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ABSTRACT

FEI SHEN. FEATURE-BASED AUTOMATED TOOL PATH PLANNING FOR
DISCRETE GEOMETRY. (Under the direction of DR. JOSHUA TARBUTTON)

Computer Numerical Control (CNC) machining is a critical manufacturing tech-

nology used in effectively all modern products. Any improvement in efficiency or

automation that reduces the cost of CNC machining is of tremendous value to the

manufacturing industry. One of the most time-consuming steps in CNC machining,

especially in a high-mix low-volume scenario, such as prototyping, is the current tool

path planning workflow. The current industrial state of Computer-Aided Manufac-

turing (CAM) tools used to generate toolpaths requires highly trained CNC program-

mers. Typically, programmers manually select the features to be machined, the tools

to use for each feature, the specific tool paths topology, and the feeds and speeds.

The research community has placed a lot of focus on the automation of the tool

path planning process, in order to reduce the significant effort required to generate

toolpaths. Researchers have developed novel feature recognition techniques, auto-

mated tool path generation methods, and tool selection algorithms. However, these

methods all come with certain caveats and limitations. Some only work on analytic

geometries. While others only work on certain feature types.

This dissertation introduces a feature based automated tool path planning system

with a focus on implementing robust and generalized algorithms that work on arbi-

trary geometries with the full range of features based on discrete geometry. Support

for discrete geometry is valuable because in many situations , only discrete geome-

try is available, such as in models generated from 3D scanning systems. Specifically,

a robust region segmentation technique is developed to simplify machining feature

recognition from discrete geometry. Once the features are recognized, an automated

optimal cutter set selection approach aimed at a minimum machining time is proposed
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to improve the machining efficiency for arbitrary features. In addition, an automated

deburring tool path planning method is introduced to eliminate the manual edge de-

burring and specifically to work with 3D discrete geometry. With the robust and

automated algorithms as a solid foundation, a fully automated tool path planning

system with limited human interactions is built and demonstrated on a series of parts

with complex intersecting features. The net result is a complete 3D CAM process

that goes from geometry to G-code in less than 10 minutes.
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CHAPTER 1: INTRODUCTION

Computer Numerical Control (CNC) refers to the automated control of machine

tools based on the specific coded instructions sent to the controller of the machine tool.

Based on the received programs, CNC machine tools can perform specific tasks much

more efficiently and more precisely than manually controlled machines or processes.

Hence, manufacturing costs can be reduced, production efficiency can be improved,

and work safety can be enhanced by using CNC machines. The manufacturing in-

dustries have been transformed considerably since the introduction of the first CNC

machines in the 1940s and 1950s. Today’s CNC machines are able to produce parts

in tight tolerances, and the cutting tools can cut a large load of raw material at a

fast speed.

The early programs for controlling CNC machines were manually written by ma-

chinists. The programming process was inefficient, error-prone, and skill-dependent.

The trial-and-error approach was commonly used in the machining process. The

traditional machinists usually spent years on training and practicing to be capa-

ble of operating and programming CNC machines efficiently. The introduction of

Computer-Aided Design (CAD) software packages eased the difficulty in designing

parts with complex geometries, but on the other hand it added extra challenges to

machinists who had to program the CNC machines to produce these complicated

parts. Thus, CAM software tools were developed to increase the productivity and

boost the efficiency of the CNC programming process. In today’s machine shops,

a machinist may act as a machine programmer/process planner, machine operator,

or setup operator. The machine programmer or process planner is responsible for

analyzing the CAD design, defining the datum and the fixture, selecting machining
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operations and cutting tools, utilizing CAM systems to generate tool paths and de-

fine the associated cutting speed and feed rate, and estimating the production time

and machining cost. The generated tool paths and other machining information are

then converted by the CAM systems into a machine understandable program called

G-code, which is a set of instructions that can control the actions of CNC machines.

In a typical workflow, the setup operator loads the G-code into a CNC machine and

sets up the tools. The machine operator subsequently loads the raw material and

runs the G-code on the machine to transform the raw material into a product with a

designed shape. Modern CAM packages can generate sophisticated tool paths for 5-

axis CNC machines to produce complicated and high-quality parts as well as provide

high-speed tool paths that help manufacture parts faster than ever. However, plan-

ning the machining process still relies on the experience and knowledge of the process

planners. Two process planners may each propose unique manufacturing plans for

the same machining task, and this adds extra inconsistency to the sophisticated job.

The inefficiency and variability in process planning increase the resources and time

costs of the enterprise.

Computer-Aided Process Planning (CAPP) was presented in the 1960s to build a

bridge between CAD and CAM with an aim to improve the efficiency of the process

planning. CAPP is a technique that leverages the modern computers to aid process

planners in making decisions on the manufacturing plans in a systematic way. To date,

a great deal of research and investment has been dedicated to developing CAPP sys-

tems and even automated CAPP systems. However, few CAPP systems can provide

significant process planning solutions to the manufacturing industry. The automated

CAPP system still remains in its infant stage, and the enormous complexity is part

of the reason for its slow development.

Other than its high value in a production environment, an automated tool path

planning system can also contribute to the application of CNC in Rapid Prototyping
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(RP). RP is a method for converting 3D designs into their physical prototypes without

intermediate processes. Because of its capability to construct physical models rapidly,

RP has been widely used to significantly reduce the time required for the product

development cycle. Currently, additive processes dominate the RP market. In the

low-end market, desktop 3D printers have become more commonplace because of their

acceptable price and user-friendly characteristics. Compared with CNC machines,

such as a CNC mill or a CNC lathe, desktop 3D printers do not require the user to

know how to generate a tool path. A user of a 3D printer usually just needs to upload

the file that contains the design part and push a button to start. The printer can

generate a layer-based tool path automatically and print the part accordingly. In the

high-end market, several metal printing processes, such as direct metal laser sintering,

electron beam melting, and laser engineering net shaping, have been developed to

produce metal parts. The motivation behind the development of these processes

is to create truly functional metal parts, although these commercial metal printing

machines can cost as much as a few hundred thousand dollars. However, the already

existing much cheaper CNC machines that can create a metal part from raw material

have attracted little attention in the RP field. One important reason is that the tool

path planning process requires years of experience and extensive user interactions.

An automated tool path planning system that can significantly contribute to the

realization of a push-button CNC machining process would make it possible to open

a door for the application of CNC machines in RP.

The goal of this dissertation is to develop a feature-based automated tool path

planning system that can generate G-code automatically for machining parts with a

minimum amount of user interactions. The automated tool path planning system is

mainly composed of four modules: input module, feature module, cutter module, and

automation module, as shown in Figure 1.1.

The input module contains the information received by the system from the user’s
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end, which includes the part model, the stock dimensions, the material for the stock,

the machining direction, and the user’s cutter library representing the available cut-

ters. The system accepts discrete geometry represented as point cloud or triangle

mesh. Support for discrete geometry is valuable because, in many situations, discrete

geometry is the only available format. In the modern world of 3D printing, discrete

geometry is the primary geometric format that is distributed, and it is desirable to

develop CNC tool path planning that can machine parts which otherwise might be

3D printed. In addition, 3D scan data might be produced to replicate a part where

the discrete geometry may be the only data available. Finally, some modern CAD

systems, such as OpenSCAD and TinkerCAD, only provide discrete geometry. The

feature module takes the discrete part model as the input and recognizes the ma-

chining features from the model. The automation module is the core module of the

system that executes all the tasks related to machining automation. The module is

able to select the optimal set of cutters from the cutter library and generate tool paths

for each machining operation including the facing, roughing, finishing, and deburring

operations. The facing operation is developed to remove the extra material on top

of the part along the machining direction. The rouging and the finishing operations

clear the material enclosed by the geometry of each machining features. After all

the recognized features are machined, the deburring operation is employed to deburr

the undesired boundary edges that might reduce product life, decrease dimensional

accuracy, and introduce difficulties into assembly. To improve the efficiency of the

system, a sequencing function is added to optimize the sequences of the operations.

In the final step, the tool paths in each operation along with the cutter information

are exported as a G-code program.

Compared with the state-of-the-art CAM packages, the developed tool path plan-

ning system requires many fewer user interactions. In this system, the user does not

need to plan the operations for machining the part model and organize the sequence
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of the operations. The optimal cutters are also selected by the system automati-

cally whereas the cutters are defined by the user in the existing CAM tools, which

requires years of experience in machining. Based on this system, there is a great

potential that a push-button desktop-desk CNC machine can be implemented so that

an inexperienced user can use the machine to prototype metal parts easily.

Part

Cutter Selection

Machining Feature 

Recognition

Finishing Tool

Path Generation

Deburring Tool

Path Generation

Rouging Tool Path

Generation

Operation Sequencing

Cutter Library

Automation Module

Feature Module Cutter Module

Stock Dimensions
Machining 

Direction
Input Module

GCode

Material

Facing Tool Path

Generation

Figure 1.1: Workflow of the feature based automated tool path planning system.

Specifically, the objective of this research is to implement robust and generalized

algorithms that work on arbitrary geometries with the full range of features and use

discrete geometry as it is the lowest common geometric denominator.

Three key contributions of this dissertation are summarized as follows:

1. Improved robustness for discrete geometry region segmentation with three steps,

enabling better feature recognition:

(a) Primary shapes region segmentation to detect primitives within discrete geom-

etry;

(b) Merging shape regions to handle low resolution and noisy discrete geometry;

and

(c) Final island region segmentation to handle freeform surfaces alongside regular
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surfaces within discrete geometry.

2. Introduced a unique optimal cutter set selection approach for minimum cutting

time for arbitrary feature machining.

3. Created a novel method for automated detection and generation of the deburring

tool paths to finish the feasible boundaries.

As a secondary contribution, a hybrid approach for machining feature recognition

that can handle complex intersecting features is developed to recognize STEP-NC

machining features in close collaboration with Abdullah Zafar.

The remaining parts of the dissertation are arranged as follows. Chapter 2 intro-

duces the background of this research. Chapter 3 presents the new region segmenta-

tion approach along with a hybrid feature recognition method to recognize machining

features from discrete geometry. Chapter 4 introduces the automated milling tool

path planning method with an optimal set of cutters. Chapter 5 presents the au-

tomated feasible boundary detection and deburring tool path generation approach.

Chapter 6 provides and discusses the experimental results that validate the proposed

tool path planning methodology. Chapter 7, the last chapter, summarizes the major

contributions of this dissertation and discusses the opportunities for future work.



CHAPTER 2: BACKGROUND

This chapter presents the related background information about the tool path plan-

ning, CAPP, machining feature recognition, and geometry representation. First, the

traditional milling tool path planning methods are introduced, followed by the tech-

nologies that try to automate the tool path generation by using CAPP and machining

feature recognition. Finally, the analytic and discrete geometry representations are

reviewed, the benefits and disadvantages of these approaches are compared, and the

tool path planning approaches on discrete geometry are also analyzed.

2.1 Traditional Tool Path Planning Methods

The task of CNC machining is to drive the cutter to engage with the raw material,

which is also called the workpiece, so that the extra material is removed from the

workpiece and the desired shape of the designed part is formed. An operation or

tool path typically aims to cut a particular machining feature, such as a hole, slot,

edge round, chamfer, pocket, planar face, step, profile, or freeform surface. These

machining features are usually machined by specific cutting tools. For example, drill

bits and reamers are used to drill and clean a hole while slot cutters can be used to cut

a slot. Other features are typically machined by using milling cutters based on the

milling tool paths. The tool path strategies for making holes, slots, edge rounds, and

chamfers are already well-defined in modern CAM packages and are relatively easy

to use compared with the milling tool paths. The relevant concepts in milling tool

path planning are reviewed in addition to the traditional approaches for generating

milling tool paths.

The goal of any milling tool path planning method is to generate accurate lines
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and curves called tool paths, as shown in Figure 2.1, so that the cutting tool can

move in contact with the workpiece along the specific trajectories formed by the

tool paths to produce the desired part without gouges or collisions, as shown in

Figure 2.2. The Cutter Contact (CC) points on the tool paths are the instantaneous

contact points between the tool and the workpiece. In the ideal scenario, all points

on the surface of the designed part should be CC points so that any geometric errors

in the manufactured part are minimized. However, this is not possible in real-life

scenarios because the machining time would be increased tremendously. Hence, the

CC points must be discretely separated from each other as well as from the resulting

tool paths. The separation between tool paths causes geometric inaccuracies for non-

planar surfaces in the manufactured part. The unmachined region is called the scallop

or cusp, and the upper limit on the height of the scallop is called the scallop height

allowance, as shown in Figure 2.3. The scallop height allowance is used to describe the

geometric inaccuracies caused by the separation of tool paths. The Cutter Location

(CL) point is the location of the tool in space. For flat end mills, it is the center of

the bottom of the tool; for ball end mills, it is the center of the ball at the end of

the tool. The CL is used by the CNC machine as a reference location to drive the

tool along the tool path. The CL data usually is calculated based on CC data, which

provides the necessary geometric information for CNC machining. A gouge occurs

when the cutter removes excess material from the workpiece at the CC point while a

collision happens when the cutter collides with other sections of the part, machine,

or fixtures. A valid tool path should be free of gouges and collisions.
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Figure 2.1: Designed part and tool path.

(a) Gouge-Free (b) Gouging (c) Collision

CL

CC

Figure 2.2: Gouging and collision.

Scalop Height

Tool Path Interval

h
d

Workpiece

Cutter

Figure 2.3: Geometric inaccuracies in tool path.

Traditionally, the milling tool path is generated either (a) with the help of curves

or surfaces defined in the object domain of the designed part or (b) by specifying

curves in the parametric domain of the designed part. Most modern tool path plan-

ning strategies are based on three well-established algorithms: iso-planar [2–4], iso-

parametric [5–8], and iso-scallop [9–11]. The iso-planar and iso-parametric methods
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fall under the categories (a) and (b), respectively, while the iso-scallop is an extension

of the first two methods.

2.1.1 Iso-planar Milling Tool Path Planning

One of earliest CNC programming languages, the Automatically Programmed Tool

(APT) approach can be considered a generalization of the iso-planar. APT, as shown

in Figure 2.4, generates CL data by driving the tool along curves that are the inter-

sections of a user-defined surface, called the drive surface, and the part surface [2].

Gouging is avoided by predefining a check surface representing the boundary of the

part that must not be gouged. The drawback of the APT approach is that all CL data

require several iterations, which may not converge, to search for a point at which the

tool is tangent to the surface of the part. The computational efficiency was improved

by the iso-planar methods, as shown in Figure 2.5, in which tool paths are gener-

ated by intersecting the surface with a series of infinite parallel planes. The distance

between the parallel planes is determined by the requirement of the scallop height.

The iso-planar method is simple and robust, and it is used extensively in commercial

CAM packages to generate Cartesian or constant z-level tool paths. However, a com-

putational, expensive surface-plane intersection is needed in the iso-planer method.

In addition, the overall length of the tool paths is very large; hence, the iso-planar

method is machining inefficient. The tool path is referred to as the direct parallel

tool path when the cutting planes are horizontal [12] whereas it is called the contour

parallel tool path when the cutting planes are vertical.
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Check Surface

Cutter

Drive Surface

Part Surface

Figure 2.4: APT approach for CNC milling tool path generation.

Iso-planar tool pathsPart

Figure 2.5: Iso-planar approach for CNC milling tool path generation.

2.1.2 Iso-parametric Milling Tool Path Planning

The iso-parametric tool path, as shown in Figure 2.6, is planned by mapping the

parametric surface, S(u,v), onto Euclidean space and then keeping one of the param-

eters, either u or v, constant while incrementing another parameter. Compared to

the iso-planar method, costly surface-surface intersection computations were avoided.

However, a main drawback of the iso-parametric method is that a constant step in

the parametric domain results in varying the scallop-height distribution on the ma-

chined surface. This method is also not suitable for generating the tool path for a

compound and trimmed surfaces because gouging may occur in these surfaces. When
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the underlying free-form surfaces are extended and combined, it is necessary to repair

the surface to ensure error-free tool paths because the boundary of the tool path

generated by iso-parametric tool paths is no longer confined [13].

Part Iso-parametric tool 

paths

V

U

Figure 2.6: Iso-parametric approach for CNC milling tool path generation.

2.1.3 Iso-scallop Milling Tool Path Planning

Both the iso-parametric and the iso-planar methods can produce uneven scallop

heights in the parts with non-planar surfaces. To meet the tolerance requirement over

the entire surface, the step distance between two adjacent tool paths must be kept

conservative, which leads to unnecessary tool paths in some areas and eventually

increases the machining time. The iso-scallop method, as shown in Figure 2.7, is

proposed in [9] to overcome the issue of non-optimal machining in these two methods.

This method is an extension of the iso-planar and iso-parametric methods. The side

steps between the cutter location points in two adjacent tool paths are adjusted so

that the resulting scallop height is constant. The iso-scallop method can produce the

shortest tool path among these generated by the three common methods for planning

tool paths [9]. However, surface offsetting is involved in the iso-scallop method, and

it is complex and computationally expensive.
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Part Iso-scallop tool paths

Figure 2.7: Iso-scallop approach for CNC milling tool path generation.

Although several tool path planning strategies for different machining features are

available in modern CAM packages, the tool path for machining a product, repre-

sented in a solid model designed in a CAD system, still cannot be generated without

human intervention. The current practice of CAM packages still requires extensive

interaction by the user. To generate tool paths for a designed part, CAM users must

select the tool path planning strategy with appropriate parameters and define a cut-

ting tool for each machining feature. The traditional tool path planning process is

time-consuming and prone to have errors. The process planners could spend hours

to generate the tool path, but the actual machining time is only a few minutes. To

improve production efficiency and automate the design-to-manufacturing process, a

new software tool is necessary to improve the integration of CAD and CAM modules.

2.2 Computer-aided Process Planning

Process planning is an essential manufacturing activity because a detailed plan

must be developed that specifies exactly how to manufacture the designed parts in

the CAD model with the assistance of CAM packages and planning the tool path is

a vitally important part of the activity. CAPP refers to the use of a computer to aid

the planning process, and it can be viewed as a communication agent between the

CAD and CAM systems. Since Niebel [14] first described the CAPP concept in 1965,

considerable research effort has been devoted to CAPP.
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Generally, there are two types of approaches for CAPP, and they are variant and

generative [15]. The variant process planning approach is based on the rule that

similar parts require similar plans. This approach requires a human operator to clas-

sify a part, provide information about the part, retrieve a similar process plan from a

database, and make the necessary modifications. This approach is advantageous from

the maintenance perspective, but its main drawback is that the quality of the process

plan still depends on the knowledge of a process planner. Compared with the variant

approach, the generative approach requires less human intervention in planning the

process. This approach generates new process plans based on decision logic, process

knowledge, manufacturing rules, and input about the features and attributes of the

part. Due to the distinguishing feature of requiring little interaction with the user,

the generative CAPP approach has been studied more frequently than the variant

approach in recent research.

To date, CAPP systems have been extensively researched [16–34]; however, most

of this research has focused on the connections between part models and the manu-

facturing plans based on feature technology. The generation of automatic tool paths

has been little studied. Liang et al. [35] proposed an automated tool path plan-

ning system, although the system only deals with the rough machining of planar

features. Hou and Faddis [36] described an automated tool path planning method

in an integrated CAD/CAPP/CAM based on machining features. In the system,

the machining features serve as the agent that transfers geometric information about

the design part from the CAPP system, called FBMach, to the CAM software, UG

(now Siemens NX) for the creation of tool paths and the NC program. However,

the capability of feature recognition technology in FBMach is limited. The system

cannot recognize all the machining features, especially intersecting features. In addi-

tion, the 21
2
D pocket feature only can have one bottom surface so that the tool path

can be generated for the feature. Xu et al. [37] introduced an automated tool path



15

planning approach integrating the Structuralized Machining Process (SMP) with the

CAD/CAPP/CAM system. In this research, SMP is defined as a multi-level structure

comprised of sequential machining operations. An agent-based system was developed

to take SMP and the associated in-process models as inputs and export operation

controlled templates that can map each machining operation into CAM systems to

generate the tool path automatically. Although this approach works for many parts

with several machining features, it still faces difficulty in generating the tool path

when the model of the part contains freeform surfaces.

Compared with the significant advancements in the CAD and CAM technologies,

the development of CAPP has been relatively slow. To date, few commercial CAPP

systems exist that can provide a disruptive solution in process planning for the man-

ufacturing industry. Part of the reason is its complex nature. As surveyed by Al-

wswasi [16], a complete CAPP system would require various input information for

the user, including the machining process and process capabilities, a feature model,

Geometric Dimensioning and Tolerancing (GD&T), stock materials, and the require-

ments for the surface finishes. And the expected output of the system involves the

selection of processes, the operation sequence, cutting tools, cutting conditions, selec-

tion of jigs and fixtures, tool path, and the estimated time and cost to manufacture

the part. The current CAPP systems are not capable of handling the sophisticated

input information and producing all the expected output automatically.

2.3 Machining Feature Recognition

Feature Recognition (FR) is an activity that interprets a part model composed of

low-level geometric elements (e.g., points, edges, and faces) into high-level entities

(e.g., holes, slots, and pockets) to support the downstream engineering tasks, such as

manufacturability analysis [38], optimization [39], design validation [40], and manu-

facturing planning [41–43]. FR plays a central role in CAPP for integrating the CAD

system with the CAM system. The major reason for its importance is that almost
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all CAPP systems are based on features or require features as the input data.

2.3.1 Definition of Machining Feature

Depending on the application areas, the word "feature" has different definitions.

For example, in CAD modeling, the surface features are described as a set of primi-

tives defined by their topological and geometric parameters [44]. In FR, the features

are specified according to their topological patterns and geometric characteristics,

such as inner/outer boundary loops, convexity/concavity edges, and surface/volume

feature [45]. The manufacturing features are the most widely identified feature in FR,

which represents a series of geometric entities that can be machined by downstream

manufacturing processes, such as machining [46,47], sheet metal stamping [48], forg-

ing and casting [49], and molding [50]. The machining feature is the most studied

feature among the manufacturing features; it also is the focus of this research. One of

the extensively accepted definitions of a manufacturing feature is specified in STEP-

NC [30,31], which is the application of the ISO Standard for the Exchange of Product

Model Data (STEP) to numerical controlled machines. In STEP-NC, the manufac-

turing features are classified into regions and 21
2
D manufacturing features. The region

feature is the same as a freeform feature, while the 21
2
D manufacturing features are

composed of the 21
2
D machining features as well as their replications. The STEP-NC

machining features are defined in STEP AP 224 [31], which is a STEP standard to

describe the information in need for making a manufacturing plan for the machining

features. In the standard, the 21
2
D manufacturing features can be classified into four

categories: machining features, transition features, replicate features, and compound

features (see Figure 2.8). Machining features are defined as the features that are used

in 21
2
D machining, which is distinguished by the feature that the cutter moves mostly

in the XY plane, while it only moves along the Z axis to a certain depth to remove a

layer of material. The 21
2
D machining features include planar face, pocket, slot, step,

hole, profile, rounded end, boss, thread, spherical cap, toolpath feature, and com-
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pound features. Some examples of the 21
2
D features specified in the STEP-NC are

shown in Figure 2.9. A transition feature including the edge round and the chamfer

is a feature located at the border of two features. A replicate feature is an assembly

of a few similar features, such as an array of holes. Meanwhile, a compound feature

is a combination of two or more machining features, such as a countersink hole or a

counterbore hole.

2.5D Manufacturing Feature

Machining FeatureReplica on Feature Compound Feature Transi on Feature

Boss

Spherical Cap

Rounded End

Thread

Planar Face

Slot

Pocket

Round HoleStep

Profile Feature

Toolpath Feature

Figure 2.8: 21
2
D manufacturing features in STEP-NC.

Hole Pocket Slot

Boss Spherical Cap Step

Figure 2.9: Examples of machining features in STEP-NC.
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2.3.2 Feature Recognition Methods

The research on FR has been active for more than two decades, and many different

approaches have been introduced. The main problem in FR systems is the identifi-

cation of the implicit patterns from a solid model represented by explicit geometric

entities. In most developed approaches, it is handled by matching templates, rules,

or graphs that act as the expected geometrical and topological properties of the ma-

chining features. Although numerous approaches have been introduced for FR, the

five most prominent approaches are the graph-based method [51–53], volumetric de-

composition method [46, 54–57], rule-based method [58], hint-based method [59, 60],

and artificial neural network method [61,62]. In addition, hybrid approaches [63–68]

combine the benefits of each single method. Among all these methods, the graph-

based approach is the most widely employed method and thus will be reviewed in

detail as follows.

The graph-based FR involves the search for the patterns of face-edge in the input

solid model. In this approach, each face and edge of the solid model are represented

by a node and an arc, respectively. Each node is assigned with some attributes,

such as the surface finish of a face and the geometric type of the face, whereas each

arc is attached with several other properties, such as the convexity and concavity

of the corresponding edges. Usually, a subgraph is decomposed from the complete

graph, and then the graph matching approach is used to determine if the pattern

of the subgraph matches that of a template feature. Figure 2.10 shows the process

of graph-based FR for a slot feature. In the figure, the subgraph with three node

faces (7, 8, and 9) connected by two concave edges is the same as the pattern in the

template graph of the slot feature with two wall faces connected by a floor face. Joshi

and Chang [51] presented the original graph-based FR method and they introduced

the concept of Attributed Adjacency Graph (AAG), which, as stated above, forms

the basic principle of this type of FR. The initial AAG is limited to recognizing
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features from a negative polyhedral solid model. Subsequent studies improved the

performance of graph-based approach by assigning more geometric attributes to the

nodes and arcs, such as perpendicularity, coaxiality, and parallelism [52,53].

Figure 2.10: Graph-based FR for a slot feature [1].

Although graph-based methods demonstrate a high level of competence in recog-

nizing independent features that do not change their face topology and other features

through interaction, these methods have a major drawback in lacking the capability

to handle arbitrary feature interactions. In the cases of the feature interactions, the

basic topology of the features is changed as many vital faces are either deleted or

partially trimmed or decomposed into many faces with different shapes. An example

of a feature interaction that prevents the graph-based method from recognizing fea-

tures properly is illustrated in Figure 2.11. In this case, a large slot interacts with

two smaller slots, and it is expected to be between faces 1 and 7 with face 4 as the

floor. However, the concave edge connection between faces 1 and 7 is deleted due to

its interactions with the other smaller slots. The FR system fails to recognize the

large slot feature because the AAG does not match the template of slot feature.
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Figure 2.11: Interactions between three slot features and the corresponding AAG [1].

The graph-based approach is believed to be the most used FR method among the

commercial FR systems. For instance, Siemens NX has a CAPP module based on the

FR technique, called Feature Based Machining. First, the machining features specified

in STEP AP 224 are recognized in the system, and then machining operations are

assigned to these features based on their characteristics. However, the system has

difficulty dealing with feature interactions. As shown in Figure 2.12, the FR technique

in Siemens NX can detect the isolated holes and the top slot properly. However, the

slot in the center was detected as two separate slots, and the pocket feature cannot

even be recognized at all because the graph of pocket is interrupted when the pocket

interacts with the slots on the top and in the center.

Face

Machining

Features

Figure 2.12: An example part for the FR technique in Siemens NX.
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Although these methods are promising, each method has its own disadvantages

and benefits. Today’s FR techniques are still not able to handle arbitrary intersecting

features.

2.4 Analytic Geometry and Discrete Geometry

Geometry representation is a method for representing the geometry of an object

in computers. Basically, there are two types of geometry: analytic and discrete

geometries. In analytic geometry, the objects are represented by either a set of surfaces

and curves or a combination of primitives defined by mathematical equations. In

contrast, the discrete geometry describes the shape of the objects using discrete data.

2.4.1 Analytic Geometry

Constructive Solid Geometry (CSG) and Boundary Representation (B-rep or BRep)

are two typical analytic geometries. These geometry representations are the 3D solid

modeling techniques in the geometric modeling kernel, which is the core component of

the modern CAD/CAM packages. As shown in Figure 2.13, the geometric modeling

kernels currently on the market include Parasolid, ACIS, APM Engine, Shape Man-

ager, Open CASCADE, Convergence Geometric Modeler, C3D, and Granite, among

which Parasolid and ACIS dominate the kernel market. Most advanced CAD/CAM

packages were developed based on these kernels. Siemens NX, Solid Edge, SolidWorks,

MasterCAM, and GibbsCAM are built based on Parasolid. AutoCAD, Inventor, and

Fusion 360 used ShapeManager. CGM is the kernel of CATIA.
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Figure 2.13: Geometric modeling kernels.

The CSG technique describes a solid model using Boolean operations (i.e., inter-

section, union, and difference) and geometric transformations of solid primitives, such

as blocks, triangular prisms, cylinders, spheres, cones, and torus. The topology and

geometry information are stored implicitly and must be retrieved from the primitives

when required. The tree structure is used in the CSG approach to organize the rela-

tionship between the solid primitives. Figure 2.14 shows the CSG structure of a part

model in which the model on top of the tree is represented by a Boolean union of a

block and a cylinder. The major benefit of the CSG structure is that the features

can be arranged simply based on the order of model construction and deconstruction.

Nevertheless, the CSG approach can only describe limited types of part geometry,

and its implicit representation and non-uniqueness limit its application in FR. Usu-

ally, CSG is combined with BRep for solid modelling in CAD/CAM packages. In

comparison, BRep explicitly represents a solid model through a collection of con-

nected surface elements, and it uses low-level information to describe the geometry

and topology of the solid model in terms of its boundary. The geometric entities that

describe the topology include faces, edges, and vertices, whereas the geometry of the
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solid is described by surfaces, curves, and points. Compared with the CSG, the BRep

is more flexible, and it has a much more extensive set of operations.

S1 S2

S1-S2

-

S1 S2

Figure 2.14: The CSG structure of a solid model.

2.4.2 Discrete Geometry

Four common types of discrete geometry exist: point cloud, depth map, volumetric

representation, and polygonal mesh. The point cloud represents the part geometry

by unorganized discrete points on its surface. In comparison, when representing an

object by a depth map, a uniform grid is created based on the dimensions of the

object and each pixel in the grid contains the depth information of the part along a

specific direction. Specifically, the polygonal mesh can be considered a special type

of BRep, where all the faces of the part model are defined by planes. As shown in

Figure 2.15, the model is called triangle mesh when all the planes in the polygonal

mesh are triangles. The triangle mesh (a "tessellated" surface) is used extensively in

additive manufacturing because of the simplicity of its data format and its capability

to interchange data between CAD/CAM systems. Most modern CAD packages have

the function to convert a solid model into a triangle mesh. Unlike all other geometry

representations, the volumetric approach describes objects by the volumetric data

instead of a surface. In this approach, the space constrained by the dimensions of the

object is subdivided into several small elements, called voxels. Each voxel defines a
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specific volume of the part. It can also be assigned with additional attributes, such

as the material density and color to represent the various states of the part at the

location.

Figure 2.15: Triangle mesh of Utah Teapot.

2.4.3 Tool Path Planning on Discrete Geometry

Compared with the analytic geometry, the discrete geometry has much more flexi-

bility in representing parts with complex geometry; its geometric information is also

much simpler although the precision of the discrete geometry is limited. In addition,

one way in which the discrete geometry is superior to the analytic geometry when

used in CNC machining is its computational efficiency in gouging detection, where

the gouging between the cutting tool and the workpiece is detected during the ma-

chining process [69]. And hence the triangle mesh is widely used in CAM software

for gouging detection.

With the development of 3D scanning techniques in metrology and the 3D printing

techniques in rapid prototyping, the discrete geometry representation is becoming

even more popular than ever in the manufacturing industry. Because of its high

flexibility in representing complicated geometry, the discrete geometry has been ex-
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tensively applied in machining freeform and compound surfaces. Numerous tool path

planning methods [69–73] have been developed for machining discrete geometry in the

past two decades. Kim and Yang [69] presented an iso-planar approach to generate

3-axis CNC tool paths from triangle meshes. To keep a constant scallop height, the

CL surface is maintained according to the defined deformation vectors. Sun et al. [70]

introduced a new iso-parametric method for generating tools path for cutting freeform

surfaces based on triangle mesh. In their approach, a parameterization procedure is

applied to the triangle meshes to get the parameters of the surface. The tool paths

are subsequently generated based on the parameter lines obtained from the surface.

Xu, Sun and Wang [72] developed a method to generate contour parallel tool paths

by offsetting the curves formed by the boundary of the triangle mesh. To handle

the self-intersections problem in offsetting the boundary curve, the mesh flattening

technique is utilized.

With the advent of General-Purpose Graphics Processing Unit (GPGPU), the com-

puting power of modern computers has been greatly enhanced, and several studies

have explored the utilization of GPGPU in automated tool path planning based on

discrete geometry [74–77]. Tarbutton et al. [74] proposed a voxel-based tool path

generation method under the parallel processing framework. The part was first vox-

elized into a voxel model, and the tool path was then generated by updating the Z

height in each CL point in the template tool path to a minimum value that the tool

is not gouging with the surface of the part. Ray casting was employed to detect the

part surface. Konobrytskyi et al. [75] developed an approach for generating the tool

path for 5-axis CNC machining based on highly parallel discrete volumetric geometry

representation. A two-level tree volume representation, which was well-constructed to

match GPGPU, was proposed to be the underlying geometry of the part. The 5-axis

CNC tool path was generated by successively performing the 3D contour offsetting

algorithm the entire surface of the part is covered.
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Tool selection plays an important role in the reduction manufacturing time of CNC

machining. A GPU-accelerated automatic generalized cutter selection for finishing

freeform surfaces based on depth map was presented by Balabokhin et al. [76]. In this

approach, the tool performance was determined as a function of the area that can

be milled by the tool in the given cutter location point below the tolerance surface

and the tool feed rate was evaluated at each surface point for each tool. The tool

with the best performance was selected as the optimal tool for each surface point.

The GPU was used to perform the most time-consuming calculations in the proposed

algorithm in parallel, which are building the depth of cutter maps, building "finished

area" maps, and building the surface finishing performance maps.

In summary, although several methods were developed to generate tool paths for

discrete geometry, the feature-based automated tool path planning for discrete geom-

etry has been little studied.



CHAPTER 3: AUTOMATED MACHINING FEATURE RECOGNITION

This chapter introduces a new method for region segmentation on triangle meshes.

It also describes a hybrid method of graph-based and volume decomposition ap-

proaches for recognizing the STEP-NC machining features from the segmented re-

gions.

3.1 Region Segmentation

Unlike recognizing machining features from analytic geometries which are composed

of a limited collection of connected surfaces, the feature recognition from discrete

geometries handles massive discrete data. As shown in Figure 3.1, the parts in this

study are represented by triangle meshes consisting of a large number of triangles. To

facilitate the recognition of machining features from the triangle meshes, the region

segmentation is an essential step to reduce the complexity of the problem by merging

the triangles into different regions.

In this study, a new face-based robust mesh segmentation method involving three

steps is introduced to segment the mesh into several regions representing different

surface shapes. In the first step, a primary shapes region segmentation approach is

utilized to detect primitives with the triangulated mesh. With the presence of noise in

the mesh, a primitive may be segmented into several regions. Thus, an additional step

is subsequently taken to merge the regions with similar surface parameters. Finally, a

final islands region segmentation is applied to merge the isolated regions into freeform

surface regions.
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Figure 3.1: An example part represented by a triangle mesh.

3.1.1 Primary Shapes Region Segmentation

For most meshes from the mechanical parts, the underlying shapes for the surface

regions are primitives. The segmentation of primitives can significantly reduce the

number of elements be handled in the following step and thus the machining feature

recognition from triangle meshes can be simplified considerably. Therefore, a region

segmentation algorithm is developed in this work to segment the meshes into different

regions, called primary shape regions. Each region represents a primitive shape, i.e.,

a plane, a cylinder, a sphere, a cone, or a torus.

Initially, an adjacency graph is built for the target triangle mesh. As shown in

Figure 3.2(a) and (b), each triangle has three edges and each edge are shared by two

triangles in a manifold mesh. For each triangle, the triangles that share a common

edge with it are its adjacent triangles. To create the adjacency graph, the adjacency
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information is first detected and saved for each individual triangle in the mesh. The

adjacency information for all the triangles in the mesh then forms the adjacency

graph as shown in Figure 3.2(c). The adjacency graph facilitates the understanding

of the mesh topology for a computer algorithm. Starting from any single triangle in

a manifold mesh and moving its adjacent triangles, all the triangles can be gradually

visited. As shown in Figure 3.2(b), the mesh of a cube contains 2 triangles on each

of its 6 faces for a total of 12 triangles. For example, if the beginning triangle is the

triangle T1, its neighboring triangles, T2, T3, and T4 can be discovered. Then moving

to the next triangle T2, its adjacent triangles T5 and the other triangle can be also

visited. By performing the operation successively for each triangle in the mesh, all

12 triangles can be detected.

(a) (b) (c)

Figure 3.2: Triangle mesh of a cube and its adjacency graph: (a), triangle mesh; (b),
boundaries and triangles within the mesh; (c), adjacency graph of the triangles.

Based on the adjacency graph, a region segmentation algorithm is gradually applied

to detect the primary shape regions. The planar regions are first segmented as the

plane is the most common shape in mechanical parts. When a bounded plane is

composed of a few connected triangles, all the triangles on the plane should have the

same surface normal. This intrinsic property of the plane is employed to segment the

planar regions within a mesh.
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Algorithm 3.1 Region Growing for Planar Region Segmentation
Input : mesh is the triangle mesh

Input : graph is the adjacency graph of the triangles in the mesh

Input : αt is the angle threshold for grouping the triangles into planes

1: regions = []

2: for i ∈ 1 : ntris(mesh) do

3: seed_tri = mesh.tris[i] . get a triangle within the mesh

4: if !visited(seed_tri) then

5: region = [], queue = [], −−−−→naverage = −−−−−→nseed_tri

6: add seed_tri to region, add seed_tri to queue

7: while !is_empty(queue) do

8: query_tri = pop(queue)

9: neighbors = get_adjacent_tris(query_tri, graph)

10: for neighbor_tri ∈ neighbors do

11: β = get_angle(−−−−−−−→nneighbor_tri,
−−−−→naverage)

12: if β < αt and !visited(neighbor_tri) then

13: add neighbor_tri to region, add neighbor_tri to queue

14: −−−−→naverage = get_average_normal(region)

15: end if

16: end for

17: end while

18: end

19: add region to regions

20: end if

21: end for

22: return regions

The region growing algorithm shown in Algorithm 3.1 is executed to group the



31

triangles into the planar regions. Starting from a seed triangle, its adjacent triangles

are identified based on the adjacency graph and the corresponding geometric infor-

mation from these triangles is extracted. For each of the adjacent triangles, the angle

between its face normal and the average face normal of the region is computed. If

the angle is within a threshold and the triangle has not been visited yet, then the

adjacent triangle is added to the queue data structure. Initially, the average face

normal is equal to the face normal of the seed triangle. Once a new triangle is added

to the planar region, the average face normal is updated as the average value of the

face normals of all the triangles in the region. This process is repeated for the next

triangles in the queue until the queue is empty. By the end of the operation, a planar

region is segmented from the mesh. If there are still triangles that have not been vis-

ited, the whole operation is performed again until all the triangles are visited. Based

on the region growing algorithm, the triangle mesh is decomposed into multiple pla-

nar regions and the parameters of the planes are also obtained by fitting a plane to

the points in each planar region. A planar region can have only a single triangle or

multiple triangles.

In the next stage, the cylindrical regions are segmented by using a similar region

growing algorithm. The Gaussian image approach [78] is utilized to determine if the

neighboring facets or regions are on the same cylinders. For an arbitrary cylinder,

its Gaussian image is a great circle on the Gaussian sphere. As the cylinder in

the triangle mesh is composed of triangles, the face normals of the triangles on a

cylindrical region form a part of the great circle on the Gaussian sphere. Before

starting the segmentation of cylindrical regions, a new adjacency graph is created

based on the adjacency relationships between the different planar regions. After the

triangles in the mesh are merged into planar regions, new boundaries form for each of

the planar regions. Each region boundary is formed by multiple triangle edges. Two

planar regions are labeled as adjacent regions if they share at least one common edge
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along their boundaries. After the adjacency graph is created for the planar regions, a

similar region growing algorithm is applied to segment the cylindrical regions. Taking

a seed region to start, its neighboring regions are found. For each tripod of the three

regions including the seed region itself, a cylindrical region test is applied. The three

planar regions are on the same cylinder if two conditions can be fulfilled: first, taking

one triangle on each region into account, there is a constrained plane passing thru the

origin of Gauss sphere such that the distances of the three face normals of the triangles

to the constrained plane are below a threshold value; second, the difference between

the radius of the circle fitted on the 3 points defined by the face normals and the radius

of the Gauss sphere is below a threshold value. Once three neighboring regions are

determined to be on the same cylinder, they are merged into a cylindrical region, and

the parameters of the cylinder are then computed by fitting a cylinder to the points

in the region. The region growing algorithm keeps growing and merging additional

adjacent regions into the same cylinder if the surface normal of the additional region

is perpendicular to the axis of the cylinder and the projected distance from the center

of the cylinder to any of the points in the region on the axis is equal to the radius of

the cylinder.

The conical, spherical, and toroidal shapes are subsequently detected by following

similar segmentation approaches, as previously stated. In the segmentation of each

primitive shape from the mesh, a primitive shape is first fitted to the adjacent regions

and the region growing algorithm is used successively to merge the regions on the

same primitive shapes. Based on the primary shapes region segmentation algorithm,

the triangle mesh can be segmented into primary regions. Figure 3.3 shows the

result of detecting the primary shapes from the mesh example illustrated in Figure

3.1. The triangle mesh is tessellated from a CAD model that contains several planar

shapes, a few cylindrical shapes, a spherical shape, a conical shape, and a freeform

shape. Among these shapes, the planar, cylindrical, spherical, and conical shapes are
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segmented correctly from the mesh into different primary regions while the freeform

shape in the middle of mesh is decomposed into several primary regions, which can

be merged by the method introduced in the following section into a single surface

region.

Figure 3.3: Segmentation result of the example triangle mesh after applying the
primary shapes region segmentation algorithm.

3.1.2 Merging Primary Shape Regions

Most existing segmentation approaches are sensitive to noise. The triangle mesh

is usually assumed to be noiseless in these methods. However, in the manufacturing

industry, the triangle mesh can be obtained from different sources. For example, the

mesh can be generated from machining simulation in CAM software. The mesh can

also be 3D scanned data from a manufactured part. In these cases, the resolution

of the discrete geometry may be low and even worse, the data may contain noise.

Thus, the primary shapes detection approach may fail on these cases. As shown in

Figure 3.4(a), the cylinder in a low resolution mesh is segmented as three independent
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cylindrical regions in the process of the primary shapes region segmentation.

Algorithm 3.2 Merging Primary Shape Regions
Input : regions is the primary shape regions

1: graph = build_adjacent_graph(regions)
2: merged_regions = []
3: for region ∈ regions do
4: a_regions = get_adjacent_regions(region)
5: for a_region ∈ a_regions do
6: if is_mergeable(region, a_region) then
7: mergeable_regions = region_growing(a_region, graph)
8: merged_region = merge_regions(mergeable_regions)
9: add merged_region to merged_regions

10: end if
11: end for
12: end for
13: return merged_regions

To improve the robustness of the primary region segmentation algorithm, an ad-

ditional step is taken to merge the neighboring regions that are on the same shape

after detecting the primary shapes. As shown in Algorithm 3.2, an adjacency graph

is first built based on the boundaries of the regions. If two neighboring regions with

the same shape type have a similar parameter, then the two regions can be merged

into a single primary shape region. For example, in the case of a cylinder, two cylin-

drical regions can be merged into a single region if the angle between their axes and

the difference between their radii are both within the defined threshold. Once two

mergeable regions are detected, similar to the detection of primary shapes, a region

growing algorithm is utilized to grow the adjacent region and identify all the adjacent

regions with a similar shape property until no new region can be added. Finally, the

mergeable regions are combined into a single primary shape region.

The segmentation result of the mesh example after merging the primary shape

regions is shown in Figure 3.4(b). The three cylindrical regions detected in the pro-

cedure of primary shapes region segmentation are merged into a single cylindrical

region.
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(a)

(b)

Figure 3.4: Comparison between the results of primary shapes region segmentation
and the two steps region segmentation methods on a triangle mesh with a low reso-
lution: (a), primary shapes region segmentation; (b), two steps region segmentation.

3.1.3 Final Islands Region Segmentation

With the algorithms for detecting and merging primary shape regions, the primary

shapes within the triangle mesh can be identified. However, some mechanical parts

are designed to contain freeform shapes. As the mesh is decomposed into multiple

primitive shapes after the primary shapes segmentation and the freeform shapes can-

not be described by any single primitive shape, the freeform shapes are detected as a

few primary shape regions. As shown in Figure 3.5(a), the planes in a mesh example

are all detected correctly as the planar regions. Nevertheless, the freeform shape in

the middle of the mesh is segmented into several primary regions instead of a whole

region.
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Algorithm 3.3 Final Islands Region Segmentation
Input : regions is the primary shape regions

1: freeform_regions = []

2: graph = build_adjacent_graph(regions)

3: i_regions = get_regions_with_inner_boundary(regions)

4: for region ∈ i_regions do

5: boundaries = get_inner_boundaries(region)

6: for boundary ∈ boundaries do

7: c_regions = get_connected_regions(graph, boundary, region)

8: for t_region ∈ c_regions do

9: f_regions = get_connected_regions(graph, region)

10: add f_regions to c_regions

11: end for

12: freeform_region = merge_regions(c_regions)

13: add freeform_region to freeform_regions

14: end for

15: end for

16: return freeform_regions

To detect the freeform shapes within a discrete geometry, a final islands region

segmentation algorithm, as described in Algorithm 3.3, is applied after the primary

shapes segmentation. As the recognition of general freeform shapes that can intersect

with primary shapes or other freeform shapes is very complex, the freeform shapes

are assumed to be isolated and located on top of a single primary shape to reduce the

complexity of this problem. In the beginning of the algorithm, a new adjacency graph

is created for the regions in the mesh after the primary shape regions are detected.

The primary shape regions that contain inner boundaries are then detected. A region

can have multiple boundaries that are categorized as inner and outer boundaries. A
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boundary is classified as an outer boundary if it can enclose all the projected points

when projecting the points on the region and the boundary onto a plane along the

surface normal of the region (for planar region) or the axis of the region (for other

types of regions). Otherwise, the boundary is labeled as an inner boundary. As

shown in Figure 3.5 (a), the red dotted curve is the outer boundary of the green

planar region and the black solid curve is the inner boundary of the region. In the

subsequent step, the freeform shapes are detected based on the inner boundaries.

For each inner boundary of these primary regions, the regions connected to the inner

boundary are recognized. If the number of connected regions is more than one, these

connected regions are probably on a freeform shape. Once these regions are detected,

their adjacent regions are successively identified. The process is repeated until no

new adjacent region can be found. All the detected regions are eventually merged

into a single region and marked as a freeform shape region. As shown in Figure 3.5

(b), the freeform shape is detected successfully from the mesh example based on the

final islands region segmentation algorithm.

(a) (b)

Outer 

boundary

Inner

boundary

Figure 3.5: Comparison between the segmentation results of an example mesh before
and after applying the final islands region segmentation: (a), before; (b), after.

In summary, a new region segmentation algorithm with three steps is developed

in this dissertation to detect primitive and isolated freeform shapes within triangle

meshes. As shown in Figure 3.6, the algorithm can decompose a triangle mesh into
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different surface regions. Each region either represents a freeform or a primitive shape.

Figure 3.6: Final segmentation result of the example part after applying the three
steps region segmentation algorithm.

3.2 Machining Feature Recognition

The features have various definitions based on their areas of application. As the

goal of this work is to automate the tool path planning process for CNC machining,

the machining features defined in STEP-NC are the target features to be recognized

from the triangle meshes.

As reviewed in the background chapter, graph-based, rule-based, hint-based, vol-

ume decomposition, and artificial neural networks are the five most used method

for feature recognition. However, each method has its own benefits and drawbacks.

In this study, a hybrid feature recognition approach combining the advantages of

the graph-based and the volume decomposition methods is utilized to recognize the

STEP-NC machining features from the detected surface regions. The details of the

machining feature recognition method are described in the following sections.
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3.2.1 Graph-based Approach

One of the major drawbacks of the traditional graph-based approach is its failure to

guarantee that the recognized features are all machinable [1]. To resolve this problem,

Xu et al. [79] proposed a new graph-based feature classification for recognizing STEP-

NC machining features from triangle meshes. The triangle mesh was first segmented

into surface regions, and the machining features are subsequently recognized from the

surface regions. In their graph-based approach, a new set of graphs was defined for

STEP-NC machining features to ensure manufacturability. Based on these graphs and

some geometric hints of the inner/outer boundaries and concave/convex edges, the

STEP-NC features are recognized. This approach is used in this study to identify the

simple machining features with limited interactions with other machining features.

Concave boundary

Convex boundary

(a)

0 - Concave

1 - Convex

(b)

1

0

1 1 1

1 1 1 1

1 1
1

0 0 0

1 1 1

1 1 1

1

1

1

Figure 3.7: An example part with 11 surface regions after segmentation and the
ARAG of the surface regions: (a), the surface regions of the part; (b), ARAG.

In this initial step, an attributed region adjacency graph (ARAG) is created based

on the adjacency relationships between the detected surface regions. The ARAG is

composed of a set of node and edges. Each node in the ARAG represents a surface

region while each edge indicates that the two regions connected by the edge are

adjacent. In addition, each edge is assigned with an attribute showing whether the

two regions share a convex triangle edge or not. As shown in Figure 3.8, an edge is
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concave when the angle between the normals of two faces sharing the edge is less than

180°while the edge is convex if the angle is larger than 180°. In a triangle mesh, an

edge can be shared by two triangles. The convexity test on a triangle edge is executed

by utilizing the vertices and face normal information of two neighboring triangles that

share the edge. As shown in Figure 3.9, triangles A and B share the edge PcPd. To

test whether the edge PcPd is concave or convex, Equation 3.1 is utilized. Figure

3.9 shows the ARAG of a part example with 11 surface regions after segmentation.

Among the adjacent regions, regions R2, R3, R4, and R5 share a concave triangle

edge with the region R6. Thus, a value of zero is assigned to the edges connecting the

nodes representing these regions. Other adjacent regions all share a convex triangle

edge and, hence, a value of one is assigned to these edges in the ARAG.

(a)

Concave edge

(b)

Convex edge

Figure 3.8: Concave and convex edges: (a), concave edge; (b)convex edge.

A

B

Figure 3.9: Convexity test on a triangle edge.


−−→
PaPb · −→na <= 0, convex edge,

−−→
PaPb · −→na > 0, concave edge,

(3.1)

where −→na is the face normal of the triangle A, Pa and Pb are the vertices of triangles
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A and B, respectively, and
−−→
PaPb is the vector from vertex Pa to vertex Pb.

In the pure graph-based approaches, the complete graph of the part is decomposed

into sub-graphs and the features are recognized by matching the pattern of each sub-

graph with the template. However, the graph may be difficult to decompose and

analyze when there are thousands of nodes and edges in the graph. In the STEP-

NC machining features, some geometric "hints" can be used to infer the locations of

machining features so that the sub-graph of the features can be more easily extracted.

The holes and closed pockets in STEP-NC are usually connected with a region’s

inner boundaries that only have convex edges. Bosses are located at a region’s inner

boundaries with only concave edges. The profile features are connected to the outer

boundaries of the regions. As shown in 3.10, region R6 has both an inner and an outer

boundary, and all the edges on the inner boundary are concave. Hence, there might

exist a boss feature composed of the region R6’s adjacent regions that are connected

with the inner boundary.

Inner boundary

Outer boundary

Figure 3.10: Inner and outer boundaries of a surface region.

After obtaining the regions connected with the inner or outer boundaries, the graph

for the adjacent regions is created and compared with the template graph of feature.

Once a feature is recognized, its related regions are labeled as extracted and will not

be considered when detecting other machining features. As shown in Figure 3.11, the

ARAG between regions R2, R3, R4, and R5 matches the pattern of a boss feature,

and thus they are extracted and marked as a boss.
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Concave boundary

Convex boundary

(a) (b)

0 0

0
0

1

1

1

1

0 - Concave

1 - Convex

Figure 3.11: The boss feature and its ARAG: (a), regions related to the boss feature;
(b), ARAG of the boss feature.

By using the graph-based approach, the isolated STEP-NC machining features can

be successfully recognized from the surface regions. As shown in Figure 3.12, the

feature recognition algorithm detects all the machining features from the triangle

mesh example, including 4 faces, 2 bosses, 3 through holes, 3 blind holes, 1 pocket,

1 open pocket, 1 countersink, 1 region, 1 spherical cap, and 1 profile. In addition to

the independent features, the combination of a blind hole with a flat bottom and a

through hole with the same axis and a smaller radius with the blind hole is labeled as

a counterbore hole. The combination of a countersink and its coaxial hole is marked

as a countersink hole.

Profile

Boss

Pocket

Face

Blind Hole

Through Hole

Countersink

Open Pocket

Spherical Cap

Region

Figure 3.12: Result of machining feature recognition from the example part.
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3.2.2 Volume Decomposition

Although the graph-based approach can extract all the isolated machining features,

it relies heavily on the adjacency graph and the hints of "inner/outer" boundaries.

The pure graph-based approach fails to identify some features in the mesh where the

inner/outer boundary loops are not well formed. Figure 3.13(a) shows the segmen-

tation results of an example part. In this part, the profile of the pocket intersects

with multiple regions including two fillet regions and a face region, so, there is no

inner boundary in a single region to locate the pocket. Thus, the graph-based ap-

proach fails to recognize the pocket feature from the part. In this study, a convex hull

volume decomposition approach [46] is employed to identify the machining features

from unrecognized regions after the graph approach is applied. In the first step of the

volume decomposition approach, a convex hull is computed for the whole mesh and

then the volume defined by the mesh is subtracted from the convex hull. This process

is repeated on the resultant volumes until the net volume is equal to zero. Once a

negative volume is extracted, the unrecognized regions corresponding to this volume

are merged and identified as a feature. After applying the volume decomposition, the

pocket is successfully recognized from the example part, as shown in Figure 3.13(b).

(a) (b)

Profile

Face

Fillet

Pocket

Figure 3.13: An example part without inner boundary: (a), segmentation result; (b),
feature recognition result.
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3.2.3 Hybrid Approach for Feature Interactions

Feature interactions are the cases that multiple machining features intersect with

each other so that the geometrical shapes of the original features are altered. The abil-

ity to handle feature interactions is an important performance indicator for a feature

recognition system. As stated in the preceding sections, the graph-based approach is

sensitive to interacting features; hence, a hybrid approach is utilized to handle fea-

ture interactions. After the graph-based approach is employed to identify the isolated

features without intersecting with other features, the volume decomposition method

is applied to extract the volume defined by the intersecting features. Finally the

graph-based approach is used again to decompose the volume into multiple features.

Figure 3.14(a) shows an example part with feature interactions. The pocket in the

middle of part intersects with three slots so that the inner boundary on the top face is

broken and the graph for the pocket is destroyed. Similar to the example part shown

in Chapter 2, which was tested on the NX software, the graph-based approach cannot

recognize the pocket feature. However, with the hybrid approach, the slots and the

pocket are successfully extracted from the part. The result of the feature recognition

is shown in Figure 3.14(b).

(a) (b)

Profile

Face

Slot

Pocket

Figure 3.14: An example part with feature interactions: (a), segmentation result;
(b) feature recognition result.
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3.3 Case Study

Several real mechanical parts with different machining features were tested to val-

idate the effectiveness of the proposed method. Figures 3.15 through 3.18 show the

results of applying the proposed feature recognition method to four mechanical parts

with a triangle mesh as the underlying geometry representation. In the first part,

29 machining features were identified correctly from the part, including 11 bosses,

1 closed pocket, 13 faces, 3 holes, and 1 profile. In the second part, 13 machining

features with 4 through holes, 4 blind holes, 2 curved faces, 2 planar faces, and 1

profile were recognized. In the third part, a total of 101 features were recognized: 87

faces, 5 through holes, 6 blind holes, 1 through pocket, 1 boss, and 1 profile. In the

last part, 26 machining features were recognized, including 4 faces, 10 through holes,

9 through pockets, 1 boss, and 2 profiles.

(a)

(b)

Profile

Boss

Face

Blind Hole

Pocket

Figure 3.15: Result of machining feature recognition from example part 1 with dif-
ferent views: (a), top view; (b), bottom view.
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Profile

Blind Hole

Planar Face

Through Hole

Curved Face

Figure 3.16: Result of machining feature recognition from example part 2 with dif-
ferent views: (a), top view; (b), bottom view.

(a)
(b)

Profile

Boss

Face

Blind Hole

Through Pocket

Figure 3.17: Result of machining feature recognition from example part 3 with dif-
ferent views: (a), top view; (b), bottom view.
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(a) (b)

(c) (d)

Profile

Boss

Face

Through Hole

Through Pocket

Figure 3.18: Result of machining feature recognition from example part 4 with dif-
ferent views: (a), top view; (b), side view 1; (c), side view 2; (d), bottom view.



CHAPTER 4: AUTOMATED MILLING TOOL PATH GENERATION

Generally, the task of machining mechanical parts is to remove the extra material

outside the volume bounded by the geometry of the part designs from their raw stock

material. The machining process is usually arranged in two stages: roughing and

finishing operations. In the roughing operation, most of the material is cut from the

stock with a large cutter. A smaller cutter is subsequently utilized in the finishing

operation to machine the uncut and the corner regions that the large cutter cannot

reach to ensure the accuracy of the final production. This chapter introduces the

automated tool path planning strategies for the roughing operations. In addition,

the method for generating the tool paths for the facing operation, which is another

common machining operation, is described.

4.1 Roughing Tool Path Generation

The roughing operation is designed to clear a large quantity of material from the

stock efficiently. In the roughing operation of the traditional CAM packages, the part

is usually cut layer by layer from the top to the bottom along a user-defined cutting

direction. For each layer, tool paths are generated for a selected cutting tool to clear

the material within defined boundaries on that layer. However, this approach cannot

guarantee all the features being machined to states that are ready for the finishing

operation because different features maintain different tool accessibility. Although

a small cutter can be used in roughing to remove most of the material from all the

machining features, the total machining time would be increased considerably. In

this study, a different strategy is developed to rough the part in a feature-based tool

path planning system. The roughing tool paths are generated independently for each
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machining feature and then sequenced to machine the whole part.

4.1.1 In-process Model

The initial step in the roughing tool path planning is to identify the volume of

material to be removed. This task is completed by comparing the difference between

the current state of the workpiece with the target state of the workpiece. The current

workpiece can be defined by the stock or the workpiece after the previous machining

operations. To keep tracking the state of the workpiece, an in-process model (IPM)

is an essential feature for an automated tool path planning system. Basically, the

IPM can be created by different types of geometry representation, such as the BRep,

triangle mesh, depth map, and voxel model. Compared to the other representations,

the depth map approach has advantages in terms of editing and scalability. As the

developed tool path planning system needs to update the IPM frequently after each

machining operation, the depth map method is thus employed as the IPM.

As shown in Figure 4.1, the initial IPM is created from the stock. The stock can be

specified by the dimensions in X, Y, and Z directions or a mesh. When the dimensions

are provided, a mesh is created for the stock based on the dimensions. Then the mesh

is projected onto the user-selected base plane to generate the initial IPM. After each

machining operation, the IPM is updated based on the tool paths in the operation.

(a) (b)

Figure 4.1: The initial IPM: (a), 2D plot; (b), 3D plot.
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4.1.2 Roughing Tool Path Generation for a Single Feature

When roughing each machining feature, the volume to be removed, called the

removal volume, is first extracted. The removal volume is computed as the Boolean

difference between the current workpiece and the volume defined by the target feature.

To obtain the removal volume, a depth map is also generated for the target feature

by projecting the mesh region in the feature to the IPM. The pocket feature in a

part exampl and its depth map representation are shown in Figures 4.2 and 4.3,

respectively.

Profile

Boss

Pocket

Face

Figure 4.2: An example part with a pocket feature.

(a) (b)

Figure 4.3: The depth map of the feature: (a), 2D plot; (b), 3D plot.
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The removal volume represented by a depth map is obtained by subtracting the

feature depth map from the IPM. Figure 4.4 shows the depth map of the removal

volume for the target pocket feature to be machined in the part example. As shown

in the figure, only the volume bounded within the pocket feature is to be removed

in the roughing operation. In the product that requires a tight tolerance, a small

amount of material is usually intentionally left on the boundary and the bottom of

the feature, where the critical requirements of dimensional accuracy present. The

material is then machined in the finishing operation so that a good surface finish can

be reached at the critical locations. Considering the small amount of material, the

removal depth map is offset by a small value to represent the actual volume to be

removed.

(a) (b)

Figure 4.4: The depth map of the removal volume: (a), 2D plot; (b), 3D plot.

After the removal volume is constructed, the tool paths are successively gener-

ated to cut the volume. Basically, the direction-parallel and contour-parallel are two

common types of tool path planning strategies for the roughing operation. In the

direction-parallel paths, the cutting tool moves along the line segments in a defined

direction backward and forward. Meanwhile, in the contour-parallel paths, the cutter

is driven along the curves at constant distances from the boundaries. For a roughing

operation, determining which type of tool path planning strategy to apply signifi-

cantly depends on the efficiency of the strategy. The direction-parallel approach can

generate efficient tool paths for machining simple geometries, such as a rectangle
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pocket, because the number of tool retractions resulting from tool inaccessibility is

much lower than the number of retractions for the complex geometries, such as a

pocket with a complex profile and multiple inner bosses. In comparison, the contour-

parallel tool paths are more efficient for complex geometry because a smaller number

of tool retractions are required. To be able to generate efficient tool paths for the parts

with various geometrical shapes, the contour-parallel tool path strategy is utilized in

this study to generate the roughing tool paths.

The start and end depths are first detected from the removal depth map as its

maximum and minimum values. The number of layers is then computed based on the

depth of cut in each layer, which is related to the properties of the selected cutter.

The tool paths are subsequently generated for each layer based on the boundaries

of the removal depth map at that layer. An image processing technique is applied

to detect the boundaries from the removal depth map. The depth map is converted

into a binary image that has only 0 and 1 values and the boundaries are detected as

the contours along the region on the binary image with 1 value. As shown in Figure

4.5, the outer and inner boundaries are detected from the removal depth map of the

pocket feature example.

Boundary

Figure 4.5: Contours detected from the removal depth map.
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After the boundaries of the pocket for the layer are detected, the contour parallel

strategy is employed to generate the roughing tool path. The boundaries are converted

to a set of polylines and the contour-parallel tool paths are generated by repeatedly

offsetting the boundaries until no new polylines can be formed by offsetting. The

initial offset distance is equal to the cutter radius to avoid cutting the boundaries.

The offset distance in the successive iterations is equal to a constant value, called step-

over length. As shown in Figure 4.6, the offset polylines define the contour-parallel

paths for machining the material on the layer.

R

RR

R R

R L

L L

LL

L L

Boundary

Contour Parallel Paths

R: Cutter Radius

L: Step Over Length

Figure 4.6: Boundaries and the contours parallel paths created from the boundaries.

Before removing the material from the stock, the cutting tool needs to get down to

the required depth. When machining the external features, such as an open pocket,

the cutter can plunge into a position where no material exists. However, when ma-

chining closed pockets and slots, the method to enter the workpiece at the starting

depth needs to be considered. Plunging, pre-drilled hole, linear ramping, and circular

ramping are four common methods of entry. The pre-drilled hole technique requires

drilling holes at the starting points. It is usually not preferred as the additional

drilling process may increase the total machining time. In linear ramping, the cutter

is simultaneously fed in the axial direction and in one radial direction. In the circu-
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lar ramping, also called helical interpolation, the cutter moves along a circle while

gradually increasing the depth. The circular ramping is preferable to the other three

methods because this approach typically has less radial engagement on the cutting

tool with the cutting forces distributed across the three different axes. However, not

all of the geometry has enough space for the circular ramping. In these circumstances,

other entry methods are used. A gouging detection technique is employed to select the

best entry method. The circular ramping is selected if the gouging is not detected. As

shown in Figure 4.7, the circular ramping paths are generated to enter the pocket at

the defined height. The contour-parallel paths in each layer are linked by the nearest

neighbor path search. Gouging detection is also considered when linking the paths.

The contour paths are linked by a rapid path if gouging is detected. Otherwise, a

transition path is generated to link the contour paths.

Rapid Path

Transition Path

Ordinary Path

Ramping Path

Figure 4.7: Roughing tool path for the pocket feature in the example part.
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4.1.3 Roughing Tool Path Generation for Profile Features

As shown in Figure 4.8, a profile feature defines the outer profile of the part.

Compared to the closed pocket feature, the boundary of the profile feature need to

be pre-processed so that the contour-parallel tool paths can be properly generated.

Profile

Face

Figure 4.8: An example part with a profile feature.

As shown in Figure 4.9, the removal volume of the profile feature includes two

boundaries. The inner boundary is defined by the profile whereas the outer boundary

is defined by the stock boundary. These two boundaries cannot be used to generate the

contour-parallel tool paths directly. The initial offset distance is equal to the cutter

radius so that gouging is avoided for the boundaries of the closed pocket. However,

the cutter plunges into the workpiece directly if the stock boundary is offset by the

cutter radius. Even worse, the contour-parallel tool path cannot be generated if the

closest distance between the stock and the profile boundaries is less than the cutter

diameter because there is no space to create new offset polylines from the boundaries.
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To resolve this issue, a virtual boundary is created by offsetting the stock boundary by

a distance L, as written in Equation 4.1. As shown in Figure 4.9, a virtual boundary

is created for the profile feature example.

L =


2 ∗Rcutter − Lstep_over, D >= Lstep_over

2 ∗Rcutter − D
2
, D < Lstep_over

(4.1)

where Rcutter is the cutter radius, Lstep_over is the step over length, and D is the

closest distance between the stock and the profile boundaries.

Profile Boundary

Stock Boundary

Virtual Boundary

L

Figure 4.9: The profile, stock, and virtual boundaries.

The contour-parallel tool paths are subsequently generated based on the virtual

and profile boundaries for each layer, as shown in Figure 4.10.
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Profile Boundary

Contour Parallel Paths

Virtual Boundary

Figure 4.10: Target boundary, its associated features, and the generated tool path
to deburr the boundary.

The contour-parallel paths are then linked together by rapid and transition paths

to generate the tool path for machining the profile feature as shown in Figure 4.11.

Compared to the closed pocket feature, the ramping path is not needed for the profile

feature because the cutter can move to the required depth from outside the stock.

Rapid Path

Transition Path

Ordinary Path

Figure 4.11: Roughing tool path for the profile feature in the example part.
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4.2 Automated Tool Path Generation with Multiple Cutters

Conventionally, only a single cutter is used in the roughing operation. When ma-

chining the parts with narrow bottlenecks, a large cutter can only cut a portion of the

material from the feature. As an example, for a part with a pocket feature shown in

Figure 4.12, the distances between inner rectangle boundaries are only 7 mm. There-

fore, to clear the material between the inner boundaries, the diameter of the cutter

must be reduced to be smaller than 7 mm. However, the machining efficiency would

significantly decrease as the length of the tool paths increases greatly for a smaller

cutter. Roughing with multiple cutters is an attractive option to improve the ma-

chining efficiency. A large cutter can be used to remove most of the materials from

the region with simple geometrical shapes. A smaller cutter can then be applied to

clear the more complicated portions like sharp corners and narrow bottlenecks, by

taking advantage of its greater degree of accessibility. However, for parts with com-

plex geometrical shapes, it is rather difficult to determine the optimal tool set with

minimum machining time.

(a) (b)
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Figure 4.12: Example part with a pocket feature: (a), machining features; (b), sketch.
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4.2.1 Optimal Cutter Set Selection

A graph-based approach is introduced in this study to select the optimal set of

cutters for roughing. As shown in Figure 4.13, a directed graph is built for the cutter

selection. Each node of the graph represents an IPM, and each edge is the total

machining cost and the required machining operation to transform the IPM from one

state to another state. IPM0 is the initial IPM, which is defined by the dimensions

of the stock. IPMn is the final IPM. The diameters of the available cutters in the

library are sorted in a descending order. The largest cutter is used to the generate

the tool path for the first operation O1 to transform the stock from IPM0 to IPM1.

The first operation and its machining cost form the edge IPM0 to IPM1 on the

graph. A smaller cutter in the library is selected for the subsequent operation. The

operations and their machining costs are added to the edges of the graph between

the IPMs. The process is repeated until all the materials in the target feature are

machined or the smallest cutter in the library is selected. The nodes of the graph

are determined after all the IPMs are obtained. Additional machining operations

are then added to transform the IPM with a small number to the IPM with a larger

number by using the last cutter to create the latter IPM. These operations and their

machining costs are added as the additional edges in the graph. Once the graph is

constructed, the shortest path from the first node to the last node on the directed

graph is searched. The shortest path provides the optimal set of cutters that can

manufacture the feature with a minimum amount of machining cost. The details of

the graph based optimal cutter set selection are elaborated in the following sections.
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C: Cost

O: Operation

IPM: In-process Model

…

Figure 4.13: Directed graph for the selection optimal cutter set.

4.2.2 Machining Cost Estimation

The machining cost in each operation is estimated by the summation of the time

moving along the paths in the operation and the tool change time. This study con-

siders four types of tool paths for a machining operation: rapid, entry, transition,

and ordinal paths. Rapid path is used to move the cutting tool rapidly from one

position to another position in the air without gouging the part. The entry path,

including linear ramping, circular ramping, and plunging paths, is employed to en-

ter the workpiece at the desired depth. The transition path is utilized to connect

different paths smoothly. The ordinary paths are all other paths beyond the three

types of paths indicated. The transition and ordinary paths are assigned with the

same feed rate while the entry and rapid paths may have different feed rates than

that of the transition and ordinary paths because the tool engagement between the

cutter and the workpiece differs in these paths. For example, rapid paths do not

cut the workpiece so they can be assigned a higher feedrate than the heavy cutting

ordinary path.Considering the different feed rates for different types of tool path and

the time change time, the total machining time for each operation can be computed



61

using Equation 4.2.

ttotal = Lr ∗ fr + Le ∗ fe + Lo ∗ fo + tchange, (4.2)

where lr, le, and lo are the lengths of the rapid, entry, and ordinal paths, respectively,

fr, fe, and fo are the feed rates defined for the rapid, entry, and ordinal paths,

respectively, and tchange is the time cost for the tool change.

4.2.3 Maximum Cutter Selection

Generally, the maximum cutter in the graph starts from the maximum available

cutter in the cutter library. However, the maximum cutter can be selected differently

when the target machining feature is a pocket feature because not all the cutters

can fit inside the pocket without gouging the boundaries. The maximum inscribed

circle (MIC) approach is utilized to determine the maximum cutter for the graph.

Traditionally, MIC is defined as the maximum circle that can be totally enclosed by

a closed curve. MIC is widely used in many fields. For example, in metrology, the

out of roundness is quantified as the maximum deviation between the measured data

points and the MIC [80]. When additional curves are included inside the closed curve,

the MIC is extended to be the maximum circle that completely fits inside the outer

curve without intersecting any of the inner curves in more than one point. This study

uses an image processing technique to calculate the MIC that can be fit into a pocket.

In a discrete geometry of the image representation, the MIC can be formulated as a

max-min problem as written in Equation 4.3. In the initial step, the outer boundary

defined by the profile of the pocket and the inner boundaries defined by the bosses

inside the pocket are detected from the depth map of the pocket feature. For each

point inside the region enclosed by the outer profile, the minimum distance between

the point and all points on the boundaries are then computed. The computation

of the minimum value among the distances between the point and all the boundary
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points is expensive. Thus, a K-dimensional(KD) tree data structure is applied to

accelerate the computation of the minimum distance. The diameter of the MIC is

obtained from the maximum value among all minimum distances.

RMIC = max
∀[xC ,yC ]∈Ω

( min
∀[x,y]∈S

√
(xC − x)2 + (yC − y)2), (4.3)

where RMIC is the radius of the MIC, [xC , yC ] is the center of the MIC, S is the set of

points on the outer and inner boundaries, and Ω is the set of all the points enclosed

by the outer boundary.

(b)

∅

�
1
5

(a)

Boundary

MIC

Figure 4.14: Maximum inscribed circle (MIC) for a pocket feature: (a), outer and
inner boundaries and MIC; (b), detected contours, and MIC on the depth map.

Based on the MIC approach, the complexity of the graph is reduced as the depth

of the graph is shortened. As shown in Figure 4.14, the diameter of the MIC for the

pocket feature in the part example is around 22.0 mm. Any cutter with a diameter

less than 22.0 mm can fit inside the pocket to remove a portion of the material.

Based on the example of the cutter library shown in Figure 4.15, all the cutters in

the library can be used as the initial cutter of the graph. However, in real machining,

the method for entering the workpiece without gouging also needs to be considered.

When machining a pocket feature, the circular ramping, which create a hole inside
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the pocket, is the preferred method for entry. The diameter of the circular ramping

is usually assigned to 95% of the cutter diameter and thus the cutter with a diameter

of 10.0 mm is selected as the maximum cutter.

ϕ15.0 ϕ12.5 ϕ10.0 ϕ7.5 ϕ5.0 ϕ2.5

Unit: mmCutters:

Figure 4.15: An example cutter library.

4.2.4 Generation of IPMs

The algorithm complexity of the proposed graph approach is O(n2) and most of

the computation time occurs in creating and updating the IPMs. Thus, an IPM that

is efficient for editing is essential for the success of the algorithm. The depth map

approach is used to represent the IPM in this study because of its high efficiency in

creation and editing. The initial IPM, IPM0, is created based on the dimensions of

the stock, as shown in Figure 4.16.

(a) (b)

Figure 4.16: Initial IPM (IPM0) represented by a depth map: (a), 2D plot; (b), 3D
plot.

The other IPMs in the graph are created by updating the current IPM based on

the tool paths generated in associated operations. For the pocket feature example,

the first roughing operation is produced by using the first cutter that has a diameter
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of 10.0 mm. After the tool paths for the first operation are generated, the cutting

process of the tool paths are simulated based on the IPM0 to create IPM1, as shown

in Figure 4.17.

(a) (b)
10.0 mm

cutter

Figure 4.17: IPM1 represented by a depth map: (a), 2D plot; (b), 3D plot.

After an IPM is created, it is compared with the feature depth map to check if all

the material in the feature is removed. If not, a smaller cutter is employed to generate

tool paths for the next operation. Figure 4.17 shows that the material in between the

rectangular boundaries remains uncut. Thus, a cutter with a diameter of 7.5 mm is

selected to produce the next operation and a new IPM, IPM2, is created based on

the tool paths in the operation.

(a) (b)7.5 mm

cutter

Figure 4.18: IPM2 represented by a depth map: (a), 2D plot; (b), 3D plot.

As shown in Figure 4.18, the 7.5 mm cutter only clears a small portion of material
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from the regions between the rectangular boundaries. Therefore, an additional cutter

is required to machine these narrow regions and the next smaller cutter is the library,

the cutter with a diameter of 5.0 mm is selected as the cutter used in the next

operation.

(a) (b) 5.0 mm

cutter

Figure 4.19: IPM3 represented by a depth map: (a), 2D plot; (b), 3D plot.

The tool paths in the operation associated with the 5.0 mm cutter form a new

IPM, IPM3, as shown in Figure 4.18. Compared with the feature depth map, all the

material in the pocket is removed. And hence the machining operation with the 5.0

mm cutter is the final operation. With a combination of the 10.0 mm, 7.5 mm, and

5.0 mm cutters, the pocket feature can be machined to a desired shape. However,

this set of cutters and operations may not be the optimal set for cutting the pocket

with a minimum amount of machining cost. Thus, a graph is built with the three

cutters to compute the optimal set of cutters.

4.2.5 Roughing Tool Path Generation

In each roughing operation, the tool paths are generated based on the target re-

moval volume and the selected cutter by using the method introduced in the pre-

ceding section. Figure 4.20 shows the removal volume and the generated tool paths

for transforming the initial IPM, IPM0, to IPM1. The removal volume is extracted

by subtracting IPM1 from IPM0, and then the tool path with a 10.0 mm cutter is
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generated according to the developed roughing path planning strategy.

Rapid Path

Transition Path

Ordinary Path

Ramping Path

(a) (b)

10.0 mm

cutter

Figure 4.20: Tool path generation from the removal volume: (a), removal volume;
(b), generated tool path.

The tool paths for successively using the 10.0 mm, 7.5 mm, and 5.0 mm cutters to

cut the pocket feature are shown in Figure 4.21. The 10.0 mm cutter moves around

the region outside of the narrow region between the inner boundaries to remove most

of the material in the pocket. The 7.5 mm cutter jumps between the corner regions

to cut a portion of the material in the narrow region. Finally, the 5.0 mm cutter

advances to the narrow region to clear all remaining material in the pocket.

(a) (b) (c)Rapid Path

Transition Path

Ordinary Path

Ramping Path

10.0 mm

cutter
7.5 mm 

cutter

 5.0 mm

cutter

Figure 4.21: Tool paths for three cutters to cut the pocket feature: (a), tool paths for
10.0 mm cutter; (b), tool paths for 7.5 mm cutter; (c), tool paths for 5.0 mm cutter.

However, this set of cutters is not necessarily the optimal set of cutters. For
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example, the 7.5 mm cutter may be skipped because the region machined by the 7.5

mm cutter is also accessible to the 5.0 mm cutter. Using a single 5.0 mm cutter

can remove all the material in the pocket. Nevertheless, the total machining cost

may be higher than the set of three cutters. The graph-based approach is utilized

to evaluate each combination of cutters and select the optimal set. After all the

IPMs and operations are generated, the IPMs are added to the graph as the nodes.

The operations and their machining costs are added to the graph as the edges. In

addition, the extra edges of the graph are also added by generating the operations

able to transform the IPM with a smaller number to a larger number. For example,

the 7.5 mm cutter can transform the IPM from IPM0 to IPM2. Thus, an operation,

as shown in Figure 4.22, is created for the 7.5 mm cutter based on IPM0 and IPM2.

In the operation, the removal volume is first built according to the difference between

IPM0 and IPM2, and the tool paths are subsequently generated based on the removal

volume. The operation and its machining cost are added as an extra edge of the graph.

The other operations are generated using a similar method.

(c)(a)

(b)

Rapid Path

Transition Path

Ordinary Path

Ramp Path

 7.5 mm

cutter

Figure 4.22: Tool paths for the operation to transform the workpiece from IPM0 to
IPM2 : (a), IPM0 ; (b), IPM2 ; (c), the generated tool path.



68

4.2.6 Volume Expansion

The roughing operation might create regions with sharp corners. These sharp

corners may not be accessible to a cutter in the subsequent operation if the contour-

parallel path strategy is applied directly to generate the tool path to cut the removal

volume. Consequently, uncut regions are formed after the subsequent operation. As

demonstrated in Figure 4.23(a), when moving along the generated contour-parallel

paths, the 5.0 mm cutter cannot access the sharp corner region in the removal volume

left by the previous operation with a 7.5 mm cutter. Thus, uncut regions, as shown

in Figure 4.23(b), are produced after the operation.

(a) (b)

Cutter

Boundary

Tool Path

Figure 4.23: Uncut region because of the sharp corners : (a), removal volume with
sharp corners and contour-parallel tool paths for a 5.0 mm cutter; (b) uncut regions
left by the tool paths.

To reduce the uncut regions, the region expansion approach proposed by Zhou,

Zheng and Chen [81] is used to expand the removal volume so that new contour-

parallel tool paths can be generated to cover the sharp corner. The hard edges and

the soft edges are first detected from the removal depth map. The hard edges are

the edges of the boundaries of the feature whereas the soft edges are the edges along

the boundary of the current removal volume that do not belong to the hard edges.

The soft edges are then offset by the cutter radius, and the hard edges are offset by
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the cutter diameter, as shown in Figure 4.24. After the edges are expanded, the new

boundary contours are detected from the removal depth map and they are used to

generate the tool path.

Hard Edge

Soft Edge

Expanded Boundary

(a) (b)

Figure 4.24: Region expansion based on soft and hard edges: (a), the soft edges, hard
edges, and expanded boundary; (b), expanded removal volume.

The comparisons of the tool paths using and not using the expansion strategy are

shown in Figure 4.25. The simulation result indicates that the expansion method can

remove the material in the corner region so that the part quality is improved.

(a) (b)

Cutter

Boundary

Tool Path

Figure 4.25: Comparisons of the boundaries and tool paths on the depth map of the
removal volume before and after region expansion: (a), before; (b), after.
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4.2.7 Cutter Set Selection and Optimization

After all the nodes and edges of the graph are obtained, the final step is to build

the directed graph and find the shortest path between the first and the last nodes

in the graph, which represents the minimum cost to transform the workpiece from

IPM0 to IPMn. Dijkstra’s graph approach [82] is employed in this study to find

the shortest path. As shown in Figure 4.26, the shortest path between the IPM0

and IPM3 is the combination of the path connecting IPM0 and IPM1 and the path

connecting IPM1 and IPM3, which requires a total machining cost of 3.47 minutes

to machine the pocket feature.

3.08 mins 0.16 mins 0.38 mins

0.39 mins

3.98 mins

7.09 mins

10.0 mm

cutter

7.5 mm 

cutter

 5.0 mm

cutter

 5.0 mm

cutter

7.5 mm 

cutter

 5.0 mm

cutter

Figure 4.26: Directed graph for the example part.

The shortest path in the graph determines the optimal cutter set and the associated

operations to machining the target features. The tool paths of the selected operations

for cutting the pocket example are shown in Figure 4.27. In the machining process,

the 10.0 mm cutter removes most of the material in the pocket while the narrow

regions between the rectangles are moved by the 5.0 mm cutter.
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(a) (b)

10.0 mm

cutter

 5.0 mm

cutter

Rapid Path

Transition Path

Ordinary Path

Ramping Path

Figure 4.27: Selected cutters and the associated tool paths: (a), tool path for the
10.0 mm diameter cutter; (b), tool path for the 5.0 mm diameter cutter.

4.3 Facing Tool Path Generation

When manufacturing a part on a CNC machine, it is essential to ensure that the

reference plane is as flat as possible as the accuracy of the reference plane largely

affects the accuracy of the machined part. To meet the accuracy requirement, stocks

with tight tolerances can be used directly. However, the price increases with the

tolerance of the stock and is much higher than the regular raw stock. Alternatively,

most machinists would start with a regular raw stock that is larger than the part to be

manufactured and would use a facing operation to remove the extra material so that

a flat reference plane is created on top of the stock. A facing operation is required

to be as efficient as possible because there is no significant feature on top of the

stock. Thus, the larger available flat end mill or fly cutter and the most efficient tool

path strategy are usually employed for the facing operation. The zig-zag tool path

strategy, which is a variant of the direction-parallel strategy, is efficient for machining

the simple geometry; and, thus, is used to generate facing tool paths. As shown in

Figure 4.28, the facing tool paths are generated by detecting the size of material above

the part along the cutting direction and then producing a zig-zag path pattern to cut

the material layer by layer. In each layer, the cutting tool moves along a selected
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direction (usually X or Y) until all the material in the direction is machined and then

retracts to the next starting point to move along a new path in the same direction.

The pattern is repeated until all the material on the layer is machined.

Rapid Path

Ordinary Path

Figure 4.28: Target boundary, its associated features, and the generated tool path
to deburr the boundary.



CHAPTER 5: AUTOMATED DEBURRING TOOL PATH GENERATION

Burr, also known as material overhang on the edge of a metal part, is formed at the

end of most machining processes, such as turning, milling and drilling. The mecha-

nism of burr formation has been extensively studied [83–85]. According to Sofronas,

the major contributor to burr formation is the plastic deformation flow during the

cutting process [83]. A burr has several negative properties, including reduced prod-

uct life, decreased dimensional accuracy, and the introduction of difficulties into the

assembly [86]. It can even cause injury to the operator. Thus, deburring, or the

removal of burr, is usually an unavoidable procedure in the product manufacturing

process of metal parts.

Currently, many deburring operations are still performed manually. Such manual

operations tend to be time-consuming, and the operations may lead to inconsistent

material removal and surface finish. Numerous deburring and edge-finishing processes

have been developed to replace manual deburring [85–87]. Gillespie [85] suggested

classifying these processes into four categories, including mechanical, thermal, chemi-

cal, and electrical deburring processes. Among these processes, the thermal, chemical,

and electrical deburring methods may introduce unintended damages to functional

surfaces of the work parts while limiting burr removal capability at the micro level [86].

These deburring processes become even more complicated when large burrs are re-

quired to be removed from intersecting holes. The most frequently used mechanical

deburring processes include brush deburring, bonded abrasive deburring, abrasive jet

deburring, barrel deburring, centrifugal barrel finishing, robotic deburring [88–92],

and CNC deburring [93–95].

Recent research efforts have increasingly been devoted to robotic deburring [88–92].
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The major advantages of the robotic systems are the ability to replicate the motions

accurately; manipulate heavier, higher-powered tools for a faster finishing process; and

accurately perform in hazardous, noisy, and ergonomically unsuitable situations [86].

However, robotic deburring faces two main challenges: the accurate registration of

the workpiece to its CAD model and fast collision-free trajectory generation [94]. It is

critical to locate the workpiece in the robot’s coordinate system through registration

so that the burr can accurately be removed. Song and Song [90] proposed a robotic

deburring process by modifying the tool path generated from the CAM system. The

deburring tool path was first extracted from the G-code generated from the CAM

system. An iterative closest point was successively implemented to match the tool

path with the contour of the actual workpiece. In the last step, the tool path was

modified to compensate for the errors in the position/orientation. Impedance control

was applied to avoid excessive force in the deburring process. However, the quality

of the deburred workpiece was not reported.

CNC deburring has been known as a high-quality, low-labor cost, and a high pro-

duction rate approach. Several methods have been proposed to generate tool paths

for deburring drilled holes on CNC machines. Sato et al. [93] introduced an analytical

method to generate the tool paths automatically to remove burrs resulting from the

drilling of a circular pipe. The differential geometry of the cylinder-to-pipe intersec-

tion curve was derived analytically. The intersection curve was then approximated

using a set of line segments with an equivalent length that are connected by the points

sub-sampled on the curve. The actual cutter locations on the tool path were derived

based on the normals of the points at the inner pipe surface and the normals of the

same points on the hole. However, this method only works for drilled intersections

that are perpendicular to each other. To resolve the limitation, Schützer et al. [95]

developed an approach to generate tool paths for deburring complex-shaped drilling

intersections with ball-end cutters. However, the intersection curve was manually
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extracted from the CAD model and converted to the point cloud.

Although various methods were developed to deburr drilled holes on CNC in the

research community, the automated approach to detect and generate tool paths for

deburring arbitrary boundaries regardless of the machining operations has rarely been

studied. State-of-the-art CAD/CAM packages are versatile enough to design and

analyze complex parts as well as generate tool paths for various machining operations,

such as turning, milling, drilling, and grinding. However, the functionality to generate

the deburring tool path automatically for arbitrary design parts is still rarely available.

The users are required to select which edges to deburr. In a fully automated tool path

planning system, the human intervention should be avoid as much as possible. In this

research, a machining feature based technique is introduced to generate deburring tool

path automatically for removing undesired burrs on 3-axis CNC machines.

To automate the deburring process, understanding the types of burrs and the for-

mation of these burrs is an essential starting point. Various process parameters can

affect the formation and shapes of burrs, such as the cutter geometry, the part ge-

ometry, the workpiece material, and the cutting conditions. Depending on different

operations and applications, the burrs were also described differently. There is still no

universally acceptable description or classification for machining burrs. Gillespie and

Blotter [96] were among the first to propose a classification for machining burrs. They

classified the machining burrs into four categories: Poisson burr, roll-over burr, tear

burr, and cut-off burr. In the turning and drilling operations, the Possion burr and

roll-over burr might be formed on the edge of the workpiece [96]. Chern [97] identified

five types of burrs formed in the face milling: knife-type, wave-type, curl-type, edge

breakout, and secondary burr. The first three types of deburrs are the primary burrs

described as the roll-over burr produced on the tool exit edge. The edge breakout

was found when the metal removal rate was very high. The secondary burr is the

small burr remaining on the edge of the machined part after optimizing the cutting
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condition and tool geometry.

Although different types of burrs can be formed in different machining operations,

fortunately, they are generally located along the edges where the cutter enters or

exits the workpiece. Thus, automatic detection of the boundary edges of the part is a

fundamental procedure for any automated deburring system. As shown in Figure 5.1,

the system starts by detecting the feasible boundaries in a selected cutting direction.

The deburring tool paths are then generated to remove the burrs and create a chamfer

with a constant width by using a ball end cutter on each feasible boundary. To avoid

removing excessive material from the part, an additional step is added to detect

gouging and, if detected in the tool path locations, modify the original tool path.

The details of each step are elaborated in the following sections.

Detect feasible boundary Generate tool path Detect gouging Modify tool path

Figure 5.1: Workflow of the feature-based automated deburring tool path generation
system.

5.1 Detection of Feasible Boundaries

A boundary edge is the outer border of a shape or a machining feature. In a ma-

chining feature with a triangle mesh as the underlying geometry representation, each

edge of the triangles can be isolated or shared by two triangles. A boundary edge is

defined as an isolated edge that only exists in a single triangle within the machining

feature while a boundary is a set of connected boundary edges. To be feasible for

deburring from a selected cutting direction, a boundary must fulfill two conditions:

be visible from the direction and not be concave. Thus, in the procedure for detecting

feasible boundaries, these two conditions are validated for every boundary of the ma-

chining features. Figure 5.2 shows a part with multiple machining features, including



77

four blind holes, four through holes, two bosses, two pockets, a profile, and two face

features. Among these features, the blind holes, the through holes, the bosses, the

profile, one pocket, and one face are visible from +Z direction while the remaining

pocket and face are not visible as they are occluded by other features. Therefore, the

feasible boundaries only exist in the boundaries of the visible features.

(a) (b)
Blind hole

Through hole

Profile

Boss

Pocket

Face

Figure 5.2: A part with multiple machining features: (a), top view; (b), bottom
view.

The pseudo code of the algorithm for detecting the feasible boundaries is described

in Algorithm 5.1. In the initial step, all the available boundaries are extracted from

the machining features. The points that are visible from the cutting direction are then

detected. In this research, a ray tracing algorithm is implemented to detect the visible

points. Next, the points on each boundary are compared with the visible points. If

all the points of a boundary are a subset of the visible points, then the boundary

is a candidate boundary for deburring. Meanwhile, a feasible boundary cannot have

concave edges as they are not reachable for the cutters. Thus, the convexity test

discussed in Chapter 3 is applied on each candidate boundary. A candidate boundary

is selected as a feasible boundary if all the edges on the boundary are convex. The

machining features associated with the boundary are also identified to assist the
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computation of the deburring tool path in the following step.

Algorithm 5.1 Feasible Boundaries Detection
Input : features is the array of machining features
Input : part is the geometry of the part
Input : dir is the cutting direction

1: f_boundaries = [], f_features = []
2: boundaries = get_boundary(features) . get the boundaries of the features
3: visible_points = get_visible_points(part, dir)
4: for boundary ∈ boundaries do
5: points = get_points(boundary) . get the points on the boundary
6: if points ∈ visible_points && is_convex(boundary) then
7: push(f_boundaries, boundary)
8: l_features = get_linked_features(boundary)
9: push(f_features, l_features)

10: end if
11: end for
12: return (f_boundaries, f_features)

(a) (b)

(c)

Feasible boundary

Concave boundary

Figure 5.3: Detection of feasible boundaries and their associated features: (a), fea-
sible and concave boundaries; (b), top view of the boundaries and their associated
features; (c), bottom view of the boundaries and their associated features

As shown in Figure 5.3, the boundary between the profile and the top face, the

boundary between the pocket and the top face, the four boundaries between the

blind holes and the top face, the four boundaries between the through holes and

the blind hole, and the two boundaries between the bosses and their neighboring

faces are detected as feasible boundaries that can be cut from the +Z direction. The
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two boundaries between the bosses and the pocket are not recognized as feasible

boundaries because they are concave boundaries.

5.2 Deburring Tool Path Generation with Ball End Cutter

After all the feasible boundaries are detected, the next procedure is to generate

tool paths to deburr each boundary. The goal of deburring is to reduce the size of

the burrs on the boundary by cutting a small amount of material from the boundary.

New boundaries are formed after deburring. However, the deburring process is also

a cutting operation, meaning it may create new burrs, called secondary burrs, along

the new boundaries. The process parameters and cutting conditions to reduce the

size of the secondary burr have been little studied. Sato et al. [93] and Abele et

al. [94] proposed that the penetration direction for deburring should be along the

normal vector that bisects the edge vectors at the two adjacent surfaces sharing

the target edge so that the resultant secondary burrs between the main bore and

cutting directions, as well as the side direction and the cutting direction can both be

minimized. Uniform chamfers along the edges of the resultant boundary are usually

desired for aesthetic purposes.

(a) (b) (c)
T

T

Figure 5.4: Modelling the tool center location for deburring boundary by using ball
cutter: (a), machining features and the boundary between them to be deburred; (b),
unit tangent vectors at the point Pi; (c), computation of the tool center location at
TCPi.

As shown in Figure 5.4(a), a boundary is formed by multiple edges connected
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by two points. The tool locations for a ball end cutter to create chamfers with a

constant width along each boundary edge are computed for each boundary point and

then connected together as the tool path for deburring. The process for computing

the tool locations is described as follows.

Taking edge ei as an edge on the target boundary, the unit direction vector −→nei

along the edge ei can be computed as shown in Equation 5.1.

−→nei =

−−−−→
PiPi+1

|
−−−−→
PiPi+1|

, (5.1)

where Pi and Pi+1 are the start and end points of the edge ei, respectively.

In a part composed of multiple machining features, a boundary edge is shared by

two features. The feature that has a larger average angles between the normals of

the faces on the boundary and the cutting direction is defined as the primary feature

whereas the other feature sharing the boundary is the secondary feature. For example,

the target boundary shown in Figure 5.4(a) is shared by a pocket and a face feature.

The pocket is the primary feature for the boundary while the face is the secondary

feature.

To compute the cutter locations, the tangent normals between the boundary edge

and the associated features need to be derived, as shown in Figure 5.4(b). The

primary tangent normal −→tpi between the primary feature pi and the edge ei can be

written as shown in Equation 5.2.

−→
tpi = −→npi ×−→nei , (5.2)

where −→npi are the normal direction of the boundary point Pi on the primary feature.

The secondary tangent normal −→tsi between the edge ei and the secondary feature
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si follows a similar pattern, as shown in Equation 5.3.

−→
tsi = −→nei ×−→nsi , (5.3)

where −→nsi are the normal direction of the point Pi on the secondary feature.

As shown in Figure 5.4(c), to create a chamfer with a constant width along the

boundary, the cutter center location is set at a point along the direction that bisects

the primary and secondary tangent normals, as given by Equation 5.4.

−→
ti =

−→
tpi +

−→
tsi

2
(5.4)

As the target chamfer width is usually much smaller relative to the radius of the

ball cutter, the chord error caused by the curvature of the cutter can be neglected and

the resultant chamfer can be treated as a straight line. Thus, the distance between

the boundary point Pi and its farthest point Fi on the resulting chamfer, |
−−→
PiFi|, called

the offset distance, can be approximated using Equation 5.5.

|
−−→
PiFi| =

Wtarget

2 ∗ tan(βi
2

)
, (5.5)

where Wtarget is the target chamfer width and βi is the edge angle.

The edge angle βi is the angle between the neighboring surfaces at the edge ei. It

is derived in Equation 5.6.

βi = acos(

−→
tpi ·
−→
tsi

|−→tpi| · |
−→
tsi |

) (5.6)

Combining Equations 5.4 and 5.5, the location of the tool center point is given by

Equation 5.7.

−−−→
TCPi =

−→
Pi + (|

−−→
PiFi| −Rcutter)

−→
ti

|−→ti |
, (5.7)
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where Rcutter is the radius of the ball cutter.

Finally, the cutter location, which is defined at the tip of the cutter, is computed

to create the tool path. The method to compute the cutter location is shown in

Equation 5.8.
−−→
CLi =

−−−→
TCPi −Rcutter

−−−−→ncutting, (5.8)

where −−−−→ncutting is the defined cutting direction.

The above process is applied on all the points on the boundary to obtain the cutter

locations for deburring each edge and the final tool path is a polyline connected by

these cutter locations. The generated tool path for deburring the target boundary

between the pocket and the face is shown in Figure 5.5.

Tool Path

Boundary

Figure 5.5: Target boundary, its associated features, and the generated tool path to
deburr the boundary.

5.3 Estimation of Boundary Point Normals

As presented in the previous section, the normals of the boundary point at the

primary and secondary features are required to compute the cutter locations. In

analytic geometry, the point normals can be obtained directly from the equation of

the surface. However, in discrete geometry like the triangle mesh, as shown in Figure
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5.6(a), no surface equation is available to compute the point normals. In this research,

a cutter shadowed approach is developed to estimate the normals for the boundary

points.

(a) (b)

Figure 5.6: Estimation of normals of boundary points: (a), mesh and boundary; (b),
initial normal and estimated point normals at the Pi.

In the first step, the initial normal is computed by averaging the normal of the

triangles that share the boundary point. The triangles on the neighboring features

are then projected onto the plane formed by the boundary point and the initial normal

vector. At the same time, a circle with a radius of the chamfer width and the center

at the boundary point is created. The intersecting areas of each projected triangle

with the circle is subsequently computed. The adjusted point normal is equal to

the area averaging of the face normals. The normal of the point at the primary

feature is computed using Equation 5.9. Similarly, the normal of the point at the

secondary feature can be computed based on Equation 5.10. As shown in Figure

5.6(b), the normals of the boundary point Pi at the primary and secondary features

are computed based on the proposed approach.

−→npi =

N∑
j=1

Apfj
−−→npfj

N∑
j=1

Apfj

, (5.9)

where N is the number of projected triangles on the primary feature pi that intersect
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with the circle, Apfj is the area of projected triangle pfj , and
−−→npfj is the face normal

of projected triangle pfj .

−→nsi =

N∑
j=1

Asfj
−−→nsfj

N∑
j=1

Asfj

, (5.10)

where N is the number of projected triangles on the secondary feature si that intersect

with the circle, Asfj is the area of projected triangle sfj , and
−−→nsfj is the face normal

of projected triangle sfj .

5.4 Gouging Detection

Gouging refers to a situation when the cutter removes excess material from the

workpiece in a cutter location point. The initially generated tool path cannot guar-

antee a gouging-free process as the engagement between the cutter and the workpiece

is not considered in the tool path generation process. A depth map approach is em-

ployed to detect gouging in each cutter location. As shown in Figure 5.7(a), a depth

map is generated for the part geometry by projecting the geometry onto a plane,

called the base plane, which is oriented at the cutting direction. The geometry of the

cutter is also represented as a depth map by projecting the cutter geometry onto the

plane at the bottom of the cutter and oriented to its axis. An example of a cutter

depth map is shown in Figure 5.7(b). The region to be removed by the cutter during

the deburring process, which is safe to be cut is labeled as the safe zone on the part’s

depth map. The safe zone shown in Figure 5.7(c) is created by projecting the target

removal region onto the base plane.
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Safe Zone

Cutter Shadowed Zone

Gouging Zone

(a) (b)

(c)

Figure 5.7: Gouging detection based on depth map: (a), depth map of the part; (b),
depth map of the ball cutter; (c), safe zone, cutter shadowed zone, and gouging zone
on the part depth map.

Algorithm 5.2 Gouging Detection
Input : CL[x, y]i is the cutter location
Input : depthi is the depth of the cutter at the cutter location
Input : partdm is the depth map of the part
Input : cutterdm is the depth map of the cutter
Input : imgsz is the binary image of the safe zone

1: h,w = size(cutterdm)
2: cx = ceil(h/2), cy = ceil(w/2) . cx, cy is the cutter center
3: x, y = CL[x, y]i
4: for dx = 1 : h, dy = 1 : w do
5: if imgsz[x+ dx− cx, y + dy − cy] == true then
6: continue
7: end if
8: if partdm[x+ dx− cx, y + dy − cy] > cutterdm[dx, dy] + depthi then
9: return true

10: end if
11: end for
12: return false
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After the depth maps and safe zone are built, Algorithm 5.2 is applied to each cutter

location to detect gouging. If the depth at the cutter location is less than the depth

of the part at the same location, the cutter is gouging the workpiece. Figure 5.7(c)

shows a gouging location where the ball end cutter gouges the boss when deburring

the boundary between the pocket and the top face.

5.5 Tool Path Modification

It is essential to ensure non-gouging at every position of the cutter; otherwise, the

cutter will remove excessive material from the part. In this research, a tool path

modification algorithm (i.e., Algorithm 5.3) is developed to adjust the cutter location

once gouging is detected. Based on the depth map approach for gouging detection,

the algorithm loops over each cutter location in the tool path and checks if the cutter

is gouging with the part at the location. If a gouging location is detected, the cutter

is moved closer to the boundary by one pixel width and gouging detection is checked

once again at the new location; this process continues until there is no gouging. The

cutter is then adjusted to the new location without gouging. The tool path after

modification is shown in Figure 5.8(a) and (b). Compared with the original tool path

shown in Figures 5.5 and 5.8(c), the cutter locations in the two corner regions close

to the bosses are lifted up to avoid gouging while the other cutter locations remain

unchanged.
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Algorithm 5.3 Tool Path Modification
Input : CLs is the cutter locations in the tool path

Input : V s is the offset vectors
−→
PF

Input : dir is the cutting direction

Input : partdm is the depth map of the part

Input : cutterdm is the depth map of the cutter

Input : imgsz is the binary image of the safe zone

Input : resolution is the length of the pixel in the depth maps

1: n = length(CLs) is the number of cutter locations

2: for i = 1 : n do

3: CL = CLs[i], V = V s[i]

4: CL[x, y], depth = project(CL, dir, base_plane) . project onto the base plane

5: VH , distance = project(V, dir, base_plane) . project onto the base plane

6: if is_gouging(CL[x, y], depth, partdm, cutterdm, imgsz) . gouging detection

then

7: n_steps = distance/resolution

8: for j = 1 : n_steps do

9: CLnew[x, y] = CL[x, y]− VH ∗ j ∗ resolution

10: depth = get_depth(CLnew[x, y], partdm, cutterdm, imgsz)

11: if is_gouging(CLnew[x, y], depth, partdm, cutterdm, imgsz) then

12: CLs[i] = get_location(CLnew[x, y], depth)

13: break

14: end if

15: end for

16: else

17: continue

18: end if

19: end for

20: return CLs
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(a)
(b)

(c)

Figure 5.8: Tool path after modification: (a), the modified tool path; (b), close-up
view of the modified tool path; (c), close-up view of the tool path before modification.



CHAPTER 6: EXPERIMENTAL RESULTS

Chapters 4 and 5 introduced the automated tool path planning methods for

generating tool paths for the milling and deburring operations based on the machining

feature recognition technique developed in Chapter 3. This chapter presents the

experimental results of the methodologies when used to manufacture two parts with

multiple machining features.

6.1 Equipment

A Tormach 770MX vertical CNC mill was used to machine the test parts to validate

the generated tool paths. The tool paths were post-processed into G-code to run the

CNC machine.

Figure 6.1: Tormach770MX CNC Mill.
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As shown in Table 6.1, the CNC machine is equipped with six flat end mills with

different diameters ranging from 1.59 to 9.53 mm and as well as a ball end mill with

a diameter of 3.18 mm. When generating the tool paths for milling the first test part,

the cutters were automatically selected from the available set of flat end mills. In

addition, the machine does not have an automatic tool changer. The time for the

manual tool change was set to 30 seconds when estimating the machining cost in each

operation of the graph. The ball end mill was used for deburring the second test part.

Table 6.1: Tool library of the Tormach CNC machine.

Cutter Diameter

flat end mill 9.53 mm

flat end mill 7.94 mm

flat end mill 6.35 mm

flat end mill 4.76 mm

flat end mill 3.18 mm

flat end mill 1.59 mm

ball end mill 3.18 mm

6.2 Milling Operations

The method for automatically generating the milling tool paths was tested on an

example of a part modelled as a 2X4 Lego brick. The part has multiple machining

features including 11 bosses, 1 profile, 1 pocket, and 13 faces, as shown in Figure

6.2. These features have different accessibility for a cutter to machine from a selected

machining direction. When the +Z direction is defined as the cutting direction, only

the 8 bosses, 9 faces, and the profile on the top of the part are accessible whereas

the pocket, the profile, the other 3 bosses, and the other 4 faces on the bottom of

the part can only be cut completely from the -Z direction. In this research, the tool

paths were generated from both the +Z and -Z directions to demonstrate the ability
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of the proposed method to generate tool paths from an arbitrary user selected cutting

direction.

(a)

(b)

Figure 6.2: An example part for testing automated tool path planning methodology
for the milling operations: (a), top view; (b), bottom view.

The tool paths for cutting the Lego part from the +Z direction are shown in

Figures 6.3, 6.4, 6.5, and 6.6. These tool paths are generated for four operations.

The first operation is a facing operation. The second operation is created to remove

the material for the profile feature. The third and fourth operations are produced to

clear the large face feature with four bosses inside the face. The tool paths for cutting

the Lego part from the -Z direction are shown in Figures 6.8, 6.8, and 6.9. Three

operations are created for machining the part. The same as the machining operations
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from the +Z direction, the first operation is a facing operation, the second operation

is to clear the profile feature, and the third operation is to cut the material inside the

pocket feature. The details of the operations are described as follows.

To machine the part from the +Z direction, a facing operation was selected as the

first operation because the size of the stock material is slightly larger than the part.

The subsequent operation cannot proceed if the extra material on top of the stock

is not removed. As shown in 6.3, the Zig-Zag tool paths is generated for the facing

operation. The largest flat end mill in the tool library, which has a diameter of 9.53

mm, was automatically selected as the cutter for the operation.

Rapid Path

Ordinary Path

Figure 6.3: Tool paths for the first operation when machining from the +Z direction
of the test part.

A non-zero removal volume was subsequently detected for the profile feature. Thus,

the tool paths, as shown in Figure 6.4, were generated to remove the material outside

the profile. Only the 9.53 mm diameter cutter is used. As all the edges of the profile

were convex, the largest cutter was sufficient to clear all the material.
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Rapid Path

Transition Path

Ordinary Path

Figure 6.4: Tool paths for the second operation when machining from the +Z direction
of the test part.

Ultimately, the largest flat end mill with a diameter of 9.53 mm and the smallest

flat end mill with a diameter of 1.59 mm were selected by the graph approach as the

optimal set of cutters to machine the face feature. The large cutter was used to cut

the material outside the bosses and the small cutter was selected to the clear the

material between the bosses. The tool paths for the large and the small cutters are

depicted in Figures 6.5 and 6.6, respectively.
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Rapid Path

Transition Path

Ordinary Path

Figure 6.5: Tool paths for the third operation when machining from the +Z direction
of the test part.

Rapid Path

Transition Path

Ordinary Path

Figure 6.6: Tool paths for the fourth operation when machining from the +Z direction
of the test part.

When machining the part from the -Z direction, three operations were determined
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as the set of operations that can remove all material outside the volume bounded by

the part design from the stock material. Similarly, the first operation was a facing

operation that cleared the extra material on top of the part while the second operation

cut the material outside the profile feature; the tool paths for the first two operations

are shown in Figures 6.7 and 6.8, respectively. In the final operation, only the smallest

flat end mill was selected because the cutter has the best accessibility for machining

the pocket feature and can cut the pocket with a minimum amount of machining cost.

The tool paths for the third operation are shown in Figure 6.9.

Rapid Path

Transition Path

Figure 6.7: Tool paths for the first operation when machining from the -Z direction
of the test part.
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Rapid Path

Transition Path

Ordinary Path

Figure 6.8: Tool paths for the second operation when machining from the -Z direction
of the test part.

Rapid Path

Transition Path

Ordinary Path

Ramping Path

Figure 6.9: Tool paths for the third operation when machining from the -Z direction
of the test part.

The tool paths for machining the Lego part from the +Z and -Z directions were
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post-processed into G-code files, shown in Figure 6.10(a), to run the CNC mill so that

the two parts could be machined to validate the effectiveness of the tool paths. The

machining results of the two parts are shown in Figure 6.10(b), which indicates that

the tool paths by using the introduced tool path planning method for milling with

multiple cutters can machine the stock into the desired shapes from both the +Z and

-Z directions.

%

O0001

(Toolpath Automatically Created Gcode)

G90 G94 G17 G49 G40 G80

G20

G53 G0 Z0.0

G54

G30

T13 G43 H13

M6 S10000.0

M3

M8

G0 X0.9875 Y-0.51562

G0 Z1.0

G1 X0.98750 Y-0.51562 Z0.00000 F20.0

X-0.93750

G1 X-0.93750 Y-0.51562 Z0.00000 F200.0

Z0.07559

X0.98750 Y-0.42188 Z0.00000

G1 X0.98750 Y-0.42188 Z0.00000 F20.0

X-0.93750

G1 X-0.93750 Y-0.42188 Z0.00000 F200.0

Z0.07559

......

(a) (b)

Figure 6.10: G-code and machining results of the test part: (a), G-code file; (b),
picture of the machined parts from +Z and -Z directions, separately.

6.3 Deburring Operation

An example of a part with multiple machining features, shown in 6.11(a) and (b),

was tested to validate the automated deburring tool path planning method. These

machining features need to be manufactured by different machining operations and

from different cutting directions on a 3-axis CNC machine. The cylindrical face and

the profile need to be cut by a milling operation from the +Z direction and the four

holes and the four through holes can be cut using a drilling operation also from the +Z

direction. The other cylindrical face and two planar faces can only be milled from the
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-Z direction. After machining the face, the profile, the blind holes, and the through

holes from the +Z direction, burrs may occur on the sharp edges. These edges need to

be deburred before assembling; otherwise, the assembling accuracy might be affected.

For example, the through holes might be difficult for a screw to enter so that the

part cannot be assembled with its mating part securely. The proposed approach was

tested on this part to verify whether the sharp edges can be automatically detected,

and the deburring tool paths can be successively generated to remove the burrs on

the boundaries.

(a) (b)

(c) (d)

X

Y
Z

X

Y

Z

X

Y
Z

X

Y

Z

Figure 6.11: An example part for testing the deburring tool path planning methodol-
ogy: (a), top view of the machining features; (b), bottom view of the machining fea-
tures; (c), top view of the detected feasible boundaries and their associated features;
(d), bottom view of the detected feasible boundaries and their associated features.

As shown in Figure 6.11(c) and (d), given +Z as the cutting direction, the bound-

aries on the top of the profile, four blind holes, and four through holes were detected

as the feasible boundaries. These boundaries contain the sharp edges that need to be

deburred. The related machining features were detected correctly. The gouging-free

deburring tool paths were then generated automatically for each boundary using the

3.18 mm ball end cutter as shown in Figure 6.12. The generated tool paths were
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post-processed into G-code and tested on the Tormach CNC machine to demonstrate

the ability of the proposed approach to generate the effective deburring tool path

that can create chamfer with a constant width for complex boundaries with arbitrary

shapes.

(a)

(b) (c) (d)

Tool Path

Boundary

Figure 6.12: Tool path generation for the example part: (a), generated tool paths
for each feasible boundary; (b), close-up view of the tool path for the boundary
between the through hole and the blind hole; (c), close-up view of the tool path for
the boundary between the blind hole and the face on top; (d), close-up view of the
tool path for the boundary between the face on top and the profile.

The top section of the example part was first manufactured on the Tormach vertical

CNC mill. The blind and through holes were created using drilling operations while

the top face and profile were machined using a milling operation. As shown in Figure

6.13, burrs with irregular shapes were formed on the the edges of the holes and the

profile after the drilling and milling operations.
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Figure 6.13: Test part before deburring the edges.

The generated deburring tool paths were post-processed into G-code to run on the

CNC to deburr the part. The machining result is shown in Figure 6.14. The burrs

on all the sharp edges were completely removed and relative uniform chamfers were

formed along the boundaries.

Figure 6.14: Test part after deburring the edges.



CHAPTER 7: CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

CNC tool path planning still currently relies heavily on the experience of the pro-

cess engineer. To improve machining efficiency and reduce manufacturing costs, this

dissertation has presented a feature-based automated tool path planning system. The

primary contributions of this dissertation are summarized as follows:

1. A new robust segmentation algorithm with three procedures is introduced to

detect primitives and freeform shapes within discrete geometry.

2. A multiple cutter selection and optimization framework is created to select the

optimal set of cutters with a minimum machining time for cutting arbitrary machining

features.

3. An automated deburring tool path planning algorithm is developed to generate

deburring tool paths with a ball end cutter to remove the undesired burrs from the

feasible boundaries.

Unlike machining feature recognition from analytic geometry, region segmentation

is a fundamental and essential procedure in recognizing machining features from dis-

crete geometry. A new robust segmentation algorithm is introduced to segment the

discrete geometry represented by the triangle mesh into different surface regions. Each

surface region represent a primitive shape (plane, cylinder, sphere, cone, or torus) or

a freeform shape.

A new framework that can generate roughing tool paths with multiple cutters is

developed to generate tool paths for cutting arbitrary 21
2
D machining features with

the optimal set of cutters. The machining process based on the proposed method can

produce parts with an expected surface quality with a minimum cutting time.
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Automated tool path generation for deburring sharp edges is an important mod-

ule for any automated machining system but is rarely available. This dissertation

presents an automated deburring tool path planning technique. The feasible bound-

aries are detected automatically. Deburring tool paths with a ball end cutter are then

automatically generated to remove the burrs and create a chamfer with a constant

width along each feasible boundary.

The milling and deburring tool paths were post-processed into G-code files and run

on a CNC milling machine to manufacture two examples of parts. The machining

results demonstrate the validity of the milling and deburring tool paths generated by

the methodology presented in this dissertation.

7.2 Future Work

Although the automated tool path planning methodology based on the automated

recognition of machining features is promising, several important topics still need

to be investigated. A fully automated tool path planning system needs to generate

efficient tool paths for the whole part automatically so that no human decision is

required.

7.2.1 Maximum Cutter Selection for Pockets

First and foremost, the method for selecting the maximum cutter to machine pocket

features can be optimized. The maximum cutter selected using the MIC method can

only cut a single point in many cases. Starting from this cutter to build the cost graph

may increase the computational cost as the depth of the cost graph is increased. The

medial axis transform approach [98], which can be used to compute the maximum

circle on the topological skeleton of the object, may be applied to select the maximum

cutter that can cut a certain amount of material from the pockets.
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7.2.2 Optimal Sequence for Machining Multiple Features

In addition, an optimal sequence for machining multiple features is neccessary for

a fully automated tool path planning system. Mechanical parts usually consist of

multiple features. The approach to machining the multiple features in an optimal

sequence considering the geometry constraints between different operations is one of

the key milestones for the fully automated tool path planning system.

7.2.3 Cutter Selection and Optimization for Multiple Machining Features

Another important investigation should be focused on the selection and optimiza-

tion for multiple machining features. When selecting the optimal set of cutters for

machining a single feature, it is important to consider whether a cutter can be used for

multiple features should also be considered. The graph based approach for selecting

cutters can possibly be adapted for selecting cutters for multiple cutters by treating

the IPM for each feature as a node of the graph.

7.2.4 Feeds and Speeds Optimization

Finally, the methodology for optimizing the feeds and speeds for the generated tool

paths is also vital for a fully automated tool path planning system. The feeds and

speeds might be optimized based on the depth of cut, width of cut, chip load, tool

properties, and the property of the stock material. In addition, the acceleration and

deceleration may also be considered in the optimization of feedrate because the actual

feedrate may vary based on the acceleration and deceleration when the cutter moves

from one G-code block to another block.
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