
FASTER CONVOLUTIONAL NEURAL NETWORKS TRAINING

by

Shanshan Jiang

A dissertation submitted to the faculty of

The University of North Carolina at Charlotte

in partial fulfillment of the requirements

for the degree of Doctor of Philosophy in

Computing and Information Systems

Charlotte

2021

 Approved by:

Dr. Sheng-Guo Wang

Dr. Bei-Tseng Chu

Dr. Aidong Lu

Dr. Shen-En Chen

ii

©2021

Shanshan Jiang

ALL RIGHTS RESERVED

iii

ABSTRACT

SHANSHAN JIANG. Faster convolutional neural networks training.

(Under the direction of DR. SHENG-GUO WANG)

Convolutional Neural Network (CNN) models have become the mainstream method in

Artificial Intelligence (AI) areas for computer vision tasks like image classification and image

segmentation. Deep CNNs contain a large volume of convolution calculations. Thus, training a

CNN requires powerful GPU resources. Training a large CNN may take days or even weeks, which

is time-consuming and costly. When we need multiple runs to search for the optimal CNN

hypermeter settings, it would take a couple of months with limited GPUs, which is not acceptable

and hinders the development of CNNs. It is essential to train CNN faster.

There are two kinds of methods to train CNN faster when no additional computing

resources are available. The first method is to do the model compression, either by reducing

parameters or using less storage to represent the models. This method reduces training time by

reducing the architecture complexity. The second method is to reduce the input data feed into the

network without affecting the network architecture.

Architecture complexity reduction is a popular research area to train CNN faster.

Nowadays, mobile devices like smartphones and smart cars rely on deep CNNs to accomplish

complex tasks like human body recognition and face recognition. Due to the high real-time

demands and the memory constraints for mobile device applications, conventional large CNN is

not suitable. CNN model compression is a trend to train a deep CNN model with less computation

iv

cost. Currently, there are many successful networks designed to solve this problem, like ResNeXt,

MobileNet, ShuffleNet, and GhostNet. They use 1 × 1 convolution, depthwise convolution, or

group convolution to replace the standard convolution to reduce the computation. However, there

are fewer studies on the following questions. First, does the variety of convolution layers (the

output channel number is larger or smaller than the input channel number) affect different

compression strategies’ performance? Second, does the expansion ratio (either the output channel

number over the input channel number if the output channel number is larger, or the input channel

number over the input channel number if the input channel is larger) of the convolution layers

affect different compression strategies’ performance? Third, does the compression ratio (the

reduced parameter number/FLOPs over the original parameter number/FLOPs) affect the

performance of different compression strategies? Current networks tend to use the same

convolution strategy inside a basic network block, ignoring the variety of network layers. We have

proposed a novel Conditional Reduction (CR) module to compress a single 1 × 1 convolution

layer. Then we have developed a novel three-layer Conditional block (C-block) to compress the

CNN bottleneck or inverted bottlenecks. At last we have developed a novel Conditional Network

(CRnet) based on the CR module and C-block. We have tested the CRnet on two image

classification datasets: CIFAR-10 and CIFAR-100, with multiple network expansion ratios and

compression ratios. The experiments verify our methods’ correctness with attention to the

importance of the input-output pattern when selecting a compression strategy. The experiments

show that our proposed CRnet better balances the model complexity and accuracy compared to

the state-of-the-art group convolution and Ghost module compression.

v

Data reduction reduces the training time in a direct and simple way through data dropping.

There are works drop data by the sample importance ranking. The ranking process takes extra time

when there is a large number of training samples. When we tune the different network settings to

search for an optimal setting, we expect a way to reduce a large percentage of training time with

tiny or no accuracy loss. There are fewer studies on the following questions. First, what are suitable

sampling ratios? Second, should we use the same sampling ratio for each training epoch? Third,

does the sampling ratio performs differently on small and large datasets? We have proposed a flat

reduced random sampling training strategy and a bottleneck reduced random sampling strategy.

We have proposed a three-stage training method based on the bottleneck reduced random sampling

with consideration of the distinctiveness of the network early-stage training and end-stage training.

Furthermore, we have proved the data visibility of a sample in the whole training process and the

theoretical reduced time by four theorems and two corollaries. We have tested the two sampling

strategies on three image classification datasets: CIFAR-10, CIFAR-100 and ImageNet. The

experiments show that our proposed two sampling strategies effectively reduce a significant

training time percentage at a very small accuracy loss.

vi

ACKNOWLEDGEMENTS

I first would like to express my deep thanks and respect to my advisor Dr. Sheng-Guo

Wang, who provides me the chance to do my Ph.D. study and participate in exciting research

projects related to artificial intelligence. Without his funding support, I would not be able to

complete this dissertation. I have learned a lot from him in critical thinking and writing. His passion

for work and rigorous attitude in math has taught me how to be a responsible researcher. Especially,

I am grateful for his remarkable patience throughout my research and projects, which reminds me

to be rational and conscientious.

I would like to thank my dissertation committee members: Dr. Aidong Lu, Dr. Bill Chu,

and Dr. Shen-en Chen, for their heuristic questions and comments. The discussions about the latest

development of deep learning and visualization applications are insightful and encouraging.

My sincere thanks go to my parents and my husband for giving me strong emotional

support. My parents always tell me never to give up. My husband, Mr. Muqi Li, is also my friend

and life teacher. He teaches me to be faithful to myself and live earnestly. I am grateful for his

selfless love.

I would like to thank my teammates and friends, Dr. Jing Deng, Dr. Yinan He, and Zhongqi

Hao. Jing encourages me to challenge myself and try new things. Yinan provides me many helpful

suggestions in dissertation writing and project works. Zhongqi Hao provides me with kindly help

in my life and accompanies me to get through some challenging moments.

vii

TABLE OF CONTENTS

LIST OF TABLES ... X

LIST OF FIGURES .. XI

LIST OF ABBREVIATIONS .. XIII

CHAPTER 1: INTRODUCTION ... 1

1.1 ARCHITECTURE COMPLEXITY REDUCTION ... 2

1.2 DATA REDUCTION .. 7

1.3 CONTRIBUTIONS ... 8

1.3.1 Contribution in Architecture Complexity Reduction .. 8

1.3.2 Contribution in Data Reduction .. 10

1.4 DISSERTATION ARRANGEMENTS ... 11

CHAPTER 2: RELATED WORK .. 12

2.1 ARCHITECTURE COMPLEXITY REDUCTION ... 12

2.1.1 Model Compression .. 12

2.1.2 Convolution Layer Input-Output Pattern .. 14

2.1.3 CNN Bottleneck and Inverted Bottleneck ... 15

2.1.4 Compression Strategy ... 17

2.2 DATA REDUCTION .. 18

2.2.1 Data Sampling ... 18

viii

2.2.2 Epoch and Batch.. 19

2.2.3 Data Visibility ... 20

2.2.4 Data Reduction Strategy ... 20

CHAPTER 3: METHODOLOGY .. 22

3.1 ARCHITECTURE COMPLEXITY REDUCTION ... 22

3.1.1 Conditional Reduction Module ... 23

3.1.2 Conditional Block ... 27

3.1.3 Conditional Reduction Network ... 30

3.2 DATA REDUCTION .. 33

3.2.1 Flat Reduced Random Sampling ... 33

3.2.2 Bottleneck Reduced Random Sampling .. 36

3.2.3 Three-Stage Training... 39

CHAPTER 4: EXPERIMENT .. 43

4.1 ARCHITECTURE COMPLEXITY REDUCTION ... 43

4.1.1 Dataset ... 43

4.1.2 Evaluation Metrics .. 43

4.1.3 CRnet-CB Results ... 45

4.1.4 CRnet-CIB Results .. 51

4.2 DATA REDUCTION .. 57

4.2.1 Dataset ... 57

ix

4.2.2 Evaluation Metrics .. 58

4.2.3 CIFAR-10 Experiments... 58

4.2.4 CIFAR-100 Experiments... 61

4.2.5 ImageNet Experiments .. 64

CHAPTER 5: CONCLUSIONS AND FUTURE WORKS ... 67

5.1 CONCLUSIONS ON ARCHITECTURE COMPLEXITY REDUCTION .. 67

5.2 FUTURE WORK ON ARCHITECTURE COMPLEXITY REDUCTION ... 69

5.3 CONCLUSIONS ON DATA REDUCTION ... 69

5.4 FUTURE WORK ON DATA REDUCTION .. 70

REFERENCES ... 71

x

LIST OF TABLES

Table 3-1: CRnet for CIFAR-10 and CIFAR-100 (backbone: ResNet50) 31

Table 3-2: CRnet-CIB for CIFAR-10 and CIFAR-100 (backbone: GhostNet) 32

Table 4-1: CRnet-CB results on CIFAR-10 with a batch size of 256 .. 46

Table 4-2: CRnet-CB results on CIFAR-10 with a batch size of 64 .. 47

Table 4-3: CRnet-CB results on CIFAR-100 with a batch size of 256 .. 48

Table 4-4: CRnet-CB results on CIFAR-100 with a batch size of 64 .. 49

Table 4-5: CRnet-CIB results on CIFAR-10 with a batch size of 256 ... 52

Table 4-6: CRnet-CIB results on CIFAR-10 with a batch size of 64 ... 53

Table 4-7: CRnet-CIB results on CIFAR-100 with a batch size of 256 54

Table 4-8: CRnet-CIB results on CIFAR-100 with a batch size of 64 ... 55

Table 4-9: Training performances on CIFAR-10 .. 59

Table 4-10: Training performances analysis on CIFAR-10 ... 60

Table 4-11: Training performances on CIFAR-100 ... 62

Table 4-12: Training performances analysis on CIFAR-100 ... 63

Table 4-13: Training performances on ImageNet ... 65

Table 4-14: Training performances analysis on ImageNet ... 65

xi

LIST OF FIGURES

Figure 2.1: Input-output patterns of a convolution layer .. 15

Figure 2.2: Bottleneck block ... 16

Figure 2.3: Inverted Bottleneck block .. 16

Figure 2.4: Ghost module ... 18

Figure 3.1: Feature maps of the first convolution layer of ResNet56 ... 24

Figure 3.2: Conditional Reduction module to compress the 1 × 1 convolution 25

Figure 3.3: Conditional block (C-block). .. 28

Figure 3.4: Conditional Bottleneck block (C-Bneck). .. 29

Figure 3.5: Conditional Inverted Bottleneck block (C-IBneck). .. 29

Figure 3.6: Flat reduced sampling. ... 34

Figure 3.7: Bottleneck sampling block ... 37

Figure 3.8: Stacking of bottleneck sampling blocks. .. 38

Figure 3.9: Three-stage training method based on bottleneck sampling method. 39

Figure 4.1: Relative training time reduction vs relative top-1 accuracy change for CIFAR-10

dataset ... 60

Figure 4.2: Relative training time reduction vs relative top-5 accuracy change for CIFAR-10

dataset ... 61

Figure 4.3: Relative training time reduction vs relative top-1 accuracy change for CIFAR-100

dataset ... 63

xii

Figure 4.4: Relative training time reduction vs relative top-5 accuracy change for CIFAR-100

dataset ... 64

Figure 4.5: Relative training time reduction vs relative top-1 accuracy change for ImageNet

dataset ... 66

Figure 4.6: Relative training time reduction vs relative top-5 accuracy change for ImageNet

dataset ... 66

xiii

LIST OF ABBREVIATIONS

AI

Artificial Intelligence

AMC AutoML Model Compression

API Application Programming Interface

BN Batch Normalization

c1 1 × 1 convolution

C-block Conditional Block

C-Bneck Conditional Bottleneck

C-IBneck Conditional Inverted Bottleneck

CNN Convolutional Neural Network

CR Conditional Reduction

CRnet Conditional Reduction Network

CRnet-CB Conditional Reduction Network with Conditional Bottlenecks

CRnet-CIB Conditional Reduction Network with Inverted Conditional Bottlenecks

dw depthwise convolution

FLOPs floating point operations

gc group convolution

GPU Graphics Processing Unit

NIN Network In Network

RAM Random Access Memory

SE Squeeze and Excite

SGD Stochastic Gradient Descent

1

CHAPTER 1: INTRODUCTION

The deep CNN methods have outperformed other conventional machine learning methods

in AI areas, including image classification [1, 2], image segmentation [3, 4], and image inpainting

[5, 6]. Training deep CNN is challenging due to its high demands of CPU and GPU resources.

Training a large dataset may even take several days or weeks [7]. CNN’s training hyperparameter

number setting affects the model performance, e.g., the initial learning rate, learning rate decay,

batch size, activation function selection. Tuning the hyperparameters is essential to achieve better

performance [7, 8], which will take several rounds and costs far more time than training a single

model. The time-consuming training process becomes a hinder for researchers to explore optimal

networks. Thus, accelerating the CNN training speed has become a new research area. To train

CNN faster is a benefit to saving training time and saving the training cost.

There are many works discussing how to train a faster CNN. Some works focus on training

a compact model to reduce the model complexity and to reduce the average training time of a

single image. In this case, the model parameters and FLOPs (floating-point operations) are usually

reduced. Thus, the inference time will also be reduced correspondingly. Some works focus on

reducing the total training time by reducing the training data for some epochs. In this dissertation,

we have explored the new methods to train a faster CNN in both reducing single image average

training time and total training time. We have implemented our methods on image classification

benchmark datasets, and the results show the correctness and efficiency of our methods.

2

1.1 Architecture Complexity Reduction

With the fast-developing speed of mobile devices like phones or cars, it is necessary to

deploy deep learning models to these mobile devices to accomplish complex computer vision tasks

like human body recognition, face recognition, and handwriting recognition. As mobile devices

do not have strong computing resources as workstations or cloud computing clusters, it is

challenging to utilize conventional deep CNN architectures in portable devices or cars due to their

high demand for computing resources [9]. These application demands have motivated many

researchers to develop more computing-efficient CNN architectures to reduce model complexity

with little or no accuracy trade-off [10]. A compact model with a little sacrifice of accuracy is

acceptable compared to a large model since compact models are faster and are easier to be

deployed to mobile devices, as well as to be applied, especially for real-time identification systems

and control systems.

There are three different branches in treating model redundancy from the architecture level

in the model compression area.

One branch, known as network pruning [11-18], removes unimportant elements like

convolutional filters or channels following some criteria like weight value or L1-norm value. A

convolutional filter is a group of 𝑘 × 𝑘 convolutional kernels where 𝑘 is the kernel size. A channel

is a 𝑤 × ℎ feature map where 𝑤 and ℎ stand for image weight and height, respectively. This kind

of model compression process is also mentioned as model pruning [14]. The main idea of model

pruning is to prune filters or channels that have the least contribution to the model. Weight pruning

or connection pruning [12, 19] discards weights with smaller values and gets a sparse connection.

3

However, the non-structured connections will cause irregular memory access issues for typical

hardware [15, 16], hindering real applications. Filter level pruning [15, 18] measures filter

importance by the deeper layer or the final response layer’s reconstruction error after removing

this filter. The main idea of filter pruning is to prune filters that have little effect on the

reconstruction error. This method will keep the model structure and keep pruned model training

smoothly after removing the filters, without taking special care of the change of hardware and

software support. Nevertheless, it is an optimization process for each pruning step and needs fine-

tuning. It will iteratively remove filters, following by a fine-tuning process after pruning a filter or

a layer [18]. The fine-tuning needs to run a few epochs, which will take a long time for big data

training. In addition to this, the pruned optimal network architecture based on one dataset may not

be the optimal architecture of another dataset. Some researchers try to learn optimal compression

ratio or channel number through reinforcement learning instead of the human setting. AutoML

Model Compression (AMC) [20] leverages reinforcement learning to study optimal compression

policy for each pre-trained model layer. The output of each layer determination is a sparsity ratio.

AMC did not use fine-tuning in getting the reward step. As different mobile devices have different

computation restraints, slimmable networks [17, 21] were proposed based on the pruning idea to

train an integrated model that contains models to meet different environment requirements.

Slimmable neural networks [21] train models of predefined multiple widths at the same time. Sub-

networks share weights except for batch normalization parameters. Universally slimmable

networks (US-Nets) [22] proposed a generalized slimmable network to generate arbitrary width

sub-networks using distillation to transfer knowledge from the entire network to subnetworks.

4

AutoSlim [17] searches for an optimal channel setting based on a universally slimmable network

to meet computation limitation requirements. AutoSlim trains a slimmable model for a few epochs

to get model candidates, slims the layer greedily to get optimized channel setting, and then trains

them for full epochs [17]. The core sight of pruned networks and slimmable neural networks is to

remove network elements following importance measuring criteria like L1-norm or construction

error. This process can be seen as reducing network redundancy. There are three steps to build a

pruned model: pretraining, pruning, and fine-tuning. However, there are arguments about the

necessity of the three-step process. Liu [22] observed that training a pruned architecture directly

from scratch can reach comparable results without inheriting the pre-trained weight, which

indicates the importance of searching for an efficient architecture. The pretraining process trains a

big model with redundancy. The pruning process studies the importance of the target elements to

prune the network. The fine-tuning process retrains the pruned network with the pre-trained big

model’s weight as the initial state. The advantage of pruning is that the pre-trained model can

provide a reference for pruning and fine-tuning so that the pruned model searched for an optimal

way to remove elements contributing the least to the network. However, the three-step process is

time-consuming. For each dataset, a pre-trained model is essential, taking a long time for a large

dataset. A study has also shown that the pruned structure itself may be more important than the

inherited weights pre-trained [22]. What is more, the pruned network only prunes elements. Thus

no new network elements are studied and explored during this process, which may become a

constraint for network compression’s future development.

5

Knowledge distillation is another branch of model compression. It is interested in

extracting the learned knowledge from trained networks and migrating them to another network.

It is a mainstream method in transfer learning. Knowledge distillation can leverage the ensemble

multimodal to build a single model and leverage the large model’s knowledge to build a small

model [23]. A compact student model can be achieved from a large teacher model. A teacher model

could provide many kinds of knowledge to the student model, like soft labels [23], spatial attention

maps [24] and flow between layers [25]. The advantage of knowledge distillation is that it is an

efficient way to broadcast the pre-trained networks’ learned knowledge. Thus it has been broadly

used in transfer learning. However, it needs to run both teacher and student models during training,

which may cause memory shortage when GPU resources are limited during training since it needs

memory to store both teacher and student models and results.

The third branch of model compression concentrates on implementing a network using

more computation efficient ways, usually called building compact models. It aims to build a

network with fewer parameters and FLOPs. Instead of removing network elements to reduce the

redundancy, compact models [9, 10, 26-31] tend to keep the redundancy to some extent but replace

dense convolution with sparse convolution. There are many efficient methods like using 1 × 1

convolution to replace some 3 × 3 convolution [32], using depthwise convolution [26] to replace

normal convolution, and reducing the number of 1 × 1 dense convolution [10]. The advantage of

training a compact network is that it studies the nature of the network, exploring different network

structures. Additionally, since the compact model does not need pretraining and fine-tuning and

computes faster to generate the same number of feature maps, it is time-saving, especially for large

6

datasets. However, current compact models usually adopt the same compression policies for

different convolution environments, ignoring their inner difference. For example, in a bottleneck

block, a convolution layer’s input and output have two patterns: large input and small output, and

small input and large output. Current methods tend to use the same strategies for two patterns, like

replacing all 1 × 1 convolution layers to group convolution or reducing the number of 1 × 1

convolution channels. Intuitively, the large input and small output convolution can be seen as using

fewer feature maps to encode and summarize previous features. The small input and large output

can be seen as a brainstorm of current features, putting forward more possible features that would

be useful. Thus, these kinds of differences should be considered when building their compact

structures. Since the same compression strategy can perform differently in different cases, it is

beneficial to study the element patterns in networks and design a flexible compression strategy,

leading to a network with better performance and less computation cost.

In this dissertation, we focus on the building compact models branch and answering the

following questions. First, does the variety of convolution layers (the output channel number is

larger or smaller than the input channel number) affect different compression strategies’

performance? Second, does the expansion ratio (either the output channel number over the input

channel number if the output channel number is larger, or the input channel number over the input

channel number if the input channel is larger) of the convolution layers affect different

compression strategies’ performance? Third, does the 1 × 1 channel number compression ratio

(the reduced parameter number/FLOPs over the original parameter number/FLOPs) affect the

performance of different compression strategies?

7

1.2 Data Reduction

Section 1.1 introduces a way to reduce the training time by reducing the CNN architecture

complexity. The nature of this way is to reduce the average training time of a single image. This

means the forward pass of the CNN for one image is reduced since the model has been compressed

by different kinds of compression strategies. Correspondingly, this way will also reduce the

predicting time.

When a base CNN architecture is given, there are many ways to train CNN faster without

modifying the network architecture [7]. Currently, there are works using a larger batch size on

more GPUs [33-37], using lower bits to represent the network parameters [38-41], and using

dropping techniques[42-49] to reduce the training time without affecting the network architecture.

One branch is to reduce the CNN parameter data storge. Low-bit quantization is a popular

branch in model compression. Its main idea is to reduce the bit representation of the network [50,

51]. Usually, the networks’ parameters are stored using a 32-bit floating-point [51], and it is a trend

to migrate training to 16-bit precision [52]. Singular Value Decomposition compressed the

matrices [53] during inference. Vector quantization [50] reduces the parameter storage redundancy

from the vector level. Stochastic rounding [51] converts a number to a lower precision fixed-point

considering the probability to round 𝑥 to ⌊𝑥⌋ during training. The state-of-the-art work reports the

possibility of training network parameters with 8-bit floating-point [52]. Low-bit quantization

reduces the model computation resource from the energy-saving perspective. This branch focuses

on reducing training or prediction costs from the hardware perspective.

8

Another branch is to reduce the training sample data. The training sample data can be

reduced either in sample number [42-48] or sample image dimension [49]. There are works to

calculate the sample losses [43, 44] and set the selection probability [42] or drop this sample based

on the calculation. Reference [45] recovers the dropped samples after training for a few cycles.

Reference [47] updates the learning rate based on the importance of the samples. These kinds of

non-uniform data reduction methods drop data based on data losses and importance rank. When

the dataset is large, the ranking process for each epoch will also take extra time and slow the

training process.

In this dissertation, we focus on using a simple way to reduce the training time and

answering the following questions. First, what are suitable sampling ratios? Second, should we

use the same sampling ratio for each training epoch? Third, does the sampling ratio perform

differently on small and large datasets?

1.3 Contributions

The objective of this dissertation is to develop new methods to train CNN faster from the

network architecture perspective and data reduction perspective. The new methods from the

architecture perspective explore the new architecture of CNN to reduce the training time. The new

methods from the data reduction perspective reduce the training time without changing the CNN

architecture.

1.3.1 Contribution in Architecture Complexity Reduction

Motivated by the issues mentioned in the above compact model design introduction, to

better balance the model complexity and the accuracy, we explore a simple way to reduce the

9

model complexity while maintaining the model accuracy or even achieving higher accuracy. Our

contributions are:

(1) To address the CNN layer input-output different pattern issue, we introduce a novel

Conditional Reduction (CR) module. The CR module checks the CNN layer input-output pattern

and uses different compression strategies [54].

(2) Based on the CR module, we introduce a novel Conditional block (C-block). The C-

block is a uniform format of traditional bottleneck block and inverted bottleneck block after

adopting the CR module. The C-block can also be classified as Conditional Bottleneck block (C-

Bneck) and Conditional Inverted Bottleneck block (C-IBneck) depending on the base bottleneck

type [54].

(3) Based on the C-Bneck and C-IBneck, we introduce a Conditional Reduction Network

(CRnet). The CRnet is a uniform format of CNN stacked with bottlenecks or inverted bottlenecks.

The CRnet can also be classified as CRnet-CBneck (CRnet-CB) and CRnet-CIBneck (CRnet-CIB)

depending on the base block type [54].

(4) We evaluate the introduced CRnet built with the CR module and C-block on two image

classification benchmark datasets: CIFAR-10 and CIFAR-100 [54].

The experiments show that:

(1) The introduced CRnet better balances the accuracy and model complexity than the

networks adopting the state-of-the-art compression strategies. The CRnet can achieve better

accuracy than the network with fewer parameters or FLOPs. The CRnet can achieve fewer

10

parameters or FLOPs but comparable or higher accuracy than the network with more parameters

or FLOPs [54].

(2) The introduced CR module is efficient in replacing any traditional 1 × 1 convolution

layer, making it easily applied to any CNN. Correspondingly, the introduced C-Bneck and C-

IBneck are seamless to replace the traditional bottleneck and inverted bottleneck in any CNN,

respectively. The plug-and-play characteristic shows that our introduced methods are efficient and

easy to use [54].

1.3.2 Contribution in Data Reduction

Motivated by the challenging task of balancing the training speed and accuracy, in this

dissertation, we explore a simple data reduction way suitable for any deep learning network

training. Our contributions are:

(1) We introduce two kinds of fast training strategies for deep learning training: the flat

reduced random sampling strategy and the bottleneck reduced random sampling strategy. The flat

reduced random sampling simply randomly reduces a fixed ratio of data for each epoch, and the

optimal ratio has been studied. The bottleneck sampling divides epochs into multiple blocks. For

each block, the beginning and end epochs have a larger sampling ratio, and the intermediate epochs

have a lower sampling ratio [7].

(2) We further introduce a three-stage training method based on the bottleneck reduced

random sampling strategy. It combines the flat reduced random sampling, and the bottleneck

reduced random sampling. The three-stage training method divides the total epochs into three parts.

The first and third parts adopt the flat reduced random sampling. The second part adopts the

11

bottleneck reduced random sampling. The flat reduced sampling is a special case of the three-stage

training method by setting the second part epoch over the total epochs to zero [7].

(3) We evaluate the introduced flat reduced random sampling and three-stage training with

bottleneck reduced random sampling on three image classification benchmark datasets: CIFAR-

10, CIFAR-100, and ImageNet [7].

(4) We give the theoretical analysis for the two data sampling strategies. We have

developed and presented four theorems and two corollaries to show the properties and benefits of

the presented new methods [7].

The experiments show that:

(1) The introduced two sampling strategies get significant training time percentage

reduction at a very small accuracy loss. Therefore, the strategies are effective in reducing the CNN

training time [7].

(2) Both sampling strategies are easy to be applied to deep learning networks [7].

1.4 Dissertation Arrangements

Chapter 1 introduces current methods to train CNN faster, the dissertation objectives, and

contributions. Chapter 2 introduces the related work to our proposed methods. Chapter 3 presents

the methodologies of our proposed methods. Chapter 4 presents the experiment datasets, parameter

settings, and results with the analysis. Chapter 5 finally presents conclusions with a summary

analysis of the experimental results and points out the future work.

12

CHAPTER 2: RELATED WORK

In this chapter, typical and the state-of-the-art methods in architecture complexity

reduction from the designing compact model aspect and data reduction from the training data level

are reviewed.

2.1 Architecture Complexity Reduction

In this section, we first highlight the related methods in model compression. Then we

introduce the essential network elements of our proposed methods.

2.1.1 Model Compression

Instead of removing the redundant network layers or filters, many works replace

conventional convolution with more computation-saving ways [10, 55]. Conventional networks

are usually stacked with standard 3 × 3 convolution layers. SqueezeNet [29] fully or partially

replaced the 3 × 3 convolutions to 1 × 1 convolution in a layer. The mainstream networks are

usually stacked with residual blocks that contain multiple standard 3 × 3 layers since the ResNet

[32] proposed the shortcut approach. Bottleneck structure [32] and inverted bottleneck structure

[9] were proposed to replace a conventional two 3 × 3 convolution layer block with a 3 × 3

convolution layer and two 1 × 1 convolution layers before and after the 3 × 3 convolution layer.

A standard three-layer bottleneck has a big-small-big pattern in dimension, where the input and

output layers of this bottleneck have more channels than the inner layer. The inverted three-layer

bottleneck has a small-big-small pattern in dimension, which is more memory efficient if we

dispose of the inner convolution tensors after computation [9]. Depthwise convolution [26] further

13

replaces standard 3 × 3 convolution by using one channel and a kernel to generate one feature map

instead of using multiple channels to generate one feature map. Since depthwise is an efficient way

to reduce computation while keeping network capacity, it has been used broadly by the state of the

art compression networks like ShuffleNet [31], MobileNet [28], and GhostNet [10]. Different from

depthwise convolution to generate a feature map using only one input channel, group convolution

generates a feature map using a part of the input channels.

Researchers have observed that the dense 1 × 1 convolution has become the key structure

contributing to model parameter number and complexity after the depthwise convolution replaced

standard 3 × 3 convolution [31]. ResNeXt [56] showed that grouped convolution might improve

accuracy while maintaining the same model parameter number and similar model complexity,

which means that grouped convolution may help to reduce the accuracy loss in model compression.

ShuffleNet [31] adopted a three-layer bottleneck structure and replaced the 1 × 1 convolution with

grouped 1 × 1 convolution and a channel shuffle operation after the first 1 × 1 grouped

convolution layer. ShuffleNet v2 [30] stated that grouped convolution of the 1 × 1 convolution

should be treated carefully since increased group number may increase the memory access cost

and slow down the speed. MobileNet v2 [9] proposed a backbone network using inverted residual

blocks consisting of 1 × 1 pointwise convolution and 𝑁 × 𝑁 depthwise convolution. MobileNet

v3 [27] adopted the squeeze and excitation module [57] to improve accuracy. To reduce the

computation cost of dense 1 × 1 convolution, GhostNet replaced a part of 3 × 3 or 1 × 1

convolution with depthwise convolution, except that the depthwise convolution outputs were

generated from remaining 1 × 1 convolution outputs instead of original inputs. The core idea of

14

GhostNet is to reduce the channel number generated by 1 × 1 convolution and recover the model

capacity by depthwise convolution. GhostNet used two modules for convolution stride 1 and 2.

For stride 1, GhostNet used a two-layer residual module, with each layer containing 1 × 1

convolution and depthwise 3 × 3 convolution. For stride 2, GhostNet used a three-layer inverted

residual bottleneck, with a depthwise 3 × 3 convolution as the middle layer. Filter pruning

network [55] utilized this idea of recovering model capacity from remaining feature maps.

2.1.2 Convolution Layer Input-Output Pattern

Figure 2.1 shows two input-output patterns for a convolution layer generally used in the

bottleneck blocks and inverted bottleneck blocks. The first pattern is a large-small input-output

pattern whose output channel number is smaller than the input channel number. It corresponds to the

green layer in Fig. 2.2 and Fig. 2.3. The second pattern is a small-large input-output pattern whose

output channel number is larger than the input channel number. It corresponds to the orange layer in

Fig. 2.2 and Fig. 2.3. We note that both the bottleneck block and the inverted bottleneck block contain

convolution layers of these two patterns. The state-of-the-art compact model design methods like the

ShuffleNet [31], MobileNet v2 [9], and GhostNet [10] use the same compression strategies for them.

15

Figure 2.1: Input-output patterns of a convolution layer. Top: large-small pattern. Bottom: small-

large pattern.

2.1.3 CNN Bottleneck and Inverted Bottleneck

The bottleneck block is largely used in compact network design methods to reduce the

computation cost of the stacking of 𝑁 × 𝑁 convolutions. Figure 2.2 shows the typical 3-layer

building of a residual bottleneck proposed in ResNet [32]. The first layer is a 1 × 1 convolution

which will change the channel dimension. The second layer is an 𝑁 × 𝑁 convolution (usually 𝑁

is 3). The third layer is another 1 × 1 convolution to restore the channel dimension. So there are

two 1 × 1 convolution layers: the first layer and the third layer. The first 1 × 1 convolution layer’s

input-output pattern is large-small, denoted by green color. The second 1 × 1 convolution layer’s

input-output pattern is small-large, denoted by orange color. Figure 2.3 shows the typical 3-layer

building of a residual inverted bottleneck proposed in MobileNet v2 [9]. Unlike the bottleneck,

for the inverted bottleneck, the first 1 × 1 convolution layer’s input-output pattern is small-large,

denoted by orange color; and the second 1 × 1 convolution layer’s input-output pattern is large-

small, denoted by green color.

16

Figure 2.2: Bottleneck block

Figure 2.3: Inverted Bottleneck block

17

2.1.4 Compression Strategy

The 1 × 1 convolution layer and the 3 × 3 convolution layer are two important elements

to be compressed in the bottleneck blocks or the inverted bottleneck blocks. The mainstream

compact networks leverage the depthwise convolution to replace the standard 3 × 3 convolution,

like ShuffleNet [31] and MobileNet v2 [9]. Thus, the dense 1 × 1 convolutions have become the

key elements to be compressed in these CNNs and are the focus of this dissertation.

The intuitive idea to reduce the 1 × 1 convolution computation is to reduce the input

channel number or the output channel number of this 1 × 1 convolution layer, which means to

reduce the number of 1 × 1 kernels. ShuffleNet [31] uses group convolution to compress the two

1 × 1 convolution layers in a residual block. GhostNet [10] uses depthwise convolution to

generate the output channels that had been cut off from the existing features generated from a

reduced number of 1 × 1 kernels.

Our proposed Conditional Reduction (CR) module is motivated by the Ghost module [10].

Ghost module was proposed in GhostNet [10] for one convolution layer feature map generation.

Figure 2.4 shows the basic design of the Ghost module. Ghost module uses normal convolution to

generate a reduced number of feature maps called intrinsic features and then uses depthwise

convolution to generate other feature maps from intrinsic features. When using Ghost module to

compress a 1 × 1 convolution layer, it contains two parts: normal 1×1 convolution (c1) to get a

reduced number of output feature maps and depthwise convolution (dw) to generate the other

feature maps from the c1 results. We use the c1dw compression strategy to indicate the two

compression steps.

18

Figure 2.4: Ghost module [10]. Parameter 𝑠 is the total number of output channel over the output

channel generated by normal 𝑁 × 𝑁 convolutions and s > 1. dw stands for depthwise convolution.

2.2 Data Reduction

In this section, we first highlight the related methods in reducing training time without

affecting the model architecture. Then we introduce the essential basic knowledge of our proposed

methods.

2.2.1 Data Sampling

Some works use the data importance indices ranked by training loss [42, 45, 47] which

select the data subsets non-uniformly. The ranking process may take extra time when there is a

large number of training samples. Typical deep learning frameworks like Keras, TensorFlow and

PyTorch provide users with well-built data access functions (data loaders and samplers) to read

images from the local computers or from memory. When using the sample ranking and dropping

strategy, we need to refresh the sampler data indices after each dropping, which will take extra

work to fit this strategy into the data access interface. Furthermore, the data importance ranking

will take extra time when the number of samples is large. Thus, a question arises: is there a more

19

straightforward way to reduce the training time without affecting existed deep learning data access

interface? Inspired by this idea, we propose some novel data reduction strategies which are easily

used to fit in any deep learning API (Application Programming Interface) and data access functions.

2.2.2 Epoch and Batch

Traditionally a deep learning training epoch refers to a cycle to complete all training

samples. Since the computer is resource-constraint to input all the training samples into the

network forward pass, the samples are split into mini-batches. In one iteration, only a batch of

images is input to the network forward pass. The most commonly used batch-based gradient

descent method updates the weights through the backward propagation of the batch [58]. After the

network completes the backward propagation of a batch and updates the parameters, it will read

the next batch and repeat the forward and backward processing.

To speed up the training process, we can either reduce the training epochs (full batches-

fewer epochs) or reduce the sample number for each epoch (fewer batches-full epochs). It is

obvious that we can also use fewer batches-fewer epochs. Enough training epochs are often

essential for the deep learning models to converge [58]. It is noted that the model generated from

full batches-fewer epochs and fewer batches-full epochs are different. It is due to the learning rate

variation related to the epoch number. Take two popular learning rate scheduling methods as

examples. The step decay method drops the learning rate at specific epochs defined by the user.

The cosine decay method gradually drops the learning rate based on the iteration number and epoch

number. Thus, full batches-fewer epochs simply using small epochs to reduce the training time is

not expected and will affect the learning rate decay. We use the full epochs-fewer batches to drop

20

data for each epoch, maintaining the total epoch number. It will fit well with the original training

hyperparameters.

2.2.3 Data Visibility

In standard full batches-full epochs training mode, an image sample is used exactly once

for each epoch. When the total epoch number is 𝑁, the number of an image sample’s occurrences

is 𝑁. In other words, every image sample is visible to the network for each epoch. With shuffling

operation before training, the order of an image appearance is different for each epoch. If there is

no shuffling operation, the order of an image appearance will be the same for each epoch.

Reference [45] proposed a drop-and-refresh training strategy where samples with lower losses will

be dropped for a few epochs and reviewed. That means some samples will be invisible to the

training process for some epochs and visible again in case the network forgets those samples. The

samples are dropped non-uniformly in [45].

2.2.4 Data Reduction Strategy

The training modes can be summarized as four types based on the batch number and epoch

number: full batches-full epochs, full batches-fewer epochs, fewer batches-full epochs, and fewer

batches-fewer epochs. Our objective is the fewer batches-full epochs mode since it is beneficial to

not to interfere with the normal learning rate decay.

We propose two data reduction strategies: flat reduced random sampling and bottleneck

reduced random sampling. For the flat reduced random sampling, we are inspired by the popular

80-20 split ratio that is usually used to split training and validation datasets and the 0.618 golden

ratio that is a pattern shows in nature. For the bottleneck reduced random sampling, we are inspired

21

by the ResNet [32] bottleneck pattern for the convolutional layers. We show that all data samples

will be used with an extremely high probability during the whole training procedure for both data

reduction strategies, and the training time will be significantly reduced in percentage with a

comparable modeling accuracy.

22

CHAPTER 3: METHODOLOGY

In this chapter, we first introduce our novel methods in architecture complexity reduction.

The object is to build a compact model to reduce the network parameter number and FLOPs. We

propose a Conditional Reduction (CR) module and then propose the convolutional network

internal blocks based on the CR module. Based on the CR module and new convolutional blocks,

we propose a Conditional Reduction Network (CRnet). Then we introduce our novel methods in

data reduction. The object is to reduce the training time without affecting the network architecture.

We first propose a flat reduced random sampling method for the deep learning model training.

Then we propose a bottleneck reduced sampling strategy as a three-stage training method based

on the bottleneck reduced sampling.

3.1 Architecture Complexity Reduction

In Section 2.12, we have introduced the convolution layer’s input-output pattern. In order

to utilize the convolution layer’s input-output pattern information, we propose a novel input-output

pattern aware module called Conditional Reduction (CR) module. The CR module is developed to

replace a single convolution layer. Then we apply the CR module to two typical blocks that

constitute the CNN: bottleneck blocks and inverted bottleneck blocks to get the Conditional block

(C-block). At last, we apply the proposed C-block to the popular ResNet50 [32] stacked with

bottlenecks and the state-of-the-art network GhostNet [10] stacked with inverted bottlenecks to

get our Conditional Reduction Network (CRnet).

23

3.1.1 Conditional Reduction Module

The dense 1 × 1 convolution layers have become a constraint of model complexity since

the kernel size 1 × 1 is the smallest among 𝑁 × 𝑁 kernel sizes. Thus, the key to building a more

compact network is to reduce the calculation of the dense 1 × 1 convolution layers. Current

compression strategies ignore the convolution layer’s input-output patterns. They use the same

compression strategy for a small input-large output 1 × 1 convolution layer and large input-small

output 1 × 1 convolution layer.

Figure 2.4 in section 2.1.4 shows the state-of-the-art Ghost module [10] that inspired this

work. The Ghost module uses the c1dw (1 × 1 convolution and depthwise convolution) to

compress a 1 × 1 convolution layer. It first uses the regular 1×1 convolution (c1) to get a reduced

number of output feature maps and then uses the depthwise convolution (dw) to generate the other

feature maps from the c1 results. The nature of Ghost module is that the feature map similarity

shows the possibility to generate the total feature maps from its subset. Figure 3.1 shows the

similarity examples.

Although the feature map similarity exists in both small input-large output 1 × 1

convolution layer and large input-small output 1 × 1 convolution layer, the meanings behind those

two patterns are different. For the small input-large output layer, its nature is to discover new

features that may benefit the training. For the large input-small output layer, its nature is more like

to distilling useful features to represent the previous layers. The c1dw compression may work well

for the small input-large output layer since it first uses the normal 1 × 1 convolution to generate

some feature maps. Moreover, the other new features or similar features can be realized by a

24

computation-saving way. However, for the large input-small output layer, a small number of

features are extracted from a large feature database, and each one of the extracted features is

important. Reducing the number of such features generated by 1 × 1 convolution may lose

important information summarized from previous layers. For example, as Figure 3.1 shows, if we

reduce the output features to only two images, e.g., the first two images of the first row of the

feature maps, each image is very important and different from the others. In this case, we do not

want to generate only one feature map and use it to generate the other. We take the first convolution

layer’s results to express our idea. In real experiments, the first convolution layer is usually not

compressed.

Figure 3.1: Feature maps of the first convolution layer of ResNet56 [32]. The dog image source:

CIFAR-10. Red box: similar feature examples.

25

Figure 3.2: Conditional Reduction module to compress the 1 × 1 convolution. dw conv represents

depthwise convolution. group conv represents group convolution.

Based on the analysis above, we propose a Conditional Reduction (CR) module. Figure 3.2

shows the structure of the CR module. Before compressing a 1 × 1 convolution layer, we check

the input-output pattern and choose different compression strategies. When it is the small input-

large output mode, we use the c1dw compression strategy as Ghost module [10]. Otherwise, we

26

use the group convolution. The proposed CR module is aware of the input-output pattern and takes

advantage of the c1dw compression and group convolution (gc) compression.

Next, we introduce how we use the CR module to reduce the model complexity, including

parameter number and FLOPs [30]. Assume an 1 × 1 convolution layer’s input is 𝐶𝑖𝑛 × 𝑊 × 𝐻,

and output is 𝐶𝑜𝑢𝑡 × 𝑊 × 𝐻 . If we use gc compression, the model parameter number after

compression over the original parameter number and the FLOPs after compression over the

original FLOPs will be as formula (1) and (2), respectively.

𝑅𝑝
𝑔𝑐(𝑔) =

𝐶𝑖𝑛
𝑔

∙𝐶𝑜𝑢𝑡

𝐶𝑖𝑛𝐶𝑜𝑢𝑡
 =

1

𝑔
 (1)

 𝑅𝐹𝐿𝑂𝑃𝑠
𝑔𝑐(𝑔) =

𝐶𝑖𝑛
𝑔

∙𝐶𝑜𝑢𝑡∙𝑊∙𝐻

𝐶𝑖𝑛∙𝐶𝑜𝑢𝑡∙𝑊∙𝐻
 =

1

𝑔
 (2)

where 𝑔𝑐 stands for group convolution, 𝑔 is the group number. If we use c1dw compression, the

model parameter number after compression over the original parameter number and the FLOPs

after compression over the original FLOPs will be as formula (3) and (4), respectively.

𝑅𝑝
𝑐1𝑑𝑤(𝛼, 𝛽) =

𝐶𝑖𝑛∙𝛼∙𝐶𝑜𝑢𝑡+𝑑∙𝑑∙𝛽∙𝛼∙𝐶𝑜𝑢𝑡

𝐶𝑖𝑛∙𝐶𝑜𝑢𝑡
= 𝛼 +

𝑑∙𝑑∙𝛽∙𝛼

𝐶𝑖𝑛
 (3)

𝑅𝐹𝐿𝑂𝑃𝑠
𝑐1𝑑𝑤(𝛼, 𝛽) =

𝐶𝑖𝑛∙𝛼∙𝐶𝑜𝑢𝑡∙𝑊∙𝐻+𝑑∙𝑑∙𝛽∙𝛼∙𝐶𝑜𝑢𝑡∙𝑊∙𝐻

𝐶𝑖𝑛∙𝐶𝑜𝑢𝑡∙𝑊∙𝐻
= 𝛼 +

𝑑∙𝑑∙𝛽∙𝛼

𝐶𝑖𝑛
 (4)

where 𝑑 is from the kernel size 𝑑 × 𝑑 of the depthwise convolution, 𝛼 is the ratio of the reduced

1 × 1 convolution outputs over the total outputs and 𝛼 ∈ (0, 1) , 𝛽 is the number of features

generated using depthwise convolution over the reduced 1 × 1 convolution outputs. The number

of the reduced 1 × 1 convolution output feature is ⌈𝛼 × 𝐶𝑜𝑢𝑡⌉ . The remaining features are

generated using the depthwise convolution with 𝑑 × 𝑑 kernels. As the depthwise convolution can

only generate an integer times of input number, the 𝛽 is calculated as formula (5).

27

 𝛽 = ⌈
𝐶𝑜𝑢𝑡−⌈𝛼×𝐶𝑜𝑢𝑡⌉

⌈𝛼×𝐶𝑜𝑢𝑡⌉
⌉ , 𝛽 ≥ 1 (5)

When we set 𝑔 = ⌈
1

𝛼
⌉, the gc compression’s parameter number and FLOPs will always be smaller

than the c1dw compression. Thus, after we replace the c1dw by gc for the large input-small output

pattern, the model complexity is reduced.

3.1.2 Conditional Block

Since He [32] proposed the residual network, the structure of stacking residual convolution

blocks has become a mainstream backbone of many state-of-art networks. Networks with fewer

layers generally perform worse than deep networks for complex computer vision tasks. Thus, to

train a compact work without damaging the network capacity and depth is very important. This

section will focus on compression methods without damaging the network depth and node (channel)

number as a key approach for the compressed networks. In other words, the compressed network

will have the same depth and the same number of channels for each layer but reduced model

complexity. Thus, model complexity usually is compared through parameter number and FLOPs

(floating-point operations) in this approach.

Section 3.1.1 introduces the CR module, which is suitable to compress a single 1 × 1

convolution layer. CNN is stacked with bottleneck or inverted bottleneck blocks, which consist of

two or three convolution layers. We apply the proposed CR module to the CNN block element and

get the Conditional block (C-block). Figure 3.3 shows the structure of the C-block. It is a three-

layer block with two compressed 1 × 1 convolution layers and an intermediate layer where the

pooling operation is operated when needed. The intermediate layer is a depthwise 3 × 3

convolution.

28

Figure 3.3: Conditional block (C-block).

Since the CR module can tackle either the small input-large output or the large input-small

output 1 × 1 convolution pattern, the C-block is a general format utilizing the CR module in CNN

bottleneck blocks and inverted bottleneck blocks. When the block type is a bottleneck, the C-block

becomes a Conditional Bottleneck (C-Bneck) as Fig. 3.4. The first layer is a large input-small

output 1 × 1 convolution layer. The second layer is a 3 × 3 depthwise convolution where the

pooling is applied when needed. The third layer is a small input-large output 1 × 1 convolution

layer. When the block type is an inverted bottleneck, the C-block becomes a Conditional Inverted

Bottleneck (C-IBneck) as Fig. 3.5. The first layer is a small input-large output 1 × 1 convolution

layer. The second layer is a 3 × 3 depthwise convolution where the pooling is applied when

needed. The third layer is a large input-small output 1 × 1 convolution layer. For the C-IBneck,

the second layer will be skipped as GhostNet [10].

29

Figure 3.4: Conditional Bottleneck block (C-Bneck).

Figure 3.5: Conditional Inverted Bottleneck block (C-IBneck).

30

3.1.3 Conditional Reduction Network

Section 3.1.2 introduces the C-Bneck and C-IBneck blocks. We replace the conventional

bottleneck and inverted bottleneck blocks by the proposed blocks and get the compact Conditional

Reduction Network (CRnet). In this dissertation, we take the ResNet50 [32] built based on

bottlenecks and the GhostNet [10] built based on inverted bottlenecks as the backbone CNN

architectures.

ResNet50 is a baseline residual network architecture with bottlenecks. It is proposed to

compress the conventional two-layer 3 × 3 convolution block. GhostNet is a state-of-the-art

compact network with inverted bottlenecks. It is proposed to further compress the dense 1 × 1

convolutions. The reason that the state-of-the-art compact CNN turns to inverted bottlenecks is

that the inverted bottleneck is memory efficient since we can dispose of the inner convolution

tensors after computation [9].

To verify the effectiveness of our C-Bneck and C-IBneck, we apply the C-Bneck to replace

the bottlenecks of ResNet50 to get the CRnet-CB, and we apply the C-IBneck to replace the inverted

bottlenecks of GhostNet to get the CRnet-CIB. We have modified the ResNet50 node number to fit

the datasets CIFAR-10 and CIFAR-100.

Table 3.1 shows the architecture of CRnet-CB with the ResNet50 as the backbone for

CIFAR-10 and CIFAR-100. Table 3.2 shows the architecture of CRnet-CIB with the GhostNet as

the backbone for CIFAR-10 and CIFAR-100.

31

Table 3-1: CRnet-CB for CIFAR-10 and CIFAR-100 (backbone: ResNet50)

Layer Input Operator Inner Exp Out Str #block

conv1 3 × 32 × 32 conv3 × 3 - - 16 1 -

conv2-x 16 × 32 × 32 C-Bneck* 16 4 64 1 3

conv3-x 64 × 32 × 32 C-Bneck 32 4 128 2 4

conv4-x 128 × 16 × 16 C-Bneck 32 4 128 1 6

conv5-x 128 × 16 × 16 C-Bneck 64 4 256 2 3

 256 × 8 × 8 avg_pool

 8 × 8

- - 256 - -

 256 × 1 × 1 fc - - class - -

Input = Input image size, Inner = Inner channel number, Exp = Expansion, Out = Output channel

number = inner × exp, Str = Stride, #block = number of blocks. The input, inner and output

channel numbers are the 𝐶𝑖𝑛 , 𝐶0 and 𝐶𝑜𝑢𝑡 in Fig. 3.4, respectively. C-Bneck = Conditional

Bottleneck, class = label classes. The stride 2 is only used in conv 3-1 and conv 5-1. The inner

channel number is fixed. The output channel number varies along with the expansion ratio.

*The conv 2-1’s first 1 × 1 layer’s input channel number and the output channel number are the

same. We also use 𝑔𝑐 for this layer.

32

Table 3-2: CRnet-CIB for CIFAR-10 and CIFAR-100 (backbone: GhostNet)

Input Operator Inner Exp Out Str SE DW

3 × 32 × 32 conv 3 × 3 - - 16 1 - -

16 × 32 × 32 C-IBneck 64 4 16 1 0 3

16 × 32 × 32 C-IBneck 64 4 16 1 0 3

16 × 32 × 32 C-IBneck 64 4 16 1 0 3

16 × 32 × 32 C-IBneck 64 4 16 1 0.25 5

16 × 32 × 32 C-IBneck 64 4 16 1 0.25 5

16 × 32 × 32 C-IBneck 128 4 32 2 0 3

32 × 16 × 16 C-IBneck 128 4 32 1 0 3

32 × 16 × 16 C-IBneck 128 4 32 1 0 3

32 × 16 × 16 C-IBneck 128 4 32 1 0 3

32 × 16 × 16 C-IBneck 128 4 32 1 0.25 3

32 × 16 × 16 C-IBneck 128 4 32 1 0.25 3

32 × 16 × 16 C-IBneck 256 4 64 2 0.25 5

64 × 8 × 8 C-IBneck 256 4 64 1 0 3

64 × 8 × 8 C-IBneck 256 4 64 1 0.25 3

64 × 8 × 8 C-IBneck 256 4 64 1 0 3

64 × 8 × 8 C-IBneck 256 4 64 1 0.25 3

64 × 8 × 8 conv 1 × 1 - - 256 1 - -

256 × 8 × 8 avg_pool

8 × 8

- - 256 - - -

256 × 1 × 1 conv2d 1 × 1 - - 64 1 - -

64 × 1 × 1 fc - - class - - -

Input = Input image size, Inner = Inner channel number = out × exp, Exp = Expansion, Out =

Output channel number, Str = Stride, SE = Squeeze and excite ratio [57], DW = depthwise kernel

size. The input, inner and output channel numbers are the 𝐶𝑖𝑛, 𝐶0 and 𝐶𝑜𝑢𝑡 as shown in Fig. 3.5,

respectively. C-IBneck = Conditional Inverted Bottleneck, class = label classes. The output

channel number is fixed. The inner channel number varies along with the expansion ratio.

33

3.2 Data Reduction

Section 2.2 introduces four batch-epoch training types based on the batch number and

epoch number: full batches-full epochs, full batches-fewer epochs, fewer batches-full epochs, and

fewer batches-fewer epochs. In this dissertation, we focus on the fewer batches-full epochs mode

since it is beneficial to not interfere with the normal learning rate decay and can be easily applied

to any CNN training. We propose two compression strategies: the flat reduced random sampling

and the bottleneck reduced random sampling. Then we propose a three-stage training method to

control the bottleneck reduced sampling epochs [7].

3.2.1 Flat Reduced Random Sampling

For the flat reduced random sampling, the word flat means that we use the same fixed

sampling ratio for each epoch. A question naturally arises: what sampling ratio should we choose?

Since the sampling ratio belongs to (0%,100%], it is not possible to try every sampling ratio.

Inspired by the popular 80-20 split ratio that is usually used to split training and validation datasets

and the 0.618 golden ratio that is a pattern shows in nature, we take two flat ratios: 0.8 and 0.618.

The flat random sampling ratio of 0.8 or 0.618 means that we randomly sample 80% or 61.8% data

to train for each epoch.

We maintain the same batch size (the number of images feeds into the network forward

pass once a time) but reduce the number of batches for each epoch based on the flat reduction ratio.

The randomness is assured by shuffling the dataset before running the next epoch. In this way, the

proposed method can be easily applied to current deep learning frameworks.

The flat reduced sampling method is shown in Fig. 3.6.

34

Figure 3.6: Flat reduced sampling. 𝛼 is the flat reduced random sampling ratio.

There are similar images in the training dataset. We do not expect the model to learn similar

images again and again in one epoch. The nature of the flat reduced training is to use a randomly

selected subset with a flat ratio. With the same batch size, the training time in an epoch is positively

correlated with the number of batches in an epoch. Thus, the total training time is positively

correlated with the total number of batches in the CNN training process. But for accuracy, this is

not the exact case. The verification/test accuracy may be higher, lower, or comparable with

different sampling ratios, i.e., with a variation, but it is limited as shown late in the proposed

methods. The deep CNN models need enough training samples and epochs to converge. If we set

the flat ratio too low, e.g., 30%, the model will not train well, and the training accuracy will be

low, not to mention the verification accuracy. If we set the flat ratio too high, e.g., 95%, the training

time will not be reduced much comparing to 100% training.

An optimal flat ratio should balance the training time and accuracy well. At the same time,

we do not want to miss any image samples during the whole training process. Thus, we calculate

35

the probability that an image is invisible to all epochs for our proposed flat random sampling ratio

0.8 and 0.618 as Theorem 1.

Theorem 1. If the deep learning network is trained by N epochs, and the flat reduced random

sampling ratio is 𝛼 as 0.8 or 0.618, then the probability that a sample has been missed by the whole

training process is as formula (6).

 𝑝 = (1 − 𝛼)𝑁 (6)

In the experiments as commonly used, 𝑁 = 120. By Theorem 1, we have the probability value p

for 𝛼 = 0.8 or 0.618 respectively as formula (7a) or (7b).

𝑝 = (1 − 0.8)120 = 1.3292 ∙ 10−84 (7a)

 𝑝 = (1 − 0.618)120 = 7.0405 ∙ 10−51 (7b)

It shows that each sample in the training dataset will be used for the model training almost certainly

with a missing probability less than 10−51. This method can also be viewed as a special and simple

case of the second proposed bottleneck sampling method.

The relationship between the flat reduced random sampling training time and the total

training time is calculated as Theorem 2. Based on Theorem 2, we derive the Corollary 1.

Theorem 2. Consider a fast training method with a flat reduced random sampling ratio 𝛼. Its

average training time 𝑇𝛼 and the average training time T of a regular method satisfy formula (8)-

(9):

𝑇𝛼

𝑇
=

𝑇0𝛼∙𝑀𝛼∙𝑁

(𝑇0∙(𝑀−1)+𝑇1)∙𝑁
=

𝑀𝛼𝑇0𝛼/𝑇0

(𝑀−1)+𝑇1/𝑇0
 (8)

𝑀𝛼𝑇0𝛼/𝑇0

𝑀
≤

𝑇𝛼

𝑇
<

𝑀𝛼 𝑇0𝛼/𝑇0

𝑀−1
 (9)

36

where 𝑁 is the total training epochs number, 𝑀𝛼 = ⌊𝛼𝑀⌋ and 𝑀 = ⌈𝐷/𝐵⌉ are the batch numbers

of each epoch in the flat 𝛼 reduction method and regular method respectively, D is the training

data set sample size, and B is the batch sample size, 𝑇0 and 𝑇0𝛼 denote the average training times

of a full sample batch with the regular method and 𝛼-program method, respectively.

Corollary 1. The fast training method with a flat reduced sampling ratio 𝛼 has an average training

time reduction ratio

𝑇𝛼

𝑇
≈ 𝛼 (10)

if 𝛼𝑀 ≫ 1 and 𝑇0𝛼/𝑇0 ≈ 1.

From Theorem 2 and Corollary 1, if we only consider the training time reduction, it is

obvious that the flat fast training method with the flat reduced random sampling rate 𝛼 = 0.618

saves more time than 𝛼 = 0.8.

3.2.2 Bottleneck Reduced Random Sampling

We note that the variation between neighboring two epochs is quite small, except for the

epoch where the learning rate drops to a small percentage of the previous value. For example,

ResNet [32] initial learning rate 0.1 multiples by 0.1 after training several epochs and becomes

0.01. A question arises: is it essential to use a large sampling rate for each epoch? Motivated by

this question, we propose the bottleneck reduced random sampling strategy.

The proposed bottleneck random sampling is inspired by the image convolutional

bottleneck block design of ResNet [32]. The difference is, the ResNet bottleneck block is for the

image convolution. The number of feature maps input to the block is large, becoming small at the

37

intermediate layers and then get large again at the output layer. In this dissertation, the bottleneck

design is for the sampling rate. We take several epochs as a sampling block. Within each block,

the start and the end epoch use a larger sampling ratio, and the middle epochs use a smaller ratio.

The ratio pattern of the sampling ratio block is large-small-large. Thus, we named the sampling

ratio block as a sampling bottleneck, and the method using the sampling bottleneck as the

bottleneck reduced random sampling.

The bottleneck sampling strategy is shown in Fig. 3.7. A bottleneck block is composed of

k+2 epochs as shown in Fig. 3.7, and each epoch (each bar) has its sampling ratio, where different

bar height size corresponds to a different number of samples. The internal epochs correspond to a

squeezed batch number in the bottleneck stage.

Figure 3.7: Bottleneck sampling block. 𝛼 is the sampling ratio for the input and output epoch of a

bottleneck. 𝑠𝑒 is the squeeze ratio for the internal epochs. 𝑘 is the number of internal bottleneck

epochs. In our experiments, 𝑘 = 4.

38

Figure 3.8 shows the stacking method of the bottleneck sampling block. There are two

blocks in Fig. 3.8. The second block uses the first block’s end epoch as its start epoch. For more

bottleneck blocks, they also stack using the same way.

The bottleneck sampling has the following characteristics.

(1) The samples are selected randomly as the original methods and the flat random

sampling method. The randomness is fulfilled by shuffling the dataset at the beginning of each

epoch.

(2) For all data samples, they have the same probabilities to be selected as uniformly

random selection. Thus, there are no extra calculations of sample importance. Therefore, it is also

easily implemented.

Figure 3.8: Stacking of bottleneck sampling blocks.

39

3.2.3 Three-Stage Training

Section 3.2.2 introduces the new bottleneck sampling strategy. We develop a three-stage

training method based on the bottleneck sampling due to the following two reasons.

(1) The network is randomly initialized and knows nothing about the data at the very

beginning. Enough training data is essential at the early stage of the training to get a model with

some knowledge of the data. Thus, if we would reduce the sampling rate to a smaller value, we

should give the model a high sampling rate at the early stage.

(2) When the model trains several epochs, the model starts to converge, and the accuracy

increase is quite small. In this case, a high sampling ratio is not essential. We may use a small

sampling ratio.

Figure 3.9: Three-stage training method based on bottleneck sampling method. The bottleneck

sampling is used in stage 2. 𝛼𝑖 is the sampling ratio for stage 𝑖. 𝑁𝑖 is the number of epochs for

stage 𝑖.

We propose a new three-stage training method, as shown in Fig. 3.9. The first stage

contains the early epochs of the training procedure. The middle stage contains the middle epochs

40

after the first stage and before the third stage. The third stage contains the last remaining epochs

in the whole training process. We applied the bottleneck sampling in the middle stage. The first

block and the last block of the middle stage are special as they connect with the first stage and the

third stage. The first bottleneck of stage 2 is not a full bottleneck. It uses the last epoch of stage 1

to replace the start epoch. The last epoch of stage 2 may be full or not full depending on the 𝑁1 +

𝑁3 because 𝑁2 = 𝑁 − (𝑁1 + 𝑁3). Here the internal squeezed epoch number is fixed as 4. If 𝑁2 is

exactly divisible by 5 (internal 4 squeezed ratios 𝛼22 and 1 normal ratio 𝛼21), the last bottleneck

is full, and the last epoch of it will be 𝛼21. Otherwise, the last bottleneck is not full, and the last

epoch of it will be 𝛼22. The meanings of the above math symbols are defined in Theorem 3 below.

Next, we analyze the probability of a sample get missed by the whole training process and

give the training time calculation.

Theorem 3. The probability 𝑝 of a sample missing in the bottleneck random sampling method is

shown in formula (11).

𝑝 = (1 − 𝛼1)𝑁1(1 − 𝛼21)𝑁21(1 − 𝛼22)𝑁22 (1 − 𝛼3)𝑁3 (11)

where each epoch has its independent random sampling from the whole training dataset, 𝛼1 and

𝛼3 are two flat sampling rates for each epoch in stages 1 and 3 respectively; 𝛼21and 𝛼22 are

respective sampling rates for different bottleneck epochs in stage 2, 𝑠𝑒 is a squeeze ratio as 𝑠𝑒 =

𝛼22/𝛼21; 𝑁1 and 𝑁3 are the total epoch numbers in stages 1 and 3 with their random sampling

rates 𝛼1 and 𝛼3, respectively; 𝑁21 and 𝑁22 are the total epoch numbers with a sampling rate 𝛼21

and its squeezed rate 𝛼22, respectively; and 𝑁2 = 𝑁21 + 𝑁22 represents the total epoch numbers in

41

stage 2.

Again, the probability of any sample missing in the whole three-stage bottleneck training

process is extremely low for deep learning where the total training epoch number 𝑁 = 𝑁1 + 𝑁21 +

𝑁22 + 𝑁3 is high as shown in (11).

Let 𝑇𝐵 be the average training time of the three-stage bottleneck reduced random sampling

strategy. Similarly, we have the following Theorem 4.

 Theorem 4. Consider a three-stage fast training method with a bottleneck random sampling ratio

set of {𝛼1, 𝛼21, 𝛼22, 𝛼3} and its respective epoch number set of {𝑁1, 𝑁21, 𝑁22, 𝑁3}. The training

data set has the total sample number D, and the batch sample size is B. In stages {1, 21, 22, 3},

where stages 21 and 22 are in stage 2, each epoch may have different batch numbers

{𝑀1, 𝑀21, 𝑀22, 𝑀3} = {⌊(𝛼1, 𝛼21, 𝛼22, 𝛼3) ∙ 𝑀⌋} with 𝑀 = ⌈𝐷/𝐵⌉, respectively. The average

bottleneck training time 𝑇𝐵 and the average training time T of a regular method satisfy formula

(12):

𝑇𝐵

𝑇
=

(𝑇0𝛼1𝑀1𝑁1+𝑇0𝛼21𝑀21𝑁21+𝑇0𝛼22𝑀22𝑁22+𝑇0𝛼3𝑀3𝑁3)

[𝑇0(𝑀−1)+𝑇1]𝑁
 (12)

where 𝑁 = (𝑁1 + 𝑁21 + 𝑁22 + 𝑁3) is the total training epochs number, 𝑇0 and 𝑇0𝛼𝑖 denote the

average training times of a full sample batch with B samples under a regular method and an 𝛼𝑖-

reduced method respectively, and 𝑇1 is the average training time of the last batch in each epoch of

the regular method, which may not have full B samples.

Corollary 2. If each member of {𝛼1𝑀, 𝛼21𝑀, 𝛼22𝑀, 𝛼3𝑀} is much larger than 1, and 𝑇0𝛼𝑖 ≈ 𝑇0,

𝑖 = 1, 21, 22, 3, then the bottleneck fast training method has a simplified training time reduction

42

as in (13)

𝑇𝐵

𝑇
≈

𝑀1𝑁1+𝑀21𝑁21+𝑀22𝑁22+𝑀3𝑁3

𝑀𝑁
=

𝛼1𝑁1+𝛼21𝑁21+𝛼22𝑁22+𝛼3𝑁3

𝑁
 (13)

where the parameters are as defined in Theorem 4, respectively.

From Theorems 2 and 4, and Corollaries 1–2, it is observed that the flat fast training method

with 𝛼 = 0.618 is better than the bottleneck fast training method in view of training time reduction

and the process complexity.

43

CHAPTER 4: EXPERIMENT

4.1 Architecture Complexity Reduction

We propose a novel CR module to compress the 1 × 1 convolution. Based on the CR

module, we have developed a C-Bneck and a C-IBneck to compress the CNN bottleneck block

and inverted bottleneck block, respectively. Then we use the C-Bneck to replace the bottlenecks

in a backbone network to get the CRnet-CB. We use the C-IBneck to replace the inverted

bottlenecks in a backbone network to get the CRnet-CIB. In this dissertation, we take the state-

of-the-art network ResNet50 stacked with bottlenecks as our backbone architecture to test the C-

Bneck block. We take the state-of-the-art network GhostNet stacked with inverted bottlenecks as

our backbone to test the C-IBneck block.

4.1.1 Dataset

We use two benchmark datasets: CIFAR-10 [59] and CIFAR-100 [59], to conduct the

experiments. The CIFAR-10 contains 50k 3 × 32 × 32 training images and 10k 3 × 32 ×

32 testing images for 10 classes. The 10 classes are airplane, automobile, bird, cat, deer, dog, frog,

horse, ship, and truck. The CIFAR-100 contains 50k 3 × 32 × 32 training images and 10k

3 × 32 × 32 testing images for 100 classes. The 100 classes include beaver, dolphin, ray, shark,

roses, sunflowers, bottles, cups, pears, clock, etc.

4.1.2 Evaluation Metrics

Model complexity is an important factor in measuring model performance. A compact

model with a little sacrifice of accuracy is acceptable compared to a large model since compact

44

models are faster and are easier to be deployed to mobile devices, as well as to be applied,

especially for real-time identification systems and control systems.

There are two basic metrics to measure the model complexity: parameter number and

FLOPs. The parameter number is the number of trainable elements in the CNN network. For

example, a 𝑁 × 𝑁 convolution kernel contains 𝑁 × 𝑁 parameters without considering bias. The

key of deep learning is that it can be trained through backpropagation, which makes it obviously

different from conventional machine learning methods. After a batch of images sent into the

feedforward network to get the prediction, we will get the predicted outputs for this batch which

can be used to calculate the loss. The loss will be propagated back to the network to update the

trainable parameters. Thus, the number of parameters is a key metric to reflect the model capacity

and complexity. It describes the RAM needs of the model to store its architectures and parameters.

FLOPs (floating-point operations) is another important metric to measure model complexity. It is

often defined as the number of floating-point multiplication-adds [31]. It indicates the computation

amount of one forward pass for a single image. As the whole image contributes to the

multiplication-adds operations, FLOPs number is related to image size. With the same convolution

kernel, the larger the image is, the more the FLOPs are. It describes the hardware needs of the

model.

Besides model complexity, accuracy is a conventional measurement of model performance.

No or a little sacrifice is acceptable when building compact models. A compact model containing

very few parameters and requiring small FLOPs but performing poorly in accuracy is also a failed

and unacceptable model. Here the accuracy is also mentioned as Top 1 accuracy. The top 1

45

accuracy is the accuracy of general understanding. For each sample, the one with the highest

probability is the predicted type. If it matches the sample label, the prediction matches the label.

For the whole dataset, top 1 accuracy is the number of top 1 matched predictions over the total

number of samples.

4.1.3 CRnet-CB Results

We first test the performance of the CR module compression strategy in the CNN stacked

with bottlenecks. We use ResNet50 [32] as the backbone network and test different compression

strategies. We use C-Bneck to compress the bottlenecks and get the network CRnet-CB.

For each bottleneck, there are two 1 × 1 convolution layers. We use the proposed CR

module to compress each 1 × 1 convolution layer and get a CRnet-CB with ResNet50 as backbone,

which is shown in Table 3-1. We conduct the CRnet-CB on CIFAR-10 and CIFAR-100. The

compact model has been run for 160 epochs. We use SGD optimization with a momentum 0.9 and

a decay 0.0001. The learning rate starts at 0.1, divided by 10 at epoch 80 and 120. We have run

two batch sizes of 256 and 64 on two Nvidia Quadro RTX 5000 GPUs in the experiments. We use

PyTorch as our deep learning API.

The experimental results of the CRnet-CB on the CIFAR-10 testing set are shown in Table

4-1 and Table 4-2. The experimental results of the CRnet-CB on the CIFAR-10 testing set are shown

in Table 4-3 and Table 4-4. The number of parameters and FLOPs are for the whole network.

46

Table 4-1: CRnet-CB results on CIFAR-10 with a batch size of 256

Setting 1st -2nd 1 × 1

compression

Parameter

(M)

FLOPs

(M)

Acc. (%) Compression Strategy

𝑒𝑥𝑝 = 4
𝑔 = 2

α ∗= 0.5

c1dw-c1dw 0.16 28.17 90.72 Ghost module [10]

𝑔𝑐-c1dw 0.16 27.36 91.46 CR module

𝑔𝑐-𝑔𝑐 0.15 24.78 89.61 Group Convolution

c1dw-𝑔𝑐 0.15 25.59 90.35 Inverse CR

𝑒𝑥𝑝 = 6
𝑔 = 2

𝛼 = 0.5

c1dw-c1dw 0.27 44.00 90.90 Ghost module

𝑔𝑐-c1dw 0.26 43.19 91.80 CR module

𝑔𝑐-𝑔𝑐 0.25 39.31 90.81 Group Convolution

c1dw-𝑔𝑐 0.25 40.13 90.42 Inverse CR

𝑒𝑥𝑝 = 4
𝑔 = 4

𝛼 = 0.25

c1dw-c1dw 0.12 21.15 89.21 Ghost module

𝑔𝑐-c1dw 0.12 19.94 90.67 CR module

𝑔𝑐-𝑔𝑐 0.10 16.07 89.42 Group Convolution

c1dw-𝑔𝑐 0.11 17.28 88.81 Inverse CR

*𝛼 =
𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 1×1 𝑜𝑢𝑡𝑝𝑢𝑡 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑏𝑦 𝑐1

𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 1×1 𝑜𝑢𝑡𝑝𝑢𝑡 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠
 .

Compression ratio variation: larger 𝑔 indicates higher compression ratio for 𝑔𝑐 , smaller 𝛼

indicates higher compression ratio for 𝑐1𝑑𝑤.

47

Table 4-2: CRnet-CB results on CIFAR-10 with a batch size of 64

Setting 1st -2nd 1 × 1

compression

Parameter

(M)

FLOPs

(M)

Acc. (%) Compression Strategy

𝑒𝑥𝑝 = 4
𝑔 = 2

α = 0.5

c1dw-c1dw 0.16 28.17 90.88 Ghost module

𝑔𝑐-c1dw 0.16 27.36 90.73 CR module

𝑔𝑐-𝑔𝑐 0.15 24.78 89.22 Group Convolution

c1dw-𝑔𝑐 0.15 25.59 90.08 Inverse CR

𝑒𝑥𝑝 = 6
𝑔 = 2

𝛼 = 0.5

c1dw-c1dw 0.27 44.00 90.52 Ghost module

𝑔𝑐-c1dw 0.26 43.19 91.11 CR module

𝑔𝑐-𝑔𝑐 0.25 39.31 88.88 Group Convolution

c1dw-𝑔𝑐 0.25 40.13 90.49 Inverse CR

𝑒𝑥𝑝 = 4
𝑔 = 4

𝛼 = 0.25

c1dw-c1dw 0.12 21.15 90.17 Ghost module

𝑔𝑐-c1dw 0.12 19.94 90.34 CR module

𝑔𝑐-𝑔𝑐 0.10 16.07 88.21 Group Convolution

c1dw-𝑔𝑐 0.11 17.28 89.37 Inverse CR

48

Table 4-3: CRnet-CB results on CIFAR-100 with a batch size of 256

Setting 1st -2nd 1 × 1

compression

Parameter

(M)

FLOPs

(M)

Acc. (%) Compression Strategy

𝑒𝑥𝑝 = 4
𝑔 = 2

𝛼 = 0.5

c1dw-c1dw 0.18 28.20 67.04 Ghost module

𝑔𝑐-c1dw 0.18 27.39 68.40 CR module

𝑔𝑐-𝑔𝑐 0.17 24.81 66.96 Group Convolution

c1dw-𝑔𝑐 0.17 25.62 67.11 Inverse CR

𝑒𝑥𝑝 = 6
𝑔 = 2

𝛼 = 0.5

c1dw-c1dw 0.30 44.03 67.61 Ghost module

𝑔𝑐-c1dw 0.30 43.22 68.05 CR module

𝑔𝑐-𝑔𝑐 0.28 39.35 66.70 Group Convolution

c1dw-𝑔𝑐 0.29 40.16 67.17 Inverse CR

𝑒𝑥𝑝 = 4
𝑔 = 4

𝛼 = 0.25

c1dw-c1dw 0.15 21.18 65.75 Ghost module

𝑔𝑐-c1dw 0.14 19.96 67.29 CR module

𝑔𝑐-𝑔𝑐 0.13 16.09 66.31 Group Convolution

c1dw-𝑔𝑐 0.13 17.31 65.15 Inverse CR

49

Table 4-4: CRnet-CB results on CIFAR-100 with a batch size of 64

Setting 1st -2nd 1 × 1

compression

Parameter

(M)

FLOPs

(M)

Acc. (%) Compression Strategy

𝑒𝑥𝑝 = 4
𝑔 = 2

𝛼 = 0.5

c1dw-c1dw 0.18 28.20 68.36 Ghost module

𝑔𝑐-c1dw 0.18 27.39 68.76 CR module

𝑔𝑐-𝑔𝑐 0.17 24.81 66.82 group convolution

c1dw-𝑔𝑐 0.17 25.62 67.61 Inverse CR

𝑒𝑥𝑝 = 6
𝑔 = 2

𝛼 = 0.5

c1dw-c1dw 0.30 44.03 68.85 Ghost module

𝑔𝑐-c1dw 0.30 43.22 69.91 CR module

𝑔𝑐-𝑔𝑐 0.28 39.35 67.17 group convolution

c1dw-𝑔𝑐 0.29 40.16 66.95 Inverse CR

𝑒𝑥𝑝 = 4
𝑔 = 4

𝛼 = 0.25

c1dw-c1dw 0.15 21.18 67.51 Ghost module

𝑔𝑐-c1dw 0.14 19.96 68.62 CR module

𝑔𝑐-𝑔𝑐 0.13 16.09 66.24 group convolution

c1dw-𝑔𝑐 0.13 17.31 65.57 Inverse CR

The experimental observations of the CRnet-CB on CIFAR-10 and CIFAR-100 are as

follows.

(1) The ∗-c1dw (𝑔𝑐-𝑐1𝑑𝑤 and c1dw-c1dw) compression for the two 1 × 1 layers performs

better than ∗-𝑔𝑐 (𝑔𝑐-𝑔𝑐 and c1dw-𝑔𝑐) for most experiments.

(2) Among the ∗-c1dw compression strategies, the 𝑔𝑐-c1dw (the proposed CR module

compression for bottlenecks) achieves better accuracy than c1dw-c1dw for most experiments.

50

Furthermore, the network compression using the CR module has fewer parameters and FLOPs

than c1dw-c1dw.

(3) The 𝑔𝑐-c1dw (the proposed CR module compression) performs much better than c1dw-

 𝑔𝑐 (the inverse version of the CR module compression). For some experiments on the CIFAR-

100 with a batch size of 64, the CR module even achieves about 3% accuracy increase than the

inverse version of the CR module under the same experiment settings.

(4) The CR module achieves better accuracy than the strategies with fewer parameters and

FLOPs. The CR module has fewer parameters and FLOPs comparing to the method with

comparable accuracy on average. Thus the CR module better balances the model complexity and

accuracy.

The observations above show that:

(1) For the bottlenecks, the performances of the different compression strategies are

affected by the input-output patterns.

(2) A compression strategy that does not perform well for one input-output pattern may

perform well for another input-output pattern, i.e., it is related to the input-output pattern. Thus, it

is essential to treat the compression strategies carefully and select the compression strategies as

aware of network architectures as we propose.

(3) The proposed CR module performs well in compressing the bottleneck structures to

balance the model complexity and accuracy.

(4) The expansion ratio and compression ratio importance is less important than the input-

output pattern.

51

4.1.4 CRnet-CIB Results

We test the performance of our CR module compression strategy in the CNN stacked with

the inverted bottlenecks. We use GhostNet [10] as the backbone network and test different

compression strategies.

For each inverted bottleneck, there are two 1 × 1 convolution layers. We use the proposed

CR module to compress each 1 × 1 convolution layer and get a CRnet-CIB with GhostNet as the

backbone, and that structure is shown in Table 3-2. We conduct this experiment on CIFAR-10 and

CIFAR-100. The model has been run for 160 epochs. We use SGD optimization with a momentum

0.9 and a decay 0.0001. The learning rate starts at 0.1, divided by 10 at epoch 80 and epoch 120.

We have run two batch sizes of 256 and 64 on two Nvidia Quadro RTX 5000 GPUs in our

experiments. We use PyTorch as our deep learning API.

The experimental results of the CRnet-CIB on CIFAR-10 are shown in Table 4-5 and Table

4-6. The experimental results of the CRnet-CIB on CIFAR-100 are shown in Table 4-7 and Table 4-

8. The number of parameters and FLOPs are for the whole network.

52

Table 4-5: CRnet-CIB results on CIFAR-10 with a batch size of 256

Setting 1st -2nd 1 × 1

compression

Parameter

(M)

FLOPs

(M)

Acc. (%) Compression Strategy

𝑒𝑥𝑝 = 4
𝑔 = 2

𝛼 = 0.5

c1dw-c1dw 0.29 24.58 92.66 Ghost module [10]

c1dw-𝑔𝑐 0.29 23.90 93.11 CR module

𝑔𝑐-𝑔𝑐 0.28 20.51 88.77 Group Convolution

𝑔𝑐-c1dw 0.28 21.19 91.16 Inverse CR

𝑒𝑥𝑝 = 6
𝑔 = 2

𝛼 = 0.5

c1dw-c1dw 0.52 36.23 92.90 Ghost module

c1dw-𝑔𝑐 0.52 35.55 93.23 CR module

𝑔𝑐-𝑔𝑐 0.50 30.46 89.46 Group Convolution

𝑔𝑐-c1dw 0.51 31.14 92.28 Inverse CR

𝑒𝑥𝑝 = 4
𝑔 = 4

𝛼 = 0.25

c1dw-c1dw 0.25 17.71 91.49 Ghost module

c1dw-𝑔𝑐 0.24 16.69 91.88 CR module

𝑔𝑐-𝑔𝑐 0.23 11.60 87.80 Group Convolution

𝑔𝑐-c1dw 0.23 12.62 90.37 Inverse CR

53

Table 4-6: CRnet-CIB results on CIFAR-10 with a batch size of 64

Setting 1st -2nd 1 × 1

compression

Parameter

(M)

FLOPs

(M)

Acc. (%) Compression Strategy

exp = 4
𝑔 = 2

α = 0.5

c1dw-c1dw 0.29 24.58 92.12 Ghost module

c1dw-𝑔𝑐 0.29 23.90 92.60 CR module

𝑔𝑐-𝑔𝑐 0.28 20.51 89.87 Group Convolution

𝑔𝑐-c1dw 0.28 21.19 91.99 Inverse CR

𝑒𝑥𝑝 = 6
𝑔 = 2

𝛼 = 0.5

c1dw-c1dw 0.52 36.23 93.20 Ghost module

c1dw-𝑔𝑐 0.52 35.55 92.94 CR module

𝑔𝑐-𝑔𝑐 0.50 30.46 89.26 Group Convolution

𝑔𝑐-c1dw 0.51 31.14 92.02 Inverse CR

𝑒𝑥𝑝 = 4
𝑔 = 4

𝛼 = 0.25

c1dw-c1dw 0.25 17.71 92.32 Ghost module

c1dw-𝑔𝑐 0.24 16.69 92.33 CR module

𝑔𝑐-𝑔𝑐 0.23 11.60 88.58 Group Convolution

𝑔𝑐-c1dw 0.23 12.62 91.08 Inverse CR

54

Table 4-7: CRnet-CIB results on CIFAR-100 with a batch size of 256

Setting 1st -2nd 1 × 1

compression

Parameter

(M)

FLOPs

(M)

Acc. (%) Compression Strategy

𝑒𝑥𝑝 = 4
𝑔 = 2

𝛼 = 0.5

c1dw-c1dw 0.30 24.59 70.06 Ghost module

c1dw-𝑔𝑐 0.30 23.91 70.78 CR module

𝑔𝑐-𝑔𝑐 0.29 20.52 64.78 Group Convolution

𝑔𝑐-c1dw 0.29 21.20 67.65 Inverse CR

𝑒𝑥𝑝 = 6
𝑔 = 2

𝛼 = 0.5

c1dw-c1dw 0.53 36.23 70.81 Ghost module

c1dw-𝑔𝑐 0.53 35.55 70.58 CR module

𝑔𝑐-𝑔𝑐 0.51 30.46 64.96 Group Convolution

𝑔𝑐-c1dw 0.51 31.15 69.05 Inverse CR

𝑒𝑥𝑝 = 4
𝑔 = 4

𝛼 = 0.25

c1dw-c1dw 0.25 17.71 67.63 Ghost module

c1dw-𝑔𝑐 0.25 16.69 69.26 CR module

𝑔𝑐-𝑔𝑐 0.23 11.60 62.18 Group Convolution

𝑔𝑐-c1dw 0.24 12.63 66.22 Inverse CR

55

Table 4-8: CRnet-CIB results on CIFAR-100 with a batch size of 64

Setting 1st -2nd 1 × 1

compression

Parameter

(M)

FLOPs

(M)

Acc. (%) Compression Strategy

𝑒𝑥𝑝 = 4
𝑔 = 2

𝛼 = 0.5

c1dw-c1dw 0.30 24.59 71.76 Ghost module

c1dw-𝑔𝑐 0.30 23.91 72.10 CR module

𝑔𝑐-𝑔𝑐 0.29 20.52 64.48 Group Convolution

𝑔𝑐-c1dw 0.29 21.20 69.59 Inverse CR

𝑒𝑥𝑝 = 6
𝑔 = 2

𝛼 = 0.5

c1dw-c1dw 0.53 36.23 70.79 Ghost module

c1dw-𝑔𝑐 0.53 35.55 72.70 CR module

𝑔𝑐-𝑔𝑐 0.51 30.46 65.68 Group Convolution

𝑔𝑐-c1dw 0.51 31.15 70.08 Inverse CR

𝑒𝑥𝑝 = 4
𝑔 = 4

𝛼 = 0.25

c1dw-c1dw 0.25 17.71 69.01 Ghost module

c1dw-𝑔𝑐 0.25 16.69 70.41 CR module

𝑔𝑐-𝑔𝑐 0.23 11.60 61.87 Group Convolution

𝑔𝑐-c1dw 0.24 12.63 68.05 Inverse CR

The experimental observations of CRnet-CIB for CIFAR-10 and CIFAR-100 are as follows.

(1) The c1dw-∗ (c1dw-𝑔𝑐 and c1dw-c1dw) compression for the two 1 × 1 layers performs

better than 𝑔𝑐-∗ (𝑔𝑐-𝑔𝑐 and c1dw- 𝑔𝑐) for most experiments.

(2) Among the c1dw-∗ compression strategies, the c1dw-𝑔𝑐 (the proposed CR module

compression for the inverted bottlenecks) achieves better accuracy than c1dw-c1dw for most

experiments. And the network compression using the CR module has fewer parameters and FLOPs

56

than c1dw-c1dw.

(3) The c1dw-𝑔𝑐 (the proposed CR module) performs much better than 𝑔𝑐-c1dw (the

inverse version of the CR module). For some experiments on the CIFAR-100 with batch sizes of

256 and 64, the CR module achieves about a 3% accuracy increase than the inverse version of the

CR module under the same experiment settings.

(4) The CR module achieves better accuracy than the strategies with fewer parameters and

FLOPs. The CR module has fewer parameters and FLOPs comparing to the method with

comparable accuracy on average. Thus the CR module better balances the model complexity and

accuracy.

The observations above show that:

(1) For the inverted bottlenecks, the performances of the different compression strategies

are affected by the input-output patterns.

(2) A compression strategy that does not perform well for one input-output pattern may

perform well for another input-output pattern, i.e., it is related to the input-output pattern. It is

important to develop an architecture-aware compression method.

(3) The proposed CR module performs well in compressing the inverted bottleneck

structures to balance the model complexity and accuracy.

(4) The expansion ratio and compression ratio importance is less important than the input-

output pattern.

57

4.2 Data Reduction

We propose two compression strategies: flat reduced random sampling and bottleneck

reduced random sampling (B-neck sampling). Based on the bottleneck reduced random sampling,

we propose a three-stage training method. The first and third stages use two fixed ratios. The

second stage uses the bottleneck reduced random sampling ratio. The flat reduced random

sampling is a special case of the three-stage training method, by setting the second and third stage

total epoch number to 0.

4.2.1 Dataset

We use three benchmark datasets: CIFAR-10 [59], CIFAR-100 [59] and ImageNet

(ILSVRC 2012) [60] to conduct the experiments. CIFAR-10 and CIFAR-100 have been introduced

in section 4.1.1. The ImageNet 2012 classification dataset contains 1.28 million training images,

50k validation images, and 100k testing images for 1000 classes. Since the labels of testing images

are not available, the training images and validation images are often used to compare the

algorithms for convenience. The ImageNet image size is not fixed. The 1000 classes include

goldfish, great white shark, great grey owl, snowbird, pillow, pencil sharpener, purse, shopping

basket, sliding door, school bus, etc.

We apply the same random seed number for each run on the same dataset. As our aim for

this experiment is to study the effect of the proposed fast random sampling methods for model

training, we do not apply the variations that can enhance the model performance, like tuning the

batch size, learning rate, etc.

58

4.2.2 Evaluation Metrics

We use Top 1 accuracy and Top 5 accuracy metrics to measure model accuracy. For the

whole dataset, top 1 accuracy is the number of top 1 matched predictions over the total number of

samples. When calculating the top 5 accuracy, a prediction is considered correct if its predicted

top 5 highest probabilities contain the label. For the whole dataset, top 5 accuracy is the number

of top 5 matched predictions over the total number of samples. In addition to the Top 1 accuracy

and Top 5 accuracy, we also evaluate the model using training time.

4.2.3 CIFAR-10 Experiments

For CIFAR-10, we have trained the network for 120 epochs with a batch size of 128 [32].

We use the stochastic gradient descent optimizer (batch gradient descent) with a momentum of 0.9

and a weight decay of 1e-4 [32]. The learning rate starts at 0.1 and drops to 0.01 at epoch 60 and

to 0.001 at epoch 90. The ResNet56 [32] is used as the backbone network. For fair comparison, all

experiments are implemented on the same workstation with two Nvidia Quadro RTX 5000 GPUs.

We use PyTorch as the deep learning API.

We have tested the developed flat reduced random sampling method and three-stage

training method on the CIFAR-10 dataset. Table 4-9 shows the details of the experiments, where

the accuracy is on the test set. Table 4-10 lists the relative percentage improvement by comparison

with the ResNet56 reimplementation results for training time, top-1 accuracy, and top-5 accuracy.

Figure 4.1 shows the relative training time reduction vs. the relative top-1 accuracy change for the

CIFAR-10 dataset. Figure 4.2 shows the relative training time reduction vs. relative top-5 accuracy

change for the CIFAR-10 dataset. The flat reduced random sampling method result is indicated by

59

red color, and the three-stage training method result using B-neck sampling is indicated by green

color.

 The results show that both proposed methods get significant training time percentage

reduction with a very small accuracy cost for CIFAR-10. For this dataset, the three-stage training

method with bottleneck sampling strategy achieves better results compared to the flat reduced

sampling method with comparable accuracy but less time.

Table 4-9: Training performances on CIFAR-10

Method Setting Top1

%

Top5

%

Time

min/sec

ResNet56 [32] - 93.03 - -

ResNet56

Re-impl. *

- 92.53

99.78 42/47

ResNet56

R1_0.8
𝛼 = 0.8 92.20 99.77 33/47

ResNet56

R1_0.618
𝛼 = 0.618 91.52 99.78 26/30

ResNet56

R2

𝛼 = 0.8 ⋅ [1,1,1]

𝛾 = [1 3⁄ , 1 3⁄ , 1 3⁄]
𝑠𝑒 = 0.8

92.41

99.76

32/26

ResNet56

R2_1

𝛼 = [0.8,1.0,0.8]

𝛾 = [1 3⁄ , 1 3⁄ , 1 3⁄]
𝑠𝑒 = 0.8

91.89 99.73

34/38

ResNet56

R3

𝛼 = [0.8,0.8,0.25]

𝛾 = [1 3⁄ , 1 2⁄ , 1 6⁄]
𝑠𝑒 = 0.8

92.34

99.75

29/09

*Re-impl.: Re-implementation.

60

Table 4-10: Training performances analysis on CIFAR-10

Method Top1

%

Top5

%

Time

min/sec
Top1↑ %

Top5↑

%

Time↑

%

Flat/

B-neck

ResNet56

Re-impl.

92.53 99.78 42/47 - - - -

ResNet56

R1_0.8

92.20 99.77 33/47 -0.36 -0.01 -21.04 Flat

ResNet56

R1_0.618

91.52

99.78

26/30

-1.09 0 -38.06 Flat

ResNet56

R2

92.41

99.76

32/26

-0.13 -0.02 -24.19 B-neck

ResNet56

R2_1

91.89 99.73

34/38

-0.69 -0.05 -19.05 B-neck

ResNet56

R3

92.34

99.75

29/09

-0.21 -0.03 -31.87 B-neck

Figure 4.1: Relative training time reduction vs relative top-1 accuracy change for CIFAR-10

dataset.

61

Figure 4.2: Relative training time reduction vs relative top-5 accuracy change for CIFAR-10

dataset.

4.2.4 CIFAR-100 Experiments

The experiment settings for CIFAR-100 are the same as CIFAR-10.

We have tested the proposed methods on the CIFAR-100 dataset. Table 4-11 shows the

details of the experiments. Table 4-12 lists the relative percentage improvement by comparison

with the ResNet56 reimplementation results for training time, top-1 accuracy, and top-5 accuracy.

Figures 4.3 and 4.4 show the relative training time reduction vs. the relative top-1 accuracy

change and the relative top-5 accuracy change for the CIFAR-100 dataset, respectively.

The results for CIFAR-100 show that both proposed methods get significant training time

percentage reduction with a very small top-1 accuracy cost and a slight top-5 accuracy increase

for some settings. For this dataset, the three-stage training method performs better than the flat

62

reduced sampling method, with comparable top-1 accuracy as the reimplemented ResNet56 and

less training time. We also notice that some settings of the three-stage sampling method have

slightly increased the top-5 accuracy.

Table 4-11: Training performances on CIFAR-100

Method Setting Top1

%

Top5

%

Time

min/sec

ResNet56 [1] - - -

ResNet56

Re-impl.

- 70.58 91.65 42/47

ResNet56

R1_0.8
𝛼 = 0.8 70.02 91.49 34/53

ResNet56

R1_0.618
𝛼 = 0.618 69.41 91.41 26/36

ResNet56

R2

𝛼 = 0.8 ⋅ [1,1,1]

𝛾 = [1 3⁄ , 1 3⁄ , 1 3⁄]
𝑠𝑒 = 0.8

69.76 91.66 32/39

ResNet56

R2_1

𝛼 = [0.8,1.0,0.8]

𝛾 = [1 3⁄ , 1 3⁄ , 1 3⁄]
𝑠𝑒 = 0.8

70.07 91.55 34/26

ResNet56

R3

𝛼 = [0.8,0.8,0.25]

𝛾 = [1 3⁄ , 1 2⁄ , 1 6⁄]
𝑠𝑒 = 0.8

70.45 91.69 28/13

63

Table 4-12: Training performances analysis on CIFAR-100

Method Top-1

%

Top-5

%

Time

min/sec
Top1↑ % Top5↑

%

Time↑

%

Flat/

B-neck

ResNet56

Re-impl.

70.58 91.65 42/47 - - - -

ResNet56

R1_0.8

70.02 91.49 34/53 -0.79 -0.17 -18.47 Flat

ResNet56

R1_0.618

69.41 91.41 26/36 -1.66 -0.26 -37.83 Flat

ResNet56

R2

69.76 91.66 32/39 -1.16 +0.01 -23.69 B-neck

ResNet56

R2_1

70.07 91.55 34/26 -0.72 -0.11 -19.52 B-neck

ResNet56

R3

70.45 91.69 28/13 -0.18 +0.04 -34.05 B-neck

Figure 4.3: Relative training time reduction vs relative top-1 accuracy change for CIFAR-100

dataset.

64

Figure 4.4: Relative training time reduction vs relative top-5 accuracy change for CIFAR-100

dataset.

4.2.5 ImageNet Experiments

For the ImageNet dataet, we have trained the network for 150 epochs with a batch size of

256. We use the stochastic gradient descent optimizer with a momentum of 0.9 and a weight decay

of 4e-5 [61]. The learning rate starts at 0.05, and a cosine decay strategy is applied to the learning

rate [61]. The MobileNet v2 (M-Net v2) [9] is used as the backbone network.

Table 4-13 shows the details of the experiments. Table 4-14 lists the relative percentage

improvement by comparison with the MobileNet v2 reimplementation results for training time,

top-1 accuracy, and top-5 accuracy. We use the results on the ImageNet validation set for the test

accuracy comparison.

Similarly, Figures 4-5 and 4-6 show the relative training time reduction vs. the relative top-

65

1 accuracy change and top-5 accuracy change, respectively, for the ImageNet dataset.

The results show that for the ImageNet dataset, both proposed methods show significant

training time percentage reduction with a small accuracy cost. For this dataset, the flat reduced

sampling method is comparable with the three-stage training method in the training time reduction

and accuracy change.

Table 4-13: Training performances on ImageNet

Method Setting Top1

%

Top5

%

Time

hour/min

M-Net v2* [31] 72.00

M-Net v2

Re-impl.

- 72.15 90.42 180/09

M-Net v2

R1_0.8
𝛼 = 0.8 71.62 90.23 144/45

M-Net v2

R1_0.618
𝛼 = 0.618 71.20 90.21 112/04

M-Net v2

R2_2

𝛼 = [0.8,0.8,0.5]

𝛾 = [1 3⁄ , 1 3⁄ , 1 3⁄]
𝑠𝑒 = 0.625

71.29 90.15 112/18

*M-Net v2: MobileNet v2

Table 4-14: Training performances analysis on ImageNet

Method Top1

%

Top5

%

Time

hour/min
Top1↑ % Top5↑

%

Time↑

%

Flat/

B-neck

M-Net v2

Re-impl.

72.15 90.42 180/09 - - - -

M-Net v2

R1_0.8

71.62 90.23 144/45 -0.74 -0.21 -19.65 Flat

M-Net v2

R1_0.618

71.20 90.21 112/04 -1.32 -0.23 -37.79 Flat

M-Net v2

R2_2

71.29 90.15 112/18 -1.19 -0.30 -37.66 B-neck

66

Figure 4.5: Relative training time reduction vs relative top-1 accuracy change for ImageNet

dataset.

Figure 4.6: Relative training time reduction vs relative top-5 accuracy change for ImageNet

dataset.

67

CHAPTER 5: CONCLUSIONS AND FUTURE WORKS

5.1 Conclusions on Architecture Complexity Reduction

Model compression is a popular deep CNN research area to train faster networks by

reducing the network architecture complexity. We note that the CNN layer input-output patterns

are ignored in current compression strategies. Based on this finding, we have proposed the

following methods.

(1) For single 1 × 1 convolution layer compression, we propose a Conditional Reduction

(CR) module. The CR module checks the CNN layer input-output pattern and uses different

compression strategies.

(2) For image convolution blocks: bottleneck convolution block and inverted bottleneck

block, we apply the CR module to them and get the Conditional block (C-block) which can be

classified as C-Bneck and C-IBneck based on the original block types to be compressed.

(3) For network architecture, we apply the CR module to two types of CNN: one is stacked

with bottlenecks, and the other is stacked with inverted bottlenecks. We implement this by replace

the bottlenecks/inverted bottlenecks with C-Bneck/C-IBneck and get the Conditional Reduction

Network (CRnet). The CRnet can be classified as CRnet-CBneck (CRnet-CB) and CRnet-

CIBneck (CRnet-CIB).

We have tested the CRnet on two image classification datasets: CIFAR-10 and CIFAR-

100. For a fair and comprehensive comparison, we test the methods with multiple network

expansion ratio and compression ratio settings.

68

The experiments show that:

(1) If we switch the compression strategy related to the input-output pattern condition, that

is, using the inverse CR compression, the accuracies are all lower than our CR module compression

for our verified datasets. This verifies our method correctness with the attention to the importance

of the input-output pattern when selecting a compression strategy.

(2) If we use group convolution to compress the network, although it largely reduces the

parameter number and the FLOPs, it has low accuracy compared to other compression strategies.

However, after we combine the group convolution with the input-output patterns and use it

conditionally, the accuracy is the highest on average for all experiments. What is more, the use of

group convolution helps to reduce the parameter number and the FLOPs comparing to the state-

of-the-art Ghost module compression. That again verifies our method correctness and

assumption/suggestion that the performance of a compression strategy may relate to the network

architecture.

(3) The expansion ratio and compression ratio importance is less important than the input-

output pattern.

(4) Our proposed CRnet with CR module compression better balances the model

complexity and accuracy compared to the popular group convolution and the state-of-the-art Ghost

module compression.

(5) The CR module and the C-block are simple, effective, and plug-and-play, so they can

be easily utilized in any deep CNN.

69

5.2 Future Work on Architecture Complexity Reduction

We have tested our proposed methods using two benchmark image classification datasets:

CIFAR-10 and CIFAR-100, with various parameter settings to verify the methods’ effectiveness.

We will study the method using larger datasets in the future.

In addition, we note that the CNN intrusion arouses researchers’ interests. CNNs can be

cheated by adversarial samples with few pixel modifications. These kinds of modifications usually

are hard for humans to recognize. However, the CNNs can output a distinctive different image

class. Thus, current CNNs are at risk of cyber-attacks. We are interested in further study on the

model performance difference caused by model compressions for the security issues.

5.3 Conclusions on Data Reduction

Most of the deep CNN training uses full batch training. Full batch training will train all the

samples at each epoch. Although there are methods to drop samples based on the sample

importance rank calculated from the training loss or validation loss, their sorting calculations take

extra time, especially for large datasets. When we search for the optimal hyperparameter setting,

we expect to train CNN much faster, saving the multiple run’s time, by our proposed random

training data reduction methods.

In this case, a little accuracy drop is acceptable. Based on this object, we have proposed

the following methods.

(1) We propose a flat reduced random sampling training strategy and a bottleneck reduced

random sampling strategy.

70

(2) We propose a three-stage training method based on the bottleneck reduced random

sampling with consideration of the distinctiveness of the network early-stage training and end-

stage training.

(3) We prove the data visibility of a sample in the whole training process and the theoretical

reduced time by four theorems and two corollaries.

We have tested the flat reduced random sampling and the three-stage training on three

image classification datasets: CIFAR-10, CIFAR-100, and ImageNet. The experiments show that:

(1) The introduced two sampling strategies get significant training time percentage

reduction at a very small accuracy loss. Therefore, the strategies are effective in reducing the CNN

training time.

(2) We have proved that with our sampling setting, an image that gets missed by the whole

training process is extremely low. That means each image will be studied by the network.

(3) For large dataset training, the flat golden ratio α= 0.618 and the three stage-ratio R2-2

are good choices, with little accuracy drop but a large amount of training time percentage reduction.

5.4 Future Work on Data Reduction

The proposed methods show their benefit in reducing the training time with tiny accuracy

drop. We expect to apply the proposed methods to various deep learning applications to help

reduce the training time and get an optimal network setting.

71

REFERENCES

[1] B. M. Garlapati and S. R. Chalamala, A system for handwritten and printed text

classification, in Proceedings of the 19th International Conference on Computer Modelling

& Simulation, 2017: 50-54.

[2] W. Wang, M. Zhu, J. Wang, X. Zeng, and Z. Yang, End-to-end encrypted traffic

classification with one-dimensional convolution neural networks, in Proceedings of the

15th IEEE International Conference on Intelligence and Security Informatics, 2017: 43-

48.

[3] Z. Zhou, M. M. R. Siddiquee, N. Tajbakhsh, and J. Liang, Unet++: A nested u-net

architecture for medical image segmentation, in Proceedings of the 4th International

Workshop on Deep Learning in Medical Image Analysis and the 8th International

Workshop on Multimodal Learning for Clinical Decision Support, 2018: 3-11.

[4] F. Milletari, N. Navab, and S.-A. Ahmadi, V-net: Fully convolutional neural networks for

volumetric medical image segmentation, in Proceedings of the 4th International

Conference on 3D vision, 2016: 565-571.

[5] G. Liu, F. A. Reda, K. J. Shih, T.-C. Wang, A. Tao, and B. Catanzaro, Image inpainting

for irregular holes using partial convolutions, in Proceedings of the 15th European

Conference on Computer Vision, 2018: 85-100.

[6] R. A. Yeh, C. Chen, T. Y. Lim, A. G. Schwing, M. Hasegawa-Johnson, and M. N. Do,

Semantic image inpainting with deep generative models, in Proceedings of the 30th IEEE

Conference on Computer Vision and Pattern Recognition, 2017: 5485-5493.

[7] S. Jiang and S.-G. Wang, Fast Training Methods and Their Experiments for Deep Learning

CNN Models, accepted by the 40th IEEE Chinese Control Conference, 2021.

[8] T. He, Z. Zhang, H. Zhang, Z. Zhang, J. Xie, and M. Li, Bag of tricks for image

classification with convolutional neural networks, in Proceedings of the 32nd IEEE

Conference on Computer Vision and Pattern Recognition, 2019: 558-567.

[9] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, Mobilenetv2: Inverted

residuals and linear bottlenecks, in Proceedings of the 31st IEEE Conference on Computer

Vision and Pattern Recognition, 2018: 4510-4520.

72

[10] K. Han, Y. Wang, Q. Tian, J. Guo, C. Xu, and C. Xu, GhostNet: More features from cheap

operations, in Proceedings of the 33rd IEEE Conference on Computer Vision and Pattern

Recognition, 2020: 1580-1589.

[11] S. Han, H. Mao, and W. J. Dally, Deep compression: Compressing deep neural networks

with pruning, trained quantization and huffman coding, arXiv:1510.00149, 2015.

[12] S. Han, J. Pool, J. Tran, and W. Dally, Learning both weights and connections for efficient

neural network, in Proceedings of the 29th Conference on Neural Information Processing

Systems, 2015: 1135-1143.

[13] H. Hu, R. Peng, Y.-W. Tai, and C.-K. Tang, Network trimming: A data-driven neuron

pruning approach towards efficient deep architectures, arXiv:1607.03250, 2016.

[14] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, Pruning filters for efficient

convnets, arXiv:1608.08710, 2016.

[15] J.-H. Luo, J. Wu, and W. Lin, Thinet: A filter level pruning method for deep neural network

compression, in Proceedings of the 16th IEEE International Conference on Computer

Vision, 2017: 5058-5066.

[16] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, Learning structured sparsity in deep neural

networks, in Proceedings of the 30th Conference on Neural Information Processing

Systems, 2016: 2074-2082.

[17] J. Yu and T. Huang, AutoSlim: Towards one-shot architecture search for channel numbers,

arXiv:1903.11728, 2019.

[18] R. Yu, A. Li, C.-F. Chen, J.-H. Lai, V. I. Morariu, X. Han, et al., Nisp: Pruning networks

using neuron importance score propagation, in Proceedings of the 31st IEEE Conference

on Computer Vision and Pattern Recognition, 2018: 9194-9203.

[19] M. Zhu and S. Gupta, To prune, or not to prune: exploring the efficacy of pruning for model

compression, arXiv:1710.01878, 2017.

[20] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han, Amc: Automl for model compression

and acceleration on mobile devices, in Proceedings of the 15th European Conference on

Computer Vision, 2018: 784-800.

[21] J. Yu, L. Yang, N. Xu, J. Yang, and T. Huang, Slimmable neural networks,

arXiv:1812.08928, 2018.

73

[22] J. Yu and T. S. Huang, Universally slimmable networks and improved training techniques,

in Proceedings of the 17th IEEE International Conference on Computer Vision, 2019:

1803-1811.

[23] G. Hinton, O. Vinyals, and J. Dean, Distilling the knowledge in a neural network,

arXiv:1503.02531, 2015.

[24] S. Zagoruyko and N. Komodakis, Paying more attention to attention: Improving the

performance of convolutional neural networks via attention transfer, arXiv:1612.03928,

2016.

[25] J. Yim, D. Joo, J. Bae, and J. Kim, A gift from knowledge distillation: Fast optimization,

network minimization and transfer learning, in Proceedings of the 30th IEEE Conference

on Computer Vision and Pattern Recognition, 2017: 4133-4141.

[26] F. Chollet, Xception: Deep learning with depthwise separable convolutions, in

Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition,

2017: 1251-1258.

[27] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, et al., Searching for

MobileNetV3, in Proceedings of the 17th IEEE International Conference on Computer

Vision, 2019: 1314-1324.

[28] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, et al.,

Mobilenets: Efficient convolutional neural networks for mobile vision applications,

arXiv:1704.04861, 2017.

[29] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer,

SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and < 0.5 MB model size,

arXiv:1602.07360, 2016.

[30] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, ShuffleNet V2: Practical guidelines for efficient

CNN architecture design, in Proceedings of the 15th European Conference on Computer

Vision, 2018: 116-131.

[31] X. Zhang, X. Zhou, M. Lin, and J. Sun, ShuffleNet: An extremely efficient convolutional

neural network for mobile devices, in Proceedings of the 31st IEEE Conference on

Computer Vision and Pattern Recognition, 2018: 6848-6856.

74

[32] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, in

Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition,

2016: 770-778.

[33] T. Akiba, S. Suzuki, and K. Fukuda, Extremely large minibatch SGD: Training ResNet-50

on ImageNet in 15 minutes, arXiv:1711.04325, 2017.

[34] H. Mikami, H. Suganuma, Y. Tanaka, and Y. Kageyama, Massively distributed SGD:

ImageNet/ResNet-50 training in a flash, arXiv:1811.05233, 2018.

[35] K. Osawa, Y. Tsuji, Y. Ueno, A. Naruse, R. Yokota, and S. Matsuoka, Large-scale

distributed second-order optimization using kronecker-factored approximate curvature for

deep convolutional neural networks, in Proceedings of the 32nd IEEE Conference on

Computer Vision and Pattern Recognition, 2019: 12359-12367.

[36] Y. Ueno, K. Osawa, Y. Tsuji, A. Naruse, and R. Yokota, Rich information is affordable:

A systematic performance analysis of second-order optimization using K-FAC, in

Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery

& Data Mining, 2020: 2145-2153.

[37] M. Yamazaki, A. Kasagi, A. Tabuchi, T. Honda, M. Miwa, N. Fukumoto, et al., Yet

another accelerated SGD: ResNet-50 training on ImageNet in 74.7 seconds,"

arXiv:1903.12650, 2019.

[38] X. Jia, S. Song, W. He, Y. Wang, H. Rong, F. Zhou, et al., Highly scalable deep learning

training system with mixed-precision: Training ImageNet in four minutes,

arXiv:1807.11205, 2018.

[39] N. Wang, J. Choi, D. Brand, C.-Y. Chen, and K. Gopalakrishnan, Training deep neural

networks with 8-bit floating point numbers, arXiv:1812.08011, 2018.

[40] N. J. Higham and S. Pranesh, Simulating low precision floating-point arithmetic, SIAM

Journal on Scientific Computing, 41(5): C585-C602, 2019.

[41] X. Sun, J. Choi, C.-Y. Chen, N. Wang, S. Venkataramani, V. V. Srinivasan, et al., Hybrid

8-bit floating point (HFP8) training and inference for deep neural networks, in Proceedings

of the 33rd Conference on Neural Information Processing Systems, 2019: 4900-4909.

[42] I. Loshchilov and F. Hutter, Online batch selection for faster training of neural networks,

arXiv:1511.06343, 2015.

75

[43] M. J. van Grinsven, B. van Ginneken, C. B. Hoyng, T. Theelen, and C. I. Sánchez, Fast

convolutional neural network training using selective data sampling: Application to

hemorrhage detection in color fundus images, IEEE Transactions on Medical Imaging, 35

(5): 1273-1284, 2016.

[44] L. Berger, H. Eoin, M. J. Cardoso, and S. Ourselin, An adaptive sampling scheme to

efficiently train fully convolutional networks for semantic segmentation, in Proceedings of

the 22nd Annual Conference on Medical Image Understanding and Analysis, 2018: 277-

286.

[45] B. Cheng, Y. Wei, J. Yu, S. Chang, J. Xiong, W.-M. Hwu, et al., A Simple Non-iid

Sampling Approach for Efficient Training and Better Generalization, arXiv:1811.09347,

2018.

[46] W. Huang, T. Zhang, Y. Rong, and J. Huang, Adaptive sampling towards fast graph

representation learning, arXiv:1809.05343, 2018.

[47] T. B. Johnson and C. Guestrin, Training deep models faster with robust, approximate

importance sampling, in Proceedings of the 32nd Conference on Neural Information

Processing Systems, 2018: 7265-7275.

[48] H. Inoue, Multi-sample dropout for accelerated training and better generalization,

arXiv:1905.09788, 2019.

[49] S. Ramjee, S. Ju, D. Yang, X. Liu, A. E. Gamal, and Y. C. Eldar, Fast deep learning for

automatic modulation classification, arXiv:1901.05850, 2019.

[50] Y. Gong, L. Liu, M. Yang, and L. Bourdev, Compressing deep convolutional networks

using vector quantization, arXiv:1412.6115, 2014.

[51] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, Deep learning with limited

numerical precision, in Proceedings of the 32nd International Conference on Machine

Learning, 2015: 1737-1746.

[52] N. Mellempudi, S. Srinivasan, D. Das, and B. Kaul, Mixed precision training with 8-bit

floating point, arXiv:1905.12334, 2019.

[53] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus, Exploiting linear structure

within convolutional networks for efficient evaluation, in Proceedings of the 28th

Conference on Neural Information Processing Systems, 2014: 1269-1277.

76

[54] S. Jiang and S.-G. Wang, Architecture-aware Compact Convolutional Neural Network

Design, in review, 2021.

[55] Y. Zuo, B. Chen, T. Shi, and M. Sun, Filter Pruning Without Damaging Networks Capacity,

IEEE Access, 8: 90924-90930, 2020.

[56] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, Aggregated residual transformations for

deep neural networks, in Proceedings of the 30th IEEE Conference on Computer Vision

and Pattern Recognition, 2017, pp. 1492-1500.

[57] J. Hu, L. Shen, and G. Sun, Squeeze-and-excitation networks, in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.

[58] Y. Bengio, Practical recommendations for gradient-based training of deep architectures, in

Neural networks: Tricks of the trade, G. Montavon, G. B. Orr, KR. Müller, Eds. Berlin,

Heidelberg: Springer, 2012: 437-478.

[59] A. Krizhevsky and G. Hinton, Learning multiple layers of features from tiny images,

Technical Report. 2009.

[60] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and F.-F. Li, Imagenet: A large-scale

hierarchical image database, in Proceedings of the 22nd IEEE Conference on Computer

Vision and Pattern Recognition, 2009: 248-255.

[61] D. Li, A. Zhou, and A. Yao, HBONet: Harmonious bottleneck on two orthogonal

dimensions, in Proceedings of the 17th IEEE International Conference on Computer

Vision, 2019: 3316-3325.

