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ABSTRACT

CHRISTINE TALBOT. Directing Virtual Humans Using Play-Scripts and
Spatio-temporal Reasoning. (Under the direction of DR. G. MICHAEL

YOUNGBLOOD)

Historically, most virtual human character research focuses on realism/emotions, in-

teraction with humans, and discourse. The majority of the spatial positioning of

characters has focused on one-on-one conversations with humans or placing virtual

characters side-by-side when talking. These rely on conversation space as the main

driver (if any) for character placement.

Movies and games rely on motion capture (mocap) files and hard-coded functions

to perform spatial movements. These require extensive technical knowledge just to

have a character move from one place to another. Other methods involve the use

of Behavior Markup Language (BML), a form of XML, which describes character

behaviors. BML Realizers take this BML and perform the requested behavior(s) on

the character(s). Also, there are waypoint and other spatial navigation schemes, but

they primarily focus on traversals and not correct positioning. Each of these require

a fair amount of low-level detail and knowledge to write, plus BML realizers are still

in their early stages of development.

Theatre, movies, and television all utilize a form of play-scripts, which provide

detailed information on what the actor must do spatially, and when for a particular

scene (that is spatio-temporal direction). These involve annotations, in addition to

the speech, which identify scene setups, character movements, and entrances /exits.

Humans have the ability to take these play-scripts and easily perform a believable

scene.

This research focuses on utilizing play-scripts to provide spatio-temporal direction

to virtual characters within a scene. Because of the simplicity of creating a play-

script, and our algorithms to interpret the scripts, we are able to provide a quick
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method of blocking scenes with virtual characters.

We focus on not only an all-virtual cast of characters, but also human-controlled

characters intermixing with the virtual characters for the scene. The key here is that

human-controlled characters introduce a dynamic spatial component that affects how

the virtual characters should perform the scene to ensure continuity, cohesion, and

inclusion with the human-controlled character.

The algorithms to accomplish the blocking of a scene from a standard play-script

are the core research contribution. These techniques include some part of speech

tagging, named entity recognition, a rules engine, and strategically designed force-

directed graphs. With these methods, we are able to similarly map any play-script’s

spatial positioning of characters to a human-performed version of the same play-

script. Also, human-based evaluations indicate these methods provide a qualitatively

good performance.

Potential applications include: a rehearsal tool for actors; a director tool to help

create a play-script; a controller for virtual human characters in games or virtual

environments; or a planning tool for positioning people in an industrial environment.
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CHAPTER 1: INTRODUCTION

Automatically positioning characters in a scene is a difficult task. Because of

this, most virtual character research focuses on realism/emotions, interaction with

humans, or discourse. This leaves the majority of the positioning of characters to be

one-on-one conversations with humans or placing virtual characters side-by-side while

talking. These rely on conversation space as the main driver (if any) for character

placement. Once placed, these characters do not tend to move.

The current state-of-the-art includes capabilities such as the Institute for Creative

Technology’s (ICT) Virtual Human Toolkit (VHT), which provides discourse and

emotion engines for interacting with characters [35]. It includes SmartBody, which

can provide steering, facial animations, and grasping capabilities, but does not provide

true positional logic. Examples of these tools can be seen in ICT’s applications, such

as Ada and Grace (at the Museum of Science in Boston), who converse with each

other and guests within a museum setting (Figure 1.1) [103].

In addition, the ICT team utilizes high fidelity characters, generated by Paul De-

bevec and their Light Stage technology, as seen in Figure 1.2 [21]. Even with these

possibilities to make realistic looking and acting characters, we are unable to easily

position these characters realistically in an environment. The ability to interact or

go for a walk with a virtual version of a friend or family member seems to be within

reach, if only we could position those avatars within the virtual environment and

portray their spatial personalities without a large engineering effort.

The question then becomes, how can we both realistically, and easily position

characters in a virtual environment?

Today, there are limited capabilities for automatically positioning characters in a
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Figure 1.1: Interview with Ada and Grace, Museum of Science in Boston’s Virtual
Human Museum Guides [103]

Figure 1.2: Left to Right: Light Stage 1’s spiraling spotlight records a reflectance
field in 60 seconds; Light Stage 2 records actor Alfred Molina for Spider-Man 2;
Light Stage 3 illuminates an actor with a reproduction of the colorful light of the
Grace Cathedral High-Dynamic-Range Image (HDRI) map; Light Stage 5 uses
high-speed photography to record an actor’s reflectance with time-multiplexed

illumination; Light Stage 6, at 8m in diameter, allows performance relighting for the
whole human body [21].
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scene in a virtual environment. Most efforts just position characters side-by-side and

ignore any spatial interactions. What work has been done, relies on positioning virtual

characters within a scene to support the current actions being performed. This work

is focused on positioning and orienting virtual characters to make the characters seem

more realistic.

Industry has also utilized animated and virtual characters based on real actors’

movements recorded via motion capture (mocap) files. This group comes closest

to taking into consideration the implications of spatial reasoning for controlling the

virtual characters. This method of recording motions as they are being performed by

actors provides intricate details for replaying the motions. However, it comes with

several drawbacks, such as expensive tools, good actors, and the creation of realistic

environments to perform in. It is not very dynamic and every situation must be

recorded for the exact situation being simulated.

The gaming industry relies on modularized low-level code to move characters about

in an environment. This requires extensive technical skill to translate high-level ac-

tions, as well as extensive time to write all of that code. Most movement is hard-coded

on what can be done and when it will occur.

A newer option includes a Functional Markup Language (FML), Behavior Markup

Language (BML), and BML Realizers like SmartBody (Figure 1.3). These also require

some lower-level coding, but begin to abstract and parameterize the motion of the

characters, creating a more dynamic and repeatable motion for the characters.

The problem is that this method still requires a game-writer to write very specific

and detailed steps. With BML, one must specify where the character looks, when

they look there, how they move, when they move, and when they should pick-up or

put-down objects. This can be very time-consuming, even though not everyone is

doing this by hand. For instance, its primary uses are to generate characters that

emote or move robots around to complete tasks.
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Figure 1.3: SmartBody is a BML Realizer that provides locomotion, steering, object
manipulation, lip syncing, gazing, and nonverbal behavior in real-time [26].

So we can move the characters, but how do we impart human spatial tendencies,

along with high-level directions to our characters? We know that as a human, our

approach for giving directions is much more vague than any of the approaches we

have mentioned above. For instance, we do not specify common-sense things, such as

a road curves left while you are following it; therefore you should curve left too. We

also do not remind people to take the elevator, and press the button numbered three,

in order to reach the third floor.

Why can we not control characters with a similar-level of detailed directions, yet

obtain natural and realistic looking positioning that can be obtained with mocap

files? While asking this question, we observe that almost all theatre and movie

productions provide this type of instruction to their actors via a play-script. Actors

are given high-level information on where to go, what to do, and what to say. From

there, they are able to provide natural and realistic movement on stage or camera.

These play-scripts are written in natural language, and most people have had at least

some exposure to them through Shakespeare in school. Because they are written in

natural language, it is expected that they are easier and faster to create than BML

for specifying positional information.

As we form our hypotheses, we want to note that most of these hypotheses are

looking for nothing to be statistically different, or for the only statistically significant

differences to be skewed in one particular direction. This is atypical to most null-
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hypothesis construction, since we are looking for nothing to be significant. This

will show that there is no discernable difference between human performances and

performances completed with our techniques.

Hypothesis 1.1. A computational algorithm using annotations in a play-script

can provide similar positioning of virtual characters as a real

actor directed by a human.

This hypothesis can be evaluated by comparing the positioning of characters from

a real performance versus the use of natural language processing, such as named

entities and part of speech tagging, on the same play-script. Similar positioning can

be defined as within the same general area of the stage, or the same general direction

of their gaze. In the work presented in this thesis, we found that we could position

the characters 78% of the time matching a real human performance of the same scene,

using just these natural language processing techniques.

Play-scripts provide most of the direction and motivation to the actors regarding

the director’s intended interpretation of the play. The annotations in the script de-

scribe what an actor should be doing, as well as when and how. Because play-scripts

typically consist of short, to the point, directions from the playwrite (often as sen-

tence fragments), actors are required to apply their interpretation for any gaps. They

do this, just as humans infer details from vague directions. Therefore, it is speculated

that additional logic, or rules, are required to better interpret a play-script. Some of

these might include typical conversational space, theatre rules, or other common-sense

conventions.

Hypothesis 1.2. An algorithm-based director can improve character positioning

of virtual characters within a scene if rules are applied to the

movements defined in the annotations.

This hypothesis can be evaluated by comparing the positioning of characters from

a real performance to both the natural language processing techniques from Hypothe-
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sis 1.1, and a rules engine applied to the same play-script. These rules should improve

the matching of general position and gaze for each of the characters by applying sim-

ilar rules as most actors apply to the annotations they read in a play-script. With

these rules, we increased our position matching to 89.8%, and our gaze matching to

53% for the same scenes.

We realize that actors may also take it upon themselves to improvise with a script.

We conjecture that perhaps there is something in what the character is saying that

cause the actors to perform this extra, unannotated movement. In addition, it is

speculated that what the actor(s) are saying may also impact what movement is

performed within a scene, and can be inferred by what is said by the characters.

This conjecture can be evaluated by utilizing a real performance’s movements and

speech lines to learn, then apply that learning to new speech lines. Learning a pattern

that determines the future movements in the play-script would provide key insight

into what actors do on a regular basis with a play-script. As we explored this area,

we found that using a Shakespearean play-script made it difficult to learn any implied

movement. However, we believe it may be possible to infer movement utilizing other

play-scripts or machine learning techniques.

In a play, actors arrange themselves on the stage according to both basic rules of

the theatre, as well as with respect to the positioning of other actors on the stage.

This is where we look towards force-directed graphs. These have been used for many

years to display large and complex graphs.

Typically, they focus on information stored within the graph about the relationships

between the nodes in order to place them on the screen. They have been shown

to create both aesthetically pleasing and symmetric graphs. Some have even been

shown to preserve edge crossings, minimizing the number of edges that cross each

other based on the initial state of the graph [45]. They have been used for displaying

social networks because of this easy-to-view layout that can group and organize nodes
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of the graphs. Some have even used them to show the relationships between actors

on-stage [6]. While viewing examples of these drawn graphs, we noticed that several

areas form a semi-circular arrangement, closely mimicing a conversational circle. This

lead us to hypothesize:

Hypothesis 1.3. Force-directed graphs can position characters onstage with typi-

cal conversational arrangements, avoiding character occlusion.

This hypothesis can be evaluated by comparing a human-performed performance

versus a performance that applies force-directed graph display techniques. The char-

acters should arrange in a circular arrangement, facing the audience, and be within a

typical conversational distance from the other characters. They should also avoid oc-

cluding the other characters within the scene. Therefore, we will measure the amount

of clustering of the characters on the stage, and any occlusion that occurs. We found

that the force-directed graphs provided consistent semi-circular arrangements, and

evenly spaced characters on the stage.

However, this task becomes more challenging when we do not control all the char-

acters in the virtual world, such as a human-controlled character. This becomes more

critical when arranging a mix of human- and AI-controlled characters. Humans do

not always follow predictable patterns, and virtual characters must be able to react

appropriately (spatially) within the environment.

A simple example of this is within theatre productions as a virtual environment.

In real life, actors arrange themselves on the stage according to both basic rules of

the theatre, as well as with respect to the positioning of the other actors on-stage.

Humans may not always hit their mark like they should, and may move when they

are not supposed to, or may not even move at all during the play. This presents issues

with the blocking within the play, as the other AI characters on-stage are assuming

that the human followed the script. If the agent-controlled characters do not adjust,

they could create unrealistic positioning of the characters based on the standard rules
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of thumb for theatre, but also could obstruct visibility to themselves or the human-

controlled character for the audience. In video games, there is also a desire to adjust

the positions of the agent-controlled characters based on where the human-controlled

character is, in order to provide better visibility (or less visibility) of those characters.

Hypothesis 1.4. Force-directed graphs can better incorporate human-controlled

characters with a set of virtual characters, adjusting the vir-

tual character movements around the human’s motion, than a

performance done only with the play-script and applied rules.

This hypothesis can be evaluated by comparing the closeness of characters utilizing

force-directed graphs versus just following the play-script and applying rules, when a

human-controlled character is included in the scene. We found that utilizing the force-

directed graphs reduced the overall occlusion of characters onstage, while increasing

the clustering of the characters, even when the human-controlled character did not

follow the script.

Once combined, these techniques should be able to appear realistic to a user. Even

though the techniques may not provide an exact match for how an actor would per-

form the script, it should be imperceptible to the typical user, and perceived as a

good performance.

Hypothesis 1.5. An algorithm-based director, using a combination of play-scripts,

rules, and force-directed graphs, can equal or surpass the human-

perceived threshold of a quality performance for a variety of

spatio-temporal play types.

This hypothesis can be evaluated by performing user studies that compare sim-

ilar scenes with each of the techniques for their spatial positioning, and evaluating

the viewer’s perception of goodness. The viewer should perceive the force-directed

graph-driven performance as a reasonable performance, as good as an actual human-

performed version of the same scene.
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Also because these techniques are generic in nature, requiring only basic initializa-

tions of characters, pawns, marks, and environment layout, they should be applicable

to any play-script.

After defining the appropriate spatio-temporal dimensions of a play, these tech-

niques should provide similar evaluations both quantitatively and qualitatively as our

initial evaluations. This hypothesis can be evaluated by both quantitative analysis of

positioning for each of the play types and user studies for a qualitative analysis. We

identified five spatio-temporal dimensions defined in Chapter 7: GENERALIZATION

to define the space of all play-scripts, and found seven play-scripts that provided 100%

dimensional coverage, and 71% pairwise coverage of this space. Upon evaluating these

techniques for each of these play-scripts, we found that we could match the block-

ing of the human performance 58% of the time, and provide a similarly qualitatively

“good” performance from the viewer’s perspective.

In the remaining sections of this document, we will discuss the background, re-

lated work, methodology, systems, and experimentation to prove or disprove these

hypotheses. Additionally, we will wrap up with our conclusions and what additional,

or future, work has been inspired by this research.



CHAPTER 2: BACKGROUND

When pursuing solutions to positioning characters within virtual environments,

there are a few key concepts that are helpful to understand. These include: giving

human directions, formatting and content of play-scripts, theatre rules, Shakespeare

plays, and specifically Shakespeare’s Hamlet on Broadway in 1964. Here, we will

review some important concepts in these areas, which will provide an appropriate

background for our approach and decisions used while solving this problem.

2.1 Human Directions

When we give directions to people, we often have a layer of implied meaning built

into it. For example:

A: Excuse me...

B: Can I help you?

A: Where is the conference room?

B: Go down the hall and take the elevator to the

fourth floor.

Implied in these directions are things like how far is it to the end of the hall; the

elevator is within sight when you get there, so you do not mention you have to turn

right and go a few feet to the elevator; you do not instruct them how to work the

elevator, you assume they know to press the button and wait for it to arrive. As you

can see, directions are usually vague, yet they are still sufficient for people to figure

out how to get from point A to point B.
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2.2 Play-Scripts

In play-scripts, there is a similar level of abstraction and assumptions within the

director annotations as we use in every-day language. Play-scripts provide a natural

way of directing actors and characters, including any relevant spatial directions. They

are written in natural language, but are typically short and to the point statements

to instruct an actor on their actions and movements. These scripts follow a relatively

standard format, which includes three different types of stage directions.

Scene Directions Overall scene directions will be indented to the right of the page,

surrounded by parentheses. It will provide the basics of where and when the

scene is set, what is happening as the scene begins, and so forth [1]. An example

can be seen in Figure 2.1.

Figure 2.1: Scene Directions Formatting Example

Staging Directions Basic staging directions, which describe actions during the

scene such as entrances, exits, movements, and so forth are also going to be

surrounded by parentheses and on their own line(s) [1]. See the example in

Figure 2.2.
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Figure 2.2: Stage Directions Formatting Example

Character Stage Directions Character stage directions relate to a particular char-

acter and provide details on what they should do as they speak their line. These

will follow similar formatting to the basic staging directions by being indented

and surrounded by parentheses [1]. See the example in Figure 2.3.

Figure 2.3: Character Stage Directions Formatting Example

The dialogue for the characters will be in regular text, prefixed by the character

name in all caps. To summarize, Figure 2.4 shows how these fit together. Specific

formatting standards include:

1. Every time you mention a character in the stage directions their name should

be in ALL CAPS. This makes it easier for the actors, director, and team to scan

the page and find what the actors are doing.

2. Stage directions are always enclosed in parenthesis.

3. Stage directions show only what is taking place on stage (what the audience

can hear or see), they do not tell the interior life or previous life of people or
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Figure 2.4: Play-Script Excerpt from Sir John Gielgud’s Hamlet on Broadway 1964

objects. [1]

2.3 Theatre

The scripts tend to utilize stage directions, such as stage left, center stage, and

upstage, along with specific marks and props to guide the actors to appropriate loca-

tions. Background theatrical knowledge is also applied to cover some of the hidden

rules behind performing these scripts, such as avoid putting your back to the audi-

ence, try to keep towards center stage as much as possible, primary characters should

be closer to the audience than secondary characters, and general personal space and

conversational rules.

In the theatre, there are special rules and conventions when staging a play. Many of

these guidelines revolve around engaging the audience and visibility onstage. To help

with this, the stage is often split into nine areas, upon which basic theatre rules are

based. They consist of upstage, stage right, stage left, downstage, and combinations
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Figure 2.5: Stage Layout

of each as shown in Figure 2.5.

Being downstage (near the audience) is a stronger position than being upstage and

should be held by the most important characters in the scene. Also, because we

tend to read left to right, downstage right is the most powerful position onstage as

audiences tend to look left first, then scan right when watching a play. The more

important a line is, the more likely an actor is to fully face the audience, although

the most common position is a one-quarter (or 45◦ angle from the audience) body

position as it ensures the audience can see all the characters on the stage properly.

Actors should never turn their back to the audience. [5]

Moving onstage can cause many issues including upstaging and covering. Both of

these issues should be avoided, which in turn provides additional rules to characters

on the stage. Upstaging is where one actor takes a position further upstage, or above a

second actor, which causes the second actor to face upstage/away from the audience.

Therefore this must be avoided to ensure actors do not present their backs to the

audience, especially if both characters are just as important to the scene [55].

Covering occurs when one actor blocks the audience’s view to a second character

onstage. If this does happen, the covered actor should adjust to provide visibility

of him/herself to the audience by counter-crossing (performing a movement in the
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Figure 2.6: Example of a Counter-Cross: Actor B Could Move to Center Stage or to
Right Stage to Counter Being Upstaged by Actor A

opposite direction of the other actor—see Figure 2.6). When making these changes,

actors should cross downstage from other actors unless their movement should not be

noticed by the audience. Finally, when crossing the stage, it will take two separate

crosses (movement from one area of the stage to another) to cross upstage–one to the

left or right, turn in, then the second to cross upstage [5].

Additional theatre terminology and definitions can be seen in Appendix B: DEFI-

NITIONS.

2.4 Shakespeare

Shakespearean plays happen to be a genre with very few director annotations in

them, unless you can find a director’s annotated version. This leads to very different

interpretations of his plays, and may contribute to their popularity even after over

400 years [60]. Modern plays tend to have more annotations included in the published

versions than the original Shakespearean plays.

William Shakespeare has written at least three of the top ten most-produced plays

in North America, despite the fact that most lists explicitly exclude Shakespeare’s

plays from their top ten lists as it would be unfair [39].

Initially, we focus on one particular famous production of one of Shakespeare’s plays

from 1964. Sir John Gielgud directed Hamlet on Broadway with Richard Burton

playing Hamlet. This production ran for 138 performances, setting the record as

the longest-running Hamlet ever to play New York [86]. It was filmed during three
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successive stage performances in June/July 1964 by Electronovision, Inc. [15]. In

addition, Richard Sterne (another actor in this particular production) published a

book with very detailed director’s annotations and notes for the entire play [86]. We

leverage this particular performance as our baseline in our initial studies because

it is well-known, and has been established as a qualitatively “good” performance to

compare our techniques against.



CHAPTER 3: RELATED WORK

The work in this document focuses on creating an Artificially Intelligent (AI) Direc-

tor to spatially position characters in virtual environments, utilizing psychology’s spa-

tial preposition research findings, natural language processing, play-scripts, robotics

influences, theatre rules, and force-directed graphs. The sections of this chapter will

explore the related work in these areas.

3.1 Motion Capture Files

Canned/explicit cut scenes are very common in games, films, and virtual envi-

ronments. This is often accomplished via motion capture (mocap) files, which are

typically outputs of sensors on humans performing the required actions. This comes

closest to taking into consideration the implications of spatial reasoning for controlling

virtual characters. Their methods of recording motions as they are being performed

by actors provide intricate details for replaying the motions. However, it comes with

several drawbacks, such as expensive tools, good actors, and creation of realistic envi-

ronments to perform in. It is not very dynamic and every situation must be recorded

for the exact situation being simulated.

L.A. Noire, a violent crime thriller game, and the Avatar movie, have both used

this animation technology that captures every nuance of an actor’s facial performance

in extreme detail, as well as the body movements and position in space [32].

The gaming industry relies on modularized low-level code to move characters about

in an environment. This requires extensive technical skill to translate high-level ac-

tions, as well as extensive time to write all of that code. Most movement is hard-coded

on what can be done and when it will occur.



18

3.2 Dialogue Trees

Dialogue trees are used in many games and applications, providing options for

dialogue, based on what has been said before [22]. Handling all the possible branches

possible throughout a game can be challenging to author, so in Rich and Sidner’s work,

they look to provide a method for partially generating dialogue trees by leveraging

a hierarchical task network to capture the high-level goals of large dialogues [77].

Ultimately these trees focus just on the speech that should occur, however they could

be expanded to include spatial information, which could be used with our techniques

described here.

3.3 Markup Languages

Current methods such as Behavior Markup Language (BML) [63], Functional

Markup Language (FML) [101], and BML Realizers like SmartBody [26] and Elckerlyc

[113] are making it possible to abstract the control of virtual characters. However,

these methods still require a level of expertise and time that can be unreasonable.

Writers must be fluent in these technical languages, plan out specific points and marks

within the environment, and convert the more fluid, natural descriptions into more

concrete commands with fewer human assumptions. However, it begins to abstract

and parameterize the motion of the characters, as well as creates a set of more dynamic

and repeatable motions for the characters.

3.3.1 Behavior Markup Language

Markup languages, such as Behavior Markup Language (BML) [63], are making

it possible to abstract the control of virtual characters. BML abstracts the physical

realization of behaviors and movements, along with their constraints, and is not

concerned with the intent behind the movements. [63] BML is structured like a

typical XML message, as seen in Figure 3.1. One can control what is done, when it is

done, and what runs concurrently with other commands. However, it is often at such
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Figure 3.1: Example of a BML Request

a low-level that this can be extremely time-consuming to build, especially for things

like non-verbal behaviors (eye saccade, gesturing while speaking, head nods, and so

forth).

Per the BML standards:

BML describes the physical realization of behaviors (such as speech and

gesture) and the synchronization constraints between these behaviors.

BML is not concerned with the communicative intent underlying the re-

quested behaviors.[63]

BML consists of a block of XML that contains a listing of behaviors for a particular

character. Within each behavior block are constraints and attributes regarding when

and how a behavior should be performed with respect to the other behaviors. There

are BML Realizers, such as SmartBody [26] or Elckerlyc [113], which execute behav-

iors specified by BML on the character in the environment. However, BML realizers

are still their early stages of development.

3.3.2 Functional Markup Language

To help with the intent and translation of some nonverbal behaviors while speak-

ing, a Functional Markup Language (FML) has been proposed. The FML should

“describe the effect that an intended action or plan should have on the environment,

most obviously the agent itself [101]”. The Non-Verbal Behavior Generator (NVBG)
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Figure 3.2: Example of an FML and BML Request

module in the Virtual Human Toolkit (VHToolkit) [43] utilizes these FML commands

along with rules to generate BML with nonverbal behaviors inserted into the speech

text [51]. Although a standard has not been set for FML yet, this NVBG module’s

FML is combined with BML and follows the syntax seen in Figure 3.2.

This becomes useful for allowing the author to make assumptions about some of the

lower-level actions their characters must make, but still requires a level of expertise

in FML and a generation of those personality and culture rules. The Non-Player

Character Editor (NPCEditor) [52] component of the VHToolkit provides a utility

to translate the questions asked by a user to the answers, which can then be passed

on to the NVBG module, which adds the nonverbal behaviors to the response for

the character to perform. This may be useful in our work, if it gets expanded to

encompass translations to spatial movements as well.

3.3.3 Perception Markup Language

A Perception Markup Language (PML) has been suggested, primarily to assist

with robotics feedback loops. PML provides a method for a character (or robot) to

react and interact with the environment. One engine, Thalamus, which is based on
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the existing Situation, Agent, Intention, Behavior, Animation (SAIBA) framework,

splits out the behavior scheduling and the behavior execution. This enables it to

interrupt the robot’s behavior plan based on the perceptions that are sent to it via

PML. This allows the support of on the fly changes to the robot’s behaviors based

on its perceptions, such as an obstacle. [76]

3.4 Robotics

Roboticists have pursued an understanding of spatial language primarily to under-

stand verbal instructions for controlling robots within natural environments. This

can be seen in many works, such as Brooks’s thesis where he attempted to train a

robot to be an actor using verbal directions. The robot could not speak, but shrugged

if he did not understand the directions [9]. This is a different approach to teaching

a character to enact a scene of a play; however, Brooks’ approach required a more

detailed and lower-level of communication to his robot than is typically found in a

play-script. David Lu and Bill Smart’s work with robots in theatre has focused around

mimicking actor’s movements with robots to help incorporate social interactions into

robots without explicitly programming them [59]. They used actors to record specific

scenarios and replicated them on robots, making their movements more believable.

These were generalized to similar situations and to robots that could not physically

replicate the original motions. The focus in their work is on believability; however,

this work is based more on a motion capture-like style of replaying actions done by

a human and does not address our concerns with dynamically positioning multiple

characters without pre-recording.

Langley, Schermerhorn, and Scheutz also provide an approach to human-robot

interaction that allows for communicating complex tasks, which can be translated

into procedures for the robot [104]. Matuszek and Herbst take natural language and

robotic perceptions and translate it into a robot control language for following route

directions [65]. Dzifcak, Scheutz, and Baral utilize natural language to determine
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actions and goals for the robot [25]. All of these incorporate telling a robot what to

do or where to go.

3.5 Virtual Agents

The focus of much research has involved virtual characters; however, very little

of this work has investigated spatial movement of those characters. The emphasis

appears to be more on the speech and emotional interaction with humans or other

characters. For instance, Dias proposed changes to the FAtiMA (FearNot Affective

Mind Architecture) architecture to include the skill of understanding emotions of

others in determining next steps [24]. The FAtiMA architecture was built to cre-

ate autonomous believable characters that allowed the establishment of empathetic

relationships with other characters in the FearNot! system [23].

Then there are things like the Virtual Storyteller, which enables characters to

tell a story with the appropriate gestures, prosody, and so forth [99]. Here, along

with others, they focus on plot and story creation, mostly in the area of interactive

storytelling. For instance, Kriegel proposes a design to help solve the authoring

problem for interactive storytelling utilizing the FAtiMA architecture [47]. Thespian

expands on these to reduce the programming effort for the speech actions of a story

by pre-authoring sections of the speech and utilizing goals to control choices by the

characters [82].

Other research utilizing virtual agents focuses primarily on the conversational and

nonverbal domains, such as Thespian [83], Virtual Storyteller [99], and Stability and

Support Operations (SASO) [43]. The emphasis appears to be more on the speech and

emotional interaction with humans or other characters. However, with the growing

focus on realistic virtual environments, the spatial domain is becoming a more critical

component in creating that realism.

However, these do not emphasize the spatial aspects of the interactions between

multiple characters. They center around the emotional and one-on-one interactions
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of characters with humans in the real world.

3.6 Natural Language Processing

In the natural language processing community, many researchers are working to-

wards better understanding of the written and spoken word. There is quite a bit of

work in niche areas for natural language understanding, such as a focus on spatial

language expressions. These examine different prepositions, which indicate the tem-

poral, spatial, or logical relationship of objects to the rest of the sentence (e.g., in,

on, near, between). For instance, Regier built a system that assigns labels such as

“through” or “not through” to movies showing a figure moving relative to a ground

object for learning how we qualify the particular term “through” [36]. Kelleher and

Costello [41] and Regier and Carlson [75] built learned models for the meanings of

static spatial prepositions such as “in front of” and “above” while Tellex focused on

“across” [98].

Some groups are pursuing the complexities of spatial cognition within language on

object representations and geometry, as well as the number and structure of the ob-

jects utilizing the prepositions that situate them in space [50]. Kelleher also proposed

a framework for understanding prepositions primarily around the closeness of objects

and the visual representation of those objects [41]. Her research explores how humans

describe where objects are within space, which is the key in extracting spatial infor-

mation from natural language. This information has been used by other methods,

such as WordsEye, which takes natural language to draw a scene utilizing the spatial

locations described in text [19].

From the perspective of cognitive psychology of language, Coventry describes spa-

tial language and how humans describe different situations using prepositions, such

as a pear being in a bowl or not. He elaborates with many different prepositions such

as in, on, near, far, at, and between [18]. However, these prepositions are very de-

pendent on the frame of reference used for the spatial description. Describing spatial
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locations using an intrinsic, absolute, or relative frame of reference can dramatically

change the interpretation of the same sentence [53]. Stating “a ball is in front of the

chair” can mean different things depending on which way the object is facing, where

the observer is, or what global spatial reference that is being used—all with respect

to which reference the person describing the spatial relationship is using.

Once we are able to determine the frame of reference being used for the spatial

descriptions, we can utilize methods of mapping objects based on cardinal directions

as described in Frank’s work [28]. Other methods include the use of spatial tem-

plates to identify acceptable locations with respect to a given object for a particular

preposition [57], and vector sum models [75] to formalize spatial relationships.

3.7 Psychology and Spatial Cognition

Conversational space, spatial prepositions, and group dynamics have been studied

for years in psychology. A lot of their work around personal space and conversational

space will be extremely useful in applying our spatial logic. For instance, Jan and

Traum describe six different forces that affect when/why a person may shift position

when in a group of people:

• one is listening to a speaker who is too far and or not loud enough

to hear

• there is too much noise from other nearby sound sources

• the background noise is louder than the speaker

• one is too close to others to feel comfortable

• one has an occluded view or is occluding the view of others [37]

Additional research shows that friendship and attraction can affect the spatial dis-

tances between people (decreases as attraction increases), while negative attitudes

may not have much effect on the spatial distances [88], as seen in Figure 3.3. People

also prefer to be across from one another than next to each other in most situations,
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Figure 3.3: A Theoretical Model of Personal Space as a Function of Interpersonal
Relationship and Expectation of Interaction[88]

but there is importance to the environment for determining what distance is comfort-

able, such as how far apart the couches are in the room [85]. According to studies

reviewed by Sundstrom, comfortable face-to-face distances for speaking while sitting

is approximately five feet, and comfortable face-to-face conversation while standing is

approximately three feet [88]. There is also a discussion around the effects of spatial

invasion on character behaviors and movements within Sundstrom’s review.

3.8 Force-Directed Graphs

Force-directed graphs utilize repellent and attractive forces between connected

nodes in a graph to spatially arrange graphs. Also known as string embedders, they

utilize the information contained within the structure of the graph for placement of

the nodes. The goals of force-directed graphs are to be aesthetically pleasing, meaning

that all edge lengths should be the same length, and it should maximize symmetry

over the entire graph layout.

Looking at some of the different implementations of force-directed graphs out there,

we must start with Tutte’s algorithm from 1963, which was one of the first force-

directed graph drawing methods [105]. In his algorithm, he guarantees a crossings-

free drawing and that all faces of the drawing are convex for a 3-connected planar
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graph. The forces in this model are proportional to the distance between vertices,

with no repulsive forces, and places each free vertex at the barycenter (center of

mass) of its neighbors. This is useful in our work since we are concerned with not

obstructing the audience’s view of all the characters on-stage. However, there are

some results of this algorithm that produce a graph with infinite area [45], or would

not place our characters within our stage’s confines. Also ensuring 3-connectedness

and a convex drawing may be challenging in a dynamic environment with a human-

controlled character.

Fruchterman and Reingold’s algorithm from 1991 introduces an equalization of

vertex distributions. It calculates the forces between adjacent vertices as well as

between all pairs of vertices, plus introduces the concept of temperature to reduce

the amount of movement of vertices as the layout improves. This algorithm was

targeted for small graphs, such as those with 40 or fewer vertices. Its cooling of

movement via temperature is a specialized use of simulated annealing, which helps to

limit oscillations of the layout. However the forces are based on the size of the grid

that is to be drawn on, and therefore tries to maximize the real estate used. [29]

Then there is the algorithm by Kamada and Kawai, which tries to minimize the

distance of vertices from their corresponding underlying graph distances [40]. This

method requires more computation and storage space since it requires a shortest

distance calculation on every vertex before running its minimization function [45].

This additional computation could take up to O(|V |3) time, and O(|V |2) storage,

depending on the algorithms utilized for the shortest path computations. Even though

we could calculate the underlying shortest distances for the graph ahead of time, we

would need to adjust this each time a character is introduced into the scene or creates

a new association to a targeted position onstage.

Also, we have some key relationships that encourage a character to hit their mark(s)

and remain there until their next movement in the play. Kamada and Kawai’s method
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would equally distribute the characters from each other as well as their marks, which

is undesirable in the theatre.

There are also more complex force-direct graph drawing algorithms in existence

that can accommodate tens and hundreds of thousands of vertices. These attempt to

break down the graph into simpler structures, like Hadany and Harel [33] or Gajer,

Goodrich, and Kobourov [31]. They often involve three-dimensional drawing of the

graphs and zooming in order to provide visibility to the nodes of the graph. However,

we are focused on very small numbers of vertices and a planar drawing area, so these

do not provide much use for our current work.

Force-directed graphs have been used for many different purposes, like social net-

works, with Bannister et al’s work. Their work attempts to centralize vertices that

are more theoretically central in the graph [6]. This is interesting because of its close

relationship to our work—visualizing relationships between nodes.

Network visualizations use force-directed graphs to help identify information about

different clusters, and arranges graphs into symbolic shapes to help recognize the

relative size of the clusters. These allow viewers to be able to estimate overall sizes of

the graphs, as well as recall the layout of the graph at a high level. It does best with

clusters of about eight vertices, and may not do well scaling to sparse clusters [80].

This could prove useful in arranging clusters of characters into particular shapes, such

as a semi-circle.

3.9 Judging Criteria

There is a lack of existing tools to qualitatively evaluate the spatio-temporal reason-

ing within a performance. However, one-act play competitions are often critiqued by

judges and include spatial aspects of the performance in their evaluations. Therefore,

we reviewed their evaluation criteria for one-act performance competitions.

One group we looked at was the Georgia High School judging sheets for one-act

plays. The criteria defined in the judges evaluation sheets included: movement,
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composition, listening, response, and ensemble criteria. Movement is an obvious

tie-in to analyzing the spatial aspects of a performance, so it was included in our

evaluation tool. The judges typically verify if the movement within the performance

is motivated and free of distractions. With composition, the plays are evaluated

on how the performers convey the theme and mood of the play, and whether the

movements of the performers aid in providing proper dramatic emphasis. There is

also a concern of the variety and balance in the use of the stage space included in

the judges’ checklist. Finally, reviewers are asked if the performers appear to work

together and be involved in group events. [4]

We also reviewed the Texas University Interscholastic League’s (UIL) one-act play

official standards. The UIL’s judging packet is much more comprehensive and in-

cluded more detailed guidance on each of the criteria for evaluation a one-act play.

Some important evaluations were described around characterization, movement, tim-

ing, business (exits and entrances), and composition. We added several questions

regarding the believability of the characters’ movements, whether the movement ap-

pears random, the overall pace of the performance, and whether the characters fre-

quently blocked each other. [68]

Another source for evaluating performances is available via Pavis’ survey to use

when evaluating a performance. Her questions are more open-ended, and meant to

guide the spectator in describing the aesthetic experience and overall production after

seeing it. Some key spatio-temporal questions are included in Pavis’s questionnaire,

such as: space organization, relationships between actors, and pacing. [71]

Lastly, we referred to The Theatre Handbook, written in conjunction with sev-

eral theatre groups: Independent Theatre Council (ITC), The Society of London

Theatre, and Theatrical Management Association (TMA). This handbook provided

useful recommendations around grouping questions for evaluating a performance’s

quality, such as the frequency of attending performances, and the use of self-rating
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with a newspaper’s five-star scale. [69]

3.10 Planners

There are many planners out there, such as the one by Vidal that attempts to

enable a planner and plan execution system to run concurrently, to support real-time

requirements [110]. This work may assist with our translation of natural language to

commands asynchronously from the actual execution by the realizer engine, enabling

more real-time execution. Also, we may look at better movement target predictions

utilizing the stage directions and details from Frank’s work [28] on logic for geographic

locations with respect to known object locations.

3.11 Crowd Modeling

Crowd modeling at first thought appears to be an appropriate approach to posi-

tioning characters. Upon further investigation, it can be seen that crowd modeling

focuses more on modeling people’s behaviors as opposed to the close-knit intricacies

of the relationships between the characters onstage. It does not focus on spatially

pleasing arrangements as a whole, but rather looks at each individual’s contribution

independent of the others. In theatre, the goal is to have the actors work together as

a whole, not as independent entities, and thereby is not suitable for a theatre-type

environment.



CHAPTER 4: METHODOLOGY

Now that we have reviewed what related work exists to support our work in po-

sitioning characters in virtual environments, we will discuss the techniques and ap-

proaches used in our work. We begin with a method to reduce the authorial burden for

controlling characters in a scene by leveraging play-scripts. With these play-scripts,

we extract the movements for the characters and translate them to Behavior Markup

Language (BML). Next, we apply some basic rules, such as theatre and grouping

rules, which actors subconsciously apply when performing a play-script. Lastly, we

define some force-based algorithms to better dynamically arrange the characters on

the stage, when applying the constraints provided by the play-script and rules from

the previous components.

4.1 Natural Language Processing to BML

Because our goal is to decrease the authorial burden for producing scripted acts that

involve spatial movements and actions, we will need to utilize some natural language

processing to translate components of the play-script. As a first pass, we will look

at parsing the spatial directions in the annotations (surrounded by parentheses) to

determine the action within those statements and translate them into one of our

spatial motions such as walking, pointing, gazing, picking up an object, and put

down an object [58].

We utilized a simplistic natural language processor to identify the actor, what they

are doing (of our identified spatial movements), and to whom/what they are doing

that action to. Due to the nature of most play-scripts, we decided to focus on the

basic noun-verb-noun structure of spatial commands within the script. Sentences
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are parsed to determine the verbs and nouns. The verbs and their synonyms are

each reviewed against a list of synonyms for our key spatial movements (walk, turn,

point, and pick-up/put-down). Meanwhile, the nouns and their synonyms are each

reviewed against our known objects—Hamlet, Horatio, Gravedigger1, Gravedigger2,

Shovel, Lantern, two Skulls, Stairs, Stool, Grave, and our nine basic stage positions

(upstage left, upstage center, upstage right, center stage left, center stage, center

stage right, downstage left, downstage center, downstage right). Taking the verbs

and nouns we identify, we make the assumption that these sentences will take on the

basic form of (actor, action, target). Using these triplets, we generate and send the

Behavior Markup Language (BML) to our simulator to perform the action.

Generalizations were made in this approach due to our understanding of typical

play-script contexts, including our simplistic sentence structures. Typically, director’s

annotations are short and to the point. Often, they are just barely sentences, if not

sentence fragments. Therefore our expectation was that the sentence fragments would

contain very little information outside of the actor, action, and target. Pronouns or

unspecified actors were assumed to be the last speaker via the last Character line in

the play-script.

Additional generalizations were made about the timing of these spatial events. All

sentences, or sentence fragments, within a single set of parentheses were defined to

be independent of each other and required to be acted upon at the same time. These

were also to be performed with whatever the next speech action was, unless we were

changing the speaking character. The basis for this generalization comes from a basic

understanding of how scripts are acted and formatted. Directions are provided before,

or in the middle, of whatever is being said by the characters. Items at the end of a

speech usually complete before the next person speaks, otherwise it would appear at

the beginning of the next character’s speech.

These annotations were observed to take on a structure like Figure 4.1, and were
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parsed using Algorithm 1. The algorithm leverages the wordNet application for iden-

tifying the parts of speech and synonymns for the text included in the annotations

[66]. These synonymns were then matched against our named entities to find a match.

Figure 4.1: Sentence Parsing Structure

The natural language module was based on a simple part of speech tagging and

named entity recognition process that focused primarily on the scene and stage di-

rections within the play. It takes a command, such as:

GRAVEDIGGER1: (Pointing down into the grave)

and translates it into

actor=GRAVEDIGGER1 (current speaker)

action=POINT

target=GRAVE

This information was translated directly into a BML command for GRAVEDIGGER1,

such as:

<gesture lexeme=“POINT” target=“GRAVE” />

This parsing process for a sentence can be seen in Algorithm 2, which uses the

below nouns and verbs for this particular play-script:

Example Nouns: GraveDigger1, GraveDigger2, Hamlet, Horatio, Steps, Grave,

Audience, Center Stage, Stage Left

Example Verbs: Move to, Follow, Look at, Pick up, Put down, Speak, Point to
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Algorithm 1 Pseudo-Code for Natural Language Parse Line Algorithm
function parseLine(thisline)

if isCharacterLine(thisline) then
curCharacter = thisline

else if isSpeechLine(thisline) then
say(curCharacter, thisline)

else
mvmtLines = thisline.split(punctuation)
for sentence in mvmtLines do

for word in tokens do
if isCharacter(word) then

saved[index] = word
else if isPawn(word) then

saved[index] = word
else if knownActionWord(word) then

saved[index] = word.translated
else

wordLookup = wordNetLookup(word)
if wordLookup != null then

saved[index] = wordLookup.synonyms
else

do nothing
end if

end if
end for
parseSentence(saved)

end for
end if

end function

Algorithm 2 Pseudo-Code for Natural Language Parse Sentence Algorithm
function parseSentence(sentence)

find first noun in saved sentence
find first verb in saved sentence
if first noun position >first verb position then

assume curCharacter is doing the acting
else

actor = first noun
check for second noun or position

end if
translate stage direction position target as needed
call verb-mapped function for the actor with the to what object or postn

end function
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Figure 4.2: NLP Engine Architecture

The output of these translations were BML statements that were then passed to a

BML Realizer, as can be seen in Figure 4.2. These techniques can also be applied

more broadly since they only rely on the components that are inherent to play-scripts,

movie scripts, and television scripts. The only scene-specific setups are ones based

on identifying the characters and starting positions of key props within the scene–all

of which are part of the manual setup of any scene for any play.

4.2 Rules

Next, we look to expand upon the natural language processing to incorporate rules

to better our translation of motion from the play-script. We have pulled from many

different areas to encompass the types of rules that are typically utilized when per-

forming plays. We have categorized these rules into four basic areas:

1. Grouping Spatial Rules

2. Conversational Spatial Rules

3. Theatre Rules

4. General Rules

In the next few sections we discuss what is involved in each of these rule groups to

provide a background for our work.
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4.2.1 Grouping Spatial Rules

The grouping spatial rules refer to how the characters position themselves in groups.

Jan describes six different forces that affect when/why a person may shift position

when in a group of people; however, the main reason that could affect the positioning

of characters in a play is that one person is too close to others to be comfortable [37].

Hall describes four different zones that personal space is divided into: intimate, per-

sonal, social, and public zones [34]. The actual distances involved in each zone differs

for each culture and its interpretation may vary based on an individual’s personality.

If the speaker is outside a person’s comfort area, the person will move toward the

speaker. Similarly, if someone invades the personal space of a person, the person will

move away [37]. Also, when there are several people in a conversation, they will tend

to form a circular formation. This provides a sense of inclusion for all participants,

and provides a better view of all members while conversing [42].

4.2.2 Conversational Spatial Rules

When conversing, people have certain tendencies with respect to where they stand

/ where they look. Research from psychology shows that people prefer to be across

from one another than side-by-side in most situations, but there is importance to

the surrounding area for determining the distance that is comfortable [85]. Also,

friendship and attraction can affect the spatial distances between people by decreasing

them, while negative attitudes may not have much affect on the spatial distances [88].

According to studies reviewed by Sundstrom, comfortable face-to-face distance for

speaking while sitting is approximately five feet and comfortable face-to-face con-

versation standing is approximately three feet [88]. He also discusses the effects of

spatial invasion for character behaviors and movements, and provides an overview of

multiple research efforts looking at conversational space for both sitting and standing

positions [88].
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4.2.3 Theatre Rules

In the theatre, there are special rules and conventions when staging a play. Many

of these guidelines revolve around engaging the audience and visibility onstage. Some

of these special rules that actors apply within a theatre environment are also useful

in virtual environments too. For instance, being downstage (near the audience) is

a stronger position than being upstage and should be held by the most important

characters in the scene. Actors should never turn their back to the audience when

performing in a proscenium-style stage. [5]

Moving onstage can cause many issues including upstaging and covering. Both of

these issues should be avoided, which in turn provides additional rules to characters

on the stage. Upstaging is where one actor takes a position further upstage, or above a

second actor, which causes the second actor to face upstage/away from the audience.

Therefore this must be avoided to ensure actors do not present their backs to the

audience, especially if both characters are just as important to the scene [55].

4.2.4 General Rules

The last group of rules encompasses all those things that we often think of as

common sense. For instance, when we are walking we are usually looking at where

we are headed. Similarly, when we pick up or point to an object, we tend to look at it;

and when we are listening to someone, we look at the speaker. When someone points

to something or something/someone moves, we are usually drawn towards looking at

that person or object. If someone wants to pick up an object, they need to be close to

it. Finally, characters should always perform natural movements and not have their

gaze or orientation jump from one position to another.

4.2.5 Architecture

When we put all these rules together, we are able to formulate an intricate engine

to control the movements of the characters to present a realistic interpretation of the
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play, similar to an actor. We built these rules on top of our existing natural language

processor (NLP) engine, which utilizes a part of speech tagging and named entity

recognition module to extract the high-level movements of the characters.

These NLP-extracted movements were fed into our rules engine (as seen in Fig-

ure 4.3) to adjust the motion based on these rules:

r1: Characters should face the audience as much as possible, and avoid turning their

back to the audience

r2: Characters should face the person speaking

r3: Characters with higher importance or larger roles should be placed slightly closer

to the audience relative to lesser role characters

r4: Characters should try to stay closer to center line as much as possible to improve

visibility for the maximum portion of the audience

r5: Characters should avoid unnatural movements by adhering to basic frame coher-

ence rules, such as not having their gaze or orientation jump from left to right

immediately

r6: Characters should maintain appropriate personal space based on inter-character

relationships within the play

r7: Characters should be next to an item they wish to pick up

As the natural language processor identifies the action that needs to be performed,

it sends it into our rules engine as an (actor, action, target) command. From there,

our rules engine applies these seven rules to the action, translating it to one or more

BML commands that are sent to the BML Realizer and Game Engine. A high-level

overview of the process flow can be seen in Figure 4.4.
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Figure 4.3: Rules Engine Architecture

Figure 4.4: Logic in the Rules Engine
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For speech commands, the rules engine adds additional commands for each onstage

character to look at the speaker. This angle is adjusted based on the current position

of the characters to ensure no one is looking more towards backstage than the audi-

ence. The speaker’s gaze is also adjusted to look at the last speaker, assuming that

character is still onstage.

With walk or locomotion commands, the rules engine takes into consideration the

position of all the characters onstage to determine the best destination with respect to

the requested target. Each character’s overall importance to the scene was prioritized

such that every character’s importance relevant to every other character was clear,

such as below:

Hamlet > Gravedigger1 > Gravedigger2 > Horatio

As can be seen above, Hamlet was the most important character in the scene, followed

by Gravedigger1. This prioritization was used to determine who should be closer to

the audience at any point of time. If the action’s actor defined by the natural language

processor (actor character) had a higher priority than one or more characters onstage,

then the lower priority character(s) were moved to adjust for the relocation of the

actor character, ensuring the distance to the audience was shorter for the higher

priority character(s).

Also, when characters were directed to approach another character, the target

locations were adjusted to accommodate any grouping or conversational space. If

they were approaching a single character, they were directed to stop at approximately

three feet from the other character. If they were approaching two or more characters,

they were instructed to maintain an arc-like configuration facing the audience and

maintain three feet from the closest character.

These character spacing adjustments were performed only once per annotation
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that incurred a walk command. This prevented characters from constantly adjusting

and creating unnatural movements onstage, as well as aligned the timings of the

movements with the intended actions within the play.

When a command is sent for a character to pickup an object, the rules engine will

check to see where the character is on stage with respect to the target object. If

they are not near the object, they will walk to the object before trying to pick it up.

If this movement conflicts with any of the aforementioned stage locations based on

character importance, the other character(s) will receive a walk command to move

them to an appropriate location.

Finally, as a character pointed to a target, the characters that are onstage are

directed to look at what the character is pointing to. With gazing and releasing

objects, the BML Realizer handled ensuring appropriate frame coherence for the

characters and did not require any additional logic before performing the action(s).

Therefore, these commands were submitted directly to the BML Realizer and Game

Engine for controlling the characters.

4.3 Force-Directed Graphs

To build on this work, we want to introduce a better positioning component for

the characters that will work with the natural language processing and rules engine

for the AI-controlled characters, as well as any adjustments required due to a human-

controlled character being on-stage. Our assumption is that a human character that

will not always follow the play-script perfectly, or with the same patterns as the other

characters, and may move at incorrect, additional, or fewer times than they should.

There is a need to be able to adjust for those scenarios, which we have done by adding

a new component that receives any AI-controlled character re-positioning, as well as

human-initiated repositioning, and adjust all the characters on-stage appropriately

(Figure 4.5). This will help us to accommodate the unpredictable actions of the

human on-stage with respect to the overall production of the play.
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Figure 4.5: Rules Engine Architecture with Force-Directed Graph Adjustments for
Human-Controlled Character(s)

The force-directed graph algorithms can provide a method for making minor ad-

justments to positions based on these unplanned movements by the human actors.

After reviewing all of the different approaches to spatially displaying different types of

graphs, we based our character positioning adjustments on the algorithm by Fruchter-

man and Reingold [29]. In doing this, we wanted to incorporate different properties of

some of the other algorithms to center on appropriate theatre configurations. There-

fore, we outlined some of the key requirements and approaches needed to support the

blocking of characters on-stage, which are outlined below.

4.3.1 Graph Features

In this section, we will review the different features of graphs that are impor-

tant to support their use in positioning characters on-stage. These include: even

vertex distribution, small number of vertices, crossings-free drawings, fixed vertices,

oscillation-free arrangements, strength of relationships over time, centering and en-

circling groups, and varying attractive and repellent forces. Each has its own impact
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to our solution.

4.3.1.1 Even Vertex Distribution

In theatre, it is important to maintain a sense of balance in the positioning of

characters. We wanted the characters to be spaced relatively evenly on the stage

within their targeted area. This is something that the Fruchterman and Reingold

algorithm gives us for free, so no adjustments to their algorithms are needed to

accomplish this aspect.

The distance between each character on-stage must be measured and compared.

This should utilize the same relationships between every character to allow us to

measure the true effect of the algorithm on symmetry. Some discrepancies are ex-

pected due to the differing relationships between the characters. These discrepancies

will be accommodated during the comparison by ensuring they follow similar ratios

and sequences as the character relationships. Measurements to the audience and

props/targets should be measured also, but not be included in the calculations for

symmetry.

4.3.1.2 Small Number of Vertices

To have a dozen or more characters on-stage at one time is not very common. Even

if we incorporate additional vertices to represent key positions or objects on-stage,

the audience, cameras/view angles, and so forth (as we will discuss in subsequent

sections), we will find it difficult to end up with a large number of vertices (> 40).

Again, this is helpful with our chosen algorithm since it is geared towards small graphs

with less than 40 vertices.

Several different scenes will be reviewed to determine our typical number of vertices.

We can introduce a scene with ten or more characters on-stage to determine the

maximum typical vertices for a scene, as well as a scene with one or two characters

on-stage. The review of these numbers can determine the order of magnitude of space
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Figure 4.6: Left: A Crossings-Free Graph; Right: A Non-Crossings-Free Graph

and time complexity required for our algorithm, as well as to ensure we fall within

the desired vertex targets of Fruchterman and Reingold’s algorithm.

4.3.1.3 Crossings-Free Drawing

When aligning the nodes of the graph, we want to avoid characters being in front of

each other or occluding each other’s views. Tutte’s algorithm [105] would be able to

accommodate this if we can guarantee we have a three-connected graph with convex

faces to start with. However, we may not be able to guarantee this with our graphs,

so our approach may not always result in a crossings-free drawing. Figure 4.6 shows

on the left, a crossings-free diagram, and on the right a non-crossings-free diagram.

To measure our occlusion results, each scenario will be tested to determine any

intersections between the characters and the audience edges after our adjustment. The

connectedness and convexity of the graph at each of these adjustment steps should be

measured to determine whether we have met Tutte’s prerequisites for accommodating

this requirement of being crossings-free. Each line from the character to the audience

that crosses another character’s line to the audience should be discounted for within

our calculations.
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4.3.1.4 Fixed Vertices

We want to be able to show relationships with fixed points on stage to help ground

the arrangement of characters based on the script’s annotated destination for a charac-

ter. To accomplish this, we need to introduce these fixed points as additional vertices

in our graph, which will never change position (with only a few exceptions). These

could be things like the location of a prop on the stage, where a chair is situated, or

even where the cameras/view angles to be optimized for are within the audience. As

a character is told in the play-script to move towards a particular object, it would be

given an edge to connect it to the object.

How far a character is from its connected, fixed vertices needs to be measured

to determine whether having these types of connections will help keep characters

in-place.

4.3.1.5 Oscillation-Free Arrangements

We also need to ensure we would not run into a constant oscillation of positions for

a single arrangement of characters, so the introduction of a cooling effect that slows

down movements over multiple iterations, which Fruchterman and Reingold used is

useful. We utilize an inverse linear function to decay the temperature to zero over

several iterations for a single re-arrangement request.

Measurements of how far each character moves within each adjustment (per iter-

ation) must be compared to determine how much, if any, oscillation occurs within

the adjustment algorithm. Also, locations of characters from one adjustment to the

next should be compared to ensure minimal oscillations between character movements

occur. This is a main focus during tests that will trigger a re-adjustment where no

character is actually moved.
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4.3.1.6 Strength of Relationships over Time

To adjust for the connections with fixed vertices, we need to be able to decrease

the strength of the attraction of those relationships over time. In addition, we want

a relationship (two characters entering at the same time) to decay over time as they

should move together initially, but may start to deviate the longer they are on-stage

to a more neutral set of movements.

The effectiveness of changing the strength of the edge relationships over time can

be analyzed through entire scenes. The change in each character’s position when

triggering the re-adjustment with no real character movement is measured to observe

the effect of relationships.

4.3.1.7 Centering and Encircling Groups

We want to ensure the spacing between multiple characters presents a more uniform

circle/semi-circle by introducing an extra “dummy” vertex that is always connected

to every character on-stage. This should act as a pulling force to center characters

around this point as much as possible.

Another key attribute of centering is to be able to establish character positions

relative to the center of the stage for most instances. This helps to prevent visibility

issues from the audience’s perspective and centralizes the action on the stage.

Different numbers of characters will be experimented with to determine the re-

sultant shape of the group. The more similar the curve produced by the character

vertices are to a circle or semi-circle, the better we have done. The distances from a

circle with the specified radius can be used to measure our accuracy.

4.3.1.8 Varying Attracting and Repellent Forces

We want different connections between vertices to use different types of forces. For

instance, we want a connection to the audience to be weaker than a connection to

another character on-stage. We also want the strength of the connection to the audi-
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ence to vary based on the character’s importance in the play or scene. Fruchterman

and Reingold’s algorithm bases the forces on the size of the drawing area, trying to

maximize coverage. Since we do not want characters to be spread out on the stage,

we will need to adjust the standard forces to trend towards grouping characters, but

not overlapping them.

Playing with the different forces and their resultant measures for their effect on

several different character configurations is key. Comparing the stronger attraction

forces and weaker attraction forces can ensure they result in slightly different ar-

rangements of the characters on-stage, with respect to the amount of attraction in

place. The ideal attraction forces will be the ones that result in an average spacing

of characters within three to five feet of each other.

4.3.2 Graph Structure

In composing the force-directed graphs, we should define how each aspect of the

character positioning relates to the graph structure, which is shown in Figure 4.7.

First, we have the characters themselves, which will be represented as a node within

the graph. These will each have a position attribute that corresponds to their position

on the stage. Next, we have the targets or marks on the stage that the characters

are supposed to hit based on the play-script. These could be a particular object on

the stage, a relative location to the audience or another character, etc. These targets

are represented by a node in the graph, and also have a position attribute associated

with them. Obviously, we will also have a node for the human-controlled character.

This character/node will not be adjustable by the AI Director, but is key in guiding

the positioning of the other characters onstage.

The other nodes in the graph are a little more complex in nature. The audience

nodes are created for each character that is onstage. This node will maintain the

same x-coordinate as its corresponding character, and will help to pull the character

towards the front of the stage. There is also a node to represent the center of all



47

Figure 4.7: Force-Directed Graph Structure

characters onstage, residing in the center of all the characters. The center node will

only be part of the graph if there are two or more characters onstage, and will assist

with forming a semi-circular arrangement of the characters facing the audience (in

conjunction with its own audience node).

Edges of the graph will connect all of these nodes in different ways, each with

different attractive and repellent forces based on the relationship represented. First,

the obvious, is the character-to-character edge. This edge will represent an attrac-

tive and repellent force to help the characters maintain a reasonable conversational

distance from each other. If two characters enter onstage at the same time, their at-

tractive forces on this edge will be stronger to help enforce the characters’ relationship

spatially.

Edges from each of the characters to the human-controlled character will also be

created to help pull the scripted virtual characters towards the human, thereby cre-

ating an inclusive arrangement for the human. Every character will have an edge

to their personal audience node, which will pull them towards the front half of the

stage. In addition, each character (including the human-controlled character) will

have an edge connected to the center point. These edges will force characters into a
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semi-circle instead of a circle due to the additional edge for the center point to the

center point’s audience node.

Finally, each character will have an edge to their target or mark on the stage.

This connection will help to ensure characters remain close to their intended/scripted

position in order to maintain the integrity of the play-script. It will also lose attraction

force strength over time, just as characters lose the need to remain on a specific mark

over time.

4.3.3 Algorithms

To accomplish the positioning of characters using force-directed graphs, we intro-

duced the following functions based primarily on Fruchterman and Reingold’s algo-

rithm from 1991, which calculates an equalization of forces within the graph, and

introduces a time cooling to minimize oscillations of the layouts [29]. Adjustments

were made to remove the feature that tries to maximize the real estate used for

drawing the graph. Additional algorithms were defined to handle when characters

are added to a scene, when a character moves to a new position, when the human-

controlled character moves, and when a character leaves the scene [94]. The full list

of defined or adjusted algorithms include:

• Add Character(s) (Algorithm 3)

• Character Move to Position (Algorithm 4)

• Human Moves (Algorithm 4)

• Character(s) Leave (Algorithm 5)

• Time Step (Algorithms 4 & 6)

When adding a character on the stage (as seen in Algorithm 3), if they are the only

one on the stage, we will introduce vertices for their targeted position, the audience
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Algorithm 3 Pseudo-code for Adding Characters Method
G← (V,E); . The graph contains all vertices and edges for onstage characters
audience.y ← position . Default y position for audience front row
function AddCharacters(charlist, targetlist)

for charεcharlist do . Repeat for each character being added
V ← vchar ← (target.x, target.y)
V ← vchar_aud ← (vchar.x, audience.y)
V ← vchar_target . only add when not already in G
E ← echar_aud . strength based on character importance
E ← echar_target@timestamp . save temperature information for connection
if OnStageCount = 1 then . Adding the second character onstage

V ← vcenterpt
end if
E ← echar_centerpt

for v in Vchar do . Only review the character vertices
E ← echar_v . give stronger strength to edges if v ε charlist

end for . also give stronger strength based on character relationship
CHARACTERMOV E(all) . update strength of degrading edges

end for
end function

(with the same x coordinate as the character’s target position and the default y

coordinate for the audience), and a vertex for the character itself. The audience

vertex will be semi-fixed, in that it will change x position only as the character’s x

position changes. This connection is intended to help alleviate occlusions of characters

on the stage. Initially, the strength of the connection between the character and its

targeted position will be strong to ensure they end up in their targeted location as

accurately as possible. The strength of the connection to the audience will remain

constant, but will be based on the importance of the character within the scene—the

more important the character is, the greater the attraction force will be.

If we are adding more than one character on the stage, there will also be a single

“extra” vertex for the characters’ center (regardless of how many characters are on-

stage). This vertex will be connected with equal strength to all characters that are

on-stage. It will serve as a gravitational central point, causing a circular effect for

multiple characters, just like the typical conversational positioning we see for groups
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Algorithm 4 Pseudo-code for Moving Character Method
function CharacterMove(char)

vchar_aud ← (char.x, char.y)
for echar_charεE do . Only review edges between two chars

if echar_char.strength > charRelationship then . Cool if entered together
echar_char.strength← cool();

end if
end for
for echar_targetεE do . Only review edges between chars and targets

if echar_target.char = char then
remove echar_target . remove edge if char has new target

else
echar_target.strength← cool();
if echar_target.strength = 0 then

remove echar_target . remove edge if has been there too long
end if

end if
end for
ADJUSTALL()

end function

of people. It is only removed if either only one character or no characters remain

on-stage.

Also, if multiple characters are entering the stage at the same time, their connec-

tion will be strong to encourage a synchronization of movements for those two or

more characters. Over time, this connection’s strength will degrade to the default

attraction, losing some of the synchronization of movement. This should mimic the

typical importance to characters entering the stage concurrently.

Each time a character moves (human-controlled or otherwise), we will degrade

the strength of the variable attraction forces for all characters on-stage (as seen in

Algorithm 4). This ensures that the importance of a character’s connection to a

particular location (whether a co-entering character or target position) will fade as

time passes. If a character moves to a new location, but still has a connection with

a previous target that has not fully degraded in strength to zero, we will remove

that connection to avoid conflicts. Any character that moves offstage will lose all



51

Algorithm 5 Pseudo-code for Remove Character Method
function RemoveCharacter(char)

for echar_∗εE do . Find edges tied to char being removed
remove echar_∗

end for
remove vchar_aud

remove vchar
if vchar_target.edges is empty then . If nothing else tied to this, remove it

remove vchar_target

end if
if OnStageCount = 1 then . If leaving only one char onstage

remove vcenterpt
end if

end function

its connections to anyone and anything still on-stage. Each movement will trigger a

re-adjustment of the remaining characters ONLY once the new targeted location of

the moving character has been determined. This will ensure we do not constantly

adjust mid-step for character movements, causing too much attention and movement

for the audience.

The only character that will be treated as a fixed point is the human-controlled

character and whichever character is performing the movement (if not the human).

We will encourage the AI-driven characters to follow the human-controlled character’s

initiative, whether it is correct or not. Therefore, adjustments made by the human

will result in an adjustment of the other characters for each move, with some restraint

so there is no constant movement. When a character moves offstage, we will remove

all linkages to that character from the graph to reduce calculations of forces (as seen

in Algorithm 5), and remove the center point if there is no one, or only one person,

left onstage.

Finally, we will utilize multiple iterations of the forces calculations with a temper-

ature control to prevent oscillating within each re-arrangement trigger. The temper-

ature will degrade over each iteration of the algorithm’s loop, but be reset for each

re-arrangement request (as seen in Algorithms 6 and 4). The strength of the con-
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Algorithm 6 Pseudo-code for Force-Directed Graph Adjustments within Virtual
Stage Environments
function AdjustAll

G← (V,E); . the vertices are assigned initial positions based on annotations
function fa(x)← return AttractiveForce
function fr(x)← return RepellentForce
for i = 1→ iterations do . calculate repulsive forces

for v in V do . each vertex has two vectors: .pos and .disp
v.disp← (0, 0);
for u in V do

if (u 6= v) then . δ is the difference vector between
δ ← v.pos− u.pos; . the positions of the two vertices
v.disp← v.disp+ (δ/|δ|) ∗ fr(|δ|);

end if
end for

end for . calculate attractive forces
for e in E do . each edge is an ordered pair of vertices .v and .u

δ ← e.v.pos− e.u.pos;
e.v.disp← e.v.disp− (δ/|δ|) ∗ fa(|δ|);
e.u.disp← e.u.disp+ (δ/|δ|) ∗ fa(|δ|);

end for . limit max displacement to temperature t
for v in V do . Only update non-human characters

v.pos← v.pos+ (v.disp/|v.disp|)∗min(v.disp, t);
v.pos.x←min(W, max(0, v.pos.x));
v.pos.y ←min(L, max(0, v.pos.y)); . Prevent displacement off the stage
vaud.pos.x← v.pos.x

end for . reduce the temperature over iterations as
t← cool(t); . layout approaches a better configuration

end for
end function

nections will remain constant through the multiple iterations of the algorithm when

finding the local minima and positioning. This strength will move characters within

three to five feet of each other to mimic typical conversational spacing of characters.

During any arrangement adjustment, only non-human characters are moved on the

stage, to avoid any perception issues with the human controlling a character on-stage.

This also means that the arrangements of the characters may not align perfectly with

a real production of the play, but the goal should be to align based on the human-

controlled character’s position and movements to maintain the integrity of the script,
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Table 4.1: Attractive and Repellent Forces
|δ| = Separation Distance, α = Desired Separation Distance

Fo
rc
e
T
yp

e

A
I
C
h
ar

C
en
te
r
P
t

AI Character Attract |δ|2 − α2

AI Character Repel −|δ|2 + α2

Human Character Attract |δ|2/2− α2

Human Character Repel 0
Audience Attract |δ|2 − L2/4 |δ|2 − L2/16
Audience Repel −|δ|2 + L2/4 0
Center Point Attract |δ|2 − α2

Center Point Repel −|δ|2 + α2

Target/Pawn Attract β|δ|2 − α2

Target/Pawn Repel 0

but include the human-controlled character.

4.3.4 Forces

The main algorithm utilizes the forces and the graph for repositioning characters on-

stage whenever the human-controlled character moved. Each character relationship

(edge) has its own unique forces that push or pull the virtual characters (vertices)

around the stage. Some vertices are setup to be unmovable, such as the human-

controlled character and the targets/pawns. For instance, the relationship between

the virtual character and its mark/target would pull the virtual character closer to the

mark, depending on how long it had been since the character moved to that location.

The targets are identified by the play-script, with the assumption that all characters

(including the human-controlled one) hit their marks correctly and on-time.

The goal for the non-moveable vertices is to act as attractors, but not repellers

for the moveable characters. This can be seen in the table of forces in Table 4.1.

The attraction and repelling of the vertices is setup to be a quadratic function of
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the distance of the two vertices. This ensures a stronger pull or push between the

vertices as they get further or closer together, respectively. The special vertices of the

audience to the character helps to attract the characters to the front of the stage as

much as possible, while the center point is intended to act as a barycenter (or mass

center point) for the characters onstage. By providing the center point a stronger

attraction to the audience, it forces the group of characters to form a semi-circle

facing the audience. Each of these parameters can be adjusted to fit the specific

scene being performed, but has been set for this work to apply typical conversational

space of approximately three feet.

4.3.5 Architecture

To incorporate the force-directed graphs into our current architecture, we allow

our natural language processing module and rules engine module to determine an

initial target for a character’s position onstage. We then feed this information, along

with all other onstage character positions, targets, and relationships into a force-

directed graph. Each character is provided a link to their intended target (the position

provided by the natural language processing and rules engine), a link to all other

characters onstage, a link to the audience, and a link to a central point for the

onstage characters. Each of these linkages have different strengths of attraction and

repellant forces, dependent upon the type of relationship between the entities.

As any character moves (including the human-controlled character), each of the

forces are re-evaluated to determine the need to adjust a character’s position, as

shown in the architecture in Figure 4.8. The rules around facing direction are re-

applied once the movements are completed since the force-directed graph approach

does not handle facing directions.

With all evaluations covered in the rest of this work, it needs to be remembered

that these techniques build upon each other and are cumulative in nature. Each

component relies on the prior component for its input. Therefore, the Rules engine
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Figure 4.8: Rules Engine Architecture with Force-Directed Graph Adjustments for
Human-Controlled Character(s)

output inherently includes the NLP output since it is required in order to apply any

rules. Similarly, the FDG engine output inherently includes both the Rules engine

and NLP outputs. All future mentions of FDG will imply the use of NLP plus Rules

plus FDG in its evaluation.



CHAPTER 5: APPLICATION

To visualize our methods, and enable qualitative evaluations, we built several ap-

plications to simulate the performances. These applications applied the methods de-

scribed in Chapter 4: METHODOLOGY. We started with a 2D visualization to assist

with initial evaluations, then built 3D visualizations to support the user studies. The

final application built was used to allow the user to interact with the performance,

and added additional features.

5.1 2D Simulation

A simple jsGameSoup (https://github.com/chr15m/jsGameSoup) and NodeJS

(https://nodejs.org/en/) application was built to visualize the results of the Behavior

Markup Language (BML) and Functional Markup Language (FML) generated by

the natural language processor (NLP). Each character in the play is represented by

a circle. Their current gazing direction is indicated by the line inside the circle.

When they point to an object or location, a line is drawn from the outer edge of the

circle towards the object or location being pointed at. Objects are represented by

smaller gray and black circles with letters inside them. For the Hamlet “Graveyard”

scene, only a Lantern (L), Spade (S), and two Skulls (X) were required as props.

When a character picks up an object, it will become black, with white lettering; upon

placing the object back on the ground, it will become gray, with black lettering, again.

This can be seen in Figure 5.1. Additional information on the source code for this

simulation can be found in Appendix C: TOOLS.

This simulation was utilized for capturing and visualizing the quantitative analysis

for the Hamlet scene prior to building a 3D simulation for qualitative analysis with

https://github.com/chr15m/jsGameSoup
https://nodejs.org/en/
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Figure 5.1: 2D simulation using hand-written BML commands

human participants.

5.2 3D Unity Simulation

The first Unity3D (https://unity3d.com/) simulation we built was intended to uti-

lize the SmartBody BML Realizer and a robot-like character, as seen in Figure 5.2.

Due to some work still being underway with SmartBody to fully realize their BML

Realizer, we were unable to proceed with utilizing this solution. Therefore, we built

our own pseudo-BML Realizer that did not do much path planning.

This custom-built 3D simulation leveraged a box character with a face panel that

had sides to simplify our environment, as seen in Figure 5.3. This eliminated any

bias regarding human versus virtual or block characters, as well as provided better

visibility to where a character was facing due to the face sidepanels. It left only a small

window when the character was looking away from the camera where the viewer had

some ambiguity with which direction the character was really facing. This also helped

https://unity3d.com/
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Figure 5.2: 3D Enactment of Hamlet in Unity Using the SmartBody BML Realizer

Figure 5.3: Block Character Representation

viewers to focus on the spatial aspects of the performance instead of any animations

or character representations.

This environment represented pawns as cubes, and all marks (including physical

pawns that were used more as a mark) were represented by an invisible sphere. A

legend for these items was visible to the right of the stage window, which listed the

colors for each character and each pawn the characters could interact with. At the

bottom of the screen was a speech window where a mini image of the character speak-

ing would appear next to the words that were being spoken. The system utilized the

built-in “say” application within the Mac OSX. This layout can be seen in Figure 5.4.

The characters were able to point, move, gaze, pick up objects, put down objects,
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Figure 5.4: Block World Representation Utilized in 3D Videos

carry objects, and speak. When a character moved to a location, it performed no real

path planning—it only moved in a direct route unless it ran into another character,

which would cause it to shift around the character before moving on. Characters were

able to speak while doing any other movement, but could not move until they had

rotated enough so they could see the target they were headed. Otherwise, characters

could turn and move at the same time as well. When a character spoke, a speech

bubble would appear over their head as a visual indicator of who was speaking. To

pick up or put down an object, the character would shrink to half its size, then grow

back to normal size, and could only have one object held at a time.

The system accepted a formatted BML file from our NLP processor, along with

an initialization file. The initialization file indicated all the characters (and their

importance), the pawns, and the marks within the scene. Additional information

on the source code for multiple versions of this simulation can be found in Ap-

pendix C: TOOLS.
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Figure 5.5: Interactive Block World Representation

5.3 3D Unity Interactive Simulation

The Interactive simulation had a similar setup as the Unity3D simulation—it had

the same legend area, characters, and pawns, as seen in Figure 5.5. However, the

simulation needed to allow the user to control one character within the scene, thereby

affecting the positioning of the other characters on the stage. So additional features

were added to better enable this interaction with the scene.

The marks that represent physical items, but cannot be picked up, were represented

by colored squares with an “X” in the middle. The camera angle was adjusted so it

was easier for the user to see the entire floor of the stage in order to move to specific

locations easily, as well as see these colored X’s. The bottom of the screen was

enlarged to show the entire play-script, with a highlight box showing the block that

was currently being performed. This play-script would scroll so that the highlighted

area was always at the top of the script area. There was a “Next” button below the

Legend, which would allow the user to progress through the script at their own pace.
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The user could control one character within the scene. If that character had an

action (to speak, to move, or to do both) for the highlighted block, there would be

a yellow warning at the top of the script to remind the user. If the character was

supposed to speak, the “Next” button would say “Speak Next Line.” If the user

wished to move the character, they only had to click their mouse on the screen. A

menu would appear that gave the user their options with what they clicked on. If

they chose a moveable pawn, then they could go to, look at, point to, or pick up.

If they were holding that pawn, they could only put it down. If they chose another

character, or anywhere else on the screen, they could go to, look at, or point to. If

the spot was offstage, then they could only point to or look at that location.

The system guided the user through three scenes—the first as a practice, where no

characters, except the human-controlled character, moved. The second was randomly

chosen to be either the NLP+Rules version or the NLP+Rules+FDG version of the

engine. Once completed, the user was then presented the other/unseen version of the

engine.

The system accepted a formatted BML file from our NLP processor, along with

an initialization file. The initialization file indicated all the characters (and their

importance and if human-controlled), the pawns, and the marks within the scene.

For additional simplicity in engineering, this system accepted the original play-script

and a formatting file for presenting the play-script to the user in the UI. There were

three sets of each of these files to support each of the three scenes this simulation

would run through (practice, FDG, and rules). Additional information on the source

code for this simulation can be found in Appendix C: TOOLS.

5.4 Generalization and Assumptions

Both of the 3D simulations described have been setup to be generalizable to any

play. They do assume a single audience point and a proscenium-style stage. To utilize

these simulations for other plays would only require inputting the NLP-generated
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BML for the formatted play-script, and creating an initialization file for all the defined

characters, pawns, marks, character priorities, legend image, voice names, and colors

to use. Additional details on these files can be found in the Appendix C: TOOLS.



CHAPTER 6: EXPERIMENTATION AND DISCUSSION

In the last chapter, we discussed the algorithms and techniques that we developed,

and would leverage in our evaluations. Here, we will review the experimentations

performed to validate these approaches, including discussions on the overall authorial

burden for a designer to position characters in a scene. We review both quantitative

and qualitative analysis on each component of our work, showing that: our meth-

ods can match the positioning of characters from a real performance at 89%, forces

provide less occlusion and better clustering of characters, and our techniques are in-

distinguishably “good” versus a real human performance from a viewer’s perspective.

6.1 Authorial Burden

Shakespeare is still one of the top ten plays produced today. In fact, they are so

popular that they are not included in the top ten play lists because at least five of

them are always written by Shakespeare. Also, Shakespeare is free to use, and free of

any copyrights. We were able to find a detailed annotation of Hamlet [86], which also

happened to be the longest running production of Hamlet ever to play in New York,

at 138 performances. Along with this detailed annotated script (which is unusual

for Shakespeare plays), we found an Electrovision video [15] of the actual production

on Broadway in 1964. These assets provided key inputs for quantitatively evaluating

positioning characters in virtual environments.

We utilized the Electrovision video [15] and annotated play-script [86] to hand-

map the movements and positions of the characters in the “Graveyard” scene on stage

(Hamlet ACT V, SCENE 1). We used this mapping as a comparison to a basic natural

language translation of the same annotated scene, and refer to it as our “baseline”
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going forward.

We manually mapped out about 14 minutes of Act V, Scene I from Hamlet, as

produced by Sir John Gieguld in 1964 (Figure 6.1). This happens to be the graveyard

scene where Hamlet reminisces about a skull that may have been Yorick, an old friend,

and can be seen at https://www.youtube.com/watch?v=rFgd_4YrraU. The play

consists of 280 lines and actions when mapped following the play-script standards for

formatting, with the additional annotations provided by Sterne. The position of each

of the characters were hand-mapped against the stage layout, utilizing the recording

of the 1964 play as a guideline. Key aspects captured included walking, pointing,

gazing/turning, and picking up/carrying objects. These movements were the focus of

the spatial aspects of the play, which could be rendered in 2D, and were converted into

Behavior Markup Language (BML) (and Functional Markup Language (FML) where

appropriate for speech), as seen in Figure 6.2. Physical grid locations and marks were

required to be created and manually mapped in both the initializations and within

the BML itself to mimic the spatial dimensions that were manually mapped out.

For a 14 minute heavily annotated scene with less than 100 lines, it took over

four hours to create the appropriate BML commands. This merely covered speech

and spatial movements such as walking, pointing, picking up items, and looking at

characters or items. It turned the script into about 400 speech and spatial commands

in BML. This is a 142.86% increase in commands that were needed to be written to

accommodate just the four spatial aspects of moving, pointing, gazing, and picking

up objects. Even with this amount of time and effort, it probably only covered about

78% of the movement assumptions that an actor would utilize in performing the

script, and no non-verbal behaviors. Imagine trying to accomplish this level of detail

for something as dynamic as a game! Then add on the complexity of trying to change

this or tweak this segment of action as the author or player edits the plot. Not to

mention the issue of needing this specialized expertise in order to create a plot-line

https://www.youtube.com/watch?v=rFgd_4YrraU
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Figure 6.1: Hand-mapped Blocking of Richard Burton’s Hamlet Play from 1964

Figure 6.2: Work Required to Write BML
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with spatial implications.

If we look to generalize this reduction of authorial burden, we can see that one

line of natural language in a play-script can turn into approximately four lines of

BML. If each line takes the same amount of time to write (both BML and natural

language), then we can clearly see that BML will take longer to write. Then, when

you take into consideration some of the work that has been done with writing in a

secondary language (which BML can be considered to be), it has been shown that

writers working in secondary language have more errors and take longer to write

similar text [44]. Therefore, we can see that writing the character blocking in natural

language will be faster and more accurate than forcing an author to compose the

blocking in BML.

These play-script annotations, along with our system, saved us over four hours of

encoding explicit directions in BML code, and can now be reused with other scenes

as well. This BML script became our standard for determining how well our method

could provide similar spatial controls, while reducing the technical effort and time

required to author the script (as seen with our previous example of creating BML).

6.2 Quantitative Evaluation

We compared our system’s blocking for a scene to an actual performance of the

same scene, leveraging the same play-script. To accomplish this, we took logs of each

of the characters’ positions and gaze directions throughout the scene. We mapped

these exact positions to one of our ten grid locations: offstage, up right, up center,

up left, stage right, center stage, stage left, down right, down center, and down left.

We also mapped the exact gaze directions to one of our four directions: upstage,

stageleft, downstage, and stageright. Next, we normalized the timestamps for these

logged locations to ensure the duration of both scenes being compared were the same.

With that normalization of time in place, we compared whether the grid locations

and directions matched or not.
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The play-script annotations, along with some basic natural language processing,

provided the ability to position characters correctly approximately 78% of the time.

The inclusion of the rules engine increased our performance for character positioning

to 89% matching [95] with our existing hand-mapped baseline of Hamlet from Broad-

way. The main outlier from this work appeared to be due to one actor’s interpretation,

or whim, during the performance.

We also evaluated the incorporation of a human-controlled character within a scene

to determine the amount of inclusion of the characters. We measured the arrangement

of the characters when using the force-directed graphs to ensure proper arrangements,

including conversational space, semi-circle arrangements, and even spacing. We also

found an decreased amount of occlusion and stable clustering of characters when incor-

porating our force-directed graphs, when compared to our baseline. In addition, these

numbers remained consistent regardless of the accuracy of the mock-human-controlled

character, whereas our baseline showed increasing occlusion and less clustering as the

accuracy decreased [94, 92, 96].

6.2.1 Natural Language Processing to BML

We took the character traces from both our hand-coded BML and our new method

and compared them. We normalized the time durations for the two scenes to ensure

a similar baseline for comparing positions. We then mapped the positions to the

ten grid locations, and the gazes to the four grid areas, as seen in Figure 6.3, using

the trace logs from both scenes. We wanted our new method to result in character

positioning as close to our baseline as possible; however we did not want to penalize

for being “close enough.”

Doing this comparison, we see in Table 6.1 that we accomplished a relatively similar

(78% matching) character position trace over time with this method of named entities

and part of speech tagging. We only matched the gazes 34% of the time, partly due

to the difficulty with capturing all the gazes when handmapping a scene.
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(a) Stage Positions
(b) Stage Gaze Directions

Figure 6.3: Stage Area Breakdown for Position and Gaze Comparisons

Table 6.1: Hamlet Character Traces Match for Baseline vs. NLP

Character Name Gaze Match Position Match
GraveDigger1 57.95% 80.11%
GraveDigger2 19.43% 34.96%
Horatio 2.37% 98.23%
Hamlet 56.17% 99.18%
Overall 33.98% 78.12%

We mapped out each character’s position over time visually in Figures 6.4, 6.5, 6.6,

and 6.7. These figures show small arrows that represent where the character was

facing at that moment, along with where they were on the stage. The colors indicate

time, and go from red to blue as time progressed within the scene.

This representation was difficult to visually compare the two versions of the scene,

and did not incorporate the “close enough” feature that the grids provided. Therefore,

we re-mapped the same information into gridded line charts—one that represents the

stage position with ten grid areas, and one that represents the gaze direction with four

directions. These new traces can be seen in Figures 6.8, 6.9, 6.10, 6.11, 6.12, 6.13, 6.14,

and 6.15. Even though these charts require more space, we decided to represent
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Figure 6.8: Character Position Traces for GraveDigger1 in Hamlet

Figure 6.9: Character Position Traces for GraveDigger2 in Hamlet

these traces, going forward, in separate position and gaze charts because they are

clearer to interpret. Reviewing these charts closely, and comparing the actual numbers

behind these traces, we can see that we are typically very close to the baseline for

our characters. This shows we were able to accomplish a reasonable blocking for this

play, thereby saving us more than four hours of work and technical expertise for these

14 minutes of script.

Issues include the fact that sequence does not always indicate the actor versus the

recipient, such as “He is followed by GRAVEDIGGER2,” where GRAVEDIGGER2 is

actually the actor. Also, prepositions are an issue as assumptions need to be made

across movement statements and speech acts. Also, because we are working in 2D and

the annotations for the play are 3D in nature, and include how to say/speak certain
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Figure 6.10: Character Position Traces for Hamlet in Hamlet

Figure 6.11: Character Position Traces for Horatio in Hamlet

Figure 6.12: Character Gaze Traces for Gravedigger1 in Hamlet



75

Figure 6.13: Character Gaze Traces for Gravedigger2 in Hamlet

Figure 6.14: Character Gaze Traces for Hamlet in Hamlet

Figure 6.15: Character Gaze Traces for Horatio in Hamlet
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items, many statements end up being irrelevant for our 2D model and end up being

discarded. For instance, “(laughing),” or “(The sound of the bell fades out)” have no

actions in a 2D world without sound; however still require processing to determine

the sentence is irrelevant for this work.

Compound statements (e.g., “He is followed by GRAVEDIGGER2, who carries a

T-spade and a pick and whistles”), although uncommon in this particular play-script,

do cause issues with performing all directed actions. We split this text using the punc-

tuation, such as the comma in this statement, but the “and” which indicates multiple

items that the Gravedigger2 carries gets dropped when using our actor action target

structure. Additional work could be done to accomodate such compound statements,

but for this work we focused on the more simplistic statements for annotations.

Some additional issues also arose from the fact that this script was written in

British English and the dictionary utilized (WordNet) was American English (due to

availability). Words with multiple meanings or word types caused some confusion,

such as steps (verb or noun), hands (verb or noun). Finally, due to the time required

for the word lookups, this algorithm lends itself to being a pre-processor for the script

and may require parallization to accomodate running in real-time.

6.2.2 Rules

We took the character traces from both our baseline (hand-coded BML based on

the Electronovision video [15]) and our natural language processor with a rules engine

and compared them. We wanted our new method to result in character positioning

as close to our baseline as possible; however, we did not want to penalize for being

“close enough.”

As can be seen in Figures 6.16, 6.17, 6.18, 6.19, overall we were able to posi-

tion characters on the stage well, despite the natural language processing issues that

come with any machine translation. During analysis, we split the stage into the nine

squares to represent the nine general locations on the stage–combinations of: upstage,
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Table 6.2: Hamlet Character Traces Match for Baseline vs. Rules

Character Name Gaze Match Position Match
GraveDigger1 46.07% 83.44%
GraveDigger2 11.76% 84.61%
Horatio 80.01% 95.42%
Hamlet 72.77% 95.70%
Overall 52.65% 89.79%

downstage, center-stage, stage-right, and stage-left.

We found that our method was able to position the characters within 0.12 squares

(Euclidean distance) of our baseline BML method and placed them correctly 89.8% of

the time on the stage, as seen in Table 6.2. The other 11.1% of the time, the characters

in the video added their own unannotated movements to what was directed by the

director. For instance, near the beginning of the scene, Gravedigger1 walks towards

the audience, then turns around and heads back towards the grave. This movement

was not annotated in the play-script and therefore was not performed by our rules-

based characters. This highlights one aspect of the actor’s initiative to improvise

despite the directions provided by the script.

For gaze, we divided the directions into the four basic gaze directions: towards the

audience, stage-right, stage-left, and upstage/backstage.Here we found our results

did not match as well (as seen in Figures 6.20, 6.21, 6.22, 6.23), with the gaze being

correct only 52.7% of the time and, on average, within 0.53 quadrants of our baseline

gaze direction.

One key reason for some of the discrepancies in the character traces is due to the

input utilized for the baseline versus our method. The baseline BML was written

to include movements and motion that were not included in the play-script that our

method utilized, but the actors performed. It included some movements based on

what was seen in the video, but may not have fully encompassed all the gazes that

occurred within the play due to user-translation error. Also, our rules were based on
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Figure 6.16: Character Position Traces for GraveDigger1 in Hamlet

Figure 6.17: Character Position Traces for GraveDigger2 in Hamlet

Figure 6.18: Character Position Traces for Hamlet in Hamlet



79

Figure 6.19: Character Position Traces for Horatio in Hamlet

Figure 6.20: Character Gaze Traces for Gravedigger1 in Hamlet

Figure 6.21: Character Gaze Traces for Gravedigger2 in Hamlet
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Figure 6.22: Character Gaze Traces for Hamlet in Hamlet

Figure 6.23: Character Gaze Traces for Horatio in Hamlet
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always performing adjustments with every command that was brought into the rules

engine, whereas a real actor may not follow these rules 100% of the time. However,

our rules did better than our prior version, which just utilized a natural language

processor by approximately 11% for position and approximately 20% for gaze, even

though it still incurred similar issues around duality of word meanings and pronouns

found in our first experiment. Our biggest impacting change by incoporating rules

was around the gaze, since most gazes are not annotated.

6.2.3 Force-Directed Graphs

When incorporating our force-directed graphs (FDG), we hoped to more dynami-

cally arrange the character positions than our rules could do. Our rules would focus on

just adjusting for character priority and being too close for conversational space, and

was limited in its ability to really look at the overall positioning of all characters on

the stage. With our force-directed graph drawing algorithms, we can better balance

the overall positioning on the stage and enforce better semi-circular/conversational

arrangements, leveraging the adjustments to position done by the rules engine. To

validate our algorithm’s effectiveness in doing this, we will need to measure its perfor-

mance against our requirements, which were discussed in Chapter 4. Here we discuss

each item and how to measure our algorithm’s accuracy. Each measurement must be

performed over several configurations, as well as with the human-controlled character

moving correctly, incorrectly, and not at all.

Three main threads of testing need to be performed: validation of positioning from

randomized states of the play; validation of positioning sequentially across an entire

play; and user studies of perception of the play performance. Each provides a unique

validation of the algorithms, which are key to their success in a real virtual envi-

ronment scenario. The first measurement (randomized states) measures the overall

positioning of the characters on-stage for a single point in time, such as symmetry,

centering, and force variations.
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However, the second measurement (sequential states) verifies that the continuity of

the play is preserved, despite human intervention, such as oscillation-free adjustments

and decreasing strength of relationships over time. This second measurement is much

more difficult to perform as it requires a comparison against a baseline for both correct

and incorrect positioning of a single character on-stage with respect to the rest of the

characters. The third measurement (user studies) provides a key understanding of

human perception of these character positioning within the play, and their realism.

6.2.3.1 Features Evaluation

To test our approach, we implemented the algorithms described in the Methodology

section in a JSGameSoup javascript application. Here, the stage was represented as

a box within the screen, and characters as circles with connecting lines representing

their relationships. One character (the human-controlled character) could be moved

by dragging it across the screen, to represent the human-controlled character. Nu-

merous scenarios were tested by randomly placing characters, pawns, and the human

character on the screen and applying the force-directed graph drawing algorithms to

arrange them on the screen, as seen in Figure 6.24.

Each AI character (in green) is connected to every other AI character on the stage,

the human-controlled character, and the audience. They are also sometimes connected

to a target position, or pawn, to indicate their correct “mark” on the stage for this

moment in the play. These target point connections have no repellent forces, but

very strong attractive forces (β) applied to them. Also, if there is at least two AI

characters on the stage, they are also connected to a center point, which only has

attraction forces applied to it. The human character is also tied to this center point (if

it exists), the audience, and every character on the stage. The relationship between

the human-controlled character and the AI characters has a weaker attraction force

than the between-AI character forces. The center point is given a stronger tendency to

be in the front quarter of the stage than any of the AI or human-controlled characters
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to help force the semi-circular arrangement on the stage, as well as an opening in the

grouping, which faces the audience. Each force is described further in Table 4.1 in

Chapter 4.

These forces allowed for a relatively consistent positioning distance of about 3.14

(SD=1.54) feet between the different characters, which provided our “Even Vertex Dis-

tribution” as described above. Even with 12 characters plus the one human-controlled

character on the screen, we had at most 40 vertices in our graph, which kept us within

reasonable limits for the Fruchterman and Reingold algorithm approach. We observed

that the fixed points (also known as the AI characters’ target destination) pulled the

characters toward them, which helped to minimize movement of the character from

their mark. This distance averaged at 494.56 drawing units apart, which represents

about 3.30 (SD=1.52) feet of spacing, and was relatively consistent across the different

sized character groupings tested (1-12) as seen in Table 6.3.

Table 6.3: Average Distances Between Characters and Pawns

Number of
Characters

Character
Connected
To:

Average
Distance
(in Drawing
Units)

Average
Distance
(in Feet)

1 audience 370.63 2.47
1 human 526.30 3.51
1 target 496.80 3.31
2 audience 515.92 3.44
2 center 270.80 1.81
2 char 400.74 2.67
2 human 488.35 3.26
2 target 456.22 3.04
3 audience 449.66 3.00
3 center 355.34 2.37
3 char 414.75 2.77
3 human 662.09 4.41
3 target 448.98 2.99
4 audience 528.01 3.52
4 center 296.00 1.97

Continued on next page
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Table 6.3 – Continued from previous page

Number of
Characters

Character
Connected
To:

Average
Distance
(in Drawing
Units)

Average
Distance
(in Feet)

4 char 424.55 2.83
4 human 468.30 3.12
4 target 555.88 3.71
5 audience 419.66 2.80
5 center 378.33 2.52
5 char 529.04 3.53
5 human 466.43 3.11
5 target 611.72 4.08
6 audience 425.97 2.84
6 center 368.86 2.46
6 char 482.32 3.22
6 human 484.72 3.23
6 target 464.94 3.10
7 audience 436.75 2.91
7 center 348.79 2.33
7 char 469.19 3.13
7 human 502.33 3.35
7 target 428.91 2.86
8 audience 415.04 2.77
8 center 401.58 2.68
8 char 564.30 3.76
8 human 462.93 3.09
8 target 487.51 3.25
9 audience 498.57 3.32
9 center 439.40 2.93
9 char 511.48 3.41
9 human 502.24 3.35
9 target 489.51 3.26
10 audience 482.81 3.22
10 center 376.99 2.51
10 char 483.21 3.22
10 human 480.38 3.20
10 target 521.40 3.48
11 audience 496.43 3.31
11 center 394.77 2.63
11 char 478.84 3.19
11 human 495.07 3.30
11 target 480.68 3.20
12 audience 476.52 3.18

Continued on next page
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Table 6.3 – Continued from previous page

Number of
Characters

Character
Connected
To:

Average
Distance
(in Drawing
Units)

Average
Distance
(in Feet)

12 center 403.22 2.69
12 char 477.78 3.19
12 human 498.51 3.32
12 target 493.62 3.29

The forces were varied between the audience, the center point, the target pawns,

the AI characters, and the human character, with the target pawn connections being

the strongest attraction (with no repelling forces), and the AI character interrela-

tionships being the strongest repellent forces. This, in conjunction with the center

point, provided balance with the positioning and provided semi-circle positioning for

the smaller number of characters on the stage, as seen in Figure 6.25b. However, for

the larger character groups, they often formed a more circular arrangement, with the

audience side not quite being enclosed, as seen in Figure 6.26b.

Additional work will be pursued to test the varying relationship strengths over

time, as well as the impact of oscillations between arrangements. Some preliminary

testing indicated issues with oscillations of character positioning where characters

would swap places, but still maintain the overall layout on the stage. Also, more

force manipulations may achieve better results than found during this particular

experiment.

6.2.3.2 Scene Evaluation

To evaluate the effectiveness of the force-directed graphs for positioning characters

throughout a scene, we take two approaches:

1. Direct comparison with the 1964 Hamlet production

2. Incorporation of a human-controlled character
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The first comparison involves comparing the positioning of characters (all assumed

to be AI characters) using our force-directed graphs with our baseline positioning

of characters from the same Hamlet scene in the Broadway production by Sir John

Gielgud in 1964. These are compared for the criteria of occlusion and clustering of

characters. This provides a baseline for comparison for the next experiments, which

highlight the visual balance that audiences appreciate in imagery.

To further our baseline, we also incorporate one of the characters from the scene as

a human-controlled character and vary their accuracy in following the play-script as

written. This provides us with a secondary comparison to evaluate the effectiveness

of including the human-controlled character with our force-directed graph approach

versus the hard-coded play-script approach that is most commonly used today.

Next, we incorporate a human-controlled character and vary their desire to follow

the play-script through different runs. We then compare these runs with the same

criteria of occlusion and clustering. The intent is that a similarity in the amount

of occlusion and clustering should be maintained, regardless of the human-controlled

character’s movements. This will show that we are able to adjust our positioning to

include a human-controlled character, yet still maintain the integrity of the play-script

as much as possible.

The human character’s movements are simulated by allowing them to move at the

right times, but not to the right locations. This is based on how accurately we allow

the human to follow the play-script. The more accurate the human is, the more likely

they will follow the play-script perfectly. However, when they choose not to follow

the play-script, we choose a random location on the stage for the human to move to

during that moment, which does not coincide with the play-script.

To evaluate our methods, we have chosen to utilize two criteria: occlusion and

clustering. With occlusion, we are looking to avoid the overlap of characters onstage

from an audience’s perspective. We do not wish to obscure the audience’s view
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of the scene by misplacing a character onstage and block another character. To

calculate this, we will assume an orthographic projection for the audience’s view of

the characters onstage, due to the small variance in viewing angle in a typical theatre.

This allows us to use the character’s x-position onstage with a buffer to indicate their

coverage area for occluding another character. Any overlap distance for each character

will be summed up and compared to the length of the stage (or potential occlusion

area). This can be seen in Equation 6.1, where we sum the overlaps of each character

and divide by the length of the stage, to determine the amount of occlusion across

all characters. Each character was given a defined radius to represent the area they

would cover while onstage, and was leveraged to determine each character’s minimum

and maximum coordinates.

count∑
i=0

count∑
j:i+1

char[i].maxX − char[j].minX
stageLength


> 0; char[i].maxX − char[j].minX

≤ 0; 0

(6.1)

The second criteria, clustering, is used to ensure we are not clumping everyone too

close together, leaving a large portion of the stage unused. To calculate this, we will

simply take the range in both the x and y dimension on the stage to determine the

percentage of the stage being utilized in both width and depth. This can be seen in

Equations 6.2 and 6.3, where we take the min and max values of both x and y across

all characters and divide by the length of the stage in that dimension, to determine

the amount of space covered by the characters.

Max∀i(char[i].x)−Min∀i(char[i].x)

stageLengthX
(6.2)

Max∀i(char[i].y)−Min∀i(char[i].y)

stageLengthY
(6.3)
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We will look to minimize the occlusion equation and maximize the two clustering

equations to determine quality of the spatial positioning for the scene. We avoid

leveraging a more volumetric measure for clustering due to its loss of specificity, since

a 10x4 volume would be seen the same as a 20x2 volume, but reflects very different

clustering in each dimension.

To evaluate our approach, we ran the experiments as described above. We started

with a baseline reading, which utilized the hand-mapped blocking from the 1964

Hamlet production on Broadway. We averaged the positioning for each moment

across the entire scene for both occlusion and clustering. As can be seen in Table 6.4,

we have some minor occlusions of the characters on the stage with that handmapped

production, at over three percent. There is also a fair amount of clustering in both

dimensions of the stage as well (∼20% along the length of the stage and ∼11% along

the depth of the stage).

Table 6.4: Experiment Results of Occlusion and Clustering Averaged Over Scene

C
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Case
Description
(Including
Accuracy of
Human) A
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C
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st
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g

Y

0 Baseline All AI 3.6% 19.5% 14.6%
1 Baseline Human 90% 3.6% 19.1% 15.4%
2 Baseline Human 50% 2.9% 20% 14.7%
3 Baseline Human 10% 4.4% 30.9% 28.7%
4 Forces All AI 2.4% 16.8% 14.6%
5 Forces Human 90% 2.4% 16.8% 14.6%
6 Forces Human 50% 1.6% 20.4% 13.8%
7 Forces Human 10% 2.4% 20.8% 14.0%

When we take a look at our method of controlling all the characters to follow

a play-script, we see that we are able to reduce the frequency of characters being

occluded on the stage when all the characters are controlled by the AI. We still have

the clustering of the characters, and they now occupy less space than we saw with the
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baseline measurements. We notice that the characters appear to cluster together more

with our force-directed graphs than with our hard-coded AI character blocking. This

reveals that the human-controlled character is being included in the AI characters’

positioning when we use the force-directed graphs, but is separated from the other

characters when the AI characters just perform the scene as-is (no adjustments for

the human character).

Considering the scene we utilized has at most three characters onstage at any time,

we expect to see normal clustering at approximately 28% if we utilized only conversa-

tional space for positioning the characters side-by-side. The Hamlet production from

1964 produces slightly tighter clustering due to the nature of the scene (characters are

focused on the grave). As we introduce the human-controlled character, we see less

clustering, which reveals that the human-controlled character is not being included

in the AI characters’ positioning. However, when we look at the force-directed graph

approach, the characters are able to cluster better and include the human-controlled

character, which is revealed by the smaller clustering numbers.

We also see that having all the characters behaving correctly provides very simi-

lar clustering results to when we have an errant human-controlled character (Forces

Human 10%, where the human only follows the script 10% of the time) when we uti-

lize the force-directed graphs. However, with the hard-coded AI character blocking

(Baseline Human 10%, where the human only follows the script 10% of the time),

we see a jump in the amount of clustering of the characters. This shows that the

force-directed graphs not only help to include the human, but is also able to maintain

the integrity of the script.

6.3 Implied Movement

When looking at the accuracy of our system when compared to the baseline, we

noticed we were unable to match the real performance 11% of the time. This led

us to conjecture that perhaps there is something in what the character is saying,
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which caused the actor to perform this “extra,” unannotated movement. We took the

entire play-script and captured all the actor movements performed within the real

performance. Using several standard machine learning techniques, we attempted to

learn if certain phrases would result in a specific movement, or even just a movement

in general [93]. Unfortunately, we were unable to learn any of this information from

what the characters were saying, partly because of the nature of Shakespeare’s writing

(iambic pentameter), and partly because of our approach’s inability to effectively cap-

ture the relationships between the words. We were encouraged by this work because

it indicated that these unannotated movements may not be in what is being said, but

instead is just an actor’s whim during the performance. For more information, refer

to Appendix A: LACK OF SPATIAL INDICATORS IN HAMLET .

6.4 Qualitative Evaluation

We also performed some qualitative analysis on our system to determine whether

we are able to provide a realistic performance, which is similar from a viewer’s per-

spective. We created a spatio-temporal-focused survey to evaluate our performances.

This survey was based upon other theatre evaluation tools, including several one-

act play competition judging criteria. We performed three different studies, one for

the handmapped baseline video versus an NLP generated video using an interval

scale as a between subjects study. The other two studies compared all five different

components: Random, Baseline, NLP, NLP+Rules, and NLP+Rules+FDG. One of

these was a within subjects study (with a shorter questionnaire) and the other was a

between subjects study.

6.4.1 Evaluation Tools

Because of the current lack of a single existing tool to qualitatively evaluate only

the spatio-temporal reasoning within a performance, we needed to create one from

scratch. We wanted to find techniques that were used for evaluating performances in
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general, in the hopes of finding some embedded spatio-temporal criteria within them.

We did find that one-act play competitions are critiqued by judges, and include

spatial aspects of the performance in their evaluations. Therefore, we reviewed these

evaluation criteria that are used in one-act performance competitions.

One group we looked at was the Georgia High School judging sheets for one-act

plays. The criteria defined in the judges evaluation sheets included: movement, com-

position, listening, response, and ensemble criteria. Movement is an obvious tie-in

to analyzing the spatial aspects of a performance, so was included in our evaluation

tool. The judges typically verify if the movement within the performance is motivated

and free of distractions. With composition, the plays are evaluated on how the per-

formers convey the theme and mood of the play, and whether the movements of the

performers aid in providing proper dramatic emphasis. There is also a notation on

the variety and balance in the use of the stage space, which is included in the judges’

checklist. Finally, reviewers are asked if the performers appear to work together and

be involved in group events. These criteria, along with others within the Georgia

High School judging sheets, were key questions included in our survey (as seen in

Table 6.5, questions LSQ-9 to LSQ-13 and LSQ-20). [4]

We also evaluated the Texas University Interscholastic League’s one-act play official

standards. The UIL’s judging packet is much more comprehensive and included more

detailed guidance on each of the criteria for evaluation a one-act play. Some impor-

tant evaluations were described around characterization, movement, timing, business

(exits and entrances), and composition. We added several questions regarding the

believability of the characters’ movements, whether the movement appears random,

the overall pace of the performance, and whether the characters frequently blocked

each other. These can be seen reflected in our survey in Table 6.5 as questions LSQ-1

to LSQ-8, LSQ-14 to LSQ-19, and LSQ-21 to LSQ-25. [68]

The questions within the survey were intentionally asked two or more times with
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Table 6.5: Spatio-Temporal Likert Scaled Questions (LSQ) in the User Survey

LSQ-1 Characters showed evidence of engaged listening
LSQ-2 Characters appeared to perform suitable movements on cue
LSQ-3 The pace of the performance was too fast
LSQ-4 The pace of the performance was too slow
LSQ-5 The use of the space on stage was appropriate
LSQ-6 The blocking (positioning and timing of the characters) was appro-

priate
LSQ-7 There was adequate variety in the staging positions of the characters
LSQ-8 The characters’ movement onstage during the performance was be-

lievable in the context of the performance
LSQ-9 The performance is free from distracting behavior that does not con-

tribute to the scene
LSQ-10 The arrangement of the performers appropriately conveys the mood

of the scene
LSQ-11 The character movements provide appropriate dramatic emphasis
LSQ-12 There is adequate variety and balance in the use of the performance

space
LSQ-13 All visible behaviors appear to be motivated and coordinated within

the scene
LSQ-14 The characters were grouped to give proper emphasis to the right

characters at the right time
LSQ-15 The characters frequently covered or blocked each other from your

point of view
LSQ-16 The movements of the characters were consistent with the play
LSQ-17 There was a great deal of random movement
LSQ-18 The characters’ reactions to other characters were believable
LSQ-19 Characters showed a lack of engagement when listening
LSQ-20 The arrangement of the performers contradicts the mood of the scene
LSQ-21 The more prominent characters in the scene were hidden or masked

from your view
LSQ-22 The characters were too close together
LSQ-23 The characters were too far apart
LSQ-24 The stage space was not utilized to its full potential
LSQ-25 All characters were visible from your point of view throughout the

scene
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Table 6.6: Correlation of Spatio-Temporal Questions

Question #s Spatial Component Covered

1 ≈ ¬ 19 Engaged Listening
2 ≈ 6 Pace of Performance

16 ≈ ¬ 17 Appropriate Movement and Timing
3 ≈ ¬ 4 Consistent Movement

5 ≈ ¬ 24 ≈ 12 Space Usage
7 ≈ ¬ 22 ≈ ¬ 23 Variety and Closeness

9 ≈ ¬ 13 Motivated Movement
10 ≈ ¬ 20 Scene Mood

14 ≈ ¬ 21 ≈ 11 Character Emphasis
15 ≈ ¬ 25 Visible Characters
18 ≈ 8 Believable

different phrasing to alleviate any bias presented in the wording of the question. The

expected correlation between the questions can be seen in Table 6.6.

Additional, open-ended questions were included in the survey to reveal any quality

issues that were not covered in the above questions. These questions were primar-

ily pulled from Pavis’s questionnaire [71]. Her questions are more open-ended, and

meant to guide the spectator in describing the aesthetic experience and overall pro-

duction after seeing it. Some key spatio-temporal questions are included in Pavis’s

questionnaire, such as: space organization, relationships between actors, and pacing.

We found it most useful for providing open-ended questions within the survey, which

can be seen in Figure 6.27 as questions OEQ-2 to OEQ-4 below.

Lastly, we referred to The Theatre Handbook written in conjunction with several

theatre groups: Independent Theatre Council (ITC), The Society of London Theatre,

and Theatrical Management Association (TMA). This handbook provided useful rec-

ommendations around grouping questions for evaluating a performance’s quality, such

as the frequency of attending performances, and the use of self-rating with a news-

paper’s five-star scale [69]. These can be seen in Figure 6.27 as questions OEQ-1 and

OEQ-5.

Our demographic questions included the ones seen in Figure 6.28.



97

OEQ-1 If you were reviewing this production for tomorrow’s papers, how many
stars would you give it? (1 star = lowest rating, 5 star = highest rating)

OEQ-2 Did anything in the production not make sense? What was it and why?

OEQ-3 Were there any special problems that need examining? What were they
and why?

OEQ-4 Were there any particular strong, weak, or boring moments in the scene?
What were they and why?

OEQ-5 Any other comments?

Figure 6.27: Spatio-Temporal Open-Ended Questions (OEQ) in the User Survey

6.4.2 NLP versus BML Between Subjects Evaluation

We presented 3D videos of both the hand-mapped production from Broadway in

1964 [15, 86] and a simple natural language processing interpretation of the same

play-script to users for a between groups comparison. Both videos included a block

world where characters and pawns within the scene are represented by blocks, as seen

in Figure 6.29. This eliminated any bias regarding human versus virtual or block

characters, as well as any differences in camera positioning throughout the recordings.

This also helped viewers to focus on the spatial aspects of the performance instead of

any animations or character representations. The characters are able to point, move,

gaze, pick up objects, put down objects, carry objects, and speak.

Each group viewed only one of the videos and answered the questions about the

spatio-temporal reasoning included within the video (between groups experiment).

The questions were presented in randomized order to the users after viewing the

video.

The survey was posted on Mechanical Turk (MTurk) with criteria to enforce partic-

ipants were from the United States, to avoid cultural differences of opinion regarding

space and performances. Additional controls were put in place to ensure participants
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• In what state or U.S. territory do you live?
– US States and Territories – Other - Outside the U.S.

• Which category below includes your age?
– 17 or younger
– 18-20
– 21-29

– 30-39
– 40-49
– 50-59

– 60 or older

• What is your gender?
– Male
– Female

– Non-binary
– Prefer not to answer

• What is your employment status?
– Employed, Full-time
– Employed, Part-time
– Student

– Retired
– Unemployed
– Other

• What culture do you relate most to?
– American
– Arabic
– Chinese
– English

– French
– German
– Italian
– Japanese

– Korean
– Portuguese
– Russian
– Spanish

– Other

• Over the last 12 months, roughly how many times have you been to see a
theatre performance (including opera, musical, play, dance)?
– 0
– 1-3

– 4-10
– 11+

• In the past 7 days, roughly how many hours have you spent playing video
games (e.g., gaming consoles, mobile phones, computers, etc.) involving
virtual characters?
– None
– 1 to 3 hours
– 4 to 6 hours

– 7 to 9 hours
– 10 hours or more

• How familiar are you with theatre, performances, and theatre terminology?
– Very Familiar
– Familiar

– Somewhat Familiar
– Not Familiar

• Are you familiar with the Hamlet play and / or the “Graveyard” Scene prior
to today’s showing?
– Read / seen it multiple times
– Read / saw it once
– Heard of it

– Never read, seen, or heard of it
– Other

Figure 6.28: Demographic Questions in the User Survey
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Figure 6.29: Block World Representation Utilized in 3D Videos

viewed the entire video by including a timer on the video viewing page, and including

an intermission screen of a particular color mid-way in the video. If the participant

did not remain on the video page long enough to watch the video, or if they did not

know what color the intermission screen was, they were disqualified from participat-

ing. Over 748 participants attempted the survey, with only 214 completing it due to

the checks put in place within the survey. Figure 6.30 shows the breakdown of the

participants by the different demographics. As you can see, it represents a reasonable

sampling of the population.

The study included 214 participants who were asked to evaluate the spatial aspects

of a recorded video, as described in the Approach section. 978 people attempted the

study, but were unable to complete the study due to the controls in place to ensure

proper participation, such as time spent watching the video, and identifying the inter-

mission screen color correctly. Twenty-five questions were asked of each participant

regarding different components of the video, ranging from 1 (Strongly Disagree) to

5 (Strongly Agree), all on an interval scale. The sample of 214 responses was split

relatively evenly between the two groups: one viewing the hand-mapped version from

the 1964 production of Hamlet on Broadway (Baseline https://www.youtube.com/

https://www.youtube.com/embed/fY77-8VjSFY
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(a) Gender (b) Age

(c) Residence (d) Employment

(e) Culture (f) Games Participation

(g) Theatre Performances (h) Scene Familiarity

Figure 6.30: Demographic Breakdown of Participants for the Hamlet Baseline-NLP
Between Subjects Study

https://www.youtube.com/embed/fY77-8VjSFY
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embed/fY77-8VjSFY); the other viewing a natural language processing interpretation

from the play-script (NLP https://www.youtube.com/embed/Vjgf12niRRY). There

were 108 participants viewing the Baseline video, and 106 participants viewing the

NLP video. Within these groups, we had 141 females and 75 males participate.

6.4.2.1 Analysis

This experiment provided an estimated power to detect a medium effect (d=0.5) of

>0.95. Since the power of this experiment is relatively high, the chances of committing

a Type II error is extremely low. We performed a two-tailed, two independent samples

t-test on the data gathered. The null hypothesis states that there is no difference in

the means between the two groups.

These two groups were compared and revealed that there is a significant differ-

ence between the Baseline group (M=2.70, SD=0.97) and the NLP group (M=2.32,

SD=1.07), t(212)=2.74, p=0.007 for the question “There was a great deal of random

movement.” The 95% confidence interval for the difference between the means was

0.11 to 0.66, so the minimum expected difference would be about a tenth of a point

on a five point scale. This reflects that there is almost no difference between the Base-

line and NLP groups regarding whether there was a great deal of random movement

within the scene they viewed.

With the question “The more prominent characters in the scene were hidden or

masked from your view,” we found a significant difference between the Baseline group

(M=2.30, SD=0.80) and the NLP group (M=2.58, SD=1.16), t(186)=2.11, p=0.036.

The 95% confidence interval for the difference between the means was -0.56 to -0.02,

so the minimum expected difference would be about two one-hundredths of a point

on a five point scale. This reflects that there is almost no difference between the

Baseline and NLP groups regarding whether the prominent characters in the scene

were hidden or masked from view in the scene the participants viewed.

We found a significant difference between the Baseline group (M=3.36, SD=0.71)

https://www.youtube.com/embed/fY77-8VjSFY
https://www.youtube.com/embed/fY77-8VjSFY
https://www.youtube.com/embed/Vjgf12niRRY
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and NLP group (M=3.58, SD=0.68), t(212)=2.36, p=0.019 for the combined question

of “Consistent Movement.” The 95% confidence interval for the difference between

the means was -0.41 to -0.04, so the minimum expected difference would be about

two one-hundredths of a point on a five point scale. This reflects that there is almost

no difference between the Baseline and NLP groups regarding whether the movement

in the scene was consistent.

Looking at the combined question of “Character Emphasis,” we found a signifi-

cant difference between the Baseline group (M=3.44, sD=0.58) and the NLP group

(M=3.22, SD=0.75), t(198)=2.47, p=0.014. The 95% confidence interval for the dif-

ference between the means was 0.05 to 0.41, so the minimum expected difference

would be about five one-hundredths of a point on a five point scale. This reflects

that there is almost no difference between the Baseline and NLP groups regarding

whether the characters were properly emphasized within the scene.

To recap, with the amount of power included in this experiment, we were able to

find four significant differences in means between our two groups (Baseline and NLP).

However, these were such minimal differences that, for practicality purposes, are not

relevant differences. Hence, we do not observe any differences between our approach

of utilizing NLP to perform a script versus a famous production from 1964.

6.4.2.2 Correlation

We explored the relationships between the twenty-five questions asked of the par-

ticipants to determine if there was any correlation between the questions, which were

in-line with our expected correlations seen in Table 6.6 earlier in this chapter. These

comparisons were evaluated using Pearson Correlation coefficients with a two-tailed

test on the data gathered. We have an estimated power to detect a medium effect

(r=0.3) of >0.99.

There was a significant relationship between several questions asked both as a

medium effect and a large effect. Here, we will focus on the large effects for the
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relationship between the questions. For “The characters’ movement onstage during

the performance was believable in the context of the performance” (CharMvmtBe-

lievable) (M=3.29, SD=1.06), and “Characters appeared to perform suitable move-

ments on cue” (M=3.42, SD=0.98), r(212)=+0.53, p<0.001. We also found that

the question, “The blocking (positioning and timing of the characters) was appropri-

ate” (M=3.35, SD=1.00), is also positively correlated with the CharMvmtBelievable

question, r(212)=+0.59, p<0.001. “The arrangement of the performers appropriately

conveys the mood of the scene” (M=3.26, SD=0.98) is also shown as directly corre-

lated to the CharMvmtBelievable question, r(212)=+0.51, p<0.001.

Additionally, both the question “The movements of the characters were consistent

with the play” (M=3.45, SD=0.89), r(212)=+0.50, p<0.001, and “The characters’

reactions to other characters were believable” (M=3.08, SD=1.11), r(212)=+0.505,

p<0.001, were positively correlated with the CharMvmtBelievable question. This

indicates that the believability of the movements is directly related to the blocking

of the play, the arrangement conveying the mood, the consistency of movements, the

reactions to characters, and the performance of suitable movements on cue.

“The use of space on stage was appropriate” (M=3.17, SD=1.06) is correlated with

the question “There is adequate variety and balance in the use of the performance

space” (M=3.03, SD= 1.06), r(212)=+0.542, p<0.001. This shows that variety and

balance are directly related to how the space on stage is used.

6.4.2.3 Summary

Overall, when comparing our hand-mapped baseline video to our NLP-generated

video, participants found that the Baseline video had more random movement than

the NLP video. Also, they found that the NLP video obscured characters more than

the Baseline video did. With all other questions not being statistically significantly

different, and even the two questions that were statistically significant were opposing

on which video was better. Therefore we conclude these two videos are qualitatively
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similar from a viewer’s perspective. There was not sufficient power for this experiment

to properly evaluate responses based on demographics, such as gender. We also

learned through a conference paper review that likert scales should be evaluated as

ordinal, not scale, measures.

6.4.3 Multiple Component-Based Between Subjects Evaluation

We leveraged the same questionnaire to perform a between subjects qualitative

analysis between each component of our system, plus a random and hand-mapped

version. The goal of this study was to determine whether we are able to provide a

realistic performance, which is similar to a human-performed scene from a viewer’s

perspective. Each group viewed only one of the videos and answered the questions

about the spatio-temporal reasoning included within the video (between groups exper-

iment). The questions were presented in randomized order to the users after viewing

the video.

The survey was posted on Mechanical Turk (MTurk) with criteria to enforce partic-

ipants were from the United States, to avoid cultural differences of opinion regarding

space and performances. Additional controls were put in place to ensure participants

viewed the entire video by including a timer on the video viewing page, and including

an intermission screen of a particular color mid-way in the video. If the participant did

not remain on the video page long enough to watch the video, or if they did not know

what color the intermission screen was, they were disqualified from participating.

The study included 538 participants who were asked to evaluate the spatial as-

pects of a recorded video, with 25 questions asked of each participant. 1020 people

attempted the study, but were unable to complete the study due to the controls in

place to ensure proper participation, such as time spent watching the video, and

identifying the intermission screen color correctly. The sample of responses was split

evenly between five groups: one viewing the hand-mapped version of a real produc-

tion of Hamlet (Baseline); one viewing a random movement version of the same scene
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Table 6.7: Multiple Component-Based Between Subjects Participants and Videos

Video Participants Video URL
Baseline 99 https://www.youtube.com/embed/fY77-8VjSFY
Random 116 https://www.youtube.com/embed/Xs0TgXA8HtM
NLP 114 https://www.youtube.com/embed/Vjgf12niRRY
Rules 97 https://www.youtube.com/embed/QFO9D_CNcLk
FDG 112 https://www.youtube.com/embed/HHWc-HkDsu4

(Random); one viewing our technique with only the natural language processor com-

ponent (NLP); one viewing our technique with only the natural language processor

and rules engine (Rules); and one viewing our technique with all the components—

natural language processor, rules engine, and force-directed graphs (FDG). Table 6.7

shows how many people viewed each video.

Each participant viewed only one video, and answered the 25 Likert questions from

the earlier Figure 6.5, with “Strongly Agree,” “Agree,” “Disagree,” “Strongly Disagree,”

and “I Don’t Know” responses. Figure 6.31 shows the breakdown of the participants

by the different demographics. As you can see, it represents a reasonable sampling of

the population.

This experiment provided an estimated power to detect a medium effect (w=0.3)

of >0.99. Since the power of this experiment is relatively high, the chance of com-

mitting a Type II error is extremely low. We performed a Kruskal-Wallis H test that

showed there was a statistically significant difference in responses between the differ-

ent videos for 15 of the 25 questions. See Table 6.8 for details on which questions were

statistically significantly different, noting that the red-colored questions are phrased

negatively, so a higher mean rank would mean more disagreement with the statement,

which would mean a better video.

When comparing all the videos except NLP and Random, the Kruskal-Wallis H test

showed that there were only two questions with a statistically significant difference

in responses: “The characters were too close together” χ2 = 8.655 p = 0.013, “The

https://www.youtube.com/embed/fY77-8VjSFY
https://www.youtube.com/embed/Xs0TgXA8HtM
https://www.youtube.com/embed/Vjgf12niRRY
https://www.youtube.com/embed/QFO9D_CNcLk
https://www.youtube.com/embed/HHWc-HkDsu4
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(a) Gender (b) Age

(c) Residence (d) Employment

(e) Culture (f) Games Participation

(g) Theatre Performances (h) Scene Familiarity

Figure 6.31: Demographic Breakdown of Participants for the Hamlet Between
Subjects Study—All Modes
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Table 6.9: Tallied Results of Random, Baseline, NLP, Rules, and FDG Statistically
Significant Differences

Compared Videos Tallied Results Conclusion
Baseline : NLP 6:0 Baseline Better
Baseline : Rules 0:0 Same
Baseline : FDG 0:0 Same
Baseline : Random 5:5 Same
NLP : Rules 0:7 Rules Better
NLP : FDG 1:7 FDG Better
NLP : Random 2:10 Random Better
Rules : FDG 3:1 Rules Better
Rules : Random 1:4 Random Better
FDG : Random 3:3 Same

characters were too far apart” χ2 = 6.251 p = 0.044. Otherwise, the Baseline, FDG,

and Rules videos were not significantly different from each other.

After utilizing several post-hoc Mann-Whitney U tests, we found which combina-

tions of videos had significant differences, and which agreed with the statement more.

Table 6.10 shows the specifics of these tests, again with the red-colored questions in-

dicating a negatively worded statement. The video listed in the cell (to the left of the

>) is which video had users agreeing more with the statement and was a significant

difference, as shown.

Some of these questions are worded negatively (indicated in red), so agreeing more

is actually stating that the video was worse than the other one. Taking this into

consideration, we find that the questions “The characters frequently covered or blocked

each other from your point of view,” “There was a great deal of random movement,”

“The more prominent characters in the scene were hidden or masked from your view,”

“The characters were too close together,” “The stage space was not utilized to its full

potential,” and “The characters were too far apart” were all negatively worded, and

generally show the Random video as being worse, except the use of stage space or

spacing. Tallying these up, we see some clear differences, some minor differences, and

some that don’t appear to be any different, as seen in Table 6.9.
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Table 6.10: Pairwise Between Subjects Significant Differences

Question U p Agreed More >
Agreed Less

Characters appeared to
perform suitable move-
ments on cue

4617 0.013 Baseline > NLP
4422 0.007 Rules > NLP
4969 0.002 FDG > NLP
5158.5 0.002 Random > NLP

There was adequate vari-
ety in the staging positions
of the characters

4425 0.002 Random > Baseline
4362 0.005 Rules > NLP
5415.5 0.037 FDG > NLP
4085.5 <0.001 Random > NLP
4612 0.016 Random > Rules
4813 <0.001 Random > FDG

The characters’ movement
onstage during the perfor-
mance was believable in
the context of the perfor-
mance

4914.5 0.049 Random > Baseline
4608.5 0.016 Baseline > NLP
4255 0.002 Rules > NLP
5006 0.003 FDG > NLP
4367 <0.001 Random > NLP

Character movements pro-
vide appropriate dramatic
emphasis

5113 0.002 Random > NLP
4717.5 0.034 Random > Rules
5326.5 0.014 Random > FDG

There is adequate variety
and balance in the use of
the performance space

4830.5 0.034 Random > Baseline
4085.5 <0.001 Random > NLP
4655 0.021 Random > Rules
4732.5 <0.001 Random > FDG

All visible behaviors ap-
pear to be motivated and
coordinated within the
scene

4738.5 0.031 Baseline > NLP
4215.5 0.001 Rules > NLP
5080 0.005 FDG > NLP
5272 0.005 Random > NLP

The characters were
grouped to give proper
emphasis to the right
characters at the right
time

4442.5 0.004 Baseline > NLP

4460.5 0.009 Rules > NLP

5467.5 0.015 Random > NLP

The characters frequently
covered or blocked each
other from your point of
view

4833 0.030 Random > Baseline
4117 <0.001 NLP > Baseline
4580 0.022 NLP > Rules
4857.5 0.001 NLP > FDG
5654 0.043 Random > NLP

Continued on next page
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Table 6.10 – Continued from previous page

Question U p Agreed More >
Agreed Less

The movements of the
characters were consistent
with the play

4644.5 0.020 Baseline > NLP
4673.5 0.043 Rules > NLP
5178.5 0.009 FDG > NLP
5119 0.002 Random > NLP

There was a great deal
of random movement

4862 0.040 Random > Baseline
4773.5 <0.001 Random > FDG

The more prominent char-
acters in the scene were
hidden or masked from
your view

4702.5 0.014 Random > Baseline
4684.5 0.023 Random > Rules
5136.5 0.003 Random > FDG

The characters were too
close together

4125 <0.001 Baseline > Random
5103.5 0.006 FDG > NLP
5643.5 0.038 NLP > Random
4561.5 0.008 Rules > Random
3912 <0.001 FDG > Random

The stage space was not
utilized to its full potential

4771.5 0.025 Baseline > Random
5623.5 0.040 NLP > Random
5051 0.002 FDG > Random

All characters were visible
from your point of view
throughout the scene

4556.5 0.005 Baseline > Random

The characters were too
far apart

4328 0.001 Random > Baseline
5496.5 0.039 NLP > FDG
5676 0.042 Random > NLP
4529.5 <0.001 Random > FDG

Looking at these tallies, we see that all videos were better than the NLP video by

quite a few statistically significant questions. However, all the other videos are the

same or only have a couple of statistically significant differences. Also, with seeing

that removing both the NLP and Random videos all other videos are the statistically

the same, we can summarize that ( Baseline = Rules = FDG ) > Random > NLP.

So both our Rules and FDG techniques provide qualitatively similar performances as

the handmapped Baseline video.
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The problem with these conclusions is that there is such a lot of variance in the

ratings, it leads us to believe that the findings are not as reliable as we’d like. When

reviewing further, we realized that doing a between subjects study left participants

without a frame of reference for what is “good” versus “bad,” and therefore one per-

son’s “good” may be much lower than another person’s “good.” Since we are compar-

ing ranks of un-standardized ratings, we cannot fully understand the results found.

Therefore, we looked to repeat this study as a within subjects study, to provide that

reference point to compare the various videos against. This would alleviate the dif-

ferences in each participant’s definition of “good,” and focus instead on the relative

difference between the rankings, which can be more consistent.

6.4.4 Multiple Component-Based Within Subjects Evaluation

Because of the inconsistencies with the between subjects study, we performed a

within subjects study of the same videos as before. To alleviate the time-requirements

for performing a within subjects study, we leveraged a simplified version of our original

questionnaire. The questionnaire consisted of six questions where the participant was

asked to rank the five videos they watched from Best (top) to Worst (bottom). These

questions, seen in Figure 6.32, were a simplified / reduced number of questions, but

still encompassed the content of the 25 questions from the between subjects study.

Referring to the earlier Table 6.6, we aligned the reduced questions as specified in

Table 6.11.

The goal of this study was to determine which videos were more realistic or similar

to a human-performed scene from a viewer’s perspective. Each group viewed all five

of the videos and answered the questions in Figure 6.32 (within groups experiment).

Both the videos and the questions were presented in randomized order to the users

after viewing the video.

The survey was posted on Mechanical Turk (MTurk) with criteria to enforce partic-

ipants were from the United States, to avoid cultural differences of opinion regarding
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RQ-1 Rank the Character Positioning within the video performances from Best
(top) to Worst (bottom). Ex: Were the characters too close together? Too
far apart? Did the arrangement of the characters make sense?

RQ-2 Rank the Character Movements within the video performances from Best
(top) to Worst (bottom). Ex: Did the movements appear to be in-sync
with the script? Did the characters move at unusual times? Did they move
too much? Too little?

RQ-3 Rank the use of the Stage’s space within the video performances from Best
(top) to Worst (bottom). Ex: Did the characters cover the whole stage?
Only one small part of the stage? Did the use of the space make sense with
respect to the scene?

RQ-4 Rank the overall character visibility within the video performances from
Best (top) to Worst (bottom). Ex: Were characters frequently blocking
your view to another character? Were all characters visible throughout the
entire scene?

RQ-5 Rank the pace of the scene within the video performances from Best (top)
to Worst (bottom). Ex: Did it move too slow? Did it move too fast? Did
the scene progress in-line with expectations for the script?

RQ-6 Rank the Overall video performances from Best (top) to Worst (bottom).
Ex: Considering the entire scene, which one(s) were more pleasing or be-
lievable to you?

Figure 6.32: Spatio-Temporal Simplified Rank Questions (RQ) in the
Within-Participants Survey
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Table 6.11: Reduction of Spatio-Temporal Questions

Spatial Component Covered from Table 6.6 New Question

Engaged Listening Character Position
Pace of Performance Pace
Appropriate Movement and Timing Character Movement
Consistent Movement Character Movement
Space Usage Stage Space
Variety and Closeness Stage Space
Motivated Movement Character Movement
Scene Mood Overall Video
Character Emphasis Character Position
Visible Characters Character Visibility
Believable Overall Video

space and performances. Additional controls were put in place to ensure partici-

pants viewed the entire video by including a timer on the video viewing page, and

including an intermission screen of a particular color mid-way in the video. If the

participant did not remain on the video page long enough to watch the videos, or if

they did not know what color the intermission screens were, they were disqualified

from participating.

The study included 49 participants who were presented (in random order) all five

videos: one viewing the hand-mapped version of a real production of Hamlet (Base-

line); one viewing a random movement version of the same scene (Random); one

viewing our technique with only the natural language processor component (NLP);

one viewing our technique with only the natural language processor and rules engine

(Rules); and one viewing our technique with all the components—natural language

processor, rules engine, and force-directed graphs (FDG). 256 people attempted the

study, but were unable to complete the study due to the controls in place to ensure

proper participation, such as time spent watching all of the videos, and identifying the

intermission screen colors correctly for each video, which can be seen in Table 6.12.

They then ranked the videos for the six different dimensions, shown in Figure 6.32.

Figure 6.33 shows the breakdown of the participants by the different demographics.
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Table 6.12: Multiple Component-Based Within Subjects Videos

Video Video URL
Baseline https://www.youtube.com/embed/fY77-8VjSFY
Random https://www.youtube.com/embed/Xs0TgXA8HtM
NLP https://www.youtube.com/embed/Vjgf12niRRY
Rules https://www.youtube.com/embed/QFO9D_CNcLk
FDG https://www.youtube.com/embed/HHWc-HkDsu4

As you can see, it represents a reasonable sampling of the population.

This experiment provided an estimated power to detect a medium effect (f=0.25) of

>0.99. Since the power of this experiment is relatively high, the chance of committing

a Type II error is extremely low. We performed a Friedman test that showed there

was a statistically significant difference in rankings for only two questions, “Character

Visibility” χ2 = 0.638 p = 0.049 and “Overall” χ2 = 15.171 p = 0.004. However, run-

ning the Friedman test without the Random video included, neither of these questions

showed any significant differences.

After running post-hoc Wilcoxon tests, we found that there were no statistically

significant differences between the Baseline, FDG, Rules, and NLP videos. Now that

we have a frame of reference for all the rankings, we have more consistent results.

This confirms our expectations that these techniques provide an indistinguishably

“good” performance from a viewer’s perspective.

We then looked at how the Random video ranked versus the other videos and found

for each question the statistically significant differences in rankings that can be seen

in Table 6.13. This shows an overall trend of all the videos being better than the

Random video, which again was expected.

https://www.youtube.com/embed/fY77-8VjSFY
https://www.youtube.com/embed/Xs0TgXA8HtM
https://www.youtube.com/embed/Vjgf12niRRY
https://www.youtube.com/embed/QFO9D_CNcLk
https://www.youtube.com/embed/HHWc-HkDsu4
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(a) Gender (b) Age

(c) Residence (d) Employment

(e) Culture (f) Games Participation

(g) Theatre Performances (h) Scene Familiarity

Figure 6.33: Demographic Breakdown of Participants for the Hamlet Within
Subjects Study—All Modes
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Table 6.13: Within Subjects Significant Differences—Pairwise Comparisons

Question Z p
Pairwise Ranking
(Ranked Higher >
Ranked Lower)

Character
Visibility -2.125 0.034 Rules > Random

Overall Video

-2.165 0.030 FDG > Random
-3.120 0.002 Baseline > Random
-3.036 0.002 Rules > Random

6.5 Summary

In this chapter, we reviewed the evaluations performed to validate our techniques

of natural language processing, rules, and force-directed graphs. We showed that our

engine reduces the authorial burden for the scene designer, and qualitatively provide

an equally “good” performance as a real human performance. We showed that we

were able to match a real performance at 89% for position and 53% for gaze using

our NLP+Rules engine. We explored the capabilities of force-directed graphs to

better arrange our characters on the stage than our rules alone. Overall, we saw that

our techniques met or surpassed a human’s perception of a quality performance, and

was able to mimic a famous Broadway production from 1964.



CHAPTER 7: GENERALIZATION

Now that we have reviewed each component of our engine with one play-script,

we need to evaluate how well these techniques can perform for other play-scripts.

Here, we identify the different spatio-temporal performance dimensions that vary in a

performance. We leverage these to identify a covering set of play-scripts to determine

our technique’s generalizability. We once again evaluate our engine against the human

performance of the same play-script for both quantitative and qualitative analysis.

We find that in most cases, viewers see our engine as qualitatively as good as the

human performance version of the same scene.

7.1 Spatio-temporal Performance Dimensions

When looking to prove the generalization of the techniques described in Chap-

ter 4: METHODOLOGY, we have to define the spatio-temporal dimensions that

define the unique types of performances. When reviewing the spatial and temporal

aspects of a play, we identified the following dimensions and categories:

•Speed Slow, Medium, Fast

•Number of Characters One, Two to Four, Five or More

•Space Defined Box, Undefined, Defined Partial

•Audience Proscenium, Thrust, Round

•Dynamics Formal, Informal

The speed of the performance indicates how quickly the characters progress through

a scene. For example, Krapp’s Last Tape is a slow-moving performance, whereas
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Noises Off is a fairly fast-paced performance. As we look at generalizing these tech-

niques, we want to ensure they work for different paces. This is leveraged as a pa-

rameter within our engine that could reduce or expand the amount of time between

actions, and for movement, within the play-script.

All performances include a number of actors that perform the scene—anywhere

from one to up to twelve or more. Here, we divided these into three categories to

segregate the complexities that arise due to how many actors are on a stage at a time.

With just one character on the stage, we see more monologues and less interaction

with others. When we have a large number of characters on the stage, there is more

complexity in the interactions and options available to the actors. However, most

scenes tend to have just a few characters, which we’ve differentiated with the two to

four group.

Space is key to our technique, yet even though it can have many variations of a

fully defined box area to a fully undefined area, it can often be reduced down to

a single defined area that is currently being enacted upon. So despite it being an

important dimension, it does not affect the distinct combinations for generalizing our

technique. Defined partial space is when the stage is split into sections that will be

used for certain scenes, while the rest of the stage goes unused

The audience can vary due to theatre configurations, or even within games. Usu-

ally there is one location that the audience resides—proscenium theatre setup or

single player games. There are also scenarios where there may be two, three (thrust

theatre setup), or four (in the round theatre setup) locations where the audience re-

sides. Today’s theatre is most commonly performed in a proscenium configuration,

which limited our ability to explore the generalization to other arrangements due to

insufficient video samples available to compare to a human-performed baseline.

Last, but not least, we have different aspects of the intimacy of the scene. Some

are more formal and lend themselves to a more distant positioning of the characters,
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while others might be more informal, with closer associations during a performance.

Dynamics drives how closely the characters may be to each other when conversing.

This is represented by a parameter in our engine that controls the forces for spacing

between characters, which can adjust how familiarly the characters arrange themselves

in the scene. Also considered were aspects of the levels of the scene, but it was

determined this was not required since it is always part of the defined space and it

can always be reduced to a single continuous space in virtual environments.

7.2 Generalization Coverage

With the above defined dimensions, we have a 3 ·3 ·3 ·3 ·2 = 162 dimensional space

to cover to prove generalization. Because all the options for space can be reduced

down to a single, currently used, defined space, we can reduce that dimension from

three to one, and thereby reduce our dimensionality to 3 ·3 ·1 ·3 ·2 = 54. Also, due to

our limited availability of samples with other audience configurations, we are forced

to limit our generalization coverage to just the single audience scenario. This leaves

us with a 3 · 3 · 1 · 1 · 2 = 18 dimensional space for proving generalization across a

single audience category for plays.

With so many permutations to cover, we look for ways to reduce testing iterations

yet still reach a reasonable coverage of our domain. It has been found that whenever

an application has roughly five or more configurable attributes, a covering array is

likely to make testing more efficient. Because the number of t-way tests is propor-

tional to vt log n, for n parameters with v values each, unless configurable attributes

have more than eight or ten possible values each, the number of tests generated will

probably be reasonable [70]. Pairwise testing has come to be accepted as the com-

mon approach to combinatorial testing because it is computationally tractable and

reasonably effective [49].

We leveraged the Advanced Combinatorial Testing System (ACTS) tool to help

identify potential dimension combinations required to obtain 100% pairwise coverage.
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# Degree of interaction coverage: 2
# Number of parameters: 4
# Maximum number of values per parameter: 3
# Number of configurations: 9

Num Chars Speed Dynamics Audience
One Slow Informal Proscenium
One Moderate Formal Proscenium
One Fast Informal Proscenium
Two to Four Slow Formal Proscenium
Two to Four Moderate Informal *
Two to Four Fast Formal *
Five More Slow Informal Proscenium
Five More Moderate Formal *
Five More Fast * *

Figure 7.1: ACTS Tool Output of Pairwise Coverage with Audience Constraint

Since some combinations cannot be tested because they don’t exist for the systems

under test, such as our audience dimension, we specified constraints, which told the

tool not to include specified combinations in the generated test configurations. The

covering array tool then generated a set of test configurations that does not include the

invalid combinations, but does cover all those that are essential for pairwise testing [8].

The ACTS tool was used to determine coverage of our scenarios for generalization. It

provided nine configurations to obtain 100% pairwise coverage and 100% dimensional

coverage. Figure 7.1 show the outputs from the tool.

We were able to find seven of those combinations as video-recorded scenes (and

hence a usable baseline to compare to), as seen in Table 7.1. As you can see, this

only covers seven of the nine combinations required for 100% pairwise coverage, yet

does provide 100% coverage for each dimension independently.

Unfortunately, we were unable to find a usable recorded scene that would fit the

scenarios defined in Table 7.2. These missing scenes cover more of the edges of our

spatial domain with respect to the number of characters on the scene. We wanted
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Table 7.1: Covered Pairwise Combinations

Play Title Play Author Num
Chars

Speed Dynamics

The Importance of Being
Earnest

Oscar Wilde 5+ Moderate Formal

Death of a Salesman Arthur Miller 5+ Moderate Informal
Krapp’s Last Tape Samuel Beckett 1 Slow Informal
Noises Off Michael Frayn 2-4 Fast Informal
Tartuffe Moliere 2-4 Moderate Informal
Hamlet Shakespeare 2-4 Slow Formal
The Cherry Orchard Anton Chekhov 2-4 Slow Informal

Table 7.2: Missing Pairwise Combinations for 100% Coverage

Num Chars Speed Dynamics
Five or More slow formal
Five or More fast formal
One moderate formal
One fast formal

to better understand what kind of coverage this would provide us, so we looked to

the National Institute of Standards and Technology (NIST) Combinatorial Coverage

Measurement (CCM) tool for answers [48]. The CCM tool provides insight into what

coverage you have, given a specific set of dimension combinations. It showed that we

obtained 71.42% pairwise coverage, and 100% dimensional coverage with our chosen

play-scripts.

7.3 Generalization Experimentation

With a total of 162 possible combinations of play-scripts required to fully cover our

spatio-temporal dimensions, we reduced our sampling to only seven scenes, with one

having already been completed (Hamlet). We are comparing a hand-mapped baseline

version of each recorded performance to only one version of our techniques—the com-

plete natural language processor, rules, and force-directed graph (NLP+Rules+FDG)

engine. We evaluated each of these remaining six play-scripts both quantitatively and

qualitatively to determine the effectiveness of our NLP+Rules+FDG techniques for
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positioning the characters, and prove generalization.

7.3.1 Quantitative Analysis

For each play-script, we took the character traces from both our baseline (hand-

coded Behavior Markup Language, BML, based on the actual play performance) and

our NLP+Rules+FDG engine, and compared them. We wanted our new technique

to have similar positioning as the actual performance, but not penalize for being

“close enough.” Therefore, we divided the stage into nine onstage areas, plus a tenth

offstage location, as seen in Figure 7.2a. We also did the same comparison for the

gaze direction to determine which of the four directions the character was gazing

throughout the scene, as seen in Figure 7.2b.

Adjustments were made to the original codebase to incorporate an initialization

file that would identify all the pawns, marks, characters, character prioritization, and

colorings. Some additional synonyms were added to align with the language used

within the play-script to align the natural language processor (NLP) component’s

BML output properly.

It is important to notice that most of the performances included movements that

were not annotated within the play-script utilized by our techniques. Also, due to the

difficulty in handmapping gazes in the scenes, some gaze information in the baseline

videos may be missing. Lastly, the forces add a layer of arrangement that may shift

characters slightly outside their stage box, but still be close, when adjusting the

character positions, which may impact our positional matching.

7.3.1.1 Tartuffe Quantitative Analysis

With the Tartuffe play-script, we had two characters (Elmire and Orgon), and two

pawns in the scene. This particular scene required us to incorporate a feature for

moving around an object. The prioritization of the characters for this scene were

defined to be:
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(a) Stage Positions
(b) Stage Gaze Directions

Figure 7.2: Stage Area Breakdown for Position and Gaze Comparisons

Table 7.3: Tartuffe Character Traces Match for Baseline vs. FDG

Character Name Gaze Match Position Match
ELMIRE 52.38% 50.79%
ORGON 24.34% 12.70%
Overall 38.36% 31.75%

Elmire > Orgon

We took the logged position and gaze traces for each of the characters, for both

the baseline scene and our FDG scene. We normalized the time for both scenes,

and mapped the positions and gazes to our grid locations, as before. These grid

locations and directions were then compared for a match or not, incorporating the

“close enough” criteria by leveraging the generalized locations and directions.

We found that, with the forces, we were able to position the characters correctly

on average 31.75% of the time, and their gazes 38.36%, as can be seen in Table 7.3.

Detailed character trace information can be seen in Figures 7.3, 7.4, 7.5, and 7.6.

Some of these discrepancies appear to be related to movements that were not anno-

tated in the play-script, such as Elmire pacing to the far corners of the stage and

back a few times.
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Figure 7.3: Character Position Traces for Elmire in Tartuffe

Figure 7.4: Character Position Traces for Orgon in Tartuffe

Figure 7.5: Character Gaze Traces for Elmire in Tartuffe
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Figure 7.6: Character Gaze Traces for Orgon in Tartuffe

7.3.1.2 Death of a Salesman Quantitative Analysis

With the Death of a Salesman play-script, we had five characters (Linda, Biff,

Charley, Happy, and Bernard), and no pawns in the scene. The prioritization of the

characters for this scene were defined to be:

Linda > Biff > Charley > Happy > Bernard

We took the logged position and gaze traces for each of the characters, for both

the baseline scene and our FDG scene. We normalized the time for both scenes,

and mapped the positions and gazes to our grid locations, as before. These grid

locations and directions were then compared for a match or not, incorporating the

“close enough” criteria by leveraging the generalized locations and directions.

We found that, with the forces, we were able to position the characters correctly

on average 54.76% of the time, and their gazes 41.57%, as can be seen in Table 7.4.

Detailed character trace information can be seen in Figures 7.7, 7.8, 7.9, 7.10, 7.11,

7.12, 7.13, 7.14, 7.15, and 7.16. Some of these discrepancies appear to be related to

general conversational spacing and just being slightly outside the stage position box

from the baseline. This can be seen best with Bernard and Linda, where they are

down center in the Baseline video, but centerstage in the FDG video. This is due to

our arrangement into a semi-circle by the forces, which shifted their location slightly.
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Table 7.4: Death of a Salesman Character Traces Match for Baseline vs. FDG

Character Name Gaze Match Position Match
BERNARD 35.54% 15.06%
BIFF 54.22% 97.29%
CHARLEY 33.43% 90.36%
HAPPY 62.05% 71.08%
LINDA 22.59% 0.00%
Overall 41.57% 54.76%

Figure 7.7: Character Position Traces for Linda in Death of a Salesman

Figure 7.8: Character Position Traces for Biff in Death of a Salesman
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Figure 7.9: Character Position Traces for Charley in Death of a Salesman

Figure 7.10: Character Position Traces for Happy in Death of a Salesman

Figure 7.11: Character Position Traces for Bernard in Death of a Salesman
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Figure 7.12: Character Gaze Traces for Linda in Death of a Salesman

Figure 7.13: Character Gaze Traces for Biff in Death of a Salesman

Figure 7.14: Character Gaze Traces for Charley in Death of a Salesman



129

Figure 7.15: Character Gaze Traces for Happy in Death of a Salesman

Figure 7.16: Character Gaze Traces for Bernard in Death of a Salesman
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7.3.1.3 Noises Off Quantitative Analysis

With the Noises Off play-script, we had four characters (Garry, Lloyd, Dotty, and

Brooke), and one pawn in the scene. The prioritization of the characters for this scene

were defined to be:

Garry > Lloyd > Dotty > Brooke

We took the logged position and gaze traces for each of the characters, for both

the baseline scene and our FDG scene. We normalized the time for both scenes,

and mapped the positions and gazes to our grid locations, as before. These grid

locations and directions were then compared for a match or not, incorporating the

“close enough” criteria by leveraging the generalized locations and directions.

We found that, with the forces, we were able to position the characters correctly

on average 62.76% of the time, and their gazes 24.55%, as can be seen in Table 7.5.

Detailed character trace information can be seen in Figures 7.17, 7.18, 7.19, 7.20,

7.21, 7.22, 7.23, and 7.24. Some of these discrepancies appear to be related to slight

shifts in position location, such as Brooke being down left in the Baseline video, but

stage left in the FDG video. Also, you will see that some of the rules incorporated

extra gaze directions, which were not captured in the Baseline video. One example

is Dotty, where she oscillates from looking stage left versus stage right in the FDG

video because she is looking at the current speaker the whole time. Many of these

gaze changes were missed in the handmapping of the scene.

Table 7.5: Noises Off Character Traces Match for Baseline vs. FDG

Character Name Gaze Match Position Match
BROOKE 7.76% 5.97%
DOTTY 34.63% 97.31%
GARRY 31.04% 84.18%
LLOYD 24.78% 63.58%
Overall 24.55% 62.76%
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Figure 7.19: Character Position Traces for Dotty in Noises Off

Figure 7.17: Character Position Traces for Garry in Noises Off

Figure 7.18: Character Position Traces for Lloyd in Noises Off
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Figure 7.20: Character Position Traces for Brooke in Noises Off

Figure 7.21: Character Gaze Traces for Garry in Noises Off

Figure 7.22: Character Gaze Traces for Lloyd in Noises Off
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Figure 7.23: Character Gaze Traces for Dotty in Noises Off

Figure 7.24: Character Gaze Traces for Brooke in Noises Off
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7.3.1.4 Krapp’s Last Tape Quantitative Analysis

With the Krapp’s Last Tape play-script, we had one character (Krapp), and eight

pawns in the scene. This particular scene required us to incorporate a feature for

determining which object of a set of objects with the same name is being referred

to (i.e., Box 1 versus Box 2). We determined this by which one was closest to the

character. A similar feature was utilized in Hamlet to differentiate the two skulls in

the “Graveyard” scene.

We took the logged position and gaze traces for each of the characters, for both

the baseline scene and our FDG scene. We normalized the time for both scenes,

and mapped the positions and gazes to our grid locations, as before. These grid

locations and directions were then compared for a match or not, incorporating the

“close enough” criteria by leveraging the generalized locations and directions.

We found that, with the forces, we were able to position the character correctly

100.00% of the time, and his gaze 43.62%, as can be seen in Table 7.6. Detailed

character trace information can be seen in Figures 7.25 and 7.26.

Table 7.6: Krapp’s Last Tape Character Traces Match for Baseline vs. FDG

Character Name Gaze Match Position Match

KRAPP 43.62% 100.00%

Overall 43.62% 100.00%
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Figure 7.25: Character Position Traces for Krapp in Krapp’s Last Tape

Figure 7.26: Character Gaze Traces for Krapp in Krapp’s Last Tape
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7.3.1.5 The Cherry Orchard Quantitative Analysis

With The Cherry Orchard play-script, we had six characters (Anya, Yasha,

Epikhodov, Trofimov, Lopakhin, and Varya), and two pawns in the scene. The pri-

oritization of the characters for this scene were defined to be:

Anya > Y asha > Epikhodov > Trofimov > Lopakhin > V arya

We took the logged position and gaze traces for each of the characters, for both

the baseline scene and our FDG scene. We normalized the time for both scenes,

and mapped the positions and gazes to our grid locations, as before. These grid

locations and directions were then compared for a match or not, incorporating the

“close enough” criteria by leveraging the generalized locations and directions.

We found that, with the forces, we were able to position the characters correctly

on average 71.98% of the time, and their gazes 60.94%, as can be seen in Table 7.7.

Detailed character trace information can be seen in Figures 7.27, 7.28, 7.29, 7.30,

7.31, 7.32, 7.33, 7.34, 7.35, 7.36, 7.37, and 7.38. Here again, we see a few slight

shifts of location between the Baseline and FDG videos, such as being down right

versus stageright with Anya, Trofimov, and Lopakhin.

Table 7.7: The Cherry Orchard Character Traces Match for Baseline vs. FDG

Character Name Gaze Match Position Match

ANYA 44.38% 23.13%

EPIKHODOV 54.38% 86.25%

LOPAKHIN 19.38% 68.13%

TROFIMOV 85.63% 70.00%

VARYA 84.38% 100.00%

YASHA 77.50% 84.38%

Overall 60.94% 71.98%
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Figure 7.27: Character Position Traces for Anya in The Cherry Orchard

Figure 7.28: Character Position Traces for Yasha in The Cherry Orchard

Figure 7.29: Character Position Traces for Epikhodov in The Cherry Orchard
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Figure 7.30: Character Position Traces for Trofimov in The Cherry Orchard

Figure 7.31: Character Position Traces for Lopakhin in The Cherry Orchard

Figure 7.32: Character Position Traces for Varya in The Cherry Orchard
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Figure 7.33: Character Gaze Traces for Anya in The Cherry Orchard

Figure 7.34: Character Gaze Traces for Yasha in The Cherry Orchard

Figure 7.35: Character Gaze Traces for Epikhodov in The Cherry Orchard



140

Figure 7.36: Character Gaze Traces for Trofimov in The Cherry Orchard

Figure 7.37: Character Gaze Traces for Lopakhin in The Cherry Orchard

Figure 7.38: Character Gaze Traces for Varya in The Cherry Orchard
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7.3.1.6 The Importance of Being Earnest Quantitative Analysis

With The Importance of Being Earnest play-script, we had seven characters (Jack,

Lady Bracknell, Miss Prism, Gwendolen, Chasuble, Algernon, and Cecily), and two

pawns in the scene. The prioritization of the characters for this scene were defined to

be:

Jack > LadyBracknell > MissPrism > Gwendolen

> Chasuble > Algernon > Cecily

We took the logged position and gaze traces for each of the characters, for both

the baseline scene and our FDG scene. We normalized the time for both scenes,

and mapped the positions and gazes to our grid locations, as before. These grid

locations and directions were then compared for a match or not, incorporating the

“close enough” criteria by leveraging the generalized locations and directions.

We found that, with the forces, we were able to position the characters correctly

on average 26.73% of the time, and their gazes 27.58%, as can be seen in Table 7.8.

Detailed character trace information can be seen in Figures 7.39, 7.40, 7.41, 7.42,

7.43, 7.44, 7.45, 7.46, 7.47, 7.48, 7.49, 7.50, 7.51, and 7.52. Some of these

discrepancies appear to be related to movements that were not annotated in the

play-script.

Table 7.8: The Importance of Being Earnest Character Traces Match for Baseline
vs. FDG

Character Name Gaze Match Position Match
CECILY 25.88% 0.00%
CHASUBLE 10.61% 60.96%
GWENDOLEN 41.87% 13.86%
JACK 36.49% 50.64%
LADY BRACKNELL 19.66% 2.55%
MISS PRISM 30.98% 32.39%
Overall 27.58% 26.73%
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Figure 7.39: Character Position Traces for Jack in The Importance of Being Earnest

Figure 7.40: Character Position Traces for Lady Bracknell in The Importance of
Being Earnest

Figure 7.41: Character Position Traces for Miss Prism in The Importance of Being
Earnest
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Figure 7.42: Character Position Traces for Gwendolen The Importance of Being
Earnest

Figure 7.43: Character Position Traces for Chasuble in The Importance of Being
Earnest

Figure 7.44: Character Position Traces for Algernon in The Importance of Being
Earnest
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Figure 7.45: Character Position Traces for Cecily in The Importance of Being
Earnest

Figure 7.46: Character Gaze Traces for Jack in The Importance of Being Earnest

Figure 7.47: Character Gaze Traces for Lady Bracknell in The Importance of Being
Earnest
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Figure 7.48: Character Gaze Traces for Miss Prism in The Importance of Being
Earnest

Figure 7.49: Character Gaze Traces for Gwendolen The Importance of Being
Earnest

Figure 7.50: Character Gaze Traces for Chasuble in The Importance of Being
Earnest
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Figure 7.51: Character Gaze Traces for Algernon in The Importance of Being
Earnest

Figure 7.52: Character Gaze Traces for Cecily in The Importance of Being Earnest
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Table 7.9: Overall Play Character Traces Match for Baseline vs. FDG

Play Title Average Gaze
Match

Average Position
Match

The Importance of Being Earnest 27.58% 26.73%
Krapp’s Last Tape 43.62% 100.00%
Death of a Salesman 41.57% 54.76%
Noises Off 24.55% 62.76%
The Cherry Orchard 60.94% 71.98%
Tartuffe 38.36% 31.75%
Overall 44.03% 58.00%

7.3.1.7 Quantitative Summary

Overall, we were able to position characters to match the baseline videos 58.00%

of the time with their positions, and 44.03% of the time with their gazes, as seen in

Table 7.9. Some scripts did better than others, and were different mostly because

of missing annotations in the play-scripts or being slightly shifted outside the stage

grid of where they should have been because of the forces being applied. Many of

the scripts show higher gaze oscillations in the FDG videos due to the rule that has

onstage characters look at the current speaker, and the Baseline videos may have

missed some gaze changes during the handmapping.

7.3.2 Qualitative Analysis

We found actual recorded performances of each of the scripts identified in the

Generalization Coverage section and hand-mapped the movements and gazes to BML

to produce our Baseline video. We then took the same play-script (with performance-

specific annotations, where available), and ran it through our NLP+Rules+FDG

engine to produce a second video, which we referred to as the FDG video. Participants

viewed both videos in a randomized order to avoid any order effects on the results.

After each video, they were asked the questions in Figure 7.53 about what they

just viewed, with the available responses being “Very Good,” “Good,” “Acceptable,”

“Poor,” “Very Poor.”
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•Character Positioning Rate the quality of the Character Positioning
within the performance. Ex: Were the characters too close together? Too
far apart? Did the arrangement of the characters make sense?

•Character Movement Rate the quality of the Character Movements
within the performance. Ex: Did the movements appear to be in-sync with
the script? Did the characters move at unusual times? Did they move too
much? Too little?

•Stage Space Rate the quality of the use of the Stage Space within the per-
formance. Ex: Did the characters cover the whole stage? Only one small
part of the stage? Did the use of the space make sense with respect to the
scene?

•Character Visibility Rate the quality of the overall Character Visibility
within the performance. Ex: Were the characters frequently blocking your
view to another character? Were all characters visible throughout the entire
scene?

•Pace Rate the quality of the Pace of the scene within the performance. Ex:
Did it move too slow? Did it move too fast? Did the scene progress in-line
with expectations for the script?

•Overall Performance Rate the quality of the Overall Performance. Ex:
Considering the entire scene, was it pleasing or believable to you?

Figure 7.53: Likert-Scale Spatio-Temporal Questions for Generalization Study
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We leveraged this questionnaire to perform a qualitative analysis on our system

for each of the play-scripts defined for our generalization coverage. The goal of these

studies were to determine whether we are able to provide a realistic performance

which is similar to a human-performed scene from the viewer’s perspective. We also

asked for basic demographic information, like before, with questions in Figure 7.54.

7.3.2.1 Tartuffe Qualitative Analysis

With this study, each group viewed both of the videos (a handmapped Baseline

video https://www.youtube.com/embed/aECjAkITzmk, and a FDG-generated video

https://www.youtube.com/embed/vOkYFwKuang) and answered the questions in

Figure 7.53 (within groups experiment). Both the order of the videos and the order

of the questions for each video were presented in randomized order to the users.

The survey was posted on Mechanical Turk (MTurk) with criteria to enforce partic-

ipants were from the United States, to avoid cultural differences of opinion regarding

space and performances. Additional controls were put in place to ensure partici-

pants viewed the entire video by including a timer on the video viewing page, and

including an intermission screen of a particular color mid-way in the video. If the

participant did not remain on the video page long enough to watch the videos, or if

they did not know what color the intermission screens were, they were disqualified

from participating.

The study for this play-script included 61 participants that viewed both videos, as

seen in Figure 7.56. 140 people attempted the study, but were unable to complete the

study due to the controls in place to ensure proper participation. Figure 7.55 shows

the breakdown of the participants by the different demographics. As you can see, it

represents a reasonable sampling of the population.

This experiment provided an estimated power to detect a medium effect (f=0.25) of

0.96. We performed a Wilcoxon Signed-Rank test that showed there was a statistically

significant difference in rankings for three questions, “Character Positioning,” “Stage

https://www.youtube.com/embed/aECjAkITzmk
https://www.youtube.com/embed/vOkYFwKuang
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• In what state or U.S. territory do you live?
– US States and Territories – Other - Outside the U.S.

• Which category below includes your age?
– 17 or younger
– 18-20
– 21-29

– 30-39
– 40-49
– 50-59

– 60 or older

• What is your gender?
– Male
– Female

– Non-binary
– Prefer not to answer

• What is your employment status?
– Employed, Full-time
– Employed, Part-time
– Student

– Retired
– Unemployed
– Other

• What culture do you relate most to?
– American
– Arabic
– Chinese
– English

– French
– German
– Italian
– Japanese

– Korean
– Portuguese
– Russian
– Spanish

– Other

• Over the last 12 months, roughly how many times have you been to see a
theatre performance (including opera, musical, play, dance)?
– 0
– 1-3

– 4-10
– 11+

• In the past 7 days, roughly how many hours have you spent playing video
games (e.g., gaming consoles, mobile phones, computers, etc.) involving
virtual characters?
– None
– 1 to 3 hours
– 4 to 6 hours

– 7 to 9 hours
– 10 hours or more

• How familiar are you with theatre, performances, and theatre terminology?
– Very Familiar
– Familiar

– Somewhat Familiar
– Not Familiar

• Are you familiar with the play and / or the scene prior to today’s showing?
– Read / seen it multiple times
– Read / saw it once
– Heard of it

– Never read, seen, or heard of it
– Other

Figure 7.54: Demographic Questions in the User Survey
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(a) Gender (b) Age

(c) Residence (d) Employment

(e) Culture (f) Games Participation

(g) Theatre Performances (h) Scene Familiarity

Figure 7.55: Demographic Breakdown of Participants for the Tartuffe Within
Subjects Study
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(a) Baseline Video (b) FDG Video

Figure 7.56: Screenshots of the Tartuffe Videos Participants Viewed

Space,” and “Character Visibility.” It showed that Character Positioning for the FDG

video was considered better, Z=-2.519 p=0.012. It also showed that the Character

Visibility for the FDG video was also considered better, Z=-4.688 p<0.001. For

the last one, Stage Space, it showed that the Baseline video was considered better,

although this was just barely a statistically significant finding, Z=-1.966 p=0.049.

These findings show that the FDG video was as good as, or better than, the human

performance of the same scene. The one area where the Baseline was seen as better

was from the use of the stage space, which was more widely used in the Baseline

because Elmire does some adhoc pacing from one side of the stage to the other, as

seen in our quantitative analysis section.

7.3.2.2 Death of a Salesman Qualitative Analysis

With this study, each group viewed both of the videos (a handmapped Baseline

video https://www.youtube.com/embed/i9sQIf9ezas, and a FDG-generated video

https://www.youtube.com/embed/P2C8SJrGKKk) and answered the questions in

Figure 7.53 (within groups experiment). Both the order of the videos and the or-

der of the questions for each video were presented in randomized order to the users.

The survey was posted on Mechanical Turk (MTurk) with criteria to enforce partic-

ipants were from the United States, to avoid cultural differences of opinion regarding

space and performances. Additional controls were put in place to ensure partici-

https://www.youtube.com/embed/i9sQIf9ezas
https://www.youtube.com/embed/P2C8SJrGKKk
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(a) Baseline Video (b) FDG Video

Figure 7.57: Screenshots of the Death of a Salesman Videos Participants Viewed

pants viewed the entire video by including a timer on the video viewing page, and

including an intermission screen of a particular color mid-way in the video. If the

participant did not remain on the video page long enough to watch the videos, or if

they did not know what color the intermission screens were, they were disqualified

from participating.

The study for this play-script included 57 participants that viewed both videos, as

seen in Figure 7.57. 177 people attempted the study, but were unable to complete the

study due to the controls in place to ensure proper participation. Figure 7.58 shows

the breakdown of the participants by the different demographics. As you can see, it

represents a reasonable sampling of the population.

This experiment provided an estimated power to detect a medium effect (f=0.25) of

0.95. We performed a Wilcoxon Signed-Rank test that showed there was a statistically

significant difference in the rankings for three questions, “Character Positioning,”

“Stage Space,” and “Character Visibility.” It showed that Character Positioning for

the FDG video was considered better, Z=-3.017 p=0.003. It also showed that the

Stage Space for the FDG video was considered better, Z=-3.481 p<0.001. For the

last one, Character Visibility, it showed that the Baseline video was considered better,

Z=-3.855 p<0.001.

These findings show that the FDG video was as good as, or better than, the human

performance of the same scene. The one area where the Baseline was seen as better
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(a) Gender (b) Age

(c) Residence (d) Employment

(e) Culture (f) Games Participation

(g) Theatre Performances (h) Scene Familiarity

Figure 7.58: Demographic Breakdown of Participants for the Death of a Salesman
Within Subjects Study
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was from the character visibility, because of the semi-circular arrangement of the

characters by the forces. This caused Bernard to be slightly behind Charley, whereas

the Baseline video had all the characters side-by-side.

7.3.2.3 Noises Off Qualitative Analysis

With this study, each group viewed both of the videos (a handmapped Baseline

video https://www.youtube.com/embed/MES_AW9MVI8, and a FDG-generated

video https://www.youtube.com/embed/UtjpzK8SJI4) and answered the questions

in Figure 7.53 (within groups experiment). Both the order of the videos and the

order of the questions for each video were presented in randomized order to the users.

The survey was posted on Mechanical Turk (MTurk) with criteria to enforce partic-

ipants were from the United States, to avoid cultural differences of opinion regarding

space and performances. Additional controls were put in place to ensure partici-

pants viewed the entire video by including a timer on the video viewing page, and

including an intermission screen of a particular color mid-way in the video. If the

participant did not remain on the video page long enough to watch the videos, or if

they did not know what color the intermission screens were, they were disqualified

from participating.

The study for this play-script included 59 participants that viewed both videos, as

seen in Figure 7.60. 201 people attempted the study, but were unable to complete the

study due to the controls in place to ensure proper participation. Figure 7.59 shows

the breakdown of the participants by the different demographics. As you can see, it

represents a reasonable sampling of the population.

This experiment provided an estimated power to detect a medium effect (f=0.25) of

0.96. We performed a Wilcoxon Signed-Rank test that showed there was a statistically

significant difference in the rankings for two questions, “Character Positioning” and

“Character Movement.” It showed that Character Positioning for the FDG video was

considered better, Z=-2.774 p=0.006. It also showed that the Character Movement

https://www.youtube.com/embed/MES_AW9MVI8
https://www.youtube.com/embed/UtjpzK8SJI4
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(a) Gender (b) Age

(c) Residence (d) Employment

(e) Culture (f) Games Participation

(g) Theatre Performances (h) Scene Familiarity

Figure 7.59: Demographic Breakdown of Participants for the Noises Off Within
Subjects Study
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(a) Baseline Video (b) FDG Video

Figure 7.60: Screenshots of the Noises Off Videos Participants Viewed

for the FDG video was also considered better, Z=-2.157 p=0.031. These findings

show that the FDG video was as good as, or better than, the human performance of

the same scene.

7.3.2.4 Krapp’s Last Tape Qualitative Analysis

With this study, each group viewed both of the videos (a handmapped Baseline

video https://www.youtube.com/embed/CRl9R5_IAj8, and a FDG-generated video

https://www.youtube.com/embed/UMFEpH_kP-M) and answered the questions in

Figure 7.53 (within groups experiment). Both the order of the videos and the order

of the questions for each video were presented in randomized order to the users.

The survey was posted on Mechanical Turk (MTurk) with criteria to enforce partic-

ipants were from the United States, to avoid cultural differences of opinion regarding

space and performances. Additional controls were put in place to ensure partici-

pants viewed the entire video by including a timer on the video viewing page, and

including an intermission screen of a particular color mid-way in the video. If the

participant did not remain on the video page long enough to watch the videos, or if

they did not know what color the intermission screens were, they were disqualified

from participating.

The study for this play-script included 62 participants that viewed both videos, as

seen in Figure 7.61. 199 people attempted the study, but were unable to complete the

https://www.youtube.com/embed/CRl9R5_IAj8
https://www.youtube.com/embed/UMFEpH_kP-M
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(a) Baseline Video (b) FDG Video

Figure 7.61: Screenshots of the Krapp’s Last Tape Videos Participants Viewed

study due to the controls in place to ensure proper participation. Figure 7.62 shows

the breakdown of the participants by the different demographics. As you can see, it

represents a reasonable sampling of the population.

This experiment provided an estimated power to detect a medium effect (f=0.25) of

0.97. We performed a Wilcoxon Signed-Rank test that showed there was a statistically

significant difference in the rankings for only one question, “Character Visibility.” It

showed that the Character Visibility for the FDG video was considered better, Z=

-2.855 p=0.004. These findings show that the FDG video was as good as, or better

than, the human performance of the same scene.

7.3.2.5 The Cherry Orchard Qualitative Analysis

With this study, each group viewed both of the videos (a handmapped Base-

line video https://www.youtube.com/embed/RPOmPSW6eqs, and a FDG-generated

video https://www.youtube.com/embed/hW316DYm69E) and answered the ques-

tions in Figure 7.53 (within groups experiment). Both the order of the videos and

the order of the questions for each video were presented in randomized order to the

users.

The survey was posted on Mechanical Turk (MTurk) with criteria to enforce partic-

ipants were from the United States, to avoid cultural differences of opinion regarding

space and performances. Additional controls were put in place to ensure partici-

https://www.youtube.com/embed/RPOmPSW6eqs
https://www.youtube.com/embed/hW316DYm69E
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(a) Gender (b) Age

(c) Residence (d) Employment

(e) Culture (f) Games Participation

(g) Theatre Performances (h) Scene Familiarity

Figure 7.62: Demographic Breakdown of Participants for the Krapp’s Last Tape
Within Subjects Study
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(a) Baseline Video (b) FDG Video

Figure 7.63: Screenshots of The Cherry Orchard Videos Participants Viewed

pants viewed the entire video by including a timer on the video viewing page, and

including an intermission screen of a particular color mid-way in the video. If the

participant did not remain on the video page long enough to watch the videos, or if

they did not know what color the intermission screens were, they were disqualified

from participating.

The study for this play-script included 51 participants that viewed both videos, as

seen in Figure 7.63. 155 people attempted the study, but were unable to complete the

study due to the controls in place to ensure proper participation. Figure 7.64 shows

the breakdown of the participants by the different demographics. As you can see, it

represents a reasonable sampling of the population.

This experiment provided an estimated power to detect a medium effect (f=0.25) of

0.93. We performed a Wilcoxon Signed-Rank test that showed there was a statistically

significant difference in the rankings for only one question, “Character Movement.” It

showed that the Character Movement for the Baseline video was considered better,

Z=-2.452 p=0.014.

We attempted to follow-up with these participants to determine why they rated

the FDG video worse for the “Character Movement” question. We had them view

both videos again and answer the more detailed questions from our original between-

subjects study for Hamlet (Figure 7.65), with the response options of “Strongly

Agree,” “Agree,” “Disagree,” “Strongly Disagree,” and “I Don’t Know.”
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(a) Gender (b) Age

(c) Residence (d) Employment

(e) Culture (f) Games Participation

(g) Theatre Performances (h) Scene Familiarity

Figure 7.64: Demographic Breakdown of Participants for The Cherry Orchard
Within Subjects Study
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1. Characters showed evidence of engaged listening

2. Characters appeared to perform suitable movements on cue

3. The characters’ movement onstage during the performance was believable
in the context of the performance

4. The performance is free from distracting behavior that does not contribute
to the scene

5. The character movements provide appropriate dramatic emphasis

6. All visible behaviors appear to be motivated and coordinated within the
scene

7. The movements of the characters were consistent with the play

8. There was a great deal of random movement

9. The characters’ reactions to other characters were believable

10. Characters showed a lack of engagement when listening

Figure 7.65: Likert-Scale Spatio-Temporal Questions for The Cherry Orchard
Follow-up Study
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We also asked them why they rated the Baseline video better than the FDG video.

Only two participants responded to the follow-up survey, and their general comment

on why they rated the Baseline video (video #1) higher than the FDG video (video

#2) was: “The movements in video number one seem to be more fluid than video

two.” Since question number eight and question number ten are worded negatively,

so Agreeing more on Baseline would mean the FDG video was better. As far as the

other questions, Table 7.10 shows which video was rated higher for each question. The

highlighted cells show the questions where one of the participants rated the Baseline

video better than the FDG video, and the red text shows the questions that were

worded negatively. All other questions they liked the FDG video the same or more

than the Baseline video.

Therefore, it appears in The Cherry Orchard videos, the Baseline video’s characters

showed more engaged listening and coordinated movements within the scene, which

caused it to be rated higher. However, comparing the two scenes, there were minimal

differences in the general positioning of the characters with respect to each other.

The FDG technique placed the characters closer to the center of the stage than the

handmapped baseline performance did.

7.3.2.6 The Importance of Being Earnest Qualitative Analysis

With this study, each group viewed both of the videos (a handmapped Base-

line video https://www.youtube.com/embed/g3Y4UvBcDCw, and a FDG-generated

video https://www.youtube.com/embed/GVlYGH53730) and answered the questions

in Figure 7.53 (within groups experiment). Both the order of the videos and the order

of the questions for each video were presented in randomized order to the users.

The survey was posted on Mechanical Turk (MTurk) with criteria to enforce partic-

ipants were from the United States, to avoid cultural differences of opinion regarding

space and performances. Additional controls were put in place to ensure partici-

pants viewed the entire video by including a timer on the video viewing page, and

https://www.youtube.com/embed/g3Y4UvBcDCw
https://www.youtube.com/embed/GVlYGH53730
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Table 7.10: The Cherry Orchard Follow-up Questions

Question Rating1 Rating2
The character movements provide
appropriate dramatic emphasis

Agreed More on
FDG

Agreed More on
FDG

The characters’ reactions to other
characters were believable

Agreed More on
FDG

Agreed More on
FDG

Characters showed a lack of engage-
ment when listening

Agreed More on
FDG

Agreed More on
FDG

Characters showed evidence of en-
gaged listening

Agreed More on
FDG

Same Rating

Characters appeared to perform suit-
able movements on cue

Agreed More on
FDG

Same Rating

The characters’ movement onstage
during the performance was believ-
able in the context of the perfor-
mance

Same Rating Same Rating

The performance is free from dis-
tracting behavior that does not con-
tribute to the scene

Same Rating Same Rating

The movements of the characters
were consistent with the play

Agreed More on
FDG

Agreed More on
Baseline

There was a great deal of random
movement

Agreed More on
Baseline

Same Rating

All visible behaviors appear to be
motivated and coordinated within
the scene

Agreed More on
Baseline

Agreed More on
Baseline
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(a) Baseline Video (b) FDG Video

Figure 7.66: Screenshots of The Importance of Being Earnest Videos Participants
Viewed

including an intermission screen of a particular color mid-way in the video. If the

participant did not remain on the video page long enough to watch the videos, or if

they did not know what color the intermission screens were, they were disqualified

from participating.

The study for this play-script included 51 participants that viewed both videos, as

seen in Figure 7.66. 419 people attempted the study, but were unable to complete the

study due to the controls in place to ensure proper participation. Figure 7.67 shows

the breakdown of the participants by the different demographics. As you can see, it

represents a reasonable sampling of the population.

This experiment provided an estimated power to detect a medium effect (f=0.25)

of 0.93. We performed a Wilcoxon Signed-Rank test that showed there was a statis-

tically significant difference in the rankings for one question, “Character Visibility.”

It showed that Character Visibility for the Baseline video was considered better, Z=-

2.312 p=0.021. For this video, this was expected, since we saw that with the larger

number of characters in the scene, the characters were forced into more of a circle

than a semi-circle, which caused some extra occlusion of the characters. Parame-

ter adjustments could be made to increase the conversation space of the characters,

and thereby allow for more characters side-by-side in a semi-circle without occluding

others.
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(a) Gender (b) Age

(c) Residence (d) Employment

(e) Culture (f) Games Participation

(g) Theatre Performances (h) Scene Familiarity

Figure 7.67: Demographic Breakdown of Participants for The Importance of Being
Earnest Within Subjects Study
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7.3.2.7 Qualitative Summary

Overall, the NLP+Rules+FDG videos performed as good as, or better than the

hand-mapped Baseline videos, which represented an actual performance by real ac-

tors. There were a few instances where the participants thought the Baseline video

was better—mostly around “Stage Space” and “Character Movement.” This shows

that to a viewer, our techniques meet the expectations for a quality performance.

One viewer that viewed the FDG The Cherry Orchard video first, the Baseline video

second, said: “The second scene was a strong favorite above the first although I liked

aspects of both.” Another participant who viewed The Importance of Being Earnest

FDG video first, and the Baseline video second, stated: “The first video seemed more

like a movie, with the characters talking to themselves, while the second seemed more

theatrical, with asides to the audience.” Both highlight how these techniques meet

or exceed what humans perceive as “good.”

Yet another participant who viewed the Noises Off FDG video first, then the

Baseline video second, stated: “The first run I was very bored, the players were

clustered together, it was all hard to understand. The second time I was much more

entertained and didn’t feel the same confusion and boredom.” This highlights some

of the ordering effect that may have been in play with these studies. A summary of

the statistically significant differences between the FDG and Baseline videos can be

seen in Table 7.11.



168

Ta
bl
e
7.
11

:
Si
gn

ifi
ca
nt

D
iff
er
en
ce
s
B
et
w
ee
n
B
as
el
in
e
an

d
F
D
G

V
id
eo
s,
Z

V
al
ue
s
an

d
W

hi
ch

is
B
et
te
r

(E
m
pt
y
C
el
ls

M
ea
n
N
o
St
at
is
ti
ca
lly

Si
gn

ifi
ca
nt

D
iff
er
en
ce
s
Fo

un
d)

P
la
y
T
it
le

C
ha

r
P
os
tn

C
ha

r
M
vm

t
St
ag

e
Sp

ac
e

C
ha

r
V
is

P
ac
e

O
ve
ra
ll

T
he

Im
po
rt
an

ce
of

B
ei
ng

E
ar
ne
st

Z
=

-2
.3
12

p
=

0.
02

1
B
as
el
in
e

D
ea
th

of
a

Sa
le
sm

an
Z

=
-3
.0
17

p
=

0.
00

3
F
D
G

Z
=

-3
.4
81

p
<

0.
00

1
F
D
G

Z
=

-3
.8
55

p
<

0.
00

1
B
as
el
in
e

K
ra
pp
’s

La
st

Ta
pe

Z
=

-2
.8
55

p
=

0.
00

4
F
D
G

N
oi
se
s
O
ff

Z
=

-2
.7
74

p
=

0.
00

6
F
D
G

Z
=

-2
.1
57

p
=

0.
03

1
F
D
G

Ta
rt
uff

e
Z

=
-2
.5
19

p
=

0.
01

2
F
D
G

Z
=

-1
.9
66

p
=

0.
04

9
B
as
el
in
e

Z
=

-4
.6
88

p
<

0.
00

1
F
D
G

T
he

C
he
rr
y

O
rc
ha
rd

Z
=

-2
.4
52

p
=

0.
01

4
B
as
el
in
e



169

7.4 Generalization Conclusions

With being able to cover over 71% of all spatio-temporal dimension combinations

with a proscenium (single) audience point, we were able to show that our technique

of NLP+Rules+FDG can provide as good or better spatio-temporal blocking as the

same human-performed scenes from a qualitative perspective. Also, we are able to

see that quantitatively, we are able to maintain a similar blocking as the human-

performed scene 58.00% of the time for position, while maintaining the integrity of

the play-script.



CHAPTER 8: INTERACTIVE EXPERIMENTATION

In this chapter, we explore the additional features that force-directed graphs

(FDGs) provide through our engine. We perform an interactive within subjects study

that compares our natural language processor plus rules (NLP+Rules) engine versus

our natural language processor, rules, and force-directed graphs (NLP+Rules+FDG)

engine. We measured the overall performance experience, spatio-temporal aspects of

the performance, and perceived workload for performing the scenes. Overall, we found

that there was no statistically significant differences between the NLP+Rules versus

NLP+Rules+FDG performances with respect to the experience or spatio-temporal

aspects. However, we did find that the FDG version did provide greater cluster-

ing of the characters to the human-controlled character than just the Rules alone.

This shows that our technique does provide a more spatially-inclusive experience for

participants.

8.1 Methodology

For our interactive study, we wanted to understand whether our techniques with

force-directed graphs would produce a more inclusive scene for the human-controlled

character. To study this, we utilized three different questionnaires:

1. Spatio-temporal questions: Our previously utilized short questionnaire around

space and timing within the scene.

2. Experience questions: A new questionnaire to define the user’s experience, based

on theatrical experiential studies.

3. Task Load questions: A standardized questionnaire to define the user’s subjec-

tive mental workload.
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•Character Positioning Rate the quality of the Character Positioning
within the performance. Ex: Were the characters too close together? Too
far apart? Did the arrangement of the characters make sense?

•Character Movement Rate the quality of the Character Movements
within the performance. Ex: Did the movements appear to be in-sync with
the script? Did the characters move at unusual times? Did they move too
much? Too little?

•Stage Space Rate the quality of the use of the Stage Space within the per-
formance. Ex: Did the characters cover the whole stage? Only one small
part of the stage? Did the use of the space make sense with respect to the
scene?

•Character Visibility Rate the quality of the overall Character Visibility
within the performance. Ex: Were the characters frequently blocking your
view to another character? Were all characters visible throughout the entire
scene?

•Pace Rate the quality of the Pace of the scene within the performance. Ex:
Did it move too slow? Did it move too fast? Did the scene progress in-line
with expectations for the script?

•Overall Performance Rate the quality of the Overall Performance. Ex:
Considering the entire scene, was it pleasing or believable to you?

Figure 8.1: Likert-Scale Spatio-Temporal Questions for Interactive Study

More information on our spatio-temporal questions can be found in Chapter 6: EX-

PERIMENTATION AND DISCUSSION, Section 6.4.4: Multiple Component-Based

Within Subjects Evaluation and Chapter 7: GENERALIZATION, Section 7.3.2: Qual-

itative Analysis. These questions can also be seen in Figure 8.1, and were Likert-scaled

questions with possible responses being: “Very Good,” “Good,” “Acceptable,” “Poor,”

and “Very Poor.”

For our Experiential questions, we leveraged the document “Capturing the audience

experience: A handbook for the theatre” [69], which provided sample templates and

questions for evaluating audience experience. We leveraged sample questions from

each of the five areas for audience experience: engagement and concentration, learning
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• I felt engaged in the scene.

• There were aspects of the performance that I found difficult or challenging.

• I feel that I shared the experience with the other characters in the scene.

• It was difficult to determine what to do / where to go / what to say.

• I felt I could identify with the characters / story.

• I thought this was fun.

Figure 8.2: Likert-Scale Experience Questions for Interactive Study

and challenge, energy and tension, shared experience and atmosphere, and personal

resonance and emotional connection. The questions in Figure 8.2 were asked with

a Likert scale of “Strongly Agree,” “Agree,” “Disagree,” “Strongly Disagree,” and “I

Don’t Know.”

We also included our standard demographic questions to ensure appropriate sam-

pling from the population, as seen in Figure 8.3.

Lastly, we wanted to evaluate the mental workload for the participant, so we lever-

aged the National Aeronautics and Space Administration Task Load Index (NASA-

TLX) [10]. This tool measures the subjective mental workload of a participant

while they are performing a task. It evaluates performance across six dimensions to

determine an overall workload rating, on a scale from 0 to 100. These include:

1. Mental demand—how much thinking, deciding, or calculating was required

to perform the task. Rated “low” to “high.”

2. Physical demand—the amount and intensity of physical activity required to

complete the task. Rated “low” to “high.”

3. Temporal demand—the amount of time pressure involved in completing the

task. Rated “low” to “high.”
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• In what state or U.S. territory do you live?
– US States and Territories – Other - Outside the U.S.

• Which category below includes your age?
– 17 or younger
– 18-20
– 21-29

– 30-39
– 40-49
– 50-59

– 60 or older

• What is your gender?
– Male
– Female

– Non-binary
– Prefer not to answer

• What is your employment status?
– Employed, Full-time
– Employed, Part-time
– Student

– Retired
– Unemployed
– Other

• What culture do you relate most to?
– American
– Arabic
– Chinese
– English

– French
– German
– Italian
– Japanese

– Korean
– Portuguese
– Russian
– Spanish

– Other

• Over the last 12 months, roughly how many times have you been to see a
theatre performance (including opera, musical, play, dance)?
– 0
– 1-3

– 4-10
– 11+

• In the past 7 days, roughly how many hours have you spent playing video
games (e.g., gaming consoles, mobile phones, computers, etc.) involving
virtual characters?
– None
– 1 to 3 hours
– 4 to 6 hours

– 7 to 9 hours
– 10 hours or more

• How familiar are you with theatre, performances, and theatre terminology?
– Very Familiar
– Familiar

– Somewhat Familiar
– Not Familiar

• Are you familiar with the play The Importance of Being Earnest by Oscar
Wilde?
– Read / seen it multiple times
– Read / saw it once
– Heard of it

– Never read, seen, or heard of it
– Other

Figure 8.3: Demographic Questions in the User Survey
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4. Effort—how hard does the participant have to work to maintain their level of

performance? Rated “low” to “high.”

5. Performance—the level of success in completing the task. Rated “good” to

“poor.”

6. Frustration level—how insecure, discouraged, or secure or content the partic-

ipant felt during the task. Rated “low” to “high.”

It also utilizes a paired comparisons method, which presents the fifteen pairwise

combinations of the above six dimensions to the participants and ask them to select

which one of each pair had the most effect on the workload during the task. Both

sets of responses are utilized to generate a single score of their subjective workload

for the given task, and can be used to compare effort between multiple tasks.

8.2 Qualitative Evaluation

Participants were asked to perform three scenes as part of this within subjects

experiment. The first scene was leveraged as a practice scene, where they learned

how to interact with the application and none of the AI characters moved. The

application included a performance stage, a legend on the right, and the play-script

on the bottom, which highlighted the current block of the script being performed, as

seen in Figure 8.5. Participants performed all scenes as Miss Prism, and leveraged

the “Next” button to progress through the scene at their own pace. They were able to

move to, pick up, put down, point to, and gaze at objects and locations by clicking on

the target on the screen, as can be seen in the instructions in Figure 8.4. They were

also able to make Miss Prism speak her lines via a “Speak” button near the script,

and below the legend.

After the first scene, the participant was then asked to complete the TLX ques-

tionnaire for both the pairwise combinations, as well as the scaled effort rating for

the practice scene.
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Figure 8.4: Screenshot of the Interactive Application’s Instructions Utilized by
Participants

Figure 8.5: Screenshot of the Interactive Application Utilized by Participants
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The participants were then presented (randomly) either the FDG or the Rules

scene to perform. The only difference between these two scenes was the incorporation

of the force-directed graphs component of our techniques in the FDG scene, which

would adjust the characters to incorporate the human-controlled character. The

Rules scene would only perform the scene as transcribed, incorporating only the

rules component. This scene was the same scene’s play-script for both the FDG and

the Rules performances, however the practice scene was a different scene from The

Importance of Being Earnest play-script.

After performing this scene, participants were asked both the Spatio-temporal ques-

tions from Figure 8.1, and the Experience questions from Figure 8.2. They also

completed the scaled effort ratings for the TLX questionnaire.

The participants were then asked to perform their third scene, which was the

remaining un-performed scene (randomly the Rules or FDG scene, respectively). Af-

ter completing this third, and last, scene, participants were once again asked both

the Spatio-temporal questions from Figure 8.1, and the Experience questions from

Figure 8.2. They also completed the scaled effort ratings for the TLX question-

naire. A trimmed video that shows the Rules and FDG scenes can be seen at

https://www.youtube.com/embed/kYdR-EKThH4.

This study included 57 participants that performed all three scenes, with a power

to detect a medium effect (f=0.25) of 0.95. The breakdown of demographics for this

study can be seen in Figure 8.6. We performed a Wilcoxon Signed-Rank test that

showed there was no statistically significant difference in the rankings for any of the

Experience or Spatio-temporal questions. There appear to be some differences related

to ordering effects, but due to the short scenes used in this study, we were unable

to overcome the novelty effect of the study to determine real differences. We plan to

perform more longitudinal studies in the future to further explore the inclusiveness

of our techniques. It is also believed that the wording of the inclusiveness question

https://www.youtube.com/embed/kYdR-EKThH4


177

(a) Gender (b) Age

(c) Residence (d) Employment

(e) Culture (f) Games Participation

(g) Theatre Performances (h) Scene Familiarity

Figure 8.6: Demographic Breakdown of Participants for The Importance of Being
Earnest Interactive Within-Subjects Study
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may have been misleading. It appears that participants interpreted it as engagement

to the overall scene, not positioning of where their character was with respect to the

other characters.

Also, this shows that the Rules and FDG videos were qualitatively the same, but

not necessarily “good.” So, we reviewed the histograms for the questions, as seen in

Figure 8.7 and Figure 8.8. When looking at the spatio-temporal questions, we see

a definite skew towards “Good” and “Very Good” reponses. This clarifies that these

videos are generally seen as good performances, from a spatio-temporal perspective.

Most participants seemed to think this study was fun, and it was a bit of a wash with

respect to participants feeling they shared the experience.

We also completed a repeated measures ANOVA with a Greenhouse-Geisser cor-

rection, which determined that the mean TLX Score differed statistically significantly

between sessions (F(1.772, 99.223)=37.892, p<0.001). Post hoc tests using the Bon-

ferroni correction revealed that the practice session was statistically significantly dif-

ferent than both the FDG and the Baseline sessions, p<0.001 for both. It showed

no statistically significant difference between the FDG and Baseline sessions, p =

0.954. This shows that there was a learning curve to overcome during the practice

session, but the subsequent sessions were not any more difficult to perform, regardless

of which session they performed first.

Verbal discussions with the participants after the study generally stated that the

FDG scene did make them feel more included in the scene with the other characters

than the Rules scene. Several statements in the questionnaire confirmed this opinion,

such as “I liked the how the characters were positioned more in this scene. Miss Prism

felt like the focal point with everyone focused on her” for the FDG scene.

Some had mixed feelings about the extra movement in the FDG scene: “Characters

were more bunched to the right and did not constantly adjust, which was good and

bad. Good for allowing the ability to work around the characters without too much
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movement, but bad in that they were too planted.” However, some also commented

that the extra movement made it more stressful to complete the FDG scene over the

Rules scene. Others commented on the overall flow, such as “This session seemed

to flow better than the last, but the character interactions with the background

characters of the scene were less engaging” in the Rules scene.

The questions might not have been appropriately worded, since verbal discus-

sions exposed more information supporting our hypothesis than the questionnaire

did. Some stated that the “inclusion” concept felt more like a question about being

engaged, not about virtual character positioning for group inclusion.

8.3 Quantitative

We captured the locations of all the characters within the scene during each par-

ticipant’s performance. We then compared the FDG scene to the Rules scene to de-

termine how close the AI characters were to the human-controlled character at each

logged point in time. If one scene is statistically significantly different and shows the

AI characters to be closer to the human-controlled character, then we can infer that

the human-controlled character is more included in the scene.

This study included the same 57 participants that performed all three scenes, with

a power to detect a medium effect (f=0.25) of 0.981. We completed a repeated mea-

sures ANOVA with a Greenhouse-Geisser correction, which compared the average

distance between the human-controlled character (Miss Prism) and all other char-

acters onstage. The test showed that this distance differed statistically significantly

between sessions (F(1.000, 56.000)=16.874, p<0.001). This indicates that the AI-

controlled characters were closer, on average, to the human-controlled character in

the FDG scene than in the Rules scene, regardless of which came first. The descriptive

statistics for this study can be seen in Table 8.1.
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Table 8.1: Overall Average Distances of AI Characters from the Human-Controlled
Character (Miss Prism)

Descriptive Statistics Mean Distance Standard Deviation N
FDG Overall Average 21.46 4.095 57
Rules Overall Average 26.39 8.462 57

8.4 Interactive Conclusions

With our qualitative analysis, we found that there were no statistically significant

differences in the perception of the two scenes (Rules and FDG), although the par-

ticipants verbally stated that the FDG one felt like the character was more included

in the scene. The quantitative analysis shows that, from a pure spatial perspec-

tive, the human-controlled character was closer to all of the AI-controlled characters

in the FDG scene than in the Rules scene. This confirms our hypothesis that the

FDG component would make a scene more inclusive spatially to a human-controlled

character.



CHAPTER 9: CONCLUSIONS

Throughout this work, we have put together techniques for positioning characters

in a virtual environment, which leverages play-scripts, natural language processing

(NLP), Behavior Markup Language (BML), rules engines, and force-directed graphs

(FDGs). We have also evaluated each component against our hypotheses using both

quantitative and qualitative measures.

Our approach is based upon the ability to pre-block a play objectively, however

real theatre blocking is based more upon chemistry and make-up of a cast. The

overall arrangement of how the ensemble looks onstage is more important than being

on the right mark or knowing ahead of time where to go. However, our approach

brings us one step closer to being able to block a play in an automated fashion for

virtual environments, and provide a reasonably good performance from the viewer’s

perspective.

9.1 Annotation Extraction

To begin, we needed to find a simple way of telling our AI director how to position

the characters within the scene. We were inspired by theatre and their use of play-

scripts to help actors perform a scene. We decided to utilize this format for instructing

our AI director, and extracted movements from the annotations within the play-

scripts. In doing this, we hypothesized that:

Hypothesis 1.1. A computational algorithm using annotations in a play-script

can provide similar positioning of virtual characters as a real

actor directed by a human.
To validate our hypothesis, we handmapped the “Graveyard” scene from Hamlet,

Act V, Scene I, which was a famous Broadway performance from 1964. We calculated
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the time required to write the Behavior Markup Language (BML) for each of the

movements within the 14 minute scene. We built a part of speech tagging and named

entity recognition component to extract the movements from the annotations within

the play-script.

We found we were able to reduce both the technical expertise and the time required

to write the script by over four hours. We also measured the characters’ positions

throughout the scene for both the handmapped baseline scene and our NLP-generated

scene. We found we were able to accomplish similar (∼78% position match and

∼34% gaze match) movements without requiring any technical BML expertise from

the author. [91]

This confirms our Hypothesis 1.1, which states that we can provide similar posi-

tioning of virtual characters within a scene as a real actor.

9.2 Rules Application

In our pursuit of creating a director that can mimic a human actor, we realized

that actors apply certain rules to their movements within the theatre and life. We

identified four basic groups of rules:

1. Grouping Spatial Rules

2. Conversational Spatial Rules

3. Theatre Rules

4. General Rules

These rules incorporated things like distances between characters when they are

speaking to each other, not upstaging/turning your back on the audience, and looking

at what is being pointed at. With these rules, we hypothesized:

Hypothesis 1.2. An algorithm-based director can improve character positioning

of virtual characters within a scene if rules are applied to the

movements defined in the annotations.
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We took our previous work, which extracted the movements from the annotations,

and applied these new rules to the characters. We measured the resultant positioning

of the characters versus the handmapped baseline again, and found that we increased

our matching of both position and gaze by ∼11% and ∼20%, respectively. This

brought us to an accuracy of 89.8% for position and 52.7% for gaze, just by applying

these rules. [95]

This again confirms our Hypothesis 1.2 that states that adding rules will improve

our positioning of characters, and more closely mimic the decisions made by actors

in a performance. This work has focused on the theatre; however many of these rules

are also applicable to other applications of spatial positioning, such as games and

virtual worlds.

9.3 Implied Movement

We noticed that despite doing so well mimicing the positions of the characters in a

scene, we were still missing approximately 11% of the movements. As we dug deeper,

it looked that the actor took their own initiative to improvise additional movements,

which were not annotated within the scene. With this knowledge, we wondered if

there were some triggers in the actual speech of the performance that may have

prompted the actor to add these extra movements. We conjectured that there may

be something in either what the actors are saying, or something about the timing

that may infer some movement in the scene.

We attempted to infer these movements based on the speech within the scene

through several attributes, such as bag of words, number of lines before or after the

current line, number of annotations between movements, word repetition, and punc-

tuation counts. Even as we explored numerous learning methodologies (Max Entropy,

Boosting, Random Forests, etc.), we were unable to learn any of these implied move-

ments. We believe that due to the nature of Shakespeare’s iambic pentameter and

creation of new words, we were unable to extract additional movements from the



186

speech within the “Graveyard” scene within Hamlet. Additional research should be

pursued for other play-scripts, as well as other techniques including parse trees. [93]

For this conjecture, we were not able to find any supporting evidence to infer any

movement in the scene, although we believe additional work may still uncover results

here.

9.4 Applied Forces

Next, we attempted to better incorporate the semi-circular arrangement of charac-

ters within a scene and reduce occlusion of characters. To do this, we introduced some

force-directed graph visualization algorithms, based on Fruchterman and Reingold’s

algorithm. The graph consisted of nodes for the characters, audience points, pawns,

marks, and centralizing points to arrange the characters. With these algorithms, we

hypothesized:

Hypothesis 1.3. Force-directed graphs can position characters onstage with typi-

cal conversational arrangements, avoiding character occlusion.

We then measured the distances between the characters on the stage and their

related targets, audience, and other characters. We found the characters maintained

an approximately three foot distance, which is supported by Sundstrom’s research

for comfortable conversational space [88]. We also measured the overall clustering of

the characters and occlusion. We found that these FDG-based algorithms provided

similar clustering on the stage as the handmapped baseline performance, but provided

1% less occlusion of characters from the audience’s viewpoint. We also confirmed the

spatial arrangement tendencies formed a semi-circle for the characters, facing the

audience.

This Hypothesis 1.3 was confirmed to show that we can position characters with

typical conversational arrangements and reduce overall character occlusion from even

the human-performed scene.
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9.5 Human-Controlled Characters

When humans are involved in a scene, they do not always follow the play-script

as they should. They may miss their cue or their mark. When this happens, the

character usually becomes very visibly “incorrect” from the audience perspective.

Actors tend to adjust their performance to compensate, so we hypothesized:

Hypothesis 1.4. Force-directed graphs can better incorporate human-controlled

characters with a set of virtual characters, adjusting the vir-

tual character movements around the human’s motion, than a

performance done only with the play-script and applied rules.

We believe that the forces defined for Hypothesis 1.3 could be leveraged to ad-

just the AI characters when the human-controlled character does the wrong thing,

but still maintain the integrity of the play-script. To assess this, we introduced a

“human-controlled character” that would randomly do the wrong thing x% of the

time. We then measured the character clustering and occlusion to confirm we were

able to include the human character’s incorrect movement within the scene. We

compared these measurements against the same measurements for when the AI char-

acters performed the scene exactly as the handmapped play-script indicated. We

found that as the human-controlled character’s accuracy decreased, the occlusion

increased by 1% for the handmapped scene, but decreased by 1% for the FDG-

controlled scene. We also found that the clustering of the characters was 10% closer

for the FDG-controlled scene, since the characters were shifted to compensate for the

human-controlled character.

We then performed a qualitative analysis where we allowed participants to per-

form the scenes themselves, both with and without the FDG-control component. We

wanted to verify whether the forces would allow for a more spatially-inclusive ar-

rangement of characters, even if the human-controlled character did not do the right

thing. Statistically, we found that both performances were not different as far as
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spatio-temporal aspects, performance experience, or perceived workload. Verbally,

participants confirmed that the one which adjusted based on their movements (the

FDG performance) made the character appear more included in the scene than the

scene without the FDG-component. We also found quantitatively that the characters

were closer to the human-controlled character in the FDG-controlled scene than in

the rules-only scene.

This data supports our Hypothesis 1.4, which states that the FDG-component can

better incorporate the human-controlled characters than just utilizing the play-script

and rules.

9.6 Overall Quality and Generalization

Next, we needed to show that these techniques were generalizable to other

playscripts, not just Hamlet. We defined five different spatio-temporal dimensions to

categorize play-scripts: Speed, Number of Characters, Space, Audience, and Dynam-

ics. These dimensions were reduced down to 54 combinations, with a constraint on

the audience due to recording availability. We found eight play-scripts that covered

100% of our dimensional criteria, and 71% of our pairwise dimensional space. We

hypothesized that:

Hypothesis 1.5. An algorithm-based director, using a combination of play-scripts,

rules, and force-directed graphs, can equal or surpass the human-

perceived threshold of a quality performance for a variety of

spatio-temporal play types.

We then performed several qualitative assessments of these scenes, comparing a

handmapped human-performed version to our NLP+Rules+FDG-generated version.

With each of the six new scenes, we found that the two scenes were either not statisti-

cally significantly different, or our NLP+Rules+FDG-generated video was perceived

as better, from a spatio-temporal perspective. Only a couple of scenarios showed

one or two questions stating the handmapped version was better perceived, as seen
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Table 9.1: Statistically Significant Differences Between Baseline and FDG Videos
(Empty Cells Mean No Statistically Significant Differences Found)

Play Title Char
Postn

Char
Mvmt

Stage
Space

Char
Vis

Pace Overall

The Importance of
Being Earnest

Baseline

Death of a
Salesman

FDG FDG Baseline

Krapp’s Last Tape FDG
Noises Off FDG FDG
Tartuffe FDG Baseline FDG
The Cherry
Orchard

Baseline

Hamlet

in Table 9.1. Quantitative comparisons showed a 58% match in position across all

scenes, with most discrepancies being due to slight grid position shifts from the FDG

arrangements.

This allows us to confirm Hypothesis 1.5 as true, with the constraint of a

proscenium-style theatre/audience configuration.

9.7 Summary

In summary, our system has been shown to reduce the amount of time to author

character positioning within a scene. It is able to match a real production’s block-

ing 89.8% of the time, and incorporate human-controlled characters within the scene

more consistently, regardless of their accuracy. We also see that despite our system’s

blocking not being exact for 10.2% of the scene, it does not appear to degrade a

viewer’s experience of the scene. This shows that perhaps an exact match is not re-

quired for a realistic performance for the viewer, but can be explicitly written into a

play-script if required. Our engine is generalizable across 71% of the pairwise combi-

nations of our scene dimensions, and incorporates a human-controlled character well,

even if they do not follow the play-script. We were also able to confirm all five of our

hypotheses formed when starting this research, and provided a key dynamic spatio-



190

temporal tool through our NLP+Rules+FDG engine. This tool allows designers to

utilize natural language formatted as a play-script and arrange the characters on a

stage dynamically, adjusting for any human-controlled characters.



CHAPTER 10: FUTURE WORK

This work will be useful in assisting directors, game writers, and other virtual envi-

ronment authors with placing virtual characters within their environment, whether it

is a stage, or a more general virtual environment. It is also complementary to dialogue

trees, which are often used with dynamic speech in a scene. Future work will pur-

sue the use of these techniques in combination with dialogue trees for play-script-like

branches to control AI characters.

There are many other areas of expansion for this work, which we look to complete

in the future. For instance, this work does not apply the optimizations of audience

seating visibility (similar to multiple camera angles in television, movies, and games)

at this time, but could be considered for future work. Another great expansion

would be to pursue the adjustments to our force-directed graphs to support multiple

audience viewpoints. Also, we would like to pursue the use of these techniques as a

control mechanism within a virtual reality environment.

Some interesting force-related expansions that will be considered include time-based

attraction degradation for joint entrances (where two or more characters enter at the

same time and have stronger forces pulling them together), target points (stronger

forces initially, but degrades over time), and importance to the scene (stronger forces

pulling the priority characters towards the audience). Also, incorporating an excep-

tion for certain types of AI characters that should not have forces applied, such as

larger groups. Plus, a deeper dive into the potential for inferring additional movement

based on the play-script is on our radar.

Lastly, some deeper perusal into longer scenes, both for exploration of forces over

longer periods of time, as well as to overcome the “newness” effect that was found
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with the interactive study. Additional modularization of the provided research code

will be provided as well.
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APPENDIX A: LACK OF SPATIAL INDICATORS IN HAMLET

A.1 Introduction

When actors perform on stage, they are provided with specific directions on where

and how to perform their lines. The director provides these directions via a play-

script’s annotations. Beyond these annotations, the actors are provided some freedom

in performing their lines, although certain guidelines for theatre acting are always in

play. Intuition and characterization help the actor to identify other movements that

are in-character and appropriate in the different parts of the play for their character.

We look to realistically capture the spatial movements of actors on stage, so we

started by translating the spatial movements found within the annotations from the

director, as can be seen in our prior work [91]. Basic parts of speech (POS), sentence

structure parsing, and entity recognition provided us with key movements detailed

from the annotations in the play-script with about 78% accuracy for character posi-

tions.

Next, we targeted the basic rules and guidelines that actors and directors use to

control movement on the stage [95]. These included conversational space, group

space, theatre rules, and general common-sense rules. This got us to 89% accuracy

for position and 53% accuracy for gaze. After capturing these movements, there were

still some movements in the play that the actors performed, but were not captured

by the annotations and rules we encoded. One good example is in Act V in Hamlet

where the gravedigger walks towards the audience, then turns around and walks back

towards the grave. These are the kinds of movements that the actor decides upon

based on their intuition.

Therefore, we thought about what might help a system to learn these sort of

movements by the actors. We came to the hypothesis that perhaps what the actor

is saying could imply certain types of movement. Now, these are not the same kinds
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of movements as one actor telling the other actor to do something, but more of an

implied movement, such as moving towards the audience for a monologue, gesturing

to help emphasize what they are saying, or even a movement to keep the audience’s

attention during a rather long scene that has little to no movement involved with

it. We are not focused on what is explicitly stated in the language, but more on the

hidden movement that is likely to be performed by the actor on stage.

The context of the speech and the characters were identified as two key components

to interpreting the implied movement, in addition to what the character is saying. We

pursued several existing natural language processing and machine learning approaches

to learn these implied movements within one particular play, Hamlet, as produced by

Sir John Gielgud in 1964 on Broadway [15]. We utilized the script as written by

Shakespeare [79], as well as the Electronovision video [15] of Richard Burton in Sir

John Gielgud’s production of Hamlet as our baseline. Each line’s related movement

was captured for the play and categorized into a standardized set of motions, such as

walking, jumping, fighting, and so forth. We fed this information into machine learn-

ing algorithms, such as Maximum Entropy (MaxEnt) and Support Vector Machines

(SVM), to help learn about the implied movements within the play. Our intent is to

be able to identify that a movement should occur because of the speech being said,

as well as specifically what type of motion for the speaker to perform.

A.2 Background and Related Work

Naturally, while pursuing an appropriate approach for our work, we started with

the natural language processing that is used for giving directions to robots. This in-

corporates both natural language and spatial reasoning. However, the key difference

with what we were looking to do is that we were not trying to give explicit directions

for someone to do something. We want to understand the hidden movement. So

looking at work like Wei et al.’s[112], Brooks’[9], and Kollar et al.’s [46] only provided

techniques that assumed a set of predefined keywords, phrases, or corpus to be ex-
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tracted and utilized for further processing. These focused on the meaning of different

prepositions in order to interpret a spatial location.

Next, we looked into text categorization and summarization. The main focus of

most text categorization is around known keywords or phrases to identify if the text

contains that concept. The more similar the strings or synonyms are, the more similar

they are considered to the entity being matched. The summarization techniques, like

those used in Chuang and Yang’s[14] paper, focus on segmentation of the text and the

extraction of important sentence segments via machine learning on a feature vector.

This is closer to what we want to do, but still is based on keywords and phrases, with

little to no implied meaning involved.

A main exception to the patterns of text classification was with the data-less cat-

egorization done by Chang et al.[13]. They focused on the semantic meaning of the

category to determine how to classify text without labeling and training the system.

Also, classifying text into multiple categories is still not completely solved, as dis-

cussed in Platt, Cristianini, and Shawe-Taylor’s[72]. This is key as we look at our

data where one line can imply more than one motion. Some researchers, such as

Schapire and Singer [78], have pursued multiple class classifications by using Boost-

ing and text classification where you do not turn the problem into multiple binary

classification problems, as is typical for this problem.

Other work with ConceptNet [56] also is closer extracting the meaning of words;

however is still very similar to a synonym retriever. Similarly, relation extraction

utilizes phrases and parse-trees for determining relationships between entities (again

pre-defined entities and relationships), such as Culotta and Sorensen’s[20], Zhang,

Zhou, and Aw’s[115], and Sun, Zhang, and Tan’s [87] papers. Here we start to get to

the capturing of features, especially contextual or sequential types of features. Others

have pursued the use of tree kernels to help with machine learning on text, such as

Collins and Duffy’s[16] and Shen, Kruijff, and Klakow’s[81] papers. Each of these
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papers discuss the use of tree kernels to try to better capture a parse-tree and its

dependencies for use in machine learning. This is important with the type of natural

language classification we are planning to do, since we hypothesize that the context

of the words is just as important, if not more so, than the words themselves.

Since most traditional learning machine learning algorithms rely on feature-based

representations of objects, we explored the different types of features that could be

used to learn classifications within natural language. Liao [54] describes features as

being local or global. They can be as simple as a single token, a phrase, or something

much more complex. Selecting useful and relevant features, as well as deciding how

to encode them, can greatly impact the machine learning algorithm’s ability to learn

good models [58]. Therefore, a lot of time is spent on identifying appropriate features,

and many people start with everything they can think of. However most of these end

up being local representations of the objects [114], such as just the words themselves.

Ultimately, we are transforming a document from one set of tokens to another,

which is prone to loss of information, such as word sequence. Collobert et al.[17]

discusses common feature categories, such as parts of speech (POS), voice of the

sentence, and stemmed root words, while Culotta and Sorensen[20] mention word n-

grams, capitalization, and conjunctions (or merging) of many features. Furnkranz[30]

found that using n-grams of length two or three improved classification over longer

n-grams. Forman[27] suggests the removal of common words (stop words), removal

of rare words, and the use of booleans instead of counts for bag of words features.

None discuss the appropriateness of features that represent spatial information, such

as character positions. Kernels have also been utilized in place of traditional feature

vectors, but were not pursued in our work at this time.

A.3 Approach

In order to have a baseline to train against, we took the Electronovision video [15]

of the production of Hamlet on Broadway in 1964 and mapped all the movement of
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the characters for each line of the play-script [79]. We kept the “sentences" as the

way Shakespeare originally divided up his lines of text. Shakespeare nearly always

wrote in iambic pentameter (ten syllables per line, with alternating unstressed and

stressed syllables) [61]. This meant that a speech like:

Last night of all,

When yond same star that’s westward from the pole

Had made his course to illume that part of heaven

Where now it burns, Marcellus and myself,

The bell then beating one,– [79]

was broken up into five sentences. An alternate approach could have been used

where each real sentence was used to determine implied movement or not. This may

have helped with the training ratio for movement versus no movement, which will

be discussed further in the Experimentation section. However, we chose the phrase-

approach because of the frequency of the change in actions being performed within

the play. By splitting the sentences to this size, we had a more consistent line-length,

were able to more precisely capture a single phrase that might imply movements, and

could capture more movements than we could with full sentences.

The main two challenges with mapping this three hour play were in carefully iden-

tifying only one movement per line, as well as accurately capturing all the desired

movements throughout such a long play, with standardized movement names as seen

in Figure A.1. Many lines involved multiple movements. To keep things simple, we

decided to capture the biggest movement performed by the speaker whenever there

were more than one movement for the line. The longest line in Hamlet was only fifteen

words long, with the average being seven words in length. We also wanted to capture

the locations of each character on stage to see if this would help in identifying when

a movement would occur, (more from learning a rules-based approach); however we

were unable to capture that level of detail due to time constraints.
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Figure A.1: Counts of Distinct Movements Within Hamlet with at Least 40
Instances out of 3477 Lines of Script

The Asterisk (∗) Indicates Grouped Categories
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The key movement types we captured within the Hamlet play can be seen in the

list in Figure A.2. These movements are for both the speaker and the other characters

onstage, and includes how we grouped them for better training capabilities (as will

be discussed further in the Experimentation section). As you can see, the majority of

movements were captured very few times within the dataset, with the majority being

less than 100 instances out of 3477 instances possible.

Fighting

• Fighting∗
• Pushing∗

Handle Object

• Hand Object∗
• Pickup Object∗
• Throw Object∗

Change Posture

• Jump∗
• Lie Down∗
• Sit∗
• Stand∗
• Kneel∗

Gaze

Gestures

• Point∗
• Gesture∗
• Nod∗
• Raise Arm∗
• Wave∗

Locomotion

• Walk∗
• Run∗

Other

• Dig∗
• Turn∗
• Climb∗
• Kick∗

Figure A.2: Bundled List of Actions Captured within Hamlet
The Asterisk (∗) Indicates Items Considered as Big Actions

Each line of the play’s speech was then used to create features for training. We

utilized the openNLP package, tied to the Java openNLP implementation, within R

to tag each word with its part of speech, along with the RTextTools package [38]

for creating our n-grams and bag of words for our text. This information was then

chunked into a bag of words approach, which used counts of each type of part of

speech as a feature. Other features we incorporated into the training included:
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• Number of lines for the speaker before this line

• Number of lines for the speaker after this line

• Number of annotations before this line

• Number of annotations after this line

• Number of speech lines since the last movement

• Maximum number of times a word is repeated

• Number of uppercase words in this line of speech

• Count of each punctuation mark within this line

Our hypothesis was that the length of the speech could trigger a movement for

the character, such as moving towards the audience due to the start of a monologue.

Another assumption was that movements might not occur really close together, to pre-

vent excessive attention and confusion from the audience. Therefore, understanding

how long it had been since the last movement was deemed important and a potential

aide for learning implied movements. Knowing that there is an annotation coming

up (which usually means an actor will perform some sort of movement), seemed to be

useful for determining if a movement should occur now, or would be explicitly pro-

vided in the annotation later. Adding the features for punctuation, repeated words,

and uppercase words was thought to help with identifying movement that might cause

an actor to emphasize what they were saying, such as pointing or gesturing.

We pursued both a part of speech “sentence" and an n-gram bag of words approach

for the speech due to Shakespeare’s known inclination to make up words and not

repeat phrases a lot. We hoped this would help to find patterns in the sequence and

frequency of “words," despite being unable to properly turn a parse-tree into a feature

vector for training. We are confident that the sequence and dependency tree of the

words in conjunction with the words themselves are key in being able to identify

implied movement, except with Shakespeare’s work due to his jumbling of phrases to
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fit iambic pentameter. Several options utilized kernels and/or dynamic programming

to learn off of parse trees and subtrees. This was not utilized here, but may be useful

for future work. Ideally, also including the number of characters and their positions

onstage for each line would be used to help capture the movements related to being

upstaged, along with other theatre rule-guided movements.

A.4 Experimentation

Once we generated our features for all the lines in the play-script, we fed them into

several machine learning algorithms: Maximum Entropy (MaxEnt), Support Vector

Machine (SVM), Boosting, and Random Forests (RF). We focused only on the actions

the speaker performed during their speech lines, and learning a specific movement or

movement type one at a time. Initially, we took a random half of the lines (1739

lines) from the play-script for training the classifiers, and tested on the other half

(1738 lines).

However, we found very poor results (same as a random classifier), as can be seen

in the Table A.1. This was due to having such a large portion of the training set

being classified as “no movement," due to often having much worse than a 10:1 ratio

of movement to no movement (as can be seen in Figure A.1). Forman [27] discusses

the issue of having a substantial class distribution skew (like we see with our Ham-

let movement dataset), which worsens as the problem size scales upwards. Forman

mentions the example of having many more news articles that do not meet a per-

son’s personalization profile when looking at all news articles posted on the Internet

world-wide. Most machine learning research does not consider such extreme skews

as Forman saw (1:31 on average). Just as we saw with our dataset, we found it very

difficult to beat the high accuracy that can be achieved by classifying everything neg-

atively. Forman also mentions that feature selection becomes much more important

in these types of situations where the training data is highly skewed.

We first attempted to address this by shrinking down our training set to a more
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specific set of lines where the ratio of “movement" to “no movement" was closer to a

2:1 ratio, while ensuring we did not use more than half of the annotated movement

lines we were trying to classify. This performed marginally better, but still really did

not get us past the performance of guessing “no movement" for everything or even a

random classification, as can be seen in Table A.1.

We also found that we do not have enough examples of detailed movements in

Hamlet to be able to classify all movements at a detailed level, such as hand fighting

or lying down. Therefore, we were forced to look at the problem more generically

than would be useful for actually predicting specific movements. We tried grouping

the movements into buckets, as described in the Approach section; however only the

posture, gaze, and locomotion came close to a 10:1 ratio, and even learning on those

datasets ended up classifying almost everything as “no movement". The main two

buckets that could give us almost reasonable results were the ones for any movement

and any big movement.

We then looked at the different n-gram approaches to see what would work best to

incorporate more of the relationships of the words in the phrases as seen in Table A.2.

Bigrams appear to have done better than just a plain bag of words (BoW), with

trigrams doing slightly worse than the bigrams, but still performing pretty well. 4-

grams and 5-grams dropped performance to be closer to unigram performance in most

instances. This correlates well with what Furnkranz[30] mentioned in their work with

different n-grams for classifications.

As Forman[27] discussed, having such skewed training datasets puts more emphasis

on the feature sets. Therefore, we pursued several different feature sets and combina-

tions. We began initially with the sentences themselves turned into a BoW of different

ngram lengths, along with the other features mentioned in the Approach section.

We then decided to take advantage of Shakespeare’s iambic pentameter, which

produced the majority of the lines as ten syllables, and a maximum of fifteen words
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per line. We decided to break these sentences into just the parts of speech (POS) tags

as a sentence. This was intended to help with the issue of Shakespeare’s writing not

including much repetition. With the real sentences broken into BoWs, if we removed

sparse words or stop words, we ended up with no words left. However, using the POS

tags as sentences, we could get a similar concept, but were able to trim out sparse

n-grams. This appeared to perform about the same as just counting the parts of

speech and punctuation in the sentences, as can be seen in Table A.3.

Finally, we combined the best feature sets described above (in different combina-

tions) to see how it would perform. We chose to use the smaller training set, geared

towards a 2:1 ratio of “no movement" to “movement," and focused primarily on clas-

sifying any movement within the play. The best classifications were obtained on just

the unigrams of the actual speech text, although on average, the part of speech (POS)

sentences with the speech sentences as bigrams and the other features did better.

To analyze these statistics, we used the ROCR package within R [84] to generate

the ROC Curves for the better techniques. We also looked at the overall accuracy,

precision, recall, F1-score, F0.5-score, and the Matthews correlation coefficient for each

method. We were able to achieve high accuracy, but this was shown to be achievable

with just a blind guess of everything to be “no movement". Therefore, the accuracy

scores were not useful in determining the goodness of any of our methods.

Looking at precision and recall, we often found we could do reasonably well with

one, but very poorly with the other. Recall is focused on being able to classify as

many positive examples as possible, whereas precision focuses on being more certain

of classifying positive examples that really are positive classes. In our case, we are

more concerned with making sure that if we identify a line as an implied movement,

then there really should be an implied movement with that line. Therefore, precision

was more important to us.

Trying to balance these two measures, we looked at the F1-scores; however this put
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equal emphasis on both precision and recall. The F0.5-score was better since it put

more emphasis on the precision than the recall.

However, those approaches still left us uncertain to what degree we were able to

outperform the random classifier and the guess “no movement" classifier. Therefore,

we focused primarily on the Matthews Correlation Coefficient (MCC) measurement,

as this takes into account true and false positives and negatives, and is generally

regarded as a balanced measure, which can be used even if the classes are very skewed

like ours. This measure returns a value between -1 and +1. A result of +1 represents

a perfect prediction; 0 represents the same as a random classifier; -1 represents 100%

incorrect classifications. Using this measure, we found that we were able to do better

than the random classifier in many of our tests, as can be seen in the previous tables

and in the ROC Curves in Figure A.3.
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(a) No Text Features
Any Movement

1807 Training Cases
Unigrams

(b) POS BoW Features Only
Any Movements

1807 Training Cases
Unigrams

(c) Text Features Only
Any Movements

1807 Training Cases
Unigrams

(d) All Features
Gesture Movements Only

154 Training Cases
4-grams

Figure A.3: ROC Curves Samples for Techniques Utilized;
Red=SVM; Green=Maximum Entropy; Blue=Boosting; Magenta=Random Forests
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A.5 Conclusions

Ultimately, Shakespeare is a more difficult context to use than typical play-scripts

due to his tendency to make up words and rephrase things to fit into iambic pen-

tameter. We were able to reasonably tell when some movement should occur, which

should at least give us a sanity check for use with our previous work to ensure the

characters are moving enough or not. However, the more specific movement types

were more difficult to classify due to the limited number of test cases available in

Hamlet.

Humans are able to do this with no prior examples, so there must be a way to learn

these implied movements. Therefore, future work should include further analysis

into tree kernels for machine learning, classifying more detailed movements using

additional datasets, and an ability to classify more than one type of movement for

a single line. Finally, incorporation of other features may be useful, such as number

of characters onstage, locations of all the characters onstage, and other contextual

features not included here.
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APPENDIX B: DEFINITIONS

Below are some key definitions to help the reader better understand some of the

terms used within the paper.

Annotation The director’s directions for objects and actors in the play to perform

during or around different speech acts within the play

Blocking The process of arranging moves to be made by the actors during the play

[73]

BML Behavior Markup Language—An XML description language for controlling

the verbal and nonverbal behavior of virtual characters [63]

Cue Signal or command given to indicate another action should follow [73]

Director The role responsible for the overall artistic vision of a production or play

[73]

DownStage Part of the stage that is closest to the audience.

FDG Force-Directed Graph

FML Functional Markup Language—An XML description language for describing

the effect that an intended action or plan should have on the environment, most

obviously the agent itself [101]

M Mean

Marks The correct position on the stage for the actor to be at a given point in the

play

Mocap A form of motion capture that captures motion data by a real person’s

movement and is applied to virtual characters to perform the same motion
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MTurk Mechanical Turk—A site where jobs can be posted for users to complete for

money, such as surveys and audio translations.

NLP Natural Language Processing

Non-Verbal Behaviors Actions that are performed by humans or characters that

do not include speech, but may portray some sort of communication to others

Play-Script A written version of a play with annotations from a director to be

followed during a performance

PML Perception Markup Language–An XML description language for describing a

percept ,such as vision, touch, or sound, in order to provide input to a character

or robot.

SD Standard Deviation

Stage Left The side of the stage to the actor’s left when standing on the stage,

facing the audience.

Stage Right The side of the stage to the actor’s right when standing on the stage,

facing the audience.

Theatre Configurations Setup of the stage area that can be in one of seven dif-

ferent arrangements [3]:

Proscenium Stage Typical “theatre”setup—contains a picture frame placed

around the front of the playing area of an end stage

Thrust Theatre Stage surrounded by audience on three sides

End Stage A thrust stage extended wall to wall, with audience on only one

side

Arena Theatre A central stage surrounded by audience on all sides
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Flexible Theatre Big empty boxes painted black inside where the stage and

seating are not fixed

Profile Theatre Audience is placed on risers on either side of the playing

space, with no audience on either end of the “stage”

Sports Arenas Resemble large arena stages, but with a rectangular floorplan

UpStage Part of the stage that is behind the actor when they are facing the audience.
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APPENDIX C: TOOLS

Here is where we will refer to all of the tools we built for this research and placed

on GitHub.

C.1 2D Model

All code can be found here http://github.com/UNCCPhDResearchTalbot/

IVA2012.

This includes all code from IVA 2012 conference paper, with the 2D model found

in the 2DDemo folder, and the charting tools in the D3js folder.

All instructions are written with the assumption of running on a Mac.

This toolkit provides the 2D BML Realizer for the Hamlet “Graveyard Scene” uti-

lizing only natural language processing (named entity recognition and part of speech

tagging).

It utilizes jsGameSoup for the UI components and Node.js for processing, with

natural, socket.io, and xml2js modules, and with a javascript and HTML front-end,

which can be seen in Figure C.1.

• Install jsGameSoup

• Install node.js npm natural npm socket.io npm xml2js

In main.js, change line:

var BML = false;

to true if you want to use the BML baseline file, false if you want to use the natural

language processing of the actual play-script.

Files provided:

• InputFile.txt ==> Hand-mapped BML code with some “triggers” for coinciding

movements based on the 1964 Hamlet video

https://github.com/UNCCPhDResearchTalbot/IVA2012
https://github.com/UNCCPhDResearchTalbot/IVA2012
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Figure C.1: 2D Simulation Screenshot

• InputScript.txt ==> Play-script from 1964 Hamlet video in natural language

and formatted to play-script standards

To run: start python for page hosting

python -m SimpleHTTPServer 8888

start NodeJS module by running

node server

Then, open index.html file to begin running the scene and logging the character

traces: http://localhost:8888/index.html

Charting utilizes output log files from the 2D BML Realizer to create character traces

with a D3js component. One sample file is included for initial load in this directory

(GRAVEDIGGER1.csv), with a sample output visible in Figure C.2

http://localhost:8888/index.html
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Figure C.2: Character Position Over Time Trace Chart Output

To run: start python for page hosting

python -m SimpleHTTPServer 8888

Open chartrace.html file to display the character trace: http://localhost:8888/

chartrace.html

Change the filename (placed in the D3js folder) to whatever log file you want to

show from running the GameSoup application & click Generate Chart button to see

the new trace. Colors go from red to blue and show arrows pointing in the direction

that the character was facing at each point.

C.2 Forces

All code can be found here https://github.com/UNCCPhDResearchTalbot/

AAMAS2013Workshops.

This includes all code from the AAMAS 2013 Conference Workshop Code (both

CAVE & SCW).

This code provides a 2D layout of characters, targets, and audience connections for

random scenes and applies force-directed graphs for adjusting non-human characters

http://localhost:8888/chartrace.html
http://localhost:8888/chartrace.html
https://github.com/UNCCPhDResearchTalbot/AAMAS2013Workshops
https://github.com/UNCCPhDResearchTalbot/AAMAS2013Workshops
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Figure C.3: 2D Forces Simulation

within the scene for optimal/pleasing positioning. A sample of the output can be

seen in Figure C.3.

To run: start python for page hosting

python -m SimpleHTTPServer 8888

Open index.html file to display the scene http://localhost:8888/index.html. Click

the button “CreateRandomFile” to randomly create a set of character positions, tar-

gets, etc. for a single moment within a scene. Click the button “Calculate Positions”

to use force-directed graphs to adjust the non-human characters on the screen.

The file import button is limited due to browser limitations with retrieving/storing

files on the desktop.

C.3 2D Rules

All code can be found here:

https://github.com/UNCCPhDResearchTalbot/AAMAS-2013

This includes all code from the AAMAS 2013 Conference Paper Code.

http://localhost:8888/index.html
https://github.com/UNCCPhDResearchTalbot/AAMAS-2013
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The RulesEngine folder contains the code to run the scene in either baseline or

rules-applied mode and generate log files.

It utilizes jsGameSoup for the UI components and Node.js for processing, with

natural, socket.io, and xml2js modules, and with a javascript and HTML front-end.

• Install jsGameSoup

• Install node.js npm natural npm socket.io npm xml2js

In main.js, change line:

var BML = false;

to true if you want to use the BML baseline file, false if you want to use the natural

language processing of the actual play-script.

Files provided:

• InputFile.txt ==> Hand-mapped BML code with some “triggers” for coinciding

movements based on the 1964 Hamlet video

• InputScript.txt ==> Play-script from 1964 Hamlet video in natural language

and formatted to play-script standards

To run: start python for page hosting

python -m SimpleHTTPServer 8888

start NodeJS module by running

node server

Then, open index.html file to begin running the scene and logging the character traces:

http://localhost:8888/index.html

Sample output files are in the logs/bmllogs and logs/ruleslogs

Applied rules include:

http://localhost:8888/index.html
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(a) Stage Positions
(b) Stage Gaze Directions

Figure C.4: Stage Area Breakdown for Position and Gaze Table Generation

• looking where someone is pointing

• looking at speaker

• not upstaging higher importance characters

• look at what picking up

• move to what want to pick up

• see paper for full details

The Charts folder contains the D3js code to generate the charts to compare gaze

direction for baseline only and rules blocking. Chart labels aren’t correct, but follow

(from top to bottom) for the y axis: stageright, audience, stageleft, backstage. These

directions can be seen in Figure C.4b.

The x-axis represents time. Upper lines will represent logs from the baseline /

bmllogs folder, with the Lower lines representing the logs from the ruleslogs folder.
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To chart for position instead of gaze direction, modify the “generateData” function

in the d3linecharts.js file to change the postns.forEach loop to map the stagegrid

column instead of the rotation column. This will result in the y-axis displaying the

following (from top to bottom): downstage, stageleft downstage, center downstage,

stageright center, stageleft centerstage center, stageright upstage, stageleft upstage,

center upstage, stageright offstage. These grid locations can be seen in Figure C.4a.

To run: start python for page hosting

python -m SimpleHTTPServer 8888

Then, open chartraces.html file to begin running the scene and logging the charac-

ter traces: http://localhost:8888/chartraces.html. Enter the filename that exists in

both the bmllogs/ and ruleslogs/ folders for the character you want to compare gaze

direction or position for. Then, click the button. Figure C.5 shows what you will see,

depending on whether you are running the gaze or the position traces.

Folders contain sample files for running.

The CharTraces folder contains the D3js code to generate character traces for all

characters during a scene for either baseline or rules blocking. Each character has

a different shape, colors go from red to blue to indicate time progression, and each

shape points in the direction the character was facing at each timestep.

To run: start python for page hosting

python -m SimpleHTTPServer 8888

Then, open chartraces.html file to begin running the scene and logging the character

traces: http://localhost:8888/chartraces.html. Enter the folder name that contains

the log files to be plotted, such as ruleslogs/ or bmllogs/, then click the button.

Folders contain sample files for running.

http://localhost:8888/chartraces.html
http://localhost:8888/chartraces.html
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(a) Stage Positions

(b) Gaze Directions

Figure C.5: Charting Code Output

C.4 Implied Movement R Code

All code can be found here https://github.com/UNCCPhDResearchTalbot/

FLAIRS2013.

This includes all code from the FLAIRS 2013 Conference Paper Code.

run file by typing:

source("~/Dropbox/FLAIRS-FINALFILES/runclassify.R");

within R.app which has NLTK installed & dependent libraries too. Different .R

files run against different featuresets which are stored in the .txt files. The master

file is in the .xlsx file for all statistics/features used.

Several files are included which contain details on the Hamlet scene for different

types of movements and are used in the below script. Outputs are printed to .png

https://github.com/UNCCPhDResearchTalbot/FLAIRS2013
https://github.com/UNCCPhDResearchTalbot/FLAIRS2013
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files for the diagrams of the ROC curves, scriptoutput.txt (monitor run status), and

testing123.csv (results) for the output of each learning session.

Charts for PDF.xlsx has summary information from all the runs for extraction into

the paper. Movement Counts.xlsx has summary movement count information for the

annotations within the scene.

Actual R code used is available in the gitHub repository.

C.5 2D Forces

All code can be found here https://github.com/UNCCPhDResearchTalbot/

FLAIRS2014.

This includes all code used for the FLAIRS 2014 conference paper.

The BML-Rules Simulation folder contains the code to run the scene in either

baseline or rules-applied mode and generate log files.

It utilizes jsGameSoup for UI components and Node.js for processing, with natural,

socket.io, and xml2js modules, and with javascript and HTML front-end.

• Install jsGameSoup

• install node.js npm natural npm socket.io npm xml2js

In main.js, change line:

var BML = false;

to true if you want to use the BML baseline file, false if you want to use the natural

language processing of the actual play-script.

Files provided:

• InputFile.txt ==> Hand-mapped BML code with some “triggers” for coinciding

movements based on the 1964 Hamlet video

• InputScript.txt ==> Play-script from 1964 Hamlet video in natural language

and formatted to play-script standards

https://github.com/UNCCPhDResearchTalbot/FLAIRS2014
https://github.com/UNCCPhDResearchTalbot/FLAIRS2014
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To run: start python for page hosting

python -m SimpleHTTPServer 8888

start NodeJS module by running

node server

Then, open index.html file to begin running the scene and logging the character traces:

http://localhost:8888/index.html

Sample output files are in the logs/bmllogs and logs/ruleslogs

Applied rules include:

• looking where someone is pointing

• looking at speaker

• not upstaging higher importance characters

• look at what picking up

• move to what want to pick up

• see paper for full details

To run: start python for page hosting

python -m SimpleHTTPServer 8888

Then, open chartraces.html file to begin running the scene and logging the charac-

ter traces. http://localhost:8888/chartraces.html. Enter the filename that exists in

both the bmllogs/ and ruleslogs/ folders for the character you want to compare gaze

direction or position for. Then, click the button.

Forces Simulation folder contains the code to run the scene while applying forces

to the characters and generate log files.

http://localhost:8888/index.html
http://localhost:8888/chartraces.html
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To change the randomness of the human, modify the ACCURACY variable to the

% accuracy desired. To change which character is acting like the human, change the

HUMAN variable to the name of the character to use as the human character.

C.6 3D Model-Hamlet

All code can be found here https://github.com/UNCCPhDResearchTalbot/

BlockWorld

BlockWorld Unity 3d implementation of a Block World with block characters

and pawns to validate spatio-temporal algorithms for positioning characters in virtual

environments. Focuses on Baseline and NLP, and can be seen in Figure C.6.

Figure C.6: 3D Simulation Screenshot

Additional adjustments and all code can be found here: https://github.com/

UNCCPhDResearchTalbot/2ndUserStudyBlockWorld

2ndUserStudyBlockWorld Code used for within subjects study for FDG, rules,

NLP, baseline, and random—not generalized. Can utilize screen dropdowns and

buttons to test and run as desired.

https://github.com/UNCCPhDResearchTalbot/BlockWorld
https://github.com/UNCCPhDResearchTalbot/BlockWorld
https://github.com/UNCCPhDResearchTalbot/2ndUserStudyBlockWorld
https://github.com/UNCCPhDResearchTalbot/2ndUserStudyBlockWorld


234

C.7 BML Extractor

All code can be found here https://github.com/UNCCPhDResearchTalbot/

FINALNLPBMLExport

GeneralizedExportBML = generalized code for converting play-scripts to pseudo-

bml.

Replace the file called InputScript.txt with a formatted play-script & modify char-

acters & pawns info for script.

Details on what to change: main.js—three sections:

• top of file—arrays of pawns & characters & marks, filenames, and additional

movement words

• checkposition function—any special position calculations like skull (closest of

two skull objects) or non-viewable pawns like coin

• bottom of file—creation of all marks, pawns, and characters

client.js—one section:

• bottom of file—creation of visible pawns & characters (same positions as

main.js)

To run: start python for page hosting

python -m SimpleHTTPServer 8888

start NodeJS module by running

node server

Then, open index.html file to begin running the scene and logging the character traces:

http://localhost:8888/index.html

Results will be in the log directory.

https://github.com/UNCCPhDResearchTalbot/FINALNLPBMLExport
https://github.com/UNCCPhDResearchTalbot/FINALNLPBMLExport
http://localhost:8888/index.html


235

C.8 Generalized 3D Model

All code can be found here https://github.com/UNCCPhDResearchTalbot/

FINALUnityBlockWorld

GeneralizationBlockWorld Code used for within subjects study for FDG, rules,

NLP, baseline, and random. Can utilize screen dropdowns and buttons to test and

run as desired. Has been generalized and accepts files with the following formats:

• Initialization file—tab separated columns

– Type: C or P or M for type of object—S for speed

– Speed: Slow, Med, Fast (only for S)

– Name: uppercase name with no spaces

– Start X Position

– Start Z Position

– Rotation 4 components

– Holding Object: define prior to the character!!

– Color: blue, purple, red, green, yellow, orange, brown, white

– Importance: 1 to 8 for chars only saying 1 = highest priority char to

lowest–only chars

– Voice: Alex, Ralph, Bruce, Fred, more? Kathy, Vicki, Victoria, Agnes,

Princess, Junior

• BML file—tab separated columns

– 1—Y or N—this line should be executed at the same time as the next line

– 2—SPEAK or MOVE—determines whether it is a speech line or a move-

ment line (easier parsing)

https://github.com/UNCCPhDResearchTalbot/FINALUnityBlockWorld
https://github.com/UNCCPhDResearchTalbot/FINALUnityBlockWorld
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– 3—<character name in CAPS>—who the current actor of this line of BML

is

– 4—<target name in CAPS>—what object or person is targeted by this

BML (pickup what object? follow what person?), XXXXX is ok if no

target

– 5—<bml>—the actual bml for the command

• Legend image

C.9 Interactive Application

All code can be found here https://github.com/UNCCPhDResearchTalbot/

InteractiveUnity

This is the code used for the interactive study, with an example seen in Figure C.7.

Inputs from the Generalized 3D Model still apply, but additional files are required.

Additional files:

• Three Init Files (one per scene)

• Three BML files (one per scene)

• Three Play-script files (one per scene)

– Formatted for scrolling on the screen for the user

• Three Count files (one per scene)—tab delimited

– Number of lines in section

– Is speech? Y/N

– Is movement? Y/N

– Speech to say

https://github.com/UNCCPhDResearchTalbot/InteractiveUnity
https://github.com/UNCCPhDResearchTalbot/InteractiveUnity
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Figure C.7: Interactive Simulation Screenshot
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