
MODELING OF MACHINING USING A COMBINED FINITE ELEMENT (FE)
AND SMOOTHED PARTICLE HYDRODYNAMICS (SPH) METHOD.

by

Nishant Ojal

A dissertation submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in

Mechanical Engineering

Charlotte

2021

Approved by:

Dr. Harish P. Cherukuri

Dr. Ronald E. Smelser

Dr. Alireza Tabarraei

Dr. Shen-En Chen

LLNL-TH-823882



ii

c©2021
Nishant Ojal

ALL RIGHTS RESERVED



iii

ABSTRACT

NISHANT OJAL. Modeling of machining using a combined Finite Element (FE)
and Smoothed Particle Hydrodynamics (SPH) method.. (Under the direction of

DR. HARISH P. CHERUKURI)

In this thesis, a combined approach based on the Finite Element (FE) and Smoothed

Particle Hydrodynamics (SPH) methods is proposed to model turning operations.

The approach exploits the advantages of each method and leads to high-fidelity cou-

pled FE-SPH machining models that are significantly more numerically efficient and

are on par with the models based on each of the two methods alone. Both two-

dimensional and three-dimensional models are developed and validated by comparing

predicted forces and chip morphologies with experimental results. Parametric studies

are carried out to fine-tune the model-based parameters in order to avoid numerical

stability issues. The three-dimensional models are extended to included modulated

tool path (MTP) machining which is a technique for breaking chips during machining

by modulating the motion of the tool. The MTP model predictions are shown to

agree with the results from an existing analytical model. With this model, various

tool paths can be simulated to choose an optimal path that decreases tool-wear with-

out sacrificing productivity. Preliminary results from a three-dimensional turning

model incorporating machining dynamics through a spring-damper system are also

presented. This model has the potential to be used for studying machining stability

for a given set of machining conditions.

Another significant contribution of this thesis is the determination of Johnson-

Cook material model parameters for a given material using an inverse method and

experimental values of cutting forces and workpiece temperatures. The methodology

described in the present work identifies the non-uniqueness of the solution to the

inverse problem and proposes an approach that eliminates the non-uniqueness.
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CHAPTER 1: INTRODUCTION

Improvement of machining output through a better understanding of the relation-

ship between input variables (such as tool geometry, material to be machined, etc.)

and the output variables (such as cutting forces, temperature rise, tool wear, etc.)

has been a subject of interest to the manufacturing industry. This becomes more

pertinent for utilizing new materials. Both experimental and numerical studies are

used to understand the complex physics of machining processes. However, experi-

mental studies have disadvantages due to the difficulties in measuring many physical

quantities of practical importance in the cutting zone [15] and also the cost involved

[16] in conducting these experiments.

Finite Element Modeling is a numerical technique commonly used for modeling ma-

chining. Various approaches such as Lagrangian [17, 18], Eulerian [19] and Arbitrary

Lagrangian-Eulerian [20] methods have been used for modelling the process. How-

ever, depending upon the approach used, challenges such as high mesh distortions,

element deletion and prior prescription of the chip separation path are associated

with the use of Finite Element (FE) mesh.

The Smoothed Particle Hydrodynamics (SPH) method eliminates the disadvan-

tages associated with the finite element method because of the lack of physical con-

nection between the particles used for discretizing the domain. Machining models

using the SPH method have been developed by various researchers such as Limido et

al. [21], Madaj et al. [22], Villumsen et al. [23] and Avachat et al. [24]. Besides prov-

ing the ability of the SPH method to model machining, these studies provide insight

into the effect of the various process-based parameters and the numerical parameters

(associated with the SPH method) on cutting forces, workpiece temperatures, etc.
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1.1 Original features of dissertation

Following are the main contributions of this dissertation.

1. Turning operation is modeled using coupled SPH-FE models in two- and three-

dimensions. The results of the comparative study for two-dimensional models

show that the coupled SPH-FE models are significantly more numerically effi-

cient. The simulation results are validated with experiments by comparing the

cutting forces and chip profiles.

2. A detailed parametric study of method-based and process-based parameters

has been conducted. This study provides an insight into the effect of various

parameters on model predictions and is useful in developing a robust machining

model.

3. Three-dimensional models of modulated tool path (MTP) turning operations

has been developed. The results of MTP turning are compared with those of

the conventional turning simulations, showing the advantages of MTP turning.

The results of MTP simulation are validated with an analytical model.

4. Preliminary three-dimensional turning models incorporating machining dynam-

ics through a spring-damper system are developed. These models can be used

for studying machining stability for a given set of machining conditions.

5. Non-uniqueness of Johnson-Cook material model parameters using inverse ap-

proaches is identified and a solution is proposed to determine these parameters

uniquely.
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1.2 Dissertation organization

This section introduces the modeling of machining and the motivation behind this

research.

Chapter 2 summarizes the relevant previous research carried out in this field. It

briefly touches upon different analytical models and finite element formulations used

by researchers and explains the advantages of the SPH method over these approaches.

Then, it provides a summary of the work done by researchers for two-dimensional and

three-dimensional machining modeling using the SPH method.

Next, Chapter 3 highlights the fundamentals of the SPH method, such as the

particle approximations, discretization of the conservation equations and calculation

algorithm.

In Chapter 4, a complete SPH model of two-dimensional machining is developed.

The results of this model are validated with the work of Madaj et al. [22]. A coupled

SPH-FE model of two-dimensional machining is also studied. The SPH-FE coupled

model produces results that are in close agreement with those of the fully SPH model.

However, the coupled model results in a reduction of 40% in simulation time.

A better understanding of SPH parameters through a parametric study is achieved

in Chapter 5. The machining model developed in Chapter 4 is used for this study.

The study provides a set of SPH parameters that are used in the subsequent works

for a robust machining model.

In Chapter 6, based on the result of the validation of the coupled SPH-FE model

and parametric study, a three-dimensional coupled SPH-FE machining model is de-

veloped. The results of the simulation are validated with machining experimental

observations.

In Chapter 7, the modulated tool path (MTP) machining is simulated. The simu-

lated results of the MTP machining are compared with the simulated results of the

continuous feed turning simulation.
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Dynamic elements such as spring and damper are included in the three-dimensional

machining model in Chapter 8. The effect of these elements on the tool vibration and

hence machining stability is studied in this chapter.

Chapter 9 studies the aspect of unique determination of the Johnson-Cook material

model parameters using inverse methods. A combination of an inverse approach

using the results of orthogonal machining experiments and tensile test experiments is

proposed for the unique determination of the parameters.

Finally, the dissertation concludes in Chapter 10 with results from the study and

the recommendations for future work. The Appendix provides detailed derivations of

some of the SPH equations relevant to the simulations presented in this work.



CHAPTER 2: LITERATURE REVIEW

Machining is a term that covers a large collection of manufacturing processes de-

signed to remove unwanted material from a workpiece, usually in the form of chips

[25]. Experimental studies on machining date back to 19th century. Cocquilhat [26]

measured the work per unit volume required to remove material in drilling operations.

Hartig [27] provided a comprehensive reference guide containing tabulated values of

feeds and cutting speeds for machining metals. In the book "Mémoirs sur le Rabotage

de Métaux", Tresca [28] provided detailed illustrations of metallic chips formed by a

variety of metal cutting techniques.

2.1 Analytical models

Based on machining experiments, various investigators started developing analyt-

ical models by the end of the 19th century. These models aimed to provide an un-

derstanding of the mechanism involved in machining and predict quantities such as

the cutting forces and temperatures. The thin-shear zone model and thick-shear zone

model are the two popularly used models for orthogonal machining. These models

are based on the experimental observations that simple shearing is the primary de-

formation mode in metal cutting and assume the existence of a primary shear zone

extending from the tool-tip to the workpiece surface ahead of the tool.

2.1.1 Thin-shear zone model

The thin-shear zone model, popularly known as Merchant’s model, was developed

and refined from the works of Ernst and Merchant [11] and Kobayashi and Thomsen

[29]. This model idealized the shear zone as a single shear plane represented by line

AB in Fig. 2.1. Various cutting forces of orthogonal machining can be calculated



6

using this model, given the machining conditions such as the tool’s rake angle (α),

cutting velocity, uncut chip thickness and material properties (shear angle φ). Using

the assumption that the resultant force R on the chip applied at the shear plane is

equal, opposite and collinear to the force applied to the chip at the tool chip interface,

the Merchant’s circle (shown in Fig. 2.2) was proposed. This is a convenient tool

to analytically estimate various machining forces. In the diagram, FC is the cutting

force, FT is the thrust force, FS is the shear force in the shear plane, FN is the normal

force to the shear plane, F is the frictional force on the tool and N is the normal

force on the tool.

Figure 2.1: Shear plane in Thin-shear zone model [11].

Figure 2.2: Merchant circle diagram [11].
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2.1.2 Thick-shear zone model

There is a discontinuity of velocity at the shear plane of the thin-shear zone model.

The workpiece enters the shear plane with the cutting velocity and exits with chip

velocity. This discontinuity requires a shear velocity VS along the shear plane AB. The

experimental observations by Stevenson et al. [30] show that the deformation process

involves a continuous change of velocities and the shear zone during machining does

not agree with the thin-shear zone model. Based on the machining experiments at

slow cutting speeds, the thick-shear zone model was proposed [31]. In the thick-shear

zone model, a large plastic zone is proposed for continuous deformations. Also, the

tool-chip contact occurred at some distance away from the tool edge and there is a

gap between the tool and the chip on the tool edge side of the contact. The calculated

stress field matched with the experimental evidence.

Figure 2.3: Thick shear machining model.

2.2 Finite element method

Analytical models have been used traditionally for quantitative modeling of ma-

chining. However, they are based on many assumptions, such as the existence of

the shear plane in the thin-shear zone model. These assumptions lead to discrepan-

cies between the predictions of the models and experimental observations. Also, the

analytical models are usually limited to two dimensions. With the advancement in



8

computing, finite element methods have become useful for predicting the machining

process outputs. Comprehensive reviews of finite element modeling for the machining

process have been done by Arrazola et al. [32] and Sadeghifar et al. [15].

Three finite element formulations, namely Lagrangian, Eulerian, and Arbitrary

Lagrangian-Eulerian (ALE) formulations, have been used by researchers for modeling

machining. These formulations differ by the assignment of properties in the material

coordinate system and spatial coordinate system.

2.2.1 Lagrangian formulation

In the Lagrangian formulation, the mesh is attached to the material. Hence all

the properties assigned to the elements are in the material coordinate system. As

machining progresses, the tool removes the material of the workpiece in the form of

chips. The attached mesh also deforms along with the workpiece. Simulation of chips

from the initial time to the steady-state is possible while using this formulation.

There are three major disadvantages of the Lagrangian formulation: high mesh

distortions, multiple chip separation criteria, and prior prescription of chip separation

path. High mesh distortion occurs in the cutting zone and results in the abnormal

termination of the simulation. This is taken care of by using techniques such as pre-

distorted meshes [1] and adaptive meshing [33]. Multiple chip separation criteria such

as fracture energy criteria [1] and fracture based on maximum displacement [34] have

been used in the literature. Also, a chip separation path needs to be prescribed, and

the elements are deleted on that path based on the separation criteria. This leads to

mass and energy loss, which affects the accuracy of the results.

2.2.2 Eulerian formulation

In the Eulerian formulation, the mesh is fixed in space. The properties under

analysis are calculated at these fixed locations as the material flows through the

mesh. This spatially fixed mesh eliminates the high mesh distortions observed in
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the Lagrangian formulation. However, prior knowledge or assumption of a steady-

state mesh configuration is required for the simulation. For example, a steady-state

chip geometry needs to be defined for modeling machining [19]. This is a major

disadvantage of the Eulerian formulation. The chip geometry is assumed based on

the experimental observations or analytical models. Also, the Eulerian formulations

cannot simulate serrated and discontinuous chip formation [35].

2.2.3 Arbitrary Lagrangian Eulerian (ALE) formulation

Arbitrary Lagrangian-Eulerian (ALE) formulation combines the advantages of La-

grangian and Eulerian formulation. In this method, a Lagrangian step is followed

by an Eulerian step. In the Lagrangian step, the mesh flows with the material.

Hence, the chip formation is the result of material deformation. In the following

Eulerian step, the results of the Lagrangian step are interpolated onto a new mesh.

This remap compensates for the mesh distortions during deformation. However, the

computational cost is added due to the Eulerian step. Also, the remapping of state

variables adds to the inaccurate results [16, 36].

2.3 Smoothed Particle Hydrodynamics method

Due to the disadvantages associated with the FEM formulations, the smoothed

particle hydrodynamics method (SPH) [37] has attracted the attention of many re-

searchers as an alternative. The SPH method is a Lagrangian, particle-based, mesh-

less method and has several advantages over the grid-based approaches. High strains

occurring in machining are easily modeled due to the meshless nature of the method.

Particles undergoing deformation move without any topological restrictions. Further-

more, a separation model is not required in the SPH method with the relative motion

of the particles with respect to each other and with respect to the tool creating a

"natural" chip-workpiece separation.
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2.3.1 2D machining model

Orthogonal machining using SPH has been studied by various researchers. One

of the first orthogonal machining models using the SPH method was developed by

Heinstein and Segalman [38]. Simulations were done for the Aluminum 6061-T6

workpiece with different depth of cut of machining and rake angles of the tool. The

study concluded that the SPH method is a promising tool for modeling machining

in overcoming the difficulties encountered while using FEM, such as mesh distortion

and material separation.

Limido et al. [21] compared the results of a 2D orthogonal machining SPH model

with the model generated using commercial package AdvantEdge and experiments.

The study aimed to explore the advantages of SPH, namely the meshless nature for

handling high strains, chip workpiece separation and modeling of friction as particle

interaction. Chip morphology and cutting forces are the validation criteria. The SPH

model could predict continuous and shear localized chips and all the steps of their

formation. The tangential cutting force and normal cutting force respectively are

within 10% and 30% of the measured values.

Espinosa et al. [39] modeled 2D orthogonal cutting and 3D oblique cutting us-

ing SPH and compared the predicted chip morphology and cutting forces with the

experiments. Smooth variation of the von Mises stress is observed when the arti-

ficial viscosity was changed from the default value to 0.5. Also, the renormalized

formulation resulted in a more realistic prediction of chip shape.

Villumsen et al. [23] developed an orthogonal cutting model of AL 6082-T6 in

LS-DYNA using SPH. A detailed setup of the model in LS-DYNA is provided in

the paper. Sensitivity analysis to evaluate the model is performed. SPH parameters,

namely particle resolution (observed affecting the convergence of result), mass scaling

(concluded as not an adequate way to reduce calculation time), process time scaling

(concluded as effective with the reasonable assumption for analysis) and friction (ob-
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served that forces increase with an increase in the friction coefficient) significantly

affected force output. Chip formation and obtained force output are found to be in

good agreement with the experimental results.

Schwer [3] modeled ballistic problems using the SPH method. Based on the val-

idation of the simulation results with experiments, some recommendations for the

artificial viscosity and the Johnson-Cook failure model in SPH simulations are pro-

vided. The linear viscosity coefficient should be increased from a default value of 0.06

to 1.00. Low average particle residual speed (compared to experiments) is observed

when the Johnson-Cook failure model is not used in the simulation. Upon inclusion

of the failure criteria, the speed was comparable to the experiments. This can be

a "calibration" parameter of a model to obtain better agreement with experimental

observations.

Avachat et al. [24] investigated orthogonal machining of AISI 1045 with the focus

on the effect of the SPH parameters, namely, the smoothing length, particle density

and SPH formulation on chip morphology and stress distribution. Different sets of

the Johnson-Cook parameters for AISI 1045 steel have been used and their effect on

chip morphology and stresses is also investigated.

Madaj et al. [22] performed orthogonal simulations of A2024-T351 alloy using SPH.

Variation in chip segmentation is observed on the inclusion of Johnson-Cook failure

parameters (D1-D5 values) and also by varying the value of minimum strain required

for failure. They evaluated the effect of friction on cutting forces and concluded

that higher friction coefficient led to a higher chip radius, lower shear plane angle

and thicker chip, higher plastic strain values and higher average cutting force. They

noted the need for the investigation of material models to examine their usability for

SPH simulations.

Xi et al. [40] developed machining models to study thermally-assisted machining

of Ti6Al4V and studied the influence of the initial workpiece temperature on the chip



12

formation and cutting force. To reduce the computation time, the coupled SPH-FE

model was developed with a workpiece discretized by SPH particles near the tool

(high deformation zone) and meshed by the FE mesh away from the tool. Chip

segmentation and cyclic cutting force were observed.

2.3.2 3D machining model

The 2D plane strain orthogonal machining model has been the primary focus of

the majority of the current studies because of its simplicity. The predicted cutting

forces align well with the experimental values. However, the thrust force is highly

under-predicted (observed by various researchers [34, 41, 42]). This under-prediction

is corrected by increasing the friction coefficient between the tool and the chip to

values greater than 1 [43]. Also, the axial force cannot be predicted using this model.

Very few studies [44–48] incorporate the 3D machining model. Even in these studies,

only a small section of the workpiece has been modeled. Although the cutting forces

may stabilize, the chip profile associated with the actual machining operation cannot

be predicted. The industrial machining operations are predominantly 3D in nature.

Hence, to predict the physical variables such as stresses, strains and temperatures for

these operations, a more realistic 3D machining model is needed.

In the following chapters, the machining outputs are predicted by the computa-

tional models of machining using the SPH method. The results of the simulation

are validated with the experimental observations. Initially, the results of the two-

dimensional SPH machining model and coupled SPH-FE model are validated with

the results in [22]. Then, using a coupled SPH-FE model, a three-dimensional ma-

chining model is prepared. After validating the results of this model, the model is

enhanced to include other applications such as the incorporation of machining dy-

namics and modulated tool path machining.



CHAPTER 3: SMOOTHED PARTICLE HYDRODYNAMICS

Smoothed Particle Hydrodynamics (SPH) is a particle-based, meshless method

originally developed in the 1970s by Gingold and Monaghan [37] and Lucy [49] for

modeling astrophysical problems. Because of its meshless nature, SPH is being in-

creasingly used for modeling fluid mechanics and solid mechanics problems. The

method has several advantages over grid-based methods, including better handling

of large deformations and the availability of an intrinsic material separation method

for chip separation and crack formation. Due to these advantages, several researchers

have applied the SPH method to modeling materials removal processes such as ma-

chining.

In this method, a body is discretized using particles. Each particle has an as-

sociated set of state variables, e.g., mass, position and velocity, etc. The particle

interacts with the neighboring particles which are within its domain of influence. The

Smoothing function acts as a weight for the neighboring particles to approximate the

state variables of the particle. The discretized conservation equations and constitutive

equations are solved to obtain the time variation of the state variables.

3.1 SPH method

The heart of the SPH method is a Smoothing or Kernel function. This function

smooths the contribution of the neighboring particle to the property field of a particle,

based on the distance from the particle. The influence of the neighboring particle on

the particle reduces with the increasing distance from it. Mathematically, the value of

a property at a position equals the summation of the multiplication of the property’s

value at neighboring points by the value of kernel function.
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Figure 3.1: SPH method.

3.1.1 Kernel approximation of a function

The motivation of representing any function, f(r) in integral representation and

then to kernel approximation comes from Dirac delta function δ(ra − rb), which is

defined as,

δ(ra − rb) =

 ∞, ra = rb,

0, ra 6= rb.
(3.1)

The Dirac delta function also has following property,

∫
Ω

δ(ra − rb) dΩrb = 1. (3.2)

Here, ra and rb are position vectors and dΩrb is the volume element associated with

the position vector rb. The integral representation of the function, f(r) is given by,

f(ra) =

∫
Ω

f(rb)δ(ra − rb) dΩrb . (3.3)

The Kernel approximation of the function is obtained by replacing the Dirac delta

function by a smoothing function or kernel function W (|ra − rb|, h),

〈f(ra)〉 =

∫
Ω

f(rb)W (|ra − rb|, h) dΩrb . (3.4)
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Here, |ra − rb| is the distance between ra and rb and h is called the smoothing length.

Since the domain is discretized by particles, the integral form of the function can

be converted into the summation form or particle approximation given by,

〈f(ra)〉 =

∫
Ω

W (rab, h)f(rb) dΩrb ≈
N∑
j=1

W (rab, h)f(rb)
mb

ρb
. (3.5)

Here, rab = |ra − rb|, mb is the mass and ρb is the density of the particle at position

rb.

3.1.2 Smoothing Kernel

The smoothing function, W is of utmost importance in SPH. It determines the

shape for the function approximation and defines the zone of influence of a particle.

It must satisfy the following condition:

a) Normalization condition:

∫
Ω

W (|ra − rb|, h) dΩrb = 1 (3.6)

b) Dirac delta property:

lim
h→0

W (|ra − rb|, h) = δ(ra − rb) (3.7)

c) Compactness:

W (|ra − rb|, h) = 0,when |ra − rb| > κh (3.8)

where, κh is termed as the compact support.

d) The function should be smooth, monotonically decreasing, positive and axis-

symmetric function (even function) and at least second-order derivable.

There are many forms of the kernel function, but the most common are the Gaussian
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Figure 3.2: Comparison of SPH kernels.

function (because of its physical significance) and the Cubic spline (as it is non-zero

only inside the region of compact support). The Gaussian function has the following

form:

W (r;h) =
( 1

h
√
π

)
d e−(q2/h2). (3.9)

Here, d is the space dimension (1,2 or 3) of the problem, r is the distance from a

neighbouring particle and q = |r|
h
.

The cubic spline has the form:

W (r;h) = C


(2− q)3 − 4(1− q)3 0 ≤ q < 1,

(2− q)3 1 ≤ q < 2,

0 q ≥ 2.

(3.10)

where, C equals 1
6h
, 5

14πh2 and 1
4πh3 respectively for one, two and three dimension re-

spectively. Because of its’ finite compact support, the order of computation reduces

from O(N2) to O(N × Nneighbour), where Nneighbour is the number of neighbourhood

particle within the compact support. A comparison of different smoothing kernels is

shown in Fig. 3.2.
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3.1.3 Kernel approximation of Gradient

The kernel approximation of the gradient of a scalar field f(r) is calculated using

the derivative of the smoothing kernel and it’s functional value. It is given by,

〈∇raf(ra)〉 =
N∑
j=1

mb

ρb
f(rb)∇raW (rab, h). (3.11)

There are other formulations of SPH depending upon the definition of the deriva-

tive. Two of the most common formulations, asymmetric and symmetric formulation,

respectively, are given below.

〈∇ · f(ra)〉 =
1

ρa

[
N∑
b=1

mb[f(rb)− f(ra)] · ∇W (rab, h)

]
, (3.12)

〈∇ · f(ra)〉 = ρa

[
N∑
b=1

mb
[f(rb)

(ρb)2 +
f(ra)

(ρa)2

]
· ∇W (rab, h)

]
. (3.13)

3.1.4 Kernel approximation of Divergence

The kernel approximation of divergence of a vector field F(r) is obtained by replac-

ing F(ra) by ∇·F(ra) in Eq. (3.4). The detailed derivation is given in the Appendix.

Thus, the gradient of the function is calculated from the value of the function and

the gradient of the kernel function and not by the gradient of the actual function.

〈∇ · F(ra)〉 =
N∑
b=1

mb

ρb
F(rb) · ∇W (rab, h) (3.14)

3.1.5 Accuracy of Kernel approximation

The kernel approximation of a function is of second-order accuracy. This can be

shown by Taylor series expansion of f(rb) around ra.
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〈f(ra)〉 =

∫
Ω

f(rb)W dΩrb

=

∫
Ω

[
f(ra) + (rbi − rai )

∂f

∂rai
+

1

2
(rbj − raj )(r

b
k − rak)

∂2f

∂rajr
a
k

+O[(rb − ra)3]
]
W dΩrb

= f(ra) +
∂f

∂rai

∫
Ω

(rbi − rai )W dΩrb +
1

2

∂2f

∂rajr
a
k

∫
Ω

(rbj − raj )(r
b
k − rak)W dΩrb

+O[(rb − ra)3]

(3.15)

Here, i, j, k are indices denoting co-ordinate directions, with a repeated index implying

summation. The second term equals zero, as the term inside the integral is odd (rb−ra

is odd and W is an even function). Hence, the order of approximation is given by

third term onward. The term (rb − ra) is of O(h), resulting in an approximation to

O(h2).

Similarly, the kernel approximation of a gradient of a function is of second-order

accuracy, O(h2).

〈∇f(ra)〉 =

∫
Ω

f(rb)∇W dΩrb

=

∫
Ω

[
f(ra) + (rbi − rai )

∂f

∂rai
+

1

2
(rbj − raj )(r

b
k − rak)

∂2f

∂rajr
a
k

+O[(rb − ra)3]
]
∇W dΩrb

= f(ra)

∫
Ω

∇W dΩrb +
∂f

∂rai

∫
Ω

(rbi − rai )∇W dΩrb

+
1

2

∂2f

∂rajr
a
k

∫
Ω

(rbj − raj )(r
b
k − rak)∇W dΩrb +O[(rb − ra)3]

= ∇f(ra) +
1

2

∂2f

∂rajr
a
k

∫
Ω

(rbj − raj )(r
b
k − rak)∇W dΩrb +O[(rb − ra)3]

(3.16)

The
∫

Ω
∇WdΩrb equals zero, as ∇W is odd function. The second term equals the

identity matrix, which can be shown by integrating by parts, using the divergence

theorem and the compactness and normalization of the kernel function. Hence, using
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a similar argument as in the approximation of the function above, the approximation

is of O(h2).

However, the second-order accuracy of the kernel function and its derivative is

true only for the interior points. At the boundary region, there is a truncation of

the smoothing function [50]. Several modifications in the original SPH method, such

as corrective smoothed particle method (CSPM) [51], discontinuous smoothed parti-

cle method (DSPH) [52], etc., are proposed for removing this boundary inconsistency.

Thus, the error consists of an integral term error and a discretization error. The

Integral term error can be reduced by decreasing the smoothing length, while the

discretization error can be reduced by increasing the number of points in the domain.

However, this needs to be balanced by the computation time. Disorder in dynamic

systems has little influence on the accuracy of the SPH method. This can be at-

tributed to the SPH formulations, which conserve momentum and energy. Also, the

use of a symplectic integrator like the Leapfrog integrator gives accurate results, as

it conserves angular momentum and is reversible [53].

3.1.6 Artificial viscosity

A viscosity term Πab is added to the conservation of linear momentum equation to

stabilize the numerical algorithm of SPH for shock wave and contact discontinuities.

The most commonly used formulation, introduced by Monaghan and Gingold [54]

and is given by,

Πab =

 [−αc̄abµab + β(µab)2]/ρ̄ab, for vab · rab < 0,

0, otherwise.
(3.17)

Here,
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µab =
h̄ab vab.rab

| rab |2 + ε(h̄ab)2
, (3.18)

with h̄ab, ρ̄aband c̄ab are average of the smoothing length, density and the sound speed

of the particles at position ra and rb respectively. The Eq. (3.17) has two parameters

α and β to regulate the viscosity. Typically, the values of α is in range of [0,1] and

β = 2α is given. A small number, ε ≈ 0.01 prevents a singularity when the particles

are very close to each other, i.e. rab ≈ 0. This form conserves linear momentum, as it

is symmetric. The summation over all particles of this term with the anti-symmetric

kernel derivative is zero. A more detailed account of the artificial viscosity can be

found in [53]. Artificial viscosity produces a repulsive force when the two particles

approach each other. This prevents the particles from occupying the same position.

3.1.7 Variable Smoothing length

Smoothing length determines the radius of influence of the particles. This governs

the interpolation of physical properties in the domain. In general, the number of

particles in the neighbor for each particle in the domain is kept the same within a

range. For example, a region with a dense distribution particles has a small smoothing

length. However, for high deformation applications, for example, machining, there

is a large movement of particles. This requires a dynamic variation of smoothing

length. In LS-DYNA, two approaches for the calculation of the smoothing length are

implemented based on the divergence of the velocity field and are given by,

d

dt
[h(t)] =

1

d
h(t)∇ · v (3.19)

d

dt
[h(t)] =

1

d
h(t) (∇ · v)

1
3 . (3.20)
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kh

kh

Figure 3.3: Neighbour search by Bucket sort method.

Here, h(t) is the smoothing length at time t, d is the dimension of the domain and v

is the velocity vector.

3.1.8 Bucket sorting

Locating the neighboring particles of each particle is done in SPH for every time

step. This is required to find the particles in the influence domain of each particle,

i.e., at a distance kh from the particle. This step is a computationally expensive step.

Bucket sort [55] is an efficient algorithm for this.

The entire domain is partitioned into a grid or bucket of size kh, as depicted in

Fig. 3.3. Based on the initial position of the particles, they are assigned to the

corresponding bucket and hence the initial neighbors are found for each particle. As

the simulation progresses, the particles may move to the other adjacent bucket. The

neighbors for each particle are searched in the same bucket and the adjacent buckets.

This saves the computation of the distance between the particles globally for all the

particles.
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3.2 Conservation laws

Conservation laws namely, the conservation of mass, linear momentum and energy

are derived in SPH formulation. Angular momentum is naturally conserved by the

SPH formulation.

3.2.1 Conservation of Mass

The continuity (conservation of mass) equation is given by,

Dρ

Dt
= −ρ (∇ · v) (3.21)

This can be written in SPH form as shown below equation. This is derived using the

asymmetric formulation of the derivative.

<
Dρa

Dt
> =

N∑
b=1

mb
(
vai − vbi

) ∂W ab

∂xai
. (3.22)

Here, ρ is the density, m is mass, v is velocity and xi are the co-ordinates. The

evolution of density is governed by this equation.

3.2.2 Conservation of Linear Momentum

The conservation of linear momentum is given by

Dv

Dt
=

1

ρ
(∇ · σ) . (3.23)

In SPH formulation, the equation is given by

<
Dvai
Dt

> =
N∑
b=1

mb

(
σ aij

(ρa)2 +
σ bij

(ρb)2 − Πab

)
∂W ab

∂xaj
. (3.24)

Here, σ is the total stress tensor and Πab is the artificial viscosity term accounting

for numerical instability during a discontinuity, for example, a shock. The equation
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of conservation of linear momentum evolves the forces on the particles during the

simulation. The above equation is derived using the symmetric formulation of the

derivative. It is asymmetric pairwise in a and b, as the gradient of the kernel function

is odd, implying that the force exerted by particle a on b is equal and opposite to the

force on particle b by particle a.

3.2.3 Conservation of Angular Momentum

Angular momentum is given by L = r×mv. Taking time derivative,

DL

Dt
= mv × v +mr× Dv

Dt
= mr× Dv

Dt
. (3.25)

Converting this equation to SPH form and summing for all the ith particles gives,

DL

Dt
=

N∑
i=1

DLi
Dt

=
N∑
a=1

N∑
b=1

mambrb ×

(
σ aij

(ρa)2 +
σ bij

(ρb)2 − Πij

)
∂W ab

∂xaj
. (3.26)

The summation for all particles can be shown to be equal to zero by interchanging i

and j in Eq. (3.26) and using Eq. (3.24), thereby conserving the angular momentum.

3.2.4 Conservation of Energy

The rate of change of internal energy equals the sum of stress work (work done by

the internal stresses) and rate of thermal energy entering into a body, given by

DU

Dt
=
σ

ρ
: (grad v) +Q (3.27)

where U is internal energy per unit mass, : denotes the double inner product between

two tensors and Q is rate of thermal energy per unit mass.

The SPH form of energy conservation equation is given by,

<
DUa

Dt
> =

1

2

N∑
b=1

mb

(
pa

(ρa)2
+

pb

(ρb)2

)
vabj

∂W ab

∂raj
+

µa

2ρa
εaijε

a
ij + < Qi > . (3.28)
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Here, p is the isotropic pressure component of the total stress tensor σ, µ is dynamic

viscosity, and ε is the shear strain rate.

The rate of thermal energy per unit mass is given by,

Q = −
∫

Ω

∇ · q dΩ. (3.29)

The conductive heat flux q is given by the Fourier’s law,

q = −k∇T. (3.30)

Here, k is thermal conductivity and T is temperature of the body.

The SPH form of rate of thermal energy is given by (derivation in Appendix),

< Qa > =
N∑
b=1

mb

ρaρb
(ka + kb)(T a − T b)

| rab |2
rab∇W ab (3.31)

This form conserves the total thermal energy. Also, heat flows from higher to lower

temperature. However, Cleary & Monaghan [56] proposed the below form. This form

ensures the continuity of heat flux across the interface of different materials.

< Qa > =
N∑
b=1

4mb

ρaρb
kakb

(ka + kb)
(T a − T b) rab

| rab |2
∇W ab (3.32)

3.3 Solid mechanics

3.3.1 Equation of state

The equation of state (EOS) determines the pressure p as a function of local den-

sity ρ and other material property variables. For machining simulations, the Mie-

Grüneisen equation has been widely used and is given by the following equations.
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For compression (µ > 0),

p =
ρ0C

2µ
[
1 +

(
1− γ0

2

)
µ− b

2
µ2
]

[
1− (S1 − 1)µ− S2

µ2

µ+1
− S3

µ3

(µ+1)2

]2 + (γ0 + bµ) e , (3.33)

and for tension (µ < 0),

p = ρ0C
2µ+ (γ0 + bµ)e . (3.34)

Here, C is the bulk speed of sound, µ = ρ/ρ0 − 1, ρ is the current density, ρ0 is

the reference density, γ0 is Grüneisen gamma, S1, S2 and S3 are the Hugoniot slope

coefficients, b is the first order volume correction to γ0, and e is the internal energy per

initial volume. The parameters C, γ0, S1, S2, S3 and b define the EOS of the material.

3.3.2 Material model

The total stress tensor σ consists of the hydrostatic pressure p and the deviatoric

stress S and is given by,

σij = −pδij + Sij . (3.35)

The deviatoric stress is evolved using the Jaumann rate and is expressed as,

Ṡij = 2G

(
dij −

δijdkk
3

)
+ Sikwjk + Sjkwik . (3.36)

Here, G is shear modulus, d is the strain rate tensor and w is the rotation tensor

given by,

dij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
, wij =

1

2

(
∂vi
∂xj
− ∂vj
∂xi

)
. (3.37)

The inelastic behaviour of the workpiece is modelled using the Johnson-Cook ma-

terial model given by,

σeq =
(
A+Bεnp

)︸ ︷︷ ︸
Strain hardening

[
1 + C ln

(
ε̇p
ε̇0

)]
︸ ︷︷ ︸
Strain rate sensitivity

[
1−

(
T − T0

Tm − T0

)m]
︸ ︷︷ ︸

Thermal softening

.
(3.38)
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Here, σeq is the flow stress, A, B, C, n, m are material constants. Furthermore, εp is

the equivalent plastic strain, ε̇p is the plastic strain-rate, ε̇0 is a reference strain-rate,

Tm is the melting temperature, and T0 is a reference temperature. In addition to the

constitutive material model, the Johnson-Cook damage model is used by Madaj et.al.

[22] to simulate failure and is given by,

εf = [D1 +D2 exp (D3σ
∗)]︸ ︷︷ ︸

Pressure dependence

[
1 +D4 ln

(
ε̇p
ε̇0

)]
︸ ︷︷ ︸

Strain rate

[
1 +D5

(
T − T0

Tm − T0

)]
︸ ︷︷ ︸

Temperature

.
(3.39)

Here, εf is the equivalent fracture strain. D1 − D5 are the damage model con-

stants. The stress triaxiality parameter, σ∗ is a ratio of the mean stress (σm) and

the equivalent stress (σeq). The Fracture occurs when the cumulative value of the

equivalent plastic strain equals εf . The damage of an element, D is defined based on

a cumulative damage law, represented by,

D =
∑ ∆εp

εf
. (3.40)

When D equals unity, fracture is assumed to occur. The stress tensor in the material

undergoing deformation is given by the scalar damage equation,

σD = (1−D)σeq . (3.41)

It is noteworthy that the particles reaching equivalent fracture strain are deleted from

the SPH calculations. But, the mass and energy of these particles are retained. This

ensures the conservation of mass and momentum. This is contrary to the FEM, where

the elements are completely deleted due to high distortion.
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3.4 Calculation cycle

A typical SPH calculation cycle [55] is shown in Fig 3.4. The conservation equations

along with constitutive equations are solved by an explicit time integration using the

LeapFrog algorithm. A bucket sort algorithm is used for the neighborhood search.

Domain discretiza-
tion with Particles

Material Properties

Initial / bound-
ary conditions

Initialization

Smoothing
Length, Sorting

Density, strain rates

Pressure, thermal
energy, stresses

Particle forces

Accelerations

Velocity / Position

Figure 3.4: The calculation cycle of SPH.

3.5 Time step

The numerical integration of the discretized SPH equation is done by explicit time

integration. To have a stable solution, it must satisfy the CFL (Courant-Friedrichs-

Levy) condition [57], given by the Eq. (3.42). Physically, it denotes that the time

step should be less than the time required for the elastic waves to pass within the

spatial separation of the particles (l). The speed of the longitudinal elastic wave is

given by c0 and τ is a time step scaling factor.

∆t ≤ τ
l

co
. (3.42)
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For a solid medium, c0 is given by,

c0 =

√
K + 4

3
G

ρ
. (3.43)

3.6 Time integration

To advance the simulation by a global time step ∆t, the acceleration of each particle

is calculated from the force acting on the particle. The velocity and position of the

particles are calculated using the numerical integration of the acceleration. The Verlet

scheme [58] and the Leapfrog integration scheme are the commonly used methods for

particle simulations.

3.6.1 Verlet integration scheme

Verlet integration scheme [58] is commonly used for numerically integrating New-

ton’s equations of motion for molecular dynamics simulations. For SPH simulations,

this method is used in LAMMPS [59] and SPHysics codes [60]. The position and the

velocity are calculated using the Eq. (3.44). This scheme is of second-order accuracy

and provides good numerical stability.

vt+∆t = vt−∆t + 2∆t Ft

xt+∆t = xt + ∆t vt +
1

2
∆t2Ft.

(3.44)

3.6.2 Leapfrog integration scheme

Leapfrog integration is a second-order integration method. In this scheme, the

velocities are calculated at the mid-points of the time steps. However, the position is

calculated for each time step using the equation given by,

xt+∆t = xt + ∆t vt+ ∆t
2

vt+ 3∆t
2

= vt+ ∆t
2

+ ∆t at+∆t.

(3.45)
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Figure 3.5: Leapfrog integration scheme.

The scheme is depicted in Fig. 3.5.

The initial velocity is calculated using the Euler formula given by,

v(−∆t
2

) = v0 −
∆t

2
a0. (3.46)

The Leapfrog scheme is time-reversible [61]. Also, this scheme satisfies the con-

servation equations. This limits the propagation of error. This scheme is used in

LS-DYNA for time integration [62].



CHAPTER 4: PROBLEM DESCRIPTION AND 2D SPH MODELS

Machining is one of the most common manufacturing processes. Depending upon

the part geometry, it can be widely classified into three operations: turning, milling,

and drilling. The Turning operation is the focus of this study. In turning, there is a

cutting tool and raw material (also called a workpiece). The workpiece is clamped on

a lathe chuck and is given a rotational velocity about its axis. The tool is secured on

a tool-post and is set with a depth of cut relative to the workpiece. The tool is given

a feed motion towards the workpiece. As the tool and workpiece interact, cutting

takes place and chips are formed.

Thus, there are two approaches for modeling the turning operation: two-dimensional

and three-dimensional approach. Because of the higher complexity associated with

the three-dimensional modeling, the two-dimensional modeling is done initially us-

ing a complete SPH model. The machining conditions used in this model are taken

from Madaj et al. [22], where orthogonal machining has been studied using the SPH

method. Another model with a coupled SPH-FE mesh is also developed. The results

of the two-dimensional models are presented in this chapter. In subsequent chapters,

a parametric study of the SPH parameters is conducted to understand their effects

on the simulation results. Thereafter, three-dimensional models are studied.

4.1 Motivation for the coupled SPH-FE model

The SPH method being a meshless method, has several advantages over the grid-

based approaches in modeling high strain applications such as machining. Particles

undergo deformation move without any topological restrictions. Furthermore, a sep-

aration model or contact model is not required in the SPH method. The relative
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(a) 3D: actual machining. (b) 2D: simulated model.

Figure 4.1: 2D simplification of Turning operation.

motion of the particles with respect to each other and with respect to the tool surface

allows for a "natural" chip-workpiece separation.

The SPH method is computationally expensive. The computational time depends

on the number of particles in the support domain of each particle. The higher the

number of particles in this domain, the longer the simulation takes to run [63]. This

run-time can be a severe impediment to considering realistic models of a machining

process and obtaining accurate results. To address this concern, a coupled SPH-FE

model is studied. The SPH model is used for the region where severe deformations

and material removal take place. The FE model is used for the rest of the workpiece.

The SPH and FE mesh are coupled at the interface. There is a reduction in the

number of SPH particles in the coupled SPH-FE mesh. The benefit of this is verified

by comparing the results from this model and the simulation time with a validated

ful-SPH model.

4.2 Geometry

The geometry for both the SPH model and the coupled SPH-FE model are chosen

according to Madaj et al. [22]. The workpiece dimensions are 5.8 mm × 1.0 mm ×

0.05 mm. The tool rake angle is 17.5◦; the clearance angle is 7◦; and the tip radius is

20 µm. The depth of cut (b) is 4 mm and the uncut chip thickness (f) is 0.4 mm.
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4.3 The SPH model

The SPH model consists of the workpiece discretized completely by particles and

the tool by FE elements. The SPH particles are equispaced in all directions with

an inter-particle spacing of 0.025 mm. This leads to a total of 18,560 SPH particles

representing the workpiece. The SPH model is shown in Fig. 4.2. Two layers of

particles are used in the Z direction (same as in Madaj et al. [22]). As the particles

are constrained from moving in the Z direction, the number of layers in Z direction

is not relevant to the results of this investigation.

Figure 4.2: The SPH model.

4.4 The SPH-FE coupled model

In the SPH-FE coupled model, the workpiece is divided into two zones. The zone

where the tool interacts with the workpiece is modeled with SPH particles. In this

zone, the cutting takes place and there is high deformation. The lower zone is modeled

with FEM elements. With this modification, the number of SPH particles decreases

by around 50%. The SPH-FE coupled model is shown in Fig. 4.3. The coupling of

SPH particles with FE mesh is achieved by constraining the bottom layer of SPH

particles to the FE mesh by using the node to surface constraining algorithm. The
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Figure 4.3: The coupled SPH-FE model.

SPH elements are considered as slave surface and the finite elements as master surface.

The acceleration of each slave node is interpolated from the master segment containing

its contact points [55]. Also, for proper coupling, three rows of SPH elements are kept

between the FE mesh and the uncut part of SPH elements.

4.5 Boundary conditions

For both the models, the tool is given the cutting velocity of 800 m/min in the

negative X direction and completely constrained in all the other directions. The

workpiece is fully constrained on the left and bottom sides. Note that the boundary

condition is applied on the FEM elements and the SPH particles for the SPH-FE

coupled model. For the plane strain assumption, the motion of all the SPH particles

and FEM elements of the workpiece and tool is fully constrained in the Z direction

(normal to the plane).

4.6 Material model and properties

The workpiece material is the aluminium alloy A2024-351, and the tool is made of

an uncoated cemented carbide. The physical properties of the workpiece and tool are

given in Table 4.1. The workpiece is modeled using the Johnson-Cook material model
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Table 4.1: Physical properties of Workpiece and Tool [1].

Property Workpiece Tool
Density, ρ (Kg/m3) 2700 11900
Young’s Modulus, E (GPa) 73 534
Poisson’s ratio, µ 0.33 0.22
Specific heat, Cp (J/Kg K-1) 875 -
Tmelt, (K) 793 -
Troom, (K) 300 300

Table 4.2: Johnson-Cook parameters of workpiece (A2024-351) [1].

Parameter A (MPa) B(MPa) n C m
Value 352 440 0.42 0.09 1.03
Parameter D1 D2 D3 D4 D5
Value 0.13 0.13 -1.50 0.011 0

with the Johnson-Cook damage model. The value of model parameters are given in

Table 4.2. The tool is modeled as a rigid body.

4.7 Result

The results of the coupled SPH-FE model are compared with the SPH model. The

outputs are chip profiles, plastic strain, damage variable and cutting forces.

4.7.1 Chip formation

The chip formation for the SPH model and coupled SPH-FE model is shown in

Fig. 4.4 for four different times. The top row of figures corresponds to the SPH

model and the bottom row corresponds to the SPH-FE model. The chip shape of the

SPH model is consistent is with that obtained in [22]. Furthermore, the chip shape

predicted by the SPH-FE model is the same as that predicted by the SPH model at

all four times. The figure also illustrates the ability of the SPH method to simulate

large deformations occurring during the machining operations. The chip separation,

chip curl, highly distorted meshes and self-contact are major challenges in Lagrangian

FE formulations but are easily handled by the SPH method.

Figures 4.5a and 4.6a show the distribution of von Mises stress and plastic strain



35

Figure 4.4: Chip shape at four different times as predicted by the SPH model (top
row) and SPH-FE model (bottom row).

respectively for the SPH model. The results shown in these figures are consistent

with [22]. The von Mises stress and plastic strain distribution for the coupled SPH-

FE model are shown in Figs. 4.5b and 4.6b respectively. Clearly, these results are

almost identical to those from the SPH model. Furthermore, it can be observed from

these figures that the smoothness of stress distribution across the interface validates

the proper coupling between SPH particles and FEM elements.

Another field variable of importance is the damage parameter D. In Figs. 4.7a

and 4.7b, the damage variable (D) contour plots are provided for the SPH model and

coupled SPH-FE model respectively. The results match. Moreover, direct correspon-

dence between the plastic strain plot Fig. 4.6 and damage variable Fig. 4.7 can be

observed. The damage variable is close to unity for the region where plastic strain is

more than 0.65 (value of the equivalent fracture strain, εf used in [22]).
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(a) SPH model. (b) coupled SPH-FE model.

Figure 4.5: von Mises stress distribution.

(a) SPH model. (b) coupled SPH-FE model.

Figure 4.6: Plastic strain distribution.

(a) SPH model. (b) coupled SPH-FE model.

Figure 4.7: Damage variable (D).
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Figure 4.8: Cutting force evolution with time.

4.7.2 Cutting force

The predicted cutting forces are compared in Fig. 4.8. The average cutting force

predicted by the SPH model is 908 N, whereas it is 912 N for the coupled SPH-FE

model. Thus, based on these observations, it is clear that the two models provide

similar results, although, in the SPH-FE problem, the number of SPH particles is

approximately 50% less than that in the SPH model.

4.7.3 Simulation time

The SPH-FE model took approximately 77 minutes, whereas the SPH model took

approximately 144 minutes. Clearly, the SPH-FE model offers the advantage of faster

run times while predicting results almost identical to the SPH model. This benefit

in computation time is because of the reduction in the number of SPH particles and

the reduction in the domain size of the SPH particles in the model. The computation

time increases drastically with the mesh refinement of SPH particles as shown in

Table 4.3. Eight parallel processors were used for running these simulations. Thus, it

can be concluded that the more realistic three-dimensional simulations of machining

operations can be performed without significant loss of accuracy by using the coupled

SPH-FE models while retaining the benefits of the SPH method.
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Table 4.3: Simulation time with mesh refinement.

Test case Number of SPH Number of FE Time (min)
Coarse SPH 18560 687 144
Coarse coupled SPH-FE 9280 1267 77
Refined SPH 62640 687 971
Refined coupled SPH-FE 31320 1267 522

4.8 Conclusion

In this study, two machining models: an SPH model and a coupled SPH-FE model,

in two-dimension are developed. The SPH model has the workpiece discretized by the

SPH particles. The coupled SPH-FE model has the workpiece discretized using both

SPH particles (in the high deformation zones) and finite elements (in the rest of the

workpiece). Numerical simulations of machining of the aluminum alloy A2024-351

are carried out using these models. The results from the SPH-FE and the fully SPH

models are compared with the SPH model developed by Madaj et al.[22]. Compar-

isons of the chip profile, von Mises stress and plastic strain show that the SPH-FE

coupled model produces results that are in close agreement with those of the fully

SPH model. However, the coupled model results in a reduction of 40% in simulation

time which is a significant benefit. This benefit becomes more significant for three-

dimensional modeling problems where the simulations can take a prohibitively long

time to complete. With the use of the coupled SPH-FE model, the domain to be

discritized using SPH particles reduces. This leads to the reduction in the number

of SPH particles. The reduction in the domain size has an additional advantage dur-

ing the mesh refinement. This is because the mesh refinement for the SPH is done

in all three directions, as the accuracy of the SPH method depends on the uniform

distribution of SPH particles [50].



CHAPTER 5: PARAMETRIC STUDY

Machining modeling using smoothed particle hydrodynamics method has several

parameters. These parameters can be divided into two categories, method-based and

process-based parameters. Method-based parameters are the parameters used by the

SPH method. Process-based parameters are the parameters related to the machining

process, such as depth of cut, cutting speed and tool geometry, etc. A parametric

study of these parameters is being done to obtain a robust machining model.

5.1 Method based parameters

Method-based parameters, along with their values used for the parametric study,

are listed in Table 5.1. The aim of the study is to investigate the effect of these

parameters and find optimum values for a numerically stable and accurate machining

model.

Table 5.1: Parametric study of Method based parameters.

Parameter Values

Number of SPH layers 1, 2, 3

Particle spacing 0.0125, 0.025, 0.05 mm, unequal in X and Y

Scale factor for time-step, TSSFAC 0.3, 0.6, 0.9

Artificial Bulk Viscosity Q1= 1.5, Q2= 0.06 and Q1= 1.5, Q2= 0.5

SPH kernel function, SPHKERN 0, 1, 2, 3

Smoothing Length, hmin, hmax default, fixed large, fixed small

Smoothing length calculation algo-
rithm, DERIV

0, 1

SPH formulations 0, 1, 5, 6, 7, 8, 9, 10, 12
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5.1.1 Number of SPH layers in Z-direction

In the SPH method, the properties of a particle are determined by the weighted

sum of the properties of the neighboring particles. The number of layers of SPH

particles influences the neighborhood of the particles. Also, there is a direct relation-

ship between the number of SPH layers and the total number of SPH particles in the

model. The number of SPH particles has a significant influence on the simulation

time. A smaller number of particles is desirable but without the loss of accuracy of

the results. Hence, studying the effect of the number of SPH layers is important.

Three simulations are run by changing the number of layers of SPH particles in Z

direction (into the plane of view). The chip profiles and cutting forces are compared

in Fig. 5.1 and Fig. 5.2 respectively. The results of two layers and three layers

of SPH particles converge. The simulation time increases with the increase of SPH

layers (Table 5.2). Based on the results, at least two layers of particles are required

for having sufficient neighbors for SPH particles in the model.

(a) 1 Layer. (b) 2 Layer. (c) 3 Layer.

Figure 5.1: von Mises stress and Chip profile with change in number of layers of SPH
particles.
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Figure 5.2: Cutting forces with change in number of layers of SPH particles.

Table 5.2: Number of SPH particles and simulation times for different layers.

Number of Layers Number of SPH particles Simulation time
(8 processors)

1 9280 43 min
2 18560 144 min
3 27840 291 min

5.1.2 Particle spacing between SPH particles

Particle spacing between the SPH particles is similar to the element size in the

Finite Element Method. The accuracy of the results depends on this parameter.

Smaller distance between SPH particles not only results in the increase in the number

of SPH particles but also reduces the stable time increment. A convergence study

is required for the validity of the model. For the parametric study, the models with

the spacing of 0.0125 mm (fine mesh), 0.025 mm (same as ref. [22]) and 0.05 mm

(coarse mesh) are simulated. Also, equal spacing in horizontal and vertical directions

is recommended by Monaghan [54] for better accuracy of results. This is verified

using a model with 0.05 mm spacing in the horizontal direction and 0.025 mm in the

vertical direction. The chip profiles and cutting forces for these models are shown in

Fig. 5.3 and Fig. 5.4 respectively. As the spacing between SPH particles is reduced,
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the serration in the chip is more prominent. Cutting force converges for 0.025 mm

and 0.0125 mm particle spacing. The simulation times are compared in Table 5.3.

(a) Fine mesh. (b) same as Ref [22] (c) Coarse mesh.

Figure 5.3: von Mises stress and Chip profile with change in particle spacing between
SPH particles.

Figure 5.4: Cutting forces with change in particle spacing between SPH particles.

Table 5.3: Simulation time for different particle spacing.

Particle spacing Number of SPH particles Simulation time
(16 processors)

0.0125 mm 74240 318 min
0.025 mm 18560 29 min
0.050 mm 4640 4 min

0.050 mm: Horizontal 9280 13 min0.025 mm: Vertical
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(a) Unequal SPH spacing. (b) same as Ref [22].

Figure 5.5: von Mises stress and Chip profile for unequal spacing of SPH particles.

Figure 5.6: Cutting forces for unequal spacing of SPH particles.

The chip formed by the model with the unequal spacing of SPH particles is con-

tinuous (without any serration) as compared with the model with equal spacing of

SPH particles (Fig. 5.5). The effect of this can be seen in Fig. 5.5. There is less

fluctuation of cutting force for the model with the unequal spacing of SPH particles.

However, serrations are observed in the chips formed in the experiments [1]. This

confirms that the model with the equal spacing between SPH particles provide more

accurate results.
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5.1.3 Scale factor for computed time step (TSSFAC)

Because of the explicit nature of time stepping, the stability of the simulation

depends on the chosen timestep. Courant Friedrichs-Lewy’s (CFL) condition deter-

mines the smallest timestep required for a stable simulation. This time step size

corresponds to the time taken by an acoustic wave to travel through the smallest

characteristic distance of the elements. For the stability of the simulation, a scaling

factor TSSFAC scales this timestep. The default value of TSSFAC is 0.9. However,

for some applications involving contact or shock loads, the lower values are recom-

mended in the LS-DYNA manual. But the lower values also lead to larger simulation

time. Thus, determination of the optimum time step scale factor is important for

accurate solutions in optimum simulation time.

Chip profiles for different TSSFAC are shown in Fig. 5.7. While the chip profiles

for TSSFAC of 0.3 and 0.6 match, breaking of the chip is observed for TSSFAC =

0.9. Simulation times are compared in Table 5.4. A decrease in the simulation time

is observed with increasing TSSFAC. No significant difference in the cutting forces is

observed.

The timestep is also used in the calculations for the contact analysis. To avoid

contact instabilities, LS-DYNA provides a limiting value for the timestep. While

running the 3D simulations, this was observed in the results in the form of SPH

particles flying away and a large decrease in the timestep for subsequent times. Thus,

TSSFAC = 0.6 is used in further simulations to avoid these instabilities.

Table 5.4: Simulation time for different TSSFAC.

TSSFAC Simulation time
(16 processors)

0.30 33 min
0.60 17 min
0.90 11 min
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(a) TSSFAC = 0.3. (b) TSSFAC = 0.6. (c) TSSFAC = 0.9.

Figure 5.7: von Mises stress and Chip profile for different depths of cut (DOC).

5.1.4 Artificial Bulk viscosity

Artificial bulk viscosity is added to the conservation of momentum equation to

stabilize the SPH method for shock wave and contact discontinuities. The default

values for the two parameters defining artificial viscosity are Q1 = 1.5 and Q2 =

0.06. Espinosa et al.[39] have used Q1 = 1.5 and Q2 = 0.5. A comparison of the chip

profiles for both these sets is shown in Fig. 5.8. With Q1 = 1.5 and Q2 = 0.5, the

distribution of stress is smoother as compared to the model with Q1 = 1.5 and Q2 =

0.06. This result is in agreement with the observations of Espinosa et al.[39]. Thus,

Q1 = 1.5 and Q2 = 0.5 is chosen for further simulations.

(a) Q1 = 1.5 and Q2= 0.06. (b) Q1 = 1.5 and Q2= 0.5.

Figure 5.8: von Mises stress and Chip profile for different sets of artificial viscosity.
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5.1.5 SPH kernel functions (SPHKERN)

Kernel functions determine the domain of influence or neighbors of the SPH par-

ticles. The state variables of an SPH particle are determined by the weighted sum

of state variables of its neighbors and the kernel function provides the weight. Thus,

evaluation of the choice of the kernel function is important for the accuracy of the

results.

The von Mises stress and chip profile for different kernel functions is shown in Fig.

5.9. Based on the results, there is no significant effect of the kernel function. Also,

there is no significant difference in cutting forces and simulation time. Hence the

default cubic spline kernel is used for further simulations.

(a) SPHKERN= 0: Cubic spline. (b) SPHKERN= 1: Quintic spline.

(c) SPHKERN= 2: Quadratic spline. (d) SPHKERN= 3: Quartic spline.

Figure 5.9: von Mises stress and Chip profile for different Kernel functions (SPHK-
ERN).
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5.1.6 Smoothing length

Smoothing length in the SPH method determines the influence region around a

particle. The particles inside this influence region or support domain are considered

as the neighbors and contribute to the calculation of the state variable of the particle.

During the simulation of machining, the particles move and can change the number

of particles inside the influence region. To hold a constant number of particles in

each neighborhood, LS-DYNA uses a variable smoothing length [55]. The smoothing

length h(t) is bound in the range (Hmin × h0, Hmax × h0). Here, Hmin, Hmax are

user-defined constants and h0 is the initial smoothing length (recomputed every cycle

for each particle based on the divergence of the velocity) [64].

The effect of variation of Hmin and Hmax is studied using three cases, small values

are taken (Hmin = Hmax = 0.2), default values recommended in LS-DYNA and large

values (Hmin = Hmax = 3.0). The chip profiles for these cases are shown in Fig.

5.10. For small values of the smoothing length constants, a small region of influence

allows the particles to move freely, similar to [64]. For large constants, the chip has

no segmentation and the boundary particles are observed to separate from rest of the

domain. Similar inaccuracy due to the boundary effect is observed by Lee and Hong

[65]. Thus for further simulations, the default values of Hmin and Hmax are used.

Another parameter, DERIV, defines the method of calculation of the initial smooth-

ing length h0. However, identical chips are observed for different options for DERIV.

(a) Hmin = Hmax = 0.2. (b) Hmin = 0.2, Hmax = 2. (c) Hmin = Hmax = 3.

Figure 5.10: von Mises stress and Chip profile for varying smoothing length (h).
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5.1.7 SPH formulations

LS-DYNA has different SPH formulations based on the applications. The formula-

tions differ by the different definitions of the derivative operator and hence different

discretization for the momentum equation. There are fifteen SPH formulations im-

plemented in LS-DYNA [55]. Form 2 and 3 are not recommended for any case. Form

5 and 6 are used when fluid material is present or when materials with very different

stiffness are used. Form 13 is an implicit incompressible fluid and used for water.

Form 15 and 16 are recommended for fluid-like material applications (not for ma-

terials with failure). However, for completeness, the models are simulated with all

formulations except Form 2 and 3.

The chip profile of the models with different SPH formulations available in LS-

DYNA and the corresponding cutting forces are shown in Fig. 5.11 and Fig. 5.12

respectively.

The following observations are made:

1. Form 4 (tensor formulation) gave an error of SPH memory allocation.

2. Form 7 and 8 are Lagrangian formulations. They cannot endure very large

deformations.

3. Cutting force for Form 1, 6 and 10 are greater than Form 0, 5 and 12.

4. Results of Form 1, 6 and 10 indicate that renormalization is required to get

curled chips.

5. For further simulations, Form 1 is chosen.
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(a) Form 0: default formulation. (b) Form 1: renormalization approximation.

(c) Form 5: fluid particle approximation. (d) Form 6: fluid particle with renormalization.

(e) Form 7: total Lagrangian form. (f) Form 8: total Lagrangian with renormalization.

Figure 5.11: von Mises stress and Chip profile for different SPH formulations.
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(g) Form 9: ASPH formulation. (h) Form 10: ASPH with renormalization.

(i) Form 12: moving least-squares form.

Figure 5.11: von Mises stress and Chip profile for different SPH formulations.

(a) Form 0, Form 5 & Form 10. (b) Form 1, Form 6 & Form 12.

Figure 5.12: Cutting force plot for different SPH formulations in LS-DYNA.
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5.2 Process based parameters

In this section, the results of the parametric study of process-based parameters are

discussed. Understanding the effect of these parameters on machining conditions such

as cutting force is important to have a reliable predictive capability. The process-

based parameters and their corresponding values used in the parametric study are

listed in Table 5.5.

Table 5.5: Parametric study of Process based parameters.

Parameter Values
Depth of cut 0.2, 0.4, 0.6 mm
Cutting speed 400, 800, 4000, 8000 m/min
Rake angle -5◦, 0◦, +5◦, +17◦

Friction coefficient 0.9, 0.5, 0.17, 0
Strain at Fracture 0, 0.2, 0.65, 1.5

5.2.1 Depth of cut

To investigate the effect of depth of cut during machining, a parametric study with

three values of depth of cut, namely 0.2, 0.4 and 0.6 mm, is conducted. Chip profiles

for these conditions are shown in Fig. 5.13. Also the cutting forces are compared in

Fig. 5.14. As the depth of cut increases, the chip profile changes from continuous to

serrated. The cutting force increases with the depth of cut. At a depth of cut = 0.6

mm, the variation of the cutting force increases due to chip serration.

(a) Depth of cut= 0.02 mm. (b) Depth of cut= 0.04 mm. (c) Depth of cut= 0.06 mm.

Figure 5.13: von Mises stress and Chip profile for different depths of cut (DOC).
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Figure 5.14: Cutting forces comparison for different depths of cut (DOC).

5.2.2 Cutting speed

To investigate the effect of cutting speed, a parametric study with cutting speeds

of 400, 800, 4000 and 8000 m/min, is conducted. Although high values of the cutting

speed, such as 8000 m/min, are not practical, this is chosen to verify the use of

increasing the cutting speed in the simulation to reduce the simulation time [39, 66].

The chip profiles and the cutting forces for these conditions are shown in Fig. 5.16

and Fig. 5.15 respectively. It is observed that as the cutting speed increases, the curl

radius of the chip increases. Also, the cutting force shows an increasing trend with

increasing cutting speed. However, the increase in chip curl and cutting force is not

significant until the cutting speed of 4000 m/min. Increasing the cutting speed leads

to the reduction of the simulation time. However, a parametric study needs to be

conducted for accurate modeling.
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Figure 5.15: Cutting forces comparison for different cutting speeds.

(a) Cutting speed= 400 m/min. (b) Cutting speed= 800 m/min.

(c) Cutting speed= 4000 m/min. (d) Cutting speed= 8000 m/min.

Figure 5.16: von Mises stress and Chip profile for different cutting speeds.
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5.2.3 Rake angle

The rake angle of the tool is an important consideration during the selection of tools

for machining. Cutting forces, temperature and chip profile are dependant upon the

rake angle [67]. To understand the effect of rake angle, the machining models with

-5, 0, +5 and +17 ◦ rake angle are simulated. The chip profiles and cutting forces are

shown in Fig. 5.17 and 5.18 respectively. With increasing rake angle, the serration

in the chips decreases and the cutting force decreases. Also, the fluctuation in the

cutting force plot decreases.

(a) Rake angle= -5 ◦. (b) Rake angle= 0 ◦.

(c) Rake angle= +5 ◦. (d) Rake angle= +17 ◦.

Figure 5.17: von Mises stress and Chip profile for different rake angles.
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Figure 5.18: Cutting forces comparison for different rake angles.

5.2.4 Friction

During machining, frictional forces are present at the interface of the tool and

the workpiece. Friction in LS-DYNA is based on a Coulomb formulation [55]. The

coefficient of friction µ is defined by the user while defining the contact. A parametric

study is conducted for three values of friction coefficient, µ, to investigate the effect

of friction on the results. No significant difference in the chip profiles is observed.

However, the cutting force (shown in Fig. 5.19) increased by increasing the value

of the friction coefficient. Thus, the friction coefficient can be used as a calibrating

parameter to correlate simulation results with experimental observations.

Figure 5.19: Cutting forces comparison for different friction coefficient.
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5.2.5 Strain at Fracture

A fracture occurs in a material when the cumulative plastic strain equals a pa-

rameter called the strain at fracture. This is a material dependant parameter. A

parametric study is conducted for four values of this parameter to investigate the

effect on the simulation results. The chip profiles and cutting forces are shown in Fig.

5.20 and 5.21 respectively. As the value of the strain at fracture increases, the chip

profile changes from serrated and broken to continuous. Also, with the increase of this

parameter, the cutting force increases and has less fluctuation. Thus, this parameter

is critical to tune to correlate simulation results with the experimental observations.

(a) Efmin = 0. (b) Efmin = 0.20.

(c) Efmin = 0.65. (d) Efmin = 1.5.

Figure 5.20: von Mises stress and Chip profile for different values of Strain at fracture.
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Figure 5.21: Cutting forces comparison for different values of Strain at fracture.

5.3 Conclusion

Insight is gained into the parameters of the SPH method through the parametric

study. This insight leads to the enhanced robustness of the computational model for

machining. The following are some of the important conclusions of the study:

1. Curled chips are obtained while using the renormalization approximation for-

mulation of SPH. Straight chips are obtained when the default formulation is

used.

2. A minimum of two layers of SPH particles is required to model the orthogonal

machining accurately.

3. While choosing the value of the parameter, Scale factor for timestep, TSSFAC,

merely satisfying the CFL criteria is not enough. The upper limit of the timestep

defined for the contact is also essential for the stability of the model.

4. The values of the friction coefficient and strain at fracture need to be tuned to

correlate the simulated forces with the experimentally measured forces.



CHAPTER 6: 3D MACHINING MODEL

Computational modeling is an important tool to understand the complex physics

of machining and optimize the machining process. However, the majority of the

current studies focus on the 2D plane strain orthogonal machining model because of

its simplicity. The predicted cutting force aligns well with the experimental values.

However, the thrust force is highly underpredicted. Also, the axial force cannot be

predicted using this model. Very few studies [44–48] incorporate the 3D machining

model. Even in these studies, only a section of the workpiece has been modeled.

Although the cutting forces may stabilize, the chip profile associated with the actual

machining operation cannot be predicted. The industrial machining operations are

predominantly 3D in nature. Hence, to predict the physical variables such as stresses,

strains and temperature for these operations, a more realistic 3D machining model is

needed. In this chapter, machining models with a full-scale 3D model of the workpiece

are simulated. The aim is to predict all the three components of the cutting forces and

the chip morphology during machining by modeling. The results of the simulation

are compared with the experimental observations.

6.1 Model description

The machining model, shown in Fig. 6.1, consists of a tool and a cylindrical

workpiece. The tool is discretized using finite element mesh and the workpiece is

discretized using a coupled SPH-FE mesh. This is done to reduce the simulation

time, as the SPH method is computationally expensive. The SPH particles are used

in the zone of cutting, where the workpiece interacts with the tool. This is a zone

of high deformation. The chip forms, curls and comes in contact with itself and the
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surface of the tool. A Finite element mesh is used away from this zone, where the

deformations are less. All the boundary conditions are applied to the finite element

mesh. The SPH and FE mesh are coupled at the interface. This coupling allows

smooth transfer of the physical properties, such as displacement and stress. The

geometry and mesh of the tool and the workpiece are shown in Fig. 6.2 and Fig. 6.3

respectively. All length dimensions are in mm.

Figure 6.1: Machining model used for 3D machining.

Figure 6.2: Geometry of the tool used used in 3D machining model.



60

Figure 6.3: Geometry of the workpiece used in 3D machining model.

6.2 Material properties

The material of the tool is tungsten carbide, and that of the workpiece is Al 6061.

The physical properties of the tool and the workpiece are shown in Table 6.1. The

tool is modeled as a rigid body. This simplification is based on the fact that the

tool’s rigidity is comparatively much greater than the material of the workpiece. For

modeling, the workpiece and its fracture in the form of chips, the Johnson-Cook

material model with the Johnson-Cook damage model are used. The parameters of

the material model of the workpiece are shown in Table 6.2.

Table 6.1: Physical properties of Workpiece and Tool [2].

Property Workpiece Tool

Density, ρ (Kg/m3) 2700 11900
Young’s Modulus, E (GPa) 68.9 534
Poisson’s ratio, µ 0.33 0.22
Specific heat, Cp (J/Kg K-1) 896 -
Tmelt, (K) 855 -
Troom, (K) 300 300
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Table 6.2: Johnson-Cook parameters of workpiece (Al6061) [3, 4].

Parameter A (MPa) B(MPa) n C m

Value 324 114 0.42 0.002 1.34
Parameter D1 D2 D3 D4 D5

Value -0.77 1.45 -0.47 0 1.6

Figure 6.4: Boundary conditions used in 3D machining model.

6.3 Boundary conditions

The boundary conditions for the three-dimensional machining model are applied

to the tool and the workpiece. All nodes of the tool are fully constrained in Y and Z

directions. The cutting velocity, Vc is given in X direction. This velocity is calculated

from the feed/revolution of the tool and the rotational speed of the workpiece. The

boundary conditions on the workpiece are applied on the back face of the workpiece.

All nodes on the back face are constrained to rotate along its centerline axis. Also,

they are constrained for translation inX direction. Coupling of the SPH and FE mesh

is done at the interface in the workpiece for smooth transfer of physical quantities.

The boundary conditions are shown in Fig. 6.4.
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The boundary conditions used for the two-dimensional machining model is similar

to the one applied in the previous chapter. The workpiece is modeled as a rectangular

box. A Plain strain condition is assumed for this model. The geometry and the

boundary condition are shown in Fig. 6.5. The tool is given the cutting velocity in

the negative X direction and is completely constrained in all other directions. The

workpiece is fully constrained on the left and bottom sides. For the plane strain

assumption, the motion of all the SPH particles and FEM elements of the workpiece

and tool is fully constrained in the Z direction (normal to the plane).

6.4 Machining experiments

Haas TL-1 computer numerically controlled (CNC) lathe (8.9 kW, 2000 rpm spin-

dle) is used as a testbed for the experiments. Cylindrical workpieces of 6061-T6

aluminum are machined with the prescribed depth of cut 1 mm and feed rate of 0.254

mm/rev. The cutting tool used is Kennametal part number 1183375 (ANSI cata-

log number CPGN 120308 KC730). The tool geometry consists of 80◦ parallelogram

carbide inserts with a positive 3.5◦ rake angle. The insert was replaced once the mea-

sured flank wear width reached 0.3 mm to eliminate the possibility of corrupt data

due to a worn cutting insert. A photograph of the setup is shown in Fig. 6.6.

Dynamic cutting forces are measured using a three-axis dynamometer (Kistler

9257B) which is mounted on the lathe’s cross slide. An infrared camera (FLIR E40) is

Figure 6.5: 2D Machining model.
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Figure 6.6: Photograph of turning setup including workpiece (W), dynamometer (D),
cutting tool (T), thermal camera (TC), and laser vibrometer (LV).

attached to the cross slide to establish temperature trends with changes in machining

conditions. A laser vibrometer (Polytec OFV-534/OFV-5000) is used to measure the

feed direction motion (Z direction) to verify the actual feed rate during machining.

A digital microscope (not pictured) is used to measure insert flank wear at a fixed

location between machining tests.

6.5 Results

6.5.1 2D machining simulation

Initially, the 2D machining model is simulated. Cutting forces and chip profile are

the output parameters. Although the assumptions of the plane strain conditions are

not satisfied, the 2D machining models are simulated to quantify the deviation of

forces from the experimental values. The simulated chip profile (shown in Fig. 6.7) is

continuous, which is typically observed during the machining of Al 6061 workpieces.

A comparison of the cutting forces with the experimental values is shown in Table 6.3.

The cutting force is underpredicted by 45%. The thrust force is highly underpredicted

(as observed in [5-8]). Also, the axial force cannot be predicted using this model.

As a result, the total force (resultant of forces in all the three directions) is highly

underpredicted.
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Figure 6.7: Chip profile (2D machining model).

Table 6.3: Comparison of forces predicted by 2D model with experiments.

Experimental (N) Simulated (N)

Axial Force (FX) 100 -
Radial Force (Fy) 65 19

Cutting Force (Fz) 235 120

Total Force (F ) 264 121

Based on the above result, it is clear that the 3D machining model is required for

simulating the machining of the cylindrical workpiece. However, the 3D machining

model is computationally expensive due to the large number of SPH particles (≈

323,000 particles). A commonly used approach is to reduce the simulation time is

to increase the cutting speed [39, 66]. A convergence study is done using the 2D

machining model for validating this approach. The cutting speed is increased by five

times (5X), 10X, and 20X from the actual speed and the deviation in cutting force

at the higher speed is compared with that obtained at the actual speed. The plot

of cutting force for these speeds is shown in Fig. 6.8. From the plot, it is concluded

that increasing the speed up to 5X has no significant influence on the cutting force.

Also, the chip curls less at 10X speed. The cutting force increases at higher cutting

speeds. With higher cutting speed, the strain rates increase, leading to the increased

flow stress and hence higher cutting force. Thus, all further simulations are done at

5X (five times the actual cutting speed).
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Figure 6.8: Cutting force comparison at different speeds.

6.5.2 Convergence study for 3D machining model

A convergence study for three-dimensional machining model is conducted by in-

creasing the number of SPH particles in the model. The cutting force with time and

the chip profile are considered as the output parameters for the convergence. The

terminology followed is that the number of rows of SPH in feed direction per revolu-

tion is taken as a measure of the number of SPH particles. For example, for the 2.0

particle (shown in Fig.6.9), the tool will cut the first two rows of particles and touch

the third row after one revolution of the workpiece. The models with 1.0 particles,

1.5 particles, 2.0 particles and 2.5 particles are simulated for the convergence study.

The plot of the cutting force is shown in Fig.6.10. For a smaller number of particles,

the cutting force fluctuates and does not reach a steady state. This fluctuation is the

most for 1.0 particle model and reduces for the model with the higher number of

SPH particles. The cutting force converge for the 2.0 particle model and 2.5 particle

model. Similar observations are made from the comparison of the chips formed by

the different models. While the small chips are observed for the 1.0 particle model,

the long, continuous chips are observed for 2.0 particle model and 2.5 particle models.

Thus, the 2.0 particle model is taken as the model with the converged result.

The computation time for each of these models are given in Table 6.4.
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Figure 6.9: Terminology for number of SPH particles.

Figure 6.10: Convergence plot for cutting force.

6.5.3 3D machining simulation

A comparison of the simulated cutting forces in all three directions with the ex-

perimental values is shown in Fig. 6.11. As the tool approaches the workpiece, the

cutting area of the workpiece increases. This leads to an increase in the cutting forces.

The forces stabilize as the cutting area becomes constant after some time.

Table 6.4: Convergence study: Number of SPH particles and the simulation time.

Particle/feed Number of Particles Run time Processors

1.0 43,708 7.25 hrs. 144
1.5 101,952 24.50 hrs. 144
2.0 192,280 64.75 hrs. 144
2.5 323,232 183.50 hrs. 144
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The simulated cutting forces are summarized and compared with the experimental

values in Table 6.5. While the axial and radial forces match well with the experiment

values, the cutting force is under-predicted by 23%. The difference between the total

simulated force and experimental value is ∼ −17%. Various factors such as the mate-

rial model, the friction coefficient between tool and the workpiece and measurement

uncertainties during experiments may contribute to this deviation.

(a) Axial force (Fa) (b) Radial force (Fr)

(c) Force directions (d) Cutting force (Fc)

Figure 6.11: Cutting forces plot for 3D machining model.

Table 6.5: Comparison of forces predicted by 3D model with experiments.

Experimental (N) Simulated (N)

Axial Force (FX) 100 106

Radial Force (Fy) 65 60

Cutting Force (Fz) 235 180

Total Force (F ) 264 219
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(a) Initial chip: simulated (b) Initial chip:experimental

(c) Chip at later time: simulated (d) Chip at later time: experimental

Figure 6.12: Comparison of simulated chip morphology with experiment.

A comparison of the chip shape obtained by the simulation with the experiment is

shown in Fig. 6.12. At the initial time, the direction of chip formation matches with

the experimental observations (6.12a, 6.12b). A long continuous chip is obtained

in the simulation at a later time (Fig 6.12c, 6.12d). Accurate prediction of chip

movement is useful for designing chip breakers and guards for safety while machining.

Initially, the friction coefficient (µ) between tool and workpiece is taken as 0.17.

This value is used by Madaj et al. [22] for the orthogonal simulation of machining

of Al2024 using the SPH method. However, the axial and radial forces obtained

from the simulation are small compared to the experimental observations, as shown

in Table 6.6. Then, a simulation with the friction coefficient of 0.5 is run. This



69

Table 6.6: Comparison of simulated cutting force with different friction coefficients
vs experimental values.

Exp. (N) Sim. (N) Sim. (N)
(µ = 0.17) (µ = 0.50)

Axial Force (FX) 100 45 106

Radial Force (Fy) 65 10 60

Cutting Force (Fz) 235 210 180

Total Force (F ) 264 215 219

value is close to the calculated friction coefficient value of 0.57, calculated using

Merchant’s circle diagram (the most commonly used method for analyzing the forces

for orthogonal machining). The forces obtained from this simulation matched well

with the experimental observations. This underlines the importance of friction in

modeling machining.

6.6 Conclusion

This work presents a full-scale 3D turning simulation using smoothed particle hy-

drodynamics (SPH) method. The advantages of the SPH method over the Finite

Element Method are demonstrated by modeling the material separation and high

deformations observed during machining. The following conclusions can be made:

1. The cutting forces and chip morphology predicted by the simulation correlates

with the experimental observations. The "long" continuous chips observed dur-

ing the turning of Al 6061 are simulated. This simulation is challenging while

using the Finite Element Method because of high mesh distortions.

2. A 2D plane strain machining model for the actual turning operation of a cylin-

drical workpiece under-predicts the cutting force and the thrust force. Moreover,

the axial force cannot be predicted by the 2D model.

3. Value of the friction coefficient between the tool and the workpiece has a signif-
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icant influence on the simulated forces, especially on the axial and radial force

components. The correct prediction of the radial force is important as this

component governs the stability of the machining conditions.

4. SPH method is computationally expensive. Using a coupled SPH-FE model, a

significant reduction in the computation time can be achieved.



CHAPTER 7: MTP MACHINING MODEL

During turning operation, the continuous engagement of the cutting tool with the

workpiece results in long, continuous chips. These chips can affect the surface finish

of the workpiece, cause tool damage and even cause an injury to the operator. Mod-

ulated tool path machining is an effective solution for this. The chips are broken into

smaller pieces by modulating the motion of the tool. A comparison of the chips formed

by the conventional turning and MTP turning is shown in Fig. 7.1. Experimental

studies of MTP machining have been done in turning [68–70] and threading [71].

Copenhaver et al. [72] conducted MTP turning of tube turning and compared the

experimental cutting forces with analytical model results. In this chapter, the SPH

method is used to simulate the conventional and MTP turning. Chips and cutting

forces predicted by these simulations are compared. Also, the results are validated

using the results of the analytical model. These results demonstrate the advantages

of MTP turning.

(a) By conventional turning. (b) By MTP turning.

Figure 7.1: Comparison of chips formed by conventional and MTP turning [12].
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7.1 Modulated Tool Path (MTP) machining

In Modulated tool path (MTP) machining, an oscillatory motion is superimposed

upon the constant feed motion provided to the tool. This motion causes the tool to

come out of contact with the workpiece and hence breaking the chip. Chip breakage

depends upon two parameters: oscillation amplitude relative to the global feed per

revolution, RAF and tool oscillation frequency relative to the spindle speed, OPR.

Mathematically, these parameters are defined as

RAF =
A

fr
(7.1)

and

OPR =
60× f
ω

. (7.2)

Here, A and f are respectively the amplitude and frequency (in Hz) of oscillation of

the tool, fr is the global feed per revolution given to the tool and ω is the spindle

speed (in rpm). An example of displacement of the tool in MTP machining is shown

in Fig. 7.2. In this case, RAF = 0.8 and OPR = 0.5. Thus, in one cycle of the

oscillation of the tool, the workpiece completes two revolutions. The black dashed

line shows the displacement of the tool for the conventional turning.

Figure 7.2: Tool displacement in MTP machining.
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7.2 Chip breaking mechanism in MTP

In MTP turning, chips break due to the oscillatory motion provided to the tool.

The thickness of the chip formed in each revolution is shown in Fig. 7.3. This figure

is obtained from Fig. 7.2 by fitting the tool displacement curves for each revolution

in one time period of the revolution of the workpiece. In the first revolution, the

area shaded by blue in Fig. 7.3a is machined in the form of the first chip. This chip

continues in the second revolution till point A in Fig 7.3b. No machining occurs when

the tool moves from point A to point B in the second revolution (red line), as that

portion of the workpiece is already machined. The second chip starts from point B

onwards and continues to grow in the third revolution, as shown by green shaded in

Fig. 7.3c. The second chip breaks in the fourth revolution of the workpiece at point

C (shown in Fig. 7.3d). In this way, small chips are obtained during MTP turning.

(a) First revolution.

A
B

(b) Second revolution.

(c) Third revolution.

C
D

(d) Fourth revolution.

Figure 7.3: Chip formation during MTP machining.
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7.3 Computational model

The computational model is shown in Fig. 7.4. Similar to the 3D machining model,

the tool is meshed by a Finite Element (FE) mesh and the workpiece is discretized

using a coupled SPH-FE mesh. SPH particles are used in the zone of cutting, where

the workpiece interacts with the tool. The FE mesh is used away from this zone,

where the deformations are less. The SPH and FE mesh are coupled at the interface

for the smooth transfer of physical properties. The geometry of the tool and the

workpiece are shown in Fig. 7.5 and Fig. 7.6 respectively. All length dimensions are

in mm. The machining conditions are provided in Table 7.1.

Figure 7.4: Computational model of MTP machining.

Figure 7.5: Geometry of the tool used.
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Figure 7.6: Geometry of the workpiece.

Table 7.1: Machining conditions used for the MTP simulation.

Parameter Value
Material of tool Tungsten carbide
Material of workpiece 1026 steel
Cutting speed 225 m/min
Global feed rate, fr 0.4 mm/rev
RAF 0.8
OPR 0.5

7.4 Material properties

The material of the tool is tungsten carbide and that of the workpiece is AISI

1026 steel. The physical properties of the tool and the workpiece are shown in Table

7.2. Similar to the earlier machining models, the tool is modeled as a rigid body.

For modeling the workpiece and its fracture in the form of chips, the Johnson-Cook

material model with the Johnson-Cook damage model are used. The parameters of

the material model of the workpiece are shown in Table 7.3.
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Table 7.2: Physical properties of Workpiece and Tool [5, 6].

Property Workpiece Tool

Density, ρ (Kg/m3) 7858 11900
Young’s Modulus, E (GPa) 205 534
Poisson’s ratio, µ 0.29 0.22
Specific heat, Cp (J/Kg K-1) 486 -
Tmelt, (K) 1773 -
Troom, (K) 300 300

Table 7.3: Johnson-Cook parameters of workpiece (AISI 1026 steel) [7–9].

Parameter A (MPa) B(MPa) n C m

Value 286.1 500.1 0.2282 0.022 0.917
Parameter D1 D2 D3 D4 D5

Value 0.403 1.107 -1.899 0.00961 0.3

7.5 Boundary conditions

All nodes of the tool are fully constrained in Y and Z directions. A feed motion

with the MTP parameters shown in Table 7.1 is given to the tool in X direction. All

nodes of the back face of the workpiece are constrained for translation in the axial

direction and a rotary motion about the axis of the workpiece is provided to them.

The boundary conditions are shown in Fig. 7.7.

Figure 7.7: Boundary conditions used in MTP machining model.
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7.6 Results

The results consist of the chip profiles and the cutting forces for the conventional

turning and MTP turning. The simulated chip formation during MTP turning is

shown in Fig. 7.8. The chip formation initiates as the tool comes into the contact

with workpiece. Chip develops as the tool moves towards the workpiece. During the

second revolution of the workpiece, the tool moves away from the workpiece due to

the modulated feed motion given to the tool. The first chip separates when the tool is

not in contact with the workpiece. Thereafter, the tool moves towards the workpiece

and the second chip forms, develops and separates. The simulations predict long,

continuous chips formed by the conventional turning and small, broken chips for the

MTP turning. The comparison of chips is shown in Fig. 7.9.

(a) Chip formation initiates. (b) Chip develops. (c) 1st chip separates.

(d) 2nd chip initiates. (e) 2nd chip develops. (f) 2nd chip separates.

Figure 7.8: Chip formation during MTP machining.
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(a) MTP chips. (b) Conventional turning chips.

Figure 7.9: Chips formed by the MTP turning vs conventional turning simulation.

Figure 7.10: Cutting forces for MTP vs conventional turning simulation.

The cutting forces predicted by the simulations for the conventional and MTP

turning are compared, shown in Fig. 7.10. For the conventional turning, a constant

cutting force is observed. The cutting force for MTP turning shows a variation in

the cutting force. Variation of the uncut chip thickness occurring during the MTP

machining is the reason for this.

The cutting force predicted by the MTP turning simulation is compared with a

mechanistic force model, described in detail in [72, 73]. In this model, the cutting

force (F ) is directly proportional to the chip area, A. Specific force (Ks) is the
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proportionality constant. The specific force depends on the variables involved in

the machining operations, such as the material of the workpiece, tool geometry, etc.

Mathematically, the cutting force is given by,

F = KsA = Ksbh(t). (7.3)

Here, b is the chip width, and h(t) is the instantaneous chip thickness. For MTP

machining, this instantaneous chip thickness is calculated by subtracting the current

motion of the tool from the workpiece surface formed by the previous revolution. For

the machining conditions used in the MTP turning simulation, the instantaneous chip

thickness is shown in Fig 7.11.

The data of Copenhaver et al. [72] is used for obtaining the plot of cutting force

from the analytical model. The plot of the cutting force is obtained using the value

of the specific force used in the paper. This plot is then compared with the force

predicted by the simulation, as shown in Fig. 7.12. Good agreement between the

simulated force and calculated force from the analytical model is observed. However,

using the value of the specific force from the paper is an assumption. This is because

of the difference in the value of feed used in the simulation and in experiments. Hence,

more experimental data is required for a more accurate comparison.

Figure 7.11: Instantaneous Chip thickness during MTP turning.
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Figure 7.12: Comparison of simulated cutting force with the analytical model.

7.7 Proposed MTP with the modification in tool path

Based on the analysis of the uncut chip thickness during MTP turning, a modifi-

cation in the tool path is proposed. In conventional MTP, the tool motion comprises

a constant feed motion superimposed by a purely oscillatory motion. A change in the

tool feed for alternate revolutions of the workpiece is proposed. Longer tool life due

to less thermal and structural load on the tool is the expected for the proposed MTP.

A comparative analysis of the modified MTP with the conventional MTP is shown

in Fig. 7.13. The feed motions of the tool for the conventional MTP and proposed

MTP are shown in Fig. 7.13a. For the proposed MTP, the motion of the tool remains

the same as in the conventional MTP for the first revolution of the workpiece (until

point A). The tool remains stationary until point B and then follows a linear path

with time till the end of the second revolution (point C). This motion is repeated for

the subsequent revolutions.

The tool feed motion is shown revolution-wise for the first four revolutions in Fig.

7.13b. This plot is used to calculate the uncut chip thickness during machining (shown

in Fig. 7.13c). The cutting force is directly proportional to the uncut chip thickness

during machining. Hence, this plot is a representation of the cutting force. For the

proposed MTP, the tool experiences a high level of the cutting force for ∼ 50% of
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(a) Proposed vs Conventional MTP. (b) Revolution-wise comparison.

(c) Change in Chip thickness and hence Cutting force.

Figure 7.13: Comparison of tool feed in proposed MTP with the conventional MTP.

time in comparison with the conventional MTP. This also results in a less steep force

plot. The structural and thermal loads on the tool are dependant on the cutting

force. Thus, due to smaller loads, longer tool life is expected for the proposed MTP.

The experimental work is in progress to validate this proposal.

7.8 Conclusion

This work incorporates the modulated tool path (MTP) in a full-scale 3D turning

simulation using Smoothed particle hydrodynamics (SPH) method. The results of the

MTP model simulation are compared with that of the conventional turning. Also,

the cutting force predicted by the simulation is validated with the analytical model.

1. Broken chips are formed by MTP turning are simulated by the machining model.

In contrast, the simulation of the conventional turning with the same machining
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conditions predicts long continuous chips. These results are in line with the

experimental observations.

2. The cutting force predicted by the MTP machining model fluctuates with time,

whereas it is continuous for the conventional turning.

3. The cutting force predicted by the MTP machining model is validated with

the analytical model. However, the value of the specific force is taken from

Copenhaver et al. [72]. The value of feed/rev in the paper is different from that

used in the simulation. Therefore, machining experiments need to be conducted

for more accurate validation.

4. A modified MTP machining is proposed with changes in the tool feed motion.

The advantage of this proposed MTP machining is presented analytically based

on the uncut chip thickness plot. Experimental work for validation is in progress.



CHAPTER 8: MACHINING MODEL WITH DYNAMICS

Increasing the material removal rate while achieving precise dimensional accuracy is

the requirement of the current machining industry. The machining conditions should

be selected carefully for stable machining to achieve this goal. The selection of tools,

tool holders, and width of cut are some important parameters affecting machining

stability. During turning operation, avoiding the occurrence of regenerative chatter is

essential. This phenomena is shown in Fig. 8.1. Due to the initial impact of the tool

on the workpiece, the tool starts vibrating. This vibration of the tool during cutting

creates a wavy surface on the workpiece. As the tool feeds into the workpiece for the

next revolution, the uncut chip thickness varies due to the wavy surface imprinted

in the previous revolution. This causes uneven cutting force, as the cutting force is

directly proportional to the uncut chip thickness. Depending upon the machining

conditions, this feedback may cause unstable machining or chatter.

In the machining models of the previous chapters, the vibration of the tool due to

the action of cutting forces is neglected. In this chapter, the elastic behavior in the

system is modeled by attaching spring and damper to the tool. The machining model

and the results are presented in the following sections.

Figure 8.1: Regenerative chatter [h1(t) and h2(t) are instantaneous chip thickness].
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8.1 Model description

The machining model, shown in Fig. 8.2, consists of a tool, a tubular workpiece, a

spring and a damper. Similar to the three-dimensional machining model, the tool is

discretized using finite element mesh and the workpiece is discretized using a coupled

SPH-FE mesh. The spring and damper are used to model the dynamic behavior of

the system. In this study, the dynamic elements are modeled with a single degree

of freedom, i.e., along the axis of the workpiece. The machine dynamics in this

direction contributes to the chatter during machining. The dynamic behavior in the

other directions is ignored. One end of the spring and damper is attached to the center

of gravity of the tool. The other end is attached to a fixed node. The geometry and

mesh of the tool and the workpiece are shown in Fig. 8.3 and Fig. 8.4 respectively.

All length dimensions are in mm. A zero rake tool has been used in the model. The

reference values of the stiffness of the spring and damping coefficient are determined

experimentally from the frequency response of the tool.

Figure 8.2: Machining model with machine dynamics.
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Figure 8.3: Geometry of the tool used in machine dynamics model.

Figure 8.4: Geometry of the workpiece used in machine dynamics model.

8.2 Boundary conditions

The boundary conditions, shown in Fig. 8.5, are applied to the workpiece and

free end of the spring and damper. All nodes on the back face of the workpiece are

constrained to rotate along its centerline axis with the the rotational speed of the

workpiece during machining. Also, the feed motion (translation) towards the tool

in X direction is given to them. The free end of the spring and the workpiece is

connected to a node. The node is fully constrained in all directions.
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Figure 8.5: Boundary conditions used in machine dynamics model.

8.3 Material properties

The material properties are the same as the ones used in the three-dimensional

machining model. The tool is made of tungsten carbide and the workpiece is Al 6061.

The physical properties of the tool and the workpiece are shown in Table 6.1. The

tool is modeled as a rigid body. The Johnson-Cook material model with the Johnson-

Cook damage model are used to model the material behavior of the workpiece. The

parameters of the material model of the workpiece are shown in Table 6.2.

8.4 Results

Eight simulations are run to understand the effect of different machine dynamics

parameters on the tool vibration and the cutting forces. The parameters are shown

in Table 8.1. Simulation 1 is with no tool flexibility. Simulation 2 is with the data

provided by Copenhaver et al. [72]. The effect of spring only is studied in simulations

3 and 4. The effect of the damper is studied with simulations 5 and 6. All these six

simulations are with a tube thickness of 1 mm. The machining stability depends on

the width of cut. This is studied using the simulations 7 and 8. The results of both

these simulations are compared with simulations 2 and 6, respectively.
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Table 8.1: Parameter sets used for Machine dynamics study.

Simulation no. Spring stiffness Damping coefficient Tube thicknes
(N/m) (N-s/m) (mm)

1 No spring No damper 1

2 5.9× 107 2.16× 103 1

3 2.36× 106 No damper 1

4 4.72× 106 No damper 1

5 2.36× 106 2.16× 103 1

6 2.36× 106 1.08× 103 1

(a) Cutting force (Fc). (b) Axial force (Fa).

(c) Force directions (d) Radial force (Fr).

Figure 8.6: Cutting forces for model with no dynamics and model with experimentally
measured dynamics.
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Figure 8.7: Tool vibration for model with no dynamics and model with experimentally
measured dynamics.

8.4.1 Model with no dynamics and Model with experimentally measured

dynamics

The results of simulations of the two models: one with no dynamic elements and

the other with the dynamic elements having the experimentally measured values, are

compared in this section. The plots of the cutting forces in the three directions are

shown in Fig. 8.6. The forces overlap with each other. The value of radial force is

close to zero as the turning of a thin wall tube can be approximated to be orthogonal

machining. The reason for the overlapping cutting forces becomes clear from the plot

of tool vibration plots in the axial direction of the workpiece, shown in Fig. 8.7. The

spring and damper are connected to the tool in this direction. There is no vibration

of the tool for the model with no dynamic elements. The vibrations are fluctuating

and are of the order of microns for the model with dynamic elements. Due to the

computational expensive SPH method, the models are simulated for three revolutions

of the workpiece. Based on the result of tool vibration, the chatter may not develop

in such a short time. Hence, to understand the effect of the variation of the dynamic

elements, the stiffness of the spring is reduced by an order for further simulations.
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8.4.2 Models with different spring stiffness and no damping

Simulation models 3 and 4 are with spring elements only, with the spring stiffness

of 2.36× 106N/m and 4.72× 106N/m, respectively. The tool vibrations in the axial

direction are shown in Fig. 8.8. The tool vibration is more for simulation 3. This is an

expected result as the spring is less stiff. Also, the vibration goes on increasing with

time. This phenomenon is because of the lack of damping elements in the system.

The tool starts vibrating due to the initial impact on the workpiece. This causes an

uneven machined surface on the workpiece, which in turn leads to fluctuating cutting

force (shown in Fig. 8.9). This fluctuation in the force adds to the tool vibration.

Figure 8.8: Comparison of tool vibration with change in spring stiffness.

(a) Cutting force. (b) Axial force.

Figure 8.9: Cutting forces comparison with change in spring stiffness.
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Figure 8.10: Phase difference between tool vibration and cutting force.

A phase difference is observed between the cutting force and the tool vibration. The

plot of the cutting force and axial tool displacement (on the secondary axis) with time

is shown in Fig. 8.10. After the first revolution, the phase difference is 90◦. As the

tool moves towards the workpiece, the axial displacement becomes more negative.

The uncut chip thickness increases, leading to an increase in the cutting force. The

cutting force is maximum when the tool is at maximum penetration position into the

workpiece, i.e., at minimum displacement.

Figure 8.11: Comparison of tool vibration with change in damping coefficient.
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8.4.3 Models with different damping coefficients

Simulation models 5 and 6 are with spring and damper elements. The spring

stiffness are 2.36× 106N/m for both the models. The damping coefficients are 2.18×

103N/m and 2.18 × 103N/m respectively. The tool vibrations in the axial direction

for simulations 3, 5 and 6 are shown in Fig. 8.11. The initial tool vibration is same

for these models. Due to the damping present in simulations 5 and 6, the vibration

decays with time. The decay is more for simulation 5, as the damping coefficient is

greater in this model. Similar trend is seen in the plots of the cutting forces and axial

forces (shown in Fig. 8.12).

(a) Cutting force. (b) Axial force.

Figure 8.12: Cutting forces comparison with change in damping coefficient.

8.5 Conclusion

Full-scale 3D turning simulation with machine dynamics using the smoothed par-

ticle hydrodynamics (SPH) method has been conducted in this study. The results

of the simulations are useful in predicting the stability of machining. The following

conclusions can be made:

1. The effects of spring stiffness and damping coefficient have been studied using

the simulations. These dynamic elements result in the vibration of the tool,
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which may lead to unstable machining or chatter.

2. A phase difference of 90◦ is observed between the cutting force and the tool

vibration.

3. The SPH method is computationally expensive. For this reason, the simulations

are run for three revolutions of the workpiece rotation. Small tool vibrations

are observed for the model with actual values of the stiffness and damping

coefficient measured during the experiments. These vibrations may develop at

a later time. The stiffness of the spring is reduced by an order of magnitude to

observe the effects of the dynamic elements, and further studies are conducted

with these values.

4. The results of the simulation need to be validated using experiments.



CHAPTER 9: UNIQUENESS OF JOHNSON-COOK PARAMETERS

All the machining simulations described in the earlier chapters use the Johnson-

Cook constitutive model [74] for modeling the material behavior of the workpiece dur-

ing machining. The Johnson-Cook model has also been used by various researchers

in analytical models such as the Oxley machining model [13] and finite element sim-

ulations [17, 19, 20, 75, 76]. This model has five material-dependent parameters that

relate flow stress of the material to strain, strain rate and temperature of the material.

Experimentally, these parameters are obtained by fitting the data of the quasi-static

tests at various temperatures and dynamic tests at different strain rates. Tensile tests

and Split-Hopkinson Pressure Bar (SHPB) tests are two of the techniques typically

used for this purpose [77]. However, the extreme conditions of machining [32], such

as strain rates of the order 105/s to 106/s and high temperatures, are challenging to

achieve in these experiments. Various researchers have proposed inverse approaches

to determine these parameters using the data from the actual machining experiments

to overcome this difficulty. However, these methods have been shown to have the

drawback of producing non-unique solutions to the Johnson-Cook parameter values.

The inputs to the inverse method are machining conditions, experimental obser-

vations and simulation results (finite element analyses or analytical models). The

simulation results depend on the material model parameters. The goal is to deter-

mine these material model parameters by minimizing the objective function, which

consists of the difference between experimental observations and simulation results.

This minimization is achieved by tuning the parameters of the material model using

an optimization algorithm such as AMPGO, PSO, and Kalman filter. The determined

material model parameter set is used in the computational or analytical models and
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validated with experimental results. Although experiments such as uniaxial, isother-

mal compression testing of cylindrical specimens [78], laser peening [79], and cold

wire drawing [80] have been used for validation purposes, the most widely used ex-

perimental technique is based on orthogonal machining.

In this work, the source of non-unique solutions to the inverse problem is identified

and an approach to determine a unique set of Johnson-Cook parameters is presented.

The extended Oxley’s model is used as the analytical model for simulation. Two

separate optimization algorithms, Adaptive Memory Programming for Global Opti-

mization (AMPGO) and Particle Swarm Optimization (PSO), are used to minimize

the objective function. The consideration of two separate algorithms eliminates any

bias that may be present in one particular method.

9.1 Literature review

During machining, the workpiece material undergoes plastic deformation. The

plastic behavior of the material is modeled using the Johnson-Cook material model:

σeq =
(
A+Bεnp

)︸ ︷︷ ︸
Strain hardening

×
[
1 + C ln

(
ε̇p
ε̇0

)]
︸ ︷︷ ︸
Strain rate sensitivity

×
[
1−

(
T − T0

Tm − T0

)m]
︸ ︷︷ ︸

Thermal softening

.
(9.1)

Here, σeq is flow stress, εp is the equivalent plastic strain, ε̇p is the plastic strain-

rate, ε̇0 is a reference strain-rate, Tm is the melting temperature, and T0 is a reference

temperature. A, B, C, n and m are the material dependant parameters. A denotes

the initial yield strength, B and n describes the strain hardening, C captures the

strain rate sensitivity and m the thermal sensitivity of the material.

The majority of the existing studies on the inverse approach for determining the

Johnson-Cook parameters can be divided into three categories. In the first category,

all five parameters of the Johnson-Cook model are taken as optimizing parameters and

through optimization algorithms, determination of unique parameter set is claimed.
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Agmell et al.[81] and Ning et al. [82] performed inverse analysis using a Kalman

filter and machining experiments. The relationship between the Johnson-Cook pa-

rameters and machining output parameters was developed through multiple FEM

simulations. Five discrete values within a range of ± 30 % of each Johnson-Cook

parameter of reference material were used for these simulations. A close agreement

between the simulated FEM results and experimental observations was observed us-

ing the parameter set obtained through the inverse approach. Ozel et al. [83] used

different variations of the PSO method, namely, PSO, PSO-c and CPSO method, to

determine the Johnson-Cook parameters. A unique set of parameters were obtained

for each method, but the values differ for each method. The parameter set obtained

using CPSO showed the best correlation with the experimental results. Eisseler et

al. [84] used design of experiment (DoE) for inverse parameter identification by com-

paring the cutting force of FEM simulations with 50 Johnson-Cook parameter sets

and machining experiments. Two sets of all the five Johnson-Cook parameters were

determined for steel SAE-4142 within a maximum difference of less than 3%.

The second category recognizes the non-uniqueness of the parameters obtained by

the inverse approach and proposes some suggestions to counter this non-uniqueness.

Denkena et al. [85] used Oxley’s machining model and Particle Swarm Optimiza-

tion (PSO) method using the cutting and thrust forces in an orthogonal slot milling

experiment to tune the Johnson-Cook parameters. The optimization was performed

without using tensile test data (i.e., all five parameters varied) and with the use of

tensile test data (i.e., A, B and n values were obtained from tensile test data and C

and n optimized using PSO method). Wide variation was observed in the resulting

set of parameters obtained by the two methods. Local minima in the solution do-

main were suggested to be the reason for this observation. Karkalos and Markopoulos

[86] used the Fireworks optimization algorithm for the determination of all the five

parameters of Johnson-Cook constitutive material model parameters. Their sugges-
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tion was to choose the bounds for optimization variables carefully to avoid premature

convergence to a solution far from the optimal point. Pujana et al. [87] varied four

parameters (B, n, C and m) of the Johnson-Cook model for the inverse analysis using

deterministic minimization techniques. The selection of initial values was found to

influence the optimized set of parameters. The use of regularly distributed function

evaluations was proposed in order to reach the absolute minimum.

The third category focuses on the non-uniqueness study and attempts to eliminate

this by adding experimental results to determine the unique parameter set. Shrot et

al. [88] studied the non-unique identification of Johnson-Cook parameters by match-

ing the results of machining experiments and finite element models. The parameters

A, B and n were varied in a defined interval. The parameter sets were selected based

on the closeness of effective stress-strain plots using the standard Johnson-Cook pa-

rameters and test parameters. Similar chip shapes and cutting forces were obtained

by the FEM simulation using these identified parameter sets. However, the non-

uniqueness was attributed to the measurement error during experiments. The use of

different cutting conditions was suggested to obtain a unique parameter set.

Storchak et al. [89] determined the Johnson-Cook parameters using a combination

of compression test and machining experiments. The parameters A, B, n and m were

obtained using the compression tests at various strain rates and temperatures. Only

the parameter C was obtained using the Oxley theory and machining experiments.

These three different approaches coupled with multiple methods to determining

unique values of Johnson-Cook parameters via inverse methods show that the origin

of non-uniqueness of the parameters (when inverse methods are used) is far from

settled. In this Chapter, we hope to address this issue by considering two optimization

algorithms.
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9.2 Methodology

For the inverse approach using orthogonal machining, the observations of machining

experiments along with the results of machining simulations or an analytical model

(such as the extended Oxley model) are used to form an objective function. The

Johnson-Cook parameters are tuned to minimize this objective function using the

optimization algorithm. The cutting force (Fc), chip thickness ratio (hc) and tool-

workpiece interface temperature (Tc) are commonly taken as the variables of the

objective function (Err), which is given by,

Err =

[(
Fc,exp − Fc,sim

Fc,exp

)2

+

(
hc,exp − hc,sim

hc,exp

)2

+

(
Tc,exp − Tc,sim

Tc,exp

)2
] 1

2

. (9.2)

Here, the label "exp" represents experimental observation and "sim" represents sim-

ulated or calculated value. The output of the machining experiment is assumed to

be the same as that obtained from the extended Oxley model using the known values

of Johnson-Cook parameters in literature. This is done to eliminate the measure-

ment uncertainty associated with experiments. Also, the accuracy of the determined

Johnson-Cook parameters can be obtained by comparing with these reference values.

For investigating the uniqueness of Johnson-Cook parameters, two approaches

(shown in Fig. 9.1) are taken. In the first approach, all the five Johnson-Cook

parameters are considered as the unknown variables. In the second approach, the

parameters C and m are considered as the unknown variables. The parameters A, B

and n are considered as known. They are determined using the quasi-static tensile

test and hence their values are kept the same as the value in the literature. For

the unknown Johnson-Cook parameters, a wide range is provided as input to the

optimization algorithm. This is based on their values for different materials in the

literature [74] and [90]. The ranges considered for the parameters are shown in Table

9.1. The machining conditions used as input parameters are given in Table 9.2.
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Figure 9.1: Approaches used for investigating the unique determination of Johnson-
Cook parameters.

The Johnson-Cook parameters are obtained with these inputs by minimizing the

objective function using the optimization algorithms, AMPGO, and PSO algorithms.

In the optimization loop, the extended Oxley model is used to calculate the values

of the machining output for a given set of Johnson-Cook parameters. The output

of Approach 1 is all the five parameters, whereas the parameters C and m are the

output of Approach 2. The uniqueness of the parameter sets is discussed in the results

section.

Table 9.1: Johnson-Cook parameter range provided in the inverse method.

Parameter Ref value [91] Min value Max value

A (MPa) 553.1 440 660
B (MPa) 600.8 480 720
n 0.234 0.18 0.28
C 0.0134 0.001 0.090
m 1 0.5 2
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Table 9.2: Machining conditions used [10].

Test no. V (m/min) t1 (mm) α(◦)

1 200 0.15 -7
2 200 0.15 5
3 200 0.30 -7
4 200 0.30 5
5 400 0.15 -7
6 400 0.15 5
7 400 0.30 -7
8 400 0.30 5

9.2.1 Extended Oxley theory

The parallel-sided shear zone theory, proposed by Oxley [13] is a widely used ana-

lytical model for predicting the stresses, cutting forces and the average temperature in

orthogonal machining. The deformation zone consists of two regions: a parallel-sided

primary shear zone and a rectangular secondary shear zone at the tool-chip interface

of constant thickness. Along with the application of the principle of minimum work,

this theory analyses the equilibrium of the shear plane AB (shown in Fig. 9.2) and

the tool-chip interface to determine the physical parameters of the machining process.

This is done by tuning three parameters, namely shear angle φ, strain-rate constant

at the shear zone C0 and strain-rate constant at the tool-chip interface zone δ.

Figure 9.2: Chip formation model in Oxley’s theory [13].
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9.2.1.1 Shear Plane AB

Let t1 be the uncut chip thickness, V the cutting velocity and α the rake angle

of the tool. Then the length of the shear plane lAB, the chip thickness t2, the shear

velocity VS, and the chip velocity VC are

lAB =
t1

sinφ
, (9.3)

t2 =
t1 cos(φ− α)

sinφ
, (9.4)

VS =
V cosα

cos(φ− α)
, (9.5)

and

VC =
V sinφ

cos(φ− α)
. (9.6)

The equivalent shear strain at AB, εAB is

εAB =
γAB√

3
=

cosα

2
√

3 sinφ cos(φ− α)
. (9.7)

and the equivalent shear strain rate along AB, ε̇AB is

ε̇AB =
γ̇AB√

3
=

C0VS√
3lAB

. (9.8)

The shear flow stress kAB can be obtained from the tensile flow stress σAB by using

the von Mises criterion and the Johnson-Cook material model as

kAB =
σAB√

3
(9.9)

with

σAB = (A+BεnAB)

[
1 + C ln

(
ε̇AB
ε̇0

)][
1−

(
TAB − T0

Tm − T0

)m]
. (9.10)
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The average temperature along AB, TAB is calculated using

TAB = T0 + η∆TSZ . (9.11)

Here, T0 is the initial temperature, η is the Taylor-Quinney coefficient and ∆TSZ is

the temperature rise in the primary shear zone. This temperature rise is obtained

using the plastic work done in the shear zone and is given by,

∆TSZ =
(1− β)FSVS
ρV t1wCp

. (9.12)

Here, β is the fraction of heat conducted into the workpiece from the shear zone,

which is estimated from the empirical equations

β = 0.5− 0.35 log(RT tanφ) for 0.04 ≤ RT tanφ ≤ 10

= 0.3− 0.15 log(RT tanφ) for RT tanφ ≥ 10.
(9.13)

Here RT is a non-dimensional number given in terms of the specific heat (Cp), cutting

velocity (V ), uncut chip thickness (t1) and the thermal conductivity of the workpiece

(K) by

RT =
ρCpV t1
K

(9.14)

The angles in the chip formulation model (Fig. 9.2) are related by the expressions

θ = tan−1
(

1 + 2
(π

4
− φ
)
− C0neq

)
, (9.15)

and

λ = θ − φ+ α. (9.16)

Here, the strain hardening exponent for the Johnson-Cool material model [10], neq is



102

expressed by the expression

neq ≈
nBεnAB

A+BεnAB
. (9.17)

The normal stress at the tool-chip interface is given by

σ′N = kAB

(
1 +

π

2
− 2α− 2C0neq

)
. (9.18)

9.2.1.2 Tool-chip interface

The strain (εint) and strain rate (ε̇int) at tool-chip interface using von Mises criterion

is given by,

εint =
γint√

3
= 2εAB +

h

2
√

3δt2
, (9.19)

ε̇int =
˙γint√
3

=
VC√
3δt2

. (9.20)

The average temperature at the tool-chip interface, Tint is given by,

Tint = T0 + ∆TSZ + ψ∆TM . (9.21)

Here, ∆TM is the maximum temperature rise of the chip and is calculated using the

empirical equation proposed by Boothroyd [92].

log

(
∆TM
∆TC

)
= 0.06− 0.195δ

√
RT t2
t1

+ 0.5 log

(
RT t2
h

)
. (9.22)

The tool-chip interface length, h and the average temperature rise in the chip ∆TC

are given by

h =
t1 sin θ

cosλ sinφ

(
1 +

C0neq

3
(
1 + 2

(
π
4
− φ
)
C0neq

)) (9.23)

and

∆TC =
FVC

ρV t1wCp
. (9.24)
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The flow stress at the tool-chip interface, kchip is calculated using the expression

kchip =
1√
3

(A+Bεnint)

[
1 + C log

(
ε̇int
ε̇0

)]
×
[
1−

(
Tint − T0

Tm − T0

)m]
. (9.25)

9.2.1.3 Cutting forces

The cutting forces (shown in Fig. 9.2) are obtained using the equations

F = R sinλ, (9.26)

N = R cosλ, (9.27)

FS = R cos(φ+ λ− α) = kABlABw, (9.28)

NS = R sin(φ+ λ− α), (9.29)

Fc = R cos(λ− α), (9.30)

Ft = R sin(λ− α). (9.31)

The normal stress σn and the shear stress τint at the tool-chip interface are given

by

σN =
N

hw
(9.32)

and

τint =
F

hw
. (9.33)

9.2.2 Calculation flowchart

The flowchart for determining the Johnson-Cook parameters is shown in Fig. 9.3.

There are two loops in the flowchart: the inner loop shown by the dashed line and

the outer loop shown by the solid line. The calculation for the machining parameters

C0, φ, and δ for a given Johnson-Cook parameter set is done in the inner loop. The

objective of the inner loop is to minimizing the gap between kchip and τint, σN and σ′N

and the minimum cutting force FC by tuning the parameters δ, C0 and φ. The detailed
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derivations and the equations used have been adopted from Lalwani et al. [10]. The

difference in the calculation approach in the current work with respect to Lalwani et

al. [10] is that instead of varying the values of the parameters (δ, C0 and φ) by discrete

values, the optimization is done using the AMPGO algorithm. This eliminates the

dependence of the optimization accuracy on the discrete interval.

Figure 9.3: Determining JC parameters using AMPGO/PSO method.
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The optimal Johnson-Cook parameter values are determined using the outer loop.

A wide range of Johnson-Cook parameters is provided as input. The objective here is

to minimize the objective function Eq. 9.2 by tuning the Johnson-Cook parameters.

This is done using the AMPGO algorithm and PSO algorithm separately for each of

the two approaches.

9.2.3 Adaptive Memory Programming for Global Optimization method

Adaptive Memory Programming for Global Optimization (AMPGO) is an opti-

mization algorithm presented by Lasdon et al. [14] for the constrained global opti-

mization problems. It consists of two phases: minimization and tunneling. A local

minimum is found using a descent algorithm. Then, using a tunneling loop, the ob-

jective is to improve the found minimum with the new solution away from the current

solution for the next minimization phase. The tunneling function is given by the Eq.

9.34.

TTf(x) =
(f(x)− aspiration)2∏
si∈ Tabulist (dist(x, si))

2 . (9.34)

Here, f(x) is the function to be optimized. The aspiration value for the objective

function is slightly less than the current best value. Tabulist contains the points

from which to move away, i.e., the most recent local solution and recent solutions of

tunneling sub-problems that failed to achieve the optimum condition. Also, dist(x, si)

denotes the Eulerian distance.

Figure 9.4: Tunneling approach of AMPGO algorithm [14].
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9.2.4 Particle Swarm Optimization (PSO) method

The particle swarm optimization method was first proposed by Kennedy and Eber-

hart [93]. Motivated by the social behavior of bird flocks, this method can be used

to find the minimum or maximum values of an objective function f (X), where

X = [x1, x2, ..., xn] is a vector of variables, also known as a position vector. A swarm

size is chosen in this method. The optimized solution is found using the cooperation

of these swarm particles based on the communication among them.

The search movement for optimum solution of each particle for an iteration (shown

in Fig. 9.5 comprises of a component of current velocity direction vit, a movement

component towards local or personal best solution from all the previous iterations

c1 (pit − xit) and a movement component towards global best , i.e. the best solution of

all the particles in the swarm c2 (git − xit). The velocity for the next iteration (t + 1)

for ith particle of the swarm, represented by vit+1 is given by Eq. 9.35.

vit+1 = ωvit + c1r1

(
pit − xit

)
+ c2r2

(
git − xit

)
. (9.35)

Here, parameter ω is called inertia weight, c1 is called cognitive learning factor and

c2 is called social learning factor. These three parameters control the contribution

of each factor in a particle’s movement. The numbers r1 and r2 are the random

numbers in the range (0,1) and are used to avoid premature convergence. For this

work, a swarm size of 20 with equal values to the parameters c1 and c2 is used.

Figure 9.5: Movement of particles in PSO algorithm.
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9.3 Results

Using the first approach, multiple sets of optimal Johnson-Cook parameters are

obtained by both of the optimization algorithms. As an example, ten sets of optimal

parameters for the machining condition 3 of Table 9.2 by AMPGO algorithm are

given in Table 9.3. The variation of each parameter over the ten sets is quite large.

For example, the parameter A varies from 449.5 MPa in set 1 to 658.3 MPa in set 10.

Table 9.3: Johnson-Cook parameters obtained using Approach 1 by AMPGO method
(for Machining condition 3).

A (MPa) B (MPa) n C m

449.5 720.3 0.228 0.0160 0.922
471.8 720.8 0.233 0.0140 0.921
473.9 720.8 0.231 0.0130 0.935
479.4 719.9 0.234 0.0130 0.924
499.1 719.9 0.238 0.0110 0.929
508.9 719.6 0.241 0.0100 0.924
545.1 648.3 0.248 0.0120 0.951
567.8 623.5 0.254 0.0110 0.959
578.9 613.4 0.254 0.0100 0.978
658.3 507.6 0.277 0.0100 1.024

Using the second approach, where only C and m are varied, very close values of the

Johnson-Cook parameters are obtained by each of the algorithms. The optimization

is done ten times for each of the machining conditions to verify the uniqueness of

the parameter set obtained by each algorithm, t. The variations in the obtained

parameters are within ±2%. The average value of ten optimizations for each of the

parameters obtained by the AMPGO and PSO algorithm is given in Table 9.4 and

Table 9.5 respectively.

Comparisons of the obtained values of the Johnson-Cook parameters C andm from

the AMPGO and PSO algorithms are shown in Fig. 9.6 and 9.7 respectively. Red

lines in the plots represent the range of the parameter provided as an input to the

algorithm. The green line indicates the value reported in the literature [91]. The
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Table 9.4: JC parameters obtained using Approach 2 by AMPGO.

Test no. C m

1 0.01343 0.9987
2 0.01342 0.9990
3 0.01345 0.9988
4 0.01347 0.9983
5 0.01337 0.9999
6 0.01346 0.9979
7 0.01349 0.9982
8 0.01353 0.9970

Jaspers and Dautzenberg [91] 0.0134 1

Table 9.5: JC parameters obtained using Approach 2 by PSO.

Test no. C m

1 0.01344 0.9986
2 0.01342 0.9990
3 0.01346 0.9986
4 0.01347 0.9982
5 0.01339 0.9997
6 0.01348 0.9975
7 0.01356 0.9970
8 0.01354 0.9969

Jaspers and Dautzenberg [91] 0.0134 1

results of the optimization algorithms match well with this green line.

Figure 9.6: Comparison of Johnson Cook parameter C.
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Figure 9.7: Comparison of Johnson Cook parameter m.

Table 9.6: Strain hardening term for Johnson-Cook parameters obtained using Ap-
proach 1 for the machining condition 3.

A (MPa) B (Mpa) n εp A+Bεnp

449.508 720.342 0.2276 0.6321 1098
471.753 720.800 0.2328 0.6321 1120
473.947 720.798 0.2306 0.6320 1122
479.400 719.891 0.2341 0.6321 1126
499.116 719.877 0.2376 0.6321 1145
508.910 719.630 0.2408 0.6321 1153
545.087 648.332 0.2482 0.6321 1124
567.799 623.450 0.2541 0.6321 1123
578.884 613.379 0.2539 0.6320 1125
658.250 507.556 0.2775 0.6321 1105

9.4 Discussion on the unique determination of Johnson-Cook parameters

In this section, the results of both the approaches used in this study are summa-

rized. The reason for the non-unique determination of the Johnson-Cook parameters

is also discussed.

9.4.1 Non-uniqueness of Johnson-Cook parameters while using Approach 1

As discussed in the Results section, multiple sets of values are obtained when all

the five Johnson-Cook parameters are chosen as the target parameters to predict. To

investigate further, the other machining parameters such as the temperature along

the shear plane (AB) using these sets are calculated and compared in Table 9.7. The
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Table 9.7: Other output variables using Approach 1 by AMPGO method.

εAB ˙εAB
(1/s)

εint ˙εint
(1/s)

TAB
(◦C)

Tint
(◦C)

kAB
(MPa)

σN
(MPa)

h
(mm)

Fc
(N)

Ft
(N)

Chip
ratio

0.63 11583 14.72 92995 292 1015 573.8 871.5 0.5 770.7 235.3 1.8
0.63 11566 14.68 92733 292 1014 573.9 871.6 0.5 770.7 235.3 1.8
0.63 11692 14.87 94064 292 1015 573.8 871.5 0.5 770.5 235.2 1.8
0.63 11590 14.70 92869 292 1014 573.9 871.6 0.5 770.7 235.3 1.8
0.63 11625 14.74 93150 292 1015 573.8 871.6 0.5 770.6 235.3 1.8
0.63 11578 14.66 92556 292 1014 573.9 871.6 0.5 770.8 235.4 1.8
0.63 12189 14.66 92549 292 1014 573.9 871.6 0.5 770.8 235.4 1.8
0.63 12401 14.60 92174 292 1014 573.9 871.6 0.5 770.8 235.4 1.8
0.63 12641 14.79 93519 292 1015 573.8 871.5 0.5 770.6 235.2 1.8
0.63 13882 14.68 92716 292 1014 573.9 871.6 0.5 770.7 235.3 1.8

variables of the objective function, i.e., the cutting force, chip ratio and the tool-

chip interface temperature, agree for all ten sets. In fact, the value of all the other

machining parameters, including the shear strain εAB and strain rate ε̇AB and average

temperature TAB at shear plane AB match. This clearly shows the non-uniqueness

of these parameters while using Approach 1.

To validate the claim of the non-unique determination of the Johnson-Cook pa-

rameter sets, the finite element simulations are done for the test case 2 using different

parameter sets. A comparison of chip profile and cutting force is made. The plot

comparing the cutting force is shown in Fig. 9.8. Also, the chip profile comparison

is shown in Fig. 9.9. Clearly, the results obtained from the simulation using different

Johnson-Cook parameter sets match closely.

9.4.2 Unique determination of Johnson-Cook parameters while using Approach 2

A unique set of Johnson-Cook parameters is obtained using the Approach 2, where

the parameters A, B and n are determined using the tensile test experiment and the

parameters C and m are determined using the inverse method.

The strain hardening term of the Johnson-Cook constitutive model is the term(
A+Bεnp

)
. For a given value of strain εp, multiple sets of A,B, and n can be

determined to produce the same combined value of strain hardening. This is verified
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in Table 9.6 by calculating the strain hardening term for the ten parameter sets (shown

in Table 9.3) obtained by the inverse method for the machining condition 3 of Table

9.2. The calculated values of the strain hardening term are approximately equal. This

indicates the possibility of multiple sets of A,B, and n producing equal value of strain

hardening term. Thus to obtain the Johnson-Cook parameters uniquely, a combined

approach of experiment and inverse method can be followed. The parameters A,

B and n can be determined using the tensile test experiment. The remaining two

parameters C and m can be determined using the inverse method. This replaces the

cumbersome experiments at multiple large strain rates and high temperatures with

the simple orthogonal machining experiments.

Figure 9.8: Comparison of cutting force using different JC parameter sets.

Figure 9.9: Comparison of chip profile using different JC parameter sets.
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9.5 Conclusion

This work presents an inverse approach to determine the parameters of the Johnson-

Cook constitutive model using a combination of analytical models, experiments, and

optimization algorithms AMPGO and PSO. The following conclusions can be made:

1. When all the five parameters of the Johnson-Cook model are selected as the

objective, multiple sets of values are predicted by the optimization algorithms

(AMPGO and PSO) and the analytical extended Oxley model.

2. Results show that the Johnson-Cook parameters C and m can be determined

with an acceptable degree of accuracy using only the cutting force, chip ratio,

and tool-chip interface temperature as the variables of the objective function.

The results of the tensile test experiment can be used to determine the three

parameters A, B, and n.

3. The two optimization algorithms, AMPGO and PSO algorithms, converge to the

correct values of the Johnson-Cook parameters even when large search domains

are provided for each of the parameters.



CHAPTER 10: CONCLUSIONS AND FUTURE WORK

Modeling of turning operations using a coupled Finite Element (FE) and Smoothed

Particle Hydrodynamics (SPH) method is presented in this dissertation. The coupled

SPH-FE models use SPH particles in the high-deformation zone where machining

takes place and finite elements in the low-deformation zones. The challenges asso-

ciated with using the FE method such as mesh distortions and material separation

modeling are easily handled by the SPH method. At the same time, the high compu-

tational times associated with SPH are reduced with the use of the FE mesh in the

low deformation zones.

A fully-SPH model and a coupled SPH-FE machining model are developed in two

dimensions. The results of these models are validated with the SPH model developed

by Madaj [22]. The results of the coupled SPH-FE model are in close agreement with

the full SPH model. However, the coupled SPH-FE model resulted in a significant

reduction in the simulation time by approximately 40%. Machining conditions that

are close to the orthogonal machining, such as thin wall turning, can be simulated

with two-dimensional models.

Using the two-dimensional SPH model, a parametric study is conducted by varying

computational parameters. These parametric studies enabled the identification of the

optimal values for the parameters that lead to physically realistic results.

Using the benefit of the coupled SPH-FE model and the insight gained from the

parametric study, a full-scale three-dimensional turning model is simulated. The

primary results of interest are the forces and chip morphology. The three-dimensional

model is required as the two-dimensional model under-predicted the cutting forces.

The forces predicted by the three-dimensional model are considerably close to the
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experimental values. The chip morphology also correlates with experiments in terms

of the direction of the chip movement and the "long" continuous chips observed while

turning Al6061. These models are beneficial in the design of chip breakers and guards

for safety while machining in addition to enabling tool-wear and surface finish studies.

The three-dimensional machining models are extended to include the modulated

tool path (MTP) machining and validated with experimental results. MTP machining

is a technique to break the chips formed during turning by modulating the motion of

the tool. Long chips produced during the conventional turning can affect the surface

finish of the workpiece, cause tool damage, and even cause injuries to the operator.

The simulated chips and cutting forces of MTP machining are compared with the

results from the constant feed turning simulation. The advantages of MTP turning

are demonstrated through these results. The MTP machining models can be used to

optimize the tool path that results in the reduction of the tool wear and improvement

of the machined surface.

Dynamic elements are incorporated into the three-dimensional turning models.

The effect of these dynamic elements on the tool vibration and the cutting force

is presented. These models have the potential to be used for studying machining

stability for given sets of machining conditions.

The machining models used in this dissertation use the Johnson-Cook material

model as the constitutive model. To eliminate the uncertainty associated with the

material parameters in these models, an inverse approach for the unique determination

of the parameters is presented. Unlike the other inverse approaches available in the

open-literature, the proposed approach provides a methodology to determine each

parameter uniquely. The parameters A, B and n can be determined using the tensile

test experiments and the parameters C and n can be determined through the inverse

approach using the data from the orthogonal machining experiments. The orthogonal

machining experiments replace the expensive-to-conduct Split-Hopkinson Pressure
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Bar tests in the determination of these parameters.

A summary of the studies conducted in this dissertation is shown in Figure 10.1.

Figure 10.1: Summary of the studies conducted.
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Future work could potentially focus on the following topics:

1. Other machining techniques such as vibration-assisted turning and interrupted

turning can be modeled. Currently, these techniques are being studied using

the experiments. Computational modeling can provide an efficient approach

to optimize the parameters of these processes and improve the quality of the

machined surface.

2. Diamond turning operation can be simulated using the coupled SPH-FE method.

However, to reduce the computational time, a reduction of the diameter of the

workpiece may be necessary.

3. Machining dynamics models can be validated with the experimental observa-

tions. These models have the potential to predict stability of the machining

conditions.

4. The model can be utilized for designing cutting tools, chip breakers, and guards.

This is particularly useful for the machining of hazardous materials where con-

ducting experimental studies is unsafe.

5. This work can be extended to include other machining operations such as milling

and drilling.
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APPENDIX A: DERIVATION OF SOME SPH EQUATIONS

A.1 Kernel approximation of Gradient

The kernel approximation of the gradient of a scalar field f(r) is calculated using

the derivative of the smoothing kernel and it’s functional value. It is given by

〈∇raf(ra)〉 =
N∑
j=1

mb

ρb
f(rb)∇raW (rab, h). (A.1)

Alternate forms of the kernel approximation of the gradient are obtained using the

identity

∇(fρn) = nfρn−1∇ρ+ ρn∇f. (A.2)

Upon solving for ∇f from Eq. (A.2), we obtain

∇f =
1

ρn
[∇(fρn)− nfρn−1∇ρ]. (A.3)

Combining Eq. (A.1) and Eq. (A.3)

〈∇f(ra)〉 =
1

(ρa)n

[
N∑
b=1

mb[f(rb)(ρb)n−1 − nf(ra)(ρa)n−1]∇W (rab, h)

]
. (A.4)

Putting n = 1 in Eq. (A.4) gives the anti-symmetric form.

〈∇f(ra)〉 =
1

ρa

[
N∑
b=1

mb[f(rb)− f(ra)]∇W (rab, h)

]
. (A.5)

Putting n = −1 in Eq. (A.4) gives the symmetric form.

〈∇f(ra)〉 = ρa

[
N∑
b=1

mb

(
f(rb)

(ρb)2
+
f(ra)

(ρa)2

)
∇W (rab, h)

]
. (A.6)
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A.2 Kernel approximation of Divergence

Similar to the calculation of the gradient, the kernel approximation of the diver-

gence of a vector field F(r) is calculated using the derivative of the smoothing kernel

and its functional value. This approach is computatiaonally advantageous since func-

tional derivatives are not required for calculating the divergence. The derivation of

the kernel approximation of the divergence of a function F at position ra is given

below.

〈∇ra · F(ra)〉 =

∫
Ω

W (rab, h)∇rb · F(rb) dΩrb

=

∫
Ω

∇rb · [W (rab, h)F(rb)] dΩrb −
∫

Ω

∇rbW (rab, h) · F(rb) dΩrb

=

∫
S

W (rab, h)F(rb) · n dS −
∫

Ω

∇rbW (rab, h) · F(rb) dΩrb

= 0−
∫

Ω

∇rbW (rab, h) · F(rb) dΩrb

=

∫
Ω

∇raW (rab, h) · F(rb) dΩrb

=
N∑
j=1

mb

ρb
F(rb) · ∇raW (rab, h).

(A.7)

The divergence theorem is used in the third step to convert the volume integral

to a surface integral. In the fourth step, the first integral equals zero because of

the compact support property of the smoothing kernel. The derivative of W is anti-

symmetric with respect to ra and rb. This flips the sign of the second integral in the

fourth step.

A.3 SPH form of Stress work term

In this section, the SPH form of stress work term used in the conservation of energy

equation and given by

<
σ

ρ
: (∇⊗ v) >=

1

2

N∑
b=1

mb

(
pa

(ρa)2
+

pb

(ρb)2

)
vabj

∂W ab

∂raj
+

µa

2ρa
εaijε

a
ij (A.8)
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is derived. The total stress tensor σ consists of isotropic pressure p and shear stress

τ and is given by

σij = −pδij + τij. (A.9)

For a Newtonian fluid, shear stress is directly proportional to the shear strain rate

and is given by

τij = µεij. (A.10)

Here, µ is dynamic viscosity and ε is shear strain rate.

Using Eqs. (A.9) and (A.10), we get

σ

ρ
: (grad v) = −p

ρ

∂vi
∂ri

+
µ

2ρ
εijεij. (A.11)

From the SPH form of the conservation of mass equation, we have

< −p
ρ

∂vi
∂ri

> =
pa

(ρa)2

N∑
b=1

mbvabi
∂W ab

∂rai
. (A.12)

From the product rule of differentiation, we have that

− p

ρ

∂vi
∂ri

= − ∂

∂ri

(
pvi
ρ

)
+ vi

∂

∂ri

(
p

ρ

)
. (A.13)

This combined with Eq. (A.12) leads to

< −p
ρ

∂vi
∂ri

> = −
N∑
b=1

mb pb

(ρb)2v
b
i

∂W ab

∂rai
+ vai

N∑
b=1

mb pb

(ρb)2

∂W ab

∂rai
(A.14)

or

< −p
ρ

∂vi
∂ri

> =
N∑
b=1

mb pb

(ρb)2
vabi

∂W ab

∂rai
. (A.15)

Combining this result with Eq. (A.11) leads to Eq. (A.8).
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A.4 SPH form of rate of change of Thermal energy

The rate of change of thermal energy in the absence of heat sources or sinks is

given by

ρ
DQ

Dt
= ∇ · (k∇T ). (A.16)

The SPH form of this equation is obtained by first deriving an integral approximation

of the Laplacian of a function. This approximation is combined with the particle

approximation to derive the final SPH form. The derivation is presented below.

Integral approximation form of the Laplacian of a function: Below is an

Integral approximation form of the Laplacian of a function f(r).

∇2f(ra) = 2

∫
Ω

f(ra)− f(rb)
| ra − rb |2

(ra − rb) · ∇W (rab, h) dΩrb . (A.17)

This equation can be derived using the Taylor series expansion of a vector field and

the properties of the kernel function. For ease of understanding, the derivation is

presented for one-dimensional domain. The result can be generalized for three di-

mensions to obtain Eq. (A.17). The Taylor series expansion of the function f(xb)

about xa provides

f(xb)− f(xa) = (xb − xa)∂f
∂x

∣∣∣
x=xa

+
1

2
(xb − xa)2 ∂

2f

∂xa2

∣∣∣
x=xa

+O[(xa − xb)3]. (A.18)

Next, the following operations are performed on Eq. (A.18):

1. multiply both sides of the equation by

(xa − xb) ∇aW (xa − xb, h)

| xa − xb |2
,

2. denote (xa − xb) by xab and ∇aW (xa − xb, h) by ∇aW
ab,

3. ignore the higher order terms of the order O[(xa − xb)3] and
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4. integration over the domain.

The integral approximation form is derived after applying the above operations.

∫ [
f(xb)− f(xa)

] xab ∇aW
ab

| xab |2
dxb

= −
∫
∂f

∂x

∣∣∣
x=xa

xab
xab ∇aW

ab

| xab |2
dxb +

∫
1

2

∂2f

∂xa2

∣∣∣
x=xa

(xab)
2 xab ∇aW

ab

| xab |2
dxb

= −∂f
∂x

∣∣∣
x=xa

∫
∇aW

ab dxb +
1

2

∂2f

∂xa2

∣∣∣
x=xa

∫
xab ∇aW

ab dxb.

(A.19)

Since W ab is an even function of x, ∇W ab is an odd function. Therefore,
∫
∇W ab dxb

equals zero. The second integral can be simplified as below.

∫
xab ∇aW

ab dxb = −
∫
xab ∇bW

ab dxb

= −
∫
∇b(x

abW ab) dxb +

∫
W abd(xa − xb)

dxb
dxb

= 0−
∫
W ab dxb

= −1.

(A.20)

The first integral in the second step equals zero as xabW ab is an odd function. The

integral
∫
W ab dxb equals 1 due to the Normalization condition of the kernel function.

Putting Eq. (A.20) into the Eq. (A.19) and then simplifying, we get the following

Integral approximation for one-dimensional domain.

∂2f

∂xa2
= 2

∫
f(xa)− f(xb)

| xab |2
xab ∇aW

ab dxb. (A.21)

The Eq. (A.21) can be generalized for three dimensions to obtain Eq. (A.17). The

particle approximation form of the Eq. (A.17) is given by

< ∇2f(ra) >= 2
N∑
b=1

mb

ρb
f(ra)− f(rb)
| rab |2

rab · ∇W (rab, h). (A.22)
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We derive the SPH form of Eq. (A.16) using the identity,

∇ · (k∇T ) =
1

2

[
∇2(kT )− T∇2k + k∇2T

]
. (A.23)

Writing all the Laplacian terms on the right hand side of the Eq. (A.23) in the particle

approximation form using Eq. (A.22) and on simplification, the SPH form of rate of

thermal energy Qa can be shown to be

< Qa > =
N∑
b=1

mb

ρaρb
(ka + kb)(T a − T b)

| rab |2
rab · ∇W ab. (A.24)
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