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ABSTRACT 

WEN ZHANG. Stress Wave Propagation and Tunability in 1D Granular Systems 

(Under the direction of DR. JUN XU) 

Mechanical stress wave propagation in granular materials has attracted much attention 

for exploring new physical phenomena due to versatile engineering applications. One-

dimensional (1D) granular systems, a type of artificially designed granular materials 

consisting of periodically aligned discrete particles, are demonstrated to produce 

unprecedented wave properties that are notably different from conventional engineering 

materials. By designing the critical characteristics of 1D granular systems, a remarkable 

tunability can be achieved, which yields various engineering applications. However, a 

systematic understanding of the stress wave behaviors within the system is still lacking.  

Therefore, in this dissertation, firstly, 1D cylindrical composite granular chains are 

systematically investigated via experiments, numerical simulations, and theoretical 

analysis, which is demonstrated to support strongly nonlinear solitary waves. By creating 

material mismatch within single granular particles, a shell-dominated dynamic response is 

achieved in 1D composite granular chains. Next, the dynamic properties of solitary waves 

supported by 1D spherical granular chains are analyzed, making it possible to achieve an 

equivalent wave transmission among various materials and dimensions. Accordingly, two 

types of equivalent systems are designed to expand the understanding of governing factors 

in wave dynamics, including generalized and restricted equivalent systems. Furthermore, 
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two types of highly efficient and controllable stress wave attenuation approaches are 

developed based on 1D hollow cylindrical particles and kirigami lantern structures. The 

fundamental mechanisms of the two strategies are strain-softening behaviors of hollow 

cylindrical particles and unique folding-unfolding responses of kirigami cells during stress 

wave propagation, respectively. Finally, 1D cylindrical granular systems with various 

mismatch configurations, including mass, modulus, and thickness mismatch, are tailored 

to investigate quantitatively solitary wave tuning strategies. Meanwhile, the solitary wave 

attenuation capability can be further boosted by coupling different strategies or creating a 

multilayer granular chain.  

This study comprehensively explores the stress wave propagation and tunability in 

various 1D granular systems via an integrated methodology, systematically uncovering the 

fundamental physical relations between wave dynamics and system properties. Results 

promote the science of stress wave propagation by developing the fundamental stress wave 

propagation laws and provide design guidance for next-generation impact protection, 

signal measurement, and monitoring systems. 
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NOMENCLATURE 

Nomenclature 

F Contact force Vs,r Rarefaction solitary wave speed 

R Radius   Viscous coefficient 

x Coordinate of the particle   Dissipative exponent 

A Material-related coefficient   The ratio of core radius and shell 

thickness in a core-shell particle 

E Young’s modulus t Thickness 

Lc 
The spatial characteristic length 

of the wave 
*  

The ratio of interlayer thickness 

and core radius 

v Poisson’s ratio l Length of the particle 

u Displacement of the particle Ls Wave width 

m Particle mass Fm Force amplitude 
  Density V Wave speed 

min  Minimal strain T Waveform duration 

a Diameter of the particle d Deformation 

Vs Solitary wave speed s  Shear strain 

i  Infinity strain Ee Effective modulus 

m  Strain amplitude ( )cf 
 Governing coefficient of core 

vp Particle velocity x  Nondimensional coordinate 

vm 
The amplitude of particle 

velocity 
t  Nondimensional time 

( )sf 
 Governing coefficient of shell 0  Initial strain 

1s  
Modulus mismatch ratio of core 

and shell materials 
  

Nondimensional material-related 

coefficient 

0  Static displacement 0A
 Constant 

mt Total mass p Constant 

2s  
Density mismatch ratio of core 

and shell materials 
  

Nondimensional damping 

coefficient 

S Constant n Nonlinear exponent 

  Strain   Constant 

  Material-related coefficient c 1D elastic wave speed 
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V(t) 
The phase speed of wave 

subjected to weak dissipation 
A(t) 

The amplitude of wave subjected 

to weak dissipation 

  Damping coefficient pE
 Potential energy 

tc 
The characteristic time of 

contact deformation sV  
The nondimensional phase speed 

of solitary waves 

Tc 
Characteristic period of grain 

oscillations 
mv  

Nondimensional maximum 

particle velocity 

u  Nondimensional displacement kE
 Kinetic energy 

Ks Sensitivity of film sensor tE
 Total energy 

O 
Output voltage per unit of 

amplifier 

Central

kE  
The kinetic energy of the central 

particle in a hump 

Ka Sensitivity of amplifier iv
 Normalized impact velocity 

U Output voltage N Unit cell number in a chain 

R  Normalized radius   Unit time 

T  
The interval between two 

specific peaks 
q 

Half-length of the rectangular 

contact area 

µ0 Fitting constant k Contact coefficient 

Vi Impact velocity M Impactor mass 

KE* Nondimensional kinetic energy KEm Maximum kinetic energy 

VY Yield velocity Yc Yield strength 

Ts Temporal width w Fitting constant 

p(x, y) Pressure distribution in plane xy P Load 

La 
Major semi-axis of the elliptical 

contact area 
Lb 

Minor semi-axis of the elliptical 

contact area 

H Height  P  Load per unit 

f Frictional coefficient µ Force mitigation ratio 

y Fitting constant  µ* Specific force mitigation ratio  

z Fitting constant B Fitting constant 

c  Compression ratio b Fitting constant 

Fm,e Force captured by the sensor   Coefficient  

0F
 Pre-compression force t* Relative time 

L0 Original length h Cutting length 

OD Outer diameter ID Inner diameter 

Nh Hinge number L Length  
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CHAPTER 1 INTRODUCTION 

1D granular systems composed of tightly packed particles are among the simplest and 

standout candidates for shaping our understanding of wave dynamics and providing an 

enormous landscape of exotic physical phenomena [1-6]. Originated from the exact nature 

of dispersion and nonlinearity, 1D granular systems possess the unique capability of 

supporting various novel waves (e.g., traveling solitary waves [7-10], dispersive shock 

waves [11, 12]). Yet, the wave behaviors heavily depend on the contact properties between 

elastically interacting particles [1, 13]. The effective contact stiffness can be tailored by 

modifying the material properties (e.g., Young’s modulus) [14, 15] and the shapes of 

granular particles [16-18]. Furthermore, it is possible to efficiently control the nonlinearity 

of 1D granular systems from strongly nonlinear to almost linear by engineering the pre-

compression to the system [8, 19, 20]. The fascinating dynamic responses and remarkable 

tunability make 1D granular systems potentially applicable for impact mitigation [21-24], 

waveguide [25], acoustic switch [26, 27], nondestructive testing [28-30], vibration 

suppression [31, 32], and sound scramblers [14, 33].  

In the following review, the analytical model of 1D granular systems will be first 

introduced. Next, strongly nonlinear solitary waves in a series of 1D granular systems will 

be presented, where representative experimental techniques and numerical methods will be 

discussed. Finally, the stress wave attenuation in 1D granular systems will be illustrated.  
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1.1 Analytical model of 1D granular systems 

Given a granular chain consisting of coherent spheres with no pre-compression (i.e., 

the state of “Sonic Vacuum” [34]), Nesterenko first developed a simple analytical solution 

to describe the propagation of the strongly nonlinear solitary wave (also called Nesterenko 

solitary wave) [1, 19, 35] that was different from the traditional solitons supported by 

Korteweg–de Vries (KdV) equation [36, 37]. The schematic of compressed spheres in 

Sonic Vacuum subjected to impulsive loadings is presented in Fig. 1(a), where the 

interaction of neighboring particles is governed by Hertz’s contact law [38]: 

( ) ( )
3

2
1 1i i i iF A R R x x− −

 = + − −  , (1) 

where F is the contact force between particles, Ri-1 and Ri are the radii of spherical particles, 

xi-1 and xi are the coordinates of the sphere centers, and A is a material-related coefficient 

that can be expressed by [39] 

( ) ( )

1
2

1 1

2 2
11 1

4

3 1 3 1

i i i i

i ii i i i

E E R R
A

R RE v E v

− −

−− −

 
=  

+− + −  
. (2) 

Here, Ei-1 and Ei are Young’s moduli of spherical particles, vi-1 and vi are Poisson’s ratios. 

It is necessary to point out that the Hertzian interaction is valid only if neighboring particles 

are in contact and overlap with each other. Also, Hertz’s contact law can be extended to a 

more generalized power contact law by considering different types of granular particles [1, 

40, 41]:   
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( ) ( )1 1

n

i i i iF A R R x x− −
 = + − −  , (3) 

where the nonlinear exponent n is greatly dependent on the contact geometry between 

interacting particles. For instance, the exponent n varies with the thickness of hollow 

spherical particles and can be larger than 3/2 [17]. Furthermore, the exponent n of 

interacting cylindrical particles can be effectively tuned by modifying the contact angle 

[42, 43]. Cylindrical particles aligned in perpendicular have an exponent of n = 3/2, yet the 

exponent is quite close to unity (n = 10/9) when they are in parallel [44], which corresponds 

to line contact.  

 

Figure 1 (a) Schematics of compressed particles in 1D spherical granular chains 

subjected to impulsive loadings, where ui and xi denote the displacement and coordinate 

of the ith particle, respectively. The cross symbol is the original position of particle 

centers, while the solid circle represents the current position of particle centers. (b) An 

example of strongly nonlinear solitary waves in a monomer granular chain [39].  

For 1D monoatomic spherical granular chains, the equation of motion for the ith 

particle is given by  

( ) ( )
( )

( )

1
2

3 3
32 2

1 1 2

2 4
,  ,  

33 1
i i i i i

E R
u K u u u u K m R

v m
 − +

 = − − − = =
   −

, (4) 
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where m is the mass of the spherical particle and   is the density of particle material. 

To explicitly solve Eq. (4), Nesterenko introduced an equivalent partial differential 

equation (PDE) based on a long-wavelength approximation where Lc >> a = 2R (Lc is the 

spatial characteristic length of the wave) [1, 45]. Accordingly, the wave equation for “Sonic 

Vacuum” is obtained [1] 

( ) ( )
( )

( )

( )

3
2 2 2

1 1
2 2 2

1 3
2 2

3

2 8 8 64

xxxx xxx

x xx x xxxx

x x

uu ua a a
u c u u u u

u u

 
 = − + − − −
 − − 

, 

0xu−  , ( )
5

2 2

2

2

1

E
c Ka

v
= =

−
. 

(5) 

Additional transformations are made by introducing dimensionless variables to derive 

a general stationary solution of the wave equation, yielding the nonlinear dependence of 

solitary wave speed (Vs) on the infinity strain ( i ) and strain amplitude ( m ) [1]: 

( )

1
2

5/2 5/2 3/2

m

2
3 2 5

5
s i m i m

i

c
V    

 

 
 = + −  −  

. (6) 

The corresponding strain and particle velocity are  

2
2

4

2

5 10
cos

4 5

sV
x

c a


  
=     
   

, (7) 

and 

2
2

4

2

5 10
cos

4 5

s
p s

V
v V x

c a

  
=     

   
. (8) 

Therefore, the characteristic length L can be given by the period of the solutions in 
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Eq. (7) [1] 

5
5

10

a
L a

 
=  
 

. (9) 

An example of strongly nonlinear solitary waves in a monomer granular chain is 

presented in Fig. 1(b). Herein, a finite spatial length of five spherical particles (5a) is 

obtained in Nesterenko solitary waves, which is fundamentally different from that of KdV 

waves [7]. Another unique feature of Nesterenko solitary waves is that the wave speed is 

nonlinearly dependent on the amplitude of particle velocity mv  (or strain amplitude m ):  

1
5 4 11

5 54
2 16

255
s m mV c c v

 
= =  

 
. (10) 

For more general 1D granular systems in which neighboring particles are governed 

by a power contact law shown in Eq. (3), similar waves are observed in strain-hardening 

materials (n > 1) yet rarefaction waves appear in strain-softening materials (n < 1) [46, 47]. 

Following a similar continuum approximation, stationary solutions of compression solitary 

waves in strain-hardening materials lead to [48, 49] 

( )1

1 6

n na
L

n

 +
=

−

 
(11) 

and  

( ) ( )
( )

( )

1
11 2 1
12

2 2

1 1

nn
n

n

s m m

c
V c v

n n


−−
+

+ 
= =  

+ + 
. (12) 

Note that the above stationary solution is valid even if the power-law material is 
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approaching a linear contact (n = 1 + r, r <<1 [50]) or the exponent is rather large (n >> 1 

[51, 52]). Rather than compression solitary waves, rarefaction solitary waves with 

expanded waveforms propagate in strain-softening granular systems where abnormal 

behaviors are observed under compression [33, 40]. Also, the rarefaction solitary wave 

speed Vs,r nonlinearly depends on the strain [1]: 

( )

( )

( )

1
21 1

min min

,

min

2 1

1

n n n

i i

s r

i

p nc
V

n

   

 

+ +  + − +  
=  

− +  

. (13) 

Significantly, there is no smooth transition between strain-hardening and strain-

softening materials since no stationary solitary solution can be derived for an ideal linear 

contact (i.e., n = 1). Therefore, it is essential to investigate wave dynamics in 1D granular 

systems with the exponent being very close to 1 (e.g., cylinders in parallel). Furthermore, 

one may fundamentally broaden the tunability of 1D granular systems if a switch from 

strain-hardening to strain-softening behaviors can be achieved. 

1.2 Strongly nonlinear solitary waves in 1D granular systems 

The analytical model of strongly nonlinear solitary waves was subsequently 

demonstrated by both numerical and experimental studies [7, 8, 53, 54], leading to an 

explosion of interest in nonlinear wave dynamics of granular systems [55-57]. Most of the 

studies in this active domain focused on macroscale granular systems where the dimension 

of granular particles is within the millimeter to centimeter range. A variety of particle 



7 

 

 

 

shapes (e.g., sphere [58], hollow sphere [59], cylinder [21, 42], hollow cylinder [50], 

ellipsoid [16]) and materials (e.g., stainless-steel [60], brass [61], aluminum [62], glass [63], 

Teflon [14], nylon [13, 63], rubber [64]) have been investigated accordingly, where the 

nonlinearity of the granular systems can be effectively tuned via pre-compression [19]. By 

applying a material or geometric mismatch between neighboring particles, one may 

anticipate extended nonlinear wave dynamics in 1D heterogeneous granular systems (i.e., 

configurations with defects [58, 65], dimer [15], and trimer chains [66]).  

More recently, strongly nonlinear solitary waves have been experimentally discovered 

in 1D microscopic granular chains [67]. A natural attempt was then made at the nanoscale, 

where the effect of surface geometry on nanoparticle collisions was systematically 

investigated, including facets, sharp crystal edges, and amorphous surfaces of 

nanoparticles (R < 10 nm) [68]. The results show that both the edge and amorphous surface 

contact match with the prediction of Hertz contact law, making it possible to discover novel 

dynamic phenomena in granular systems at the nanoscale [69]. Accordingly, numerical 

investigations were made to a series of nano granular systems (e.g., buckyball and 

nanogold systems [70-72]), which further demonstrates the formation, propagation, and 

tunability of strongly nonlinear solitary waves in small scales.  

A typical experimental setup to investigate strongly nonlinear solitary waves in 1D 

granular systems can be developed based on an optical table with vibration isolation (Figs. 
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2(a)-(b)). Major components include an impactor or actuator for generating impulses, a 

sliding rail for aligning particles, sensors for capturing the propagating stress waves, and 

an oscilloscope for recording digital data and visualizing waveforms [73]. Specifically, the 

impulse amplitude and duration can be tailored by modifying the impact velocity and 

applying impactors with different mass properties, respectively [74]. According to 

customized requirements, the sliding rail can be either vertical (Fig. 2(a)) or horizontal (Fig. 

2(b)), yet the vertical trail may bring about non-uniform pre-compression due to 

gravitational effect [20, 75]. For waveform detection, piezoelectric transducers (or film 

sensors) are mostly embedded in selected particles [76] or inserted between neighboring 

particles [21]. The nonuniformity between the measured particles and other particles in the 

granular chain is usually neglected due to the minor mass discrepancy [14].  

In recent years, researchers have applied a series of novel experimental techniques to 

achieve higher accuracy and continuous measurements. For instance, the application of a 

laser Doppler vibrometer (LDV) makes it possible to measure the velocity and 

displacement of each particle in a non-contact way (Fig. 2(c)), where a full map of the wave 

dynamics can be obtained [43, 77]. Furthermore, a high-speed camera can continuously 

monitor and record the detailed dynamic responses of the granular systems during stress 

wave propagation [59, 78] (Fig. 2(d)). 
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Figure 2. Experimental techniques: typical experimental setups with (a) vertical [79] and 

(b) horizontal sliding rails [13]; (c) schematic of a laser Doppler vibrometer measuring 

systems [43]; (d) dynamic responses of spherical granular particles monitored by a high-

speed camera [59].  

The fundamental problem of wave propagation is to solve the corresponding PDEs 

(i.e., wave equation) based on different configurations, boundary conditions, and initial 

conditions. Therefore, numerical methods can be highly efficient to explore wave 

behaviors in 1D granular systems. The discrete element method (DEM) and finite element 
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method (FEM) are commonly applied to 1D granular systems at the microscale and 

macroscale [5, 80-82]. Moreover, the molecular dynamics (MD) simulation, a widely 

accepted method for analyzing the physical movements of particles, has been also used to 

examine the dynamic responses of 1D granular systems at the nanoscale [70-72, 83, 84]. 

In DEM (Fig. 3(a)), neighboring particles are approximated as lumped mass connected by 

a nonlinear spring, where appropriate initial conditions and boundary conditions are 

selected according to specific loading scenarios [85]. Each particle is reduced to points 

with a single-degree-of-freedom (DOF), and the interaction between the particles is 

described by either Hertz contact law (Eq. (1)) or the power law (Eq. (3)) [86]. By solving 

the equations of motion, the dynamic responses of the system can be obtained accordingly 

[10].  

Compared to the discrete method, FEM can provide more abundant information (e.g., 

localized stress and strain distribution). FE models of 1D granular systems are established 

per specific configurations and loading scenarios [87] (Fig. 3(b)), in which only elastic 

material properties are modeled [88]. Following the 1D assumption, all the lateral 

movements of particles are restricted, while the impactor with an exact initial velocity will 

hit the remaining granular chain to generate an impulse [13]. A frictionless surface-to-

surface hard contact is used to describe the interaction between particles and the sliding 

rail [50]. Furthermore, a finer mesh is usually employed in the vicinity of the contact point 
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to precisely simulate the localized deformation [29]. Although a systematic methodology 

has been developed to study wave dynamics in 1D granular systems, the approach to 

achieve a controllable and quantitative tunability of wave propagation is still unclear.  

 
Figure 3 Numerical methods for exploring the wave behaviors in 1D granular systems. 

(a) Discrete element model of an elastic woodpile periodic structure [89]. (b) Finite 

element model of a hollow cylindrical granular chain [50].  

1.3 Stress wave attenuation in 1D granular systems 

Recent experimental observations of dissipative perturbations have brought forward 

new challenges on traditional wave dynamics, which motivates pioneers to investigate 

stress wave attenuation in 1D granular systems [9, 90] and in turn offers insights into 

designing the next generation mitigating systems. Despite a lack of a universally accepted 

model, primary efforts have been placed on exploring stress wave attenuation originated 

from friction between particles and the sliding rail [91], viscoelasticity of soft particles [92], 
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plastic deformation of granular particles [93-96], the viscous drag of liquid medium [97, 

98], rotations of granular particles [78], and energy losses due to the randomness of aligned 

particles [55, 99, 100]. More recently, the dispersive rarefaction shocks have been 

discovered in a 3D-printed hollow elliptical cylinder chain as well, making it possible to 

achieve stress wave attenuation in strain-softening granular systems without material 

damping or plastic deformations [18].  

The dissipation in stress wave propagation may result in the variation of both the 

amplitude and shape of the wave [11]. For example, a critical viscosity predicts the 

transition of shock wave profiles from oscillatory to monotonic (see the transition in Fig. 

4(a)) [97], while the plastic deformation leads to qualitatively different wave profiles 

accompanied by a significant decrease of wave amplitude [101]. In addition to traditional 

testing platforms, a modified split Hopkinson pressure bar (SHPB) was applied to provide 

high amplitude loads for testing 1D granular systems (Fig. 4(b)) [22, 93, 95], where 

localized plastic deformations were observed near the contact point and the dissipation was 

obtained by measuring the residual plastic contact area. 

Based on the extension of the Hertzian model in Eq. (1), a quantitative and systematic 

model of dissipation in 1D spherical granular chains was proposed by adding a 

phenomenological term in which a discrete Laplacian of the particle velocities was 

considered [11, 90]:  
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( ) ( )
3 3

2 2
1 1 1 12i i i i i i i iu K u u u u s u u u


− + − +

 = − − − + − +
  

, 

( )1 1sgn 2i i is u u u− + − +  
(14) 

where 0    is a viscous coefficient of the phenomenological force depending on the 

relative velocities of neighboring particles. A dissipative exponent of 1 =   was 

demonstrated to be effective for dry granular matter [98], which was further optimized 

according to experimental and numerical results (Fig. 4(c)) [90].  

 

Figure 4 (a) Oscillatory and monotonic shock-like waves in a “Sonic Vacuum” [11]; (b) 

Experimental setups of a brass-steel dimer chain in SHPB [95]; (c) The comparison 

between the results from experiments and the dissipative model in a steel granular chain 

[90].  

More complicated models involving both displacements and velocities were 

subsequently developed on the basis of the viscoelasticity theory [102]. Furthermore, a 

mesoscopic approach, including a three-dimensional (3D) FE model and a 1D regularized 

contact model, was established to explore the dissipative losses in 1D granular systems 
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from the perspective of first principles [103]. However, more sophisticated research is still 

in demand for uncovering the fundamental mechanisms of stress wave attenuation and 

realizing quantitative/controllable wave attenuation in 1D granular systems.  
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CHAPTER 2 SOLITARY WAVE PROPAGATION IN 1D GRANULAR SYSTEMS 

In this chapter, the solitary wave propagation within 1D granular crystals based on 

composite cylinders is systematically investigated. Two types of composite particles are 

designed by creating a material mismatch within the granular, i.e., core-shell and sandwich 

types. Such 1D composite granular chains are found to support the formation of strongly 

nonlinear solitary waves, which is consistent with the observations of traditional 1D 

granular chains composed of spherical particles. An FE model is developed to describe 

wave propagation behaviors fully validated by experiments. A theoretical analysis is also 

conducted, which agrees with numerical results and uncovers the physical mechanisms of 

solitary wave propagation in 1D composite granular chains through the parametric study. 

Finally, the fundamental understanding of dynamic responses is extended to more 

generalized composite granular chains with sandwich configurations. Results provide in-

depth physical understanding and engineering design guidance to quantitatively tailor wave 

properties through simple 1D granular structures. 

2.1 Methods 

2.1.1 Configurations 

In this chapter, two types of composite particles are designed to form 1D cylindrical 

granular chains, including core-shell and sandwich structures (Fig. 5(a)). A material 

mismatch between different parts in a specific composite cylinder is created, where 
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stainless steel and nylon are selected as the “strong” and “weak” materials, respectively. 

Thus, two different configurations, i.e., “strong shell-weak core (S-W)” and “weak shell-

strong core (W-S)”, are achieved for the core-shell type, where a critical parameter is 

defined based on the core radius R and shell thickness t, i.e., /t R = . Meanwhile, "strong 

shell-weak interlayer-strong core (S-W-S)" and “weak shell-strong interlayer-weak core 

(W-S-W)” configurations are obtained for the sandwich type. Accordingly, the geometric 

parameter is given by 2* /t R = , where t2 is the interlayer thickness and the core radius is 

assumed the same as the shell thickness for simplification (i.e., 1t R= ). Note that the outer 

diameter (a) and length (l) is identical for all the particles (i.e., ( )2a R t l= + = ).  

2.1.2 Experimental setups 

Herein, the fabrication approach of composite particles was developed (Fig. 5(b)). 

Firstly, short cylinders were cut from long rods/tubes for assembly. A PVC cover was 

employed to fill in the tiny gap between core and shell. Then, they were sealed and glued 

tightly. After over 24 h curing, the composite particles were completed and ready for 

testing.  

To investigate the dynamic responses of 1D composite granular chains, a series of 

composite cylinders was vertically arranged in a 3D-printed guide (Fig. 5(c)), where the 

sliding track (see the top view of the guide) was delicately designed to minimize the contact 

areas that cause friction during the experiment.  
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Figure 5 (a) Configuration of cylindrical composite particles. Type I: core-shell 

structure; Type II: sandwich structure. Schematic of (b) the particle fabrication process 

and (c) experimental setups. Herein, the contact force waveforms of two different 

locations were measured, i.e., the 1st and 2nd particle, the 4th and 5th particle.  

Controlled by an electromagnet switch, a stainless-steel sphere with a diameter of 

19.05 mm was released from an exact height, impacting the 1D composite granular chain 
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with a velocity of 0.63 m/s to generate an impulse. Meanwhile, the release of the impactor 

would trigger oppositely aligned photoelectrical sensors (OMRON, E3Z), serving as input 

1 to the oscilloscope (i.e., trigger signal). Furthermore, a film sensor was inserted between 

different composite particles to capture the contact force waveforms during stress wave 

propagation. The corresponding signal (i.e., input 2) was captured by an amplifier 

(LK1432C), then visualized and recorded by the oscilloscope (Tektronix, TDS-2024C). 

More details about the experimental method and film sensor are available in Refs. [13, 50]. 

2.1.3 Finite element modeling 

A three-dimensional FE model is established in ABAQUS/Explicit to explore wave 

properties in 1D composite granular chains (Fig. 6(a)). According to Ref. [50], only elastic 

properties are assigned for both materials, and the gravitational effect can be neglected. For 

stainless-steel, the density 37800 kg/ms = , Young’s modulus Es = 200 GPa, and Poisson’s 

ratio vs = 0.3. For nylon, the density 31105 kg/mn = , Young’s modulus En = 3.55 GPa, and 

Poisson’s ratio vn = 0.42. All the composite particles possess the same outer diameter and 

length (i.e., a = l = 19.05 mm), and their lateral movements are restricted by a rigid guide. 

For the parametric studies in the following sections, a stainless-steel sphere is applied to 

the granular chain with an initial velocity of 0.1 m/s to generate an impulse, and a rigid 

wall is fixed at the end of the chain. 
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Figure 6 (a) Finite element model of the 1D composite granular chain. Comparison of 

experimental and numerical results in (b) S-W and (c) W-S granular chains, respectively.  

Different parts within each of the composite particles are tied together, and a surface-

to-surface hard contact with frictionless tangential property is employed to describe the 

contact properties between neighboring composite particles and the guide. A C3D10M 

mesh type is applied to the sphere and composite particles, where a gradient size of 0.3-1.5 

mm and a uniform size of 1 mm are used respectively based on a mesh convergence study. 
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At least two layers of mesh are seeded for each part of composite particles to accurately 

simulate the dynamic responses. For the rigid wall and guide, an R3D4 mesh type with a 

uniform size of 1 mm is assigned.  

2.1.4 Validation 

To validate the FE model, two configurations of the composite granular chain 

composed of 14 core-shell particles were fabricated and tested, as displayed in Table 1. 

According to Ref. [21], a minor frictional coefficient (f = 0.02) is applied to the surface-to-

surface interaction to mimic the unavoidable frictions between particles and the guide. 

Furthermore, the PVC cover with the density 
31300 kg/mp = , Young’s modulus Ep = 3.4 

GPa, and Poisson’s ratio vp = 0.4 is considered to accurately simulate the particle structures. 

For validation, the impact velocity in FE models is consistent with that in experimental 

setups (i.e., 0.63 m/s). In both configurations (Figs. 6(b)-(c)), the contact force waveforms 

between experimental and numerical results agree well with each other although a slight 

discrepancy can be found in the rear of waveforms. This might originate from the possible 

rotations (or lateral movements) of cylindrical particles during stress wave propagation in 

experiments. Herein, the W-S configuration delivers a relatively low wave speed 

( W-S S-W0.26V V ) in contrast to the S-W configuration. The demonstration of solitary waves 

formation in 1D composite granular chains can be seen in APPENDIX A, and more 

comprehensive analysis of wave properties will be discussed in Section 2.3.1.  
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Table 1 Core-shell granular chains fabricated for model validation 

Configuration Material a = l (mm)   Total number 

S-W Shell Stainless-steel 19.05 
0.55 14 

 Core Nylon 19.05 

W-S 
Shell Nylon 19.05 

0.57 14 
Core Stainless-steel 19.05 

2.2 Results 

Toward understanding typical wave properties within 1D composite granular chains, 

two representative cases with core-shell type particles ( 0.1 = ) are selected and analyzed 

(Fig. 7). Based on the force maps in Figs. 7(a) and (d), the force amplitude (Fm) and wave 

width (Ls) are evaluated in a selected region (i.e., the white dotted lines), presented in Figs. 

7(b) and (e) for S-W and W-S configurations, respectively. The finite spatial size and a 

consistent amplitude as the wave propagates are observed within both configurations, 

demonstrating the formation of strongly nonlinear solitary waves (i.e., Nesterenko solitary 

wave) in 1D composite granular chains. 

Furthermore, Fm in S-W configuration (~43 N) is notably higher than that in W-S 

configuration (~23 N), however, similar Ls (~9 particle diameters) is achieved in the two 

configurations. Such performances should be attributed to the particle structures in 1D 

composite granular chains. According to the Mises stress distribution in Figs. 7(c) and (f), 

a localized compression is mostly observed at the neighboring shells, which demonstrates 

the dominant role of the shell in wave properties. Hence, a W-S composite chain brings out 

lower amplitude Fm and wave speed V yet longer duration T of each waveform compared 
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to an S-W one, which in turn, results in different values of Fm and weakens the 

discrepancies of Ls (i.e., VT) between the two configurations. 

 

Figure 7 Typical results of wave propagation in 1D granular chains with core-shell 

particles ( 0.1 = ). Contact force map: (a) S-W and (d) W-S; Wave properties: (b) S-W 

and (e) W-S; Stress distribution (the 2nd and 3rd particles): (c) S-W and (f) W-S.  

2.3 Discussion 

2.3.1 Core-shell type 

It is natural to investigate solitary wave properties in more generalized composite 
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chains; thus, based on the validated model, a parametric study is conducted regarding a 

series of  . As depicted in Fig. 8(a) (solid symbols), the variation of wave speed is 

different in S-W and W-S configurations.  

 

Figure 8 Numerical results (solid symbols) and theoretical prediction (cross symbols) of 

solitary wave speed variation as a function of  : (a) S-W (blue) and W-S (green) 

composite granular chains. (b) Illustration of interaction between two neighboring 

composite particles.  

A continuously growing trend of wave speed is observed in the S-W configuration 

when   increases from 0.02 to 5 and the varying range falls between the “S” and “W” 

reference lines (i.e., the wave speeds of homogenous stainless-steel and nylon chains with 

solid cylinders). Nevertheless, in the W-S configuration, the wave speed experiences a 

decrease at first ( 0.02 0.1  ) then gradually ascends as   ( 0.1 5  ). Meanwhile, a 

rather low range of wave speed is achieved below the “W” reference line. The contributions 

of core and shell during stress wave propagation are first analyzed to explore the underlying 

mechanisms. Per Ref. [60], for core-shell type, only elastic properties of the shell need to 
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be considered if the core can be regarded as a rigid body, and the compressive deformation 

is much smaller than the shell thickness. In other cases, the contribution of both core and 

shell parts may be considered. Next, wave propagation in 1D composite granular chains is 

theoretically explored to elucidate the dependence of wave properties. 

Instead of point contact between interacting spheres, a line contact pertains when 

cylindrical particles are aligned in parallel. An ideal line contact law was determined by 

Lundberg and Sjövall [104] as 

( )
( )( )

2 2

2

2 1
ln

1 1 s

F v El
d

El F v



 

 −
 =

−  

, (15) 

where F is the normal contact force between two cylindrical bodies, d is the deformation, 

E is Young’s modulus, v is Poisson’s ratio, l is the length of cylindrical bodies, and 
s is 

the shear strain. The contact law is quite difficult to be written in a simple and explicit 

expression. On the basis of laboratory tests of roller bearings, Palmgren explicitly 

developed an approximation of the line contact law with a sufficient degree of accuracy 

[44] 

( )

8 10
9 9

22.81 1

El d
F

v
=

−
. (16) 

Accordingly, quasi-static compressive tests on composite particles were conducted to 

demonstrate Eq. (16) (APPENDIX B). Considering the proposed 1D composite granular 

chains, the interaction between cylindrical particles can be described by 
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( )
( )

8
9 10

9
2 122.81 1

eE l
F a x x

v
= − −  

−
, (17) 

where x1 and x2 are the coordinates of the two cylindrical particle centers (Fig. 8(b)). Given 

different contributions of the core and shell, an effective modulus Ee is defined 

( ) ( ) ( ) ( )1e c c s s c s sE f E f E f s f E   = + = +   . (18) 

Here, Ec and Es are Young’s moduli of the core and shell material, respectively. ( )cf   

and ( )sf   are the governing coefficients depending on the geometric parameter  . 

1 /c ss E E=  is the modulus mismatch ratio between core and shell materials. It is noted that 

the effective modulus is assumed to be constant for a specific configuration of the 

composite granular chain. However, the effective modulus of composite particles with a 

very thin shell might be amplitude dependent. Namely, a high amplitude will lead to a 

notable variation of the effective modulus, which is not considered in view of a relatively 

low impulse amplitude in the present study. 

Thus, the equation of motion for the ith particle in 1D composite granular chains is 

given by 

( ) ( )
10 10

9 9
0 1 0 1i i i i iu A u u u u − +

 = − + − − +
  

, 
( )

8
9

22.81 1

e

t

E l
A

v m
=

−
, (19) 

where 
0  is the static displacement (for “sonic vacuum” systems, 

0 0 → ). mt is the total 

mass of the composite particle and can be calculated by 
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
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, (20) 

where c  and s  are densities of the core and shell, respectively, 2 /c ss  =  is the 

density mismatch ratio. Based on the long-wave approximation [1], a strongly nonlinear 

wave equation for 1D composite granular chains can be expressed as 

( ) ( ) ( )( )
2

10 191
2 9 18 18

5

57
tt x x x

xx
x

a
u c u u u

  
= − − + − −    

, 
19

2 9c Aa= , 0xu−  . (21) 

Considering a solitary wave in “sonic vacuums”, the wave speed is derived as 

1
18

18

19
mV c = . (22) 

Here, 
m  is the maximum strain in solitary waves. Concerning the leading approximation, 

m  is also related to the force amplitude Fm [60]  

( )

( )

8 10
9 9

22.81 1

e m
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E l a
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v


=

−
. (23) 

Combining Eqs. (22) and (23), the expression of wave speed V in 1D composite 

granular chains can be obtained  

( ) ( )

9 91 2 1 2
20 5 20 20 5 20

9 1 9 1
22 220 202

18
0.61

19 12.81 1

m e m e

t t

F l a E F l a E
V

m mvv

= =

  −−
 

. (24) 

The wave speed V has a nonlinear dependence on the amplitude Fm, yet the effect can 

be neglected due to the small exponent (1/20). Therefore, one may anticipate a constant 

wave speed during stress wave propagation even if there might be a slight decay of wave 

amplitude in actual tests. And the wave speed V in a specific composite chain can be 
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described by a nonlinear relation on the effective modulus Ee and the total mass mt. 

Substituting Eqs. (18) and (20) into (24), one may obtain 

( ) ( ) ( )( )
1/29 220

1 2 1 1 1c sV S f s f s  
−

− = + − + +    
, (25) 

where S is the constant and the varying trend of V can be predicted once the two coefficients 

of Ee are given with respect to  . Herein, the coefficients are intuitively defined by 

assuming that the total contribution of core and shell is unity (i.e., ( ) ( ) 1s cf f + = ). 

Namely, the exact allocation proportion can be determined by defining either ( )cf   or 

( )sf   for specific configurations. There are two critical factors to be considered while 

selecting appropriate functions: First, both core and shell may contribute to the wave 

dynamics; Second, the composite granular chain will behave like uniform granular chains 

when   is extremely close to zero or infinity. Therefore, the following functions are 

selected for S-W configuration,  

( ) ( ) ( )
3/2

1
,  1

1
c s cf f f  


= = −

+
, (26) 

and W-S configuration,  

( ) ( ) ( )
1/2

1
,  1

1 3
c s cf f f  


= = −

+
. (27) 

The numerical results corroborate the theoretical predictions of the wave speed in both 

S-W and W-S configurations (Fig. 8(a)), revealing that the solitary wave speed can be 

efficiently tailored by manipulating the governing factors (i.e., Ee and mt). 

The underlying mechanisms are further explored by evaluating the displacement 
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difference between the two contact points [50]. Herein, the core and shell deformations of 

the first particle are compared for composite chains with different   values (Figs. 9-10).  

 

Figure 9 S-W: the deformation waveforms upon (a) 5 = , (b) 1 = , (c) 0.1 = , (d) 

0.02 = . The blue and gray parts represent strong and weak materials, respectively.  

Due to direct contact between neighboring particles, the shell undoubtedly plays a 

dominant position in both configurations during stress wave propagation. In the S-W 

configuration, the core deformation is almost zero at 5 =  (Fig. 9(a)), indicating that the 

core can be assumed to be a rigid body. Furthermore, the maximum shell deformation 

( 31.36 10  mm− ) is negligible in contrast to the shell thickness (7.94 mm). In that case, one 

may simply consider the elastic properties of the strong shell, which also explains why the 
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corresponding wave speed (2286 m/s) is close to the “S” reference line (2381 m/s). When 

  is decreasing from 5 to 0.02, a waveform of core deformation appears (Fig. 9(b)) and 

gradually becomes higher (Fig. 9(c)), finally overlaps with the shell deformation when 

0.02 =  (Fig. 9(d)). Thus, it is necessary to take both the core and shell into account in 

these cases, leading to a wave speed situated between the two reference lines. 

 

Figure 10 W-S: the deformation waveforms upon (a) 5 = , (b) 1 = , (c) 0.1 = , (d) 

0.02 = . 

In the W-S configuration (Fig. 10), the dependence of the core deformation on   

tends to be different. The core deformation always maintains a value close to zero as   

decreases from 5 to 0.1 yet shows a small non-zero waveform at 0.02 = . The results 
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manifest that the core only contributes to wave dynamics when   is relatively low 

( 0.1  ). Within this region, the core radius will decrease as   increases, which will 

gradually weaken the impact of the strong core and in turn account for the initial decrease 

of wave speed in the W-S configuration. Under higher values ( 0.1  ), the weak shell 

thickness increases as  , and the strong core can be assumed to be rigid. According to Eqs. 

(20) and (27), the total mass is decreasing under the increase of   while the effective 

modulus tends to have minor changes. Based on the nonlinear dependence of wave speed 

on governing factors (Eq. (24)), a slightly growing trend of wave speed is obtained within 

this region.  

2.3.2 Further Extension to the Sandwich type 

Since the effective modulus Ee and the total mass mt of the composite particles are 

two critical factors in wave speed, it may be extended to more generalized 1D composite 

granular chains. In this section, two configurations (i.e., S-W-S and W-S-W) in sandwich-

type are analyzed accordingly (Fig. 11), where the presence of an interlayer between core 

and shell might add more freedom to manipulate solitary wave properties in 1D composite 

granular chains.  
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Figure 11 Wave properties in 1D composite granular chains with sandwich particles. The 

varying trend of wave speed with respect to * : (a) S-W-S and (b) W-S-W 

configurations. (c) A lumped mass-nonlinear spring model describing more generalized 

1D granular systems.  

Within the investigated range ( 0.05 * 5  ) of the two configurations, the wave speed 

shows a shell-dominated behavior, which is consistent with the conclusions in Section 2.3.1. 

In deformation waveforms of S-W-S configuration (Fig. 12), a decreasing trend of 

deformation is observed from the outer to inner parts in all the cases and the core can be 

regarded as a rigid body due to the negligible core deformation. Thus, the shell and 

interlayer jointly lead to the decrease of wave speed as *  increases (Fig. 11(a)).  
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Figure 12 S-W-S: the deformation waveforms upon (a) * 5 = , (b) * 0.5 = , (c) 

* 0.1 = , (d) * 0.05 = . 

In the W-S-W configuration (Fig. 13), the interlayer and core deformations overlap 

with each other and are much smaller compared to the shell deformation that plays a 

significant effect on wave properties. This degrades into the W-S configuration ( 0.1  ), 

namely, an increase in *  brings about smaller shell thickness, in turn, a lower wave 

speed (Fig. 11(b)). 
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Figure 13 W-S-W: the deformation waveforms upon (a) * 5 = , (b) * 0.5 = , (c) 

* 0.1 = , (d) * 0.05 = . 

Considering a more generalized composite granular chain, it can be described by a 

series of lumped masses connected by nonlinear springs (Fig. 11(c)), where the mass and 

the nonlinear stiffness are determined by mt and Ee, respectively. Hence, it is possible to 

quantitatively manipulate solitary wave properties in composite chains by adjusting the 

governing factors. Basically, this can be achieved by simply tuning the geometric 

parameter, while the tailoring range can be greatly extended by selecting an appropriate 

material system for “strong” and “weak” materials or designing composite particles with a 

higher hierarchy.  
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2.4 Conclusions 

In this chapter, wave propagation in 1D cylindrical composite granular chains was 

comprehensively investigated. Two types of composite particles were designed by using 

“strong” and “weak” materials in different parts, respectively, including core-shell and 

sandwich structures. Both numerical results and experimental evidence demonstrated the 

formation of strongly nonlinear solitary waves in chains of core-shell cylindrical particles. 

A parametric study was conducted by varying the geometric parameter, where the shell-

dominated dynamic response was observed 1D composite granular chains. Also, a 

theoretical analysis of wave propagation was carried out based on the long-wave 

approximation, which coincided with the numerical results and uncovered the nonlinear 

dependence of wave properties on the governing factors (i.e., the effective modulus and 

total mass). Finally, the influencing mechanisms were extended to more generalized 

composite granular chains. This study has shaped the fundamental understanding of wave 

propagation in 1D composite granular chains and opened an efficient approach to designing 

granular systems with exact wave properties.  
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CHAPTER 3 UNIVERSAL DESIGN OF EQUIVALENT SYSTEM SUPPORTING 

SOLITARY STRESS WAVES 

The initial motivation of the study in this chapter is prompted by how to construct 

specific granular systems with desired wave properties and particle motions. Here, the 

methodology to construct equivalent systems (i.e., granular systems with identical output) 

is systematically studied using theoretical analysis, experiments, and numerical simulation. 

The properties of Nesterenko solitary wave supported by 1D spherical granular chains are 

investigated, where an equivalent wave transmission is achieved among various materials 

and dimensions. The results of typical experiments and finite element analysis fully support 

the established theoretical predictions based on Hertz contact and long-wavelength 

approximation theory, which yields a broad class of equivalent systems. Finally, an 

instructive mechanism map, containing various equivalent systems, is proposed to clarify 

the relationship between geometric parameters and material properties, providing insights 

into designing a desired nonlinear dynamic system and guidance for potential engineering 

applications. 

3.1 Methods 

Focusing on engineering applications, one may face an important problem on how to 

construct a granular system to realize desired wave properties and particle motions. Herein 

equivalent systems refer to those systems with various granular properties (either/both in 

material properties or/and particle sizes) with the same system output (e.g., particle velocity, 
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wave speed, and wave width). Therefore, methodologies to obtain equivalent systems are 

proposed and discussed.  

3.1.1 Theoretical analysis 

Hertz's seminal work [105] established the relation between force and deformation of 

two spherical particles. With the assumption of only elastic contact between particles, the 

equation of motion for a 1D uniform spherical granular chain with dissipation, namely the 

governing equation of equivalent systems can be written as [1, 15, 39] 

   
( )

5/2 *
3/2 3/2

1 1 2
,  

2 2 1
i i i i i i

R E
u u u u u u   

 

−

− ++ +
= − − − − =

−
, (28) 

where iu  is the displacement of the ith particle and closely related to the coordinate ix , 

   is a coefficient related to material properties (i.e. modulus *E  , density    , and 

Poisson’s ratio  ) and geometric parameters (i.e. radius R ) of particles. *c E =  is 

1D elastic wave speed of particles material. The dissipative effect caused by friction is 

taken into consideration by the last term in Eq. (28) [100].   is a damping coefficient, 

depending on particle properties in 1D granular systems. Meanwhile, the viscosity of 

material can be described by a dissipative term depending on the relative velocities of 

contacting particles [11]. However, an analytical relation between the dissipative 

coefficient and characteristics of a specific granular chain is required to include viscous 

effect in developing equivalent systems. Coefficient of restitution (COR) has been 
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demonstrated as an indicator of the relative energy loss and is closely related to viscosity 

without plastic deformation. According to previous studies, the CORs of materials mainly 

considered in this chapter (e.g., aluminum, stainless steel) are quite close to unity upon low 

initial velocities. In addition, Nesterenko solitary waves were achieved in viscoelastic 

particle materials as well, such as Teflon [14] and Nylon [66] granular chains. Therefore, 

the dissipation caused by viscosity was neglected for simplicity.  

To apply the quasi-static Hertz law for dynamic problems, the characteristic times of 

contact deformation tc are required to be significantly longer than the characteristic period 

of grain oscillations Tc [1], which is 

2.5c c

R
t T

c
 . (29) 

The following variables are introduced to make it nondimensional. 

, ,
2 2 / 2

u t x
u t x

R R c R
= = = . (30) 

Substituting these dimensionless variables into the equation of motion gives 
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. (31) 

In the long-wave approximation, the wave equation for the chain of spherical particles 

can be written in the nondimensional form [106] 
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. (32) 

Considering the problem where the initial strain ( 0 ) equals zero (sonic vacuum case), 
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Nesterenko discovered the analytical solution of Eq. (32) for frictionless granular systems 

with a general power-law interaction ( x xu u = − = − ) [1, 106]: 

( ) ( )
( )
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0 0 0

6 11
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n x V tn

A A x V t
n n R

 

− + −−
 = = −
 +
 

, (33) 

where 0A  , p and    are constants. Since n is 3/2 for spherical particles (following 

Hertzian contact law), p would be 4 in this study. For small values of   , Rosas and 

Lindenberg [100] proposed a modified solution by considering the decay in both energy 

and pulse velocity, which gives 

( ) ( )( )0
sin

t
pA t x V t dt = −  , (34) 

For spherical particles subjected to weak dissipation, the amplitude and phase speed 

of waves can be denoted by [100] 

( ) ( )
4 1

9 9
0 0,  

t t

A t A e V t V e
 − −

= = . (35) 

Obviously, both the amplitude and phase speed of the wave will decrease 

exponentially as a function of time. It should be noted that the shape and width of the wave 

are assumed to be constant during wave propagation. In the meantime, the granular chain 

discussed here is relatively short, including 10-20 spherical particles. This yields the total 

transmission time in the interval of 10-100 microseconds in experiments for steel particles 

with a diameter of about 5-10 millimeters and Nesterenko solitary wave amplitude about a 

few hundred Newtons [7, 8]. Furthermore, in some materials, the damping can be neglected 
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in the first approximation with prevailing nonlinear and dispersive effects described by Eq. 

(32) [1]. Therefore, the weak dissipative effect will be ignored in the analysis of equivalent 

systems. A striker identical to particles in the granular chain was adopted to generate a 

propagating pulse. 

Herein, two types of equivalent systems are investigated respectively, i.e., generalized 

equivalent systems and restricted equivalent systems. The generalized equivalent systems 

refer to a group of granular systems with different granular properties but identical particle 

motions. More rigorously, the restricted equivalent systems, consisting of various granular 

systems sharing the same wave properties (especially wave speed) with identical particle 

motions, are further developed. Note that the physical systems themselves are not 

equivalent, but rather the idealized Hertzian systems, in which dissipation is neglected, are 

equivalent.  

(1) Generalized equivalent systems 

Provided those different granular systems have identical  , it is possible to obtain 

equivalent motions of particles in 1D granular chains. Namely, identical dynamic particle 

motions can be achieved in equivalent systems with different combinations of material 

properties and geometric parameters, which yields an approach to decoupling material and 

particle size of granular crystals and developing generalized equivalent systems according 

to Eq. (28).  
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(2) Restricted equivalent system 

In the above-mentioned generalized equivalent systems, two equivalent systems share 

the same particle velocity but may not have the same wave properties. To further explore 

the possibility to have equivalent systems, one may focus on a granular system where 

Nesterenko solitary wave propagates with phase speed sV  having the shape described by 

one hump of the periodic function. [1, 106] 

4
4

2

25 10
cos

16 5

sV
x



 
=   

 
, (36) 

where /s sV V c=  is the nondimensional phase speed of solitary waves, which nonlinearly 

depends on the nondimensional maximum particle velocity /m mv v c= , according to [1, 

106] 

1/5

2/5 1/5

m

16
 

25
sV v

 
=  
 

. (37) 

Indeed, some previous works have significantly improved Eq. (36), such as, providing 

an analytical method via Padé approximation [107] and calculating in a numerically exact 

way [108]. In terms of the virial theorem for particles interacting according to the Hertz 

law, the relationship between kinetic energy kE   and potential energy pE   during the 

propagation of Nesterenko solitary wave is given by [1] 

5 / 4k

p

E

E
= . (38) 
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The excitation of the Nesterenko solitary wave is considered using a striker with mass 

equal to the particle mass in the chain. Thus,  

5 / 9k

t

E

E
= . (39) 

Note that the total energy of the granular system tE  is determined by the amplitude 

of the impact velocity of the striker iv , which is  

2

t

1

2
iE mv= . (40) 

According to the solution of Nesterenko solitary wave given in Eq. (36), the kinetic 

energy of the central particle of the hump is 

( )
Central 2

m 8

1 1

2 1 2cos / 4
k kE mv E


= =

+
. (41) 

Therefore, the relation between the impact velocity and the maximum particle velocity 

can be obtained.  
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. (42) 

Substituting Eq. (42) into Eq. (37), the phase speed ( sV ) of Nesterenko solitary waves 

in the granular chain is only related to the elastic wave speed of material and impact 

velocity.  

Furthermore, it is obvious that the Nesterenko solitary wave is highly localized and 

its wave width (the characteristic spatial size) in nondimensional form is described by Eq. 



42 

 

 

 

(36). It equals 

S

5
5

10
L


=  , (43) 

which indicates that the wave width is only dependent on the geometry of the particles 

(about 10R) [1, 14, 106].  

Therefore, selecting materials (i.e., *E  and  ) with identical 1D elastic wave speed 

while keeping consistent in geometric parameters (i.e., R) and initial conditions (i.e., iV ), 

one may create more rigorous equivalent systems. Theoretically, such systems share 

identical particle motions and other wave properties (e.g., sV  and SL ).  

3.1.2 Experimental setups 

As shown in Fig. 14, 1D granular chains composed of N = 20 spherical particles were 

assembled in a horizontal guide where lateral motion was restricted to investigate the 

Nesterenko solitary waves in equivalent systems. Four 1D granular chain systems were 

considered in the experiment, i.e., stainless-steel, aluminum, brass, and nylon 1D granular 

chains. As such, brass and stainless-steel granular chains serve as generalized equivalent 

systems while stainless steel and aluminum 1D granular chains serve as restricted 

equivalent systems. The corresponding material and geometric properties are summarized 

in Table 2.  
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Figure 14 Experimental setups. (a) Overall configuration of a horizontal test platform 

for 1D spherical granular crystal; (b) Schematic of the film sensor structure; (c) 

Experimental setup for 1D granular chain consisting of N beads, where film sensor was 

embedded in the bead to obtain the compression force 

The particle was initially cut along its diameter direction into two halves via Wire 

Electrical Discharge Machining (WEDM) and then, a film sensor (Fig. 14(b)) was glued 

between these two caps. The effect of the glued sensor was not considered due to its 

ignorable thickness and mass when compared to spherical particles. Connected to a four-

channel Tektronix Oscilloscope (TDS-2024C) and two amplifiers, two film sensors were 

embedded into the particles (the 5th and 10th particles) of the system to obtain the 

compression force, phase speed, and clear visualization of the propagating wave.  

Table 2. Material properties and geometric parameters of granular chains in experiments 

Properties Stainless-steel Aluminum Brass Nylon[66] 

Young’s modulus (GPa) 200 [109] 68.9 [109] 103 [109] 3[110] 

Density (kg/m3) 7927.5 2699.8 8426.5 1140 

Poisson’s ratio 0.28 [109] 0.33 [109] 0.34 [109] 0.4 

Diameter (mm) 20 20 15 15.875 
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The film sensor (diameter a = 15 mm, thickness t = 0.3 mm) used in the experimental 

setup can generate an electric charge in response to applied mechanical stress. The electric 

charge is proportional to the applied force, which is indicated by the sensitivity of the 

sensor Ks. In view of different application scenarios, Ks is 43.94 pC/N under high-speed 

dynamic test and 20 pC/N upon low speed/static test scenarios, respectively. Since the 

impact velocity was relatively low in this study (< 2 m/s). the sensitivity of the film sensor 

would be Ks = 20 pC/N. Similar to the calibration method in previous literature [14], the 

initial velocity and linear momentum conservation law can be used to calibrate the film 

sensors. The area under the force-time curve (from the initial point to the crest) measured 

by the film sensor was compared to the initial linear momentum of the particle. The 

amplifier (LK1432C) used here has a frequency response of up to 600 kHz. Combined with 

the film sensor and the oscilloscope, the amplifier can be used to detect and record high-

speed dynamic/vibration signals. The maximum input charge is 105 pC and the noise is less 

than 10 mV. Herein, the output voltage per unit was set to 1 (O = 1 mV/unit) and the 

sensitivity was set to Ka = 2.0 pC/unit. Thus, the following equation was applied to obtain 

applied force (F) corresponding to the output voltage (U) recorded by oscilloscope: 

( )/s a

U
F

O K K
= , (44) 

The 1D granular chain was impacted by a striker identical to particles in the system 

to generate a propagating pulse. The impact velocity was measured by a photoelectric 
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sensor in the experiment and different impact velocities (0.3 m/s, 0.4 m/s, 0.5 m/s, and 

1.654 m/s) were achieved by releasing the striker from various heights along the ramp. To 

ensure the repeatability of the experiments, 3 repeated tests were performed for each 

scenario.  

3.1.3 Finite element model 

The finite element code ABAQUS/EXPLICIT is employed to analyze the Nesterenko 

solitary waves propagation and localization in equivalent systems. As Fig. 15 shows, a 

three-dimensional FE model is developed for the 1D granular chain, where tetrahedral 

second-order elements (C3D10M) are used for the spheres.  

A denser mesh (0.05 mm) is adopted within the vicinity of the contact point and a 

relatively coarser mesh (2.00 mm) is used in other areas to reduce computational costs 

while maintaining accuracy. A mesh size convergence test was carried out to obtain 

computational confidence [59] (APPENDIX C). A base plate is set to rigid and fixed at the 

end of the granular chain. The surface-to-surface interaction with the kinematic contact 

method is applied to model the contact between particles, where the tangential direction is 

frictionless, and the normal direction is hard contact to prevent the overlap between 

surfaces. Impact pulses are generated by a striker with different initial velocities. The 

particles in the 1D granular chain have free axial vibrations but are restricted in other 

directions. The material properties (i.e., Young’s modulus, density, and Poisson’s ratio) 
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used in numerical analysis are consistent with those in experimental setups. 

 

Figure 15 Finite element model of 1D spherical granular chain. Impact pulses were 

generated with a striker under different impact velocities.  

3.1.4 Validation 

Force-time responses captured by sensors embedded in specific particles (5th and 10th 

particle) are compared with the corresponding responses obtained from the simulations to 

validate the FE model (Fig. 16). Both metal (stainless steel) and polymer (nylon) granular 

chains were considered.  

The results imply that a solitary wave is developed via the initial excited impulse in 

the granular chain. In Fig. 16(a) and (c), a tail with small amplitude can be observed in 

experimental results, which may result from dissipation on the shape of short pulses. The 

wave speed is calculated by considering the distance between two specified particles with 

the sensor and the corresponding interval. Accordingly, the wave speeds in experimental, 

theoretical, and numerical cases were shown in Table 3. Obviously, the experiment results 

are in good agreement with the theoretical and numerical ones. Therefore, the developed 
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FE model is reliable to explore the Nesterenko solitary wave properties in 1D spherical 

granular chains.  

 

Figure 16 Comparison of force-time responses of (a) (c) experiments and (b) (d) finite 

element analysis of Nesterenko solitary wave. Herein, (a) and (b) are results of 1D 

stainless steel granular chain with an impact velocity of 0.3 m/s, while (c) and (d) are 

results of 1D nylon granular chain with an impact velocity of 1.654 m/s. The curves in 

group A and group B show the responses of 5th particle and 10th particle in the 1D 

granular chain, respectively  

The experiments of three types of granular chains (i.e., stainless steel, aluminum, and 

brass) were carried out under different impact velocities (0.3 m/s, 0.4 m/s, and 0.5 m/s) to 

investigate the wave properties of different equivalent systems. The repeated testing results 

are presented in Fig. 17. All the testing results for analysis are the averages of experimental 
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measurements. 

 

Figure 17 Repeated testing results of three types of granular systems under different 

impact velocities. (a)-(c) Stainless steel; (d)-(f) Brass; (g)-(i) Aluminum 

Table 3 Comparison of wave speeds in 1D granular chains 

Wave speed Theoretical (m/s) 
Numerical Experimental 

Vs (m/s) Error (%) Vs (m/s) Error (%) 

Stainless steel 527.4 555.2 5.27 521.25±5.16 1.17 

Nylon 311.85 311.28 0.19 310.52±5.25 0.43 

3.2 Results and discussions 

3.2.1 Mechanism map 

Based on the equation of motion and the expression of phase speed sV  obtained in 
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Section 3.1.1, mechanism maps are presented in Fig. 18, implying the relationship between 

material and particle size of the 1D granular crystal system. Like theoretical analysis, one 

may use a dimensionless strategy by comparing sV  and c to obtain a normalized wave 

speed /s sV V c=  . Meanwhile, the radius is normalized with respect to the transient 

displacement of the specific particle, i.e., / mR R v =  , where the response distance is 

determined by the maximum particle velocity ( mv ) and unit time ( ).  

Figure 18(a) predicts that there is a nonlinear dependence on the normalized phase 

speed and radius. Together with corresponding properties of Nesterenko solitary waves and 

granular systems, the distribution of equivalent systems is also shown per the variation of 

  . It is evident that the transmitted wave properties through the granular chain are 

nonlinearly dependent on sV   and R  , which enables equivalent performance between 

different granular systems. In addition, this distinctive response is more sensitive to sV . 

From the energy transmission perspective, the generated compressive pulse propagates 

between the particles without significant energy dissipation, implying that the most of 

incident energy is dispensed to different particles in the form of both kinetic energy and 

potential energy, while they closely relate to materials and geometries. In the real-world 

scenario, a portion of incident energy is converted to the strain energy of the guide rail and 

inverse kinetic energy of the striker particles due to the rebounding of the striker together 

with unavoidable contact between nonlinear chain and linear guides. Nevertheless, it will 



50 

 

 

 

not change the dominant energy transmission mechanism between granular particles. These 

coupling behaviors provide a more extended tuning area for us to design a granular system 

with desired performance.  

 

Figure 18 Mechanism maps of equivalent systems. (a) A comprehensive map indicating 

the normalized properties of Nesterenko solitary waves and granular chains, together 

with the distribution of equivalent systems and (b) An instructive map to design a 

granular system. The circle symbols are four selected groups of generalized equivalent 

systems from specific lines with identical  . 

Figure 18(b) provides more direct instruction on how to use particles with arbitrary 
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materials or geometries to develop equivalent systems. In this contour plot, all kinds of 

geometries and materials granular systems are gathered according to their transmitted wave 

properties. Different bands or lines with an identical magnitude of   represent a series of 

equivalent systems. For instance, along the lines with identical  , it is possible to find 

particle groups with different materials and geometries to construct generalized equivalent 

systems as the circle symbols denoted in Fig. 18(b), e.g., brass beads with a diameter of 

14.8 mm and stainless beads with a diameter of 20 mm. 

3.2.2 Generalized equivalent system 

3.2.2.1 Experimental results 

The experimental results of generalized equivalent systems are presented in Fig. 19. 

It is evident that both the 1D granular chains (i.e., Brass and stainless steel chains) 

considered in experiments support the formation and propagation of Nesterenko solitary 

wave. Several effective evaluation criteria are introduced to further analyze the 

experimental results, i.e., the maximum particle velocity vm and interval between two 

specific peaks T  (See APPENDIX D). Table 4 is a summary of experimental results of 

brass and stainless granular chains in terms of T  and mv , where 1D brass and stainless 

steel granular chains are verified to be generalized equivalent systems. 
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Figure 19 Experimental results of generalized equivalent systems. Force-time curves of 

5th and 10th particles in (a) 1D brass granular chain and (b) 1D stainless steel granular 

chain at three different impact velocities (0.3 m/s, 0.4 m/s, 0.5 m/s)  

Table 4 Testing results of generalized equivalent systems under various impact velocities. 

Impact velocity 

(m/s) 

Brass Stainless steel 

vm (m/s) T  (ms) vm (m/s) T  (ms) 

0.3 0.1251±0.0043 0.1967±0.0013 0.1402±0.0076 0.1919±0.0019 

0.4 0.1796±0.0083 0.1841±0.0015 0.1868±0.0104 0.1831±0.0013 

0.5 0.1833±0.0123 0.1817±0.0096 0.1912±0.0019 0.1800±0.0012 

3.2.2.2 Numerical analysis 

As shown in Fig. 20, the particle velocity-time responses of four different groups 

marked in Fig. 18(b) are compared. Group 1: stainless steel (2R = 20 mm) and brass (2R = 

14.8 mm) granular chains; Group 2: aluminum (2R = 61.1 mm) and Delrin (2R = 23.1 mm) 

granular chains; Group 3: glass (2R = 95.32 mm) and nylon (2R = 41.56 mm) granular 

chains; Group 4: zinc (2R = 112.9 mm) and PMMA (2R = 55.16 mm) granular chains. Note 

that all the granular chains (composed of 10 particles) discussed here are excited with the 

same type of dynamic loading (impacted by a striker with a velocity of 0.4 m/s). 

Consequently, the equivalent performance of the two selected systems is demonstrated.  
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Figure 20 Numerical results (particle velocity-time curve) of generalized equivalent 

systems. (a) Group 1; (b) Group 2; (c) Group 3; (d) Group 4. 

3.2.3 Restricted equivalent system 

3.2.3.1 Experimental results 

The experimental results of restricted equivalent systems are shown in Fig. 21. where 

the slight decay in the amplitude of the 10th particle is observed. It is probably related to 

the friction and tiny gap between the particles during the experiments. Here, the phase 

speed of the Nesterenko solitary wave is selected as the evaluation criterion, which can be 

easily obtained by considering the interval between two specific particles.  
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Figure 21 Experimental results of restricted equivalent systems. Force-time curves of 

5th and 10th particles in (a) 1D stainless steel granular chain and (b) 1D aluminum 

granular chain at three different impact velocities (0.3 m/s, 0.4 m/s, 0.5 m/s)  

Table 5 shows the experimental phase speed of Nesterenko solitary waves in 1D 

stainless and aluminum granular systems under different impact velocities. All the phase 

speeds are obtained by measuring the time interval and distance (10R) between 5th and 10th 

particles in granular chains. Except for the dissipative effect in experiments (APPENDIX 

E), 1D stainless steel and aluminum granular systems can be regarded as restricted 

equivalent systems.  

Table 5 Phase speed of restricted equivalent systems under different impact velocities. 

Impact velocity (m/s) 0.3 0.4 0.5 

Stainless steel (m/s) 521.25±5.16 546.08±3.80 555.58±3.65 

Aluminum (m/s) 539.91±13.77 598.22±8.85 621.06±11.15 

3.2.3.2 Numerical analysis 

Four groups of materials with similar 1D elastic wave speeds are selected to construct 

restricted equivalent systems. Group 1: PP and ABS granular chains (2R = 5.67 mm); 

Group 2: Delrin and PMMA granular chains (2R = 7.64 mm); Group 3: titanium and nickel 
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granular chains (2R = 20 mm); Group 4: magnesium and glass granular chains (2R = 20 

mm). Each granular chain consists of 10 particles. Figure 22 displays the particle velocity-

time responses of these four groups, where the excellent agreement of two granular systems 

is found in each group. It is evident that the two granular systems in each group appear in 

the same location in the mechanism map (Fig. 18), indicating that restricted equivalent 

systems can be regarded as a specific group of generalized equivalent systems. In addition, 

the return pass in equivalent systems is numerically explored (APPENDIX F) to discuss 

the effect of other properties (e.g., reflected waves).  

 

Figure 22 Numerical results (particle velocity-time curve) of restricted equivalent 

systems. (a) Group 1; (b) Group 2; (c) Group 3; (d) Group 4. 
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In summary, both the experimental and numerical results strongly support that by 

following the established models, one can obtain equivalent systems according to the 

specific system design requirement. Thus, such a mechanism map shown in Fig. 18 may 

extensively serve as an instruction providing insights for engineers to design a granular 

system. 

3.3 Conclusions 

In this chapter, the construction of Nesterenko solitary wave in equivalent systems 

(1D spherical granular chains) was studied. Theoretical models were established to offer a 

featured methodology for designing both generalized and restricted equivalent systems. 

Furthermore, a mechanism map containing both the geometric parameters and material 

properties was developed, serving as a guideline for engineers to develop corresponding 

equivalent systems. Numerical simulation and experimental work both strongly supported 

the validity of proposed models. Consequently, this work expands the understanding of 

governing factors in wave tuning. It also offers novel ideas for designing 1D nonlinear 

systems with tailored properties, especially when the available material type or particle size 

is limited. 
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CHAPTER 4 STRESS WAVE ATTENUATION IN 1D GRANULAR SYSTEMS 

In this chapter, efficient and controllable stress wave attenuation approaches are 

developed by considering I. Strain-softening behaviors; II. Kirigami-based structures. In 

the first approach, a hollow cylindrical (HC) granular system is reported to support highly 

tunable compression and rarefaction waves by varying the particle thickness ratio. Soliton-

like and mitigating waves are observed in the proposed granular chain with strain hardening 

and softening contact behaviors, respectively. Moreover, validated FE models describing 

the contact behaviors and wave dynamics are adopted and specific relation between the 

contact behavior (i.e., nonlinear exponent) and geometric parameter (i.e., thickness ratio) 

is analyzed. The tunability of 1D HC granular chains is demonstrated by carrying out 

parametric studies for governing factors, including the impact velocity, impactor-to-

particle mass ratio, particle thickness ratio, and particle number. An optimal impact 

mitigating efficiency can be obtained within a quite short chain, which is exceedingly 

favorable for the design and construction of impact mitigation systems. Results provide a 

novel design and methodology for various wave tuning and mitigation purposes. 

In the second approach, the kirigami lanterns are tailored and fabricated using simple 

paper sheets yet an exceptional impact mitigation capability is achieved (orders of 

magnitude lower transmission compared to various existing metamaterials). Detailed 

experimental and numerical exploration uncovers that the unique folding-unfolding motion 
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of kirigami lanterns during stress wave propagation contributes to the outstanding 

performances. Based on a validated FE model, the governing laws of critical parameters, 

including impact energy, cell number, petal number, and hinge number, are systematically 

explored, where the mitigation capacity can be further boosted by appropriately increasing 

the impact energy. Furthermore, an adaptable design of kirigami chain length and other 

geometric parameters is exploited to realize highly efficient and controllable mitigation 

when subjected to specific impact energy. This study illustrates a new route to designing 

superior impact mitigation structures with lightweight materials, offering insights for the 

innovation of next-generation impact protection strategies in the automotive and aerospace 

industries.    

4.1 Tunable traveling wave properties in 1D chains composed from hollow cylinders 

4.1.1 Materials and methods 

4.1.1.1 Experimental setups 

A 1D HC granular chain with N = 20 particles was vertically assembled in a 3D-

printed tube composed of a series of enclosures (using standard grey resin in Formlabs 

Form 2) (Fig. 23(a)). The inner diameter of the tube was 19.50 mm, which was designed 

to restrict the lateral movements of HC particles and to minimize the transitional friction. 

The thickness ratio of HC particle is defined as R/t (Note that R is fixed here and various 

R/t can be achieved by varying t, see the side inset of Fig. 23(a)) and the particles (diameter 
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2R = 19.05 mm, thickness ratio R/t = 5.77, mass m = 5.00 g, Young’s modulus Ec = 68.90 

GPa and Poisson’s ratio vc = 0.33 [86]) were cut from a standard 6061-T6 aluminum round 

tube (McMaster-Carr).  

Propagating waves were generated by impacting the top of the 1D granular chain and 

the impactor was released from a specific height, resulting in an impact velocity of 0.30 

m/s to the granular chain (PTFE ball, 2Rs = 15.88 mm, M = 4.50 g, Es = 1.46 GPa, vs = 0.46 

[20]). The impactor triggered a photoelectric sensor (OMRON, E3Z), serving as an external 

input by connecting the sensor to the oscilloscope. Under a specific loading scenario (i.e., 

same impact velocity and mass), the actual time difference can be obtained corresponding 

to various locations of the film sensor such that the stress wave propagation can be 

precisely captured. Further details for obtaining the waveforms are in APPENDIX G.  

Combined with an amplifier (LK1432C) and the oscilloscope (Tektronix, TDS-

2024C), a film sensor bonded between two HC particles was used to detect and record the 

waveform of contact force during the tests. Compared to the aluminum HC particles in the 

chain, the thickness (0.30 mm) and mass (< 5%m) of the film sensor were negligible such 

that the measurement of contact force waveforms between two interacting particles would 

be acceptable. Two tests per experimental setup were conducted to ensure the repeatability 

of the experiments.  
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Similar to Ref. [14], this film sensor was calibrated by comparing the area under the 

force-time curve (from the initial point to the peak) captured by the sensor to the linear 

momentum of the particle. The sensitivity of the film sensor Ks upon low-speed tests was 

20.00 pC/N. Thus, the sensitivity of the amplifier Ko was set to 2.00 pC/unit, and the output 

voltage per unit O was 1.00 mV/unit accordingly. The contact force (F) corresponding to 

the output voltage (U) from the oscilloscope is given by Eq. (44) [13]. 

To investigate the contact properties between the two HC particles, a 3D-printed 

hollow cubic box (inner length 19.10 mm) was designed to restrict the lateral motions of 

two vertically aligned particles (Fig. 23(b)). A quasi-static loading (0.20 mm/min) test was 

conducted on the INSTRON E3000 material testing machine to obtain the force-

displacement relation. Herein, two repeated tests were performed to achieve consistency 

and accuracy.  

4.1.1.2 Finite element model 

A three-dimensional FE model of the HC granular chain is developed in 

ABAQUS/Explicit (Fig. 23(c)). A rigid wall (fixed at the end of the granular chain) and a 

cubic tube (for lateral constraints) are constructed to simulate the base and guide in the 

experiment, respectively. Only elastic properties are considered in this study, consistent 

with the experimental setups.  
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For neighboring particles, the surface-to-surface contact type with a frictionless 

property is applied in the tangential direction. A 10-node modified quadratic tetrahedron 

element (C3D10M) is used for both the impactor and particles in the granular chain. The 

convergence study is conducted to ensure the proper mesh size (APPENDIX H). A mesh 

size of 1.00 mm is selected for the particle to balance the computational costs and accuracy. 

Considering the thin wall for HC particles with large thickness ratios, at least two layers of 

elements are seeded along the thickness direction. Meanwhile, a gradient mesh (0.30-1.50 

mm) is set for the impactor varying from the contact point to the middle plane of the sphere 

[59]. The effect of gravity is fully included in FE models to ensure the accuracy of the 

experiment setups (APPENDIX I). 

As for the contact behaviors of neighboring particles, a three-dimensional HC contact 

model is constructed based on ABAQUS/Standard (Fig. 23(b)). A rigid platen is positioned 

at the top of the two particles by using a displacement control (the maximum displacement 

is set to 0.30 mm), while the bottom rigid platen is fixed. The lateral movements of particles 

are constrained to simulate the 1D quasi-static compressive test. A 10-node-quadratic 

tetrahedron standard mesh type (C3D10) is selected for the two interacting particles, and 

the mesh size is 0.50 mm which corresponds to the order of the maximum displacement 

set for compressive loading. The contact type and material properties are consistent with 

the settings in the granular chain model discussed above.  
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Figure 23 Schematic of setups. (a) Experimental setups of the proposed 1D HC granular 

chain. (b) Experimental setups and FE models were developed to investigate the contact 

properties between HC particles. A 3D-printed cubic box was adopted to keep two HC 

particles vertically aligned in experiments. (c) FE model of the 1D HC granular chain, 

which is consistent with the settings in experiments. 

4.1.2 Results 

Firstly, the quasi-static compression results from two HC cylinders are obtained (Fig. 

24(a), where tests 1 and 2 refer to two repeated tests) and a power-law type relation is 

applied to approximately describe the contact force (F) and the elastic deformation (d) [1]: 

nF kd= , (45) 

where k is the contact coefficient and n is the power-law exponent (for interacting spherical 

particles; the power-law equation will evolve into Hertz contact, i.e., n = 3/2). Combined 

with experimental and numerical results, the fitting curve (the dotted green line in Fig. 

24(a) with a strain-softening exponent n = 0.985 < 1) demonstrates the validity of the 



63 

 

 

 

power-law approximation in HC granular systems. However, the power-law exponent of 

contacting solid cylinders is 1.15 reported in Ref. [42] and 1.11 in Ref. [111], respectively 

which indicates that one may expand the tunable space to a large extent by varying the 

thickness ratio of HC particles (where R/t = 1 refers to the solid cylindrical particle). Based 

on the results of granular chain tests (Fig. 24(b)), a mild waveform expansion phenomenon 

can be observed. Meanwhile, the numerical results agree well with the experimental ones, 

proving the reliability of the numerical models for investigating the tunable stress waves 

in various HC granular chains.  

A baseline model is proposed and analyzed to explore the typical wave properties in 

HC granular chains, with an impact velocity of Vi = 0.1 m/s, a thickness ratio of R/t = 20, 

an impactor-to-particle mass ratio of M/m = 1, and a total particle number of N = 20. The 

particle force is obtained from measured contact forces between neighboring particles 

identically to the method used in [14]. Meanwhile, the nondimensional kinetic energy 

(KE*) is defined as KE*(Nth)/ KEm (1
st) (KEm (1

st) is the maximum kinetic energy of the 

1st particle) to ensure a fair comparison among granular systems with different parameters. 

In force/energy surface maps, the results of the impactor are not considered for a better 

understanding of the stress wave transmission within the 1D HC granular chain.  
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Figure 24 Typical results. (a) Contact behaviors of HC granular crystals (2R = 19.05 

mm, R/t = 5.77). A 3D-printed box was applied to ensure purely vertical displacement 

during the experiments. (b) Validation of the FE granular chain model. Contact forces 

at four different positions (i.e., the 1st and 2nd particles, the 3rd and 4th particles, the 6th 

and 7th particles, the 8th and 9th particles) obtained from the experiment and numerical 

simulation are compared. (c) Particle force and (d) Nondimensional kinetic energy 

maps in time and space domains from the numerical simulation. The red dashed and 

white dotted lines represent the wave peak and front edge of the stress wave during the 

propagation process, respectively.  

An increasing separation among wave peaks (the red dashed line) and the front edge 

(the white dotted line) can be observed in Fig. 24(c), which is consistent with the results 

from hollow elliptical cylinder chains in Ref. [18]. The shape of the leading pulse tends to 

be wider and lower as the stress wave propagates, which results in a long wave tail at the 

end of the granular chain. Inevitably, there is an evident increase in the particle force values 
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close to the distal end because of the fixed rigid wall. With the evolution of the normalized 

energy in Fig. 24(d), the amplitude of nondimensional kinetic energy gradually decreases 

and the waveform becomes wider (corresponding to the features of the particle force) 

which is evidence of the formation of a typical rarefaction wave.  

Unlike the Nesterenko compression solitary waves previously discussed in traditional 

granular systems, e.g., spherical granular chains [6, 55], these unique characteristics 

(especially the variation of stress waves from compact to sparse distribution) yield the 

potential mitigation mechanism of 1D HC granular systems. The fundamental difference 

regarding stress wave properties comes from the distinct contact properties among various 

granular chains.  

4.1.3 Discussion 

A parametric study is numerically carried out by analyzing the effects of different 

governing parameters. In addition to the thickness ratio introduced in the previous section, 

three other critical parameters are considered, including the impact velocity (Vi), the total 

particle number (N), and the impactor-to-particle mass ratio (defined as M/m, various 

density values of the impactor are adopted to achieve desired mass ratio in FE models).  

4.1.3.1 The effect of impact velocity 

Given the fact that the yield velocity of aluminum is / 19.80 m/sY c c cV Y E = =  (Yc is 

the yield strength of 6061-T6 aluminum) [112, 113], the impact velocity range (0.1-1 m/s) 
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is set below the yield velocity to achieve purely elastic stress waves in the granular chains. 

Meanwhile, the dynamic deformation of a hollow cylinder is demonstrated to be local and 

elastic when the impact velocity is less than 0.2VY [112]. Thus, numerical simulations (R/t 

= 20, M/m = 1 and N = 20) were conducted upon three different impact velocities, i.e., 0.1 

m/s, 0.5 m/s and 1 m/s, respectively. The demonstration of elastic assumption is further 

investigated in APPENDIX J. Three characteristic parameters are defined to quantitatively 

investigate the various wave amplitudes at different impact velocities on 1D HC granular 

chain (Fig. 25(a)), i.e., the temporal width Ts, wave speed Vs, and wave width Ls. Here, Ts 

is the time difference between two specific points (5% maximum force) of a hump (blue 

hump in Fig. 25(a)). Vs is given by the ratio of the spatial distance between two crests to 

the corresponding temporal distance ( T ). Since the variation of Vs is negligible in given 

short HC chains (N = 20) [18], the constant wave speed is considered during the wave 

propagation by using the humps of the 6th and 11th particles for each loading scenario. 

Consequently, the wave width (or characteristic spatial width) can be defined as s s sL T V=  

to describe the pulse profiles as the stress wave propagates.  
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Figure 25 Effects of impact velocities. (a) Definitions of characteristic parameters in 

stress wave propagation. (b) Wave width variation in space domain under different 

impact velocities. The inset shows wave speeds of different cases. (c) The geometry of 

the contact region corresponding to two contact types: point contact (sphere-to-sphere) 

and line contact (cylinder-to-cylinder).  

Generally, when one applies higher external excitation to a traditional spherical chain, 

the wave speed of the resultant Nesterenko solitary wave tends to increase and is 
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demonstrated to have a relation of Vs ~ vm
1/5, where vm is the maximum particle velocity, 

which is directly related to the impact velocity [1]. However, this is not the case for a 1D 

HC chain. Identical wave speed is observed regardless of external excitations (see the inset 

of Fig. 25(b)). This unique feature of the designed HC chains results from the 

unconventional contact behaviors of HC particles (the exponent being very close to 1). This 

appears to be consistent with the phenomena observed in solid cylindrical chains (0o 

orientation aligned) [42].  

A point contact is obtained for interacting spherical particles, i.e., the initial contact is 

a single point without external load, and applying load will lead to a finite elliptical contact 

area (Fig. 25(c)) [38]. The pressure distribution in plane xy, p(x, y) can be described by 

[114] 
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where P is the load, La and Lb are the two semi-axes of the elliptical area in Fig. 25(c). This 

leads to the Hertzian contact relation between the P and d [1] 
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where E and v represent Young’s modulus and Poisson’s ratio, while R1 and R2 are the radii 

of two particles, respectively.  
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For neighboring HC particles parallel to each other, the point contact will evolve into 

a line contact. In that case, an elongated rectangle will substitute the elliptical contact area 

as the load is applied, resulting in an infinite La. If both La and P are close to infinity, P/ La 

will remain finite. Thus, by allowing the major axis to become infinite, one may determine 

the load per unit P  instead of P to achieve the load-displacement relation for line contact, 

which gives [114] 

( )
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where 2q is the length of the rectangular contact region and lnLb can be obtained by 
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Unlike the point contact case, the load-displacement relation for the line contact 

cannot be solved explicitly. The length of the contact area (2q) will keep constant with the 

increase of wave amplitude (or the impact velocity). With the exponent being very close to 

1, the dependence of Nesterenko solitary wave speed on its amplitude would be rather 

small (unlike being 1/5 for exponent 3/2 for Hertzian interaction of spherical beads [1]), 

making the dependence of wave speed on amplitude very weak and non-observable. In 

other words, the HC granular chains can deliver stress waves with amplitude-independent 

wave speed. 
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Another interesting feature that can be observed in Fig. 25(b) is that the variation of 

waveforms (i.e., wave width) shows a similar trend under different impact velocities. The 

wave width, for the case with R/t = 20, M/m = 1, and N = 20, increases from about 9R to 

16R as the stress wave propagates, which is notably different from that of Nesterenko 

solitary waves in spherical granular chains (~10R) [1, 45]. This is also due to the exponent 

being very close to 1. According to Eq. 1.130 in Ref. [1], the characteristic spatial scale of 

the Nesterenko solitary wave can be larger than 10R if the exponent is close to 1.  

Furthermore, an outstanding force mitigation effect can be observed in all cases (Fig. 

26). While evaluating the effectiveness of force mitigation, it is quite straightforward to 

define a force mitigation ratio µ(Nth) = FNm/F1m (the subscripts “N” and “m” denote the 

specific particle number and maximum, respectively) in the space domain and make a fair 

comparison among cases with different impact velocities. A specific ratio µ(16th) is 

adopted to evaluate the force mitigation effect among these cases. Herein, µ(16th) has 

values of 75.50%, 67.37% and 62.08% for loading scenarios with impact velocities of 0.1 

m/s, 0.5 m/s and 1 m/s, respectively. Namely, the force mitigation effect tends to be 

enhanced as the external excitation increases. Note that the ratios of the last four particles 

are not considered to avoid the influence of the rigid wall (or the reflected waves). An 

additional case with a higher impact velocity is also discussed in APPENDIX K to 

demonstrate the universality of existing results.  
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Figure 26 Contact forces of different particles (R/t = 20, M/m = 1, N = 20) illustrate 

stress wave propagation under the impact velocity of (a) 0.1 m/s, (b) 0.5 m/s and (c) 1 

m/s. Nondimensional kinetic energy maps were plotted to investigate energy 

transmission in HC granular chains under different impact velocities: (d) 0.1 m/s, (e) 

0.5 m/s, and (f) 1 m/s. The input energies of each system, i.e., the initial kinetic energy 

of the impactor, were marked by white circles in the energy maps. 
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The KE* of the impactor (i.e., the input energy, marked as white circles) is included 

in the energy map to further assess the energy transmission within a 1D HC granular chain 

(Figs. 26(d)-(f)). The rebound of the impactor is less evident in those cases with higher 

impact velocities. Therefore, one may achieve an increasing wave width together with 

decreasing wave amplitude in 1D HC granular chains, making them potential mitigating 

systems. 

4.1.3.2 The effect of impactor-to-particle mass ratio 

In addition to the wave amplitude (or impact velocity), the duration of impulses can 

have a substantial effect on the traveling waves within granular chains as well [1]. Various 

impactor-to-particle mass ratios ranging from 0.2 to 10 are selected to generate a series of 

impulse durations (M/m = 0.2, 0.5, 1, 2, 3, 4, 5, 10, and R/t = 20, Vi = 0.1 m/s, N = 20).  

According to the evolutions of leading waveforms in Fig. 27, a larger impactor-to-

particle mass ratio (i.e., a longer initial excitation) gives wider leading waveforms while 

decreasing wave duration makes them converge to a specific width (~3 elements for this 

case). Note that a “short (< 0.2 ms)” or “long (> 0.2 ms)” duration can lead to a train of 

solitary waves or shock wave impulse for traditional “sonic vacuum” type granular 

systems, respectively [14].  
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Figure 27 The evolution of leading waveforms at different spatial positions (R/t = 20, 

Vi = 0.1 m/s, N = 20): (a) N = 3, (b) N = 6, (c) N = 9, (d) N = 12. The normalized force 

(F/Fmax) is plotted versus nondimensional time (VsT/2R) and the right halves of the 

curves have been shifted to the origin for comparison.  

The durations of impulses relating to different impactor-to-particle mass ratios are 

evaluated in Table 6 to explore the wave duration-induced behaviors. For those cases with 

impactor-to-particle mass ratios higher than 1 (or impulse duration larger than 0.2 ms), a 

long wave tail is observed in HC chains, resulting in an asymmetric waveform in the 

corresponding granular chains. This serves as more evidence of the wave mitigation and 

wave dispersion of traveling shock waves in 1D HC chains. Moreover, for small impactor-

to-particle mass ratios (or impulse duration lower than 0.2 ms), there is no long wave tail 



74 

 

 

 

and the nondimensional time tends to be convergent owing to the short interacting period 

among granular particles.  

Table 6 Durations corresponding to different impactor-to-particle mass ratios 

Mass ratios 0.2 0.5 1 2 3 4 5 10 

Duration (ms) 0.108 0.153 0.213 0.333 0.432 0.558 0.660 1.194 

4.1.3.3 The effect of thickness ratio 

Based on the validated contact model, the varying contact properties of HC particles 

are analyzed with thickness ratio R/t ranging from 1 to 20. Following the power-law 

presented in Eq. (45), different groups of critical parameter values (k, n) are obtained 

corresponding to each thickness ratio (Fig. 28). It is notable that both n > 1 and n < 1 can 

be achieved here, and an approximately inverse proportional trend can be observed 

between the thickness ratio (R/t) and power-law parameters (n). To classify all scenarios 

into two groups, i.e., n > 1 and n < 1, a dashed red line is marked in Fig. 28, indicating the 

boundary between the strain-hardening and softening systems.  

Given different properties in these two classes of materials, four typical HC granular 

systems with thickness ratios R/t = 2, 4, 16, and 20 are selected. Note that Nesterenko 

solitary wave solution is valid even for slightly nonlinear material (n → 1) cases, i.e., the 

nonlinear power law is close to the linear contact law [1]. In that case, the effective strain-

hardening group consists of granular systems with thickness ratio R/t = 2, 4, while the other 

two cases (R/t = 16, 20) are in the strain-softening group. This also implies it is possible to 
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achieve highly tunable traveling wave properties (e.g., switching from compression to 

rarefaction) via adjusting the thickness ratio of the particles in 1D HC granular chains. 

 

Figure 28 Contact behaviors of HC granular crystals with a thickness ratio R/t varying 

from 1 to 20. The behaviors of HC granular chains can switch from strain-hardening to 

softening based on different values of exponent n. Four thickness ratios (R/t = 2, 4, 16, 

20, star markers in the graph) were selected to investigate the tunable wave properties. 

Results from two classes of HC granular chains (strain-hardening and softening) are 

compared to further verify the analysis of contact behaviors. According to the evolution of 

contact force with different thickness ratios (Fig. 29), significant differences in the stress 

waveforms are revealed between the two groups. The traveling waves within the strain-

hardening group (R/t = 2, 4) show soliton-like properties while mitigating rarefaction 

waves are formed in the strain-softening group (R/t = 16, 20). This is more evident when 

comparing the force mitigation ratios (µ(16th)) of these cases in Table 7, where the force 

amplitude remains constant in the strain-hardening group while it shows a decreasing trend 
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in the strain-softening group. Meanwhile, the force mitigation ratio is closely related to the 

thickness ratio, i.e., a higher thickness ratio gives a superior mitigating effect. 

 

Figure 29 Wave propagation in 1D HC granular chains with different thickness ratios 

(M/m = 1, Vi = 1 m/s, N = 20): (a) R/t = 2, (b) R/t = 4, (c) R/t = 16, (d) R/t = 20.  

Furthermore, mitigating properties are investigated via the nondimensional kinetic 

energy of particles with different R/t (Fig. 30(a)). The wave width in the spatial domain is 

calculated, yielding that the strain-hardening group supports traveling waves without 

profile variation (Fig. 30(b)) while expanded waveforms in the strain-softening group are 

observed (Fig. 30(c)). Given wave width at specific spatial positions (e.g., N* = 4), it 

decreases as the increase of thickness ratio (corresponding to the decrease of exponent n).  
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Figure 30 Effects of thickness ratios. (a) The nondimensional kinetic energy of particles 

with different thickness ratios. Three positions (1st, 6th, and 10th) were considered. Wave 

widths of 1D HC granular chains with (b) low and (c) high thickness ratios. 

Table 7 The force mitigation ratios of 1D HC chains with different thickness ratios 

HC granular chains Strain-hardening group Strain-softening group 

Thickness ratio (R/t) 2 4 16 20 

Force mitigation ratios, µ(16th) 97.43% 97.93% 70.23% 62.08% 

4.1.3.4 The effect of particle number 
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Based on established numerical models, an HC granular chain (R/t = 20, M/m = 1, Vi 

= 0.1 m/s) with 50 particles is simulated to explore the force mitigation effects in terms of 

the chain length, and the force mitigation ratio µ is calculated in the spatial domain as 

shown in Fig. 31(a) (i.e., for every single particle in this HC chain). A power-law function 

is used to track the spatial trend: 

zyN = , (50) 

where y and z are critical constants of the fitting curve.  

 

Figure 31 Effects of particle numbers. A 1D HC granular chain (R/t = 20, M/m = 1, Vi 

= 0.1 m/s) with particle number N = 50 was considered. (a) Force mitigation (defined 

as FNm/F1m) decreases as the stress wave propagates. (b) Specific force mitigation 

variation shows that good specific mitigation results can be achieved within a very short 

chain (~5.46 particles in this case). 

In addition, a specific force mitigation factor is defined as µ* = (1-µ)/N*, where N* 

represents the specific spatial position for each particle in the HC chain. The specific force 

mitigation is calculated in the spatial domain and a log-normal distribution is adopted to 

describe the variation accordingly (Fig. 31(b)): 
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where B, b, w, and µ0 are fitting constants. 

A peak value of µ* is discovered around the spatial position of 5.46 particles (as 

marked by a star in Fig. 31(b)). With a longer HC chain, one will achieve better mitigating 

effects but not necessarily the optimal mitigating efficiency. To explore the effects of the 

wave amplitude and duration, the corresponding spatial distances with optimal mitigating 

efficiency are evaluated under various impact velocities (N = 20, R/t = 20, M/m = 1) and 

impactor-to-particle mass ratios (N = 20, R/t = 20, Vi = 0.1 m/s) in Table 8.  

Table 8 Amplitude and duration induced spatial positions of optimal mitigating efficiency 

Optimal efficiency 
Impact velocity (m/s) 

0.1 0.5 1 

Spatial distance (particles) 5.46 4.06 3.37 

Optimal efficiency 
Impactor-to-particle mass ratio 

0.1 0.5 1 

Spatial distance (particles) 3.19 4.56 5.46 

A decreasing trend of spatial distance (from 5.46 to 3.37 particles) is observed as the 

impact velocity increases, indicating that one may achieve the optimal mitigating 

efficiency in a shorter granular chain under higher wave amplitudes. Furthermore, the 

spatial distance of the optimal mitigating efficiency will increase as the impactor-to-

particle mass ratio increases (from 3.19 to 5.46 particles). While for a higher impactor-to-

particle mass ratio (e.g., M/m = 5), the spatial distance (18 particles) is close to the total 
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length of the granular chain (20 particles). This is induced by the longer interaction period 

among granular particles under larger mass ratios (or wave duration).  

The optimized mitigation effect can be achieved within a short HC granular chain, 

which is of great significance to the design of the granular system and manifests great 

potential in engineering applications.  

4.1.4 Conclusions 

In this study, both soliton-like compression and mitigating rarefaction waves were 

investigated within 1D HC granular chains, where different contact behaviors (i.e., n > 1 

and n < 1) were achieved by tuning the thickness ratios of the particles. Owing to the unique 

contact properties of HC particles, a consistent wave speed for each HC granular chain was 

observed upon different external excitations. Furthermore, wider leading waveforms 

followed by a long wave tail were demonstrated in cases with large impactor-to-particle 

mass ratios which corresponded to a longer impulse duration. Finally, an optimized 

mitigating efficiency was achieved in a short distance by analyzing specific mitigating 

effects in the space domain of a longer chain (N = 50). The high tunability and novel 

features of the proposed HC granular systems provide insights into mitigating granular 

system design and understanding of unprecedented nonlinear phenomena. 

4.2 Kirigami-based lantern chain for superior impact mitigation 

4.2.1 Methods 
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4.2.1.1 Kirigami fabrication 

Inspired by classic paper lanterns for the Chinese New Year, watercolor paper sheets 

with a thickness of 0.47 mm and a density of 300 g/m2 (Strathmore, 300 series, cold press) 

were used to fabricate single kirigami lanterns (Fig. 32(a)). One may start with a 

rectangular paper sheet (height H = 60 mm, length L = 80 mm) tailored by a paper cutting 

machine. A pre-cut was designed and applied along the horizontal midline before folding 

the paper sheet in half (lengthwise) to accurately create the central crease lines for each 

kirigami lantern. Subsequently, a horizontal stop line and evenly distributed vertical cutting 

lines were drawn on the folded paper sheet to indicate the cutting plane and length for each 

kirigami lantern. Note that the cutting length is fixed (i.e., h = 20 mm) for all kirigami 

lanterns, and the number of cutting lines/planes directly relates to the petal number of 

kirigami lanterns. After cutting all slits, the paper sheet was unfolded and transformed into 

a lantern by gluing the edges (Gorilla micro precise super glue gel) and forming it into a 

tubular shape. Following the fabrication of kirigami lanterns, a cylindrical plastic panel 

was carefully designed (ID = 11.5 mm, OD = 40 mm, and t = 2 mm), 3D-printed (Form 2, 

Tough 1500 resin), and glued to both the top and bottom edges of the cell, making it 

possible to connect different kirigami lanterns and construct a 1D kirigami-based lantern 

chain (Fig. 32(a)).  
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Figure 32 (a) Fabrication process of a single kirigami lantern; (b) Schematic of the setup 

for impact experiments. An expand screw was inserted into the top of two supports to 

fix the round shaft. Four unthreaded holes were designed at the base to secure the 

supports on the optical table. Both the cubic impactor and kirigami lanterns can freely 

slide along the shaft; (c) Cyclic tests on kirigami lanterns for preconditioning. 

4.2.1.2 Experimental setup 

For investigation on the dynamics of the 1D kirigami-based lantern chain, 11 kirigami 

lanterns were horizontally aligned on a round shaft with a diameter of 10 mm (McMaster-
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Carr, polished 304 stainless steel), which was placed on two 3D-printed supports (Fig. 

32(b)). The last kirigami lantern of the chain (N = 11) was fixed to the rear support (serving 

as a rigid wall). Meanwhile, both supports were secured on an optical table with vibration 

isolation (Newport) and two compression springs were attached to the front support 

(McMaster-Carr, 316 stainless steel, rate 0.31 N/mm, 80.5 mm long, 13.5 mm outer 

diameter, and 11.5 mm inner diameter). By fully compressing the springs, a 3D-printed 

cubic impactor can be ejected and in turn impact the 1D kirigami-based lantern chain, 

namely, the conversion of the elastic potential energy of springs to the kinetic energy of 

the impactor can generate an initial impulse.  

For capturing the dynamic responses (e.g., deformation modes and motions) of 

kirigami lanterns, a high-speed camera (Photron, FASTCAM Mini UX100) was set up at 

the same height level of the 1D kirigami-based lantern chain, which was then connected to 

a laptop for visualization and control. Furthermore, an LED video light (Godox SL200 W) 

was adopted to guarantee a high light brightness environment for the camera during 

experiments. The high-speed camera was triggered for data acquisition (4000 fps) as the 

impactor was ejected by the springs, enabling us to record the initiation and propagation of 

stress waves within the chain.  

Considering that all the kirigami lanterns were hand-fabricated, the folding behaviors 

and mechanical performance may vary among different cells, making it difficult to explore 
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the reliable responses of the whole kirigami lantern chain [115]. Thus, a preconditioning 

process, including 200 cycles of loading-unloading (frequency 2 Hz, amplitude 10 mm) 

based on INSTRON E3000 material testing machine, was carried out on each kirigami 

lantern to ensure repeatable and uniform folding behaviors during the dynamic tests (Fig. 

32(c)).  

4.2.1.3 Finite element model 

According to the experimental setup (Fig. 33(a)), a three-dimensional FE model is 

developed in ABAQUS/Explicit to comprehensively investigate the dynamic responses of 

the proposed 1D kirigami lantern chain (Fig. 33(b)). Note that the round shaft and two 

supports are neglected in the FE model for necessary simplification. Accordingly, all the 

kirigami lanterns and panels are tied together while a surface-to-surface contact (hard 

contact for normal behavior and frictionless tangential property) is adopted to describe the 

interaction between the impactor and the first panel. Furthermore, a general contact is also 

defined for the whole FE model since there may exist self-contact in kirigami lanterns 

under relatively large deformation. Only axial deformation is allowed to mimic the 1D 

motion status of the chain in experiments and the last panel of the chain is fixed. Converted 

from the elastic potential energy of the springs, an initial velocity of 13.39 m/s is assigned 

to the cubic impactor for generating an identical initial impulse as experiments. 
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Figure 33 (a) Experimental setup captured by the high-speed camera; (b) FE model; (c) 

Quasi-static tensile testing of the watercolor paper specimens used in fabrication. 

Young’s modulus and yield strength can be obtained from the elastic stage and 0.2% 

plastic strain offset respectively; (d) Comparison of the maximum nominal strain 

between experimental and numerical results; Deformation modes from the (e) 

experiment and (f) simulation.   

Both the 3D-printed panels and the cubic impactor are made from Tough 1500 resin 

with post-curing and the corresponding material properties are given by the manufacturer 

(Formlabs), i.e., the density of 1150 kg/m3, Young’s modulus of 1.5 GPa, and Poisson’s 
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ratio of 0.4. A quasi-static tensile test of paper strip specimens was carried out on the 

INSTRON E3000 material testing machine with a loading rate of 5 mm/min (two repeated 

tests) to characterize the material properties of the watercolor paper sheets used for 

kirigami lanterns in experiments. Stress-strain relations yield Young’s modulus of 1.22 

GPa and yield strength of 7.31 MPa (Fig. 33(c)). Thus, an elastic-plastic model is used to 

characterize the constitutive behaviors of the paper materials in the FE model. 

Herein, an 8-node linear brick element type with reduced integration (C3D8R) is used 

and the mesh sizes of the cubic impactor, kirigami lantern, and panel are 1 mm, 1.5 mm, 

and 1 mm respectively to balance the computational costs and accuracy. Particularly, the 

mesh near the crease lines of kirigami lanterns is refined to achieve a denser mesh 

distribution at critical areas. Two acceleration sensors are set on the first and last kirigami 

lanterns (located at the center of front panels) to capture the input and output axial 

acceleration-time curves, respectively.  

4.2.1.4 Model validation 

During the impact tests, the motion and deformation of kirigami cells can be traced 

by measuring the length variation of each kirigami lantern at different frames. A nominal 

strain is then defined as L / L0 in view of the actual length (L) and original length (L0) of 

kirigami lanterns. The maximum nominal strain ( m ) of each kirigami lantern is compared 

between the experiment and simulation to validate the developed FE model, where a good 
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agreement is achieved with sufficient accuracy (Fig. 33(d)). Also, the experimental (Fig. 

33(e)) and numerical (Fig. 33(f)) deformation modes match well with each other. The slight 

discrepancy may be attributed to possible distortion in experimental measurement and the 

friction between the round shaft and components.  

Furthermore, the reusability of the tailored 1D kirigami lantern chain is investigated 

by applying five repeated impacts sequentially (Appendix L). Compared to the first impact, 

an increase of m  in the first few kirigami lanterns (especially the first one) is found during 

the following impacts (Fig. 66), which manifests that the kirigami lantern may experience 

plastic deformations during the first impact. Specifically, permanent deformation formed 

in the first impact leads to a decrease of the kirigami lantern’s overall length and in turn 

produces a more prominent buckling upon repeated impacts (with identical input energy). 

A more systematic discussion about the plastic deformation after impact will be presented 

in section 4.2.3 via numerical simulations. Nevertheless, the proposed 1D kirigami lantern 

chain is competent in the reusable challenge, thereby overcoming the trade-off between 

impact mitigation capability and material efficiency in traditional impact protection 

materials. 

4.2.2 Results 

Based on the validated FE model, the impact mitigation performances of the 1D 

kirigami lantern chain are evaluated and a critical indicator, i.e., transmission, is defined as 
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the ratio between the maximum output and input accelerations (Fig. 34(a)). Toward 

understanding the transmission behaviors of the 1D kirigami lantern chain, the 

representative input and output accelerations-time curves under impact energy of 1.6 J are 

presented (Fig. 34(b)), where both waveforms are normalized by the maximum input 

acceleration.  

 

Figure 34 (a) Definition of transmission ratio; (b) Acceleration (normalized by the 

maximum input acceleration) of input and output waves under impact energy of 1.6 J 

(corresponding to an impact velocity of 21.17 m/s); (c) Comparison of transmission 

ratio of the kirigami lantern chain (KLc) with existing structures from previous 

publications (The impact energy is 1.6 J). Note that an axis break is added at 7.9% due 

to the large difference between the transmission values of the structures. 

Regarding the input wave, a strong shock with high amplitudes appears at the 

beginning stage, following which an obvious and fast impact wave attenuation is observed 

after about 10 ms. However, the output wave behaves differently and possesses a rather 

low amplitude during the whole process. More specifically, after the kirigami lantern chain 
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is impacted, a minor oscillation of the output wave arises rapidly due to the overall 

structural response (see the enlarged view of the first 5 ms). As the stress wave further 

propagates within the 1D kirigami lantern chain and eventually arrives at the last kirigami 

lantern, a major peak can be found, followed by additional peaks resulting from the 

reflective waves (the interaction between the input waves and the fixed end).  

Compared to various existing metamaterials from previous literature (Fig. 34(c)), 

including sandwich structure woodpile metamaterials (SSWMc) [116, 117], internal 

resonator metamaterials (IRMc) [118, 119], and DNA-inspired metamaterials (DDHMc) 

[120], the transmission of the proposed 1D kirigami lantern chain (KLc) is two orders of 

magnitude lower than other metamaterials (0.026%) under the same impact energy of 1.6 

J, indicating a superior impact mitigation performance. Therefore, one may use lightweight 

materials (e.g., paper sheets) to achieve outstanding mitigation effects via delicately 

structural design, which is especially essential for aerospace and automotive industries.  

4.2.3 Discussion 

4.2.3.1 Impact energy 

The mitigation performances of the 1D kirigami lantern chain under a variety of 

impact energies ranging from 0.13 J to 1.60 J (Fig. 35) are analyzed to comprehensively 

investigate the impact mitigation mechanisms. With the increase of the impact energy, the 

transmission will decrease rapidly at the beginning stage, whereas the decreasing rate is 
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lower as the impact energy further grows (Fig. 35(a)), demonstrating that an enhanced 

impact mitigation capability can be achieved in the 1D kirigami lantern chain under higher 

impact energy. The folding-unfolding law of kirigami lanterns in the chain may 

fundamentally account for the underlying mechanisms of impact mitigation. Notably, the 

folding pattern of the first two kirigami lanterns exhibits different characteristics at m  

(the insets of Fig. 35(a)), where a more distinct compression is observed in the first kirigami 

lantern (N = 1) under higher impact energy while the second kirigami lantern (N = 2) 

maintains a constant folding deformation until the impact energy reaches a rather high level 

(1.60 J). 

 

Figure 35 The effect of impact energy. (a) The variation of transmission as impact 

energy increases from 0.13 J to 1.60 J. The insets exhibit the deformation modes of the 

1st and 2nd kirigami cells at m  during the stress wave propagation. (b) The evolution 

of m  with respect to unit index under different impact energies. 

To quantify the folding patterns of kirigami lanterns across the chain, one may explore 

the evolution of m  as a function of the unit index (N) under different impact energies 
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(Fig. 35(b)). Except for the case with an impact energy of 1.6 J, all the curves undergo a 

rapid transition from a large folding deformation in the first kirigami lantern to much 

smaller deformations in the following kirigami lanterns, accompanied by a slight increase 

of deformation near the fixed end. Nevertheless, under impact energy of 1.6 J, the above 

transition occurs after the second kirigami lantern, which is consistent with the observation 

of the progressively folding pattern in Fig. 35(a).  

Revisiting the definition of nominal strain in section 4.2.1.4, the allowed m  in the 

kirigami lantern is theoretically determined, i.e., [L0 - (H-2h)]/L0 = 0.64, revealing that 

there may exist critical impact energy. At this point, the first kirigami lantern is fully 

buckled after impacts and presents a maximum nominal strain of 0.64. When exceeding 

the threshold, the buckling of the first kirigami lantern cannot withstand the additional 

energy, giving rise to the apparent buckling of the second kirigami lantern. By analogy, the 

folding characteristics of the subsequent kirigami lanterns may vary if the impact energy 

further increases, implying that one may customize the required length of 1D kirigami 

chain aiming at a specific impact energy to achieve more efficient and adaptive impact 

mitigation.     

Based on the complete waveforms of the first four kirigami lanterns (Fig. 36), a clearer 

picture of the exclusive impact mitigation mechanism is uncovered, where three crucial 

conclusions can be made: 1. Consistent with experimental observations, a residual 
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deformation (denoted by the blue arrows) is found in kirigami lanterns close to the impact 

end and higher impact energy yields larger residual deformation, demonstrating that part 

of the input energy is dissipated by plastic deformations of the paper materials; 2. An 

expanded waveform with decreasing amplitude may effectively mitigate the impact during 

stress wave propagation in 1D kirigami lantern chains. Meanwhile, a wider waveform tends 

to emerge to accommodate higher impact energy, which is identical to the conclusions of 

conventional 1D granular systems [1, 50]; 3. Owing to the continuously folding-unfolding 

motion of kirigami lanterns (corresponding to the compressive-tensile deformations), a 

series of oscillating tails appears on the waveforms, which allows energy redistribution and 

storage in kirigami lanterns through elastic deformations. Consequently, the integration of 

these three mitigation mechanisms contributes to outstanding impact mitigation 

performances in 1D kirigami lantern chains.  

Moreover, multiple peaks can be observed on the waveforms due to repeated contacts 

between the cubic impactor and the first kirigami lantern, resulting in more complicated 

dynamic responses of the 1D kirigami lantern chain. For instance, the slight increase of m  

near the fixed end (Fig. 35(b)) may be attributed to the reflective waves and accumulative 

input energy coming from repeated impacts.  
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Figure 36 The evolution of nominal strain in the first four kirigami lanterns during stress 

wave propagation. (a) N = 1; (b) N = 2; (c) N = 3; (d) N = 4. 

4.2.3.2 Cell number 

The effect of kirigami lantern chain length is further explored by considering different 

cell numbers under the same impact energy of 0.64 J (coinciding with experimental setups). 

Inspired by the characteristic spatial width of the wave perturbation in conventional 1D 

granular systems [1, 50], a 25% wave width Ls (measured by the full width at 25% 

maximum and normalized by the original length of kirigami lantern L0, Fig. 37(a)) is 

defined to eliminate the influence of oscillating wave tails and thus characterize the 



94 

 

 

 

dominant spatial size of stress waves. Accordingly, Ls of the 2nd kirigami lantern is 

measured and analyzed for all the kirigami lantern chains in this study for a fair 

comparison. Considering that the input acceleration may be different in kirigami lantern 

chains with various configurations, a normalized input is given by the maximum input 

acceleration ratio between specific kirigami lantern chains and the baseline discussed in 

section 4.2.1.4 (11 cells and 0.64 J impact energy).  

 

Figure 37 Comparison of (a) transmission, wave width, normalized input amplitude, and 

(b) maximum strain of the kirigami chains with different cell numbers. (c) Deformation 

modes of the kirigami lantern chain with 20 cells at different times (From top to the 

bottom: 4 ms, 12 ms, and 20 ms). 

Remarkably, when the cell number varies from 10 to 20, the overall dynamic 

responses keep consistent among kirigami lantern chains despite a minor increase of 

transmission in the case with 20 kirigami lanterns (Fig. 37(a)), confirming that a relatively 
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short chain can fulfill the impact mitigation yet maintain quite a low transmission. When 

the kirigami lantern chain is further shortened, the transmission may grow sharply and 

become much higher than those of long chains. Even if the transmission rises to 0.16% in 

a 5-kirigami lantern chain (4.5 times that in a 10-kirigami lantern chain), it is still highly 

competitive and efficient in contrast to existing impact protection materials. 

Deformation behaviors of kirigami lantern chains with different cell numbers are 

compared as well (Fig. 37(b)), where the general trends of m  for different chains overlap 

in kirigami lanterns neighboring the impact end, yet the kirigami lanterns close to the fixed 

end behave differently. The increase of cell number can largely alleviate the eventual 

increase of m  in 1D kirigami lantern chains owing to the redistribution of accumulative 

energy from multiple impacts. The detailed folding-unfolding deformations of the 1D 

kirigami lantern chain with 20 cells at different time points (Fig. 37(c)) verify the efficacy 

of kirigami lantern chains in impact mitigation again. Namely, the residual deformation in 

the first few kirigami lanterns and a wide wave profile may produce a combination of 

plastic and dispersive effects for efficient impact mitigation.  

4.2.3.3 Petal number 

During the fabrication process of kirigami lanterns, the petal number can be altered 

by selecting an appropriate spacing distance between different cutting lines (the petal 

number of the baseline is 8 in Fig. 32(a)), and thereby change the dynamic responses of 1D 
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chains (e.g., the critical buckling force). It is natural to explore how the petal number affects 

the impact mitigation performance of 1D kirigami lantern chains. Herein, three types of 

kirigami lanterns are considered with a petal number of 6, 8, and 10, respectively, where a 

superior mitigation performance is obtained in 1D kirigami lantern chains with a higher 

petal number (Fig. 38(a)).  

 

Figure 38 Comparison of (a) transmission, wave width, normalized input amplitude, and 

(b) maximum nominal strain of the kirigami chains with different petal numbers. 

Given an exact paper sheet for fabrication, a lower petal number leads to a wider area 

for each petal (i.e., more materials on each petal) and subsequently a higher critical 

buckling force of the kirigami lanterns, making it more difficult to trigger the buckling of 

these cells. Thus, even if the kirigami chains are subjected to identical impact loading, a 

lower normalized input (Fig. 38(a)) and nominal strain amplitude (Fig. 38(b)) are observed 

in the configuration with a petal number of 6. Meanwhile, a relatively narrow wave width 

is also formed, whereas it may further limit the impact mitigation performance.  



97 

 

 

 

Although the increase of the petal number can effectively improve the mitigation 

capability of 1D kirigami lantern chains to some extent, this law is not applicable when the 

petal number is continuously increasing. With each petal being ultra-narrow under a rather 

high petal number. these kirigami lanterns are not capable of withstanding the impact force, 

eventually resulting in a high transmission. For instance, the transmission of a kirigami 

lantern chain with a petal number of 16 reaches 0.2 %. Therefore, it is possible to achieve 

an optimal petal number of kirigami lanterns for specific impact energies.     

4.2.3.4 Hinge number 

The folding-unfolding deformation of kirigami lanterns during stress wave 

propagation plays a significant role in impact mitigation, which impels us to explore the 

influencing law of hinge number Nh. Based on the fabricated kirigami lantern with Nh = 1 

(Fig. 39(a)), two multi-layered kirigami lanterns with Nh = 2 (Fig. 39(b)) and Nh = 3 (Fig. 

39(c)) are tailored, where the initial hinge angle   and the original length L0 are kept 

consistent among different kirigami lanterns. In comparison to the baseline, the resulting 

mass difference between these kirigami cells is as low as 2% and can be neglected (Fig. 

39(b)). With additional hinges in a single kirigami lantern under higher Nh, one may 

intuitively anticipate a superior impact mitigation capability. However, unlike improved 

mechanical characteristics obtained in traditional multi-layered/hierarchical structures [21, 
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121], the increase in hinge number of kirigami cells contrarily restricts the mitigation 

performance of the 1D kirigami lantern chain (Fig. 39(b)).  

 

Figure 39 Configuration of kirigami cells with different hinge numbers (Nh): (a) Nh = 1; 

(b) Nh = 2; (c) Nh = 3. (d) Comparison of transmission (blue columns) and mass of unit 

cell (yellow columns) in kirigami chains with different Nh. 

In consideration of the identical mass and initial hinge angle, the normalized input 

shows a minor discrepancy in different configurations under impact energy of 0.64 J (Fig. 

40(a)), whereas a sequentially buckling behavior is triggered within each kirigami lantern 

when Nh > 1 (insets of Fig. 40(b)). Originated from the multi-layered structures, the total 

allowable buckling deformation for each hinge is reduced and not all hinges can fully 

buckle during the stress wave propagation (e.g., the intermediate hinge of kirigami lanterns 

with Nh = 3), bringing about lower wave width (Fig. 40(a)) and folding-unfolding 

deformation (Fig. 40(b)) under a higher hinge number. Therefore, the detrimental effect on 

mitigation capacity is primarily ascribed to the reducing mitigation efficiency with the 

growth of Nh. Namely, the proposed 1D kirigami lantern chains may yield an exceptional 
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impact mitigation performance with a simpler design, corroborating the concept of “less is 

more” in structural design. 

 

Figure 40 (a) Wave width and normalized input of the kirigami chains with different Nh. 

(b) The evolution of the maximum nominal strain of the kirigami chains during stress 

wave propagation. 

4.2.4 Conclusion 

In this paper, the stress wave propagation in a 1D kirigami lantern chain that can be 

simply fabricated from flat paper sheets was experimentally and numerically explored. The 

unique folding-unfolding motions of kirigami lanterns resulted in an enhanced impact 

mitigation capability (transmission < 0.1%), which is orders of magnitude lower than that 

of metamaterials reported in previous publications. The fundamental mechanism lay in the 

integration of plastic deformation of kirigami lanterns and redistribution/storage of elastic 

energy. A comprehensive parametric study indicated that the impact mitigation capability 

can be further improved under higher impact energy. Also, by carefully structured kirigami 

lantern chains, it is possible to offer a controllable and efficient impact mitigation strategy 
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for customized tasks in engineering, paving a new way to designing effective yet 

lightweight impact protection materials.   

 

  



101 

 

 

 

CHAPTER 5 TUNABILITY OF STRESS WAVE PROPAGATION IN 1D 

GRANULAR SYSTEMS 

In this chapter, a 1D cylindrical granular system is designed, where solitary wave 

tuning strategies can be achieved through mass, modulus, and thickness mismatch. The 

experiment setups are vertically established to observe the basic solitary wave traveling 

behavior as well as to validate the numerical simulation model. By considering the three 

governing wave tuning strategies, i.e., mass, modulus, and thickness mismatch, the 

relations between the compression ratio and the mismatch values of different indicators are 

parametrically explored. Based on the simple single-layer 1D chain, a multi-layered 1D 

chain is further designed where the middle layers serve as tuning layers such that both 

‘‘strong-weak’’ and ‘‘weak–strong’’ interfaces are created. A full tuning range is obtained 

by coupling different strategies based on the multilayer granular chains. Particularly, for a 

single layer granular chain, a mechanism map is established according to a normalized 

Ashby plot and numerical results of compression ratios, providing insights into precisely 

designing highly intelligent and efficient wave attenuation systems.  

5.1 Method 

5.1.1 1D granular chain setups 

A 1D cylindrical granular chain is designed to attest and evaluate the performance of 

different solitary wave tuning strategies (Fig. 41). Three parts, i.e., launching part, tuning 

part, and receiving part, together compose the granular chain. Each part has ten particles in 
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total, where two topological interfaces “strong-weak” and “weak-strong” are created (Fig. 

41). Identical particles in both launching and receiving parts are assigned with the brass 

material (i.e., 1 3 =  , E1 = E3, t1 = t3) with the tuning part changeable to create the 

mismatch. A sphere serves as the impactor to generate impulses, and a guide is set to ensure 

the 1D motion of cylindrical particles. Furthermore, to make a fair comparison among 

different strategies, the compression ratio αc is defined as an evaluation indicator, i.e., 

3 1/c F F = , where F1 and F3 are the contact force amplitudes obtained between the first 

two particles in launching and receiving parts, respectively. A lower compression ratio 

represents a superior solitary wave attenuation effect.  

 

Figure 41 Configurations of the proposed solitary wave tuning strategies and a three-

dimensional FE model of the cylindrical granular chain. Parts 1, 2, and 3 represent the 

launching part, tuning part and receiving part, respectively. Two distinct types of 

interfaces, “strong-weak” and “weak-strong”, are marked as black dashed lines 

accordingly.  

5.1.2 Configurations of solitary wave tuning strategies 

Three wave tuning strategies, including mass mismatch, modulus mismatch, and 

thickness mismatch are developed corresponding to the mismatch of critical indicators, i.e., 
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the mass m, Young’s modulus E, and the thickness t of cylindrical particles. For solid 

cylindrical particles, t = Rs, where Rs is the radius of the solid cylinder.  

Firstly, to obtain a mass mismatch, the density of particles in the tuning part ( 2 ) is 

varying while Young’s moduli and thicknesses are kept identical to the brass material used 

in launching and receiving parts. Similarly, the settings of configurations with a modulus 

mismatch are achieved with the varying indicator E2 while keeping the other two variables 

the same. Note that all the particles in configurations with a mass or modulus mismatch are 

solid cylinders. As for a thickness mismatch, the thickness of particles in the launching part 

and the tuning part is fixed to t1,3 = 3.175 mm, and t2 is changing. Since the thickness 

mismatch can lead to different particle volumes, 2  is adjusted accordingly for each case 

to obtain equivalent mass properties in different parts, and Young’s modulus is still 

consistent in all three parts (i.e., E1 = E2 = E3).  

5.1.3 Finite element modeling 

Based on ABAQUS/Explicit, an FE model of the cylindrical granular chain is 

constructed to investigate the stress wave behaviors of the granular system (Fig. 41). Due 

to the limited deformation of the particles (see Ref. [79]), only elastic properties (i.e., 

Young’s modulus E, Poisson’s ratio v, and density  ) are considered, and the material is 

brass in both launching and receiving parts (Eb = 103 GPa, vb = 0.34 and 38500 kg/mb = ). 

A brass sphere (2Ri = 19.05 mm) with an initial velocity of 0.1 m/s is applied to impact the 
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remaining cylindrical granular chain for generating an impulse. All the cylindrical particles 

have the same height and outer diameter of Hc = 2Rc = 19.05 mm. A rigid wall is fixed at 

the end of the cylindrical granular chain, and a cubic tube is used to restrict the lateral 

movements of particles.  

A surface-to-surface hard contact with frictionless property in the tangential direction 

is adopted to accurately describe the contact behaviors between adjacent particles, and 

there are 155 contact pairs in total. Besides, a 10-node modified quadratic tetrahedron 

(C3D10M) element type is applied to the spherical impactor and cylindrical particles, while 

a 4-node 3-D bilinear rigid quadrilateral (R3D4) is used to simulate the rigid wall and the 

cubic tube. Mesh convergence is also ensured to achieve optimal mesh size and reasonable 

computational costs, and consequently, a mesh size of 1 mm is selected for the cylindrical 

particle. A gradient-varying mesh size of 0.3-1.5 mm is set for the spherical impactor (see 

the enlarged view of particles in Fig. 41). The total numbers of elements and nodes are 

1,325,232 and 1,879,984, respectively.  

5.1.4 Experimental setups 

1D cylindrical granular chains were assembled in a vertical guide composed of a series 

of 3D-printed enclosures (Fig. 42), where lateral movements of particles were restricted. 

To minimize the experimental friction, the combination of circle and square holes is 

designed (see the top view of the enclosure in Fig. 42(a)), which greatly reduces the contact 
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area between particles and enclosures (highlighted area in Fig. 42(a)).  

 

Figure 42 (a) Schematic and (b) actual experimental setups. 3D-printed enclosures 

(Formlabs, Form 2) were assembled to serve as a guide for the cylindrical granular chain, 

and the guide was fixed to an optical table with vibration isolation. The contact area 

between particles and enclosures is highlighted in the top view of the enclosure. An 

electromagnet was fixed to a 3D-printed holder for releasing the impactor, and an optical 

sensor served as an external trigger, ensuring that each test had an identical initial 

condition. A film sensor was inserted into two different positions in launching part and 

receiving part (i.e., between 1st and 2nd particles, 13th, and 14th particles), respectively. 

The effect of thickness and mass of the film sensor can be neglected compared to 

particles in the granular chain [79].  

Five different configurations (Table 9) were delicately designed to demonstrate the 

concept of the proposed solitary wave tuning strategies. All the particles possess 

dimensions consistent with the FE model. Since coupling strategies commonly appear in 

practical applications, different wave tuning strategies were considered simultaneously 

instead of a single wave tuning strategy. The coupling effect of different strategies will be 



106 

 

 

 

systematically discussed in Section 5.3.1. 

Table 9 Configurations of 1D cylindrical granular chains in experiments 

Configuration Particle Number Material m1,3 / m2 E1,3 / E2 t1,3 / t2 

1 

Launching Solid 6 Stainless-steel 

2.87 2.90 1.00 Tuning Solid 6 Aluminum 

Receiving Solid 5 Stainless-steel 

2 

Launching Solid 6 Stainless-steel 

7.17 56.34 1.00 Tuning Solid 6 Nylon 

Receiving Solid 5 Stainless-steel 

3 

Launching Hollow 6 Stainless-steel 

2.88 2.90 0.96 Tuning Hollow 6 Aluminum 

Receiving Hollow 5 Stainless-steel 

4 

Launching Hollow 6 Stainless-steel 

5.11 2.90 1.85 Tuning Hollow 6 Aluminum 

Receiving Hollow 5 Stainless-steel 

5 

Launching Hollow 6 Stainless-steel 

6.57 2.90 2.45 Tuning Hollow 6 Aluminum 

Receiving Hollow 5 Stainless-steel 

A stainless-steel sphere controlled by an electromagnet was released from a specific 

height, resulting in an initial velocity of 0.53 m/s when impacting the granular chain. A 

film sensor was used to detect and capture the waveforms as stress waves propagate. The 

signals were processed by an amplifier (LK1432C) and then exported to a four-channel 

oscilloscope (Tektronix, TDS-2024C). Connected to the oscilloscope, an optical sensor 

(OMRON, E3Z) was aligned oppositely, which could provide external input to the 

oscilloscope. Since the optical sensor was triggered by the release of the impactor under a 

specific loading scenario, the time difference could be obtained from different locations of 

the film sensor, enabling a precise capture of propagating stress waves in the granular chain. 
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More details about the film sensor and the capture of waveforms in the experiment are 

available in [13, 79]. 

5.1.5 Validation 

Even if the enclosure is carefully designed, there exist unavoidable friction effects in 

experiments, and it is difficult to measure the accurate frictional coefficient. Thus, a mild 

frictional effect (penalty type) is applied to the interaction properties in FE models to mimic 

the small frictions between the guide and particles in experiments. The comparison of 

contact forces from experiments and simulations agrees well with each other in Fig. 43.  

 

Figure 43 Validation of the FE model by comparing the contact force profiles from 

experiments and simulations. The frictional effect in experiments is included by 

introducing a mild frictional coefficient (f) in interaction properties. (a) Configuration 1: 

f = 0.05; (b) Configuration 2: f = 0.01; (c) Configurations 3: f = 0.02; (d) Configuration 

4: f = 0.02; (e) Configuration 5: f = 0.02. 

Furthermore, the values of 
c   are calculated in Table 10 to demonstrate the 

performances of solitary wave attenuation corresponding to different solitary wave tuning 
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strategies. The attenuation effect improves with higher mass, modulus, and thickness 

mismatch ratios. Also, both the experimental and numerical results reveal that it is possible 

to quantitatively tune 
c  by precisely selecting appropriate mismatch ratios, which may 

fundamentally change the traditional way of designing attenuation systems.  

Table 10 Compression ratios obtained from different configurations 

Configuration 1 2 3 4 5 

Experiment 0.56 0.29 0.58 0.38 0.27 

Simulation 0.60 0.21 0.59 0.33 0.22 

5.2 Results 

5.2.1 Mass mismatch 

Given the contact forces in a representative mass mismatch case (Fig. 44(a)), solitary 

waves are observed in both the launching and receiving parts, while the tuning part exhibits 

expanded waveforms and oscillating tails. A notable decrease in the contact force is also 

observed in the receiving part, demonstrating the attenuation of solitary waves in mass 

mismatch systems. Also, a series of mass ratios are adopted to uncover the tuning limit of 

the mass mismatch, and the values of 
c  are evaluated accordingly (Fig. 44(b)). It appears 

that 
c  drops dramatically with an increasing mass ratio at the beginning then turns into 

a slight decline. As the mass ratio further increases, the tuning part will suffer a longer 

excitation from the last particle in the launching part. According to Ref. [1, 79], the duration 

of impulses is closely related to the impactor-to-particle mass ratio and a longer duration 

(or a larger mass ratio) leads to wider leading waveforms, which will interact with stress 
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waves in the receiving part and finally a saturated compression ratio is achieved (~0.68).  

 

Figure 44 Typical results of the mass mismatch strategy. (a) The evolution of contact 

forces from different particles as stress waves propagate (m1,3 / m2 = 4); (b) Compression 

ratios under various mass ratios. 

5.2.2 Modulus mismatch 

Considering that Young’s modulus ratio of available natural or engineering materials 

can be up to 105 [110], the modulus mismatch strategy might be notably feasible and vital 

in engineering applications. Compared to the mass mismatch case (Fig. 44(a)), the 

evolution of the waveforms in cases with a modulus mismatch (Fig. 45(a)) is slightly 

different even if solitary wave attenuation is achieved in both strategies. For the modulus 

mismatch strategy, no clear expansion is found in the tuning part and there exist regularly 

oscillating tails as the stress wave propagates. Besides, stress waves in the receiving part 

behave more like perfectly compressive solitary waves with no wave tail. Also, since there 

is no expanded leading waveform at a high modulus mismatch ratio, the wave tuning 

domain in cases with a modulus mismatch is much wider compared to those with a mass 

mismatch and can reach a limit of 0.28 when the modulus ratio is around 90 (Fig. 45(b)).  
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Figure 45 (a) Typical results of the modulus mismatch strategy (E1,3 / E2 = 10); (b) 

Compression ratios under various modulus ratios. 

5.2.3 Thickness mismatch 

Herein, an outstanding attenuation effect is achieved with a typical thickness 

mismatch (Fig. 46(a)), and the corresponding 
c   is 0.64. By comparison with wave 

behaviors from the mass and modulus mismatch strategies, the waveforms of the tuning 

part in thickness mismatch configurations (where thinner hollow particles are arranged) 

reveal rarefaction-like performance. Furthermore, certain wave tails are also observed in 

the tuning part, which does not greatly affect the shapes of stress waves propagating in the 

receiving part.  

 

Figure 46 (a) Typical results of the thickness mismatch strategy (t1,3 / t2 = 2.67); (b) 

Compression ratios under various thickness ratios.  
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By varying the thickness ratio from 1.00 to 5.33 (Fig. 46(b)), an interesting 

phenomenon is discovered that the attenuation effect is quite sensitive to the thickness ratio. 

Since 1D hollow cylindrical chains can support both compressive solitons and rarefaction 

mitigating waves by varying the thickness of particles [79], a higher thickness ratio along 

with rarefaction mitigation effects will result in a lower compression ratio. Also, the 

effective contact stiffness may decrease with the thickness of particles in the tuning part, 

which will further lower the amplitude of contact forces. However, if the thickness ratio is 

ultra-high (i.e., when hollow cylinders are evolved into thin-walled structures), the problem 

may be converted to the study of traditional ring systems with energy dissipated by plastic 

deformation, which is beyond the scope of the present study.  

5.3 Discussion  

5.3.1 Coupling strategy  

Since all the proposed strategies are demonstrated to be effective and highly efficient 

for solitary wave attenuation, it is natural to investigate the coupling effect of different 

strategies and expect to achieve superior performance of solitary wave attenuation. Two 

different configuration types are designed and simulated to comprehensively understand 

the coupling effect and influencing mechanisms of wave tuning strategies. In Type I 

configuration, cylindrical granular chains are investigated by coupling two out of three 

proposed strategies. In Type II configuration, all the proposed strategies are coupled 
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together to implement a more systematic and broader solitary wave tuning strategy. 

In Type I configuration (Fig. 47), the ranges of mass, modulus, and thickness ratios 

are set to 1 to 15, 1 to 30, and 1 to 2, respectively. For each coupling strategy, an inversely 

proportional-like relation is observed between the two mismatch ratios. However, under 

higher mismatch ratios, the varying law tends to be different, and the tuning regions are 

greatly expanded. An interesting observation is that with a modulus ratio of E1,3 / E2 = 25, 

the tuning limit of 
c  would appear at a mass ratio m1,3 / m2 > 15, yet m1,3 / m2 = 15 is 

where the tuning limit occurs within a single mass mismatch (Fig. 44(b)). Similar results 

are also found in the mass-thickness mismatch (Fig. 47(b)) and the modulus-thickness 

mismatch (Fig. 47(c)). This may result from the fact that the properties of traveling stress 

waves at the “strong-weak” and “weak-strong” interfaces are different in various strategies. 

For example, Ref. [61] clarified that the modulus mismatch would introduce a reflected 

wave at the “strong-weak” interface compared to that in single mass mismatch cases. Given 

the investigated range of mismatch ratios, the modulus ratio plays a dominant role, while 

mass and thickness ratios contribute similarly to Type I configuration. Moreover, the values 

of 
c  are much smaller than those in Section 5.2 with a single tuning strategy, indicating 

that the attenuation effect is further enhanced in all the coupling strategies. Corresponding 

to different combinations of mismatch ratios, a broad range of 
c  from 0.1 to 1.0 together 

with the presented full-scale compression ratio maps, are achieved, enabling us to design 
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quantitatively solitary wave tuning systems for attenuation.  

 

Figure 47 Maps of compression ratios obtained from Type I coupling strategies. (a) 

Mass-modulus mismatch, (b) mass-thickness mismatch, (c) modulus-thickness 

mismatch. 

In Type II configuration (Fig. 48(a)), the traveling wave decomposes into several 

oscillating tails at the interface between the tuning and receiving parts, where the main 

wave and tails are marked as the 1st and 2nd traveling waves, separately. Also, two reflected 

waves are formed at this interface and the rigid wall. The wave speeds of solitary waves in 

the launching and receiving parts are 1245.2 m/s and 1322.8 m/s, respectively. A small 

discrepancy (~5.8%) of the wave speeds may be due to the receiving part being close to 

the fixed rigid wall. Herein, the impact velocity for the launching part is from the impactor, 

while for the receiving part, it comes from the last particle in the tuning part. These two 

impact velocities are different, yet identical wave speed is obtained. The consistency of 

wave speeds originates from the unique wave dynamics of the 1D cylindrical granular 

chain, where the wave speed of traveling waves is independent of the impact velocity. This 

remarkable result indicates that the proposed 1D granular chains can achieve solitary wave 
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attenuation without changing the wave speed of original impulses, which is highly 

significant for engineering applications. Namely, instead of the original solitary waves with 

a high amplitude, the new solitary waves with smaller amplitudes can deliver critical 

information without any loss.  

 

Figure 48 (a) Typical results of Type II coupling strategy (m1,3 / m2 = 2, E1,3 / E2 = 5, t1,3 / 

t2 = 1.33); (b) Compression ratio maps corresponding to different mass, modulus, and 

thickness ratios. 

Furthermore, two vital results can be obtained by varying the mismatch ratios (Fig. 

48(b)). Firstly, the attenuation effect can be further enhanced compared to that of single 

wave tuning strategies or Type I configuration. For instance, under a configuration with 

m1,3 / m2 = 10, E1,3 / E2 = 20, t1,3 / t2 = 2, the compression ratio is as low as 0.14 and this 

value can be lowered by further increasing the mismatch ratios. Ideally, a stress wave 

switch can be implemented by appropriately selecting the mismatch ratios. In addition, the 

most violent varying trend of 
c  is found in the modulus plane, and it indicates that the 

modulus ratio is the leading factor among all three influencing ratios, which is consistent 
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with the observation in Fig. 48(a).  

5.3.2 Multilayer granular chain 

Herein, a two-layer granular chain is developed and systematically analyzed (Fig. 

49(a)). Specifically, it is composed of five parts with ten cylindrical particles in each part, 

where Part 2 and Part 4 serve as the tuning parts, Part 1 and Part 5 are the launching part 

and the receiving part, respectively. Referring to the definition of the single-layer solitary 

wave tuning granular chain, Part 1, Part 2, and Part 3 constitute layer 1 (L1) while Part 3, 

Part 4, and Part 5 form layer 2 (L2).  

 

Figure 49 (a) Configuration of the two-layer granular chain. Typical results of two-layer 

granular chains with (b) mass mismatch (m1,3,5 / m2,4 = 5), (c) modulus mismatch (E1,3,5 / 

E2,4 = 10), and thickness mismatch (d) t1,3,5 / t2,4 = 1.33, (e) t1,3,5 / t2,4 = 2.67. 
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Interestingly, phased solitary wave attenuation behavior is observed in two-layer 

granular chains with single mismatch strategies (Figs. 49(b)-(e)). The propagating stress 

waves in each layer behave similarly to those in a single layer wave tuning chain discussed 

in Section 5.2. The reflection is found at interfaces where stress waves propagate from the 

tuning part to the receiving part, and oscillating tails (or decomposition) appear at 

interfaces from the launching part to the tuning part; however, the distribution and intensity 

of them are notably distinct among different configurations. 

In a mass mismatch configuration (Fig. 49(b)), the reflection and decomposition of 

stress waves are overlapping and interacting with each other, leading to a broad distribution 

of waveforms in tuning parts. Additionally, there’s an increase in the contact forces of the 

last few particles within tuning parts due to the interfacial effects. Nevertheless, these 

features are slightly distinct in the cases with a modulus or thickness mismatch (Figs. 49(c)-

(e)), where no clear overlap is observed. Thus, the output stress waves are significantly 

dependent on both the material and geometric properties of particles in the tuning parts. 

Moreover, the propagating stress waves in the case with a low thickness ratio (Fig. 49(d)) 

perform solitary-like behaviors throughout the granular chain, whereas apparent 

rarefaction waves with expanded waveforms are obtained in tuning parts of cases with a 

higher thickness ratio (Fig. 49(e)).   

For further investigation on the phased solitary wave attenuation, the compression 
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ratio is evaluated for each layer (i.e., 
1 3 1/c F F =  and 

2 5 3/c F F =  for L1 and L2 in Fig. 50, 

respectively) and the total compression ratio of the whole granular chain (
5 1/c F F = ) is 

calculated as well. Indeed, 
1c   and 

2c   are almost the same in the two-layer granular 

chains with various mass ratios (Fig. 50(a)), while this is not the case for the modulus or 

thickness mismatch (Figs. 50(b)-(c)). 
2c  is close to 

1c  when the modulus or thickness 

ratio is relatively low (e.g., E1,3,5 / E2,4 < 10 and t1,3,5 / t2,4 < 2), and 
2c  is higher than 

1c  

under higher modulus or thickness ratios, indicating a lowered attenuation effect in L2 

compared to that of L1 within a two-layer granular chain. Consequently, the mass mismatch 

strategy will be more sensitive to the changing of 
c  than 

1c  and 
2c .  

 

Figure 50 Compression ratios of two-layer granular chains with (a) mass mismatch, (b) 

modulus mismatch, and (c) thickness mismatch. 

This interesting phenomenon is closely related to the behaviors of the stress waves 

propagating in different configurations. By comparing the contact forces maps in cases 

with different thickness ratios (Figs. 49(d)-(e)), a longer-lasting or more intense 

distribution of the oscillating tails in tuning parts may have subsequent influences on the 
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receiving parts, for instance, the oscillating tails of Part 2 in Fig. 49(e) propagate and enter 

Part 3, which will, in turn, affect the following parts. The accumulating effect might be 

more obvious in multilayer granular chains. Nevertheless, all the two-layer granular chains 

have undeniably achieved a superior attenuation effect regardless of the low efficiency of 

attenuation in L2 for modulus or thickness mismatch configurations. Since all the tuning 

parts share identical properties in current configurations, the tuning range can be further 

expanded and customized by designing composite multilayer granular chains with different 

properties set to the tuning parts. 

The efficiency of the phased attenuation effect can also be improved in coupling 

strategies. In mass-modulus and mass-thickness strategies (Figs. 51(a)-(b)), the 

compression ratios of different layers are consistent under various modulus or thickness 

ratios. However, the difference in compression ratios between different layers is more 

distinct in the modulus-thickness strategy (Fig. 51(c)). Note that the total compression 

ratios of these coupling strategies are as low as 0.09, 0.14, and 0.23, respectively.  

 

Figure 51 Compression ratios of two-layer granular chains with Type I coupling 

strategies. (a) Mass-modulus, (b) mass-thickness, (c) modulus-thickness. 
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5.3.3 Mechanism map 

Quantitatively wave tuning strategies are accessible based on a normalized Ashby plot 

(Fig. 52) [110]. Herein, brass (Eb, mb) is considered to achieve normalized axes in a 

conventional Ashby plot (modulus versus density). Consistent with the configurations in 

previous sections, brass also serves as the material for both launching and receiving parts 

in designing the solitary wave attenuation systems. For possible engineering applications, 

one may find the corresponding 
c  on contour lines in the map, which cross through a 

variety of blocks and, in turn, provide candidates for the material selection in the tuning 

part.  

 

Figure 52 Informative map of materials for the tuning part corresponding to specific 

compression ratios.  

For instance, a solitary wave attenuation system with 
c  of approximately 0.81 can 
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be established by choosing cylindrical particles made from specific engineering alloys, 

engineering composites, or porous ceramics. Therefore, the presented results allow us to 

achieve quantitatively wave tuning and provide valuable insights into designing new 

attenuation systems.  

5.4 Conclusions 

In this chapter, 1D cylindrical granular chains were designed and constructed to 

demonstrate various solitary wave tuning strategies for attenuation through both 

experimental and numerical approaches. The mismatch of mass, modulus, or thickness in 

different parts of granular chains led to an apparent decrease in the contact force amplitudes, 

which makes the proposed systems capable of solitary wave attenuation. This solitary wave 

attenuation ability was further enhanced by coupling different wave tuning strategies and 

building multilayer granular chains, where the phased solitary wave attenuation was 

observed in multilayer granular chains. The presented results provide a simple way for 

quantitatively tailoring the dynamic responses of propagating waves and the attenuation 

effect in the granular chains. Finally, a mechanism map was proposed to offer the basis to 

design solitary wave attenuation systems to satisfy specific engineering applications. 

Results unlock the underlying mechanism of the solitary wave attenuation and provide 

design guidelines for next-generation stress wave detection, attenuation, and monitoring 

system.   
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CHAPTER 6 CONCLUDING REMARKS 

In this dissertation work, stress wave propagation and tuning strategies in various 1D 

granular systems were systematically investigated. Firstly, 1D composite cylindrical 

granular chains were proposed by applying different materials in core-shell and sandwich-

type particles. The formation of strongly nonlinear solitary waves was experimentally, 

numerically, and analytically demonstrated, where a shell-dominated behavior was 

obtained by varying the geometric parameters of composite particles. The featured 

relationship between wave properties and critical parameters (i.e., the effective modulus 

and total mass) was revealed and then extended to more generalized granular systems. Next, 

two types of equivalent systems were developed in 1D spherical granular, including 

generalized and restricted systems, where an equivalent transmission was achieved in 1D 

granular systems composed of spherical particles with different sizes and materials. Also, 

an informative mechanism map was given as guidance for designing 1D granular systems 

to meet specific requirements in engineering applications. Following that, two effective 

stress attenuation approaches were proposed by engineering a 1D HC granular chain with 

strain-softening behaviors and a 1D kirigami lantern chain. Particularly, the 1D HC 

granular chains were proved to support both solitary waves and mitigating waves by simply 

varying the thickness ratio of HC particles, where an optimized mitigating efficiency can 

be obtained in a rather short chain. In 1D kirigami lantern chains, an outstanding impact 
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mitigation performance (orders of magnitude lower transmission in contrast to previous 

designs) was achieved with lightweight materials, and the underlying mechanism lay in the 

unique folding-unfolding behaviors of kirigami cells during stress wave propagation. 

Finally, a series of quantitative wave tuning strategies was presented based on the 

mass/modulus/thickness mismatch in 1D cylindrical granular chains, where an enhanced 

wave attenuation effect can be achieved by coupling different wave tuning strategies and 

developing multilayered granular chains.  

Results of this dissertation work offer a comprehensive understanding of the wave 

dynamics in 1D granular systems and unlock the fundamental mechanisms between wave 

properties and system characteristics. Also, simple configurations to quantitatively tune the 

wave behaviors and stress wave attenuation were realized, providing guidelines for 

designing next-generation impact protection systems, wave detection, and monitoring 

systems.  
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APPENDIX A: Formation of solitary waves in 1D composite granular chains 

The film sensor was placed at three different locations of an S-W composite granular 

chain (position 1: the 1st and 2nd particle, position 2: the 4th and 5th particle, position 3: the 

7th and 8th particle) to explore the formation of solitary waves. Based on the comparison 

between different waveforms displayed in Fig. 53, the wave shape is maintained during the 

stress wave propagation despite a slight attenuation of wave amplitude due to frictional 

effects, which demonstrates that this type of solitary wave can emerge very fast from the 

initial impact.  

 

Figure 53 Comparison of waveforms at different locations of an S-W composite chain. 

Note that the x-axis is shifted for a better comparison.  
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APPENDIX B: Demonstration of the contact law in 1D composite particles 

For further demonstration of the contact law in Eq. (16), a quasi-static compression 

test on W-S composite particles was conducted. A 3D-printed square box was designed to 

vertically align the two composite particles (see the inset of Fig. 54). A loading rate of 0.2 

mm/min was applied based on an Instron E3000 material testing machine. The force-

displacement curve is shown in Fig. 54 (solid line), which is fitted by a power function 

(dotted line). An exponent of 1.1 is obtained, indicating that the contact law with an 

exponent of 10/9 in section 2.3.1 is reliable to describe the interaction between two 

composite cylinders.  

 

Figure 54 Validation of the power contact law based on a compressive test of two W-S 

particles  
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APPENDIX C: Mesh size convergence study of equivalent systems 

In FE models of the equivalent systems, a finer mesh is considered within the vicinity 

of the contact point between two particles, and a gradient variation was applied from the 

contact point to the middle plane of each spherical particle. The mesh size convergence 

study was conducted to ensure the calculation accuracy. As shown in Fig. 55, five gradient 

mesh sizes were applied. Group A and B refer to the forces on particle 5th and 10th, 

respectively. Thus, it is reasonable to use a gradient mesh size of 0.05~2 mm in the study 

of equivalent systems.  

 

Figure 55 Mesh size convergence study of the equivalent systems: five gradient mesh 

sizes (0.02~2 mm, 0.05~2 mm, 0.1~2 mm, 0.2~2 mm, 0.5~2 mm) were considered.  
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APPENDIX D: The evaluation criteria of equivalent systems used in experiments 

As vm cannot be directly measured from experiments, it is important to resort to the 

relation between vm and the force captured by the film sensor Fm,e. Considering that the 

solitary wave speed sV   has a nonlinear dependence on the vm and the maximum 

compression force between particles mF , written as [1] 
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As such, the relation between vm and mF can be derived accordingly.  
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Contact force-time curves and the average force-time curve are shown in Fig. 56 to 

interpret the average compression force obtained in experiments and compare the results 

of experiments and simulation. A coefficient   obtained from numerical simulation is 

defined to relate the maximum value of compression force between particles and the 

maximum value of average compression force captured by a sensor embedded in particle, 

which can be written as [14]: 

, 0m m eF F F= + , (54) 

where ,m eF   is the maximum value of average compression force obtained in the 

experiments and 0F  is the pre-compression force. Note that there is no pre-compression 
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in experiments. In addition, it has been proved that the coefficient tends to have negligible 

dependence on the material properties of the particles [14]. Therefore, the coefficient can 

be obtained from the simulation results directly, i.e., 1.35 = . 

 

Figure 56 The numerical results of contact force-time curves (the left and right curves 

in solid line) and average force-time curve (the central curve in dot line), which is also 

used to obtain the numerical coefficient    representing the ratio of the dynamic 

contact force between two particles to the maximum dynamic compression force in the 

center of the given particle. 
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APPENDIX E: The amplitude decay in experiments of equivalent systems 

According to the experimental results shown in Fig. 21, a decay in the amplitude of 

the 10th particle is observed, which may result from the friction and tiny gap between the 

particles during the experiments. Hence, the effects of the gap between particles and the 

friction between the particle and the guide rail are numerically investigated. A 0.1 mm gap 

is set between the 11th and 12th particles and compared the results of cases with and without 

a gap in Fig. 57. Group A refers to the contact force between the 5th and 6th particles, while 

group B is the contact force between the 10th and 11th particles. Decay in the amplitude of 

contact force was observed upon the case with a gap, indicating that the effect of a tiny gap 

may be one of the reasons for the dissipation in experiments. 

 

Figure 57 The effect of tiny gap on stress wave propagation within spherical granular 

chain. 

For exploring the frictional effect during the tests, a tube is included in the finite 

element model as a simplified guide (Fig. 58) and the frictional coefficient is set to 0.3. 
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Based on the results of frictionless and frictional cases (Fig. 59), a clear decay of magnitude 

was observed in the frictional case, which demonstrates that the existing friction will also 

cause dissipation during the experiment. 

 

Figure 58 Spherical granular chain model with tube guide. 

 

 

Figure 59 The effect of friction on stress wave propagation within spherical granular 

chain 
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APPENDIX F: The return pass in equivalent systems 

It is of great significance to include other wave properties (e.g., reflected waves, 

waves broken down, and secondary solitary waves) into equivalent systems study. The 

return pass of the solitary waves is numerically explored in the two types of equivalent 

systems Based on the results shown in Fig. 60, each group can also achieve equivalent 

rebound properties. Due to the effect of the rigid wall at the end of the granular chain, there 

exists an increasing trend during the rebounding process. 

 

Figure 60 Wave transmissions in two types of equivalent systems: (a) Generalized 

equivalent system: stainless and brass; (b) Restricted equivalent systems: Nickel and 

Titanium 
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APPENDIX G: Waveforms in experiments of 1D cylindrical granular chains 

Triggered by the dropping impactor, a photoelectric sensor was adopted as an external 

input signal to the oscilloscope. The waveforms at different positions can be obtained by 

changing the position of the film sensor and keeping an identical drop height of the 

impactor (i.e., identical impact velocity). Fig. 61 shows an example of how to achieve and 

analyze the waveforms. The film sensor is connected to channel 1 of the oscilloscope, while 

the photoelectric sensor (the external signal) is connected to channel 2. Channel 1 is set as 

the trigger, indicating that the waveforms recorded by the film sensor will start at the same 

time upon different tests. In that case, the interval between the two signals will be different 

corresponding to two positions of the film sensor. The relative time can be calculated (t* 

in Fig. 61(a)) and the waveforms can be obtained by translation (Fig. 61(b)).  

 

Figure 61 The methodology to obtain waveforms in granular chain tests. (a) The original 

waveforms from channels 1 (the film sensor) and 2 (the photoelectric sensor). A relative 

time (t*) is measured to determine the actual time difference between the two tests given 

two different positions of the film sensor. (b) The desired waveforms after translation.  
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APPENDIX H: Mesh size convergence study of 1D cylindrical granular chains 

A mesh size convergence study is conducted to achieve optimal mesh size in the FE 

models of 1D cylindrical granular chains. Six different mesh sizes varying from 0.5 mm to 

5.0 mm are considered and two groups of contact force are shown in Fig. 62. As a result, a 

mesh size of 1 mm is selected for HC particles and at least two layers of elements are set 

along the thickness direction of the HC particles in view of the thin wall thickness under 

cases with higher thickness ratios.  

 

Figure 62 Mesh size convergence study. Six mesh sizes are considered (0.5 mm, 0.8 mm, 

1.0 mm, 2.0 mm, 3.0 mm, and 5.0 mm) and two groups of contact force (F4 and F8) are 

compared. 
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APPENDIX I: The effect of gravity 

Since HC particles were vertically aligned in the guide, it is worth exploring the 

gravitational effects on transmitted waves in 1D HC granular chains. Thus, numerical 

results from cases with and without gravity are compared in Fig. 63, where the gravitational 

effect is negligible for a short chain (Region I in Fig. 63, ~9 particles) and noticeable for a 

longer chain (Region II) in view of wave speed and amplitude. A non-uniform pre-

compression distribution has been achieved if gravity is included in the model, while there 

is no pre-compression for cases without gravity. In this study, the gravitational effect is not 

considered in the numerical simulation to simplify the model. Meanwhile, the selected 

positions for the film sensor were far away from the end of the granular chain (Region II) 

to avoid the influence of gravity and fully validate the finite element model.  

 

Figure 63 The effect of gravity. The evolution of the contact force was compared upon a 

specific case (R/t = 20, Vi = 0.1 m/s, N = 20, M/m = 1) with and without gravity, 

respectively. Two regions (regions I and II) were obtained given the gravitational effects 

on the granular chain.  
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APPENDIX J: The elastic assumption of 1D cylindrical granular chains 

The yield velocity of material is derived from the stress-velocity relation of the 

longitudinal elastic wave and there exists stress concentration between different particles 

in the proposed granular chain. Moreover, the maximum stress is not linearly dependent on 

the impact velocity. It is important to further demonstrate the elastic assumption applied in 

this study. Considering all the loading scenarios included in the parametric study, the most 

critical case might be either “highest impact velocity and thickness ratio” in Section 4.1.3.1 

(Vi = 1 m/s, R/t = 20, M/m = 1, and N = 20) or “highest impactor-to-particle mass ratio and 

thickness ratio” in Section 4.1.3.2 (Vi = 0.1 m/s, R/t = 20, M/m = 10, and N = 20). Also, one 

additional case with a combination of highest impact velocity, impactor-to-particle mass 

ratio, and thickness ratio (Vi = 1 m/s, R/t = 20, M/m = 10, and N = 20) is simulated to further 

demonstrate the assumption.  

The 1st cylindrical particle is analyzed due to its direct interaction with the impactor 

and stress concentration at the contact point (Fig. 64(a)). Based on the maximum Von Mises 

stress presented in Fig. 64(b), the highest stress value is 157 MPa, while the yield strength 

of 6061-T6 aluminum is typically around 270 MPa, which demonstrates that the system is 

within the elastic limit for all the loading scenarios investigated in this study. In addition, 

an equivalent deformation (d) can be obtained by evaluating the difference between the 

displacements of two points at the center of each edge, i.e., u1 and u2 (Fig. 64(c)). According 
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to the evolution of equivalent deformations obtained from the 1st cylindrical particle in 

different loading scenarios shown in Fig. 64(d), the maximum deformation of the 

cylindrical particle is under 0.05 mm, which is covered by the deformation range (0-0.3 

mm) in the contact model. Therefore, it is quite reasonable to apply the elastic assumption 

in this study.  

 

Figure 64 The investigation on elastic assumption. (a) A critical granular chain (R/t = 20, 

N = 20), where the 1st cylindrical particle is selected to investigate its response during 

the stress wave propagation. (b) The maximum Mises stress of the 1st cylindrical particle 

in three critical loading scenarios. (c) The definition of equivalent deformation of the 1st 

cylindrical particle. (d) The evolution of equivalent deformations obtained from the 1st 

cylindrical particle in different loading scenarios displayed in (b).   
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APPENDIX K: The mitigating effect of 1D HC chains under a higher impact velocity 

In Section 4.1.3.1, three impact velocities (i.e., 0.1 m/s, 0.5 m/s and 1 m/s) were 

selected to investigate the effect of impact velocity on 1D HC granular chains. An 

interesting phenomenon was discovered that the HC granular chain is capable of delivering 

stress waves with amplitude-independent wave speed. Moreover, the force mitigation 

effect is superior under higher impact velocities. Herein, one additional case with an impact 

velocity of 10 m/s (R/t = 20, M/m = 1, and N = 20) was conducted and analyzed to 

demonstrate the universality of these existing results. The demonstration of existing results 

is shown in Fig. 65, where the profiles of contact forces, the wave width variation, and 

comparison of wave speeds are given.  

 

Figure 65 The demonstration of existing results under an impact velocity of 10 m/s. (a) 

Contact forces of different particles (R/t = 20, M/m = 1, N = 20). (b) Wave width variation 

in space domain under different impact velocities (i.e., 0.1 m/s, 1 m/s and 10 m/s). The 

inset shows wave speeds of corresponding cases. 

It appears that the amplitude-independent wave speed is valid under higher impact 
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velocities and the varying trend of wave width is consistent under different impact 

velocities. Furthermore, the specific force mitigation ratio is 49.18% obtained from Fig. 

65(a), which is further decreased compared to 62.08% in the case with an impact velocity 

of 1 m/s. Therefore, the existing results for impact velocities are not limited to the range of 

0.1-1 m/s and are consistent under higher impact velocities.  

 

  



146 

 

 

 

APPENDIX L: Investigation on the reusability of 1D kirigami lantern chains 

Five impact tests were conducted sequentially to demonstrate the reusability of the 

proposed 1D kirigami lantern chain (Fig. 66). Due to possible plastic deformation in the 

first impact, a slight increase of the maximum strain is observed within the first few 

kirigami cells starting from the second impact, especially the first kirigami cell. Despite 

the minor variation, the solid performances during repeated tests show that the proposed 

kirigami chain can be reusable for impact mitigation. 

 

Figure 66 Demonstration of the reusability via five repeated impacts in experiments 
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