKA) or without any ADAS in the freeway scenario. 

It can be observed that lane departures and hard cornering events have different mean 

values between the participant group with LDW and participant group not provided with 

any ADAS, while other driver behavior parameters have similar values. The mean values 

of these driver behaviors are higher for the participant group without warning features. 

Participants that drove a vehicle without warning features seem to be more aggressive in 

lane-following and turning. Participants that drove a vehicle with LDW seem to 

demonstrate safer driving behavior. 

The mean values for hard braking events and brake pedal force are higher for the 

participant group who drove a vehicle without any ADAS compared to the participant 

group who drove a vehicle with BSW. The hard cornering events, lane departure events, 

maximum speed, and average headway were lower for the participant group who drove a 

vehicle without BSW. The participant group who drove a vehicle with BSW seemed to 

exhibit more aggressive lane-following and speeding but displayed safer car-following and 

braking behaviors. The mean brake force is higher for the participant group who drove a 

vehicle with OSW across all driving conditions. This could be because of the speed 

warning that may have triggered participants to brake immediately. Similarly, the speeding 

behavior of the participant group who drove a vehicle without any ADAS is also similar 

across driving conditions. 
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Table 12 Driver behavior parameters - ADAS (freeway) 

Parameters Statistics LDW BSW OSW ACC LKA No ADAS 

Braking 

Minimum 

0.00 0.00 0.00 1.00 1.00 0.00 

Cornering 0.00 1.00 0.00 2.00 1.00 3.00 

Lane Departures 0.00 0.00 0.00 8.00 1.00 16.00 

Avg. Speed (mph) 40.40 40.4 47.40 35.30 36.90 49.50 

Avg. Headway (ft) 77.30 118.40 123.50 94.30 311.20 114.50 

Max. Speed (mph) 64.50 71.90 69.80 55.40 64.20 73.60 

Brake Force (lbs.) 1.60 0.70 1.60 1.19 15.60 2.20 

Braking 

Mean 

0.43 0.38 0.50 2.25 2.00 0.50 

Cornering 2.81 3.43 3.33 2.50 2.25 5.33 

Lane Departures 11.67 17.57 16.17 10.25 1.75 25.83 

Avg. Speed (mph) 57.31 57.49 56.51 36.53 40.53 58.73 

Avg. Headway (ft) 374.80 428.80 393.35 97.15 363.75 356.62 

Max. Speed (mph) 78.87 80.52 77.75 57.35 68.25 79.40 

Brake Force (lbs.) 10.99 8.48 12.51 1.29 19.00 6.65 

Braking 

Maximum 

2.00 2.00 2.00 3.00 3.00 1.00 

Cornering 7.00 9.00 9.00 3.00 3.00 10.00 

Lane Departures 26.00 36.00 27.00 13.00 3.00 39.00 

Avg. Speed (mph) 66.60 65.10 62.90 38.20 44.70 67.80 

Avg. Headway (ft) 823.70 823.70 823.70 102.80 432.60 588.90 

Max. Speed (mph) 95.50 95.50 84.40 59.10 71.00 87.50 

Brake Force (lbs.) 41.00 28.80 41.00 1.46 22.20 12.60 

Braking 

Standard 

Deviation 

0.68 0.59 0.62 0.96 0.82 0.55 

Cornering 1.44 1.89 1.81 0.58 0.96 2.66 

Lane Departures 6.58 8.55 8.70 2.22 0.96 8.28 

Avg. Speed (mph) 6.10 5.40 3.81 1.21 3.29 6.79 

Avg. Headway (ft) 240.06 249.98 228.77 3.88 51.42 193.53 

Max. Speed (mph) 7.24 7.19 4.11 1.70 3.13 5.66 

Brake Force (lbs.) 9.98 8.01 11.49 0.12 3.03 4.22 

Note: Braking, cornering and lane departures are numbers without units. They are the number of times the 

corresponding action was performed per participant per simulation. 

Table 13 compares descriptive statistics between young and adult participants, male 

and female participants, daytime and nighttime conditions, and clear weather and rainy 

weather conditions for the freeway scenario. The mean values of average headway, 

maximum speed, and brake force are higher for adult participants compared to young 

participants. The adult participants were observed to maintain longer headways and also 
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speed more than young participants in the freeway driving scenarios. The mean value of 

average headway is higher for female participants in the freeway driving scenarios. The 

mean values of lane departures and brake force are higher for male participants indicating 

more aggressive driving behavior. 

Table 14 compares descriptive statistics between the participant group who drove 

a vehicle with automated features compared to the participant group who drove a vehicle 

with warning features or without any ADAS in the freeway scenario. The mean values of 

hard braking, lane departures, average speed, average headway, maximum speed, and 

brake force are lower for the participant group who drove a vehicle with automated 

features. Lower standard deviation was also observed for these driver behaviors, indicating 

less variance in participant driving behavior. 

The mean values of some of the variables vary based on the advanced feature 

provided to the participant. The type of driving scenario also influenced the driving 

behavior. LDW and OSW affected the mean values of the majority of the driver behaviors 

in all the three driving scenarios, but BSW affected fewer driving behaviors. Additionally, 

age, gender, lighting and weather conditions also had an effect on participants’ driving 

behaviors. They exhibited safer car-following maneuvers during rainy and nighttime 

driving conditions. The type of driving scenario also affected male and female participants’ 

driving behavior. The differences in the mean values need to be further investigated to 

derive meaningful results. The sample sizes were not equal for different groups (for 

example, the number of participants provided with LDW, BSW or OSW are not the same). 

A one-way ANOVA test can accommodate comparison groups of unequal sample sizes. 

The next chapter presents and discusses the one-way ANOVA test results. 
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Table 13 Driver behavior parameters - age, gender, lighting condition, and weather 

condition (freeway) 

Driver Behavior Minimum Mean Maximum Std. Dev. 

Age 
≤ 25 

Years 

> 25 

Years 

≤ 25 

Years 

> 25 

Years 

≤ 25 

Years 

> 25 

Years 

≤ 25 

Years 

> 25 

Years 

Hard Braking 0 0 0.37 0.33 1 2 0.49 0.57 

Hard Cornering 1 0 3.03 2.76 9 10 1.64 1.72 

Lane Departures 0 0 12.06 12.17 36 39 9.89 9.82 

Avg. Speed (mph) 49.7 40.4 56.37 56.77 65.4 67.8 4.02 6.08 

Avg. Headway (ft) 117 77.3 275.89 329.06 814.9 823.7 148.32 206.17 

Maximum Speed 

(mph) 64.5 61.5 75.58 76.88 92.7 95.5 7.3 7.49 

Brake Force (lbs.) 0.07 0.03 5.75 7.52 41 31.3 8.55 8.62 

Gender Male Female Male Female Male Female Male Female 

Hard Braking 0 0 0.31 0.41 2 1 0.56 0.49 

Hard Cornering 0 1 2.82 2.97 10 6 1.85 1.42 

Lane Departures 0 1 13.51 10.16 39 27 10.44 8.58 

Avg. Speed (mph) 47.4 40.4 56.71 56.41 65.3 67.8 4.78 5.84 

Avg. Headway (ft) 77.3 109.7 308.04 300.46 775.9 823.7 182.19 186.92 

Maximum Speed 

(mph) 61.5 64.2 76.21 76.41 95.5 92.7 7.59 7.19 

Brake Force (lbs.) 0.03 0.07 7.84 5.34 41 24.7 9.94 6.21 

Lighting Condition Day Night Day Night Day Night Day Night 

Hard Braking 0 0 0.35 0.35 2 1 0.56 0.48 

Hard Cornering 0 1 2.73 3.19 9 10 1.55 1.89 

Lane Departures 0 1 9.84 16.58 27 39 8.06 11.41 

Avg. Speed (mph) 40.4 49.5 56.73 56.31 67.8 65.3 5.66 4.29 

Avg. Headway (ft) 77.3 109.7 253.3 406.08 823.7 814.9 147.41 205.56 

Maximum Speed 

(mph) 63.6 61.5 76 76.85 92.7 95.5 6.74 8.62 

Brake Force (lbs.) 0.03 0.09 7.35 5.42 41 28.8 9.28 6.69 

Weather Condition Clear Rain Clear Rain Clear Rain Clear Rain 

Hard Braking 0 0 0.36 0.33 2 2 0.52 0.56 

Hard Cornering 1 0 2.6 3.5 5 10 0.93 2.6 

Lane Departures 0 0 11.62 13.21 36 39 9.67 10.18 

Avg. Speed (mph) 47.7 40.4 56.89 55.92 66.6 67.8 4.49 6.59 

Avg. Headway (ft) 77.3 114.5 268.25 385.8 714.6 823.7 144.94 230.69 

Maximum Speed 

(mph) 61.5 63.6 75.79 77.37 92.7 95.5 7.32 7.56 

Brake Force (lbs.) 0.03 0.08 6.75 6.79 41 20.7 9.31 6.79 

Note: Braking, cornering and lane departures are numbers without units. They are the number of times the 

corresponding action was performed per participant per simulation. 
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Table 14 Driver behavior parameters - No ADAS, warning and automated features 

(freeway) 

Driver Behavior Statistic No ADAS Warning Automated 

Hard Braking 

Minimum 

0.00 0.00 0.00 

Hard Cornering 3.00 0.00 2.00 

Lane Departures 16.00 0.00 1.00 

Avg. Speed (mph) 49.50 40.40 48.20 

Avg. Headway (ft) 114.50 77.30 117.00 

Maximum Speed (mph) 73.60 64.50 63.60 

Brake Force (lbs.) 2.20 0.70 0.03 

Hard Braking 

Mean 

0.50 0.41 0.00 

Hard Cornering 5.33 3.05 3.14 

Lane Departures 25.83 15.70 3.29 

Avg. Speed (mph) 58.73 57.29 50.69 

Avg. Headway (ft) 356.62 366.21 206.57 

Maximum Speed (mph) 79.40 79.17 66.36 

Brake Force (lbs.) 6.65 11.58 0.12 

Hard Braking 

Maximum 

1.00 2.00 0.00 

Hard Cornering 10.00 9.00 6.00 

Lane Departures 39.00 36.00 6.00 

Avg. Speed (mph) 67.80 66.60 54.70 

Avg. Headway (ft) 588.90 823.70 269.30 

Maximum Speed (mph) 87.50 95.50 69.90 

Brake Force (lbs.) 12.60 41.00 0.27 

Hard Braking 

Std. Dev. 

0.55 0.60 0.00 

Hard Cornering 2.66 1.63 1.46 

Lane Departures 8.28 8.41 1.80 

Avg. Speed (mph) 6.79 4.95 2.00 

Avg. Headway (ft) 193.53 219.78 59.32 

Maximum Speed (mph) 5.66 6.59 2.14 

Brake Force (lbs.) 4.22 10.15 0.08 

Note: Braking, cornering and lane departures are numbers without units. They are the number of times the 

corresponding action was performed per participant per simulation. 
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CHAPTER 6: RESULTS 

This chapter presents the results from the ANOVA test on the significant 

differences in participant group mean values for hard braking, hard cornering, lane 

departures, average speed, average headway, maximum speed, and brake pedal force. 

While many variables can be extracted from miniSimTM, the variables that convey the 

maximum blanket of information were chosen for the analysis. Since the focus of this 

research is to capture the effect of advanced features on driving behavior, the factors that 

can best explain these differences were selected. The hard braking and hard cornering 

events help differentiate safe and aggressive driving behavior. The lane departure event 

was selected to verify the effectiveness of LDW on driving behavior. Similarly, the 

maximum speed parameter was chosen to evaluate the effectiveness of OSW. OSW was 

set up to activate when the participant crosses the designated speed limit (5 mph higher 

than the posted speed limit) in the simulations. The maximum speed represents the event 

when a participant would have crossed the set speed limit for OSW. This helps to compare 

the two participant groups. 

The LKA was tested using both the lane departure events and lane departure 

percentage parameter. The ACC was tested using the average headway and distance from 

the leading vehicle. Also, a level 2 automated vehicle was tested on some randomly 

selected participants with LKA and ACC engaged simultaneously. The behavior of these 

participants was compared to the participant group that was provided with warning features 

and groups using vehicles without any ADAS. 

 

6.1 Rural Driving Scenario 

In order to evaluate the effectiveness of LDW, the number of lane departure events 
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from the simulations were extracted. The lane departure data was combined with the ADAS 

provision data. A one-way ANOVA test was performed on the dataset as the sample sets 

were unequal. The inequality in the data samples is due to the random assignment of the 

ADAS to the participants. The ANOVA test results are presented by the scenario type. The 

ANOVA results of only the driver behaviors that were significant at a p-value of 0.05 for 

rural scenario are presented in Table 15. The results from Table 15 include the effects of 

ADAS, lighting, and weather conditions. 

 Table 15 ANOVA results – ADAS, lighting, and weather conditions (rural) 

Source of Variation 

Driving 

Behavior & 

ADAS 

SS df MS F P-value F-critical 

Between Groups Lane 

Departures - 

LDW 

205.23 1 205.23 4.57 0.04 4.08 

Within Groups 1,840.54 41 44.89    

Total 2,045.77 42     

Between Groups 
Brake Pedal 

Force - BSW 

615.20 1 615.20 4.44 0.04 4.08 

Within Groups 5,678.58 41 138.50    

Total 6,293.78 42     

Between Groups 
Maximum 

Speed - OSW 

692.88 1 692.88 9.83 <0.01 4.08 

Within Groups 2888.48 41 70.45    

Total 3,581.37 42     

Between Groups 
Average Speed 

- OSW 

3,423.67 1 3,423.67 17.54 <0.01 4.08 

Within Groups 8,003.22 41 195.20    

Total 11,426.89 42     

Between Groups Brake Pedal 

Force - Two 

ADAS 

7.07 1 7.07 7.27 0.01 4.09 

Within Groups 37.96 39 0.97    

Total 45.02 40     

Between Groups Average 

Headway – 

Day vs Night 

375828.10 1 375828.10 9.76 <0.01 4.09 

Within Groups 1578003.00 41 38487.90    

Total 1953831.00 42     

Between Groups Lane 

Departures – 

Day vs Night 

623.70 1 623.70 17.98 <0.01 4.09 

Within Groups 1422.10 41 34.70    

Total 2045.80 42         

Between Groups Average 

Headway – 

Clear vs Rain 

180865.2 1 180865.20 5.31 0.03 4.09 

Within Groups 1226487 36 340691    

Total 1407352 37         

 

 

BSW was set up to show a warning light on the mirror when the participants were 

driving only at certain periods of time. This feature was simulated by setting up a car-
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following session and activating BSW at the same time to capture the participants reaction. 

BSW was found to affect the brake pedal force variable in the rural scenario. OSW was set 

up using the "expression" trigger which was set to go off when the participant was 

exceeding speeds of more than 5 or 10 mph than the posted speed limit. Similar to LDW, 

OSW feature was also tested for effectiveness using the maximum speed variable. The 

maximum speed is a direct measure of the effects of OSW.  

A significant difference in lane departure events between participants who drove a 

vehicle with LDW compared to participant group who were not provided with LDW was 

observed. Provision of BSW led to a significant difference in brake force between 

participant group with BSW and participant group without BSW. Provision of OSW had a 

significant effect on both the maximum and average speeds between participant group 

provided with OSW and participant group not provided with OSW. Additionally, provision 

of two types of warning features also influenced the brake pedal force compared to one 

warning or no warning features. Further, the average headway and lane departure events 

were found to be significantly different for day and night lighting conditions. Also, rainy 

condition significantly influenced the average headway compared to clear weather 

condition. 

Table 16 presents the effects of lighting and gender segregated by the advanced 

feature and without ADAS. The average headway maintained in rural scenario was 

significantly different between the participant group who drove in daylight conditions and 

the participant group who drove in nighttime conditions for the participants who were not 

provided with any ADAS. The lane departure events and average headway were 

significantly different between daytime and nighttime driving conditions for the participant 
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group who were provided with warning features. Additionally, the brake force for the 

participant group who were not provided with any ADAS varied significantly between the 

genders. 

The ANOVA test results of the effects of automated features on driver behavior 

compared to warning features and vehicles without ADAS for rural scenario are presented 

in Table 17. The automated features were simulated where both LKA and ACC were 

engaged. The vehicle maintained a constant headway and the lane in this condition, 

simulating a level 2 automated vehicle. The warning features include the simulation of any 

one of LDW, BSW, or OSW or in combination. 

Table 16 ANOVA results – lighting, gender, and weather conditions by ADAS (rural) 

Source of Variation 
Driving Behavior 

& ADAS 
SS df MS F P-value F-critical 

Between Groups Day vs Night (No 

ADAS) – 

Avg Headway 

125728.6 1 125728.6 8.83 <0.05 6.61 

Within Groups 71221.58 5 14244.32    

Total 196950.1 6     

Between Groups Day vs Night 

(Warning) – 

Lane Departure 

536.06 1 536.06 15.14 <0.01 4.13 

Within Groups 1203.58 34 35.39    

Total 1739.64 35     

Between Groups Day vs Night 

(Warning) – 

Avg Headway 

264352.4 1 264352.4 6.03 <0.05 4.13 

Within Groups 1491766 34 43875.46    

Total 1756118 35     

Between Groups Male vs Female 

(No ADAS) – 

Brake Force 

305.14 1 305.14 9.55 <0.05 6.61 

Within Groups 159.69 5 31.94    

Total 464.84 6     

 

The average headway, maximum speed, and brake force were significantly 

different for the participant group who were not provided with any ADAS compared to the 

participant group provided with ACC. However, the provision of LKA to a participant 

group had a significant effect only on the lane departure events when compared to the 

participant group not provided with any ADAS. The participant group provided with 

automated features had significantly different lane departure events, average headway, 

maximum speed, and brake force compared to the participant group who were not provided 
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with any ADAS. Similarly, the lane departure events, average headway, maximum speed, 

and brake force were significantly different between the participant group provided with 

ACC and the participant group provided with LKA. However, a significant difference in 

lane departure events was observed between the participant group provided with ACC 

compared to the participant group provided with automated driving features. When 

compared to the participant group provided with LKA, the participant group provided with 

automated driving features had significantly different cornering events, lane departure 

events, average speed, average headway, maximum speed, and brake force. The participant 

group provided with ACC had significantly different average headway and brake force, 

while the participant group provided with LKA had significantly different lane departures 

when compared to the participant group provided with warning features. Further, the 

braking events, cornering events, lane departure events, average headway, and brake force 

were significantly different for participant group provided with automated features 

compared to participant group provided with warning features. 

Table 17 ANOVA results – automated, warning, and no ADAS (rural) 

Source of Variation 

Driving 

Behavior & 

ADAS 

SS df MS F P-value F-critical 

Between Groups No ADAS vs 

ACC –  

Average 

Headway 

408912.1 1 408912.1 29.05 <0.01 4.6 

Within Groups 197097.3 14 14078.38    

Total 606009.4 15     

Between Groups No ADAS vs 

ACC –  

Maximum Speed 

473.55 1 473.55 4.58 <0.05 4.6 

Within Groups 1446.12 14 103.29    

Total 1919.67 15     

Between Groups No ADAS vs 

ACC –  

Brake Force 

1756.81 1 1756.81 52.79 <0.01 4.6 

Within Groups 465.87 14 33.28    

Total 2222.69 15     

Between Groups No ADAS vs 

LKA – 

Lane Departure 

143.34 1 143.34 5.79 <0.05 4.67 

Within Groups 321.59 13 24.74    

Total 464.93 14     

Between Groups No ADAS vs 

Automated – 

258.36 1 258.36 18.24 <0.01 4.3 

Within Groups 311.59 22 14.16    
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Source of Variation 

Driving 

Behavior & 

ADAS 

SS df MS F P-value F-critical 

Total Lane Departure 569.96 23     

Between Groups No ADAS vs 

Automated – 

Average 

Headway 

493616.8 1 493616.8 53.67 <0.01 4.3 

Within Groups 202333.7 22 9196.99    

Total 695950.6 23     

Between Groups No ADAS vs 

Automated – 

Maximum Speed 

686.96 1 686.96 10.07 <0.01 4.3 

Within Groups 1500.66 22 68.21    

Total 2187.62 23         

Between Groups No ADAS vs 

Automated – 

Brake Force 

2167.78 1 2167.78 102.02 <0.01 4.3 

Within Groups 467.48 22 21.25    

Total 2635.26 23     

Between Groups 
ACC vs LKA – 

Lane Departure 

108.84 1 108.84 13.15 <0.01 4.54 

Within Groups 124.09 15 8.27    

Total 232.94 16     

Between Groups 
ACC vs LKA – 

Avg Headway 

435544.6 1 435544.6 284.71 <0.01 4.54 

Within Groups 22946.44 15 1529.76    

Total 458491 16     

Between Groups 
ACC vs LKA – 

Max Speed 

321.79 1 321.79 23.68 <0.01 4.54 

Within Groups 203.82 15 13.59    

Total 525.62 16     

Between Groups 
ACC vs LKA – 

Brake Force 

1415.26 1 1415.26 129.15 <0.01 4.54 

Within Groups 164.38 15 10.96    

Total 1579.64 16     

Between Groups ACC vs 

Automated – 

Lane Departure 

218.36 1 218.36 45.93 <0.01 4.26 

Within Groups 114.10 24 4.75    

Total 332.46 25     

Between Groups LKA vs 

Automated – 

Cornering 

3.43 1 3.43 5.08 <0.05 4.28 

Within Groups 15.53 23 0.68    

Total 18.96 24     

Between Groups LKA vs 

Automated – 

Lane Departure 

5.68 1 5.68 6 <0.05 4.28 

Within Groups 21.76 23 0.95    

Total 27.44 24     

Between Groups LKA vs 

Automated – 

Avg Speed 

56.79 1 56.79 4.7 <0.05 4.28 

Within Groups 277.8 23 12.08    

Total 334.59 24     

Between Groups LKA vs 

Automated – 

Avg Headway 

536168.83 1 536168.8 437.57 <0.01 4.28 

Within Groups 28182.87 23 1225.34    

Total 564351.7 24     

Between Groups LKA vs 

Automated – 

Max Speed 

493.09 1 493.09 43.89 <0.01 4.28 

Within Groups 258.35 23 11.23    

Total 751.44 24     

Between Groups LKA vs 

Automated – 

Brake Force 

1775.6 1 1775.6 246.05 <0.01 4.28 

Within Groups 165.98 23 7.22    

Total 1941.58 24     

Between Groups Warning vs ACC 

– 

Avg Headway 

801600.8 1 801600.8 19.63 <0.01 4.07 

Within Groups 1756265 43 40843.37    

Total 2557866 44     

Between Groups Warning vs ACC 

– 

Brake Force 

3920.28 1 3920.28 29.06 <0.01 4.07 

Within Groups 5801.33 43 134.91    

Total 9721.61 44     

Between Groups Warning vs LKA 230.21 1 230.21 5.51 <0.05 4.07 
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Source of Variation 

Driving 

Behavior & 

ADAS 

SS df MS F P-value F-critical 

Within Groups – 

Lane Departure 

1755.51 42 41.79    

Total 1985.73 43     

Between Groups Warning vs 

Automated – 

Braking 

7.89 1 7.89 9.22 <0.01 4.03 

Within Groups 43.65 51 0.86    

Total 51.55 52     

Between Groups Warning vs 

Automated – 

Cornering 

29.55 1 29.55 4.81 <0.05 4.03 

Within Groups 313.17 51 6.14    

Total 342.72 52     

Between Groups Warning vs 

Automated – 

Lane Departure 

558.18 1 558.18 16.31 <0.01 4.03 

Within Groups 1745.52 51 34.23    

Total 2303.69 52     

Between Groups Warning vs 

Automated – 

Avg Headway 

1234184 1 1234184 35.73 <0.01 4.03 

Within Groups 1761502 51 34539.25    

Total 2995686 52     

Between Groups Warning vs 

Automated – 

Brake Force 

6172.7 1 6172.7 54.25 <0.01 4.03 

Within Groups 5802.93 51 113.78    

Total 11975.63 52     

 

 

6.2 Urban Driving Scenario 

The ANOVA test results of only the driver behaviors that were significant at a p-

value of 0.05 for urban scenario are presented in Table 18. The results from Table 18 

include the effects of ADAS, lighting, gender, and weather conditions for urban scenario. 

Table 18 ANOVA results – ADAS, lighting, gender and weather conditions (urban) 

Source of Variation 

Driving 

Behavior & 

ADAS 

SS df MS F P-value F-critical 

Between Groups 
Lane Departures 

- LDW 

134.32 1 134.32 5.23 0.03 4.08 

Within Groups 1,053.96 41 25.71    

Total 1,188.28 42     

Between Groups 
Hard Cornering - 

LDW 

15.07 1 15.07 11.97 <0.01 4.08 

Within Groups 51.63 41 1.26    

Total 66.70 42     

Between Groups 
Maximum Speed 

- OSW 

4,876,652 1 4,876,652 74.94 <0.01 4.07 

Within Groups 2,733,042 42 65,072.42    

Total 7,609,694 43     

Between Groups Average 

Headway – Light 

Condition 

1166855.00 1 1166855.0 10.63 <0.01 4.09 

Within Groups 4498522.00 41 109720.00    

Total 5665377.00 42         

Between Groups Brake Pedal 

Force – Light 

Condition 

1774.44 1 1774.44 8.36 <0.01 4.09 

Within Groups 7852.38 37 212.22    

Total 9626.82 38         

Between Groups Lane Departures 488.42 1 488.42 28.61 <0.01 4.09 



81 

 

Source of Variation 

Driving 

Behavior & 

ADAS 

SS df MS F P-value F-critical 

Within Groups – Light Condition 699.85 41 17.06    

Total 1188.27 42         

Between Groups Average 

Headway – 

Weather 

Condition 

909143.10 1 909143.10 7.56 <0.01 4.09 

Within Groups 4330524.00 36 120292.30    

Total 
5239667.00 37         

Between Groups Brake Pedal 

Force – Weather 

Condition 

1016.15 1 1016.15 4.95 0.03 4.09 

Within Groups 6569.83 32 205.31    

Total 7585.97 33         

Between Groups 
 Hard Braking - 

Gender 

10.04 1 10.04 10.08 <0.01 3.97 

Within Groups 74.66 75 0.99    

Total 84.7 76     

 

 

The participant group provided with LDW had significantly different lane departure 

events and hard cornering events when compared to the participant group not provided 

with LDW. The maximum speed was significantly different for the participant group 

provided with OSW compared to the participant group not provided with OSW. The light 

condition (day vs night) significantly influenced the average headway, brake force and lane 

departure events. Further, the weather condition (clear vs rainy) significantly influenced 

the average headway and brake force. The hard braking events were significantly different 

for male and female participants. 

Table 19 presents the effects of lighting, weather, and age on driver behavior 

segregated by the advanced feature and without ADAS. Only the ANOVA test results of 

the driver behaviors that were significant at a p-value of 0.05 for urban scenario are 

presented. 

For the participants who were not provided with any ADAS, the participant group 

who drove in daytime conditions had significantly different average headway and brake 

force compared to participant group who drove in nighttime conditions. Similarly, for the 

participants who were provided with warning features, the participant group who drove in 
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daytime conditions had significantly different lane departure events, average headway, and 

brake force compared to the participant group who drove in nighttime conditions. Further, 

significantly different lane departure events, average headway, and average speed were 

observed between participant groups who drove in daytime and nighttime conditions than 

the participant groups who were provided with automated features. Male and female 

participants had significantly different average headway among the participants provided 

with warning features. Further, participant group below 25 years of age had significantly 

different hard cornering events, average speed, and maximum speed compared to 

participant group above 25 years of age among the participants provided with automated 

features. 
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Table 19 ANOVA results – lighting, gender, and weather conditions by ADAS (urban) 

Source of Variation 
Driving Behavior 

& ADAS 
SS df MS F P-value F-critical 

Between Groups Day vs Night (No 

ADAS) –  

Avg Headway 

 

1048237 1 1048237 13.66 <0.05 6.61 

Within Groups 383640 5 76728.01    

Total 
1431878 6     

Between Groups Day vs Night (No 

ADAS) – 

Brake Force 

203 1 203 8.38 <0.05 7.71 

Within Groups 96.93 4 24.23    

Total 299.93 5     

Between Groups Day vs Night 

(Warning) – 

Lane Departure 

557.35 1 557.35 33.52 <0.01 4.13 

Within Groups 565.39 34 16.63    

Total 1122.75 35     

Between Groups Day vs Night 

(Warning) – 

Avg Headway 

506742.1 1 506742.1 4.64 <0.05 4.13 

Within Groups 3715600 34 109282.4    

Total 4222342 35     

Between Groups Day vs Night 

(Warning) – 

Brake Force 

1923.48 1 1923.48 8.91 <0.01 4.16 

Within Groups 6690.87 31 215.83    

Total 8614.35 32     

Between Groups Day vs Night 

(Auto) – 

Lane Departure 

2.97 1 2.97 4.99 <0.05 4.54 

Within Groups 8.92 15 0.59    

Total 11.88 16     

Between Groups Day vs Night 

(Auto) – 

Avg Speed 

37.44 1 37.44 4.58 <0.05 4.54 

Within Groups 122.63 15 8.18    

Total 160.06 16     

Between Groups Day vs Night 

(Auto) – 

Avg Headway 

4519.65 1 4519.65 5.05 <0.05 4.54 

Within Groups 13433.69 15 895.58    

Total 17953.34 16     

Between Groups Male vs Female 

(Warning) – 

Avg Headway 

807718.1 1 807718.1 8.04 <0.01 4.13 

Within Groups 3414624 34 1000430.1    

Total 4222342 35     

Between Groups Below 25 vs 

Above 25 (Auto) – 

Cornering 

4.72 1 4.72 8.61 <0.05 4.54 

Within Groups 8.22 15 0.55    

Total 12.94 16     

Between Groups Below 25 vs 

Above 25 (Auto) – 

Avg Speed 

38.72 1 38.72 4.79 <0.05 4.54 

Within Groups 121.34 15 8.09    

Total 160.06 16     

Between Groups Below 25 vs 

Above 25 (Auto) – 

Max Speed 

22.95 1 22.95 7.47 <0.05 4.54 

Within Groups 46.09 15 3.07    

Total 69.04 16     

 

The ANOVA test results of the effects of automated features on driver behavior 

compared to warning features and vehicles without ADAS for urban scenario are presented 

in Table 20. The participant group not provided with any ADAS had significantly different 

lane departure events, average headway, maximum speed, and brake force compared to the 
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participant group provided with ACC. The participant group not provided with any ADAS 

had significantly different lane departure events and average headway compared to the 

participant group provided with LKA. Further, significantly different lane departure 

events, average headway, maximum speed, and brake force were observed between the 

participant group not provided with any ADAS compared to the participant group provided 

with automated driving features. The provision of ACC to participants significantly 

influenced lane departure events, average headway, and brake force while the provision of 

LKA significantly influenced hard cornering events and average headway when compared 

to participants provided with warning features. The participant group provided with ACC 

had significantly different lane departure events, average speed, average headway, 

maximum speed, and brake force compared to the participant group provided with LKA. 

Similar to rural scenario, the participant group provided with ACC had significantly 

different lane departure events compared to automated driving features. Further, 

significantly different average speed, average headway, maximum speed, and brake force 

were observed between the participant group provided with LKA and the participant group 

provided with automated driving features. The participant group provided with warning 

features had significantly different hard cornering events compared to the participant group 

provided with automated features. Provision of automated features to participants 

significantly influenced lane departure events, average headway, and brake force compared 

to the participant group not provided with any ADAS. 
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Table 20. ANOVA results – automated, warning, and no ADAS (urban) 

Source of Variation 

Driving 

Behavior & 

ADAS 

SS df MS F P-value F-critical 

Between Groups No ADAS vs 

ACC – 

Lane Departure 

37.34 1 37.34 4.49 0.052 4.6 

Within Groups 116.41 14 8.32    

Total 153.75 15     

Between Groups No ADAS vs 

ACC – 

Avg Headway 

2445066 1 2445066 23.9 <0.01 4.6 

Within Groups 1432005 14 102286.1    

Total 3877070 15     

Between Groups No ADAS vs 

ACC – 

Max Speed 

38.97 1 38.97 5.56 <0.05 4.6 

Within Groups 98.21 14 7.01    

Total 137.18 15     

Between Groups No ADAS vs 

ACC – 

Brake Force 

665.31 1 665.31 28.81 <0.01 4.67 

Within Groups 300.2 13 23.09    

Total 965.52 14     

Between Groups No ADAS vs 

LKA – 

Lane Departure 

72.04 1 72.04 14.11 <0.01 4.67 

Within Groups 66.36 13 5.1    

Total 138.4 14     

Between Groups No ADAS vs 

LKA – 

Avg Headway 

1008364 1 1008364 9.06 <0.05 4.67 

Within Groups 1446797 13 111292.1    

Total 2455160 14     

Between Groups No ADAS vs 

Auto – 

Lane Departure 

113.76 1 113.76 34.41 <0.01 4.3 

Within Groups 72.74 22 3.31    

Total 186.5 23     

Between Groups No ADAS vs 

Auto – 

Avg Headway 

3007154 1 3007154 45.63 <0.01 4.3 

Within Groups 1449831 22 65901.4    

Total 4456985 23     

Between Groups No ADAS vs 

Auto – 

Max Speed 

55.29 1 55.29 8.1 <0.01 4.3 

Within Groups 150.12 22 6.82    

Total 205.42 23     

Between Groups No ADAS vs 

Auto – 

Brake Force 

797.83 1 797.83 55.36 <0.01 4.32 

Within Groups 302.63 21 14.41    

Total 1100.46 22     

Between Groups Warning vs 

ACC – 

Lane Departure 

113.61 1 113.61 4.15 <0.05 4.07 

Within Groups 1178.31 43 27.4    

Total 1291.91 44     

Between Groups Warning vs 

ACC – 

Avg Headway 

3989567 1 3989567 40.63 <0.01 4.07 

Within Groups 4222469 43 98196.96    

Total 8212037 44     

Between Groups Warning vs 

ACC – 

Brake Force 

4577.09 1 4577.09 21.25 <0.01 4.08 

Within Groups 8614.63 40 215.37    

Total 13191.72 41     

Between Groups Warning vs 

LKA – 

Cornering 

7.49 1 7.49 7.23 <0.05 4.07 

Within Groups 43.51 42 1.04    

Total 51 43     

Between Groups Warning vs 

LKA – 

Avg Headway 

1483519 1 1483519 14.7 <0.01 4.07 

Within Groups 4237261 42 100887.2    

Total 5720780 43     

Between Groups 
ACC vs LKA – 

Lane Departure 

236.47 1 236.47 58.09 <0.01 4.54 

Within Groups 61.06 15 4.07    

Total 297.53 16     
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Source of Variation 

Driving 

Behavior & 

ADAS 

SS df MS F P-value F-critical 

Between Groups 
ACC vs LKA – 

Avg Speed 

78.51 1 78.51 16.36 <0.01 4.54 

Within Groups 72 15 4.8    

Total 150.51 16     

Between Groups 
ACC vs LKA – 

Avg Headway 

304892.96 1 304893 303.95 <0.01 4.54 

Within Groups 15046.52 15 1003.1    

Total 319939.48 16     

Between Groups 
ACC vs LKA – 

Max Speed 

175.59 1 175.59 24.84 <0.01 4.54 

Within Groups 106.01 15 7.07    

Total 281.6 16     

Between Groups 
ACC vs LKA – 

Brake Force 

1229.21 1 1229.21 516.02 <0.01 4.54 

Within Groups 35.73 15 2.38    

Total 1264.94 16     

Between Groups ACC vs 

Automated – 

Lane Departure 

364.41 1 364.41 129.69 <0.01 4.26 

Within Groups 67.44 24 2.81    

Total 431.85 25     

Between Groups LKA vs 

Automated – 

Avg Speed 

39.74 1 39.74 4.43 <0.05 4.28 

Within Groups 206.48 23 8.98    

Total 246.23 24     

Between Groups LKA vs 

Automated – 

Avg Headway 

365096.8 1 365096.78 255.45 <0.01 4.28 

Within Groups 32872.52 23 1429.24    

Total 397969.3 24     

Between Groups LKA vs 

Automated – 

Max Speed 

239.29 1 239.29 34.85 <0.01 4.28 

Within Groups 157.92 23 6.87    

Total 397.21 24     

Between Groups LKA vs 

Automated – 

Brake Force 

1545.35 1 1545.35 931.51 <0.01 4.28 

Within Groups 38.16 23 1.66    

Total 1583.51 24     

Between Groups Warning vs 

Automated – 

Cornering 

4.67 1 4.67 4.52 <0.05 4.03 

Within Groups 52.58 51 1.03    

Total 57.24 52     

Between Groups No ADAS vs 

Automated – 

Lane Departure 

175.37 1 175.37 7.88 <0.01 4.03 

Within Groups 1134.63 51 22.25    

Total 1310 52     

Between Groups No ADAS vs 

Automated – 

Avg Headway 

6240428 1 6240428 75.06 <0.01 4.03 

Within Groups 4240295 51 83143.05    

Total 10480723 52     

Between Groups No ADAS vs 

Automated – 

Brake Force 

7158.96 1 7158.96 39.88 <0.01 4.04 

Within Groups 8617.05 48 179.52    

Total 15776.01 49     

 

 

6.3 Freeway Driving Scenario 

The ANOVA test results of only the driver behaviors that were significant at a p-

value of 0.05 for freeway scenario are presented in Table 21. The results from Table 21 
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include the effects of ADAS, lighting, gender, and weather conditions for freeway scenario. 

The participant group provided with LDW had significantly different lane departure 

events compared to the participant group not provided with LDW. The average headway 

and lane departure events were significantly different for participant groups who drove in 

daytime and nighttime conditions. Further, the weather conditions (clear vs rainy) 

significantly influenced the average speed and average headway. 

Table 21 ANOVA results – ADAS, lighting, gender and weather conditions (freeway) 

Source of Variation 

Driving 

Behavior & 

ADAS 

SS df MS F P-value F-critical 

Between Groups Lane 

Departures - 

LDW 

1,218.98 1 1,218.98 22.72 <0.01 4.08 

Within Groups 2,199.44 41 53.65    

Total 3,418.42 42     

Between Groups Average 

Headway – 

Light 

Condition 

463506.20 1 463506.20 12.98 <0.01 4.09 

Within Groups 1463141.00 41 35686.37    

Total 
1926647.00 42         

Between Groups Lane 

Departures – 

Light 

Condition 

806.03 1 806.03 12.65 <0.01 4.09 

Within Groups 2612.39 41 63.72    

Total 
3418.42 42         

Between Groups Average Speed 

– Weather 

Condition 

121.54 1 121.54 5.39 0.02 4.09 

Within Groups 835.09 37 22.57    

Total 956.63 38         

Between Groups Average 

Headway – 

Weather 

Condition 

515154.90 1 515154.90 15.54 <0.01 4.09 

Within Groups 1226503.00 37 33148.72    

Total 
1741658.00 38         

 

 

Table 22 presents the effects of lighting, weather and age on driver behavior 

segregated by the advanced feature and without ADAS. Only the ANOVA test results of 

the driver behaviors that were significant at a p-value of 0.05 for the freeway scenario are 

presented. 
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The participant group who drove during daytime conditions had significantly 

different lane departure events when compared to the participant group who drove during 

nighttime conditions among the participants provided with warning features and also 

among the participants not provided with any ADAS. The participant group who drove 

during daytime and nighttime conditions had significantly different average headway 

among the participants provided with warning features. Further, the provision of automated 

features during daytime and nighttime conditions led to significantly different maximum 

speeds. The participant group below the age of 25 years had significantly different brake 

force compared to the participant group above the age of 25 years among the participants 

who were not provided with any ADAS. The participant group below the age of 25 years 

had significantly different average speed compared to the participant group above the age 

of 25 years among the participants who were provided with warning features. 

Table 22 ANOVA results – lighting, gender, and weather conditions by ADAS (freeway) 

Source of Variation 
Driving Behavior 

& ADAS 
SS df MS F P-value F-critical 

Between Groups Day vs Night (No 

ADAS) –  

Lane Departure 

525 1 525 7.44 <0.05 6.61 

Within Groups 353 5 70.6    

Total 878 6     

Between Groups Day vs Night 

(Warning) –  

Lane Departure 

427.82 1 427.82 6.98 <0.05 4.13 

Within Groups 2082.93 34 61.26    

Total 2510.75 35     

Between Groups Day vs Night 

(Warning) –  

Avg Headway 

427508.3 1 427508.3 13.56 <0.01 4.13 

Within Groups 1072195 34 31535.15    

Total 1499703 35     

Between Groups Day vs Night 

(Auto) – 

Max Speed 

28.6 1 28.6 7.12 <0.05 4.54 

Within Groups 60.21 15 4.01    

Total 88.81 16     

Between Groups Below 25 vs Above 

25 (No ADAS) – 

Brake Force 

346.07 1 346.07 8.77 <0.05 6.61 

Within Groups 197.31 5 39.46    

Total 543.39 6     

Between Groups Below 25 vs Above 

25 (Warning) – 

Avg Speed 

101.4 1 101.4 6.95 <0.05 4.13 

Within Groups 496.26 34 14.59    

Total 597.66 35     
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The ANOVA test results of the effects of automated features on driver behavior 

compared to warning features and vehicles without ADAS for the freeway scenario are 

presented in Table 23. 

The average headway and brake force were significantly different between the 

participant group provided with ACC compared to the participant group not provided with 

any ADAS. The lane departure events and average speed were significantly different 

between the participant group provided with LKA and the participant group not provided 

with any ADAS. Lane departure events, average speed, average headway, maximum speed, 

and brake force were found to be significantly for the participant group provided with ACC 

compared to the participant group provided with LKA. Further, the participant group 

provided with ACC had significantly different lane departure events, average speed, and 

maximum speed compared to the participant group provided with automated features. The 

average speed, average headway, maximum speed, and brake force were found to be 

significantly different for the participant group provided with LKA compared to the 

participant group provided with automated features. 

The participant group provided with automated features had significantly different 

lane departure events, average headway, maximum speed, and brake force compared to the 

participant group not provided with any ADAS. Hard cornering events, average headway, 

and brake force were found to be significantly different for the participant group provided 

with warning features compared to the participant group provided with ACC. Further, hard 

cornering events, lane departure events, and average speed were found to be significantly 

different for the participant group provided with warning features compared to the 

participant group provided with LKA. Automated features significantly influenced the lane 
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departure events, average headway, average speed, maximum speed, and brake force when 

compared to the participant group provided with warning features. 
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Table 23 ANOVA results – automated, warning, and no ADAS (freeway) 

Source of Variation 
Driving Behavior 

& ADAS 
SS df MS F P-value F-critical 

Between Groups No ADAS vs ACC 

– 

Avg Headway 

453285.7 1 453285.7 27.66 <0.01 4.6 

Within Groups 229393.9 14 16385.28    

Total 682679.6 15     

Between Groups No ADAS vs ACC 

– 

Brake Force 

579.97 1 579.97 14.94 <0.01 4.6 

Within Groups 543.42 14 38.82    

Total 1123.39 15     

Between Groups No ADAS vs LKA 

– 

Lane Departure 

1078.93 1 1078.93 15.9 <0.01 4.67 

Within Groups 882 13 67.85    

Total 1960.93 14     

Between Groups No ADAS vs LKA 

– 

Avg Speed 

265.11 1 265.11 8.19 <0.05 4.67 

Within Groups 420.56 13 32.35    

Total 685.66 14     

Between Groups 
ACC vs LKA – 

Lane Departure 

765.54 1 765.54 44.47 <0.01 4.54 

Within Groups 258.22 15 17.21    

Total 1023.76 16     

Between Groups 
ACC vs LKA – 

Avg Speed 

54.59 1 54.59 11.89 <0.01 4.54 

Within Groups 68.86 15 4.59    

Total 123.46 16     

Between Groups 
ACC vs LKA – 

Avg Headway 

153171.4 1 153171.4 185.47 <0.01 4.54 

Within Groups 12388.04 15 825.87    

Total 165559.5 16     

Between Groups 
ACC vs LKA – 

Max Speed 

43.94 1 43.94 5.47 <0.05 4.54 

Within Groups 120.41 15 8.03    

Total 164.34 16     

Between Groups 
ACC vs LKA – 

Brake Force 

331.51 1 331.51 340.47 <0.01 4.54 

Within Groups 14.61 15 0.97    

Total 346.12 16     

Between Groups 
ACC vs Auto – 

Lane Departure 

990.5 1 990.5 82.99 <0.01 4.26 

Within Groups 286.46 24 11.94    

Total 1276.96 25     

Between Groups 
ACC vs Auto – 

Avg Speed 

307.44 1 307.44 74.68 <0.01 4.26 

Within Groups 98.8 24 4.12    

Total 406.25 25     

Between Groups 
ACC vs Auto – 

Max Speed 

716.87 1 716.87 88.04 <0.01 4.26 

Within Groups 195.42 24 8.14    

Total 912.28 25     

Between Groups 
LKA vs Auto – 

Avg Speed 

636.68 1 636.68 149.49 <0.01 4.28 

Within Groups 97.96 23 4.26    

Total 734.64 24     

Between Groups 
LKA vs Auto – 

Avg Headway 

179316.2 1 179316.2 72.12 <0.01 4.28 

Within Groups 57183.5 23 2486.24    

Total 236499.7 24     

Between Groups 
LKA vs Auto – 

Max Speed 

1105.91 1 1105.91 247.86 <0.01 4.28 

Within Groups 102.62 23 4.46    

Total 1208.54 24     

Between Groups 
LKA vs Auto – 

Brake Force 

429.79 1 429.79 675.62 <0.01 4.28 

Within Groups 14.63 23 0.64    

Total 444.42 24     

Between Groups No ADAS vs Auto 1354.72 1 1354.72 32.74 <0.01 4.3 
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Source of Variation 
Driving Behavior 

& ADAS 
SS df MS F P-value F-critical 

Within Groups – 

Lane Departure 

910.24 22 41.37    

Total 2264.96 23     

Between Groups No ADAS vs Auto 

– 

Avg Headway 

542181.3 1 542181.3 43.5 <0.01 4.3 

Within Groups 274189.4 22 12463.15    

Total 816370.7 23     

Between Groups No ADAS vs Auto 

– 

Max Speed 

533.26 1 533.26 44.99 <0.01 4.3 

Within Groups 260.78 22 11.85    

Total 794.04 23     

Between Groups No ADAS vs Auto 

– 

Brake Force 

735.32 1 735.32 29.77 <0.01 4.3 

Within Groups 543.44 22 24.7    

Total 1278.76 23     

Between Groups Warning vs ACC 

– 

Cornering 

16.80 1 16.81 7.25 <0.05 4.07 

Within Groups 99.64 43 2.32    

Total 116.44 44     

Between Groups Warning vs ACC 

–  

Avg Headway 

172682.5 1 172682.5 4.95 <0.05 4.07 

Within Groups 1501487 43 34918.31    

Total 1674170 44     

Between Groups Warning vs ACC 

– 

Brake Force 

738.07 1 738.07 9.96 <0.01 4.09 

Within Groups 2845.5 38 74.88    

Total 3583.57 39     

Between Groups Warning vs LKA 

– 

Cornering 

13.14 1 13.14 5.59 <0.05 4.07 

Within Groups 98.75 42 2.35    

Total 111.89 43     

Between Groups Warning vs LKA 

– 

Lane Departure 

1424.04 1 1424.04 23.78 <0.01 4.07 

Within Groups 2514.75 42 59.87    

Total 3938.79 43     

Between Groups Warning vs LKA 

– 

Avg Speed 

81.39 1 81.39 5.41 <0.05 4.07 

Within Groups 631.67 42 15.04    

Total 713.06 43     

Between Groups 
Warning vs Auto – 

Land Departure 

2354.49 1 2354.49 47.22 <0.01 4.03 

Within Groups 2542.98 51 49.86    

Total 4897.47 52     

Between Groups 
Warning vs Auto – 

Avg Speed 

613.99 1 613.99 47.33 <0.01 4.03 

Within Groups 661.61 51 12.97    

Total 1275.61 52     

Between Groups 
Warning vs Auto – 

Avg Headway 

246984.2 1 246984.2 8.15 <0.01 4.03 

Within Groups 1546283 51 30319.27    

Total 1793267 52     

Between Groups 
Warning vs Auto – 

Max Speed 

2060.89 1 2060.89 66.12 <0.01 4.03 

Within Groups 1589.55 51 31.17    

Total 3650.44 52     

Between Groups 
Warning vs Auto – 

Brake Force 

1171.13 1 1171.13 18.93 <0.01 4.05 

Within Groups 2845.53 46 61.86    

Total 4016.66 47     
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6.4 Discussion 

The hard cornering, lane departures, and average headway had distinct mean values 

for the participant group with LDW compared to the participant group without LDW. The 

mean values of LDW and non-LDW group for different variables varied based on the 

driving scenario. For example, while the mean values of lane departure varied in the urban 

scenario, the mean values of brake pedal force varied in the freeway scenario. Similarly, 

the mean values of some of the driver behaviors were different for the OSW and non-OSW 

group, as well as the BSW and non-BSW group. 

LDW was effective in all three driving scenarios. However, OSW was only able to 

influence the speeding behavior of participants in rural and urban settings. As participants 

tend to drive at higher speeds on freeways, there is a lower chance of drawing significantly 

different results when the two participant groups are compared. The brake pedal force was 

significantly affected by BSW in the rural driving scenario. The activation of BSW when 

a vehicle is in the adjoining lane could trigger a reaction from the participant to adopt safe 

maneuvering, possibly leading to the observed change in the brake pedal force. Similarly, 

providing two ADAS increased the interaction when both the features are engaged, 

invoking a natural response to drive cautiously or slowdown, which might have segregated 

the brake pedal force application. 

Lighting and weather conditions also had a significant effect on some driving 

behaviors. Nighttime driving conditions were observed to affect car-following and lane-

changing behavior of the participants in all three driving scenarios. Additionally, lighting 

conditions also affected the brake force applied by the participants in the urban scenarios. 

The participants maintained larger headway distance and had more lane departures at night 
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compared to daytime. 

The age of the participant also influenced the driving behavior. The braking 

behavior and average speed was higher for participants over twenty-five years in age. The 

young or teen participants below the age of twenty-five could be better accustomed to such 

driving simulators as they are more used to technology and video games, resulting in safer 

driving profiles. Smaller headways were observed for participants under the age of twenty-

five in urban settings but had larger headways in rural and freeway scenarios. 

The gender of the participant influenced the driving behavior. Male participants 

displayed more aggressive driving maneuvers, while female participants demonstrated 

higher brake force. Further, the type of driving scenario also affected the driving behaviors. 

Female participants had smaller headways in the urban scenario but had larger headways 

in rural and freeway scenarios. 

The rainy driving conditions also affected the participants’ car-following behavior. 

They were observed to maintain longer headways in rainy driving conditions in all three 

scenarios. However, the lane-changing, braking, and turning behaviors of the participants 

were observed to be less aggressive during rainy conditions. Also, participants applied 

higher brake force in rainy conditions, especially in urban driving settings which could be 

due to slippery roads. The change in average speed was also significantly different in 

freeway conditions, with higher speeds in clear weather conditions. 

Automated features like LKA and ACC were also explored in this study. The results 

from the participant group that drove a vehicle with LKA and ACC were compared to the 

participant group provided with the warning features (LDW, BSW and OSW) as well as 

with the participant group without advanced features. Participants who used a vehicle with 
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LKA and ACC displayed less aggressive lane-following and braking behavior but 

maintained smaller headways. These results were observed in all the three driving 

scenarios. Better braking behavior was additionally observed in the freeway scenario. 

Further, LKA and ACC reduced the variation in lane-following, handling, speeding, and 

car-following behaviors among the participants compared to both warning features and no 

ADAS in all the three driving scenarios. 

Participants provided with LKA displayed less aggressive lane-following and 

braking behavior compared to participants provided with LDW. The driving scenario was 

also observed to affect the type of effects LKA had on a participant compared to LDW. 

Participants who a drove a vehicle with only LKA demonstrated more aggressive car-

following behavior in rural and urban scenarios. The effects of ACC on improved braking 

behavior compared to both BSW and OSW is very evident. Additionally, both LKA and 

ACC drastically reduced the variation in vehicle handling, lane-following, car-following, 

and braking behavior in all the three driving scenarios. 
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CHAPTER 7: CONCLUSIONS 

The effects of three different warning features and two automated features on driver 

behavior were evaluated in different driving scenarios in this research. The warning 

features were shown to influence the participants’ behaviors as per their intended purpose. 

For example, LDW was effective in influencing the lane departure behavior of the 

participants. Also, OSW was effective in influencing the maximum speed and average 

speed in some cases. BSW did not have a significant effect on any of the driver behavior 

variables. 

The effect of different warning features on participants varied with the driving 

scenario. LDW had a significant effect on lane departure events, which indicates the 

number of times a participant went out of their lane. Overall, the effect of warning features 

on driving behaviors such as lane departures, speeding, and braking by driving scenario are 

evident. 

The effects of automated features on braking, lane-following, and car-following 

behaviors in the rural scenario were found to be significant. Likewise, the effects of ACC 

on car-following and lane-following in the urban scenario were also found to be significant. 

In addition to braking, lane-following, and car-following behaviors, speed behavior was 

also significantly affected by automated features in the freeway scenario. Though the 

considered automated features led to aggressive car-following behavior, other driver 

behaviors were found to be less aggressive, leading to safer driving overall.  

Further, car-following, lane-following, speeding and braking behaviors were also 

observed to vary when ACC and LKA are engaged individually compared to both warning 

and automated features. While safer speeding and braking behavior was observed with 
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ACC, warning features resulted in better lane following behavior. Similarly, ACC showed 

better car-following, braking, and speeding behavior whereas better lane following 

behavior was observed with LKA. Vehicles equipped with automated features either in 

combination or individually led to safer driving compared to warning features alone and 

vehicles without any ADAS. The change in driver behavior of the participants provided 

with automated features was more harmonized as well. 

Overall, driver behavior was affected by ADAS, be it warning or automated 

features. However, the type of effects observed varied based on the type of feature. The 

type of driving scenario affected the nature of influence a feature had on driver behavior. 

LDW and OSW were able to achieve the targeted effect they were originally intended for 

and also triggered additional behavioral changes that varied by driving scenario. On the 

other hand, BSW did not have a significant effect on any of the driver’s behaviors. Further, 

providing two warning features also had varied effects on driver behavior compared to 

single warning feature but the effects were limited. 

Lighting and weather conditions had similar effects on driver behavior when not 

provided with any advanced features, when provided with warning features, and when 

provided with advanced features as well. Longer headways were observed in nighttime 

conditions and rainy conditions. However, less aggressive lane-following, braking, and 

vehicle handling behavior was observed. Also, more speeding was observed on freeways 

in clear weather. Male drivers displayed aggressive driving maneuvers when provided with 

both warning and automated features. On the other hand, female drivers maintained smaller 

headways in urban scenario and longer headways in rural and freeway scenario. Similarly, 

drivers aged under 25 years maintained smaller headways in urban scenario but maintained 
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longer headways in rural and freeway scenarios. Further, drivers aged above 25 years 

showed more aggressive braking and speeding behavior with both warning and automated 

features in urban scenario. 

The type of ADAS provided, the type of driving scenario, the lighting and weather 

conditions, as well as the age and gender of the participants affected the driver’s behavior. 

The nature of their effects of ADAS, however, varied by the type of driving scenario. 

Further, the effects of all these factors varied when segregated by the type of ADAS 

(warning or automated feature) provided compared to when not provided with any 

advanced features.  

In addition to this, the type of ADAS (warning or automated) affected the driving 

behavior differently when they were provided individually, in combination and not 

provided at all. Warning features when provided in combination had different effects on 

driver behavior in very few cases. However, automated features when provided 

individually and in combination had predominantly different effects on driver behavior. 

Further, these changes varied with the driving scenario. The type of effects automated 

features had on driver behavior varied from that of warning features and also when no 

features were provided. The efficiency of driver behavior improved from no feature 

condition to warning features to automated features. The different factors considered in 

this research, the type of features provided, the type of driving scenario, the lighting 

conditions, the weather conditions, the age of the driver, and the gender, all effected the 

driver behavior. Further, the type of effects each type of feature had on driver behavior 

varied for each factor. In other words, the effects of each type of feature varied by the type 

of driving scenario, the lighting conditions, the weather conditions and also by the age and 
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gender of the driver. An intricate interaction of different factors effecting the driver 

behavior differently is evident. While the car-following behavior reflects the operational 

impacts, driver behaviors like speeding, lane-following, and braking behaviors shine light 

on the traffic safety. This goes to show that the effects of ADAS on driver behavior are not 

straight-forward and demand deeper understanding from safety and operational perspective 

as well. 

These findings can be used to define vehicle parameters within microscopic 

simulation software and mimic the effect of vehicles with and without advanced features 

on transportation system performance.  

7.1 Recommendations 

The effects of warning and automated features have been discussed in detail in the 

previous section. The effects were observed to vary by the type of ADAS provided, the 

type of driving scenario, lighting and weather conditions, and also the age and gender. Both 

the operational aspects like the car-following behavior as well as the safety aspects like the 

lane-following and vehicle handling behaviors have been observed to be influenced by 

ADAS. Hence, there is a need to design ADAS from both operational and safety 

perspective. Further, the varying nature of effects different driving conditions and driver 

demographics encourage the need to design adaptive ADAS that can collect data from the 

vehicle’s surroundings and respond appropriately. This will carve a path to the ultimate 

aim of fully autonomous vehicles in the future. 

The limitations of ADAS are tested by automobile companies in a restricted or 

fabricated environment where the obstacles or test tracks are known to the drivers. 

Additionally, the drivers are trained and are young adults or middle aged. However, the 
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customers using these features could be anywhere between teen drivers to elderly drivers. 

Further, the test tracks are built in places where all kinds of weather or driving conditions 

may not be encountered. This mandates the need to collect data for these ADAS taking the 

wide array of users and driving conditions into account, in other words, collect more 

naturalistic driving data.  

The domain of advanced features is rapidly evolving which poses a challenge for 

drivers. Hence, there is a need to formulate policies that encourage both automobile 

manufacturers and dealerships to develop programs that encourage driver education on the 

applicability and limitations of advanced features. 

 

7.2 Scope of Future Work 

 

The effects of warning and automated features were explored in this research. Their 

effects were tested individually and in combination. The effects of driving scenario, 

lighting conditions, weather conditions, age, and gender were explored as well. However, 

limited availability of data especially due to limited participants restricted a more in-depth 

analysis of the effects of ADAS.  

Evaluating the effects of other demographic characteristics like education and 

income can be pursued. The data was segregated into two groups for analysis. It was further 

segregated by lighting, weather, age, or gender. More samples would allow segregating the 

data even more and conduct a detailed investigation. Also, analysis based on the type of 

vehicle driven by the participant and previous familiarity with the features may also be 

explored in future studies. The availability of adequate data plays a key role in defining the 

level of analysis that can be performed on the data. Collecting additional samples and 

exploring the influence of other advanced features also merits further research.  
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APPENDIX A: QUESTIONNAIRE FORM 

This chapter includes the questionnaire and the consent form describing their participatory 

rights for the research study.  

 

Figure A1 Survey questionnaire for participants 
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Figure A2 Consent from (Page 1) 
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Figure A3  Consent from (Page 2) 
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Figure A4  Consent from (Page 3) 


