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ABSTRACT 

 

 

SHANSHAN JIANG. Faster convolutional neural networks training.  

(Under the direction of DR. SHENG-GUO WANG) 

 

Convolutional Neural Network (CNN) models have become the mainstream method in 

Artificial Intelligence (AI) areas for computer vision tasks like image classification and image 

segmentation. Deep CNNs contain a large volume of convolution calculations. Thus, training a 

CNN requires powerful GPU resources. Training a large CNN may take days or even weeks, which 

is time-consuming and costly. When we need multiple runs to search for the optimal CNN 

hypermeter settings, it would take a couple of months with limited GPUs, which is not acceptable 

and hinders the development of CNNs. It is essential to train CNN faster.  

There are two kinds of methods to train CNN faster when no additional computing 

resources are available. The first method is to do the model compression, either by reducing 

parameters or using less storage to represent the models. This method reduces training time by 

reducing the architecture complexity. The second method is to reduce the input data feed into the 

network without affecting the network architecture.  

Architecture complexity reduction is a popular research area to train CNN faster. 

Nowadays, mobile devices like smartphones and smart cars rely on deep CNNs to accomplish 

complex tasks like human body recognition and face recognition. Due to the high real-time 

demands and the memory constraints for mobile device applications, conventional large CNN is 

not suitable.  CNN model compression is a trend to train a deep CNN model with less computation 
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cost. Currently, there are many successful networks designed to solve this problem, like ResNeXt, 

MobileNet, ShuffleNet, and GhostNet. They use 1 × 1 convolution, depthwise convolution, or 

group convolution to replace the standard convolution to reduce the computation. However, there 

are fewer studies on the following questions. First, does the variety of convolution layers (the 

output channel number is larger or smaller than the input channel number) affect different 

compression strategies’ performance? Second, does the expansion ratio (either the output channel 

number over the input channel number if the output channel number is larger, or the input channel 

number over the input channel number if the input channel is larger) of the convolution layers 

affect different compression strategies’ performance? Third, does the compression ratio (the 

reduced parameter number/FLOPs over the original parameter number/FLOPs) affect the 

performance of different compression strategies? Current networks tend to use the same 

convolution strategy inside a basic network block, ignoring the variety of network layers. We have 

proposed a novel Conditional Reduction (CR) module to compress a single 1 × 1 convolution 

layer. Then we have developed a novel three-layer Conditional block (C-block) to compress the 

CNN bottleneck or inverted bottlenecks. At last we have developed a novel Conditional Network 

(CRnet) based on the CR module and C-block. We have tested the CRnet on two image 

classification datasets: CIFAR-10 and CIFAR-100, with multiple network expansion ratios and 

compression ratios. The experiments verify our methods’ correctness with attention to the 

importance of the input-output pattern when selecting a compression strategy. The experiments 

show that our proposed CRnet better balances the model complexity and accuracy compared to 

the state-of-the-art group convolution and Ghost module compression.  
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Data reduction reduces the training time in a direct and simple way through data dropping. 

There are works drop data by the sample importance ranking. The ranking process takes extra time 

when there is a large number of training samples. When we tune the different network settings to 

search for an optimal setting, we expect a way to reduce a large percentage of training time with 

tiny or no accuracy loss. There are fewer studies on the following questions. First, what are suitable 

sampling ratios? Second, should we use the same sampling ratio for each training epoch? Third, 

does the sampling ratio performs differently on small and large datasets? We have proposed a flat 

reduced random sampling training strategy and a bottleneck reduced random sampling strategy. 

We have proposed a three-stage training method based on the bottleneck reduced random sampling 

with consideration of the distinctiveness of the network early-stage training and end-stage training. 

Furthermore, we have proved the data visibility of a sample in the whole training process and the 

theoretical reduced time by four theorems and two corollaries. We have tested the two sampling 

strategies on three image classification datasets: CIFAR-10, CIFAR-100 and ImageNet. The 

experiments show that our proposed two sampling strategies effectively reduce a significant 

training time percentage at a very small accuracy loss.  
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CHAPTER 1: INTRODUCTION 

The deep CNN methods have outperformed other conventional machine learning methods 

in AI areas, including image classification [1, 2], image segmentation [3, 4], and image inpainting 

[5, 6]. Training deep CNN is challenging due to its high demands of CPU and GPU resources. 

Training a large dataset may even take several days or weeks [7]. CNN’s training hyperparameter 

number setting affects the model performance, e.g., the initial learning rate, learning rate decay, 

batch size, activation function selection. Tuning the hyperparameters is essential to achieve better 

performance [7, 8], which will take several rounds and costs far more time than training a single 

model. The time-consuming training process becomes a hinder for researchers to explore optimal 

networks. Thus, accelerating the CNN training speed has become a new research area. To train 

CNN faster is a benefit to saving training time and saving the training cost. 

There are many works discussing how to train a faster CNN. Some works focus on training 

a compact model to reduce the model complexity and to reduce the average training time of a 

single image. In this case, the model parameters and FLOPs (floating-point operations) are usually 

reduced. Thus, the inference time will also be reduced correspondingly. Some works focus on 

reducing the total training time by reducing the training data for some epochs. In this dissertation, 

we have explored the new methods to train a faster CNN in both reducing single image average 

training time and total training time. We have implemented our methods on image classification 

benchmark datasets, and the results show the correctness and efficiency of our methods. 
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1.1 Architecture Complexity Reduction 

With the fast-developing speed of mobile devices like phones or cars, it is necessary to 

deploy deep learning models to these mobile devices to accomplish complex computer vision tasks 

like human body recognition, face recognition, and handwriting recognition. As mobile devices 

do not have strong computing resources as workstations or cloud computing clusters, it is 

challenging to utilize conventional deep CNN architectures in portable devices or cars due to their 

high demand for computing resources [9]. These application demands have motivated many 

researchers to develop more computing-efficient CNN architectures to reduce model complexity 

with little or no accuracy trade-off [10]. A compact model with a little sacrifice of accuracy is 

acceptable compared to a large model since compact models are faster and are easier to be 

deployed to mobile devices, as well as to be applied, especially for real-time identification systems 

and control systems. 

There are three different branches in treating model redundancy from the architecture level 

in the model compression area.  

One branch, known as network pruning [11-18], removes unimportant elements like 

convolutional filters or channels following some criteria like weight value or L1-norm value. A 

convolutional filter is a group of 𝑘 × 𝑘 convolutional kernels where 𝑘 is the kernel size. A channel 

is a 𝑤 × ℎ feature map where 𝑤 and ℎ stand for image weight and height, respectively. This kind 

of model compression process is also mentioned as model pruning [14]. The main idea of model 

pruning is to prune filters or channels that have the least contribution to the model. Weight pruning 

or connection pruning [12, 19] discards weights with smaller values and gets a sparse connection. 
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However, the non-structured connections will cause irregular memory access issues for typical 

hardware [15, 16], hindering real applications. Filter level pruning [15, 18] measures filter 

importance by the deeper layer or the final response layer’s reconstruction error after removing 

this filter. The main idea of filter pruning is to prune filters that have little effect on the 

reconstruction error. This method will keep the model structure and keep pruned model training 

smoothly after removing the filters, without taking special care of the change of hardware and 

software support. Nevertheless, it is an optimization process for each pruning step and needs fine-

tuning. It will iteratively remove filters, following by a fine-tuning process after pruning a filter or 

a layer [18]. The fine-tuning needs to run a few epochs, which will take a long time for big data 

training.  In addition to this, the pruned optimal network architecture based on one dataset may not 

be the optimal architecture of another dataset. Some researchers try to learn optimal compression 

ratio or channel number through reinforcement learning instead of the human setting. AutoML 

Model Compression (AMC) [20] leverages reinforcement learning to study optimal compression 

policy for each pre-trained model layer. The output of each layer determination is a sparsity ratio. 

AMC did not use fine-tuning in getting the reward step. As different mobile devices have different 

computation restraints, slimmable networks [17, 21]  were proposed based on the pruning idea to 

train an integrated model that contains models to meet different environment requirements. 

Slimmable neural networks [21] train models of predefined multiple widths at the same time. Sub-

networks share weights except for batch normalization parameters. Universally slimmable 

networks (US-Nets) [22] proposed a generalized slimmable network to generate arbitrary width 

sub-networks using distillation to transfer knowledge from the entire network to subnetworks. 
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AutoSlim [17] searches for an optimal channel setting based on a universally slimmable network 

to meet computation limitation requirements. AutoSlim trains a slimmable model for a few epochs 

to get model candidates, slims the layer greedily to get optimized channel setting, and then trains 

them for full epochs [17]. The core sight of pruned networks and slimmable neural networks is to 

remove network elements following importance measuring criteria like L1-norm or construction 

error. This process can be seen as reducing network redundancy. There are three steps to build a 

pruned model: pretraining, pruning, and fine-tuning. However, there are arguments about the 

necessity of the three-step process. Liu [22] observed that training a pruned architecture directly 

from scratch can reach comparable results without inheriting the pre-trained weight, which 

indicates the importance of searching for an efficient architecture. The pretraining process trains a 

big model with redundancy. The pruning process studies the importance of the target elements to 

prune the network. The fine-tuning process retrains the pruned network with the pre-trained big 

model’s weight as the initial state. The advantage of pruning is that the pre-trained model can 

provide a reference for pruning and fine-tuning so that the pruned model searched for an optimal 

way to remove elements contributing the least to the network. However, the three-step process is 

time-consuming. For each dataset, a pre-trained model is essential, taking a long time for a large 

dataset. A study has also shown that the pruned structure itself may be more important than the 

inherited weights pre-trained [22]. What is more, the pruned network only prunes elements. Thus 

no new network elements are studied and explored during this process, which may become a 

constraint for network compression’s future development.  
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Knowledge distillation is another branch of model compression. It is interested in 

extracting the learned knowledge from trained networks and migrating them to another network. 

It is a mainstream method in transfer learning. Knowledge distillation can leverage the ensemble 

multimodal to build a single model and leverage the large model’s knowledge to build a small 

model [23]. A compact student model can be achieved from a large teacher model. A teacher model 

could provide many kinds of knowledge to the student model, like soft labels [23], spatial attention 

maps [24] and flow between layers [25]. The advantage of knowledge distillation is that it is an 

efficient way to broadcast the pre-trained networks’ learned knowledge. Thus it has been broadly 

used in transfer learning. However, it needs to run both teacher and student models during training, 

which may cause memory shortage when GPU resources are limited during training since it needs 

memory to store both teacher and student models and results. 

The third branch of model compression concentrates on implementing a network using 

more computation efficient ways, usually called building compact models. It aims to build a 

network with fewer parameters and FLOPs. Instead of removing network elements to reduce the 

redundancy, compact models [9, 10, 26-31] tend to keep the redundancy to some extent but replace 

dense convolution with sparse convolution. There are many efficient methods like using 1 × 1 

convolution to replace some 3 × 3 convolution [32], using depthwise convolution [26] to replace 

normal convolution, and reducing the number of 1 × 1 dense convolution [10]. The advantage of 

training a compact network is that it studies the nature of the network, exploring different network 

structures. Additionally, since the compact model does not need pretraining and fine-tuning and 

computes faster to generate the same number of feature maps, it is time-saving, especially for large 
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datasets. However, current compact models usually adopt the same compression policies for 

different convolution environments, ignoring their inner difference. For example, in a bottleneck 

block, a convolution layer’s input and output have two patterns: large input and small output, and 

small input and large output. Current methods tend to use the same strategies for two patterns, like 

replacing all 1 × 1  convolution layers to group convolution or reducing the number of 1 × 1 

convolution channels. Intuitively, the large input and small output convolution can be seen as using 

fewer feature maps to encode and summarize previous features. The small input and large output 

can be seen as a brainstorm of current features, putting forward more possible features that would 

be useful. Thus, these kinds of differences should be considered when building their compact 

structures. Since the same compression strategy can perform differently in different cases, it is 

beneficial to study the element patterns in networks and design a flexible compression strategy, 

leading to a network with better performance and less computation cost.  

In this dissertation, we focus on the building compact models branch and answering the 

following questions. First, does the variety of convolution layers (the output channel number is 

larger or smaller than the input channel number) affect different compression strategies’ 

performance? Second, does the expansion ratio (either the output channel number over the input 

channel number if the output channel number is larger, or the input channel number over the input 

channel number if the input channel is larger) of the convolution layers affect different 

compression strategies’ performance? Third, does the 1 × 1 channel number compression ratio 

(the reduced parameter number/FLOPs over the original parameter number/FLOPs) affect the 

performance of different compression strategies? 



7 
 

 
 

1.2 Data Reduction 

Section 1.1 introduces a way to reduce the training time by reducing the CNN architecture 

complexity. The nature of this way is to reduce the average training time of a single image. This 

means the forward pass of the CNN for one image is reduced since the model has been compressed 

by different kinds of compression strategies. Correspondingly, this way will also reduce the 

predicting time.  

When a base CNN architecture is given, there are many ways to train CNN faster without 

modifying the network architecture [7]. Currently, there are works using a larger batch size on 

more GPUs [33-37], using lower bits to represent the network parameters [38-41], and using 

dropping techniques[42-49] to reduce the training time without affecting the network architecture.  

One branch is to reduce the CNN parameter data storge. Low-bit quantization is a popular 

branch in model compression. Its main idea is to reduce the bit representation of the network [50, 

51]. Usually, the networks’ parameters are stored using a 32-bit floating-point [51], and it is a trend 

to migrate training to 16-bit precision [52]. Singular Value Decomposition compressed the 

matrices [53] during inference. Vector quantization [50] reduces the parameter storage redundancy 

from the vector level. Stochastic rounding [51] converts a number to a lower precision fixed-point 

considering the probability to round 𝑥 to ⌊𝑥⌋ during training. The state-of-the-art work reports the 

possibility of training network parameters with 8-bit floating-point [52]. Low-bit quantization 

reduces the model computation resource from the energy-saving perspective. This branch focuses 

on reducing training or prediction costs from the hardware perspective.  
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Another branch is to reduce the training sample data. The training sample data can be 

reduced either in sample number  [42-48] or sample image dimension [49].  There are works to 

calculate the sample losses [43, 44] and set the selection probability [42] or drop this sample based 

on the calculation. Reference [45] recovers the dropped samples after training for a few cycles. 

Reference [47] updates the learning rate based on the importance of the samples. These kinds of 

non-uniform data reduction methods drop data based on data losses and importance rank. When 

the dataset is large, the ranking process for each epoch will also take extra time and slow the 

training process. 

In this dissertation, we focus on using a simple way to reduce the training time and 

answering the following questions.  First, what are suitable sampling ratios? Second, should we 

use the same sampling ratio for each training epoch? Third, does the sampling ratio perform 

differently on small and large datasets? 

1.3 Contributions 

The objective of this dissertation is to develop new methods to train CNN faster from the 

network architecture perspective and data reduction perspective. The new methods from the 

architecture perspective explore the new architecture of CNN to reduce the training time. The new 

methods from the data reduction perspective reduce the training time without changing the CNN 

architecture. 

1.3.1 Contribution in Architecture Complexity Reduction 

Motivated by the issues mentioned in the above compact model design introduction, to 

better balance the model complexity and the accuracy, we explore a simple way to reduce the 
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model complexity while maintaining the model accuracy or even achieving higher accuracy. Our 

contributions are: 

(1) To address the CNN layer input-output different pattern issue, we introduce a novel 

Conditional Reduction (CR) module. The CR module checks the CNN layer input-output pattern 

and uses different compression strategies [54].  

(2) Based on the CR module, we introduce a novel Conditional block (C-block). The C-

block is a uniform format of traditional bottleneck block and inverted bottleneck block after 

adopting the CR module. The C-block can also be classified as Conditional Bottleneck block (C-

Bneck) and Conditional Inverted Bottleneck block (C-IBneck) depending on the base bottleneck 

type [54]. 

(3) Based on the C-Bneck and C-IBneck, we introduce a Conditional Reduction Network 

(CRnet). The CRnet is a uniform format of CNN stacked with bottlenecks or inverted bottlenecks. 

The CRnet can also be classified as CRnet-CBneck (CRnet-CB) and CRnet-CIBneck (CRnet-CIB) 

depending on the base block type [54]. 

(4) We evaluate the introduced CRnet built with the CR module and C-block on two image 

classification benchmark datasets: CIFAR-10 and CIFAR-100 [54].  

The experiments show that: 

(1) The introduced CRnet better balances the accuracy and model complexity than the 

networks adopting the state-of-the-art compression strategies. The CRnet can achieve better 

accuracy than the network with fewer parameters or FLOPs. The CRnet can achieve fewer 
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parameters or FLOPs but comparable or higher accuracy than the network with more parameters 

or FLOPs [54]. 

(2) The introduced CR module is efficient in replacing any traditional 1 × 1 convolution 

layer, making it easily applied to any CNN. Correspondingly, the introduced C-Bneck and C-

IBneck are seamless to replace the traditional bottleneck and inverted bottleneck in any CNN, 

respectively. The plug-and-play characteristic shows that our introduced methods are efficient and 

easy to use [54]. 

1.3.2 Contribution in Data Reduction 

Motivated by the challenging task of balancing the training speed and accuracy, in this 

dissertation, we explore a simple data reduction way suitable for any deep learning network 

training.  Our contributions are: 

(1) We introduce two kinds of fast training strategies for deep learning training: the flat 

reduced random sampling strategy and the bottleneck reduced random sampling strategy. The flat 

reduced random sampling simply randomly reduces a fixed ratio of data for each epoch, and the 

optimal ratio has been studied.  The bottleneck sampling divides epochs into multiple blocks. For 

each block, the beginning and end epochs have a larger sampling ratio, and the intermediate epochs 

have a lower sampling ratio [7].  

(2) We further introduce a three-stage training method based on the bottleneck reduced 

random sampling strategy. It combines the flat reduced random sampling, and the bottleneck 

reduced random sampling. The three-stage training method divides the total epochs into three parts. 

The first and third parts adopt the flat reduced random sampling. The second part adopts the 
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bottleneck reduced random sampling. The flat reduced sampling is a special case of the three-stage 

training method by setting the second part epoch over the total epochs to zero [7]. 

(3) We evaluate the introduced flat reduced random sampling and three-stage training with 

bottleneck reduced random sampling on three image classification benchmark datasets: CIFAR-

10, CIFAR-100, and ImageNet [7].  

(4) We give the theoretical analysis for the two data sampling strategies. We have 

developed and presented four theorems and two corollaries to show the properties and benefits of 

the presented new methods [7]. 

The experiments show that: 

(1) The introduced two sampling strategies get significant training time percentage 

reduction at a very small accuracy loss. Therefore, the strategies are effective in reducing the CNN 

training time [7]. 

(2) Both sampling strategies are easy to be applied to deep learning networks [7]. 

1.4 Dissertation Arrangements 

Chapter 1 introduces current methods to train CNN faster, the dissertation objectives, and 

contributions. Chapter 2 introduces the related work to our proposed methods. Chapter 3 presents 

the methodologies of our proposed methods. Chapter 4 presents the experiment datasets, parameter 

settings, and results with the analysis. Chapter 5 finally presents conclusions with a summary 

analysis of the experimental results and points out the future work.  
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CHAPTER 2: RELATED WORK 

In this chapter, typical and the state-of-the-art methods in architecture complexity 

reduction from the designing compact model aspect and data reduction from the training data level 

are reviewed. 

2.1 Architecture Complexity Reduction 

In this section, we first highlight the related methods in model compression. Then we 

introduce the essential network elements of our proposed methods. 

2.1.1 Model Compression 

Instead of removing the redundant network layers or filters, many works replace 

conventional convolution with more computation-saving ways [10, 55]. Conventional networks 

are usually stacked with standard 3 × 3 convolution layers. SqueezeNet [29] fully or partially 

replaced the 3 × 3 convolutions to 1 × 1 convolution in a layer. The mainstream networks are 

usually stacked with residual blocks that contain multiple standard 3 × 3 layers since the ResNet 

[32] proposed the shortcut approach. Bottleneck structure [32] and inverted bottleneck structure 

[9] were proposed to replace a conventional two 3 × 3  convolution layer block with a 3 × 3 

convolution layer and two 1 × 1 convolution layers before and after the 3 × 3 convolution layer. 

A standard three-layer bottleneck has a big-small-big pattern in dimension, where the input and 

output layers of this bottleneck have more channels than the inner layer. The inverted three-layer 

bottleneck has a small-big-small pattern in dimension, which is more memory efficient if we 

dispose of the inner convolution tensors after computation [9]. Depthwise convolution [26] further 
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replaces standard 3 × 3 convolution by using one channel and a kernel to generate one feature map 

instead of using multiple channels to generate one feature map. Since depthwise is an efficient way 

to reduce computation while keeping network capacity, it has been used broadly by the state of the 

art compression networks like ShuffleNet [31], MobileNet [28], and GhostNet [10]. Different from 

depthwise convolution to generate a feature map using only one input channel, group convolution 

generates a feature map using a part of the input channels.   

Researchers have observed that the dense 1 × 1 convolution has become the key structure 

contributing to model parameter number and complexity  after the depthwise convolution replaced 

standard 3 × 3 convolution [31]. ResNeXt [56] showed that grouped convolution might improve 

accuracy while maintaining the same model parameter number and similar model complexity, 

which means that grouped convolution may help to reduce the accuracy loss in model compression. 

ShuffleNet [31] adopted a three-layer bottleneck structure and replaced the 1 × 1 convolution with 

grouped 1 × 1  convolution and a channel shuffle operation after the first 1 × 1  grouped 

convolution layer. ShuffleNet v2 [30] stated that grouped convolution of the 1 × 1 convolution 

should be treated carefully since increased group number may increase the memory access cost 

and slow down the speed. MobileNet v2 [9] proposed a backbone network using inverted residual 

blocks consisting of 1 × 1 pointwise convolution and 𝑁 × 𝑁 depthwise convolution. MobileNet 

v3 [27] adopted the squeeze and excitation module [57] to improve accuracy. To reduce the 

computation cost of dense 1 × 1  convolution, GhostNet replaced a part of  3 × 3  or 1 × 1 

convolution with depthwise convolution, except that the depthwise convolution outputs were 

generated from remaining 1 × 1 convolution outputs instead of original inputs. The core idea of 
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GhostNet is to reduce the channel number generated by 1 × 1 convolution and recover the model 

capacity by depthwise convolution. GhostNet used two modules for convolution stride 1 and 2. 

For stride 1, GhostNet used a two-layer residual module, with each layer containing 1 × 1 

convolution and depthwise 3 × 3 convolution. For stride 2, GhostNet used a three-layer inverted 

residual bottleneck, with a depthwise 3 × 3  convolution as the middle layer. Filter pruning 

network [55] utilized this idea of recovering model capacity from remaining feature maps. 

2.1.2 Convolution Layer Input-Output Pattern 

Figure 2.1 shows two input-output patterns for a convolution layer generally used in the 

bottleneck blocks and inverted bottleneck blocks. The first pattern is a large-small input-output 

pattern whose output channel number is smaller than the input channel number. It corresponds to the 

green layer in Fig. 2.2 and Fig. 2.3. The second pattern is a small-large input-output pattern whose 

output channel number is larger than the input channel number. It corresponds to the orange layer in 

Fig. 2.2 and Fig. 2.3. We note that both the bottleneck block and the inverted bottleneck block contain 

convolution layers of these two patterns. The state-of-the-art compact model design methods like the 

ShuffleNet [31], MobileNet v2 [9], and GhostNet [10] use the same compression strategies for them. 
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Figure 2.1: Input-output patterns of a convolution layer. Top: large-small pattern. Bottom: small-

large pattern. 

2.1.3 CNN Bottleneck and Inverted Bottleneck 

The bottleneck block is largely used in compact network design methods to reduce the 

computation cost of the stacking of 𝑁 × 𝑁 convolutions. Figure 2.2 shows the typical 3-layer 

building of a residual bottleneck proposed in ResNet [32]. The first layer is a 1 × 1 convolution 

which will change the channel dimension. The second layer is an 𝑁 × 𝑁 convolution (usually 𝑁 

is 3). The third layer is another 1 × 1 convolution to restore the channel dimension. So there are 

two 1 × 1 convolution layers: the first layer and the third layer. The first 1 × 1 convolution layer’s 

input-output pattern is large-small, denoted by green color. The second 1 × 1 convolution layer’s 

input-output pattern is small-large, denoted by orange color.  Figure 2.3 shows the typical 3-layer 

building of a residual inverted bottleneck proposed in MobileNet v2 [9].  Unlike the bottleneck, 

for the inverted bottleneck, the first 1 × 1 convolution layer’s input-output pattern is small-large, 

denoted by orange color; and the second 1 × 1 convolution layer’s input-output pattern is large-

small, denoted by green color. 
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Figure 2.2: Bottleneck block 

 

Figure 2.3: Inverted Bottleneck block 
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2.1.4 Compression Strategy 

The 1 × 1 convolution layer and the 3 × 3 convolution layer are two important elements 

to be compressed in the bottleneck blocks or the inverted bottleneck blocks. The mainstream 

compact networks leverage the depthwise convolution to replace the standard 3 × 3  convolution, 

like ShuffleNet [31] and MobileNet v2 [9]. Thus, the dense 1 × 1 convolutions have become the 

key elements to be compressed in these CNNs and are the focus of this dissertation. 

The intuitive idea to reduce the 1 × 1  convolution computation is to reduce the input 

channel number or the output channel number of this 1 × 1 convolution layer, which means to 

reduce the number of 1 × 1 kernels. ShuffleNet [31] uses group convolution to compress the two 

1 × 1  convolution layers in a residual block. GhostNet [10] uses depthwise convolution to 

generate the output channels that had been cut off from the existing features generated from a 

reduced number of 1 × 1 kernels. 

Our proposed Conditional Reduction (CR) module is motivated by the Ghost module [10]. 

Ghost module was proposed in GhostNet [10] for one convolution layer feature map generation.  

Figure 2.4 shows the basic design of the Ghost module. Ghost module uses normal convolution to 

generate a reduced number of feature maps called intrinsic features and then uses depthwise 

convolution to generate other feature maps from intrinsic features. When using Ghost module to 

compress a 1 × 1 convolution layer, it contains two parts: normal 1×1 convolution (c1) to get a 

reduced number of output feature maps and depthwise convolution (dw) to generate the other 

feature maps from the c1 results. We use the c1dw compression strategy to indicate the two 

compression steps. 
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Figure 2.4: Ghost module [10]. Parameter 𝑠 is the total number of output channel over the output 

channel generated by normal 𝑁 × 𝑁 convolutions and s > 1. dw stands for depthwise convolution.  

2.2 Data Reduction 

In this section, we first highlight the related methods in reducing training time without 

affecting the model architecture. Then we introduce the essential basic knowledge of our proposed 

methods. 

2.2.1 Data Sampling 

Some works use the data importance indices ranked by training loss [42, 45, 47] which 

select the data subsets non-uniformly. The ranking process may take extra time when there is a 

large number of training samples. Typical deep learning frameworks like Keras, TensorFlow and 

PyTorch provide users with well-built data access functions (data loaders and samplers) to read 

images from the local computers or from memory. When using the sample ranking and dropping 

strategy, we need to refresh the sampler data indices after each dropping, which will take extra 

work to fit this strategy into the data access interface. Furthermore, the data importance ranking 

will take extra time when the number of samples is large. Thus, a question arises: is there a more 
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straightforward way to reduce the training time without affecting existed deep learning data access 

interface? Inspired by this idea, we propose some novel data reduction strategies which are easily 

used to fit in any deep learning API (Application Programming Interface) and data access functions. 

2.2.2 Epoch and Batch 

Traditionally a deep learning training epoch refers to a cycle to complete all training 

samples. Since the computer is resource-constraint to input all the training samples into the 

network forward pass, the samples are split into mini-batches. In one iteration, only a batch of 

images is input to the network forward pass. The most commonly used batch-based gradient 

descent method updates the weights through the backward propagation of the batch [58]. After the 

network completes the backward propagation of a batch and updates the parameters, it will read 

the next batch and repeat the forward and backward processing.  

To speed up the training process, we can either reduce the training epochs (full batches-

fewer epochs) or reduce the sample number for each epoch (fewer batches-full epochs). It is 

obvious that we can also use fewer batches-fewer epochs. Enough training epochs are often 

essential for the deep learning models to converge [58]. It is noted that the model generated from 

full batches-fewer epochs and fewer batches-full epochs are different. It is due to the learning rate 

variation related to the epoch number. Take two popular learning rate scheduling methods as 

examples. The step decay method drops the learning rate at specific epochs defined by the user. 

The cosine decay method gradually drops the learning rate based on the iteration number and epoch 

number. Thus, full batches-fewer epochs simply using small epochs to reduce the training time is 

not expected and will affect the learning rate decay. We use the full epochs-fewer batches to drop 
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data for each epoch, maintaining the total epoch number. It will fit well with the original training 

hyperparameters. 

2.2.3 Data Visibility 

In standard full batches-full epochs training mode, an image sample is used exactly once 

for each epoch. When the total epoch number is 𝑁, the number of an image sample’s occurrences 

is 𝑁. In other words, every image sample is visible to the network for each epoch. With shuffling 

operation before training, the order of an image appearance is different for each epoch. If there is 

no shuffling operation, the order of an image appearance will be the same for each epoch. 

Reference [45] proposed a drop-and-refresh training strategy where samples with lower losses will 

be dropped for a few epochs and reviewed. That means some samples will be invisible to the 

training process for some epochs and visible again in case the network forgets those samples. The 

samples are dropped non-uniformly in [45]. 

2.2.4 Data Reduction Strategy 

The training modes can be summarized as four types based on the batch number and epoch 

number: full batches-full epochs, full batches-fewer epochs, fewer batches-full epochs, and fewer 

batches-fewer epochs. Our objective is the fewer batches-full epochs mode since it is beneficial to 

not to interfere with the normal learning rate decay.  

We propose two data reduction strategies: flat reduced random sampling and bottleneck 

reduced random sampling. For the flat reduced random sampling, we are inspired by the popular 

80-20 split ratio that is usually used to split training and validation datasets and the 0.618 golden 

ratio that is a pattern shows in nature.  For the bottleneck reduced random sampling, we are inspired 
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by the ResNet [32] bottleneck pattern for the convolutional layers. We show that all data samples 

will be used with an extremely high probability during the whole training procedure for both data 

reduction strategies, and the training time will be significantly reduced in percentage with a 

comparable modeling accuracy.  
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CHAPTER 3: METHODOLOGY 

In this chapter, we first introduce our novel methods in architecture complexity reduction. 

The object is to build a compact model to reduce the network parameter number and FLOPs.  We 

propose a Conditional Reduction (CR) module and then propose the convolutional network 

internal blocks based on the CR module. Based on the CR module and new convolutional blocks, 

we propose a Conditional Reduction Network (CRnet). Then we introduce our novel methods in 

data reduction. The object is to reduce the training time without affecting the network architecture. 

We first propose a flat reduced random sampling method for the deep learning model training. 

Then we propose a bottleneck reduced sampling strategy as a three-stage training method based 

on the bottleneck reduced sampling.  

3.1 Architecture Complexity Reduction 

In Section 2.12, we have introduced the convolution layer’s input-output pattern. In order 

to utilize the convolution layer’s input-output pattern information, we propose a novel input-output 

pattern aware module called Conditional Reduction (CR) module. The CR module is developed to 

replace a single convolution layer. Then we apply the CR module to two typical blocks that 

constitute the CNN: bottleneck blocks and inverted bottleneck blocks to get the Conditional block 

(C-block). At last, we apply the proposed C-block to the popular ResNet50 [32] stacked with 

bottlenecks and the state-of-the-art network GhostNet [10] stacked with inverted bottlenecks to 

get our Conditional Reduction Network (CRnet).  
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3.1.1 Conditional Reduction Module 

The dense 1 × 1 convolution layers have become a constraint of model complexity since 

the kernel size 1 × 1 is the smallest among 𝑁 × 𝑁 kernel sizes. Thus, the key to building a more 

compact network is to reduce the calculation of the dense 1 × 1  convolution layers. Current 

compression strategies ignore the convolution layer’s input-output patterns. They use the same 

compression strategy for a small input-large output 1 × 1 convolution layer and large input-small 

output 1 × 1 convolution layer.  

Figure 2.4 in section 2.1.4 shows the state-of-the-art Ghost module [10] that inspired this 

work. The Ghost module uses the c1dw ( 1 × 1  convolution and depthwise convolution) to 

compress a 1 × 1 convolution layer. It first uses the regular 1×1 convolution (c1) to get a reduced 

number of output feature maps and then uses the depthwise convolution (dw) to generate the other 

feature maps from the c1 results. The nature of Ghost module is that the feature map similarity 

shows the possibility to generate the total feature maps from its subset. Figure 3.1 shows the 

similarity examples. 

Although the feature map similarity exists in both small input-large output 1 × 1 

convolution layer and large input-small output 1 × 1 convolution layer, the meanings behind those 

two patterns are different. For the small input-large output layer, its nature is to discover new 

features that may benefit the training. For the large input-small output layer, its nature is more like 

to distilling useful features to represent the previous layers. The c1dw compression may work well 

for the small input-large output layer since it first uses the normal 1 × 1 convolution to generate 

some feature maps. Moreover, the other new features or similar features can be realized by a 
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computation-saving way. However, for the large input-small output layer, a small number of 

features are extracted from a large feature database, and each one of the extracted features is 

important. Reducing the number of such features generated by 1 × 1  convolution may lose 

important information summarized from previous layers. For example, as Figure 3.1 shows, if we 

reduce the output features to only two images, e.g., the first two images of the first row of the 

feature maps, each image is very important and different from the others. In this case, we do not 

want to generate only one feature map and use it to generate the other. We take the first convolution 

layer’s results to express our idea. In real experiments, the first convolution layer is usually not 

compressed. 

 
Figure 3.1: Feature maps of the first convolution layer of ResNet56 [32]. The dog image source: 

CIFAR-10. Red box: similar feature examples. 
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Figure 3.2: Conditional Reduction module to compress the 1 × 1 convolution. dw conv represents 

depthwise convolution. group conv represents group convolution. 

Based on the analysis above, we propose a Conditional Reduction (CR) module. Figure 3.2 

shows the structure of the CR module. Before compressing a 1 × 1 convolution layer, we check 

the input-output pattern and choose different compression strategies. When it is the small input-

large output mode, we use the c1dw compression strategy as Ghost module [10]. Otherwise, we 
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use the group convolution. The proposed CR module is aware of the input-output pattern and takes 

advantage of the c1dw compression and group convolution (gc) compression.  

Next, we introduce how we use the CR module to reduce the model complexity, including 

parameter number and FLOPs [30]. Assume an 1 × 1 convolution layer’s input is 𝐶𝑖𝑛 × 𝑊 × 𝐻, 

and output is 𝐶𝑜𝑢𝑡 × 𝑊 × 𝐻 . If we use gc compression, the model parameter number after 

compression over the original parameter number and the FLOPs after compression over the 

original FLOPs will be as formula (1) and (2), respectively.  

𝑅𝑝
𝑔𝑐(𝑔) =

𝐶𝑖𝑛
𝑔

∙𝐶𝑜𝑢𝑡

𝐶𝑖𝑛𝐶𝑜𝑢𝑡
 =

1

𝑔
                                                       (1)                              

 𝑅𝐹𝐿𝑂𝑃𝑠
𝑔𝑐(𝑔) =

𝐶𝑖𝑛
𝑔

∙𝐶𝑜𝑢𝑡∙𝑊∙𝐻

𝐶𝑖𝑛∙𝐶𝑜𝑢𝑡∙𝑊∙𝐻
 =

1

𝑔
                                               (2) 

where 𝑔𝑐 stands for group convolution, 𝑔 is the group number. If we use c1dw compression, the 

model parameter number after compression over the original parameter number and the FLOPs 

after compression over the original FLOPs will be as formula (3) and (4), respectively. 

𝑅𝑝
𝑐1𝑑𝑤(𝛼, 𝛽) =

𝐶𝑖𝑛∙𝛼∙𝐶𝑜𝑢𝑡+𝑑∙𝑑∙𝛽∙𝛼∙𝐶𝑜𝑢𝑡

𝐶𝑖𝑛∙𝐶𝑜𝑢𝑡
= 𝛼 +

𝑑∙𝑑∙𝛽∙𝛼

𝐶𝑖𝑛
                             (3)    

𝑅𝐹𝐿𝑂𝑃𝑠
𝑐1𝑑𝑤(𝛼, 𝛽) =

𝐶𝑖𝑛∙𝛼∙𝐶𝑜𝑢𝑡∙𝑊∙𝐻+𝑑∙𝑑∙𝛽∙𝛼∙𝐶𝑜𝑢𝑡∙𝑊∙𝐻

𝐶𝑖𝑛∙𝐶𝑜𝑢𝑡∙𝑊∙𝐻
= 𝛼 +

𝑑∙𝑑∙𝛽∙𝛼

𝐶𝑖𝑛
                  (4)     

where 𝑑 is from the kernel size 𝑑 × 𝑑 of the depthwise convolution, 𝛼 is the ratio of the reduced 

1 × 1  convolution outputs over the total outputs and 𝛼 ∈ (0, 1) , 𝛽  is the number of features 

generated using depthwise convolution over the reduced 1 × 1 convolution outputs. The number 

of the reduced 1 × 1  convolution output feature is ⌈𝛼 × 𝐶𝑜𝑢𝑡⌉ . The remaining features are 

generated using the depthwise convolution with 𝑑 × 𝑑 kernels. As the depthwise convolution can 

only generate an integer times of input number, the 𝛽 is calculated as formula (5). 
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  𝛽 = ⌈
𝐶𝑜𝑢𝑡−⌈𝛼×𝐶𝑜𝑢𝑡⌉

⌈𝛼×𝐶𝑜𝑢𝑡⌉
⌉ , 𝛽 ≥ 1                                                (5) 

When we set 𝑔 = ⌈
1

𝛼
⌉, the gc compression’s parameter number and FLOPs will always be smaller 

than the c1dw compression. Thus, after we replace the c1dw by gc for the large input-small output 

pattern, the model complexity is reduced. 

3.1.2 Conditional Block 

Since He [32] proposed the residual network, the structure of stacking residual convolution 

blocks has become a mainstream backbone of many state-of-art networks. Networks with fewer 

layers generally perform worse than deep networks for complex computer vision tasks. Thus, to 

train a compact work without damaging the network capacity and depth is very important.  This 

section will focus on compression methods without damaging the network depth and node (channel) 

number as a key approach for the compressed networks. In other words, the compressed network 

will have the same depth and the same number of channels for each layer but reduced model 

complexity. Thus, model complexity usually is compared through parameter number and FLOPs 

(floating-point operations) in this approach.  

Section 3.1.1 introduces the CR module, which is suitable to compress a single 1 × 1 

convolution layer. CNN is stacked with bottleneck or inverted bottleneck blocks, which consist of 

two or three convolution layers. We apply the proposed CR module to the CNN block element and 

get the Conditional block (C-block). Figure 3.3 shows the structure of the C-block. It is a three-

layer block with two compressed 1 × 1 convolution layers and an intermediate layer where the 

pooling operation is operated when needed. The intermediate layer is a depthwise 3 × 3 

convolution.  
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Figure 3.3: Conditional block (C-block). 

Since the CR module can tackle either the small input-large output or the large input-small 

output 1 × 1 convolution pattern, the C-block is a general format utilizing the CR module in CNN 

bottleneck blocks and inverted bottleneck blocks. When the block type is a bottleneck, the C-block 

becomes a Conditional Bottleneck (C-Bneck) as Fig. 3.4. The first layer is a large input-small 

output 1 × 1 convolution layer. The second layer is a 3 × 3 depthwise convolution where the 

pooling is applied when needed. The third layer is a small input-large output 1 × 1 convolution 

layer. When the block type is an inverted bottleneck, the C-block becomes a Conditional Inverted 

Bottleneck (C-IBneck) as Fig. 3.5. The first layer is a small input-large output 1 × 1 convolution 

layer. The second layer is a 3 × 3 depthwise convolution where the pooling is applied when 

needed. The third layer is a large input-small output 1 × 1 convolution layer. For the C-IBneck, 

the second layer will be skipped as GhostNet [10]. 
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Figure 3.4: Conditional Bottleneck block (C-Bneck). 

 

Figure 3.5: Conditional Inverted Bottleneck block (C-IBneck). 
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3.1.3 Conditional Reduction Network 

Section 3.1.2 introduces the C-Bneck and C-IBneck blocks. We replace the conventional 

bottleneck and inverted bottleneck blocks by the proposed blocks and get the compact Conditional 

Reduction Network (CRnet). In this dissertation, we take the ResNet50 [32] built based on 

bottlenecks and the GhostNet [10] built based on inverted bottlenecks as the backbone CNN 

architectures.  

ResNet50 is a baseline residual network architecture with bottlenecks. It is proposed to 

compress the conventional two-layer 3 × 3  convolution block. GhostNet is a state-of-the-art 

compact network with inverted bottlenecks. It is proposed to further compress the dense 1 × 1 

convolutions. The reason that the state-of-the-art compact CNN turns to inverted bottlenecks is 

that the inverted bottleneck is memory efficient since we can dispose of the inner convolution 

tensors after computation [9]. 

To verify the effectiveness of our C-Bneck and C-IBneck, we apply the C-Bneck to replace 

the bottlenecks of ResNet50 to get the CRnet-CB, and we apply the C-IBneck to replace the inverted 

bottlenecks of GhostNet to get the CRnet-CIB. We have modified the ResNet50 node number to fit 

the datasets CIFAR-10 and CIFAR-100.  

Table 3.1 shows the architecture of CRnet-CB with the ResNet50 as the backbone for 

CIFAR-10 and CIFAR-100. Table 3.2 shows the architecture of CRnet-CIB with the GhostNet as 

the backbone for CIFAR-10 and CIFAR-100. 
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Table 3-1: CRnet-CB for CIFAR-10 and CIFAR-100 (backbone: ResNet50) 

 

Layer Input Operator Inner Exp Out Str #block 

conv1 3 × 32 × 32 conv3 × 3 - - 16 1 - 

conv2-x 16 × 32 × 32 C-Bneck* 16 4 64 1 3 

conv3-x 64 × 32 × 32 C-Bneck 32 4 128 2 4 

conv4-x 128 × 16 × 16 C-Bneck 32 4 128 1 6 

conv5-x 128 × 16 × 16 C-Bneck 64 4 256 2 3 

 256 × 8 × 8 avg_pool 

 8 × 8 

- - 256 - - 

 256 × 1 × 1 fc - - class - - 

Input = Input image size, Inner = Inner channel number, Exp = Expansion, Out = Output channel 

number = inner ×  exp, Str = Stride, #block = number of blocks. The input, inner and output 

channel numbers are the 𝐶𝑖𝑛 , 𝐶0  and 𝐶𝑜𝑢𝑡  in Fig. 3.4, respectively. C-Bneck = Conditional 

Bottleneck, class = label classes. The stride 2 is only used in conv 3-1 and conv 5-1. The inner 

channel number is fixed. The output channel number varies along with the expansion ratio. 

*The conv 2-1’s first 1 × 1 layer’s input channel number and the output channel number are the 

same. We also use 𝑔𝑐 for this layer. 
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Table 3-2: CRnet-CIB for CIFAR-10 and CIFAR-100 (backbone: GhostNet) 

 

Input Operator Inner Exp Out Str SE DW 

3 × 32 × 32 conv 3 × 3 - - 16 1 - - 

16 × 32 × 32 C-IBneck 64 4 16 1 0 3 

16 × 32 × 32 C-IBneck 64 4 16 1 0 3 

16 × 32 × 32 C-IBneck 64 4 16 1 0 3 

16 × 32 × 32 C-IBneck 64 4 16 1 0.25 5 

16 × 32 × 32 C-IBneck 64 4 16 1 0.25 5 

16 × 32 × 32 C-IBneck 128 4 32 2 0 3 

32 × 16 × 16 C-IBneck 128 4 32 1 0 3 

32 × 16 × 16 C-IBneck 128 4 32 1 0 3 

32 × 16 × 16 C-IBneck 128 4 32 1 0 3 

32 × 16 × 16 C-IBneck 128 4 32 1 0.25 3 

32 × 16 × 16 C-IBneck 128 4 32 1 0.25 3 

32 × 16 × 16 C-IBneck 256 4 64 2 0.25 5 

64 × 8 × 8 C-IBneck 256 4 64 1 0 3 

64 × 8 × 8 C-IBneck 256 4 64 1 0.25 3 

64 × 8 × 8 C-IBneck 256 4 64 1 0 3 

64 × 8 × 8 C-IBneck 256 4 64 1 0.25 3 

64 × 8 × 8 conv 1 × 1 - - 256 1 - - 

256 × 8 × 8 avg_pool 

8 × 8 

- - 256 - - - 

256 × 1 × 1 conv2d 1 × 1 - - 64 1 - - 

64 × 1 × 1 fc - - class - - - 

Input = Input image size, Inner = Inner channel number = out × exp, Exp = Expansion, Out = 

Output channel number, Str = Stride, SE = Squeeze and excite ratio [57], DW = depthwise kernel 

size. The input, inner and output channel numbers are the 𝐶𝑖𝑛, 𝐶0 and 𝐶𝑜𝑢𝑡 as shown in Fig. 3.5, 

respectively. C-IBneck = Conditional Inverted Bottleneck, class = label classes. The output 

channel number is fixed. The inner channel number varies along with the expansion ratio. 
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3.2 Data Reduction 

Section 2.2 introduces four batch-epoch training types based on the batch number and 

epoch number: full batches-full epochs, full batches-fewer epochs, fewer batches-full epochs, and 

fewer batches-fewer epochs. In this dissertation, we focus on the fewer batches-full epochs mode 

since it is beneficial to not interfere with the normal learning rate decay and can be easily applied 

to any CNN training. We propose two compression strategies: the flat reduced random sampling 

and the bottleneck reduced random sampling. Then we propose a three-stage training method to 

control the bottleneck reduced sampling epochs [7].  

3.2.1 Flat Reduced Random Sampling  

For the flat reduced random sampling, the word flat means that we use the same fixed 

sampling ratio for each epoch. A question naturally arises: what sampling ratio should we choose? 

Since the sampling ratio belongs to (0%,100%], it is not possible to try every sampling ratio. 

Inspired by the popular 80-20 split ratio that is usually used to split training and validation datasets 

and the 0.618 golden ratio that is a pattern shows in nature, we take two flat ratios: 0.8 and 0.618. 

The flat random sampling ratio of 0.8 or 0.618 means that we randomly sample 80% or 61.8% data 

to train for each epoch.   

We maintain the same batch size (the number of images feeds into the network forward 

pass once a time) but reduce the number of batches for each epoch based on the flat reduction ratio. 

The randomness is assured by shuffling the dataset before running the next epoch. In this way, the 

proposed method can be easily applied to current deep learning frameworks. 

The flat reduced sampling method is shown in Fig. 3.6.  



34 
 

 
 

 

Figure 3.6: Flat reduced sampling. 𝛼 is the flat reduced random sampling ratio. 

There are similar images in the training dataset. We do not expect the model to learn similar 

images again and again in one epoch. The nature of the flat reduced training is to use a randomly 

selected subset with a flat ratio. With the same batch size, the training time in an epoch is positively 

correlated with the number of batches in an epoch. Thus, the total training time is positively 

correlated with the total number of batches in the CNN training process. But for accuracy, this is 

not the exact case. The verification/test accuracy may be higher, lower, or comparable with 

different sampling ratios, i.e., with a variation, but it is limited as shown late in the proposed 

methods. The deep CNN models need enough training samples and epochs to converge. If we set 

the flat ratio too low, e.g., 30%, the model will not train well, and the training accuracy will be 

low, not to mention the verification accuracy. If we set the flat ratio too high, e.g., 95%, the training 

time will not be reduced much comparing to 100% training.   

An optimal flat ratio should balance the training time and accuracy well.  At the same time, 

we do not want to miss any image samples during the whole training process. Thus, we calculate 
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the probability that an image is invisible to all epochs for our proposed flat random sampling ratio 

0.8 and 0.618 as Theorem 1.  

Theorem 1.  If the deep learning network is trained by N epochs, and the flat reduced random 

sampling ratio is 𝛼 as 0.8 or 0.618, then the probability that a sample has been missed by the whole 

training process is as formula (6). 

                 𝑝 = (1 − 𝛼)𝑁             (6) 

In the experiments as commonly used, 𝑁 = 120. By Theorem 1, we have the probability value p 

for 𝛼 = 0.8 or 0.618 respectively as formula (7a) or (7b). 

𝑝 = (1 − 0.8)120 = 1.3292 ∙ 10−84                                  (7a) 

         𝑝 = (1 − 0.618)120 = 7.0405 ∙ 10−51                              (7b) 

It shows that each sample in the training dataset will be used for the model training almost certainly 

with a missing probability less than 10−51. This method can also be viewed as a special and simple 

case of the second proposed bottleneck sampling method.  

The relationship between the flat reduced random sampling training time and the total 

training time is calculated as Theorem 2. Based on Theorem 2, we derive the Corollary 1. 

Theorem 2.  Consider a fast training method with a flat reduced random sampling ratio 𝛼.  Its 

average training time 𝑇𝛼 and the average training time T of a regular method satisfy formula (8)-

(9):            

𝑇𝛼

𝑇
=

𝑇0𝛼∙𝑀𝛼∙𝑁

(𝑇0∙(𝑀−1)+𝑇1)∙𝑁
=

𝑀𝛼𝑇0𝛼/𝑇0

(𝑀−1)+𝑇1/𝑇0
                                            (8)  

𝑀𝛼𝑇0𝛼/𝑇0

𝑀
≤

𝑇𝛼

𝑇
<

𝑀𝛼 𝑇0𝛼/𝑇0

𝑀−1
                                                  (9)                   
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where 𝑁 is the total training epochs number, 𝑀𝛼 = ⌊𝛼𝑀⌋ and 𝑀 = ⌈𝐷/𝐵⌉ are the batch numbers 

of each epoch in the flat 𝛼 reduction method and regular method respectively, D is the training 

data set sample size, and B is the batch sample size, 𝑇0 and 𝑇0𝛼 denote the average training times 

of a full sample batch with the regular method and  𝛼-program method, respectively. 

Corollary 1. The fast training method with a flat reduced sampling ratio 𝛼 has an average training 

time reduction ratio  

𝑇𝛼

𝑇
≈ 𝛼                                                                     (10) 

if 𝛼𝑀 ≫ 1 and 𝑇0𝛼/𝑇0 ≈ 1. 

From Theorem 2 and Corollary 1, if we only consider the training time reduction, it is 

obvious that the flat fast training method with the flat reduced random sampling rate 𝛼 = 0.618 

saves more time than 𝛼 = 0.8.  

3.2.2 Bottleneck Reduced Random Sampling 

We note that the variation between neighboring two epochs is quite small, except for the 

epoch where the learning rate drops to a small percentage of the previous value. For example, 

ResNet [32] initial learning rate 0.1 multiples by 0.1 after training several epochs and becomes 

0.01. A question arises: is it essential to use a large sampling rate for each epoch? Motivated by 

this question, we propose the bottleneck reduced random sampling strategy. 

The proposed bottleneck random sampling is inspired by the image convolutional 

bottleneck block design of ResNet [32]. The difference is, the ResNet bottleneck block is for the 

image convolution. The number of feature maps input to the block is large, becoming small at the 
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intermediate layers and then get large again at the output layer. In this dissertation, the bottleneck 

design is for the sampling rate. We take several epochs as a sampling block. Within  each block, 

the start and the end epoch use a larger sampling ratio, and the middle epochs use a smaller ratio.  

The ratio pattern of the sampling ratio block is large-small-large. Thus, we named the sampling 

ratio block as a sampling bottleneck, and the method using the sampling bottleneck as the 

bottleneck reduced random sampling.  

The bottleneck sampling strategy is shown in Fig. 3.7. A bottleneck block is composed of 

k+2 epochs as shown in Fig. 3.7, and each epoch (each bar) has its sampling ratio, where different 

bar height size corresponds to a different number of samples. The internal epochs correspond to a 

squeezed batch number in the bottleneck stage.  

 

Figure 3.7: Bottleneck sampling block. 𝛼 is the sampling ratio for the input and output epoch of a 

bottleneck. 𝑠𝑒 is the squeeze ratio for the internal epochs. 𝑘 is the number of internal bottleneck 

epochs. In our experiments, 𝑘 = 4. 
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Figure 3.8 shows the stacking method of the bottleneck sampling block. There are two 

blocks in Fig. 3.8. The second block uses the first block’s end epoch as its start epoch. For more 

bottleneck blocks, they also stack using the same way. 

The bottleneck sampling has the following characteristics. 

(1) The samples are selected randomly as the original methods and the flat random 

sampling method. The randomness is fulfilled by shuffling the dataset at the beginning of each 

epoch. 

(2) For all data samples, they have the same probabilities to be selected as uniformly 

random selection. Thus, there are no extra calculations of sample importance. Therefore, it is also 

easily implemented.  

 
Figure 3.8: Stacking of bottleneck sampling blocks. 
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3.2.3 Three-Stage Training 

Section 3.2.2 introduces the new bottleneck sampling strategy. We develop a three-stage 

training method based on the bottleneck sampling due to the following two reasons. 

(1) The network is randomly initialized and knows nothing about the data at the very 

beginning. Enough training data is essential at the early stage of the training to get a model with 

some knowledge of the data.  Thus, if we would reduce the sampling rate to a smaller value, we 

should give the model a high sampling rate at the early stage. 

(2) When the model trains several epochs, the model starts to converge, and the accuracy 

increase is quite small. In this case, a high sampling ratio is not essential. We may use a small 

sampling ratio. 

 

Figure 3.9: Three-stage training method based on bottleneck sampling method. The bottleneck 

sampling is used in stage 2. 𝛼𝑖 is the sampling ratio for stage 𝑖. 𝑁𝑖 is the number of epochs for 

stage 𝑖. 

We propose a new three-stage training method, as shown in Fig. 3.9. The first stage 

contains the early epochs of the training procedure. The middle stage contains the middle epochs 
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after the first stage and before the third stage. The third stage contains the last remaining epochs 

in the whole training process. We applied the bottleneck sampling in the middle stage. The first 

block and the last block of the middle stage are special as they connect with the first stage and the 

third stage. The first bottleneck of stage 2 is not a full bottleneck. It uses the last epoch of stage 1 

to replace the start epoch. The last epoch of stage 2 may be full or not full depending on the  𝑁1 +

𝑁3 because 𝑁2 = 𝑁 − (𝑁1 + 𝑁3). Here the internal squeezed epoch number is fixed as 4. If 𝑁2 is 

exactly divisible by 5 (internal 4 squeezed ratios 𝛼22 and 1 normal ratio 𝛼21), the last bottleneck 

is full, and the last epoch of it will be 𝛼21. Otherwise, the last bottleneck is not full, and the last 

epoch of it will be 𝛼22. The meanings of the above math symbols are defined in Theorem 3 below. 

Next, we analyze the probability of a sample get missed by the whole training process and 

give the training time calculation. 

Theorem 3. The probability 𝑝 of a sample missing in the bottleneck random sampling method is 

shown in formula (11). 

𝑝 = (1 − 𝛼1)𝑁1(1 − 𝛼21)𝑁21(1 − 𝛼22)𝑁22  (1 − 𝛼3)𝑁3                            (11) 

where each epoch has its independent random sampling from the whole training dataset, 𝛼1 and 

𝛼3  are two flat sampling rates for each epoch in stages 1 and 3 respectively; 𝛼21and 𝛼22 are 

respective sampling rates for different bottleneck epochs in stage 2, 𝑠𝑒 is a squeeze ratio as 𝑠𝑒 =

𝛼22/𝛼21; 𝑁1 and 𝑁3 are the total epoch numbers in stages 1 and 3 with their random sampling 

rates 𝛼1 and 𝛼3, respectively; 𝑁21 and 𝑁22 are the total epoch numbers with a sampling rate 𝛼21 

and its squeezed rate 𝛼22, respectively; and 𝑁2 = 𝑁21 + 𝑁22 represents the total epoch numbers in 
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stage 2.  

Again, the probability of any sample missing in the whole three-stage bottleneck training 

process is extremely low for deep learning where the total training epoch number  𝑁 = 𝑁1 + 𝑁21 +

𝑁22 + 𝑁3  is high as shown in (11).  

Let 𝑇𝐵 be the average training time of the three-stage bottleneck reduced random sampling 

strategy. Similarly, we have the following Theorem 4. 

 Theorem 4. Consider a three-stage fast training method with a bottleneck random sampling ratio 

set of {𝛼1, 𝛼21, 𝛼22, 𝛼3} and its respective epoch number set of {𝑁1, 𝑁21, 𝑁22, 𝑁3}.  The training 

data set has the total sample number D, and the batch sample size is B.  In stages {1, 21, 22, 3}, 

where stages 21 and 22 are in stage 2, each epoch may have different batch numbers 

{𝑀1, 𝑀21, 𝑀22, 𝑀3} = {⌊(𝛼1, 𝛼21, 𝛼22, 𝛼3) ∙ 𝑀⌋}  with 𝑀 = ⌈𝐷/𝐵⌉,  respectively. The average 

bottleneck training time 𝑇𝐵 and the average training time T of a regular method satisfy formula 

(12):  

𝑇𝐵

𝑇
=

(𝑇0𝛼1𝑀1𝑁1+𝑇0𝛼21𝑀21𝑁21+𝑇0𝛼22𝑀22𝑁22+𝑇0𝛼3𝑀3𝑁3)

[𝑇0(𝑀−1)+𝑇1]𝑁
                              (12) 

where 𝑁 = (𝑁1 + 𝑁21 + 𝑁22 + 𝑁3) is the total training epochs number, 𝑇0 and 𝑇0𝛼𝑖  denote the 

average training times of a full sample batch with B samples under a regular method and an 𝛼𝑖-

reduced method respectively, and 𝑇1 is the average training time of the last batch in each epoch of 

the regular method, which may not have full B samples. 

Corollary 2.  If each member of {𝛼1𝑀, 𝛼21𝑀, 𝛼22𝑀, 𝛼3𝑀} is much larger than 1, and 𝑇0𝛼𝑖 ≈ 𝑇0, 

𝑖 = 1, 21, 22, 3, then the bottleneck fast training method has a simplified training time reduction 
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as in (13) 

 
𝑇𝐵

𝑇
≈

𝑀1𝑁1+𝑀21𝑁21+𝑀22𝑁22+𝑀3𝑁3

𝑀𝑁
=

𝛼1𝑁1+𝛼21𝑁21+𝛼22𝑁22+𝛼3𝑁3

𝑁
                          (13) 

where the parameters are as defined in Theorem 4, respectively.  

From Theorems 2 and 4, and Corollaries 1–2, it is observed that the flat fast training method 

with 𝛼 = 0.618 is better than the bottleneck fast training method in view of training time reduction 

and the process complexity.   
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CHAPTER 4: EXPERIMENT 

4.1 Architecture Complexity Reduction 

We propose a novel CR module to compress the 1 × 1 convolution. Based on the CR 

module, we have developed a C-Bneck and a C-IBneck to compress the CNN bottleneck block 

and inverted bottleneck block, respectively. Then we use the C-Bneck to replace the bottlenecks 

in a backbone network to get the CRnet-CB. We use the C-IBneck to replace the inverted 

bottlenecks in a backbone network to get the CRnet-CIB.  In this dissertation, we take the state-

of-the-art network ResNet50 stacked with bottlenecks as our backbone architecture to test the C-

Bneck block. We take the state-of-the-art network GhostNet stacked with inverted bottlenecks as 

our backbone to test the C-IBneck block.  

4.1.1 Dataset 

We use two benchmark datasets: CIFAR-10 [59] and CIFAR-100 [59], to conduct the 

experiments. The CIFAR-10 contains 50k 3 × 32 × 32 training images and 10k 3 × 32 ×

32 testing images for 10 classes. The 10 classes are airplane, automobile, bird, cat, deer, dog, frog, 

horse, ship, and truck. The CIFAR-100 contains 50k 3 × 32 × 32 training images and 10k 

3 × 32 × 32 testing images for 100 classes. The 100 classes include beaver, dolphin, ray, shark, 

roses, sunflowers, bottles, cups, pears, clock, etc. 

4.1.2 Evaluation Metrics 

Model complexity is an important factor in measuring model performance. A compact 

model with a little sacrifice of accuracy is acceptable compared to a large model since compact 
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models are faster and are easier to be deployed to mobile devices, as well as to be applied, 

especially for real-time identification systems and control systems.  

There are two basic metrics to measure the model complexity: parameter number and 

FLOPs. The parameter number is the number of trainable elements in the CNN network. For 

example, a 𝑁 × 𝑁 convolution kernel contains 𝑁 × 𝑁 parameters without considering bias. The 

key of deep learning is that it can be trained through backpropagation, which makes it obviously 

different from conventional machine learning methods. After a batch of images sent into the 

feedforward network to get the prediction, we will get the predicted outputs for this batch which 

can be used to calculate the loss. The loss will be propagated back to the network to update the 

trainable parameters. Thus, the number of parameters is a key metric to reflect the model capacity 

and complexity. It describes the RAM needs of the model to store its architectures and parameters. 

FLOPs (floating-point operations) is another important metric to measure model complexity. It is 

often defined as the number of floating-point multiplication-adds [31]. It indicates the computation 

amount of one forward pass for a single image. As the whole image contributes to the 

multiplication-adds operations, FLOPs number is related to image size. With the same convolution 

kernel, the larger the image is, the more the FLOPs are. It describes the hardware needs of the 

model. 

Besides model complexity, accuracy is a conventional measurement of model performance. 

No or a little sacrifice is acceptable when building compact models. A compact model containing 

very few parameters and requiring small FLOPs but performing poorly in accuracy is also a failed 

and unacceptable model. Here the accuracy is also mentioned as Top 1 accuracy. The top 1 
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accuracy is the accuracy of general understanding. For each sample, the one with the highest 

probability is the predicted type. If it matches the sample label, the prediction matches the label. 

For the whole dataset, top 1 accuracy is the number of top 1 matched predictions over the total 

number of samples. 

4.1.3 CRnet-CB Results 

We first test the performance of the CR module compression strategy in the CNN stacked 

with bottlenecks. We use ResNet50 [32] as the backbone network and test different compression 

strategies.  We use C-Bneck to compress the bottlenecks and get the network CRnet-CB.  

For each bottleneck, there are two 1 × 1 convolution layers. We use the proposed CR 

module to compress each 1 × 1 convolution layer and get a CRnet-CB with ResNet50 as backbone, 

which is shown in Table 3-1. We conduct the CRnet-CB on CIFAR-10 and CIFAR-100. The 

compact model has been run for 160 epochs. We use SGD optimization with a momentum 0.9 and 

a decay 0.0001. The learning rate starts at 0.1, divided by 10 at epoch 80 and 120. We have run 

two batch sizes of 256 and 64 on two Nvidia Quadro RTX 5000 GPUs in the experiments. We use 

PyTorch as our deep learning API.  

The experimental results of the CRnet-CB on the CIFAR-10 testing set are shown in Table 

4-1 and Table 4-2. The experimental results of the CRnet-CB on the CIFAR-10 testing set are shown 

in Table 4-3 and Table 4-4. The number of parameters and FLOPs are for the whole network.  
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Table 4-1: CRnet-CB results on CIFAR-10 with a batch size of 256 

 

Setting 1st -2nd 1 × 1 

compression 

Parameter 

(M) 

FLOPs 

(M) 

Acc. (%) Compression Strategy 

𝑒𝑥𝑝 = 4
𝑔 = 2

α ∗= 0.5

 
c1dw-c1dw 0.16 28.17 90.72 Ghost module [10]  

𝑔𝑐-c1dw 0.16 27.36 91.46 CR module 

𝑔𝑐-𝑔𝑐 0.15 24.78 89.61 Group Convolution 

c1dw-𝑔𝑐 0.15 25.59 90.35 Inverse CR 

𝑒𝑥𝑝 = 6
𝑔 = 2

𝛼 = 0.5

 
c1dw-c1dw 0.27 44.00 90.90 Ghost module  

𝑔𝑐-c1dw 0.26 43.19 91.80 CR module 

𝑔𝑐-𝑔𝑐 0.25 39.31 90.81 Group Convolution 

c1dw-𝑔𝑐 0.25 40.13 90.42 Inverse CR 

𝑒𝑥𝑝 = 4
𝑔 = 4

𝛼 = 0.25

 
c1dw-c1dw 0.12 21.15 89.21 Ghost module 

𝑔𝑐-c1dw 0.12 19.94 90.67 CR module 

𝑔𝑐-𝑔𝑐 0.10 16.07 89.42 Group Convolution 

c1dw-𝑔𝑐 0.11 17.28 88.81 Inverse CR 

 

*𝛼 =
𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 1×1 𝑜𝑢𝑡𝑝𝑢𝑡 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑏𝑦 𝑐1

𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙  1×1 𝑜𝑢𝑡𝑝𝑢𝑡 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠
 . 

Compression ratio variation: larger 𝑔  indicates higher compression ratio for 𝑔𝑐 , smaller 𝛼 

indicates higher compression ratio for 𝑐1𝑑𝑤. 
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Table 4-2: CRnet-CB results on CIFAR-10 with a batch size of 64 

 

Setting 1st -2nd 1 × 1 

compression 

Parameter 

(M) 

FLOPs 

(M) 

Acc. (%) Compression Strategy 

𝑒𝑥𝑝 = 4
𝑔 = 2

α = 0.5

 
c1dw-c1dw 0.16 28.17 90.88 Ghost module  

𝑔𝑐-c1dw 0.16 27.36 90.73 CR module 

𝑔𝑐-𝑔𝑐 0.15 24.78 89.22 Group Convolution 

c1dw-𝑔𝑐 0.15 25.59 90.08 Inverse CR 

𝑒𝑥𝑝 = 6
𝑔 = 2

𝛼 = 0.5

 
c1dw-c1dw 0.27 44.00 90.52 Ghost module  

𝑔𝑐-c1dw 0.26 43.19 91.11 CR module 

𝑔𝑐-𝑔𝑐 0.25 39.31 88.88 Group Convolution 

c1dw-𝑔𝑐 0.25 40.13 90.49 Inverse CR 

𝑒𝑥𝑝 = 4
𝑔 = 4

𝛼 = 0.25

 
c1dw-c1dw 0.12 21.15 90.17 Ghost module 

𝑔𝑐-c1dw 0.12 19.94 90.34 CR module 

𝑔𝑐-𝑔𝑐 0.10 16.07 88.21 Group Convolution 

c1dw-𝑔𝑐 0.11 17.28 89.37 Inverse CR 
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Table 4-3: CRnet-CB results on CIFAR-100 with a batch size of 256 

 

Setting 1st -2nd 1 × 1 

compression 

Parameter 

(M) 

FLOPs 

(M) 

Acc. (%) Compression Strategy 

𝑒𝑥𝑝 = 4
𝑔 = 2

𝛼 = 0.5

 
c1dw-c1dw 0.18 28.20 67.04 Ghost module 

𝑔𝑐-c1dw 0.18 27.39 68.40 CR module 

𝑔𝑐-𝑔𝑐 0.17 24.81 66.96 Group Convolution 

c1dw-𝑔𝑐 0.17 25.62 67.11 Inverse CR 

𝑒𝑥𝑝 = 6
𝑔 = 2

𝛼 = 0.5

 
c1dw-c1dw 0.30 44.03 67.61 Ghost module 

𝑔𝑐-c1dw 0.30 43.22 68.05 CR module 

𝑔𝑐-𝑔𝑐 0.28 39.35 66.70 Group Convolution 

c1dw-𝑔𝑐 0.29 40.16 67.17 Inverse CR 

𝑒𝑥𝑝 = 4
𝑔 = 4

𝛼 = 0.25

 
c1dw-c1dw 0.15 21.18 65.75 Ghost module  

𝑔𝑐-c1dw 0.14 19.96 67.29 CR module 

𝑔𝑐-𝑔𝑐 0.13 16.09 66.31 Group Convolution 

c1dw-𝑔𝑐 0.13 17.31 65.15 Inverse CR 
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Table 4-4: CRnet-CB results on CIFAR-100 with a batch size of 64 

 

Setting 1st -2nd 1 × 1 

compression 

Parameter 

(M) 

FLOPs 

(M) 

Acc. (%) Compression Strategy 

𝑒𝑥𝑝 = 4
𝑔 = 2

𝛼 = 0.5

 
c1dw-c1dw 0.18 28.20 68.36 Ghost module 

𝑔𝑐-c1dw 0.18 27.39 68.76 CR module 

𝑔𝑐-𝑔𝑐 0.17 24.81 66.82 group convolution 

c1dw-𝑔𝑐 0.17 25.62 67.61 Inverse CR 

𝑒𝑥𝑝 = 6
𝑔 = 2

𝛼 = 0.5

 
c1dw-c1dw 0.30 44.03 68.85 Ghost module  

𝑔𝑐-c1dw 0.30 43.22 69.91 CR module 

𝑔𝑐-𝑔𝑐 0.28 39.35 67.17 group convolution 

c1dw-𝑔𝑐 0.29 40.16 66.95 Inverse CR 

𝑒𝑥𝑝 = 4
𝑔 = 4

𝛼 = 0.25

 
c1dw-c1dw 0.15 21.18 67.51 Ghost module  

𝑔𝑐-c1dw 0.14 19.96 68.62 CR module 

𝑔𝑐-𝑔𝑐 0.13 16.09 66.24 group convolution 

c1dw-𝑔𝑐 0.13 17.31 65.57 Inverse CR 

 

The experimental observations of the CRnet-CB on CIFAR-10 and CIFAR-100 are as 

follows.   

(1) The ∗-c1dw (𝑔𝑐-𝑐1𝑑𝑤 and c1dw-c1dw) compression for the two 1 × 1 layers performs 

better than ∗-𝑔𝑐 (𝑔𝑐-𝑔𝑐 and c1dw-𝑔𝑐) for most experiments.  

(2) Among the ∗-c1dw compression strategies, the 𝑔𝑐-c1dw (the proposed CR module 

compression for bottlenecks) achieves better accuracy than c1dw-c1dw for most experiments. 
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Furthermore, the network compression using the CR module has fewer parameters and FLOPs 

than c1dw-c1dw. 

(3) The 𝑔𝑐-c1dw (the proposed CR module compression) performs much better than c1dw-

 𝑔𝑐 (the inverse version of the CR module compression). For some experiments on the CIFAR-

100 with a batch size of 64, the CR module even achieves about 3% accuracy increase than the 

inverse version of the CR module under the same experiment settings. 

(4) The CR module achieves better accuracy than the strategies with fewer parameters and 

FLOPs. The CR module has fewer parameters and FLOPs comparing to the method with 

comparable accuracy on average. Thus the CR module better balances the model complexity and 

accuracy. 

The observations above show that: 

(1) For the bottlenecks, the performances of the different compression strategies are 

affected by the input-output patterns.  

(2) A compression strategy that does not perform well for one input-output pattern may 

perform well for another input-output pattern, i.e., it is related to the input-output pattern. Thus, it 

is essential to treat the compression strategies carefully and select the compression strategies as 

aware of network architectures as we propose. 

(3) The proposed CR module performs well in compressing the bottleneck structures to 

balance the model complexity and accuracy.  

(4) The expansion ratio and compression ratio importance is less important than the input-

output pattern. 
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4.1.4 CRnet-CIB Results 

We test the performance of our CR module compression strategy in the CNN stacked with 

the inverted bottlenecks. We use GhostNet [10] as the backbone network and test different 

compression strategies.  

For each inverted bottleneck, there are two 1 × 1 convolution layers. We use the proposed 

CR module to compress each 1 × 1 convolution layer and get a CRnet-CIB with GhostNet as the 

backbone, and that structure is shown in Table 3-2. We conduct this experiment on CIFAR-10 and 

CIFAR-100. The model has been run for 160 epochs. We use SGD optimization with a momentum 

0.9 and a decay 0.0001. The learning rate starts at 0.1, divided by 10 at epoch 80 and epoch 120. 

We have run two batch sizes of 256 and 64 on two Nvidia Quadro RTX 5000 GPUs in our 

experiments. We use PyTorch as our deep learning API. 

The experimental results of the CRnet-CIB on CIFAR-10 are shown in Table 4-5 and Table 

4-6. The experimental results of the CRnet-CIB on CIFAR-100 are shown in Table 4-7 and Table 4-

8. The number of parameters and FLOPs are for the whole network. 
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Table 4-5: CRnet-CIB results on CIFAR-10 with a batch size of 256 

 

Setting 1st -2nd 1 × 1 

compression 

Parameter 

(M) 

FLOPs 

(M) 

Acc. (%) Compression Strategy 

𝑒𝑥𝑝 = 4
𝑔 = 2

𝛼 = 0.5

 
c1dw-c1dw 0.29 24.58 92.66 Ghost module [10] 

c1dw-𝑔𝑐 0.29 23.90 93.11 CR module 

𝑔𝑐-𝑔𝑐 0.28 20.51 88.77 Group Convolution 

𝑔𝑐-c1dw 0.28 21.19 91.16 Inverse CR 

𝑒𝑥𝑝 = 6
𝑔 = 2

𝛼 = 0.5

 
c1dw-c1dw 0.52 36.23 92.90 Ghost module  

c1dw-𝑔𝑐 0.52 35.55 93.23 CR module 

𝑔𝑐-𝑔𝑐 0.50 30.46 89.46 Group Convolution 

𝑔𝑐-c1dw 0.51 31.14 92.28 Inverse CR 

𝑒𝑥𝑝 = 4
𝑔 = 4

𝛼 = 0.25

 
c1dw-c1dw 0.25 17.71 91.49 Ghost module  

c1dw-𝑔𝑐 0.24 16.69 91.88 CR module 

𝑔𝑐-𝑔𝑐 0.23 11.60 87.80 Group Convolution 

𝑔𝑐-c1dw 0.23 12.62 90.37 Inverse CR 
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Table 4-6: CRnet-CIB results on CIFAR-10 with a batch size of 64 

 

Setting 1st -2nd 1 × 1 

compression 

Parameter 

(M) 

FLOPs 

(M) 

Acc. (%) Compression Strategy 

exp = 4
𝑔 = 2

α = 0.5

 
c1dw-c1dw 0.29 24.58 92.12 Ghost module  

c1dw-𝑔𝑐 0.29 23.90 92.60 CR module 

𝑔𝑐-𝑔𝑐 0.28 20.51 89.87 Group Convolution 

𝑔𝑐-c1dw 0.28 21.19 91.99 Inverse CR 

𝑒𝑥𝑝 = 6
𝑔 = 2

𝛼 = 0.5

 
c1dw-c1dw 0.52 36.23 93.20 Ghost module  

c1dw-𝑔𝑐 0.52 35.55 92.94 CR module 

𝑔𝑐-𝑔𝑐 0.50 30.46 89.26 Group Convolution 

𝑔𝑐-c1dw 0.51 31.14 92.02 Inverse CR 

𝑒𝑥𝑝 = 4
𝑔 = 4

𝛼 = 0.25

 
c1dw-c1dw 0.25 17.71 92.32 Ghost module  

c1dw-𝑔𝑐 0.24 16.69 92.33 CR module 

𝑔𝑐-𝑔𝑐 0.23 11.60 88.58 Group Convolution 

𝑔𝑐-c1dw 0.23 12.62 91.08 Inverse CR 
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Table 4-7: CRnet-CIB results on CIFAR-100 with a batch size of 256 

 

Setting 1st -2nd 1 × 1 

compression 

Parameter 

(M) 

FLOPs 

(M) 

Acc. (%) Compression Strategy 

𝑒𝑥𝑝 = 4
𝑔 = 2

𝛼 = 0.5

 
c1dw-c1dw 0.30 24.59 70.06 Ghost module  

c1dw-𝑔𝑐 0.30 23.91 70.78 CR module 

𝑔𝑐-𝑔𝑐 0.29 20.52 64.78 Group Convolution 

𝑔𝑐-c1dw 0.29 21.20 67.65 Inverse CR 

𝑒𝑥𝑝 = 6
𝑔 = 2

𝛼 = 0.5

 
c1dw-c1dw 0.53 36.23 70.81 Ghost module  

c1dw-𝑔𝑐 0.53 35.55 70.58 CR module 

𝑔𝑐-𝑔𝑐 0.51 30.46 64.96 Group Convolution 

𝑔𝑐-c1dw 0.51 31.15 69.05 Inverse CR 

𝑒𝑥𝑝 = 4
𝑔 = 4

𝛼 = 0.25

 
c1dw-c1dw 0.25 17.71 67.63 Ghost module  

c1dw-𝑔𝑐 0.25 16.69 69.26 CR module 

𝑔𝑐-𝑔𝑐 0.23 11.60 62.18 Group Convolution 

𝑔𝑐-c1dw 0.24 12.63 66.22 Inverse CR 
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Table 4-8: CRnet-CIB results on CIFAR-100 with a batch size of 64 

 

Setting 1st -2nd 1 × 1 

compression 

Parameter 

(M) 

FLOPs 

(M) 

Acc. (%) Compression Strategy 

𝑒𝑥𝑝 = 4
𝑔 = 2

𝛼 = 0.5

 
c1dw-c1dw 0.30 24.59 71.76 Ghost module  

c1dw-𝑔𝑐 0.30 23.91 72.10 CR module 

𝑔𝑐-𝑔𝑐 0.29 20.52 64.48 Group Convolution 

𝑔𝑐-c1dw 0.29 21.20 69.59 Inverse CR 

𝑒𝑥𝑝 = 6
𝑔 = 2

𝛼 = 0.5

 
c1dw-c1dw 0.53 36.23 70.79 Ghost module  

c1dw-𝑔𝑐 0.53 35.55 72.70 CR module 

𝑔𝑐-𝑔𝑐 0.51 30.46 65.68 Group Convolution 

𝑔𝑐-c1dw 0.51 31.15 70.08 Inverse CR 

𝑒𝑥𝑝 = 4
𝑔 = 4

𝛼 = 0.25

 
c1dw-c1dw 0.25 17.71 69.01 Ghost module  

c1dw-𝑔𝑐 0.25 16.69 70.41 CR module 

𝑔𝑐-𝑔𝑐 0.23 11.60 61.87 Group Convolution 

𝑔𝑐-c1dw 0.24 12.63 68.05 Inverse CR 

 

The experimental observations of CRnet-CIB for CIFAR-10 and CIFAR-100 are as follows.   

(1) The c1dw-∗ (c1dw-𝑔𝑐 and c1dw-c1dw) compression for the two 1 × 1 layers performs 

better than 𝑔𝑐-∗  (𝑔𝑐-𝑔𝑐 and c1dw- 𝑔𝑐) for most experiments.  

(2) Among the c1dw-∗ compression strategies, the c1dw-𝑔𝑐 (the proposed CR module 

compression for the inverted bottlenecks) achieves better accuracy than c1dw-c1dw for most 

experiments. And the network compression using the CR module has fewer parameters and FLOPs 
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than c1dw-c1dw. 

(3) The c1dw-𝑔𝑐  (the proposed CR module) performs much better than 𝑔𝑐-c1dw (the 

inverse version of the CR module). For some experiments on the CIFAR-100 with batch sizes of 

256 and 64, the CR module achieves about a 3% accuracy increase than the inverse version of the 

CR module under the same experiment settings. 

(4) The CR module achieves better accuracy than the strategies with fewer parameters and 

FLOPs. The CR module has fewer parameters and FLOPs comparing to the method with 

comparable accuracy on average. Thus the CR module better balances the model complexity and 

accuracy. 

The observations above show that: 

(1) For the inverted bottlenecks, the performances of the different compression strategies 

are affected by the input-output patterns.  

(2) A compression strategy that does not perform well for one input-output pattern may 

perform well for another input-output pattern, i.e., it is related to the input-output pattern. It is 

important to develop an architecture-aware compression method. 

(3) The proposed CR module performs well in compressing the inverted bottleneck 

structures to balance the model complexity and accuracy.  

(4) The expansion ratio and compression ratio importance is less important than the input-

output pattern. 

 

 



57 
 

 
 

4.2 Data Reduction 

We propose two compression strategies: flat reduced random sampling and bottleneck 

reduced random sampling (B-neck sampling). Based on the bottleneck reduced random sampling, 

we propose a three-stage training method. The first and third stages use two fixed ratios. The 

second stage uses the bottleneck reduced random sampling ratio. The flat reduced random 

sampling is a special case of the three-stage training method, by setting the second and third stage 

total epoch number to 0.  

4.2.1 Dataset 

We use three benchmark datasets: CIFAR-10 [59], CIFAR-100 [59] and ImageNet 

(ILSVRC 2012) [60] to conduct the experiments. CIFAR-10 and CIFAR-100 have been introduced 

in section 4.1.1. The ImageNet 2012 classification dataset contains 1.28 million training images, 

50k validation images, and 100k testing images for 1000 classes. Since the labels of testing images 

are not available, the training images and validation images are often used to compare the 

algorithms for convenience. The ImageNet image size is not fixed.  The 1000 classes include 

goldfish, great white shark, great grey owl, snowbird, pillow, pencil sharpener, purse, shopping 

basket, sliding door, school bus, etc. 

We apply the same random seed number for each run on the same dataset. As our aim for 

this experiment is to study the effect of the proposed fast random sampling methods for model 

training, we do not apply the variations that can enhance the model performance, like tuning the 

batch size, learning rate, etc. 
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4.2.2 Evaluation Metrics 

We use Top 1 accuracy and Top 5 accuracy metrics to measure model accuracy. For the 

whole dataset, top 1 accuracy is the number of top 1 matched predictions over the total number of 

samples. When calculating the top 5 accuracy, a prediction is considered correct if its predicted 

top 5 highest probabilities contain the label. For the whole dataset, top 5 accuracy is the number 

of top 5 matched predictions over the total number of samples. In addition to the Top 1 accuracy 

and Top 5 accuracy, we also evaluate the model using training time. 

4.2.3 CIFAR-10 Experiments 

For CIFAR-10, we have trained the network for 120 epochs with a batch size of 128 [32]. 

We use the stochastic gradient descent optimizer (batch gradient descent) with a momentum of 0.9 

and a weight decay of 1e-4 [32]. The learning rate starts at 0.1 and drops to 0.01 at epoch 60 and 

to 0.001 at epoch 90. The ResNet56 [32] is used as the backbone network. For fair comparison, all 

experiments are implemented on the same workstation with two Nvidia Quadro RTX 5000 GPUs. 

We use PyTorch as the deep learning API. 

We have tested the developed flat reduced random sampling method and three-stage 

training method on the CIFAR-10 dataset. Table 4-9 shows the details of the experiments, where 

the accuracy is on the test set. Table 4-10 lists the relative percentage improvement by comparison 

with the ResNet56 reimplementation results for training time, top-1 accuracy, and top-5 accuracy. 

Figure 4.1 shows the relative training time reduction vs. the relative top-1 accuracy change for the 

CIFAR-10 dataset. Figure 4.2 shows the relative training time reduction vs. relative top-5 accuracy 

change for the CIFAR-10 dataset. The flat reduced random sampling method result is indicated by 
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red color, and the three-stage training method result using B-neck sampling is indicated by green 

color.  

 The results show that both proposed methods get significant training time percentage 

reduction with a very small accuracy cost for CIFAR-10. For this dataset, the three-stage training 

method with bottleneck sampling strategy achieves better results compared to the flat reduced 

sampling method with comparable accuracy but less time. 

 

Table 4-9:  Training performances on CIFAR-10 

 

Method Setting Top1 

% 

Top5 

% 

Time 

min/sec 

ResNet56 [32] - 93.03 - - 

ResNet56 

Re-impl. * 

- 92.53 

 

99.78 42/47 

ResNet56 

R1_0.8 
𝛼 = 0.8 92.20 99.77 33/47 

ResNet56 

R1_0.618 
𝛼 = 0.618 91.52 99.78 26/30 

ResNet56 

R2 

𝛼 = 0.8 ⋅ [1,1,1]

𝛾 = [1 3⁄ , 1 3⁄ , 1 3⁄ ]
𝑠𝑒 = 0.8

 
92.41 

 

99.76 

 

32/26 

 

ResNet56 

R2_1 

𝛼 = [0.8,1.0,0.8]

𝛾 = [1 3⁄ , 1 3⁄ , 1 3⁄ ]
𝑠𝑒 = 0.8

 
91.89 99.73 

 

34/38 

 

ResNet56 

R3 

 

𝛼 = [0.8,0.8,0.25]

𝛾 = [1 3⁄ , 1 2⁄ , 1 6⁄ ]
𝑠𝑒 = 0.8

 
92.34 

 

99.75 

 

29/09 

 

*Re-impl.: Re-implementation. 
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Table 4-10: Training performances analysis on CIFAR-10 

 

Method Top1 

% 

Top5 

% 

Time 

min/sec 
Top1↑  % 

 

Top5↑ 

% 

Time↑ 

% 

Flat/ 

B-neck 

 

ResNet56 

Re-impl. 

92.53 99.78 42/47 - - - - 

ResNet56 

R1_0.8 

92.20 99.77 33/47 -0.36 -0.01 -21.04 Flat 

ResNet56 

R1_0.618 

91.52 

 

99.78 

 

26/30 

 

-1.09 0 -38.06 Flat 

ResNet56 

R2 

92.41 

 

99.76 

 

32/26 

 

-0.13 -0.02 -24.19 B-neck 

ResNet56 

R2_1 

91.89 99.73 

 

34/38 

 

-0.69 -0.05 -19.05 B-neck 

ResNet56 

R3 

92.34 

 

99.75 

 

29/09 

 

-0.21 -0.03 -31.87 B-neck 

 

 

Figure 4.1: Relative training time reduction vs relative top-1 accuracy change for CIFAR-10 

dataset. 
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Figure 4.2: Relative training time reduction vs relative top-5 accuracy change for CIFAR-10 

dataset. 

 

4.2.4 CIFAR-100 Experiments 

The experiment settings for CIFAR-100 are the same as CIFAR-10. 

We have tested the proposed methods on the CIFAR-100 dataset. Table 4-11 shows the 

details of the experiments. Table 4-12 lists the relative percentage improvement by comparison 

with the ResNet56 reimplementation results for training time, top-1 accuracy, and top-5 accuracy.  

Figures 4.3 and 4.4 show the relative training time reduction vs. the relative top-1 accuracy 

change and the relative top-5 accuracy change for the CIFAR-100 dataset, respectively.  

The results for CIFAR-100 show that both proposed methods get significant training time 

percentage reduction with a very small top-1 accuracy cost and a slight top-5 accuracy increase 

for some settings. For this dataset, the three-stage training method performs better than the flat 
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reduced sampling method, with comparable top-1 accuracy as the reimplemented ResNet56 and 

less training time. We also notice that some settings of the three-stage sampling method have 

slightly increased the top-5 accuracy.  

 

Table 4-11: Training performances on CIFAR-100 

 

Method Setting Top1 

% 

Top5 

% 

Time 

min/sec 

ResNet56 [1]  - - - 

ResNet56 

Re-impl. 

- 70.58 91.65 42/47 

ResNet56 

R1_0.8 
𝛼 = 0.8 70.02 91.49 34/53 

ResNet56 

R1_0.618 
𝛼 = 0.618 69.41 91.41 26/36 

ResNet56 

R2 

 

𝛼 = 0.8 ⋅ [1,1,1]

𝛾 = [1 3⁄ , 1 3⁄ , 1 3⁄ ]
𝑠𝑒 = 0.8

 
69.76 91.66 32/39 

ResNet56 

R2_1 

𝛼 = [0.8,1.0,0.8]

𝛾 = [1 3⁄ , 1 3⁄ , 1 3⁄ ]
𝑠𝑒 = 0.8

 
70.07 91.55 34/26 

ResNet56 

R3 

 

𝛼 = [0.8,0.8,0.25]

𝛾 = [1 3⁄ , 1 2⁄ , 1 6⁄ ]
𝑠𝑒 = 0.8

 
70.45 91.69 28/13 
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Table 4-12: Training performances analysis on CIFAR-100 

 

Method Top-1 

% 

Top-5 

% 

Time 

min/sec 
Top1↑  % Top5↑ 

% 

Time↑ 

% 

Flat/ 

B-neck 

 

ResNet56 

Re-impl. 

70.58 91.65 42/47 - - - - 

ResNet56 

R1_0.8 

70.02 91.49 34/53 -0.79 -0.17 -18.47 Flat 

ResNet56 

R1_0.618 

69.41 91.41 26/36 -1.66 -0.26 -37.83 Flat 

ResNet56 

R2 

69.76 91.66 32/39 -1.16 +0.01 -23.69 B-neck 

ResNet56 

R2_1 

70.07 91.55 34/26 -0.72 -0.11 -19.52 B-neck 

ResNet56 

R3 

70.45 91.69 28/13 -0.18 +0.04 -34.05 B-neck 

 

Figure 4.3: Relative training time reduction vs relative top-1 accuracy change for CIFAR-100 

dataset. 
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Figure 4.4: Relative training time reduction vs relative top-5 accuracy change for CIFAR-100 

dataset. 

4.2.5 ImageNet Experiments 

For the ImageNet dataet, we have trained the network for 150 epochs with a batch size of 

256. We use the stochastic gradient descent optimizer with a momentum of 0.9 and a weight decay 

of 4e-5 [61]. The learning rate starts at 0.05, and a cosine decay strategy is applied to the learning 

rate [61]. The MobileNet v2 (M-Net v2) [9] is used as the backbone network. 

Table 4-13 shows the details of the experiments. Table 4-14 lists the relative percentage 

improvement by comparison with the MobileNet v2 reimplementation results for training time, 

top-1 accuracy, and top-5 accuracy. We use the results on the ImageNet validation set for the test 

accuracy comparison.  

Similarly, Figures 4-5 and 4-6 show the relative training time reduction vs. the relative top-
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1 accuracy change and top-5 accuracy change, respectively, for the ImageNet dataset.  

The results show that for the ImageNet dataset, both proposed methods show significant 

training time percentage reduction with a small accuracy cost. For this dataset, the flat reduced 

sampling method is comparable with the three-stage training method in the training time reduction 

and accuracy change.  

Table 4-13: Training performances on ImageNet  

 

Method Setting Top1 

% 

Top5 

% 

Time 

hour/min 

M-Net v2* [31]  72.00   

M-Net v2 

Re-impl. 

- 72.15 90.42 180/09 

M-Net v2 

R1_0.8 
𝛼 = 0.8 71.62 90.23 144/45 

M-Net v2 

R1_0.618 
𝛼 = 0.618 71.20 90.21 112/04 

M-Net v2 

R2_2 

𝛼 = [0.8,0.8,0.5]

𝛾 = [1 3⁄ , 1 3⁄ , 1 3⁄ ]
𝑠𝑒 = 0.625

 
71.29 90.15 112/18 

*M-Net v2: MobileNet v2 

 

Table 4-14: Training performances analysis on ImageNet 

 

Method Top1 

% 

Top5 

% 

Time 

hour/min 
Top1↑  % Top5↑ 

% 

Time↑ 

% 

Flat/ 

B-neck 

M-Net v2 

Re-impl. 

72.15 90.42 180/09 - - - - 

M-Net v2 

R1_0.8 

71.62 90.23 144/45 -0.74 -0.21 -19.65 Flat 

M-Net v2 

R1_0.618 

71.20 90.21 112/04 -1.32 -0.23 -37.79 Flat 

M-Net v2 

R2_2 

71.29 90.15 112/18 -1.19 -0.30 -37.66 B-neck 
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Figure 4.5: Relative training time reduction vs relative top-1 accuracy change for ImageNet 

dataset. 

 

 

Figure 4.6: Relative training time reduction vs relative top-5 accuracy change for ImageNet 

dataset.  
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CHAPTER 5: CONCLUSIONS AND FUTURE WORKS 

5.1 Conclusions on Architecture Complexity Reduction 

Model compression is a popular deep CNN research area to train faster networks by 

reducing the network architecture complexity. We note that the CNN layer input-output patterns 

are ignored in current compression strategies. Based on this finding, we have proposed the 

following methods. 

(1) For single 1 × 1 convolution layer compression, we propose a Conditional Reduction 

(CR) module. The CR module checks the CNN layer input-output pattern and uses different 

compression strategies.  

(2) For image convolution blocks:  bottleneck convolution block and inverted bottleneck 

block, we apply the CR module to them and get the Conditional block (C-block) which can be 

classified as C-Bneck and C-IBneck based on the original block types to be compressed. 

(3) For network architecture, we apply the CR module to two types of CNN: one is stacked 

with bottlenecks, and the other is stacked with inverted bottlenecks. We implement this by replace 

the bottlenecks/inverted bottlenecks with C-Bneck/C-IBneck and get the Conditional Reduction 

Network (CRnet).  The CRnet can be classified as CRnet-CBneck (CRnet-CB) and CRnet-

CIBneck (CRnet-CIB).  

We have tested the CRnet on two image classification datasets: CIFAR-10 and CIFAR-

100. For a fair and comprehensive comparison, we test the methods with multiple network 

expansion ratio and compression ratio settings. 
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The experiments show that: 

(1) If we switch the compression strategy related to the input-output pattern condition, that 

is, using the inverse CR compression, the accuracies are all lower than our CR module compression 

for our verified datasets. This verifies our method correctness with the attention to the importance 

of the input-output pattern when selecting a compression strategy.  

(2) If we use group convolution to compress the network, although it largely reduces the 

parameter number and the FLOPs, it has low accuracy compared to other compression strategies. 

However, after we combine the group convolution with the input-output patterns and use it 

conditionally, the accuracy is the highest on average for all experiments. What is more, the use of 

group convolution helps to reduce the parameter number and the FLOPs comparing to the state-

of-the-art Ghost module compression. That again verifies our method correctness and 

assumption/suggestion that the performance of a compression strategy may relate to the network 

architecture. 

(3) The expansion ratio and compression ratio importance is less important than the input-

output pattern. 

(4) Our proposed CRnet with CR module compression better balances the model 

complexity and accuracy compared to the popular group convolution and the state-of-the-art Ghost 

module compression.  

(5) The CR module and the C-block are simple, effective, and plug-and-play, so they can 

be easily utilized in any deep CNN. 
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5.2 Future Work on Architecture Complexity Reduction 

We have tested our proposed methods using two benchmark image classification datasets: 

CIFAR-10 and CIFAR-100, with various parameter settings to verify the methods’ effectiveness. 

We will study the method using larger datasets in the future. 

In addition, we note that the CNN intrusion arouses researchers’ interests. CNNs can be 

cheated by adversarial samples with few pixel modifications. These kinds of modifications usually 

are hard for humans to recognize. However, the CNNs can output a distinctive different image 

class. Thus, current CNNs are at risk of cyber-attacks. We are interested in further study on the 

model performance difference caused by model compressions for the security issues. 

 

5.3 Conclusions on Data Reduction 

Most of the deep CNN training uses full batch training. Full batch training will train all the 

samples at each epoch. Although there are methods to drop samples based on the sample 

importance rank calculated from the training loss or validation loss, their sorting calculations take 

extra time, especially for large datasets.  When we search for the optimal hyperparameter setting, 

we expect to train CNN much faster, saving the multiple run’s time, by our proposed random 

training data reduction methods. 

In this case, a little accuracy drop is acceptable. Based on this object, we have proposed 

the following methods. 

(1) We propose a flat reduced random sampling training strategy and a bottleneck reduced 

random sampling strategy. 
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(2) We propose a three-stage training method based on the bottleneck reduced random 

sampling with consideration of the distinctiveness of the network early-stage training and end-

stage training. 

(3) We prove the data visibility of a sample in the whole training process and the theoretical 

reduced time by four theorems and two corollaries. 

We have tested the flat reduced random sampling and the three-stage training on three 

image classification datasets: CIFAR-10, CIFAR-100, and ImageNet. The experiments show that: 

(1) The introduced two sampling strategies get significant training time percentage 

reduction at a very small accuracy loss. Therefore, the strategies are effective in reducing the CNN 

training time. 

(2) We have proved that with our sampling setting, an image that gets missed by the whole 

training process is extremely low. That means each image will be studied by the network. 

(3) For large dataset training, the flat golden ratio α= 0.618 and the three stage-ratio R2-2 

are good choices, with little accuracy drop but a large amount of training time percentage reduction. 

5.4 Future Work on Data Reduction 

The proposed methods show their benefit in reducing the training time with tiny accuracy 

drop. We expect to apply the proposed methods to various deep learning applications to help 

reduce the training time and get an optimal network setting.  
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