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ABSTRACT 

 

 

VINAYAK SHARMA. Deterministic and Probabilistic Forecasting for Wind and Solar 

Power Using Advance Data Analytics and Machine Learning Techniques. (Under the 

direction of DR UMIT CALI) 

 

 

The world is moving towards renewable sources of energy for its energy needs and solar 

and wind power are one of the most promising sources of ‘clean’ energy. There is a high 

level of uncertainty and variability associated with these sources of energy due to their 

dependence on weather conditions. This makes it difficult to integrate them with the grid  

 The aim of this study is to develop wind and solar power forecasting models using 

advanced forecasting techniques.  A model using a closed-loop non-linear autoregressive 

artificial neural networks (CL-NAR-ANN) has been implemented to forecast solar power 

without the use of numerical weather prediction (NWP) as input. This method is compared 

with its exogenous variant with solar irradiance as input as well as other data-driven 

models. The results suggest that the proposed model outperforms other models and can 

serve as a low-cost backup solution for situations when NWP data is not available. A 

probabilistic forecast is also implemented.  

 A neural network based one hour ahead to one day ahead wind power forecasting 

model using NWP data as input is presented. The inputs for the model are chosen after 

performing a sensitivity analysis of the variables. A multi-model ensemble forecast 

approach with NWP members is presented. A probabilistic wind power forecast is also 

presented using the multiple NWP members as input.  
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Chapter 1: INTRODUCTION 

 

The global population is projected to increase from 7.2 billion people in 2014 to 9.6 billion 

people by 2050  [1].  With this increase in population, the global demand for energy has 

also been increasing. This has led to a high jump in the production of electricity all around 

the world which is putting a burden on energy suppliers as they must bring more resources 

than they have in the past. Currently, this demand is met mostly by fossil fuels. The 

production of energy via fossil fuels like coal, oil, natural gas, etc. produces large volumes 

of greenhouse gasses which are a major reason for global warming [2]. Most of the current 

sources of energy are non-renewable in nature which means that they are finite and will 

soon deplete. The need of the hour is to develop cost-effective and sustainable energy for 

the future.  

  One way of doing this is by shifting to alternative sources such as wind and solar, 

which are considered cleaner and are available in abundance. Countries across the world 

have realized the energy problem and are in traducing energy policies to promote the use 

of renewable energy as well as reducing the energy consumption by increasing energy 

generation efficiency.  

Energy as a commodity cannot be stored on a large scale and the demand must be 

instantaneously met with the supply. With the current energy sources, the supply of energy 

can be controlled in order to meet the demand [3]. Wind and solar energy generation are 

largely influenced by weather conditions. Change in weather conditions like temperature, 

solar irradiance, wind speed, etc. impacts the energy generated by wind and solar energy 
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sources. The uncertain and uncontrollable nature of renewable energy production makes 

their integration into the grid complicated. 

Since no forecast is perfect, there is always a scope for improving the current 

forecasting model to be more robust and more accurate. This Master’s thesis work explores 

different methodologies to forecast wind and solar power. A model for forecasting day 

ahead solar power without the use of numerical weather prediction data has been developed 

and compared with other data-driven models. one hour to one day ahead wind power 

forecasting models have been developed.   
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Chapter 2: LITERATURE OVERVIEW 

 

 

Utilities like California ISO, New York ISO, Midwest ISO, PJM, etc have been using 

wind and solar power forecasts to effectively manage the high penetration of renewables 

into the grid. Various forecasting models have been developed and applied for solar and 

wind power forecasting. Models can be categorized based on their approach to 

conducting the forecast as physical, statistical and machine learning models. Physical 

models use NWP data based on meteorological data such as barometric pressure, 

humidity, temperature, wind speed, wind direction, etc. These models use NWP data 

calculated using complex equations and initial conditions to calculate power. Statistical 

models such as time series models (ARIMA, ARMA, etc) form a relationship between 

the inputs (NWP data) and the power outputs. A mathematical/statistical equation or 

relationship is formulated between the inputs or the independent variables and the output 

or the dependent variables [4].  

 With the development of complex machine learning algorithms, which can not 

only learn linear but also learn non-linear relationship between the input and outputs, 

these models were used in renewable power forecasting. Machine learning models use 

artificial intelligence models such as ANN, support vector machine, etc. These models 

mimic the learning mechanism of the human brain to learn non-linear relationships [4]. 
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2.1 STATE OF ART IN WIND POWER FORECASTING  

2.1.1 WIND POWER FORECASTING USING STATISTICAL METHODS 

 

Karakuş, Kuruoğlu et al. [5] use a polynomial autoregressive model to predict wind 

speed and wind power. The polynomial autoregressive model is then compared to complex 

models like ANN. The model uses historical wind power time series to predict future wind 

power using the dataset from Global Energy Forecasting Competition 2012.   1 hour ahead 

to 24 hours ahead forecasts are made. The performance of the proposed model is compared 

to other forecasting techniques such as Elman filter, MLP, etc. using NRMSE, NMAPE 

and model bias for different horizons. The proposed polynomial autoregressive model 

outperforms other models for wind power prediction which use the same dataset. 

Cao, Liu et al. [6] develop two models to make 1-6 hour ahead wind power forecasts 

using the autoregressive moving average (ARMA). The first model uses a pattern matching 

based mechanism to forecast 0-24 hour ahead wind power based on previous days wind 

power. The second model using ARMA is used to make 1 hour ahead wind power forecasts. 

The outputs from the two models are then combined to produce 1-6-hour wind power 

forecast. 

Renani, Elias et al [7] use data from an Iranian wind farm to develop a wind power 

forecasting model using statistical techniques and machine learning technique. ARMA is 

combined with multilayer perceptron (MLP) to predict wind speed. Subsequently, the wind 

speed predictions are used to calculate predicted wind power using wind power curve.  The 

time horizon for the model is from 5 mins to 60 mins ahead.  
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Kavasseri and Seetharaman [8]  use a fractional autoregressive moving average (f-

ARIMA) to forecast wind power over 24 hours. And 48 hours horizons. Models were run 

on 4 different sites located in the Minnesota-North Dakota region. It is observed that wind 

speed follows a slow decaying autocorrelation manner which is used to make the model.  

The model proves to be about 40% better than the persistent model which is also applied 

for comparison.  

Yatiyana, Rajakaruna et al. [9] explore the prediction of wind speed as well as wind 

direction to calculate predicted wind power. Wind power is calculated using wind speed, 

wind direction and air density.  Data used is from an Australian wind farm with one-minute 

time step. Wind speed and wind direction are combined to get wind power using an 

ARIMA model.  

Lijuan, Hongliang et al. [10] use an autoregressive integrated moving average 

technique to forecast wind power. Then, the residual of the difference between the 

predicted wind power and the actual wind power is calculated. The Chi-square matrix is 

calculated for the residual and a Markov chain method is used to correct the predicted next 

possible state.  The Markov chain correction improves the quality of the forecast and 

reduces error. 

Nayak, Sharma et al. [11] focuses on the ramps in weather data that intern cause 

ramps in wind power generation. A ramp in wind power occurs when the difference 

between two data points is more than the reference value or the power ramp rate.  The 

suggested method uses a statistical ARIMA based approach to convert wind speed to wind 

power and identify ramps in wind power.  Predicting wind power ramp is necessary for 
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energy operators to maintain a balance in the electric grid.  The model also differentiates 

between up and down ramps. 

Zhou and Fang [12] explore the use of a  Generalized Autoregressive Conditional 

Heteroskedasticity (GARCH) technique to forecast wind power. GARCH is traditionally 

used in econometric forecasts like electric price forecast and stock market forecasts.  

Autocorrelation function and partial correlation function were plotted to compute the 

number of required lags for the GARCH model.   ARIMA and ARCH models are also 

created and compared with the GARCH model. The results show that the GARCH model 

proved to be the best.  

2.1.2 WIND POWER FORECASTING USING MACHINE LEARNING METHODS 

Kariniotakis, Stavrakakis et al. [13] use wind speed and wind direction, etc. to predict wind 

power time series using advanced neural networks. The model first predicts wind speed 

and then uses the predicted wind speeds to predict wind power based on the characteristics 

of the wind turbine. 

Abhinav, Pindoriya et al. [14] explore the use of wavelet transformation to predict 

wind power. Wind power is split into wavelets of different signals in time and frequency 

domain.  Discrete wavelet transformation is used to decompose the signal using 

Daubechies wavelet transformation.  After the decomposition of wind power signal into 

multiple wavelets, they are fed into different neural networks with backpropagation. The 

outputs of the neural networks are later combined to reproduce the predicted wind power 

signal.  One day ahead forecasts are made using this technique.  It is a good technique to 

create more robust models.  
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Barbounis, Theocharis et al. [15] deals with long-term wind power forecasting up 

to 72 hours. Recurrent neural networks (RNN) are used to predict wind power forecasting. 

3 RNNs are created and compared to static models.  

Bhaskar and Singh [16] explore the use of adaptive wavelet neural network in the 

first stage and feed-forward neural network in stage two to predict wind power without the 

use of numerical weather prediction data. The network is trained on four hours ahead 

prediction and used in a recurrent way to make 30 hours ahead wind power. In the second 

stage, a nonlinear autoregressive with exogenous inputs are used. Historical wind speed 

and wind power are used. The sigmoid activation function is used as the transfer function 

in this model.  

Catalão, Pousinho et al. [17] combine the use of wavelet transformation and 

artificial neural networks to predict wind power. First, the wind power signal is broken 

down into several wavelets using wavelet transformation. These multiple wavelets are then 

predicted individually, and then inverse wavelet transformation is used to combine the 

wavelets. This approach yields wind power forecasts in the end. It is compared to the 

commonly used ARIMA model and the results show that the combination of neural 

network and wavelet transformation performs more efficiently than the ARIMA model. 

Catalao, Pousinho et al. [18] explores multilayer perceptron-based artificial neural 

network to predict wind power. 24 hour ahead wind power is predicted using a feedforward 

ANN model. Random days in winter, spring, summer and fall are chosen and wind power 

is predicted to present a wide performance evaluation of the model.  Mean absolute 

percentage error of 3.26% is achieved for Fall whereas MAPE for winter is around 9.5%. 

This shows the fluctuations in wind power generation over the year.  
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2.1.3 ENSEMBLE WIND POWER FORECASTING  

Silva, Rosa et al. [19] explore ensemble wind power forecast. First deterministic forecasts 

are made using numerical weather prediction data and statistical methods.  The model 

makes use of historical wind power data, most recent wind power data as well as NWP 

data to forecast wind power. Using these models the uncertainty is forecasted. These 

forecasts are combined to produce ensemble based wind power forecasts that are 

probabilistic. 

Li, Wang et al [20] use an ensemble of neural network techniques to predict wind 

power. Frist a conditional mutual information model based on feature selection is 

proposed to forecast point wind power forecasts. A neural network-based wavelet method 

is also used to predict wind power. In this method, three layers of feedforward neural 

networks are designed to increase the accuracy of the model. The multiple frequencies in 

the wind power time series are captured using wavelet transformation. Then the wavelets 

are combined using an intelligent method to increase the accuracy further. Thirdly, a 

partial least squares regression method is developed. The methods are tested on data from 

National Renewable Energy Laboratory (NREL) for various look ahead times. 

 

2.1.4 PROBABILISTIC WIND POWER FORECASTING 

Gneiting and Katzfuss 2014 [21] define probabilistic forecasts as a prediction probability 

distribution of point forecasts or events. For energy forecasts, typically for hours to day 

ahead forecasts, probabilistic forecasts are very useful. Ensemble forecasts can be 

generated by using different input sets to generate multiple forecasts. Statistical post-

processing of ensemble forecast is another way where quantiles of ensemble forecasts are 
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generated and used to make probabilistic forecasts. The paper points out the trend of 

probabilistic forecasts from point forecasts and explores the use of the probability integral 

transform (PIT) histograms.  

Wu, Su et al. [22] use NWP data from Taiwan to propose a probabilistic wind power 

forecasting method. The data is preprocessed in order to extract feature important for 

making a forecast. After preprocessing the data, a neural network was trained using this 

data to get lower-upper-bound-estimation.  The final predictions were tested on three 

different test sets and compared with persistence methods to evaluate the performance of 

the model. 

Gensler and Sick [23] explore probabilistic wind power forecasts using a multi-

model approach. Data from 37 wind farms from EuropeWindFarm is used to make the 

multi-model forecasts. Then these forecasts are combined in a hierarchical manner based 

on weight factors termed as gradual cooperative soft gating. 

2.2 STATE OF ART IN SOLAR POWER 

2.2.1 SOLAR FORECASTING USING STATISTICAL METHODS 

Bacher, Madsen et al. [24] propose a 2 stage approach to online forecasting of power 

production from PV systems. In the 1st stage, statistically normalized solar power is 

calculated using clear sky model. Then the solar power is calculated using adaptive linear 

time series models. 15 min observations from 21 PV systems located on rooftops across 

Denmark were used to train the models. Both AR and ARX models are compared. The 

ARX model, when fed with both solar observations and NWPs (Numerical weather 

Predictions), performs the best. Available observations of solar power are most important 
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for the forecast of up to 2 hours ahead. For longer horizon, NWPs are the most important 

input. A 35% improvement of RMSE is observed with proposed reference. 

Jiahui, Shutang et al. [25] explore statistical learning of historical solar power data 

to create ensemble forecasts. Using weather data and historical solar power data, three 

forecasting models are created: a linear regression model, a neural network model and a 

random forest model. The models are combined in a statistical manner to get maximum 

accuracy.  

Darbali-Zamora, Gómez-Mendez et al. [26] use a Holt-Winters predict model to 

forecast solar irradiance. The data used is from Puerto Rico. The forecasts are then applied 

to different case studies to analyze the effect of the forecast accuracy and quality.  Battery 

energy storage unit model and a PV system model are some of the models used to conduct 

the case studies. Energy management strategies are also analyzed and suggested in the 

work. 

2.2.2 SOLAR POWER FORECASTING USING MACHINE LEARNING METHODS 

Gairaa, Chellali et al. [27]  use a non-autoregressive neural network to predict the clearness 

index, which is used to forecast solar radiations worldwide. The NAR model is compared 

to autoregressive moving average (ARMA) model. The model uses data of 3 years (2012-

2014) global solar radiation time-series for Ghardaïa (dessert) site. (Before optimizing the 

NAR model, clear index approach was adopted in order to make the data stationary). The 

proposed model provides an improvement of 23.9% in terms of mean absolute error and a 

15.50% decrease in terms of root mean square error value when compared to ARMA 

method. The NAR model can be used to predict daily global solar radiation with acceptable 

precisions. 
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Nazaripouya, Wang et al. [28] propose a discrete wave transformation with NARX 

to predict nonlinear patterns in solar power. An RNN is used with NARX to predict solar 

power time series with an exogenous input. The model performs well on all types of days. 

Later, wavelet transformation combined with ARMA is compared wavelet-ARMA-

NARX. 

İzgi, Öztopal et al. [29] use ANN to forecast solar power time series. They use past 

historical solar power data to train the ANN model. The predictions are performed from 30 

mins to 300 mins with 30 min interval.  The predicted values are compared with the actual 

values to calculate the error and performance of the model. 

Behera, Majumder et al. [30] explore a new machine learning technique known as 

extreme learning machine (ELM) to predict solar power forecast. The models are trained 

in MATLAB based on a single layer feed-forward network (SLFN). Different time 

horizons are predicted.  The performance of the ELM model is compared over  15 min, 30 

min and 60 min time horizons. The ELM model performs better as compared to an ANN 

model in terms of RMSE, MAPE and MAE. 

Huang, Huang et al. [31] build six sub-models based on the type of day: a sunny 

day, sunny and cloudy day, cloudy and sunny day, cloudy day, cloudy and rainy day and 

rainy day. To capture the recency of the weather information, past historical weather 

information is used in the model. The proposed model is compared with ANN and SVR 

model to evaluate the performance over different days in different seasons. Training the 

model based on different days gave better results than other models trained over continuous 

data. 
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2.2.3 PROBABILISTIC SOLAR POWER FORECASTING 

Ordiano, Doneit et al  [32] use regression to generate point forecasts using the present and 

historical information to make the next timestep ahead forecasts. Multiple point forecasts 

using data-driven forecasting models are modelled. The point forecasts are then converted 

to quantiles by combining them using a quantile regression model. The paper uses, k-

nearest-neighbor based quantile regression model to generate the quantiles for probabilistic 

forecasts. They make use of a freely available dataset for PV power from an Australian 

energy provider.  

Zhang and Wang  [33] explore probabilistic solar power forecasts on the benchmark 

GEFCom 2014 solar data using k-nearest neighbour method combined with a kernel 

density estimator. the k-nearest neighbour method is used to predict point forecasts based 

on k-nearest points in the variable space. After predicting the point forecast, kernel density 

estimator is used to generate various quantiles required for the probabilistic forecast. An 

exploratory data analysis is conducted to achieve accurate point forecasts. RMSE is used 

to evaluate the point forecast and quantile scores are calculated for each of the 99 quantiles.  

Silva, Lim et al. [34] aim to forecast solar irradiance using historical solar data and 

weather data. They produce point forecasts using linear regression, probabilistic forecasts, 

and Bayes models for one-day ahead forecasts. The effect of the size of the training set has 

also been explored. For the lesser amount of training set, Bayes models are recommended. 

For the probabilistic forecasts, k-means clustering is used based on historical solar 

irradiance data. By varying the training set, the robustness of each model is tested, and 

Bayes is concluded to be more robust. 
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Chapter 3: METHODOLOGY 

 

 

3.1 FORECAST HORIZON 

Wind and solar power forecasting models can be classified based on their forecasting 

horizon. The forecasting horizon can be defined as how many steps ahead in time is the 

model forecasting. Based on this forecasting horizon, models can be classified as very 

short-term forecasting, short-term forecasting, medium-term forecasting, and long-term 

forecasting.  

In very short-term forecasting, the forecasting horizon is a few minutes. The 

forecasting model runs multiple times in an hour. In short-term forecasting, the forecasting 

horizon is from a few hours to day ahead. TSO uses short-term forecasting models to make 

energy trading decisions. Medium-term forecasting models have few days ahead as the 

forecasting horizon. Lastly, long-term forecasting models can have up to weeks ahead 

forecasting horizons. As the forecasting horizon increases, the prediction error also 

increases. 

3.2 PERSISTENCE MODELS 

Persistence models are the most basic and simplest forecasting models. As the name 

suggests, these models depend on the similarity in the predicting time series. In other 

words, persistence models assume forecasts to be same as previous actual values. In this 

research, three persistence models (Persis1-Persis3) are created in order to compare with 

the proposed models.   
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3.2.1 PERSISTENCE MODEL 1 (PERSIS 1): 

The first persistence model assumes that there is no change in the power value. This model 

takes the value from the previous day and assumes it to be the forecast value. This model 

is explained by the equation: 

�̂�[𝑘 + 24] = 𝑃[𝑘] 

3.2.2 PERSISTENCE MODEL 2 (PERSIS 2): 

Unlike the first persistence model that assumes the forecast to be the same as that from the 

previous day, this persistence model considers the previous day and the day before that as 

well. This model averages the PV power values from the previous day and the day before 

the previous day. It is given by the equation: 

�̂�[𝑘 + 24] = 0.5 ∗ 𝑃[𝑘] + 0.5 ∗ 𝑃[𝑘 − 24] 

3.2.3 PERSISTENCE MODEL 3 (PERSIS 3): 

Similar to the first and second persistence models, this model goes a step ahead and 

considers the averages across the previous three days. It considers the average of previous 

day’s PV power,the day prior to the previous day and the day prior to that. The following 

equation can explain it: 

�̂�[𝑘 + 24] = 0.33 ∗ 𝑃[𝑘] + 0.33 ∗ 𝑃[𝑘 − 24] + 0.33 ∗ 𝑃[𝑘 − 48] 
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3.3 POLYNOMIAL REGRESSION MODEL 

A polynomial forecasting model is a regression-based approach where the dependent 

variable is regressed on powers of the independent variable. The equation can explain the 

polynomial model: 

𝑦𝑖 = 𝛽0𝑥𝑖1 + 𝛽1𝑥𝑖2 + ⋯ + 𝛽𝑘𝑥𝑖𝑘 + 𝑒𝑖  𝑓𝑜𝑟 𝑖 = 1,2,3, … . , 𝑛 

Or 

𝑌 = 𝑋𝛽 + 𝑒 

 

Where, 

𝑦𝑖 is the ith value of the dependent variable Y, 

𝑥𝑖𝑘 is the ith value of the kth independent variable, 

𝛽 is the slope of the regression, 

𝑒𝑖 is the error. 

The least squares approach is used to minimize the error while performing the regression. 

The following equation can give an error: 

e = 𝑌 − 𝑋𝛽 

The aim is to minimize the sum of squares of error which is given by: 

𝑒𝑇𝑒 = (𝑌 − 𝑋𝛽)𝑇(𝑌 − 𝑋𝛽) 

Where,  
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𝑒𝑇 is the transpose of the error matrix. 

  Poly’n’ means that the model considers the value from P[k] to P[k-H1] and raises 

them to a degree ‘n’ and chooses the best four features through a least square approach. 

3.4 ARTIFICIAL NEURAL NETWORK 

The heart or the building block of a neural network is a perceptron. It takes inputs and 

produces the desired output.  The following figure shows a perceptron. 

 

 

 

A neural net consists of various perceptrons, and each perceptron is connected has multiple 

inputs and outputs. The following figure shows the connection: 

 

Figure 2 Input and output connections with perceptron along with bias and activation 

function. 

Input Output 

Perceptron 

Figure 1 Perceptron of a neural network 
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Now, if a perceptron is connected to three inputs, i1, i2 and i3, each of these inputs 

contributes to deciding the output. These inputs are associated with weights to give reflect 

the significance of each input. So w1, w2 and w3 are the corresponding weights to i1, i2 

and i3. Bias is added along with the weights. Bias is given by b1.  The output is calculated 

based on an activation function.   

Activation function: The activation function calculates the sum of inputs depending on 

their weights a calculates the output. In general, a nonlinear activation function is used in 

order to define a non-linear relationship [35] between the inputs and the output. can be 

given as: 

𝑶𝒊 = 𝒇(∑ 𝒊𝒊𝒘𝒊

𝑵

𝒊=𝟎

) 

 

The final output after adding bias would be: 

𝒚𝒊 = 𝑶𝒊 + 𝒃𝒊 

A simple piecewise-linear activation function can be given by: 

𝑓(𝒊) = {

𝟏 𝒊𝒇 𝒊 > 𝟎
𝟎 𝒊𝒇 𝒊 = 𝟎
𝟏 𝒊𝒇 𝒊 < 𝟎

 

The most commonly used sigmoid function makes the value between 0 and 1.  

The sigmoid function is given by: 

𝒇(𝒊)
𝒊

𝟏 + 𝒆−𝒊
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Sigmoid function when plotted can look like: 

 

 

 

 

 

The following steps were followed to create a neural network model: 

 

 

Figure 4 Process of creating a neural network model. 

0 5 10 -5 -10 

1 

Figure 3 Sigmoid function plot 
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3.4.1.1 NETWORK DEFINITION 

The very first step is to define a neural network. This is done in different layers as can be 

seen from the figure: 

 

Figure 5 The various layers of a neural network and neurons in the layers. 

• Input layer:  This is the input layer of the neural network. It contains the 

inputs neurons corresponding to the inputs provided to the model. 

• Hidden layer: It consists of nodes that are used to adjust the weight of each 

neuron [36]. A number of hidden neurons and the number of hidden layers 

can be adjusted to improve the model’s performance. 

• Output layer: It is the layer that consists of the output neurons. All the 

neurons from the hidden layer are connected to the output layer. One or 

more neurons can be in the output layer depends on the number of outputs. 
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3.4.1.2 COMPILE 

The compilation is needed to make the network executable for the GPU or the CPU.  

3.4.1.3 FIT 

• Feed-forward neural network: 

The most basic kind of neural network is a feed-forward neural network. In this 

model, the neural network is traversed from start to end and the values are predicted. There 

are no loops or feedback units, so the network runs in a feed forward manner and predicts 

the value.  

• Back-propagation neural network: 

Each neuron is further connected to other neurons. These connections have weights 

attached to them. So, more weight will make the connection strong and less weight will 

make the connection weak. Weights are connected randomly. In the first run, the output 

predicted by the first run is compared to the actual value. Since the weights were random, 

the predicted value and the output are very different. The error between the actual value 

and the predicted value from the first run is calculated. This error is fixed by a mechanism 

called as backpropagation. In this process, the neural network propagates back to each cell 

and tries to fix the error. The connection strength or the weights are changed accordingly. 

This process is run multiple times to adjust the weights perfectly.  

3.4.1.4 EVALUATE 

After the model is defined, compiled, and fit, it is important to evaluate the model 

on the known set. For this, we evaluate the model on the training set and check its 

performance. This gives an idea of the model’s performance on unknown data or test set.  
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After evaluating the performance of the model, the model is tweaked if required to increase 

the performance. Hidden neurons, activation function, etc. can be adjusted to improve the 

performance of the model.   

3.4.1.5 PREDICTION 

The last step is to make the forecast. In this step, the created model is used to predict future 

values from the test set. The model is used to make out of sample forecast for single step 

or multi-step ahead.  

3.5 NONLINEAR AUTOREGRESSIVE ARTIFICIAL NEURAL NETWORK MODELS 

3.5.1 CLOSED LOOP NONLINEAR AUTOREGRESSIVE ARTIFICIAL NEURAL 

NETWORK (CL-NAR-ANN)  

Solar power is periodic in nature, autoregression based forecasting models are more 

suitable for solar power. Thus, a nonlinear and autoregressive artificial neural network is 

chosen to forecast solar power[37]. 

A closed-loop nonlinear autoregressive artificial neural network (CL-NAR-ANN) 

is a neural network-based model used to forecast a time series using its previous values 

only. A CL-NAR-ANN model can be described as: 

�̂�[𝑘 + 𝐻] = 𝑓(𝑃[𝑘], … … , 𝑃[𝑘 − 𝐻1]) 

Figure 6 describes the training topology of the CL-NAR-ANN. Time series P is the only 

input that goes into the CL-AR-ANN model. P[k], P[k-1], …., P[k-H1] is the feedback 

delays or in other words, it is how far in the past does the network look.  The number of 

delay elements can be determined by observing the autocorrelation of the time series. The 

model is first trained in an open loop. The inputs are mapped to the output using a 
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Levenberg-Marquardt backpropagation training methodology. Once the model is trained, 

it is transformed into a closed loop, thus a closed loop nonlinear autoregressive artificial 

neural network. The closed loop configuration can be represented a figure 7. 

 

 

Figure 6 Open-loop training configuration of the CL-NAR-ANN model. 

 

Figure 7 Closed- loop configuration of the CL-NAR-ANN model.  

  

CLOSED LOOP 
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3.5.2 CLOSED LOOP NONLINEAR AUTOREGRESSIVE ARTIFICIAL NEURAL 

NETWORK WITH EXOGENEOUS INPUT (CL-NARX-ANN)  

In general, the modelled time series is influenced by other external data as well as itself. 

Especially, renewable energy generation is highly influenced by weather conditions. Thus, 

the closed-loop nonlinear autoregressive artificial neural network with exogenous input 

(CL-NARX-ANN) model is a variant of the CL-NAR-ANN model with the addition of an 

exogenous time series as input.  

A CL-NARX-ANN is a neural network-based model used to forecast a time series 

using its previous values and an exogenous time series as additional input. A CL-NARX-

ANN model can be described as: 

 

�̂�[𝑘 + 𝐻] = 𝑓(𝑃[𝑘], … … , 𝑃[𝑘 − 𝐻1], 𝑢[𝑘], … … , 𝑢[𝑘 − 𝐻1]) 

Figure 8 describes the training topology of the CL-NARX-ANN. Time series P is 

the historical time series input that goes into the CL-NARX-ANN model. u is the 

exogenous time series input.  P[k], P[k-1], …., P[k-H1] is the feedback delays or in other 

words, it is how far in the past does the network look.  The number of delay elements can 

be determined by observing the autocorrelation and the correlation of the input time series. 

The model is first trained in an open loop. The inputs are mapped to the output using a 

Levenberg-Marquardt backpropagation training methodology. Once the model is trained, 

it is transformed into a closed loop, thus a closed loop nonlinear autoregressive artificial 

neural network with exogenous input. The closed loop configuration can be represented a 

figure 9. 
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Figure 8 Open-loop training configuration of the CL-NARX-ANN model. 

 

Figure 9  Closed- loop configuration of the CL-NARX-ANN model. 

 

The CL-NAR-ANN and its exogenous variant, the CL-NARX-ANN models are 

first trained using an open loop configuration and then while applying or testing, the model 

is transformed into a closed loop. The CL-NAR-ANN and the CL-NARX-ANN models 

make a forecast one-time step in time i.e. they can predict one time step ahead. At the time 

‘t’, the CL-NAR-ANN and the CL-NARX-ANN models can predict a value at a time ‘t+1’. 

For example, at midnight, the model makes the prediction one-time step in future, i.e. at 1 

am using the past H1 values, again at 1 am it makes a forecast for 2 am and so on. This 

process is repeated ‘n’ number of times in order to get a complete forecast.  The following 

figure describes the manner in which the CL-NAR-ANN and the CL-NARX-ANN models 

make a forecast one-time step in time. 

CLOSED LOOP 

OPEN LOOP 
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Figure 10 shows the forecasting mechanism of the CL-NAR-ANN and the CL-NARX-ANN 

model. 

  

3.6 PROBABILISTIC FORECAST 

The deterministic forecast provides point forecasts or a single value at each time step. 

Sometimes, this information is not enough. Probabilistic forecasts provide additional 

information about the uncertainty of the forecast value.  Probabilistic forecasts provide an 

estimation of the future outcomes as well as the probabilities associated with them. Instead 

of providing a single forecast value, probabilistic forecasts provide a probability density 

function. A probabilistic forecast looks like: 
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Figure 11 Shows time series probabilistic forecast. 

First, multiple point forecasts are generated using different models by varying the 

input parameters. In the postprocessing stage, statistical methods are used to generate 

quantiles of multiple point forecasts. First, the percentile rank is calculated from the 

frequency domain. The values in the data set which are the multiple point forecasts are 

arranged from smallest to largest. Then, the qth quantile is multiplied by the number of 

point forecasts available. The value obtained, is where the qth quantile is when going from 

left to right.  For example, if there are 10, point forecasts available. In order to calculate 

the 90th quantile, multiply 90% by 10, which gives 9. Thus the 9th value or the 9th point 

forecast when going from left to right is the 90% quantile. These quantiles are used to 

generate probabilistic forecasts. Quantiles are calculated using the following formula: 

𝒒 =
𝒄𝒒 + 𝟎. 𝟓𝒇𝒒

𝑵
 

Where, 

q is the quantile being calculated 



  27 

cq is the position of the value from left 

fq  is the frequency of the qth quantile 

N is the number of values 

 

Figure 12 Shows the process of obtaining probabilistic forecasts. 

3.7 MODEL PREDICTION ERROR 

The main goal of a prediction model is to train on data in order to predict unseen or new 

data. Any model does well on the training data as it optimized for the training dataset. The 

main challenge is to select a model that performs well on new data. In the case of neural 

networks, gradient descent is used to find the most optimum result or minima. This is done 

by passing the data one by one through the model and updating the weights each time to 

better fit the model. The whole dataset is passed through the model forward and backwards, 

updating the weights, multiple times as gradient descent needs multiple passes to achieve 

optimum learning. The number of times this process is repeated is determined by the 

number of epochs. With each epoch, the model better fits the training set or better learns 

the training data by adjusting the weights. The number of epochs is a crucial factor in 
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determining the performance of the model. Less number of epochs may lead to underfitting 

while more number of epochs may lead to overfitting [38]. 

 

Figure 13 shows over training, under training and optimal training respectively. 

 

 

Figure 13 shows a scenario when the model has been overfitted. This happens when the 

model learns the training set too well. The model even learns the sudden variation in the 

training data which might not be present in the unknown dataset. Figure 13 shows the 

scenario of underfitting. When the number of epochs is too less, the model is unable to 

learn the training data. Thus, the prediction will not the good for the test set and error will 

be large since the model has not learnt enough information about the available data to 

predict new data. Figure 13 shows the scenario when the model is fit in the most optimum 

manner. Here, the model learns the general trend of the data as well as some of the 

abnormalities. The error will be least when the model is trained with optimum fitting. 
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3.8 TRAINING AND TESTING SPLIT 

The whole dataset is divided into training and testing sets. The total dataset contains one-

year worth data. Out of this one year, nine months are used for training, which is about 

75%. The rest of the three months which is about 25% of the data is used to test the model.  

 

 

Figure 14 Shows the train and test split of the dataset.  

3.9 TOOLS 

MATLAB was used as the main platform to write the solar power forecast codes. 

MATLAB’s neural network toolbox was used as the base to write the code.  

For wind power forecasting, Python version 3.6.4 was used. The environment used 

to run the Python language was Spyder 3.2.8. The following libraries were used: 

1. NumPy:  

NumPy was used to work with arrays and matrices in Python. It is one of the 

most essential libraries for scientific tasks in Python.  NumPy arrays were used 

in the code to store and manipulate data.  

2. Pandas:  
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A fundamental library for data science in Python is Pandas. Data manipulation 

and visualization can be done by using the functionalities of pandas. The ability 

of Pandas to convert data into data frames makes data manipulation tasks such 

as time shifts, data selection, etc. very easy to manage. 

3. Matplotlib: 

Matplotlib is another core package offered in Python for data visualization. Line 

plots, scatter plots, pie charts, bar charts, etc. can be plotted using this library. 

Graphs can be customized to add labels, legends, etc. for more functionality.  

4. SciKit-Learn: 

A free to use the library for basic machine learning tasks. Various machine 

learning algorithms can be implemented using SciKit-Learn.  It is also used to 

calculate the error of the prediction.  

 

5. Keras: 

The most important library used in the code is Keras. It is a freely available 

open source library for neural networks. Keras runs TensorFlow in the backend 

to prepare the data for the neural network layers. Keras is written in Python and 

is easy to implement. It can easily be customized to suit ones required task. 

 

3.10 SYSTEM 

The experiments were conducted on an Intel® Core™ i7-6700K CPU @ 4.00GHz with 

8.00 GB installed RAM. 
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Chapter 4: DATA 

 

 

4.1 SOLAR DATA 

The data used is from the Global Energy Forecasting Competition held in 2014 [39]. The 

dataset contains three PV power time series, normalized to values between 0 and 1 and 

corresponding NWP data. Weather forecasts for the next 24 hours were issued at midnight 

of each day. The time series is given in an hourly resolution and contains measurements 

for a time-frame ranging from April 1st, 2012 to July 1st, 2014. The number of available 

measurements for each PV power time series is K=19704$. The total data-set has been 

divided into training (70%) and validation (30%) sets. The NWP data provided is as 

follows: 

• Total cloud liquid water content unit (kg/m2) 

• Vertical integral of cloud ice water content (kg/m2) - 

• Surface pressure - Unit: Pa 

• Relative humidity  

• Total cloud cover  

• 10-meter U wind component (m/ s) 

• 10-meter V wind component (m/s) 

• Temperature (K) 

• Surface solar radiation down (J/m2 ) 

• Surface thermal radiation  down (J/m2 ) 

• Top net solar radiation (J/m2 ) 
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• Total precipitation (m)  

 

Figure 15 Shows the solar power and solar irradiance time series. 

 

 

4.2 WIND DATA 

 

The data used comes from a Spanish wind farm located in Galicia, Spain. It consists of 24 

wind turbines. The power rating of the wind farm is 17.56 MW with an annual generation 

od 33,364 MWh. The average wind speed at the site is about 6.4 m/s [40]. The time series 

is given in an hourly resolution from 1st January 2016 to 31st December 2016. A total of 

8757 data points are available in the time series.  The NWP data for the wind farm is 

available in an overlapping format i.e. the NWP data is updated four times in a day with a 
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horizon of 48 hours. Most recent six hours are used from each overlapping time series to 

create a new continuous time series. January to September months are used for training and 

October to December months are used for testing.  

The NWP data contains the following variables: 

• 75 wind speed members at 10 m height 

• 75 wind speed members at 75 m height. 

• 75 wind speed members at 100 m height  

• 75 wind speed members at 170m height. 

• Ensemble Prediction System (EPS) for 10 m, 75 m, 100 m, 170 m. 

• Wind direction at 10 m and 170 m 

• Average of all wind speed members 

• 0 to 100 percentiles of wind speed 

• Temperature (K) 

• Momentum flux 

• Sensible heat flux 

• Latent heat flux 

• Shortwave radiation 

• Longwave radiation 

• Surface pressure 

• Large-scale precipitation 

• Convective precipitation. 

• Mean sea level pressure 
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• Cloud cover 

Wind power forecast depends on the quality of NWP provided to the model. The 

most important factor in predicting wind power is wind speed.  Figure 1 shows the 

scatter plot for wind power and wind speed. It can be inferred that wind power has a 

strong dependency on wind speed. 

 

 

Figure 16 shows the various input variables times series. 

NWP data, especially wind speed is the main factor for wind power prediction. The 

prediction error in wind speed and wind direction will cause a major error in the 

prediction of wind power. Figure 2 shows the comparison of measured wind speed and 

predicted wind speed for the wind farm. It can be inferred from the figure that there is 

some error in the predicted wind speed when compared to the measured wind speed. 

This error comes from a sudden change in temperature, pressure and other 
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meteorological conditions that are difficult to predict. 

 

Figure 17 Shows wind direction map. 

 

Figure 18 Shows the correlation between each variable. 
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Table  1 Correlation matrix for input-output variables 

 

 Table 1 shows the correlation matrix for an independent variable with each other 

as well as with the dependent variable. It can be observed that as expected, wind speed and 

wind direction have a high correlation with wind power. 
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Chapter 5: SOLAR POWER FORECASTING USING ADVANCE FORECASTING 

TECHNIQUES 

 

 

Sun is the source of all life form on this planet. Solar cells use solar energy from sunlight 

to produce energy. Recent developments in photovoltaic (PV) panels have led to efficient 

and cost-effective solar power generation solutions.  Solar energy will be responsible for 

more than 50% of the worlds electricity energy demand by the year 2050[41]. The amount 

of energy generated by PV panels depends on atmospheric variables like solar irradiance, 

temperature, cloud cover, humidity, etc. Dependency on these weather parameters makes 

PV power uncertain in nature. The amount of energy produced fluctuates, not only form 

day to day but even from hour to hour. Since it is weather dependent, which is not in our 

control it is not possible to reduce the inconsistency in the power produced by solar. But, 

it is possible to reduce the uncertainty about the inconsistent energy generation by using 

methods to forecast solar power.  

A usual method to make the solar forecasts is the use of numerical weather 

prediction (NWP) data as an input. The NWP data contains information about weather 

conditions such as temperature, humidity, solar irradiance, etc. These weather parameters 

influence the amount of energy produced by the PV plant or panel. The NWP data is 

obtained by using mathematical equations that model the atmosphere. These mathematical 

models are based on meteorological parameters that predict the future weather scenarios. 

The future atmospheric conditions are predicted using equations for short term as well as 

long-term. Using the present weather observations and computer models, the future 

forecasts are made. Calculation of NWP data is a very sophisticated process and there are 
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various NWP data providers such as (GDAS), Global Ensemble Forecast System (GEFS), 

Global Forecast System (GFS), North American Multi-Model Ensemble (NMME), North 

American Mesoscale (NAM), Rapid Refresh (RAP) and Navy Operational Global 

Atmospheric Prediction System (NOGAPS) that provide NWP data for various locations 

across the globe.  

For a real-time forecasting model, NWP data must be obtained on a regular basis. 

To have a continuous input of NWP data, it must be purchased from an NWP data provider. 

It is generally done on a contractual basis for a period. This adds additional cost to the 

project. Additionally, there needs to be a well-established link between the NWP data 

provider and the forecasting site. This is generally done via the internet. The NWP data is 

sent by the provider and is updated multiple times a day to make the forecasts more 

accurate.  

The obtainment of NWP data from the provider not only adds to the cost of the 

project but it also adds additional risk of system failure. In case of system failures, like loss 

of internet connectivity between the provider and the forecasting site, or in the case when 

it not secure to obtain NPW data, the reliability on NWP data to make forecast can be risky. 

Most of the current PV forecasting models solely rely on NWP data such that if this data 

becomes unavailable for some reason, the whole system runs the risk of shutting down. For 

that reason, this research attempts to solve this problem by exploring methods to make PV 

forecasts without the use of NWP data.  
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Persistence models: 

Polynomials of degree one to four (Poly1-Poly4) are considered in this research. For 

example, in Poly4 the models take in the value from P[k] to P[k-H1] and raise them to the 

power of one, the power of two, the power of three and power of four. Then, the best four 

features are selected step-wise using a least squares approach. The polynomial models are 

created using weather in 

5.1 ARTIFICIAL NEURAL NETWORK SOLAR POWER FORECASTING MODEL 

ANN models for PV power forecasting is built using multilayer perceptrons (MLP) with 

one hidden layer. Two ANN models are created, one with NWP data and one without NWP 

data as input.  The ANN models are trained using the Levenberg-Marquardt algorithm and 

contain one hidden layer with three hidden neurons. Figure 20 shows the ANN model for 

NWP data free forecasting and figure 19 shows the configuration for a model with NWP 

data as input. 

 

Figure 19 shows the ANN configuration without any NWP data. 
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Figure 20 Shows the ANN configuration with NWP data. 

 

5.2 CL-NAR-ANN AND CL-NARX-ANN MODEL FOR SOLAR POWER 

FORECASTING 

 

CL-NAR-ANN and CL-NARX-ANN are modelled using one hidden layer containing three 

hidden neurons.  For the Cl-NAR-ANN model, only historical PV power time series is 

given as input to forecast PV power. Thus, the CL-NAR-ANN model receives P[k] to P[k-

H1] as the input time series and predicts a value at time-step k+1. For this experiment, the 

value of H1 is set to 48. This implies that the model looks back 48 time-steps. This value 

of 48 was decided upon after observing the autocorrelation of the P[k] time-series, as well 

as the value of 48, gave the highest performance. Since the model can make a forecast only 

one time-step in time, this value is fed back into the model in a loopback fashion in order 

to forecast the next value. This process is repeated until 24 values are obtained in order to 

have one-day-ahead PV power forecast. 
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The exogenous variant of the CL-NAR-ANN, the CL-NARX-ANN model is built 

in a similar fashion, but with an exogenous input. Solar irradiance is taken as the exogenous 

input for the CL-NARX-ANN model. Thus, this model has P[k] to P[k-H1] and u[k] to 

u[k-H1] as the inputs. Since the model can make a forecast only one time-step in time, this 

value is fed back into the model in a loopback fashion in order to forecast the next value. 

This process is repeated until 24 values are obtained in order to have one-day-ahead PV 

power forecast. 

 

5.2.1 RESULTS 

Table 2 Results of the models without NWP data. 

MODEL MAE (%) RMSE (%) 

CL-NAR-ANN 5.85 11.43 

Poly 1 6.39 12.41 

Poly 2 6.34 12.41 

Poly 3 6.34 12.41 

Poly 4 6.34 12.451 

ANN 6.58 12.85 

Persis 1 6.15 14.17 

Persis 2 6 13.16 

Persis 3 6.09 13.1 
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Table 3 Results of the models with NWP data. 

MODEL MAE (%) RMSE (%) 

CL-NARX-ANN 4.01 8.04 

Poly 1 4.57 9.01 

Poly 2 4.4 8.81 

Poly 3 4.55 8.93 

Poly 4 4.53 8.92 

ANN 5.41 10.49 

The results of the NWP data free models are presented in table 1. It can be observed 

that the proposed CL-NAR-ANN model performs better than the ANN polynomial models. 

In terms of RMSE, the CL-NAR-ANN model is about 8% more accurate than the rest of 

the models. In terms of MAE, the CL-NAR-ANN model is about 9% better than the other 

models. It can be concluded that the CL-NAR-ANN model outperforms the other models.  

The NWP data free models perform considerably well, and the results are in an acceptable 

range. The persistence models perform comparably well in terms of MAE but not in terms 

of RMSE. This is because the deviations get averaged out in MAE but show up in RMSE. 

Also, for the given location, there is less fluctuation in PV power over time.  
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Figure 21 shows the performance of the models during consistent weather days. 

 

Figure 22 shows the performance of the models during inconsistent weather days. 

The performance of models with NWP data as input is presented in table 2. The 

exogenous variant of the CL-NAR-ANN, the CL-NARX-ANN outperforms the ANN and 
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the polynomial models. The CL-NARX-ANN outperforms the ANN and polynomial 

model by about 14% in terms of RMSE and about 13% in terms of MAE. 

The loss of accuracy when comparing the models that contain NWP data to the 

models that do not contain NWP data is also evaluated. Results suggest that there is about 

34% loss in terms of RMSE in the models that do not contain NWP data as compared to 

the models that have NWP data as input.  The loss on MAE is about 37%. The main reason 

for the loss of accuracy is the lack of NWP data in the weather free models. The NWP data 

free models lack information regarding the sudden change in weather conditions and 

fluctuations in weather. 

It is interesting to observe different types of days when comparing the performance 

of these models. In figure 21, it can be seen that for three similar days, weather-wise, the 

CL-NAR-ANN and the CL-NARX-ANN models perform very well. They are able to 

forecast the PV power very close to the actual measured PV power for that day. But, when 

the weather conditions change suddenly, as seen in figure 22, the CL-NARX-ANN model 

is still able to make comparably accurate forecasts than the CL-NAR-ANN model that 

lacks the information about the weather. The CL-NAR-ANN model doesn’t perform very 

well for the days when there is a sudden change in the weather. If the weather conditions 

for the forecast day are very different from the weather conditions of the present and 

previous days, the CL-NAR-ANN model will forecast completely wrong.   

Another interesting observation is the tradeoff between the complexity of models 

and the accuracy of models. The CL-NAR-ANN, CL-NARX-ANN and ANN models are 

very complex neural network-based models that require high computational power. These 

models take a longer time to run and have a complex code. On the other hand, polynomial 
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models are very simple and basic mathematical models that do not require much processing 

time and computation. If computation power is of major concern and the loss of accuracy 

when comparing the more complex neural network-based models to the simple data-driven 

polynomial models is not very high, then polynomial models can also be implemented. If 

accuracy is of the highest priority, then neural network-based models can be implemented. 

5.3 PROBABILISTIC SOLAR POWER FORECASTING 

Probabilistic PV power forecasts are made using multiple point forecasts. In order to 

obtain, multiple point forecast, different scenarios are generated. This is done to obtain 

different possibilities of future weather. Lagging most influential variable (solar irradiance) 

by different days can be used to generate different scenarios. For example, considering lag 

by one day would mean that summer arrived a day early this year or two days sooner. Since 

probabilistic forecasting aims at explaining are a range of forecasts, thus irradiance data is 

used to generate four different scenarios. Irradiance is lagged by one day and two days to 

create two more models. Another two models are created by advancing irradiance by one 

and two days making a total of seven models. Using the different models, percentile 

intervals are generated from 0.01 to 0.99. 

5.3.1 RESULTS 

The pin-ball loss function is calculated for the quantiles and the pinball-loss score is 

0.01298. The measured solar power values are close to the 50th quantile. The probabilistic 

forecast gives a wide range of forecasts rather than a single point forecast. This range of 
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forecasts can be used in making critical energy decisions with reduced risk.

 

Figure 23 shows probabilistic forecast for solar power.  

 

Figure 24 shows probabilistic solar power forecast 

 

 

 



  47 

Chapter 6: WIND POWER FORECASTING USING ADVANCE FORECASTING 

TECHNIQUES 

 

6.1 SENSITIVITY ANALYSIS FOR NWP VARIABLE SELECTION 

Wind power prediction is highly influenced by the parameters in the NWP data. But, the 

NWP data contains a number of parameters and information that might not be useful for 

making the predictions. Some parameters can be highly influential while other unrelated 

parameters can cause a negative impact on the accuracy of the wind power predictions. For 

this reason, a sensitivity analysis is carried out, in order to assess the influence of various 

NWP parameters on wind power predictions.  Artificial neural network model with one 

hidden layer and 20 hidden neurons has been used to predict day ahead wind power. This 

model was chosen by conducting a grid search to select the optimum number of hidden 

neurons from a range of 10 to 200 with an increment of 10 neurons. Using 20 hidden 

neurons gave the best result. The training set consisted of 9 months of data and the test set 

consisted of 3 months of data.   

 

Figure 25 shows the wind power forecasting model. 

Different sets and combinations of NWP parameters are used as input and each set 

is considered as a new experiment. From the values in Table 1, it can be seen that wind 

direction at 75m and 170m have very similar correlation values, but it was observed that 
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using wind direction at 170m gave slightly better results than using wind direction at 75 m 

height. Thus, while selecting different combinations, wind direction at 170m was 

considered in all the models. For the first experiment titled F1, pressure, temperature, wind 

speeds at 10m, 35m, 100m and 170m are considered along with wind direction at 35 m and 

170m. This is one of the most commonly found combinations of inputs in literature for 

wind power forecasting. In the second experiment (F2), the pressure is omitted out to 

observe its effect on the accuracy. For the third experiment (F3) pressure and temperature 

are both not included as inputs to the model. Since the wind speed at a higher height could 

be different from the wind speed at a lower height, the different wind speeds for different 

height are also considered individually. So, for the fourth model (F4), wind speed at 170 

m height is omitted from the model to evaluate its effect on the accuracy of the predictions. 

For model F5, both the wind speeds at 170 m and 10m height are excluded from the model 

along with the pressure and temperature. For model F6, only the wind speed at 100 m 

height is considered along with the wind direction at 35 m and 170 m height. For 

experiment F7, the pressure is added to the inputs from F6.  For experiment F8, 

temperature, wind speeds at 10 m,35 m, 100m and 170m height are considered along with 

the wind direction at 170 m height. A model containing all 323 inputs available in the NWP 

data was also created. This model was called FA. 
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Table 4 shows the different experiments for sensitivity analysis. 

 

 

Table 3 shows the nRMSE, nMAE and correlation values for the experiments 

performed for  

sensitivity analysis. Model F1, containing all possible 323 inputs has an nRMSE of 

12.32%, nMAE of 8.22% and 83.5% correlation. The model F1 containing temperature, 

pressure, wind speeds at 10m, 35m, 100m and 170m as well as wind direction at 35m and 

170m as inputs have a nRMSE of 10.88%, nMAE of 8.04% and 90.1% correlation. The 

model F2 containing temperature, wind speeds at 10m, 35m, 100m and 170m as well as 

wind direction at 35m and 170m as inputs have a nRMSE of 10.79%, nMAE of 7.65% and 

92.5% correlation. The model F3, containing wind speeds at 10m, 35m, 100m and 170m 

as well as wind direction at 35m and 170m as inputs have a nRMSE of 11.12%, nMAE of 

7.68% and 95% correlation. The removal of pressure decreases the nMAE. The model F2 

Parameters/Experiments F1 F2 F3 F4 F5 F6 F7 F8 

P (Surface Pressure) x 

       
T (Temperature) x x 

    

x x 

Wind speed at 10m x x x x 

   

x 

Wind speed at 35 m x x x x x 

  

x 

Wind speed at 100m x x x x x x x x 

Wind speed at 170m x x x 

    

x 

Wind direction at 35m x x x x x x x 

 
Wind direction at 170 m x x x x x x x x 
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is found to be the most accurate model. It is used in the subsequent experiments for wind 

power forecasting.  

Table 5 shows the results of the sensitivity analysis. 

Experiment name RMSE MAE 

F1 10.88 8.08 

F2 10.80 8.02 

F3 11.12 7.68 

F4 11.17 7.74 

F5 11.08 7.67 

F6 11.08 7.68 

F7 10.94 8.08 

F8 10.86 8.05 

 

6.2 ONE HOUR TO ONE-DAY-AHEAD WIND POWER FORECASTS 

The accuracy of the wind power forecasts is highly dependent on the forecast horizon. It is 

observed that there exists a short-term correlation or temporal dependency in weather 

variables as well as wind power. Due to these temporal dependencies, it is easier to predict 

the wind power more accurately for few hours ahead and less accurate to predict wind 

power for several hours ahead. The forecasts for the first hour are based on the actual power 

from the previous hour. But, for the subsequent hours, the actual value of the previous hour 

is absent, so the forecast value of the previous hour is used. The forecast value has some 

error associated to it, for several hour-ahead forecasts, this error gets accumulated and the 
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accuracy decreases. The hours ahead or the forecast horizon is a crucial aspect of wind 

power forecasting as different countries have their energy market operating at different 

horizons.  Artificial neural network model with one hidden layer and 20 hidden neurons 

has been used to predict wind power. The training set consisted of 9 months of data and 

the test set consisted of 3 months of data.   

In order to create a comparison of the different models and to present a benchmark 

result for comparison, three persistence models have been used to conduct 24 hours ahead 

wind power forecast. The first model (Persis 1) assumes the forecast wind power of the 

next hour to be the same as the wind power 24 hours or a day ago. The second persistence 

model (Persis 2) assumes the average of previous two days to be the forecast days power 

and the third persistence model (Persis 3) assumes the forecast value to be same as that of 

the average of the previous three days.  

Table 6 shows the results of the persistence models.  

  nRMSE (%) nMAE (%) 

Persis 1 20.4108 14.89025 

Persis 2 18.9442 17.56549 

Persis 3 18.1495 16.90546 

 

  In this research, one hour ahead to one-day-ahead forecasts are made and the 

accuracy is compared using model F2. Fig 26 shows the structure of the model and the 

inputs used to make the short-term forecasts.  
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Figure 26 shows the structure of the model and the inputs used to make the short-term 

forecasts. 

Forecasts were made from one hour ahead to 24 hour-ahead. Table 6 shows the 

results obtained from the experiments. It can be observed that the accuracy for one hour 

ahead wind power forecasts is the highest. As the forecast horizon increases, the accuracy 

decreases, and the root means square error increase. Figure 27 shows the increase in root 

means square error with an increase in the forecast horizon. The Figure 28 shows the 

increase in the mean square error with the increase in the forecast horizon.  
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Table 7 shows the results for 1 hour to 24 hour ahead time horizons. 

 
Hours-ahead nRMSE (%) nMAE (%) 

1 4.23 3.01 

2 4.93 3.74 

3 5.46 4.16 

4 5.59 4.25 

5 5.97 4.41 

6 6.35 4.75 

7 6.65 5.06 

8 7.19 5.53 

9 7.48 5.58 

10 7.64 5.76 

11 7.99 5.83 

12 8.32 6.08 

15 9.18 6.77 

20 9.96 7.51 

24 10.43 7.65 
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Figure 27 nMAE results for 1 to 24 hour ahead forecast. 

 

Figure 28 nRMSE results for 1 to 24 hours ahead forecast 
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6.3 ENSEMBLE WIND POWER FORECAST 

Numerical weather prediction data uses multiple equations and techniques to make weather 

predictions. This is done to provide a more accurate prediction or representation of the 

atmosphere as well as cover a range of values to reduce the uncertainty. In the used NWP 

data, some values remain constant as there is no observable change in these atmospheric 

variables like temperature, humidity, etc. But, for wind speed, there are 75 different wind 

speeds for each height. These are predicted using different initial conditions and they 

provide a band of possible outcomes.  

In this technique, each of the 75 members is trained separately and used to make 

predictions. The model is constructed with one hidden layer consisting of 10 hidden 

neurons. The training set consisted of 9 months of data and the test set consisted of 3 

months of data. The inputs considered to build the model are shown in table 7. 

Temperature, Pressure, wind direction at 35 m and 170m and the wind speed members at 

100m height. 

Table 8 shows the inputs used to build the model 

Input parameter Description 

T Temperature 

P Pressure 

Direction32 Wind direction at 35 m height 

direction30 Wind direction at 170 m height  

ws1-75 Wind speed members 1-75 at 100m height  
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 The neural network-based model was applied on all 75 members of the NWP data. 

The following structure was used to build the ensemble models: 

 

Figure 29 shows the models for 75 members. 

For this experiment, the wind speed members at 100 m are considered and the 

model forecast error is calculated for each member.  The results of the wind power 

forecasting models containing 75 members are plotted in figure 29. The root means square 

error lies between 10.58 % to about 11%. The results show that there is considerable 

variation in the wind power forecast accuracy using 75 ensemble NWP members.  
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Figure 30 Results of 75-member forecasts 

 

6.3.1 AVERAGING OF WIND POWER FORECASTS USING ENSEMBLE MEMBERS 

After obtaining the results for each and every ensemble member, a simple averaging of the 

results obtained from the 75 members were calculated.   The averaging was conducted 

without consideration of any weights. Secondly, a simple average of the 75 input 
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parameters was calculated and the forecast was made using that as inputs. Thirdly, 

 

Figure 31 results from a combination of ensemble members. 

 the EPS mean was used as input to calculate the forecast. The results are plotted in figure 

31. The results show that different methods of combining the NWP ensemble data can lead 

to different accuracy. This depends on the quality of the NWP data. The use of averaging 

reduces the forecast error and increases the accuracy.  

6.4 PROBABILISTIC WIND POWER FORECASTING WITH MULTI NWP MODELS 

Point forecasts or deterministic forecasts provide information about the next step in time. 

This value is an estimate of the next possible value. The amount of information about the 

future values could be improved upon by conducting a probabilistic forecast. Compared to 

point forecasts, probabilistic wind power forecasts provide information related to the 

uncertainty and the probability of the uncertainty of the forecast.   

To find the probabilistic forecasts, the outputs or the forecasted wind power from 

the experiments conducted in sensitivity analysis are used. The models (F1-F8) use 
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different sets of NWP data and hence have different outputs coming from the same 

forecasting methodology. Using the point forecasts from multiple NWP models, quantile 

forecasts were made. Quantiles are derived from 0.01 to 0.99 using the point forecasts.  

 

Figure 32 shows the wind power probabilistic forecast 

In fig 32, a sample of the probabilistic forecast is shown. Quantiles at 10,20, 30, 30, 

40, 50, 60, 70, 80 and 90 are plotted with different colors along with the measured wind 

power values plotted using the blue line. The actual value lies in the  50 percentile which 

means that is the most probable outcome.   
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Chapter 7: VALIDATION/ERROR MEASUREMENT 

 

The performance of the models used to predict wind power forecasts is evaluated in order 

to understand the quality of the predictions.  Determining the accuracy of the model is a 

way to test the performance of the model. Forecast error can be defined as the difference 

between the actual value and the predicted value at a time step. It is given by: 

𝒆𝒕 =  𝑷𝒎 − 𝑷𝒑 

Where, 

Pm: is the measured wind power 

Pp: is the predicted wind power 

 

This is done by using the following statistical methods: 

• Normalized Root Mean Squared Error (nRMSE) 

• Normalized Mean Absolute Error (nMAE) 

• Correlation 

7.1 NORMALIZED ROOT MEAN SQUARED ERROR 

To calculate the root mean square error, the first step is to calculate the error at each time 

step. This is done by calculating the difference between the measured wind power and 

predicted wind power at each time step. Next, the error at each point is raised to the power 

of two or in other words, the error is squared to give us a squared error. Now the squared 

error is added together and divided by the number of time steps, to get the mean of the 
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squared error. This gives us mean squared error. The root mean squared of this value will 

give us the root mean square error. For the given wind farm, the wind farm capacity is 

17560 MW. This value of 17560, is used to calculate the normalized root mean square 

error. The obtained root mean square error is divided by the value to get normalized root 

mean square error. nRMSE is given by: 

RMSE =  √
∑ (𝑷𝒎−𝑷𝒑)𝟐𝟏

𝒊=𝒏

𝒏
 

nRMSE = 
𝑹𝑴𝑺𝑬

𝑾𝒄
 

Where, 

N: is the number of time steps. 

Wc =Wind farm capacity.  

 

7.2 NORMALIZED MEAN ABSOLUTE ERROR  

Mean absolute error is one of the most common statistical method used to calculate the 

error. To calculate the mean absolute error, the absolute error between the measured wind 

power and the predicted wind power is calculated at each time step. The next step is to take 

the sum of the absolute errors at each time step and then divide the sum by the number of 

time steps to get the mean of the absolute error values.  MAE is given by: 

MAE = 
∑ |𝑷𝒎−𝑷𝒑|𝟏

𝒊=𝒏

𝒏
 

nMAE= 
𝑴𝑨𝑬

𝑾𝒄
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7.3 PINBALL-LOSS FUNCTION FOR PROBABILISTIC FORECASTS: 

The pinball-loss function is used to evaluate the quality of quantiles produced for the 

probabilistic forecast. The pinball loss function is used to evaluate the quantiles and not 

the forecasts, thus it’s an evaluation of the quantiles generated from the forecasts. The 

pinball-loss function is evaluated for each quantile using: 

𝑳(𝒚,𝒒) = (𝒚 − 𝒒)�̂�                      𝒊𝒇 𝒚 ≥ 𝒒 

           = (𝒚 − 𝒒)(�̂� − 𝟏)          𝒊𝒇 𝒚 < 𝒒 

Where, 

L(y,q)  is the Pinball loss 

y is the measured value  

q is the evaluated quantile value for the forecast 

�̂� is the actual quantile value 

Thus L(y,q)  is the accuracy of the evaluated value of the quantile. 

In the pinball-loss function, the magnitude of each error deviation and weights are 

calculated depending on the evaluated quantile. A lower value means less error and that 

the evaluated regression is good. 
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Chapter 8: CONCLUSION 

 

 

With the high penetration of wind and solar power into the grid, their smooth integration 

is a very crucial issue that needs to be looked into. An important step in the integration of 

these sources with the grid is to achieve accurate wind and solar power forecasts in order 

to efficiently plan for the uncertainty and variability in these sources. In this thesis, 

advanced machine learning and data analytical methods like ANN, CL-NAR-ANN, CL-

NARX-ANN, ensemble and probabilistic forecasting models are explored to conduct wind 

and solar power forecasts.  

 For solar power forecasting, a scenario is explored where NWP data is not available 

due to a hindrance in the communication channel or purchasing NWP data on a regular 

basis is not possible due to economic reasons. A novel CL-NAR-ANN model is developed 

for one day ahead solar power forecast using only historical solar power time series as 

input.  To evaluate the proposed model, it compared with three polynomial models and an 

ANN model. An exogenous variant of the CL-NAR-ANN, the CL-NARX-ANN with solar 

irradiance as the input, is also developed and compared with ANN and three polynomial 

models. The CL-NAR-ANN model outperforms other NWP data free models by about 9% 

in terms of RMSE. The CL-NARX-ANN model outperforms a Least Square Support 

Vector Regression (LS-SVR) model developed by Fentis, Bahatti et al. [42]. The NWP 

data free models lose about 30% in accuracy by their exogeneous variants. Thus, the CL-

NAR-ANN model can act as a good back up model for solar power forecasting, for 

emergency situations when the more accurate NWP data-driven models fail. A 

probabilistic forecast for solar power is also presented.  
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 For wind power forecasting, an ANN model with 20 hidden neurons in one hidden 

layer is modelled. First, a selective analysis of the input variables is conducted. Different 

combinations of input variables are selected, and their performance is evaluated. Then the 

most accurate model is selected as the base model for all other experiments. This model is 

then used to make one hour ahead to one day ahead forecasts.  The change in accuracy of 

the models with a change in forecast horizon is plotted. With the increase in the forecast 

horizon, a decrease in the accuracy is observed. Then, a multi-modal approach based on 75 

wind speed members is applied. A multi-model ensemble wind power forecast is developed 

with 75 different models for 75 wind speed members. It is observed that NWP data average 

gives the model with the highest accuracy when compared with simple averaging. These 

multi-model forecasts are then used to develop a probabilistic wind power forecast. 

 The presented solar and wind power forecasting models and methods provide a 

more robust and accurate forecasting solution for stakeholders in energy and power 

systems. Accurate wind and solar forecasts help grid operators manage the system better, 

utilities plan and allocate resources efficiently and plan expensive operating resources more 

efficiently. Accurate forecasts can save millions of dollars by planning better and avoiding 

penalties and outages.  

8.1 FUTURE WORK 

In future, more advanced machine learning and deep learning algorithms can be explored 

for wind and solar power forecasting.  Also, the developed models can be applied and 

tested for load forecast and other power system forecast such as operational reserve 

forecasts. 
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 An interesting point in solar power forecasts is the amount of accuracy of less 

complex regression models as compared to highly complicated neural network models. If 

accuracy is of utmost requirement, then complex neural network models can be used but if 

a little loss in accuracy can be tolerated over less complexity, then simpler models can be 

used. 

 NWP free models can also be implemented in decentralized agents where NWP 

data is not accessible due to contractual difficulties. The decentralized agents can run the 

NWP models as have some knowledge of the future power scenarios. 

In future works, the effect of wind power forecasts and solar power forecasts on the 

energy market and the economic feasibility of maintaining and operating these resources 

can also be analyzed.  
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