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ABSTRACT

KIMBERLY MAYS. March madness prediction using quantile regression. (Under
the direction of DR. ELIANA CHRISTOU)

The annual NCAA Division I men’s basketball tournament is one of the most promi-

nent sporting events in the United States and the subject of much interest among

fans and statisticians alike. In this work, we propose a new method for predicting the

results of the tournament based on a semiparametric quantile regression model. The

idea is to estimate a win probability by averaging across multiple conditional quan-

tiles. To demonstrate the finite sample performance of the proposed methodology,

we predict the tournament results for the years 2016 - 2019 and 2022. The results

are then compared with other commonly used methods and rankings. Our method is

competitive and offers a novel approach for use in bracket prediction.
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CHAPTER 1: INTRODUCTION

The annual National Collegiate Athletic Association (NCAA) Division I men’s

basketball tournament, known as March Madness, is one of the most popular sporting

events in the United States in terms of viewership and bets placed, with over 97

million viewers from 180 countries watching at least a portion of the tournament

in 2018, and billions of dollars gambled every year during the tournament (NCAA,

2018). The cultural and financial weight of the tournament lead to research interest

in many fields.

To provide a brief introduction, the tournament is conducted every year after the

end of the college basketball season. The tournament consists of 64 teams, 32 con-

ference champions and 32 at-large teams decided by the selection committee. Once

the teams are selected, they are divided among four tournament regions and assigned

seeds from 1 to 16, with the lower seeds given to better teams. Six rounds of single-

elimination games are then played over three consecutive long weekends (late March

to mid-April) on neutral courts. A more detailed description of the tournament is

given in Chapter 2.

A common way for fans to bet or compete during the tournament is to enter in a

bracket competition and predict the outcome of all 63 games before any games are

played. An estimated of 16.2 million brackets were submitted to the ESPN’s men’s

tournament challenge in 2021 alone (ESPN, 2021), in addition to entries into bracket

competitions through a number of online sites designed specifically to assist fans in

running their own bracket pools.

At the time of writing, there has not yet been a perfect bracket prediction. In

addition to the large number of possible combinations of game results in a bracket,
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there are other factors complicating bracket predictions:

1. Game pairings are inherently biased since lower-seeded teams are given an easier

path through the tournament (i.e., the first two games for the 1-seed team in

each region are against the 16-seed team and the winner of the 8- vs. 9-seed

game).

2. The single-elimination format of the tournament introduces high variability,

since the elimination of a team expected to perform well results in the loss of

all possible points for that team’s predicted wins in the bracket.

3. Bracket predictions are locked in before competition begins. As such, indi-

vidual player injuries or ‘hot streaks’ cannot be predicted or adjusted for, but

meaningfully impact team performance and game results.

One method that can be used to complete the bracket is according to the tourna-

ment seeding, i.e., choosing the team with the smallest seed number as the team to

advance to the next round. Although a team’s seed has been proven to be a strong

predictor of victory in games (Smith, 1999), tournament seeding is subjective and

potentially biased. By calculating the distribution of the seeds of winning teams by

round from 1985 to 2010, Jacobson et al. (2011) show that although the winning team

is most frequently a 1-seed, all four teams of the Final 4 very rarely are. For that

reason, and to incorporate other relevant game statistics, other methods have been

developed that account for a more global picture of a team’s performance.

Common team ranking methods used to evaluate teams and to complete a bracket

consist of the Pomeroy ratings, the Sagarin ratings, the Massey ratings, and the Rat-

ings Percentage Index (RPI); see Section 5.2 for details. Moreover, Kvam and Sokol

(2006) use a logistic regression model to estimate win probabilities through a Markov

chain (LRMC) model. Brown and Sokol (2010) suggest an improved LRMC model by

using empirical Bayes and ordinary least squares. West (2006, 2008) proposes a rating



3

method based on ordinal logistic regression and expectation that focuses on calcu-

lating the expected number of wins for teams that are selected for the tournament.

Koenker and Bassett (2010) propose a quantile regression approach to complete the

bracket, while Shen et al. (2015) consider a method based on a binomial generalized

linear regression model with Cauchy link. Gupta (2015) proposes a dual-proportion

likelihood methodology for competitive bracket advantage. Finally, Ludden et al.

(2020) estimate winning probabilities as a power function of the seed number.

A different approach for calculating the probability of a win is to utilize binary

quantile regression, where the probability is obtained by averaging over multiple

quantile levels. This allows for a more comprehensive estimation, as the different

quantiles can better describe the entire conditional distribution. Specifically, in this

work, we propose the average binary quantile regression (ABQR), which uses the

dimension reduction method of Christou (2020) for the estimation of the conditional

quantiles and then estimates the probability of a win by averaging across a grid of

conditional quantile estimates. We note that the dimension reduction component of

the methodology is of great interest as in practice, the number of available statistics

in sports analysis are only increasing. As such, methods allowing for a large number

of predictors in the model are desirable.

To test the performance of the method, we apply it to several tournament years

and complete bracket predictions. Our results suggest that ABQR has a good finite

sample performance and often outperforms a number of commonly used methods. In

fact, the proposed methodology shows a competitive performance on predicting upsets

and it outperformed all methods for all scoring schemes during the 2022 tournament.

To the best of our knowledge, this is the first work that utilizes multiple quantile

levels for the estimation of a win probability in order to complete a bracket.

The rest of the thesis is organized as follows: Chapter 2 provides a detailed de-

scription of the tournament and of the different scoring methods. Chapter 3 intro-
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duces quantile regression and its applications, while Chapter 4 presents the proposed

methodology. Chapter 5 applies the methodology to March Madness prediction and

compares results to existing methods. A brief discussion of the results is given in

Chapter 6.



CHAPTER 2: TOURNAMENT STRUCTURE AND SCORING

The NCAA Division I men’s basketball tournament is made up of 64 teams each

year: the champions of the 32 Division I conferences, who are granted automatic

bids, and 32 additional teams as selected by the committee. The 64 teams are then

divided into four regions and ranked 1 through 16 within each region based on their

performance in the regular season, with the best four teams as 1-seeds in their re-

spective regions. For the first round, the teams compete within each region according

to their seeding. Specifically, 1 is paired with 16, 2 is paired with 15, and so on, such

that the sum of the seeds of each pair is 17. These single-elimination games continue

within each region for three more rounds, called the Round 2, the Sweet 16, and the

Elite 8. Then, the winners of each region are paired in the next round, the Final 4.

Finally, the two surviving teams play the sixth and final championship round, where

the winner is declared as the tournament’s champion. These six rounds result in a

total of 63 games. A visual representation of the tournament is given in Figure 2.1.

Remark. The NCAA tournament structure has been updated periodically through-

out its long history. Most recently, a play-in round was introduced in 2001 and ex-

panded in 2011. Specifically, 68 teams are selected initially, with 60 teams guaranteed

tournament spots and the remaining eight teams playing single-elimination games to

determine the remaining four tournament teams. These games are called the First

4 and are played prior to the start of the regular tournament. This play-in round is

generally not included in bracket scoring and will not be considered here. As such,

the proposed methodology focuses only on the 64-team tournament.
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Figure 2.1: Sample Bracket of the 2019 NCAA Tournament.

2.1 Bracket Scoring

Bracket competitions involve choosing the winner of each of the 63 tournament

games in full before the start of the first round. One way to evaluate a bracket

is by counting how many correct predictions were made; this is called the single

scoring system. In other words, single scoring awards one point for each correct game

prediction, irrespective of the round, resulting in a maximum of 63 points per bracket.

In contrast, double scoring assigns more weight to later rounds since the cumulative

nature of the bracket makes it harder to have correct predictions in advanced rounds.

Specifically, double scoring doubles the amount of points awarded for each game

predicted by round, i.e., one point for each correct prediction for Round 1, two points

for each correct prediction for Round 2, four points for each correct prediction for

Round 3, and so on. In this scoring method, each round is worth 32 points, even

though the number of games per round is reduced by half. As such, predicting the
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correct champion (one game) is worth as many points as the entire first round (32

games). The maximum score under this scoring system is 192 points per bracket. The

nature of this scoring system makes it very attractive and it has been used extensively.

Another scoring method that will be used in this thesis is upset scoring, which

rewards more points for correctly predicting an upset, i.e., an outcome where a higher-

seeded team defeats a lower-seeded team. There are multiple upset scoring methods

in use; one of the most common, and the method used in this work, starts with the

double scoring method and multiplies the points earned by the seed of the winning

team (Kvam and Sokol, 2006). For example, successfully predicting a win in Sweet

16 by a 6-seed team results in a score of 4× 6 = 24 points, since Round 3 predictions

earn four points in double scoring, whereas a similar game prediction involving a

2-seed team results in a score of 4 × 2 = 8 points. Upset scoring is less common

in bracket competitions, but it can provide useful insights regrading the predictive

ability of upsets for different methods. Table 2.1 demonstrates a summary of the

three different scoring systems.

Table 2.1: Points awarded for correct predictions per method and round.

Rd1 Rd2 Sweet16 Elite8 Final4 Championship Total
Single 1 1 1 1 1 1 63
Double 1 2 4 8 16 32 192
Upset 1×seed 2×seed 4×seed 8×seed 16×seed 32×seed



CHAPTER 3: QUANTILE REGRESSION

Quantile regression (QR) has been proposed as an alternative to ordinary least

squares (OLS) regression, especially in cases where the error term has non-constant

variance. Modeling the conditional quantile of a response variable Y given a p-

dimensional vector of predictors X provides a more complete picture of the distribu-

tion, where the τth conditional quantile is defined as

Qτ (Y |x) = Qτ (Y |X = x) = inf{y : P (Y ≤ y|X = x) ≥ τ},

for τ ∈ (0, 1).

QR was first introduced by Koenker and Bassett (1978), who consider a linear QR

model Qτ (Y |x) = ατ + β⊤
τ x, ατ ∈ R, βτ ∈ Rp and use the representation

Qτ (Y |x) = argmin
q

E{ρτ (Y − q)|X = x},

where ρτ (u) = {τ − I(u < 0)}u, to define the estimator (α̂τ , β̂τ ). Specifically, for

independent and identically distributed (iid) observations {(Yi,Xi)}ni=1,

(α̂τ , β̂τ ) = arg min
(aτ ,bτ )

n∑
i=1

ρτ (Yi − aτ − b⊤
τ Xi).

Then, α̂τ + β̂⊤
τ x gives the estimator of the τth conditional quantile under the linear

QR model.

As the linearity assumption is quite strict, several authors considered the com-

pletely flexible nonparametric estimation of the conditional quantiles; see Chaudhuri

(1991), Yu and Jones (1998), and Guerre and Sabbah (2012), among others. How-
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ever, nonparametric estimation techniques suffer from the well-known ‘curse of di-

mensionality’ problem and for that reason many researchers turn their attention to

semiparametric models.

A semiparametric model that received particular attention is the single index quan-

tile regression (SIQR) model that defines

Qτ (Y |x) = gτ (β
⊤
τ x),

for gτ (·) : R → R an unknown univariate link function, called the nonparametric

component, and βτ ∈ Rp is a fixed, but unknown, vector of parameters, called the

parametric component. This model assumes that we can replace the p-dimensional

predictor vector X with the one-dimensional predictor vector β⊤
τ X without losing any

important information necessary for the estimation of the conditional quantile. This

model has been considered by serveral authors, including Wu et al. (2010), Kong and

Xia (2012), and Christou and Akritas (2016). A generalization of the above model is

the multi-index quantile regression (MIQR) model that assumes that

Qτ (Y |x) = gτ (B
⊤
τ x),

where Bτ is a p × dτ matrix of unknown coefficients, and 1 ≤ dτ ≤ p. This model

also received special attention by Luo et al. (2014) and Christou (2020).

For a further reading of the applications of QR across multiple fields of study,

see the works of Yu et al. (2003), who present practical applications in medicine,

economics, survival analysis, and detecting heteroskedasticity, and Leeds (2014), who

proposes multiple uses for QR in sports economics. Moreover, QR has been used to

consider covariates affecting athlete salary; see Burnett and Van Scyoc (2013, 2015),

Deutscher and Büschemann (2014), and Vincent and Eastman (2009).



CHAPTER 4: PROPOSED METHODOLOGY

4.1 Binary Quantile Regression Approach

Let Y be a univariate binary response and X be a p-dimensional vector of pre-

dictors. The goal is to estimate the probability P (Y = 1|X = x) using observed

data. A common and popular technique is the logistic regression model. However,

an attractive alternative, as proposed by Kordas (2006), treats the probability as an

average of multiple conditional quantiles. This allows for a more complete picture of

the conditional probability. Below we outline the methodology.

Let Y ∗ be a scalar latent continuous variable, where Y is its observed binary indi-

cator. In this work, we assume the model

Qτ (Y
∗|x) = gτ (B

⊤
τ x),

Y = I{Y ∗ ≥ 0}, (4.1)

where Bτ is a p× dτ matrix of unknown parameters, dτ ≤ p, and gτ (·) : Rdτ → R is

a dτ -dimensional link function. This model allows for nonparametric flexibility, while

at the same time reduces the dimension of the predictor variables. Although there

are many existing methods for fitting the above model, we will use the methodology

of Christou (2020), as it has a competitive finite sample performance. For a smoother

reading of this section, we present an explanation of this method in Section 4.2.

Since Y ∗ is a latent variable, we need to find a way to express the model in terms

of Y . The equivariance property of quantile functions (Powell 1984, 1986) states that

f{Qτ (Y
∗|x)} = Qτ{f(Y ∗)|x},
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for any real, monotone, increasing function f(·). This implies that

I{Qτ (Y
∗|x) ≥ 0} = Qτ{I(Y ∗ ≥ 0)|x} = Qτ (Y |x). (4.2)

Therefore, relationships (4.1) and (4.2) imply that

Qτ (Y |x) = I{gτ (B⊤
τ x) ≥ 0} = g̃τ (B

⊤
τ x), (4.3)

for some dτ -dimensional function g̃τ (·).

Kordas (2006) uses the fact that

P (Y = 1|X = x) =

∫ 1

0

I{gτ (B⊤
τ x) ≥ 0}dτ =

∫ 1

0

g̃τ (B
⊤
τ x)dτ

to express the probability as an integral over the quantiles levels. This idea leads to

the following estimation procedure. Let {Yi,Xi}ni=1 denote the set of n observations.

First, we use existing dimension reduction techniques to estimate the column vec-

tors of the matrix Bτ , denoted by B̂τ , and form the new sufficient predictors B̂⊤
τ Xi,

i = 1, . . . , n. In this work, we use the τth central quantile subspace (τ -CQS) of Chris-

tou (2020), as explained in more detail in Section 4.2. Next, we use nonparametric

techniques to estimate Qτ (Y |B̂⊤
τ Xi) = g̃τ (B̂

⊤
τ Xi). For that, we use the local linear

conditional quantile estimation method of Yu and Jones (1998), as it tends to work

well in practice. Specifically, we take Q̂τ (Y |B̂⊤
τ Xi) = q̂τ (Xi), where

(q̂τ (Xi), ŝτ (Xi)) = arg min
(qτ ,sτ )

n∑
k=1

ρτ

{
Yk − qτ − s⊤τ B̂

⊤
τ (Xk −Xi)

}
(4.4)

×K

{
B̂⊤

τ (Xk −Xi)

h

}
.

Here, K(·) is a dτ -dimensional kernel function and h > 0 is a bandwidth. In this

work, we use a Gaussian kernel and choose the bandwidth using the optimal one
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of mean regression local estimation, i.e., h = sd(y)n−1/5, where sd(y) denotes the

sample standard deviation of the n observations; see Fan and Gijbels (1995) and

Ruppert et al. (1995). Finally, we estimate the probability on a grid of quantile

levels. Specifically,

P̂ (Y = 1|X = Xi) =
K∑
k=1

Q̂τk(Y |B̂⊤
τ Xi)(τk − τk−1),

where τ1 < · · · < τK are the quantile levels, and K is the number of grid points. For

simplicity, we assume evenly spaced quantiles, i.e., τk = k/K, for k = 1, 2, . . . , K.

This leads to the estimator

P̂ (Y = 1|X = Xi) =
1

K

K∑
k=1

Q̂τk(Y |B̂⊤
τ Xi).

4.2 Estimation of the τth Central Quantile Subspace

We now discuss how to estimate Bτ using the methodology proposed by Christou

(2020). Relationship (4.3) implies that B⊤
τ X contains all the information we need to

know about the conditional quantile function and therefore, the goal is to estimate the

matrix Bτ in order to form the new reduced predictors. However, since the function

g̃τ is nonparametric, Bτ is identifiable up to a constant. That is, the interest is on the

space spanned by Bτ , called the τth central quantile subspace (τ -CQS) and denoted

by SQτ (Y |X).

This methodology (Christou, 2020) is based on two important statements:

(a) βτ ∈ SQτ (Y |X), where (ατ ,βτ ) = argmin(aτ ,bτ ) E{Qτ (Y |X)− aτ − b⊤
τ X}2.

(b) E{Qτ (Y |Uτ )X} ∈ SQτ (Y |X), where Uτ is a measurable function of B⊤
τ X, pro-

vided that Qτ (Y |Uτ )X is integrable.

Part (a) implies that the ordinary least squares (OLS) vector βτ , resulting from
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regressing Qτ (Y |X) on X, belongs to SQτ (Y |X). This provides a single vector in the τ -

CQS. If the dimension dτ of the τ -CQS is one, then one can stop and report βτ as the

vector that will define the new sufficient predictor β⊤
τ X. However, if the dimension

dτ is greater than one, then the single OLS vector is insufficient. Part (b) proposes

a method to produce more vectors in SQτ (Y |X). Specifically, setting βτ,0 = βτ , we

define, for j = 1, . . . , p− 1 and a function uτ (·),

βτ,j = E[Qτ{Y |uτ (β
⊤
τ,j−1X)}X] ∈ SQτ (Y |X).

Christou (2020) uses the identity function uτ (t) = t. Finally, for a p × p matrix

Vτ = (βτ,0, . . . ,βτ,p−1), we perform an eigenvalue decomposition of VτV
⊤
τ and choose

the dτ eigenvectors corresponding to the dτ nonzero eigenvalues.

The estimation procedure can be summarized as follows. First, estimate Qτ (Y |Xi)

using a nonparametric technique. Note that nonparametric techniques face the so-

called ‘curse of dimensionality’ problem when the dimension of the predictor vector

X is large. For that reason, Christou (2020) proposes performing an initial dimension

reduction technique and replace X with A⊤X, for A a p× d matrix, d ≤ p. For more

information, see Li (1991). Then, take Q̂τ (Y |Xi) = q̂τ (Xi), where q̂τ (Xi) is given by

(4.4), except that we replace B̂τ with Â. Next, estimate βτ by

(âτ , β̂τ ) = arg min
(aτ ,bτ )

n∑
i=1

{Q̂τ (Y |Xi)− aτ − b⊤
τ Xi}2.

Following, set β̂τ,0 = β̂τ , and for j = 1, . . . , p− 1, define

β̂τ,j = n−1

n∑
i=1

Q̂τ (Y |β̂⊤
τ,j−1Xi)Xi,

where Q̂τ (Y |β̂⊤
τ,j−1Xi) is obtained using (4.4) but with B̂τ replaced by β̂τ,j−1. Fi-

nally, define V̂τ = (β̂τ,0, . . . , β̂τ,p−1) and choose the eigenvectors v̂τ,k, k = 1, . . . , dτ ,
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corresponding to the dτ largest eigenvalues of V̂τV̂
⊤
τ . Then, B̂τ = (v̂τ,1, . . . , v̂τ,dτ ) is

an estimated basis matrix for SQτ (Y |X). That means that B̂τ is an estimate of Bτ up

to a multiplier, which is taken into account by the nonparametric link function g̃τ .

Remark. In practice, the true dimension dτ is unknown and needs to be estimated.

In this work, we estimate dτ using the modified Bayesian information criterion (BIC)

of Zhu et al. (2010).

4.3 Use in Bracket Prediction

We now discuss how to apply the proposed methodology in order to fill out a

bracket. First, we note that a bracket consists of six rounds; therefore, the method is

repeated for each round by taking into account which teams were predicted to advance

to that round. For each tournament team we have six different binary responses,

Y (1), . . . , Y (6), indicating whether a team won or lost on the lth round, l = 1, . . . , 6,

and a vector of predictors X characterizing the team’s performance during the regular

season. There are 64 teams at the start of each tournament, so the full data set

consists of 64 × T observations, where T denotes the number of years we use as

historical data.

For the first round, we use all 64×T observations as our training set in order to fit

the model; the response variable is Y (1). For the second round, we use 32× T obser-

vations, consisting of all the observations from the teams that made it to the second

round; the response variable is Y (2). We continue similarly for the rest of the rounds.

For example, for the sixth and final round, we use 2×T observations, consisting of all

the observations from the two final teams that made it to the championship during

the last T years; the response variable is Y (6). For each round, we fit the model using

historical data and then use the current year’s observations to predict the probability

of each team winning. We now present the algorithm.

Algorithm: For what follows, X∗ denotes a team’s regular season performance for
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the year under consideration.

1. Let {Y (1)
i ,Xi}64×T

i=1 denote the historical data of the first round for T years.

2. Given τk = k/K, repeat for k = 1, . . . , K,

(a) use the method of Christou (2020), described in Section 4.2, to estimate

Bτk and form the new predictors B̂⊤
τk
Xi.

(b) estimate Qτ (Y
(1)|B̂⊤

τk
X∗) using (4.4) for each team playing in that round;

denote the estimate with Q̂τ (Y
(1)|B̂⊤

τk
X∗).

3. For each team that is playing in that round, estimate the probability of winning

using

1

K

K∑
k=1

Q̂τk(Y
(1)|B̂⊤

τ X
∗).

4. Pair all the teams according to the bracket seeding in Round 1 and choose the

team with the highest probability of each pair to advance.

5. Update X∗ as the performance of teams predicted to advance to Round 2.

6. Given round l, repeat for l = 2, . . . , 5,

(a) let {Y (l)
i ,Xi}64×T/2l−1

i=1 denote the historical data of all the teams that ad-

vanced in round l for T years.

(b) Repeat Steps 2 - 3.

(c) Pair all the teams according to the predictions of the previous round and

choose the teams to advance according to the highest probability.

(d) Update X∗ as any team’s performance that is predicted to advance to

round l + 1.
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7. For the final round, let {Y (6)
i ,Xi}2×T

i=1 denote the historical data of the champi-

onship games for T years.

8. Repeat Steps 2 - 3.

9. Declare as champion the team with the higher probability.

Remarks.

(a) Step 2 (a) is performed using the cqs function of the quantdr package in R and

Step 2 (b) is performed using the llqr function of the same package.

(b) For this work, we use K = 20 to create the grid of quantile levels. We note that

we also tried different values of K, but there was no major difference in the results.



CHAPTER 5: TOURNAMENT APPLICATION AND RESULTS

5.1 Computational Remarks

In this section, the proposed methodology is applied to several years’ March Mad-

ness tournaments and its performance is compared with other commonly used meth-

ods. The data consist of observations from the 64 tournament teams for the years

2002-2022; there was no tournament held in 2020, so 2020’s regular season statistics

were excluded. As was mentioned in Section 4.3, the response variable differs for each

round and consists of a binary variable indicating whether a team won or lost dur-

ing that round, assuming that the team has advanced to that round. The predictor

variables consist of 14 game statistics averaged across each season and the seed num-

ber. These averaged variables include three-pointers per game, field goals per game,

free throw attempts per game, free throws per 100 possessions, offensive rebound

percentage, offensive rebounds per game, defensive rebound percentage, defensive re-

bounds per game, assists per game, fouls per game, scoring margin, assist-to-turnover

ratio, offensive efficiency, and defensive efficiency. Region, seeding, and tournament

results are obtained from htpps://www.ncaa.com. The 14 regular season statistics

are obtained from https://www.teamrankings.com.

To demonstrate the performance of the proposed methodology and compare it with

existing methods, bracket results were predicted for five seasons: 2016, 2017, 2018,

2019, and 2022. Note that there was no tournament played in 2020 due to COVID-19

restrictions. While a tournament was played in 2021, the regular season statistics

were not a fair comparison for the field of 64 teams as different COVID-19 protocol

by conference led to unusually high variance in number of quarantined players and

games played per team.
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To predict the results for the 201x tournament, we used data from years 2002 up

to the year before the current tournament. We note that we also tried our method-

ology using a moving window, but we found that the results under performed when

compared to the full training set; for that reason, all previous years were used in the

training set.

Remark. A conscious decision was made to consider only publicly available game

statistics as predictor variables. If a method relies on a metric calculated by a third

party, such as Sagarin’s Schedule ranking or NCAA Evaluation Tool (NET), the

method cannot be applied for evaluating seasons outside the available range of the

third-party metric. In contrast, our method does not rely on any such metric and is

easily reproducible for past and future tournament years with publicly available team

data.

5.2 Methods Considered for Comparison

The methods used for comparison brackets are as follows:

1. The seed of a team, assigned by the selection committee, can be used to fill out

a bracket. Specifically, for a single game, the team with the lowest seed will be

selected to advance to the following round. Team seed is listed on the official

tournament bracket released by the NCAA.

2. Pomeroy’s College Basketball Ratings are based on the Pythagorean winning

percentage formula given in Kubatko et al. (2007), which takes into account

the adjusted offensive efficiency (AdjO) and the adjusted defensive efficiency

(AdjD) of a team. In a single game, the team with the lowest Pomeroy rating

will be selected to advance to the following round. The Pomeroy ratings are

available in https://kenpom.com.

3. Jeff Sagarin’s College Basketball Ratings have been available for use in bracket

completion since 1985. Although the details of the method are not publicly
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available, the ratings are based on two characteristics: Sagarin’s personal mod-

ification of the Elo chess rating system (Elo, 1978), and a rating method devel-

oped by Sagarin known as the ‘Pure Points’ method (West, 2006). In a single

game, the team with the lowest Sagarin rating will be selected to advance. The

Sagarin ratings can be found in http://sagarin.com/sports/cbsend.htm.

4. The Logistic Regression/Markov Chain (LRMC) method, proposed by Kvam

and Sokol (2006), uses a logistic regression model on basic scoreboard data in

order to estimate the probability that one team is better than another. These

probabilities are used as transition probabilities in a Markov Chain model in

order to determine a ranking system, where, in a single game, the team with

the lowest rating will be selected to advance. We note that Brown and Sokol

(2010) modified this methodology by replacing the logistic regression part with

an empirical Bayes model. However, in this work, we compare our method with

the classic LRMC. Both classic and Bayesian LRMC ratings can be found at

https://www2.isye.gatech.edu/ jsokol/lrmc/.

5. The Massey ratings are designed to measure past performance of teams and

are calculated by applying a Bayesian win-loss correction to ratings based on

game score, location, and date. In a single game, the team with the lowest

Massey rating will be selected to advance. The Massey ratings can be found in

https://masseyratings.com/cb/ncaa-d1/ratings.

6. The Ratings Percentage Index (RPI) is a rating method based on the team’s

performance and strength of schedule. Specifically,

RPI = 0.25WP + 0.5OWP + 0.25OOWP,

where WP,OWP and OOWP denote the winning percentage, the opponents’
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winning percentage, and the opponents’ opponents’ winning percentage, respec-

tively. In a single game, the team with the highest RPI will be predicted to win

the game. The RPI can be found at https://masseyratings.com/cb/compare.htm.

Remark. From 1981–2018, RPI was used by the selection committee as a component

of the tournament seeding process. However, following the 2018-2019 season, RPI

was discontinued in favor of a new evaluation metric (NCAA Evaluation Tool–NET).

We have chosen to report the results for bracket prediction using RPI for 2016-2018

because RPI was regularly used as a benchmark in literature prior to 2019. This allows

the proposed method’s scores to be easily compared with those in earlier works.

5.3 Results

The results for predicting the outcome of the tournament for the years tested are

given in Tables 5.1-5.3. For each method, the total number of points throughout the

years is demonstrated with the largest value each year underlined. In case of ties, all

relevant values are underlined. Note that the total for RPI only corresponds to years

2016-2018, since RPI was not available from 2019 and afterwards.

According to the single scoring system, all methods seem to predict between 32

and 46 correct games, with the Sagarin method having a larger overall prediction by

a small margin. The double scoring system demonstrates how each method correctly

predicts games progressively in later rounds. We observe that the proposed method-

ology (ABQR), Pomeroy, and Sagarin seem to have the best overall performance.

Specifically, the top score in each year comes from one of the three methods men-

tioned: ABQR outperforms all existing methods for 2016 and 2022, Sagarin performs

the best for 2017 and 2018, and Pomeroy beats all methods with a large difference

for 2019. Over all years combined, the proposed methodology has the largest total

with 490 points. According to the upset scoring results, ABQR, Pomeroy, and LRMC

have the best overall performance, with the proposed methodology having the largest

total of 1128 points.
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Table 5.1: Number of points accumulated for each method and year according to the
single scoring system.

Year ABQR Seed Pomeroy Sagarin LRMC Massey RPI
2016 38 37 39 40 40 39 38
2017 45 44 44 46 44 43 39
2018 39 36 38 39 40 39 38
2019 41 41 44 43 42 41 N/A
2022 38 32 33 35 35 35 N/A
Total 201 190 198 203 201 197 115

Table 5.2: Number of points accumulated for each method and year according to the
double scoring system.

Year ABQR Seed Pomeroy Sagarin LRMC Massey RPI
2016 115 87 79 82 93 88 73
2017 102 82 110 113 88 90 61
2018 88 81 78 111 110 79 84
2019 97 92 127 94 93 88 N/A
2022 88 62 45 57 48 54 N/A
Total 490 404 439 457 432 399 218

Table 5.3: Number of points accumulated for each method and year according to the
upset scoring system.

Year ABQR Seed Pomeroy Sagarin LRMC Massey RPI
2016 269 169 195 221 230 193 157
2017 246 206 232 244 244 214 168
2018 203 172 196 231 240 210 198
2019 203 182 233 204 195 191 N/A
2022 207 161 146 160 163 161 N/A
Total 1128 890 1017 1046 1069 971 523

The results suggest that the proposed methodology performs very well for predict-

ing correct results when weight is given to later rounds and in predicting upsets.



CHAPTER 6: DISCUSSION

In this work we proposed a new method for predicting the results of the NCAA

basketball tournament. The method estimates the conditional quantiles of the ob-

served binary response given a set of predictor variables that characterize the team’s

performance throughout the season. Then, the winning probability of each team is

calculated as the average of multiple conditional quantiles. The real-world data anal-

ysis shows that ABQR has a competitive performance and often outperforms other

commonly-used methods. Moreover, the proposed methodology relies on a simple-

to-implement computational algorithm that uses only publicly available team data.

To the best of our knowledge, this is the first work that approaches a conditional

probability by averaging over a grid of estimated conditional quantiles and we hope

that this work will stimulate further interest in quantile regression both within and

out of the context of sports analytics.

The promising results of the proposed method invite other extensions or areas

of study. Currently, there is no consideration for strength of schedule, conference

affiliation, or game strategy in the model; future work could consider these or other

relevant predictors. The proposed model uses team performance data from the entire

season, while future models may consider incorporating a momentum component for

teams that seem to hit a ‘hot streak’ and improve dramatically as the tournament

begins. Additionally, the proposed method and algorithm can be applied to other

single-elimination tournaments, such as the NCAA Division I women’s basketball

tournament, the College Football Playoff, or the Football Association Cup.

Moreover, defining a different ‘success’ for the binary variable Y opens possibilities

beyond March Madness brackets. For example, calculating a team’s probability of
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covering the spread may be of interest in the realm of sports gambling and would give

a better picture of team success than simply winning or losing due to the inherently

biased nature of seeding.
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