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ABSTRACT

BIKASH POUDEL. Frequency-dependent electric power line modeling for steady
state harmonic analysis. (Under the direction of DR. VALENTINA CECCHI)

The modern electric power system is experiencing an increased level of harmonic

frequency components because of the growing use of power electronic devices, such

as converters, and nonlinear loads, such as rectifier-end loads. Electric power line

models commonly used in system level studies have been historically developed with

the assumption that only the fundamental frequency-component (50 or 60 Hz) propa-

gates in the system. These conventional line models, such as the PI and the exact PI

models, are therefore sufficiently accurate to represent the line behavior at the funda-

mental frequency; they are not however as accurate when the propagation of harmonic

frequencies is of interest. Frequency-dependent characteristics of electric power lines

and subsequent development of frequency-dependent line models have been histori-

cally focused on capturing transient behavior, such as resulting from switching and

element energizing events, in which the harmonic content is high. Transient analysis

is not sufficient to study the harmonic components since the present grid has signifi-

cant level of steady state harmonic components. Moreover, the models developed for

transient analysis are not applicable in frequency domain simulation environments.

Although time domain analysis can be performed to study the steady state voltages

and currents in large systems, it is unnecessary and computationally burdensome.

This research work focuses on the investigation and derivation of a frequency-

dependent electric power line model for steady state harmonic studies characterized

by a single generic model which can be used for both overhead and underground

electric power lines of any length. In order to achieve this goal, first an analytical

benchmark model is derived using the analytical equations of the distributed line

model expressed in hyperbolic functions and incorporating frequency dependent ef-
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fects such as the effect of ground return and the skin effect. Two frequency-dependent

line modeling approaches are first studied: the multi-segment line model structure

and an approximation based line modeling approach. This investigation led to the

development of the proposed frequency-dependent electric power line model, which

is characterized by a PI structure and represented by a passive circuit realization.

The developed frequency-dependent line modeling approaches are evaluated in terms

of their effectiveness in system level studies such as harmonic power flow algorithms.

Test cases are developed to run harmonic power flow using the different line mod-

els. The proposed models are compared with the currently-used models, i.e. the PI

and the exact PI models, as well as with the benchmark analytical model. Metrics

for comparison are series impedance, shunt admittance and line terminal behavior

(harmonic voltage magnitudes and phases). It is observed that the proposed model

is easily integrated in the system level analysis tools, such as harmonic power flow,

and results in a significantly improved accuracy over the currently-used simple PI or

exact PI models.
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CHAPTER 1: INTRODUCTION

1.1 Overview

The work presented in this thesis focuses on the development and derivation of

frequency-dependent power line models for steady state analysis. Historically, steady

state models for electric power lines have been developed assuming that only the

fundamental frequency component propagates in the grid; hence power line model

parameters are calculated and calibrated at fundamental frequency only. In this

work, the line models incorporating the propagation of non-fundamental frequencies

are developed to address the frequency-dependent nature of transmission line elec-

trical parameters. Multiple frequency-dependent line modeling approaches are first

investigated. Finally, a general steady state frequency-dependent line model is de-

rived and integrated within system level analysis tools such as Harmonic Power Flow

(HPF). The proposed model always has a PI structure and yields better harmonic

voltages and currents calculations as compared to the commonly used simple PI or

the exact PI models.

This chapter presents the following topics:

• Background and motivation for this work;

• Research objectives;

• List of main contributions;

• Organization of the thesis.

1.2 Background and Motivation

Electric power lines are a major integral component of the electric power systems.

The North American electric power system is often considered one of the largest

and complex man-made structure and engineering system. Power lines deliver bulk
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electric power to individual houses to business, services and industries and power

delivery is crucial in almost every aspect of the modern society. Historically, the power

system loads were considered linear, and it was assumed that only the fundamental

sinusoidal power signal is propagating in the grid. Power lines were modeled by

lumped parameter configuration or a uniformly distributed configuration considering

the assumption of only the fundamental frequency component of either 50 Hz or 60

Hz propagating in the grid. However, such modeling is not sufficient in accurate study

of the steady-state harmonics propagating in the modern grid.

1.2.1 Addressing the Harmonic Frequencies

The assumption of linear power system is no longer valid. The use of nonlinear

elements are growing in the modern power grid and also the renewable energy sources

such as wind and solar power penetration is increasing. Power electronic devices

such as converters and controllers are in use to make the grid smarter, safer and more

efficient. On the consumer side, the nonlinear loads like fluorescent bulbs, LED lights,

and loads with rectifier ends have been increasing. These power electronic devices

and nonlinear loads are contributing to the injection of a higher level of harmonics in

the grid. The harmonic currents injected into the grid affect the power quality; the

distortion levels of voltage and currents are measured as a metric of power quality.

The amount of current distortion caused by different types of loads are shown in

Table 1.1. (Adapted from [1]). An example of a typical compact LED lamp current

waveform [2] is shown in Figure 1.1. The corresponding harmonic spectrum is shown

in Figure 1.2.
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Table 1.1: Current distortions for different types of loads generating harmonics.

Type of Load Current Distortion

Fluorescent Lighting 20%

Single Phase Power Supply 80%

6 Pulse Converter, capacitive smoothing, 80%no series inductance

6 Pulse Converter, capacitive smoothing 40%with series inductance>30%

6 Pulse Converter, capacitive smoothing 28%with large inductor

12 Pulse Converter 15%

ac Voltage Regulator varies with firing angle

Figure 1.1: Philips 7 watts LED lamp current waveform.
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Figure 1.2: Philips 7 watts LED lamp harmonic current spectrum.
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The increased level of harmonics causes waveform distortion and is a major power

quality concern for the electric power industry [3, 4]. The IEEE recommended limits

of distortion levels [4] have been adopted by utilities and power quality requirements

have been set accordingly. The recommended voltage distortion limits and the current

distortion limits are show in Table 1.2 and 1.3. Filtering out the unnecessary harmon-

ics is an option; however, trying to filter out all possible harmonics is costly [5]. For

this reason, some level of harmonics is always present in the grid and the harmonic

components are propagating in the power lines. An example of harmonics injected

at a point of common coupling (PCC) by a steel mill power served by Southeastern

Electric Power Company [6] is shown in Figure 1.3. In light of propagation of the

multiple frequencies in the power grid, the conventional power line models derived for

studies at only the fundamental frequency are no longer accurate. Thus, re-evaluation

of power line models to address the nonlinearity and propagation of harmonics in the

system is deemed necessary.

Table 1.2: Voltage distortion limits.

Bus Voltage at PCC Individual Total Harmonic
Harmonic (%) Distortion (%)

V≤ 1.0 kV 5.0 8.0

1.0 kV < V ≤ 69 kV 3.0 5.0

69 kV < V ≤ 161 kV 1.5 2.5

V>161 kV 1.0 1.5a

aTHD can be up to 2% if the cause is HVDC terminal.



6

Table 1.3: Current distortion limits (120 V to 69 kV rated).

Maximum Harmonic Current Distortion in Percent of IL

Individual Harmonic Order (Odd Harmonics)

Isc/IL h<11 11≤ h<17 17≤ h<23 23≤ h<35 h ≥35 TDD

<20 4.0 2.0 1.5 0.6 0.3 5.0

20<50 7.0 3.5 2.5 1.0 0.5 8.0

50<100 10 4.5 4.0 1.5 0.7 12.0

100<1000 12.0 5.5 5.0 2.0 1.0 15.0

>1000 15.0 7.0 6.0 2.5 1.4 20.0
Isc is maximum short-circuit current at PCC and IL is the fundamental component
maximum demand load current at PCC. Even harmonics are limited to 25% of the
odd harmonics above.

Figure 1.3: Harmonic currents injected at PCC (A site measurement of steel mill
power served by Southeastern Electric Power Company).
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1.2.2 Steady State Application

Most of the literature on frequency-dependent line models are focused on Electro-

Magnetic Transient (EMT) simulations [7] and are used in commercial softwares like

PSCAD [8] for precise time domain simulations. The time domain models account

for harmonics propagation, however they are focused on transient studies. Hence,

the simulations are in time domain and these models cannot be used for steady state

analysis in the frequency domain. The focus of this work is to develop frequency-

dependent power line models for steady state harmonic analysis. The literature re-

view of frequency-dependent line models for EMT analysis [9–17] and steady state

applications [18–24] are presented in Chapter 3.

The modeling approaches proposed in this thesis have the traditional PI structure.

This allows the proposed models to be easily integrated in the conventional steady

state analytical tools like power flow. The proposed model, along with other com-

monly used steady state models have been used in HPF to test and compare the

effectiveness of the proposed models in study of the propagation of steady state har-

monic frequencies. Among multiple HPF tools, the semi-iterative HPF has been used

to calculate steady state voltages and currents at different buses or nodes of the test

cases.

1.3 Research objectives

In this work, different approaches for frequency-dependent line modeling for steady

state analysis are investigated. In summary, the main objectives of the work are,

• Derivation of a frequency-dependent electric power line model for steady state

harmonic studies characterized by a single generic model which can be used for

all types of electric power lines. For this task, the objectives can be further

detailed as,

– Defining and deriving an analytical benchmark model to evaluate the pro-

posed and other line models.
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– Investigation of different frequency-dependent line modeling approaches

such as multi-segment frequency-dependent line modeling.

– Development of a highly accurate frequency-dependent line model charac-

terized by a PI structure.

– Presenting a circuit representation of the proposed model using only pas-

sive circuit elements.

• Evaluation and testing of the proposed model. For this task, the objectives can

be further detailed as,

– Development of semi-iterative Harmonic Power Flow algorithm to evaluate

the effectiveness of the proposed models.

– Development of test cases to run Harmonic Power Flow.

1.4 Main Contributions of the Thesis

The summary of the contributions are summarized as follows.

• A single generic vector fitting-based frequency dependent line model to be used

in frequency domain analysis is proposed. The proposed model results in much

higher accuracy than the simple PI, the cascaded PI or the constant exact PI

models.

• The proposed frequency-dependent line modeling approach removes the neces-

sity to run time domain simulations while still retaining very accurate frequency-

dependent characteristics. This makes the model computationally efficient, and

the simulation execution time faster.

• The PI structure of this proposed model allows for simple implementation in

existing system-level analysis algorithms such as harmonic power flow.

• The proposed model can be synthesized in an R-L-C network and is therefore

implementable in conventional simulation software. The use of passive elements

also aids in maintaining model stability.

• The effect of using multi-segment frequency-dependent line models to study
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the propagation of the harmonics in the grid in frequency domain is studied. In

general, the HPF results obtained using the multi-segment frequency-dependent

line models are closer to the results obtained using the frequency-dependent line

models in PSCAD than the ones obtained using a single-segment line model.

• An approach for analyzing frequency-dependent impedance of a transmission

line by deriving an analytical expression for the real part of this impedance,

defined as apparent resistance, as a function of frequency and line length was

presented. Results have shown that during the run of the digital simulation,

the approximated equation is executed 250 times faster than the analytical

equation. This approach can be used to derive expression for imaginary part of

the impedance as well as admittances of the lines.

• Simplified polynomial expressions of first and second order are derived for

frequency-dependent parameters of the line i.e. series impedance and shunt

admittance. These simplified expressions replace the analytical expressions for

series impedance and shunt admittance which uses hyperbolic, Bessel and Kelvin

functions. Results have shown that during the run of the digital simulation, the

approximated equation is executed 250 times faster than the analytical equa-

tion.

• An analytical distributed model including the frequency-dependent effects such

as the skin effect and the effect of ground return is derived. This model is

derived to use as a benchmark model for comparison.

• The derived analytical model can be used for higher accuracy. However, for each

frequency of interest, a separate analytical model has to be used. The proposed

model avoids this problem by providing a single generic model for all harmonic

frequencies of interest without much affecting the accuracy of analytical model.

• A semi-iterative HPF algorithm is derived which is used as a test tool to evaluate

the proposed line models.
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1.5 Thesis Organization

This thesis is organized as follows:

• Chapter 2: In this chapter, frequency-dependent characteristics of transmis-

sion line parameters such as the skin effect and the effect of ground return

are discussed. Frequency-dependent line modeling for steady state analysis are

reviewed. A brief review of time domain transmission line models is also pre-

sented to create a background in order to highlight the differences between the

proposed steady state models and the time domain models in chapter 5.

• Chapter 3: In this chapter, the benchmark model is derived. The limitations of

the currently used lumped parameter models as well as distributed line model

are presented. Literature review of the frequency dependent line modeling

techniques on both time and frequency domain are presented. Approaches for

frequency-dependent line modeling techniques used in this work are discussed.

The line model evaluation tools and softwares are also presented.

• Chapter 4: In this chapter, the initial investigation of the different approaches

for frequency-dependent line modeling techniques are presented. Specifically,

multi-segment frequency-dependent transmission line models, an approach for

modeling frequency-dependent apparent resistance of transmission line and sim-

plified polynomial approximated model for frequency dependent distribution

line are presented.

• Chapter 5: In this chapter, the proposed novel frequency-dependent electric

power line model for steady state harmonic analysis is presented. The passive

circuit realization of the model is also derived.

• Chapter 6: In this chapter, the simulation results on multiple test cases are pre-

sented. The proposed line model is compared with other commonly used line

models in terms of calculated line impedances, bus voltages, harmonic distor-

tions at different buses and harmonic losses. An example of the passive network
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is also obtained.

• Chapter 7: In this chapter, the list of contributions are mentioned. Then the

differences between the proposed model and the EMT model are highlighted.

Finally, the possible areas and considerations for future works are presented.



CHAPTER 2: REVIEW OF ELECTRIC POWER LINE MODELING

2.1 Overview

Electric power transmission lines are an important component in the bulk transfer

of electrical energy. Transmission lines interconnect the generators with the substa-

tions. Distribution lines then enable the transmission of electricity to the consumers.

This chapter presents a review of electric power line modeling. Specifically, the fol-

lowing topics are discussed:

• Transmission line electrical parameters;

• Frequency dependence of line parameters, with special attention to the effect of

ground return and the skin effect; and

• Line models for steady state analysis.

2.2 Transmission Line Electrical Parameters

All electric power lines exhibit the four electrical properties i.e. resistance, induc-

tance, capacitance and the conductance. From a circuit point of view, the resistance

and inductance constitute the series impedance; capacitance and conductance consti-

tute the shunt admittance. The series impedance and shunt admittance are the major

elements in consideration for transmission line modeling. The line series impedance

and shunt admittances are given by,

Z = (R + jωL) Ω and, (2.1)

Y = (G+ jωC) S, (2.2)

where R and L are series resistance and inductance of the line and G and C are the

shunt conductance and capacitance of the line and ω is the frequency of the voltage

or current signal propagating in the line. Most often, these parameters are expressed
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in terms of per unit length of the line, and are the result of the conductor properties

and the electromagnetic fields associated with it. The electrical parameters are now

briefly reviewed in the following subsections.

2.2.1 Series Resistance

The series resistance of the conductor is an important electrical property, affecting

the majority of the real power losses in the power system. The dc resistance of a solid

round conductor at temperature T Kelvin is given by,

Rdc =
ρl

A
Ω, (2.3)

where, ρ is the resistivity of the conductor in Ωm at temperature T Kelvin, l is its

length in meter and A is its cross sectional area in square meters. Most of the power

line transmission carry alternating current, and causes the ac resistance to be higher

than the dc resistance. This is due to the skin effect, which is described later in

sub-section 2.3.1. The effective ac resistance of a conductor can be expressed is in

terms of power loss and the current flowing through the conductor as follows,

Rac =
power loss in conductor

|I|2
Ω, (2.4)

where I is the rms current in the conductor in amperes. Copper and aluminium are the

most commonly used metals in power conductors because of their high conductivity

and availability among metals [25].

2.2.2 Series Inductance

The inductance is calculated as the flux linkage per ampere flowing in the conduc-

tor. It therefore represents the voltage induced by the flux linkage. The inductance

depends on line geometry, i.e. cable size and spacing between the cables in a multi-

conductor case. For a single conductor, the inductance due to internal flux linkage is

given as [26],

Lint =
µ

8π
H/m, (2.5)
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where µ is the permeability of the conductor in Hm−1.

For a two conductor case, the flux emanating from one conductor links with the

other and affects the inductance of the conductor. If two conductors with radius r1

and r2 are separated by a distance D, as shown in Figure 2.1, the inductance due to

external flux linkage is added to the internal inductance.

Figure 2.1: Conductors of different radii separated by distance D.

The resulting inductance for conductor 1 is then given as,

L1 =
(

1

2
+ 2 ln

D

r1

)
× µ

4π
H/m. (2.6)

Stranded conductors come under the general classification of composite conductors,

which means conductors composed of two or more elements of strands electrically in

parallel. Lets consider the composite conductors, with all elements identical and

carrying equal currents, as shown in Figure 2.2.

Figure 2.2: Single phase line with two composite conductors.

The resulting inductance for conductor bundle X is given as,

LX = 2× 10−7
(

ln
GMD

GMR

)
H/m, (2.7)

where GMD is geometric mean distance between the two composite conductors and
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GMR is the geometric mean radius of the conductor bundle X. Using these concepts,

inductance for various conductors with various geometry can be calculated [26].

2.2.3 Shunt Admittance

Shunt admittance has two components, i.e. shunt conductance and shunt capaci-

tance. The shunt admittance exists between the conductor or between conductor and

the ground. The conductance, accounts for the leakage current at the insulators of

overhead lines and through the insulation of the cables. The shunt conductance is

usually very low and its contribution to shunt admittance is negligible. Hence, for

general purpose, the capacitance is considered. Due to the potential difference be-

tween the conductors, the power line exhibit capacitive property. If two conductors

with radius r1 and r2 are separated by a distance D, as shown in Figure 2.1, the

capacitance between the conductors is given as [27],

C12 =
2πε

ln(D2/r1r2)
F/m, (2.8)

where ε is the permitivity of the surrounding material around the conductor. The

capacitance to ground is half the capacitance between the conductors. The represen-

tation is show in Figure 2.3.

Figure 2.3: Representation of line to line and line to neutral capacitance.

For a bundled conductors as shown in Figure 2.2, the capacitance can be expressed

as,

C =
2πε

ln(Deq/d)
F/m, (2.9)

where Deq is the geometric mean distance between the conductors, and d is geometric

mean radius of the conductor.
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The capacitance of a transmission line is affected by earth, as its presence alters

the electric field of the line [27]. If the earth is assumed to be a perfect conductor

as an infinite horizontal plane, the electric field of charged conductors above earth

is not the same as it would be if the equipotential surface of the earth were not

present. Lets consider a three phase line with return path through the earth. Potential

difference exists between the conductors and the earth. The earth has a charge equal

in magnitude to that of conductor but opposite in charge. The electric flux from

the charges on the conductor to the charges on the earth is perpendicular to the

earth’s equipotential surface. Lets imagine a fictitious conductor of the same size and

shape as the overhead conductor lying directly below the original conductor above

the plane of the ground. The fictitious conductor is below the surface of the earth

by a distance equal to the distance of the overhead conductor above the earth as

shown in Figure 2.4. If the earth is removed and charge equal and opposite to that

on the overhead conductor is assumed on the fictitious conductor, the plane midway

between the original conductor and the fictitious conductor is an equipotential surface

and occupies the same position as the equipotential surface of the earth. The electric

flux between the overhead conductor and this equipotential surface is the same as that

which existed between the conductor and the earth. Thus, for purpose of calculation

of capacitance, the earth may be replaced by a fictitious charged conductor below

the surface of the earth by a distance equal to that of the overhead conductor above

the earth. Such a conductor has a charge equal in magnitude and opposite in sign

to that of the original conductor and is called method of image conductor. Including

the earth effect, using the method of image conductor, the capacitance is given as,

Cn =
2πε

ln
(
Deq

d

)
− ln

(
3
√
H12H23H31

3
√
H1H2H3

) F/m to neutral, (2.10)

where Hi is the distance between the conductor i and its image, Hij is the distance
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between the conductor i and image j. Using these concepts, the capacitance for

various conductors with various geometry can be calculated [27].

Figure 2.4: Three phase line and its image.
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2.3 Frequency Dependence of Line Parameters

The line parameters are dependent on multiple factors like line length, conductor

geometry, temperature, frequency etc. Since this work is devoted to the study of

frequency-dependence of line models, the frequency-dependence of the line parameters

are discussed. The line series impedance and the shunt admittances change with the

change in frequency. Equation (2.1) and (2.2) can be rewritten as,

Z = (Rac + jωL) Ω and, (2.11)

Y = (G+ jωC) S. (2.12)

The series reactance, jωL, as seen from the Equation (2.11), is directly proportional

to the frequency ω. Similarly, the shunt capacitance is also directly proportional to

the frequency as seen from Equation (2.12). Apart from this, the series resistance and

series reactance are dependent on other frequency-dependent factors such as the skin

effect and the effect of ground return. The shunt admittance, is however not affected

by the skin effect. The inclusion of frequency-dependent factors in calculating shunt

and series parameters are discussed later in detail in Chapter 3. Factors contributing

to the frequency-dependence of the line parameters are discussed in following sections.

2.3.1 Skin Effect

The phenomenon by which alternating current tends to flow on the outer edge of

the conductor is called skin effect. Skin effect causes the current density to be largest

at the outer surface, or skin, of the conductor, and the current density decreases with

greater depths in the conductor. Figure 2.5 shows a cross section of a conductor

carrying an ac current. In the Figure, the darker the shade, the higher the current

density. It is found that due to skin effect, resistance increases with increase in

frequency [28]. The skin effect is caused by the opposing eddy currents induced by

the changing magnetic field created by ac current, and it can be explained with the

help of Figure 2.6.
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Figure 2.5: Cross section of a wire-skin effect graphical representation.

Figure 2.6: Rotating eddy currents causing skin effect.
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If we assume that the ac current Iac is flowing from top to bottom of a cylindrical

conductor as shown in Figure 2.6, then the changing electric field of ac current will

create a changing magnetic field H. The magnetic field H then create the eddy

currents Ied. The circulating eddy currents oppose the main ac current flowing in the

conductor around the core, but has same direction on the outer edge. For this reason,

the electrons in the core are pushed towards the edge. At large enough frequencies,

there is almost no current flowing from the center and most current is flowing at outer

surface and within certain depth from the surface. The current density decreases from

exponentially from the surface to the core and is given by,

i = ise
− d
δ (2.13)

where i is the current density at distance d from the surface, is is the current density

at the surface and δ is the skin depth. Skin depth can be defined as the depth below

the surface of the conductor where the current density has fallen to 37% of the current

density at the surface. It can be calculated as [29],

δ =

√
ρ

πfµ
. (2.14)

The differential equation for alternating current as a function of distributed current

density in a round wire can be expressed by,

I =

r∫
a=0

i(2πa) da , (2.15)

where I is the current in amperes, i is the current density in amperes per square cm,

a is the distance from the center of the wire and r is the radius of the wire in cm.

The current density can be solved and expressed in terms of Bessel functions [30,31]

of zeroth order. The Bessel function in turn can be expressed in terms of kelvin

functions. The current density can then be expressed as,

i = i◦{ber(ma) + bei(ma)}, (2.16)
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where i◦ is the current density at the center,

m is the property of the material given in c.g.s units by,

m =

√
4πω

109ρ
(2.17)

the ber and bei are kelvin functions of zeroth order given by the series sum,

ber(x) = 1 +
N∑
k=1

(−1)k

[(2k)!]2

(
x

2

)4k

(2.18)

bei(x) =
N∑
k=1

(−1)k

[(2k + 1)!]2

(
x

2

)4k+2

(2.19)

The current density can then be expressed in terms of current as,

i =
Im

2πr

(
ber(ma) + jbei(ma)

bei′(mr)− jber′(mr)

)
. (2.20)

Since there is no drop due to internal flux at the surface where a = r, the impedance

of the wire due to resistance and internal flux is,

Zeff =
ρm

2πr

(
ber(mr) + jbei(mr)

bei′(mr)− jber′(mr)

)
. (2.21)

The real part of the Zeff is the resistance. As dc resistance is,

Rdc =
ρ

πr2
, (2.22)

the skin effect ratio is given by,

Rac

Rdc

= Re

[
mr

2

(
ber(mr) + jbei(mr)

bei′(mr)− jber′(mr)

)]
. (2.23)

An example of the No. 30 AWG copper wire skin effect ratios for different fre-

quencies [28] are shown in Table 2.1. The data are experimentally measured values

for different settings. Setting A is 48 parallel strands of No. 30 copper, setting B

is 48 spiralled strands for No. 30 copper and setting C is solid round copper equiv-

alent conductor. The temperature was maintained between 21◦ to 23◦ Celsius. For
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overhead ACSR cables mostly used for power transmission, the skin effect ratio for

fundamental frequency of 60 Hz of some select cables [32] are shown in Table 2.2.

The skin effect ratio is calculated for 20◦ Celsius.

Table 2.1: Skin effect ratio for 3 different settings of No. 30 AWG copper wire.

frequency Rac/Rdc for 3 Cable Settings

kHz Setting A Setting B Setting C

5 1.004 1.006 1.008

10 1.028 1.040 1.062

20 1.10 1.14 1.21

30 1.21 1.29 1.41

40 1.31 1.43 1.59

50 1.41 1.56 1.76

60 1.50 1.68 1.91

70 1.60 1.79 2.05

80 1.69 1.91 2.07

90 1.77 2.01 2.28

100 1.86 2.11 2.38
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Table 2.2: Skin effect ratio for some select cables at 60 Hz.

Code Aluminum Stranding diameter
word area, cmil Al/St inch Rac/Rdc

Waxwing 266,800 18/1 0.609 1.0226

Ostrich 300,000 26/7 0.642 1.0219

Merlin 336,400 18/1 0.684 1.0235

Chickadee 397,500 18/1 0.743 1.0244

Pelican 477,000 18/1 0.814 1.0267

Dove 556,500 26/7 0.927 1.0259

Rook 636,000 24/7 0.977 1.0286

Drake 795,000 26/7 1.108 1.0324

Rail 954,000 45/7 1.165 1.0432

Ortolan 1,033,500 45/7 1.213 1.0479

Finch 1,113,000 54/19 1.293 1.0459

Lapwing 1,590,000 45/7 1.502 1.0824

Falcon 1,590,000 54/19 1.545 1.0732

Bluebird 2,156,000 84/19 1.762 1.1269

2.3.2 Effect of Ground Return

To study the frequency dependence of transmission line parameters, Carson’s equa-

tions [33] are widely used. Carson’s equations take into account the effect of ground

return by utilizing the method of image conductors as discussed in previous subsec-

tion. Figure 2.7 shows two conductors and their images.

Referring to Figure 2.7, the self impedance in ohms per mile of the line is given as,

Zii = ri + 4ωPiiG+ j(Xi + 2ωG · ln Sii

RDi

+ 4ωQiiG). (2.24)

The mutual impedance in ohms per mile of the line is given as,

Zij = 4ωPiiG+ j(2ωG · ln Sii

Dij

+ 4ωQiiG), (2.25)

where he variables Xi, Pij and Qij are given as,

Xi = 2ωG · ln RDi

GMRi

Ω/mile (2.26)
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Figure 2.7: Conductors and their images.

Pij =
π

8
− 1

3
√

2
kij cos (θij) +

k2
ij

16
cos (2θij) ·

(
0.6728 + ln

2

kij

)
(2.27)

Qij = −0.0386 +
1

2
· ln 2

kij
+

1

3
√

2
kij cos (θij) (2.28)

and the variable kij is given by,

kij = 8.565× 10−4 · Sij ·
√
f

ρ
(2.29)

The variables mentioned in these equations are;

ri=resistance of conductor i in Ω/mile

ω = 2πf = system angular frequency in raidans per second

G = 0.1609347 ×10−3 Ω/mile

RDi = radius of conductor i in feet

GMRi = Geometric mean radius of conductor i in feet
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f = system frequency in Hertz

ρ = resistivity of earth in Ω-meters

Dij = distance between conductors i and j in feet

Sij = distance between conductors i and image j in feet

θij = angle between a pair of lines drawn from conductor i to its own image and to

the image of conductor j

2.3.3 Other Frequency-Dependent Effects

Similar to the skin effect, in case of multiple conductors in parallel, the magnetic

field of one conductor will affect the current density distribution in adjacent conduc-

tor. This effect is known as proximity effect [34]. This changes the effective resistance

of the conductor. The proximity effect is pronounced if the ratio of distance between

the cables to the diameter of the cable is small [35]. In case of power lines, the ratio is

very high and this effect is negligible [35–38]. Sometimes, the communication cables

may run along with power lines and cause electromagnetic interferences for higher

frequencies. This effect is also negligible for steady state harmonics in power sys-

tems [35]. The conductor strands bundled together will have appreciable proximity

effect, however when bundled together in circular fashion like bundled ACSR cables,

the proximity effect is negligible [39]. Old conductors have rough surface and corona

discharge can occur for higher frequencies, and increases the effective resistance of the

cable and create more leakage [40]. For this research, the cable surface is assumed to

be smooth and corona discharge from uneven surface is ignored.

2.4 Electric Power Line Models for Steady State Analysis

Modeling the electric power lines is one of the earlier and critical step in the analysis

of power system. Electric power lines can be represented in multiple ways, and the

most common ones are explained briefly in following sections.

Transmission lines are usually represented by lumped parameter models or the

distributed parameter model. The transmission lines are commonly classified in terms
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of length, and for short and medium length lines, the lumped parameter model offer

a good accuracy. The lumped parameters of resistance, inductance, conductance and

capacitance are idealized elements connected with perfectly conducting wires. The

long lines, however, are represented more accurately by distributed parameter model.

The short, medium and long lines are explained briefly in following subsections.

2.4.1 Short Line Model

A line with length of less than 50 miles (80 km) is considered short line. Shunt ad-

mittance is so small that it can be ignored for short line and only the series impedance

can represent the line [41]. The line series impedance is simply the per unit impedance

multiplied by the length of the line.

Z = (r + jωL)l = R + jX, (2.30)

where, r and L are the per unit length resistance and inductance of the line, R and X

are the total resistance and reactance of the line. The line model is shown in Figure

2.8.

Figure 2.8: Short line model.

The relationship between sending end voltage and current are related as follows,

VS = VR + ZIR, (2.31)

IS = IR, (2.32)

where VS and IS are the sending-end voltage and current and VR and IR are receiving-

end voltage and current.
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2.4.2 Medium Line Model

A line with length above 50 miles (80 km) and below 150 miles (250 km) is con-

sidered a medium length line. For medium length lines, the shunt capacitance is

appreciable and is considered by placing a lumped capacitance at each end of the

line. This model is known as the PI model. The PI model type is shown in Figure

2.9 and is one of the more commonly used lumped parameter models for steady state

analysis.

Figure 2.9: PI model.

For a PI model, the sending-end and receiving-end voltages and currents are related

as follows:

VS = AVR +BIR, (2.33)

IS = CVR +DIR, (2.34)

where VS and IS are the sending-end voltage and current and VR and IR are receiving-

end voltage and current. The A,B,C and D are given by,

A = 1 +
ZY

2
, (2.35)

B = Z, (2.36)

C = Y
(

1 +
ZY

4

)
, (2.37)
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D = 1 +
ZY

2
, (2.38)

where Y is the shunt admittance and Z is the series impedance of the line as expressed

in (2.12) and (2.11). The accuracy with which the lumped parameter represents the

distributed parameter model decreases with increasing frequency [42].

2.4.3 Distributed Parameter Models

As discussed previously, unlike in the lumped parameter model, in reality, these

shunt and series parameters are distributed in nature as shown in Figure 2.10. Dif-

ferential equations are used to derive the line model and distributed line model is the

best representation of the line.

Figure 2.10: Distributed line model-a differential section of length dx.

The relationship between sending-end voltage and current to receiving-end voltage

and current is given by [27,43] as,

VS = cosh (γl)VR + Zc sinh (γl)IR. (2.39)

IS =
1

Zc

sinh (γl)VR + cosh (γl)IR. (2.40)

The parameter γ is known as propagation constant and Zc is known as characteristic
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impedance. These parameters are given by,

γ =
√
yz =

√
(r + jωL)(g + jωC), (2.41)

Zc =

√
z

y
=

√√√√ (r + jωL)

(g + jωC)
, (2.42)

where, y is the per unit length shunt admittance, z is the per unit series impedance,

r is the per unit series resistance, L is the per unit series inductance, g is the per unit

shunt conductance, and C is the per unit shunt capacitance.

2.4.4 Exact PI Model

An exact PI model is the PI-equivalent of the distributed line model. The PI-

equivalent is derived because the PI structure can be readily and easily used in some

of the steady state analysis algorithms like power flow tools. Comparing (2.33) and

(2.34) with (2.39) and (2.40), the new A′, B′, C ′ and D′ parameters are obtained as,

A′ = cosh(γl). (2.43)

B′ = Zc sinh (γl). (2.44)

C ′ =
1

Zc

sinh (γl). (2.45)

D′ = cosh(γl). (2.46)

Comparing (2.35)-(2.38) with (2.43)-(2.46), the new series impedance and shunt ad-

mittance are obtained as,

Z ′ = Zc sinh (γl). (2.47)

Y ′ =
2

Zc

tanh(
γl

2
). (2.48)

These new Z ′ and Y ′ are series and shunt parameters of the exact PI model.
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2.5 Time Domain Line Models

The main objective of this work includes the development of accurate frequency-

dependent electrical power line models for steady state harmonic analysis. Accurate

frequency-dependent power line models are already available, however they are in time

domain. Hence, the proposed phasor domain frequency-dependent line model and

the currently available time domain frequency-dependent line models have noticeable

differences. To clarify the differences between the proposed phasor domain frequency-

dependent line model and the currently available time domain frequency-dependent

line models, a brief discussion of the time domain line models is presented.

2.5.1 Bergeron Line Model

When voltage and current signals travel along the line, the voltage and current can

be expressed as a one-dimensional wave equation [44]. The solution [45] of this wave

equation is commonly termed as traveling wave model [7]. To study the minute details

of the transmission line models behavior in time domain environment, a discrete-time

representation of the traveling wave model was proposed by Bergeron [46]. This model

is effective to use in time domain computer simulations incorporating the frequency-

dependence of the line parameters. Based on this model, at a distance x from the

sending end of the line, the voltage and current expressions in a lossless line are given

by,

I(x, t) = i+(x− vt) + i−(x+ vt) (2.49)

V (x, t) = Zc[i
+(x− vt) + i−(x+ vt)] (2.50)

where + and – represent the forward and backward travelling waves. If it takes

time τ for a wave to travel from node k to node m, the Bergeron line model can be

represented as shown in Figure 2.11.
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Figure 2.11: Bergeron line mode connecting node k and m.

In this model, the two node voltages are expressed in terms of node currents. The

voltage wave at node k takes time τ to reach node m. The line is assumed to be

lossless in this calculations. After the computation of voltages and currents is done

in lossless line, the losses are adjusted later [46].

2.5.2 Lossy Time Domain Line Model

The solution of the Bergeron line model first considers the line to be lossless and

losses are accounted later. A lot of work has been done to include the lossy nature of

the line and many transmission line models have been proposed utilizing the concept

of modal transformation to decouple the phases. One of the most robust and widely

used model was proposed by J. Marti [11]. The weighing function A is defined,

which along with the characteristic impedance Zc are approximated using rational

approximations and realized in circuit by using Foster Realizations [47, 48]. This

approximation has the same structure as shown in Figure 2.11.

The rational approximation technique of a complex number is accurate in cases

where the magnitude is changing and the phase has minimal change. Improving on the

approximation, Gustavsen proposed a Vector Fitting technique [49]. Using this Vector

Fitting technique, a frequency-dependent transmission line model was proposed [15].

The propagation H and characteristic admittance Yc are approximated using Vector

Fitting technique. These models are currently being used by time domain simulation

softwares [8, 50].
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In the next chapter, motivation for the development of phasor domain frequency-

dependent line model is presented. Research objectives, goals and methods of frequency-

dependent line modeling approaches are also discussed briefly.



CHAPTER 3: PROBLEM STATEMENT AND PROPOSED APPROACHES

3.1 Overview

The work presented in this thesis focuses on the development of frequency-dependent

electric power line models for steady state harmonic analysis. Most of the literature on

frequency-dependent line models are focused on Electro-Magnetic Transient (EMT)

simulations [7] and are used in commercial softwares like PSCAD [8] for precise time

domain simulations. The time domain models account for harmonics propagation,

however they are focused on transient studies. Hence, the simulations are in time

domain and these models cannot be used efficiently for steady state analysis in the

frequency domain. The focus of this work is to develop frequency-dependent power

line models for steady state harmonic analysis. In this work, multiple steady state

modeling approaches have been investigated. One of the objective of this work is also

to present the proposed model in PI structure to make it readily implementable in the

steady state analysis algorithms such as HPF. Speed and accuracy of the proposed

model are also investigated to gauge its effectiveness in system level studies.

In this chapter, first the research goals and assumptions are presented. Then a

synthesized review of the literature on frequency-dependent line models is presented.

Then the analytical benchmark model is presented, which is derived using the analyt-

ical equations of distributed line models expressed in hyperbolic functions and also in-

corporating all frequency dependent effects such as the effect of ground return and the

skin effect. Then the errors and limitations of the currently used frequency-dependent

steady state models are highlighted. An overview of the proposed approaches to model

frequency-dependent power lines are presented. The software tools used in this re-

search are mentioned. Finally, HPF algorithms, which are used to test and evaluate
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the proposed line models are discussed.

3.2 Research Goals

In this work, different approaches for frequency-dependent line modeling for steady

state analysis are investigated. In summary, the main research goals of this work are,

• Derivation of a frequency-dependent electric power line model for steady state

harmonic studies characterized by a single generic model which can be used for

all types of electric power lines. For this task, the objectives can be further

detailed as,

– Defining and deriving an analytical benchmark model to evaluate the pro-

posed and other line models. The analytical benchmark model is explained

in detail in following subsection of this chapter.

– Investigation of different approaches of frequency-dependent line model-

ing approaches such as multi-segment frequency-dependent line model-

ing. These multiple approaches of frequency-dependent line modeling ap-

proaches are briefly stated in following subsections of this chapter, and

then discussed in detail in chapter 4.

– Development of a highly accurate frequency-dependent line model charac-

terized by a PI structure. The details of this line modeling approach is

presented in chapter 5.

– Presenting a circuit representation of the proposed model using only pas-

sive circuit elements. The details of this circuit representation technique

is discussed in chapter 5.

• Evaluation and testing of the proposed model. For this task, the objectives can

be further detailed as,

– Development of semi-iterative HPF algorithm to evaluate the effective-

ness of the proposed models. A brief discussion of iterative as well as

semi-iterative HPF algorithm is presented in following subsections of this
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chapter.

– Development of test cases to run HPF. The IEEE 13 node test feeder

topology is considered, and this test case is developed to in such a way

that HPF using different line models can be executed. The test case and

the simulation results are presented in chapter 6.

3.3 Assumptions and Considerations

Few assumptions and considerations are made in this research work to meet the

expected goals and objectives. Some of the major assumptions are listed below. Other

contextual assumptions are mentioned in the text whenever relevant and necessary.

• To compare the simulation results obtained using the proposed model and claim

the accuracy obtained, an analytical model is derived and considered the bench-

mark model. The real time field data is not practically feasible as multiple ar-

bitrary current injections of various magnitudes have been injected to see how

system behaves under different conditions.

• Frequency-dependent effects such as the effect of ground return and the skin

effect are considered into account. Proximity effect, effect of rough conductor

surface and any other electromagnetic interferences are ignored.

• Semi-iterative HPF is used an analysis tool. Fundamental component load flow

is iterative and the harmonic load flow is non-iterative.

• Three different types of conductors are considered i.e. overhead ACSR, under-

ground concentric neutral and underground tape shielded conductors.

• For the vector fitted modeling approach, only up to the 25th harmonics is con-

sidered.

• For HPF, the linear loads are considered to be static impedance loads and it

is assuemd that the current characteristics of the nonlinear load are already

known.
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3.4 Literature Review: Frequency-Dependent Line Models

After the development of commercial digital simulators in 1950s and 1960s [51],

various accurate simulation models of transmission lines were proposed [52]. Signifi-

cant efforts have been invested in developing frequency-dependent transmission line

models for electromagnetic transient (EMT) studies [9–17]. EMT simulation soft-

ware like EMTP-ATP [7] and PSCAD [8] use these models for precise time domain

simulations. These models account for harmonics propagation, however they are fo-

cused on transient studies. Hence, the simulations are in the time domain and the

models cannot be used efficiently for studies in the frequency domain. Doing time

domain harmonic power flow simulations for large systems is computationally bur-

densome, slower in time and in many cases unnecessary for steady state analysis. The

frequency-dependent line model proposed in this thesis yields higher accuracy than

commonly used models, resulting in comparable accuracy to EMT models without

the need to run expensive time-domain simulations.

A frequency-domain line modeling approach was proposed in [18] and embedded in

a harmonic power flow algorithm in [19]. The approach creates a fixed multi-segment

lumped parameter model structure for each frequency of interest; however, it does

not provide a generic model to be used for all harmonics of interest. In [20], a method

to derive a closed form expression for frequency-dependent parameters was presented;

the method looks into individual parameter’s frequency-dependency, yet again does

not provide a generic model structure that could be used in steady state harmonic

analysis. Details of this model are presented in the next chapter. A concept of rep-

resenting three phase line by cascaded PI was presented in [21]; the circuit represen-

tation is in modal domain, unlike the proposed model which is in frequency domain.

The work in [22] presents frequency domain models for harmonic calculations, where

sequence impedances are considered instead of phase impedances. The work in [23]

presents an approach to model three-phase frequency-dependent lines with entirely
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passive elements using the Padé approximation [53]. These models do not always

have a PI structure. During the investigation of frequency-dependent line modeling

approaches as a part of this thesis, a generic frequency-dependent transmission line

model [24] based on the Vector Fitting approximation method [49] is proposed, a

single balanced overhead transposed transmission line is considered as the test case.

After this preliminary investigation, a comprehensive frequency-dependent electric

power line modeling approach is proposed, which can model single- and multi-phase,

balanced and unbalanced, electric power lines and presents a passive circuit realiza-

tion for the proposed model. The proposed model is always characterized by a single

generic PI structure, thereby making it easily implementable in steady state analysis

tools such as power flow algorithms.

3.5 Frequency-Dependent Benchmark Model

When the proposed model is implemented in steady state tools such as power flow

algorithms, the results thus obtained has to be compared with real field observations

or some benchmark models. The real time field data is not practically feasible as

multiple arbitrary current injections of various magnitudes have been injected to

see how system behaves under different conditions. Hence, an analytical model is

derived and considered the benchmark model. In order to incorporate frequency-

dependent characteristics, such as effect of ground return and skin effect, first, an

updated distributed line model is derived. The per unit length series impedance and

shunt admittance are given by,

z = (r + jωL) Ω and, (3.1)

y = (g + jωC) S, (3.2)

The benchmark model is derived using the following step by step procedure:

1. In order to account for the effect of ground return, the per unit length series

impedance (3.1) is calculated using Carson’s equations [33]. The per unit length

impedance is of the complex form,
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zg = (p+ jq) Ω. (3.3)

2. The real part of the newly updated series impedance p in Equation 3.3, i.e. the

resistive component obtained using Carson’s equations, is adjusted to account

for the skin effect [54]. This results in updated frequency-dependent per unit

length series impedance as,

za(f) = (ra + jωLa) Ω , (3.4)

where the subscript a indicates analytical model.

3. The per unit length shunt admittance (3.2) is calculated using the method of

images [27]. This results in updated frequency-dependent per unit length shunt

admittance as,

ya(f) = (ga + jωCa) S. (3.5)

4. za(f) and ya(f) are then substituted into Equations (2.41) and (2.42) to obtain

the analytical model γa and Zc,a;

γa =
√
yaza =

√
(ra + jωLa)(ga + jωCa), (3.6)

Zc,a =

√
za
ya

=

√√√√ (ra + jωLa)

(ga + jωCa)
. (3.7)

5. The frequency-dependent analytical model γa and Zc,a are then used to find the

exact PI equivalent series impedance Z ′a(f) and shunt admittance Y ′a(f) of a

given line length, l using,

Z ′a(f) = Zc,a sinh (γal), (3.8)

Y ′a(f) =
2

Zc,a

tanh(
γal

2
). (3.9)

6. Steps 1 to 5 are repeated for each frequency of interest. Thus, calculated Z ′a(f)

and Y ′a(f) are used as series and shunt elements in the traditional PI model

structure as shown in Figure 3.1.
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Figure 3.1: Analytical model in traditional PI structure.

7. For each frequency, different values of Z ′a(f) and Y ′a(f) are obtained. Hence, for

N number of frequencies of interest, there are N PI-structure models:

Z ′a(f) = {Z ′a(f1), Z ′a(f2), ..., Z ′a(fN)} , (3.10)

Y ′a(f) = {Y ′a(f1), Y ′a(f2), ..., Y ′a(fN)} . (3.11)

where f1, f2, ..., fN are the frequencies of interest. Hence each element of the

Z ′a(f) and Y ′a(f) incorporate all frequency-dependent characteristics. A com-

pact form of each element of Z ′a(f) and Y ′a(f) can be expressed as,

Z ′a(fi) =

√
(rdcs(fi) + jωLa)

(ga + jωCa)
× sinh

(
l
√

(rdcs(fi) + jωLa)(ga + jωCa)

)
, (3.12)

Y ′a(fi) = 2

√
(ga + jωCa)

(rdcs(fi) + jωLa)
× tanh

(
l
√

(rdcs(fi) + jωLa)(ga + jωCa)

2

)
. (3.13)

where, fi is the ith frequency of interest, rdc is the dc value of the resistance of

the line, s(fi) is the skin effect ratio of the line at the frequency fi.

It is also noted that for multi-phase lines, each series impedance and shunt admittance

would be a matrix of size (phase × phase). This set of N PI-structures as shown in

Figure 3.2 is referred to as the analytical model and taken as benchmark for model

comparison.
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Figure 3.2: Analytical model: set of N PI-structures.

3.6 Frequency Dependent Steady State Models: Errors and Limitations

The accuracy with which the lumped parameter model represents the distributed

parameters of electric power lines decreases with increasing frequency [42]. Hence, to

study the propagation of harmonics in the system, the use of lumped parameter line

models does not yield accurate harmonic calculations. Distributed parameter model

can be used for best representation of the transmission line. However, for N number

of harmonic frequencies of interest, N number of distributed line models are needed

as described in previous section and shown in Figure 3.2. In this thesis, a single

frequency-dependent line model is proposed, which retains almost the same accuracy

as offered by N set of exact PI models, which is the analytical model. Frequency-

dependent characteristics of single distributed exact PI model are described in the

following sub-sections. The errors arising from this single distributed parameter mod-

els are presented and these are highly minimized in the proposed model.

3.6.1 Limitations of Lumped Parameter Model

For steady state analysis, a line frequency-dependent series and shunt parameters

are calculated at 50 or 60 Hz only i.e. step 1 to 5 of sub-section 3.5 is executed for

only one frequency. The values computed for z and y are put in the form given by,

zep(f) = (p+ jq) Ω. (3.14)

where the subscript ep indicates exact PI model. Then the real part p represents

the resistance and the imaginary part q the inductive reactance, and the circuit rep-

resentation is done accordingly with a resistor and an inductor. The resistance is

kept constant for all frequencies and the inductive reactance is changed linearly with
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frequency. This model is referred to in this paper as the constant exact PI model.

Hence, the constant exact PI model is actually an exact PI model where the frequency

dependency of the line parameters are calibrated at 60 Hz. This model results in ex-

act values for 60 Hz and generates error for other frequencies. For 60 Hz, steps 1 to

5 of section 3.5 are executed in case of both constant exact PI model and analytical

model. Hence, at 60 Hz,

zep(60) = za(60). (3.15)

Lets say, the series impedance is to be calculated at nth harmonic frequency i.e. at

(60× n) Hz. For constant exact PI model, it is simply,

zep(60n) = p+ n(jq) Ω. (3.16)

But, to calculate the series impedance at nth harmonic frequency for the analyti-

cal model, steps 1 to 5 of section 3.5 are executed again. Hence, at nth harmonic

frequency,

zep(60n) 6= za(60). (3.17)

For a unit length line of falcon cable type, this error is evident in Figure 3.3 where

series resistance and inductive reactance are plotted for up to the 25th harmonic

frequency. The difference between the analytical model and the constant exact PI

model in both resistance and reactance keeps increasing as frequency increases. The

proposed frequency-dependent line model highly minimizes this error.
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Figure 3.3: Resistance and reactance of a unit-length line of falcon cable type for the
constant exact PI model and the analytical model.

Figure 3.4: Figure 3.3 zoomed in around 60 Hz.
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3.6.2 Usage of Distributed Line Model

Distributed parameter model can be used for best representation of the electric

power lines. However, for N number of harmonic frequencies of interest, N number

of distributed line models are needed. Because of this, a single circuit representation of

the distributed line model cannot be achieved. Also, the time required to calculate the

A,B,C,D parameters of distributed models is quite significant. For each frequency

of interest, Carson’s equation, Kelvin functions in loop, hyperbolic functions and a

number of simple algebraic expressions of complex numbers have to be calculated.

On the other hand, lets rewrite Equations (3.12) and (3.13), which calculates the

series impedance and shunt admittance of the line at ith frequency of interest:

Z ′a(fi) =

√
(rdcs(fi) + jωLa)

(ga + jωCa)
× sinh

(
l
√

(rdcs(fi) + jωLa)(ga + jωCa)

)
, (3.18)

Y ′a(fi) = 2

√
(ga + jωCa)

(rdcs(fi) + jωLa)
× tanh

(
l
√

(rdcs(fi) + jωLa)(ga + jωCa)

2

)
. (3.19)

Observing the Equations (3.18) and (3.19), it is evident that the series impedance

Z ′a(fi) and shunt admittance Y ′a(fi) are dependent on frequency. However, the infor-

mation on how much the frequency is affecting the value of the series impedance or

shunt admittance is not clear. During the investigation of multiple approaches for

frequency-dependent line modeling, an approach to simplify the expression for the

series impedance Z ′a(fi) and shunt admittance Y ′a(fi) is presented, which provides

a comprehensive understanding of how the frequency is affecting these parameters

with the advantage of higher speed of execution. This approach along with other

approaches are described briefly in following sections, and details of the modeling

approaches are presented in chapter 4 and 5.

3.7 Proposed Approaches for Frequency-Dependent Line Modeling

Multiple methods of frequency-dependent electric power line modeling have been

investigated for this research work. All the methods are intended to study the propa-
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gation of steady state harmonics. A brief overview of the investigated approaches are

given here. Details of these developed methodologies are then discussed in the next

chapter.

Multi-Segment Model: The multi-segment frequency-dependent transmission line

modeling approach to capture the frequency-dependent terminal behavior of the

transmission lines is investigated. The multi-segment line modeling approach from

[18] is considered. The proposed method determines the appropriate segmentation

of lumped parameter models for non-fundamental frequencies of interest. In this ap-

proach, the line model structure is also dependent on the harmonic frequency level.

The model segmentation is in fact defined for a specific line (line length, conductor

type and geometry) and for each harmonic frequency. The line model structure used

is characterized by multiple uniform lumped parameter segments. The information

about the segmented structure is calculated and stored off-line. Individual harmonics

are treated one at a time utilizing different line model structures for different frequen-

cies, or alternatively, individual harmonics can be treated one at a time utilizing the

line model structure developed for the highest frequency of interest. The final HPF

results are obtained by superimposing all the harmonic components. A description

of this methodology is presented in chapter 4.

Simplified Polynomial Approximation Model: An analytical expression capturing the

frequency-dependent characteristics of real part of the line series impedance (appar-

ent resistance) is derived; the imaginary part can then be treated in a similar manner.

The apparent resistance is expressed in terms of frequency and line length, assum-

ing all other influencing variables to be constant. Various numerical approximation

techniques, which implement least square methods are applied to obtain a final ap-

proximated expression for this apparent resistance. Computational time and error

between the analytical equation and the simplified approximated equation are com-

pared. Specifically for distribution lines, the expressions for all four line parameters



45

are simplified to a simple first and second order polynomial functions. Results have

shown that during the run of the digital simulation, the proposed equations are exe-

cuted much faster than the analytical equations. A description of this methodology

is presented in chapter 4.

Vector Fitted Approximation Model: In this approach, the vector fitting technique,

used in frequency-dependent transmission line modeling for electromagnetic transient

(EMT) analysis, is used to approximate the analytical model and derive a frequency-

dependent frequency domain model. A generic frequency-dependent line model with

a single structure is derived. A passive circuit realization of the proposed model in

a PI structure is presented and can be directly implemented in steady-state analysis

tools such as harmonic power flow solvers. Multiple test cases are simulated. Results

show that the proposed model yields more accurate harmonic voltages and currents

as compared to the commonly-used models such as the simple PI model. It is also

shown that steady state results obtained using the proposed model are very close

to the ones obtained using the EMT model, achieving comparable accuracy without

having to run time domain simulations.

3.8 Line Model Evaluation Tools

The proposed line models have to be evaluated and compared against the bench-

mark analytical model and other commonly used models. Harmonic power flow is

one of the best algorithm to evaluate line models to study the propagation of steady

state harmonics. HPF is performed in various test cases using multiple software tools

for line models evaluation, testing and verification.

3.8.1 Software Tools

For this research, most of the calculations and computations are done in Matlab

[50]. Matlab based add ons like Matpower [55] has also been used to run power flows.

To compare the multi-segmented frequency-dependent line model with EMT models,

PSCAD [8] has been used. For IEEE 13 node distribution test case, CYMDIST [56]
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has been used to run power flow. Mathematica [57] has been used to compute sym-

bolic calculations during the investigation of these various approaches for frequency-

dependent line modeling. Example screen shot of PSCAD schematics of three bus

system built to run harmonic load flow is shown in Figure 3.5 and screen shot of

CYMEDIST schematics of IEEE 13 node test feeder built for load flow is shown in

Figure 3.6.

Figure 3.5: PSCAD schematics of three bus system.
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Figure 3.6: CYMEDIST schematics of IEEE 13 node test feeder.

3.8.2 Harmonic Power Flow

Harmonic power flow is a technique to assess the power flow with a distorted wave-

form using the spectral components of the waveform called as harmonics [5]. These

harmonics are found from Fourier Transform methods. HPF results give information

about harmonic voltages at all the buses of the system [58] and the effect of harmonics

on each bus can be assessed. Conventional power flow solves for the solution matrix

X, which has voltage magnitudes and phases at all the buses,

X = [V B
1 , δ

B
1 ], (3.20)

where V B
1 is the fundamental component voltage magnitude at bus B, δB1 is the

fundamental compoent voltage angle at bus B and B goes from 1 to NB, NB being

the total number of buses. For HPF, the solution matrix X contains the fundamental

as well as harmonic voltage magnitudes and phases at all the buses,

X = [V B
1 , δ

B
1 , V

B
2 , δ

B
2 , V

B
3 , δ

B
3 , ...V

B
h , δ

B
h ] = [V B

i , δ
B
i ], (3.21)
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where V B
i is the ith harmonic component voltage magnitude at bus B and δBi is the ith

harmonic component voltage angle at bus B. B goes from 1 to NB, NB being the total

number of buses and i goes from 1 to h, h being the total number of harmonics under

consideration. There are multiple methods of HPFs [59–62]; based on computation

approach, they can be classified into iterative and non-iterative method. The HPF

methods could be in frequency domain, in time domain and in hybrid frequency-time

domain [5]. Frequency domain HPFs are discussed and used in this work.

3.8.2.1 Iterative Harmonic Power Flow

The iterative HPF was proposed by Xia and Heydt [58]. It considers the interaction

between harmonics and the control variables in the harmonic producing loads. Mul-

tiple methods of iterative HPFs have been proposed [59–62]. Here, HPF technique

of [58] is briefly explained.

In this method, as in case of conventional power flow, we start with the known

values and find out the unknown values.

• Line parameters of all the lines

• Total number of buses (NB) which includes both linear buses (n) and non linear

buses (m) and (NB = n+m).

• Total number of harmonics (h) to consider excluding the fundamental.

• Active and reactive powers at all the linear buses.

• Active power, apparent power and expression for load currents at non linear

buses.

To apply Newton-Raphson method, the number of unknown variables must be

equal to the number of independent equations. For iterative harmonic power flow,

the number of unknowns are

• Voltage magnitude and angle for the fundamental frequency at each bus, except

the swing bus (2(n− 1)).

• Harmonic voltage magnitude and phases at all buses (2nh).
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• Active and reactive power at swing bus for fundamental frequency (2).

• Control parameters describing each non-linear bus (2m).

The total number of unknowns is hence 2(n− 1) + 2nh+ 2 + 2m = 2n(1 + h) + 2m.

Now the total number of independent equations have to be listed out. They are:

• Active and reactive power mismatch for fundamental frequency at each linear

buse, except the swing bus (2(n−m− 1).

• Voltage magnitude and angle at swing bus for fundamental frequency (2).

• Real and imaginary current balance for fundamental frequency at each non-

linear bus (2m).

• Real and imaginary current balance for each harmonics excluding the funda-

mental at all the buses (2nh).

• Total active and reactive power mismatch at each non-linear bus (2m).

The total number of known independent equations are hence 2(n − m − 1) + 2 +

2m+ 2nh+ 2m = 2n(1 + h) + 2m which is equal to the total number of unknowns as

calculated above.

3.8.2.2 Non-Iterative Harmonic Power Flow

Before iterative HPF was introduced, the non-iterative harmonic network analysis

techniques [63, 64] were used. The technique is based on direct linear solution of the

harmonic currents and assume no harmonic interactions as,

[Vi] = [Yi]
−1[Ii] for i 6= 1, (3.22)

where Vi is the ith harmonic component voltage matrix, Yi is the ith harmonic com-

ponent system admittance matrix, Ii is the ith harmonic component current matrix

and i goes from 2 to h, h being the total number of harmonics under consideration.

Computationally, the non iterative HPF is much faster in comparison to the iter-

ative HPF which has to evaluate a lot of mathematical expressions in a matrix in

iterative fashion, and takes a longer time to execute. Although the accuracy of the

iterative HPF is better than the non-iterative HPF, because of the simplicity of the
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non-iterative method, it is still in use. Sun et al. [65] have shown that with newer

converter models, the non-iterative methods have not significant difference in accu-

racy as compared to iterative methods. For this research work, the non-iterative HPF

is used. Initially, the fundamental frequency load flow is performed in conventional

way, using Newton Raphson or Gauss Seidel methods. Then the harmonic voltages

in the system is calculated by using bus current injections and system impedance

matrix. The different harmonic components are superimposed to obtain the final re-

sult. Loads are assumed as static impedances and the harmonic interactions between

the network and non-linear devices are ignored. The non-iterative HPF flowchart is

shown in Figure 3.7. The development of the frequency-dependent power line models

and the implementation of HPF is discussed in next chapter.
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Figure 3.7: Non iterative harmonic power flow flowchart.



CHAPTER 4: INVESTIGATION OF FREQUENCY-DEPENDENT LINE
MODELING APPROACHES

4.1 Overview

This chapter discusses the investigation of the frequency-dependent power line mod-

eling approaches. Mainly, two frequency-dependent line modeling approaches have

been investigated;

• The multi-segment frequency-dependent transmission line modeling approach

to capture the frequency-dependent terminal behavior of the transmission lines,

and

• An approach for deriving analytical expression capturing the frequency-dependent

characteristics of real part of the line series impedance(apparent resistance).

For all modeling approaches, model derivation is shown and the proposed models

are compared with the benchmark model, as well as other commonly used models.

First, the multi-segment frequency-dependent transmission line modeling approach

to capture the frequency-dependent terminal behavior of the transmission lines is

investigated. For this approach, a three bus system test case is considered and har-

monic power flow is done. The resulting harmonic voltage magnitudes and angles ob-

tained using different line models are compared with the frequency-dependent multi-

segmented line model. Second, an analytical expression capturing the frequency-

dependent characteristics of real part of the line series impedance(apparent resis-

tance) is derived and investigated. For this approach, the frequency-dependent ap-

parent resistance obtained from the proposed model are compared with the frequency-

dependent apparent resistance obtained from the analytical benchmark model. Sim-

ulation results, errors and advantages of the proposed modeling approaches are also

discussed.
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4.2 Multi-Segment Frequency-Dependent Transmission Line Modeling Approach

The transmission line modeling approach from [18] is implemented to derive the

multi-segment frequency-dependent transmission line model. The multi-segment frequency-

dependent transmission line modeling approach is focused on capturing the frequency-

dependent terminal behavior of the transmission lines. This method uses the fre-

quency scan technique [5] and is based on the comparison of the uniformly distributed

transmission line model,which is viewed as the benchmark, with finitely segmented

models. The accuracy of the finitely segmented line models with respect to the uni-

formly distributed line model is defined in terms of metrics of voltage attenuation

and phase shift along the line.

4.2.1 Line Model Segmentation

For each harmonic frequency and for every transmission line in the system under

study, known receiving-end voltage and current are considered. Then the sending-

end voltage obtained using a segmented lumped parameter line model is compared to

that obtained using the distributed parameter line model. The number of segments

is increased until the desired level of accuracy is reached. The calculation is repeated

for all frequencies of interest. A flowchart of the line model segmentation procedure

is shown in Figure 4.1. The resulting number of segments for each line model versus

the harmonic level is stored in a table. Hence, the final output of this procedure is

a table with harmonic frequency and its corresponding number of segments required

which falls within the error limit considered in the beginning. An example is shown

in Table 4.1. A more detailed description of the modeling methodology can be found

in [18].
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Figure 4.1: Line model segmentation flowchart.
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Table 4.1: Line segmentation for 40 miles and 170 miles falcon conductor type.

Falcon conductor 40 miles line Falcon conductor 170 miles line

Harmonics No. of Segments Harmonics No. of Segments

1 1 1 1
2 1 2 1
3 1 3 2
4 1 4 2
5 1 5 2
6 1 6 3
7 1 7 3
8 1 8 3
9 1 9 5
10 1 10 6
11 2 11 6
12 2 12 6
13 2 13 6
14 2 14 6
15 2 15 6
16 2 16 9
17 2 17 12
18 2 18 12
19 2 19 13
20 2 20 13
21 2 21 13
22 2 22 13
23 2 23 13
24 2 24 13
25 2 25 18
26 2 26 22
27 2 27 22
28 2 28 23
29 2 29 23
30 2 30 23
31 3 31 23
32 3 32 23
33 4 33 23
34 4 34 29
35 4 35 30
36 4 36 30

4.2.2 Calculation of Equivalent Impedances and Admittances

After the information about line model segmentation is obtained, the system’s

Y matrix is required for employing the non-iterative power flow method. Hence,

for each line, an equivalent model is developed and corresponding impedances and

admittance are obtained. For a single PI-type lumped parameter segment, as shown
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in Figure (2.9), relationships between sending-end voltages and currents are expressed

as follows:

Vs = AVr +BIr, (4.1)

Is = CVr +DIr, (4.2)

where Vs and Is are the sending-end voltage and current and Vr and Ir are receiving-

end voltage and current. A, B, C and D are given by (2.35)-(2.38). A multi-segment

PI-model structure can be represented as shown in Figure 4.2. If there are N uniform

segments, we will have a new series impedance ZN and a new shunt admittance YN

for each segment.

Figure 4.2: Multi segment line model.

The relationship of the impedance Zl and admittance Yl of a single-segment PI

model with an N -segment PI model impedance ZN and admittance YN of the same

line is given by:

ZN =
Zl

N
. (4.3)

YN =
Yl
N
. (4.4)

Let Vsk and Isk be the kth segment sending-end voltage and current and Vrk and Irk

be the kth segment receiving-end voltage and current. Then for the first PI segment,

(k = 1),
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Vs1 = ANVr1 +BNIr1, (4.5)

Is1 = CNVr1 +DNIr1, (4.6)

and so on up to N th segment. The general term is:

Vsk = ANVrk +BNIrk, (4.7)

Isk = CNVrk +DNIrk. (4.8)

Also, the following expression is true,

Vrk = Vs(k+1), (4.9)

Irk = Is(k+1). (4.10)

The intermediate voltage and current expressions could be eliminated and the

equations can be expressed in terms of the line sending and receiving end voltage

and current Vs and Is. For example, if there are three segments, then the following

expressions are obtained:

Vs = (A3
3 + 2A3B3C3 +B3C3D3)Vr + (A2

3 +B3C3 + A3D3 +D2
3)Ir (4.11)

Is = C3(A2
3 +B3C3 + A3D3 +D2

3)Vr + (A3 +B3C3 + 2B3C3D3 +D3
3)Ir (4.12)

Irrespective of the number of segments, the final expression is of the form,

Vs = A′Vr +B′Ir (4.13)

Is = C ′Vr +D′Ir (4.14)

where A′, B′, C ′ and D′ are the new equivalent parameters and the equations are of

the form (4.1) and (4.2). Hence we can express the multi-segment line model into an

equivalent PI model. Using (2.35) -(2.38) for the equivalent parameters, a new set of

equivalent Z ′ and Y ′ are obtained. These new Z ′ and Y ′ are then used to develop

the system Y matrix to be used in the non-iterative HPF.

4.2.3 Test Case Study

A test case is set up to validate functionality of the proposed model in the HPF

tool and to compare it to the other line models: the single lumped parameter segment

model and the frequency-dependent model as described in [15] used in PSCAD. After
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the HPF is done, the resulting bus voltages obtained using different line models are

compared against each other. The test case is a three-bus system. The generator is

connected at Bus 1, a PQ load at Bus 2 and a nonlinear load at Bus 3. The circuit

diagram of the test system is shown in Figure 4.3 below.

Figure 4.3: 3 bus test case schematics.

A brief description of each component in the test system follows.

• Generator: The Generator is set at 138 kV. Bus 1 is considered the reference

bus. The generator is modeled as an ideal voltage source with an inductance

behind it to represent the reactance of the generator.

• Transmission Lines: Two transmission lines are present. Line 1 is 42 miles long

and line 2 is 170 miles long. Falcon cable [66] is used and the tower height is

30 meters.

• Loads: A linear PQ load is connected at Bus 2. A nonlinear load is connected

at Bus 3. The nonlinear load is modeled by current sources. The nature of

the nonlinearity is arbitrarily chosen to include four harmonics. Along with

the fundamental frequency, the third, twelfth, nineteenth and twenty-fifth har-

monics are considered. The amplitude of the 3rd harmonic current is 31.8% of

the amplitude of the fundamental current and the amplitude of the 12th, 19th

and 25th harmonic currents are all 27.4 % of the amplitude of the fundamental
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current, as seen in (4.15). The amplitude of the harmonics are made higher

as compared to a real life scenario to more easily visualize the propagation of

harmonics in the system. The load characteristics are defined as:

– Load 1 (Bus 2) Constant power load: power consumption = 23.6 + 10j

MVar.

– Load 2 (Bus 3) Constant current load: current expression given by:

I3 = 182
√

2 sin(377t− 0.549) + 58
√

2 sin(1131t− 1.221) + 50
√

2 sin(4524t)

+ 50
√

2 sin(7163t− 1.047) + 50
√

2 sin(9425t− 1.134). (4.15)

For comparison, HPF is performed using the three line models as described below:

• Line Model 1: This frequency dependent line model (FDLM) is described in

[15] and is considered to be the most robust and accurate to date [8]. The

FDLM is used by the EMTP software and is formulated in the phase domain.

The transmission line is characterized by the frequency dependent propagation

function H and characteristic impedance matrix Yc where H and Yc are fitted

accurately by rational functions. This model is usually utilized for transient

analysis. The circuit representation of this model is given in Figure 4.4.

• Line Model 2: This is the proposed frequency dependent transmission line

model structure. It is a uniformly-segmented lumped-parameter model where

the model structure, i.e. the number of segments, changes according to the

harmonic frequency. The circuit representation of this model is given in Figure

4.5.

• Line Model 3: This model is a single lumped parameter model. Its structure

remains the same for all the frequencies; however the series impedance and shunt

admittance are adjusted based on the frequency. The circuit representation of

this model is given in Figure 4.6.



60

Figure 4.4: Circuit representation of line model 1 connecting node k and m.

Figure 4.5: Line model 2: multi-segment line model.

Figure 4.6: Line model 3: PI model.

4.2.4 Simulation Results and Observation

The HPF algorithm as shown in Figure (3.7) is implemented in this test case for the

line model 2 and line model 3. HPF for Line Model 1 is performed in the time domain

in PSCAD and steady state voltage magnitudes and phase angles are calculated

for comparison purposes. The phase angles in three modeling approaches did not

show appreciable difference, hence, the resulting harmonic voltage magnitudes for all

the buses are summarized in Table 4.2. Also shown in Table 4.2 is the percentage

difference between the voltage magnitude obtained using Line Model 1 and the ones
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using the other two models. The percentage difference is calculated using,

% diff =

∣∣∣∣∣ |VLinemodel 3| − |VLinemodel 1 or 2|
|VLinemodel 3|

∣∣∣∣∣× 100% (4.16)

As seen from the table, harmonic voltages obtained at all buses using Line Model

3 have a relatively large percentage difference from the harmonic voltages obtained

using FDLM (Line Model 1). Looking at the percentage difference between the voltage

magnitudes at all the buses using Line Model 1 and Line Model 2, it is observed that

the voltage profile obtained from Line Model 2 is much closer to the voltage profile

of Line Model 1.

The difference can also be seen distinctly in the plot of instantaneous voltages at

all buses. Figure 4.7, 4.8 and 4.9 show the instantaneous voltages at Buses 1, 2 and

3 respectively. From the voltage plot at Buses 2 and 3, it is seen that Line Model 3

has suppressed the spikes significantly and harmonic voltages are not seen as clearly

as with the other two line models. HPF with Line Model 2 has shown that the

voltage ripples are represented fairly well as compared to the HPF using the FDLM

(Line Model 1). The plot of the voltage at Bus 1 is almost a pure sinusoidal because

the harmonics are not propagating from Bus 3 to Bus 1. The harmonic pollution

generated at Bus 3 however clearly propagates to Bus 2.
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Table 4.2: Harmonic voltage magnitudes using different line models.

Fundamental Frequency Voltage Magnitude

Line Model 1 Line Model 2 Line Model 3

|V | in kV |V | in kV % diff |V | in kV % diff

Bus 1 138.00 138.00 0.00 138.00 0.00
Bus 2 137.90 137.58 0.23 137.58 0.23
Bus 3 137.66 135.93 1.26 135.93 1.26

Third Harmonic Voltage Magnitude

Line Model 1 Line Model 2 Line Model 3

|V | in kV |V | in kV % diff |V | in kV % diff

Bus 1 0.037 0.038 3.48 0.042 12.67

Bus 2 17.32 18.72 8.03 20.38 17.62

Bus 3 65.51 74.28 13.33 92.32 40.84

Twelfth Harmonic Voltage Magnitude

Line Model 1 Line Model 2 Line Model 3

|V | in kV |V | in kV % diff |V | in kV % diff

Bus 1 0.053 0.047 11.33 0.002 95.33

Bus 2 20.22 19.46 3.76 1.19 94.08

Bus 3 21.61 17.37 19.63 7.51 65.22

Nineteenth Harmonic Voltage Magnitude

Line Model 1 Line Model 2 Line Model 3

|V | in kV |V | in kV % diff |V | in kV % diff

Bus 1 0.076 0.068 11.34 0.000 99.50

Bus 2 20.99 21.025 0.13 0.18 99.13

Bus 3 20.08 15.137 24.62 4.35 78.31

Twenty-fifth Harmonic Voltage Magnitude

Line Model 1 Line Model 2 Line Model 3

|V | in kV |V | in kV % diff |V | in kV % diff

Bus 1 0.152 0.159 4.40 0.000 99.90

Bus 2 26.074 28.96 11.08 0.071 99.72

Bus 3 33.582 34.79 3.60 3.245 90.33
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Figure 4.7: Instantaneous voltage at Bus 1.

Figure 4.8: Instantaneous voltage at Bus 2.
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Figure 4.9: Instantaneous voltage at Bus 3.

4.2.5 Discussion

Section 4.2 presented a Harmonic Power Flow tool that uses frequency-dependent

line models. The proposed HPF method employs a frequency-dependent line model

structure and a non-iterative power flow technique. The tool has been coded in

Matlab and a test study was performed for a three-bus power system with a non-

linear load injecting harmonic currents. Results of the test studies using the proposed

HPF tool are compared to results obtained using a single lumped parameter segment

line model (i.e. the traditional PI model) as well as using the frequency-dependent

line model used in the PSCAD software. In general, the results obtained using the

proposed HPF tool with frequency-dependent line model structures are closer to the

results obtained using the frequency-dependent line models in PSCAD than the ones

obtained using a single-segment line model. The Other modeling approach to study

frequency-dependent characteristics is presented in following section.
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4.3 An Approach for Modeling Frequency-Dependent Impedance of Power Lines

The multi-segment frequency-dependent line model has a dynamic structure which

changes with the frequency of interest. In order to develop a single generic structure

and also to improve on the accuracy of the multi-segment frequency-dependent line

model, a novel approach for modeling frequency-dependent impedance of a power

transmission line is investigated. An analytical expression capturing the frequency-

dependent characteristics of real part of the line series impedance(apparent resis-

tance) is derived. This section focuses on the real part of this frequency-dependent

impedance, which is referred to as apparent resistance; the imaginary part can then

be treated in a similar manner. The apparent resistance is expressed in terms of

frequency and line length, assuming all other influencing variables e.g. temperature,

to be constant. Various numerical approximation techniques, which implement least

square methods are applied to obtain a final approximated expression for this appar-

ent resistance. Computational time and error between the analytical equation and

the simplified approximated equation are compared. Results have shown that during

the run of the digital simulation, the proposed equation is executed much faster than

the analytical equations.

4.3.1 Apparent Resistance

In chapter 3 section 3.5, benchmark model was discussed. Rewriting the equation

(3.12),

Z ′a(fi) =

√
(rdcs(fi) + jωLa)

(ga + jωCa)
× sinh

(
l
√

(rdcs(fi) + jωLa)(ga + jωCa)

)
, (4.17)

Z ′a(fi) being a complex number, Equation (4.17) can be expressed as real and imag-

inary components,

Z ′a(fi) = Re[Z ′a(fi)] + j Im[Z ′a(fi)]. (4.18)
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It is clear that Re[Z ′a(fi)] is dependent on frequency. Usually the real part of the

impedance represents the resistance. In this case, Re[Z ′a(fi)] is not the actual resis-

tance of the line, but the overall resistive characteristic offered by the line. This prop-

erty cannot be analyzed physically but can be analyzed in mathematical terms. This

term is called in this work as apparent resistance. This phenomenon of frequency-

dependency of Re[Z ′a(fi)] which comes out from rearrangement of the equation is

termed as apparent effect in this work. Without replacing the numerical values of the

parameters, it is difficult to analyze the apparent resistance. To derive the final ex-

pression of the frequency-dependent impedance, as discussed in chapter 3 section 3.5,

a lot of steps and equations are to be executed. Hence, such process lacks sufficient

information on how the variables constitute the apparent resistance. To avoid going

through all those steps and use the equations mentioned there, a simpler expression

for apparent resistance is defined. Different numerical approximation techniques are

used to find a new closed form equation for the apparent resistance. Figure 4.10

shows the 3 dimensional plot of the apparent resistance against the line length and

frequency for falcon conductor type. The conductor parameters are taken from [27].

Figure 4.11 shows the 3 dimensional plot of the resistance including both apparent

and skin effects of a the line for falcon cable type. After adding skin effects, it is clear

that there is rise in resistance value as frequency increases.
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Figure 4.10: Resistance of a transmission line as function of length and frequency for
falcon conductor type.

Figure 4.11: Resistance of the line with skin effect as function of length and frequency
for falcon conductor type.
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4.3.2 Approximation Methods

As discussed in chapter 3 section 3.5, to derive an expression for series impedance,

a lot of steps are involved and a number of complex expressions are executed. Sym-

bolic representation of the real part of the impedance i.e. the apparent resistance is

mathematically rigorous. Hence, one conductor type is taken as a test case, and nu-

merical substitution is done. Figure 4.10 and 4.11 show how resistance is dependent

on both length and frequency. Then the numerical approximation is applied on thus

calculated apparent resistance to derive a simpler form expression. Then, instead of

going through all the steps mentioned in the derivation fo analytical model, the sim-

pler expression derived can be used. It is expected that the approximated expression

will be executed much faster than the analytical ones. The accuracy and complexity

may vary depending on the numerical techniques being used. In this work, numerical

polynomial and exponential approximations using least square methods [67] are im-

plemented. These approximation techniques were selected for their simplicity. Matlab

is used for computations in this work.

4.3.2.1 Polynomial Approximation

For the purpose of clarity, let’s consider the quadratic equation of the form,

y = a+ bx+ cx2, (4.19)

to fit the set of n data points (x1, y1), (x2, y2), ..., (xn, yn). If y′ is the calculated value,

then error for nth data point,

en = yn − y′n. (4.20)

Then the sum of the squares of the errors is given as,

E =[y1 − (a+ bx1 + cx2
1)]2 + [y2 − (a+ bx2 + cx2

2)]2 + ...

+ [yn − (a+ bxn + cx2
n)]2. (4.21)
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For error E to be minimum, the following expressions must be true,

∂E

∂a
= 0,

∂E

∂b
= 0,

∂E

∂c
= 0. (4.22)

Using (4.21) and (4.22),

Σyi = na+ bΣxi + cΣx2
i . (4.23)

Σxiyi = aΣxi + bΣx2
i + cΣx3

i . (4.24)

Σx2
i yi = aΣx2

i + bΣx3
i + cΣx4

i . (4.25)

Equation (4.23) to (4.25) are in linear form which can be solved simultaneously to

find the values of a, b and c.

4.3.2.2 Exponential Approximation

Let’s consider the exponential function to approximate as,

y = aebx, (4.26)

where a and b are the co-efficients to be determined and x and y are the variables

under consideration. Taking logarithms on both sides in (4.26),

log10(y) = log10(a) + bx log10(e). (4.27)

This equation is in the linear form,

Y = mX + C, (4.28)

where,

Y = log10(y), (4.29)

m = b log10(e), (4.30)

C = log10(a). (4.31)

After the conversion of logarithmic function into linear form, the polynomial ap-

proximation method as described in previous subsection is used to determine the

co-efficients a and b.
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4.3.3 Approximation Procedure

Real part of (4.17) is approximated using standard mathematical functions. The

steps given below are followed to determine the final expression for the apparent

resistance.

Step 1. Detection of Oscillation: The apparent resistance has an oscillatory behavior

which resembles the cosine function. Denoting this oscillation frequency as frs, the

amplitude of the resistance is represented by

A = cos(frs), (4.32)

where frs is a function of two dependent variables, i.e. length of the line and frequency

of the signal, which has to be calculated. The resistance of a 1000 mile long line and

a 300 mile long line of falcon conductor type, plotted against frequency of the signal

are shown in Figures 4.12 and 4.13, respectively.

Figure 4.12: Oscillatory behavior of the resistance of the 1000 mile transmission line.
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Figure 4.13: Oscillatory behavior of the resistance of the 300 mile transmission line.

Step 2. Oscillation Frequency Change: As also seen from Figures 4.12 and 4.13, the

oscillation frequency increases with line length. This change in oscillation frequency

with respect to length was approximated using a sixth order polynomial function

given by,

per(l) = a1l
6 + a2l

5 + a3l
4 + a4l

3 + a5l
2 + a6l + a7, (4.33)

where, per(l) is the period of one full oscillation of resistance value, l is the length of

the line and for falcon cable type,

a1 = 1.0782× 10−13, a2 = −3.9400× 10−10,

a3 = 5.7877× 10−7, a4 = −4.377× 10−4,

a5 = 0.1813, a6 = −40.4520, and

a7 = 4.4259× 103.

To determine the co-efficients of (4.33), real part of (4.17) was calculated from 1

mile to 1000 miles in steps of 1 mile. The oscillation frequency change obtained from
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the analytical equation and from Equation (4.17) are plotted in Figure 4.14. It is

observed that the approximated curve nearly coincides with the curve obtained from

the analytical equations, with a maximum difference of 4.3%.

Figure 4.14: Resistance oscillation period of the transmission line versus length.

Step 3. Amplitude Change: From Figure 4.12 and 4.13, it is clear that the resistance

value increases as both length and frequency increase. The dc resistance of a round

solid cable is given as,

Rdc = ρ
l

A
, (4.34)

where, ρ is the resistivity, l is the length and A is the area of the cross section of

the cable. This expression is used when frequency dependency is not considered, i.e.

at zero frequency. The oscillatory nature of the resistance is expressed by a cosine

function. The peak amplitude of the oscillation is also required to provide a complete

expression for the oscillation. For a 1000 mile long line, the peak amplitude change
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of the apparent resistance against frequency for the falcon cable type is shown in

Figure 4.15. As seen in Figure 4.15, the curve plotted using the analytical Equation

(4.17) shows a dip in peak amplitude at low frequencies up to 167 Hz, followed by a

steady increase in peak amplitude. The resistance under consideration here is not the

physical resistance of the cable, but the overall resistive nature of the line as given by

the real part of the final impedance Equation (4.17). Hence, detail investigation of this

amplitude dip of the apparent resistant is out of the scope of this research, however,

the relationship of this amplitude dip in terms of line length and signal frequency

is derived. This dip in amplitude of the apparent resistance at low frequency is

referred to as apparent low frequency effect in this thesis. Because the amplitude is

exhibiting two different behaviors, two different equations are used to approximate

peak amplitude: an exponential function for low frequency and polynomial equation

for higher frequencies. The approximation is done in such a way that the addition

of the two expressions approximates the whole behavior of the apparent resistance

amplitude change.

The peak amplitude at lower frequencies is best approximated by,

peak(f, l) = rdcl e
(b1l+b2)f , 0 ≤ f ≤ 3000, (4.35)

where f is the frequency of the AC signal, and,

b1 = −9.0303× 10−6,

b2 = −1.5333× 10−3.

At lower frequencies, the apparent low frequency effect is more dominant, and hence

this approximation is referred to as apparent low frequency approximation.

For the higher frequencies, the peak amplitude is best approximated using the

following equation,

peak(f, l) = c l
√
f, 0 ≤ f ≤ 3000, (4.36)

where c = 2.8315 × 10−3. At higher frequencies, the apparent resistance amplitude

change show resemblance to the real resistance amplitude changes because of the
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skin effect for a ACSR conductor. This effect is more dominant at higher frequencies

and this approximation is referred to as skin effect approximation. The resultant

expression for peak amplitude is the combination of Equations (4.35) and (4.36) to

include both effects:

peak(f, l) = rdcl e
(b1l+b2)f + (c l

√
f). (4.37)

Here, when f = 0, peak(f, l) reduces to rdcl only, which is the dc resistance of the

line. As seen from Figure 4.15, the curve from approximated equation nearly coincides

with the curve from the analytical equations. It is observed that the average error of

the approximated equation is within 3%.

Figure 4.15: Peak resistance amplitude change for a 1000 miles long line.

Step 4. Final Expression: After approximating oscillation type, change in frequency

of oscillation, amplitude and change in amplitude, the overall approximated equation

can be written. Based on the approximation methods used, the apparent resistance
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of a transmission line can be expressed by,

R(f, l) = [rdcl e
(b1l+b2)f + (c l

√
f)] cos

(
2πf

per(l)

)
. (4.38)

Although the specific numbers shown in this equation are valid for the line under

consideration(falcon conductor type), the procedure would be the same for other

conductor types as well. When the new approximated equation as given in (4.38) is

plotted, the Figure 4.16 is obtained.

Figure 4.16: Resistance of a transmission line from approximated equation.

4.3.4 Verification and Error Analysis

The least square error approximation method is used for the approximation of the

analytical model expression to obtain the proposed approximated expression. For

oscillation detection, apparent resistance curve matched exactly with cosine wave

and hence error for the nature of oscillation is zero. The oscillation frequency change

is approximated using the sixth order polynomial function. From Figure 4.14, it is

seen that the curve from approximated equation nearly coincides with the curve from
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the analytical equations with maximum difference of 4.3%. For amplitude change

approximation, two different equations were used. One was exponential and other a

polynomial approximation. As seen from Figure 4.15, the curve from approximated

equation nearly coincides with the curve from the analytical equations with average

error within 3%. An overall comparison can be done by looking at the plots in Figures

4.11 and 4.16, obtained from the analytical and approximated equations. Define the

percentage error as,

Error(η) =
|Ran| − |Rapp|

Ran

× 100%. (4.39)

where, Ran is the resistance obtained using the analytical equation and Rapp is the

resistance obtained using the approximated equation. Calculated resistance values for

select lengths and frequencies are shown in Table 4.3. Percentage differences between

the results obtained with the analytical equations and approximated equations are

also shown.

Table 4.3: Apparent resistance calculation–select results.

Line Variables Resistance Values

length(miles) freq.(Hz) Analytical(Ohms) Approx.(Ohms) % difference

100 60 6.03 6.06 0.50
100 120 6.72 6.72 0.00
350 540 23.70 24.30 2.53
445 600 29.80 28.70 3.69
500 390 28.3 27.90 1.41
800 720 66.05 57.36 59.11
850 480 8.24 9.38 13.83
1000 540 64.90 14.37 77.86

A good approximation has been observed for lengths less than 800 miles and fre-

quencies less than 600 Hz. The accuracy of the approximated equation beyond this

range (length above 800 miles and frequency above 600 Hz) substantially decreases.
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4.3.5 Further Simplification for Frequency-Dependent Distribution Lines

When distributions lines are under consideration, the variable length l in Equation

(4.38) can be removed and approximation can be done considering only the frequency

as the dependent variable. It has been observed that, for shorter lines less than

3 miles long, the frequency-dependent series resistance and reactance show almost

linear dependency on frequency, also seen in Figure 3.3. Hence, the approximated

equations for the electrical parameters i.e. series resistance and series reactance are

achieved by using first or second order polynomial equations. The one mile-long line

of falcon conductor is considered as an example, and the analytical Equations (3.12)

and (3.13) are approximated using the polynomial functions. The series resistance

approximation is achieved by a linear expression as shown in (4.40).

R = (a1 + a2f) Ω. (4.40)

For falcon cable,

a1 = 0.0560, and,

a2 = 8.898× 10−4.

The series inductive reactance approximation is achieved by a quadratic expression

as shown in (4.41).

XL = j(b1 + b2f − b3f
2) Ω. (4.41)

For falcon cable,

b1 = 0.0296,

b2 = 0.0140, and,

b3 = −3.72× 10−7.

The values of a1, a2, b1, b2, and b3 for a typical tower geometry of single phase line

for multiple conductors are tabulated in Table 4.4.
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Table 4.4: Co-efficients values for select conductors for a typical tower geometry.

Resistance Reactance

Conductor a1 a2 × 10−4 % Error b1 b2 b3 × 10−7 % Error

Bluejay 0.0865 9.609 2.20 0.0319 0.0145 3.65 1.11
Bobolink 0.0658 9.119 2.33 0.0296 0.0142 3.59 1.37
Cardinal 0.1104 9.878 1.96 0.0313 0.0147 3.65 1.32
Condor 0.1386 10.77 0.97 0.0327 0.0149 3.67 1.27
Crane 0.1226 10.04 1.93 0.0318 0.0148 3.66 1.31
Crow 0.1542 10.20 2.15 0.0331 0.0150 3.71 1.26
Curlew 0.0988 9.562 2.15 0.0308 0.0146 3.65 1.54
Dove 0.2093 9.194 4.09 0.0335 0.0154 3.92 1.65
Duck 0.1874 11.35 1.05 0.0332 0.0153 3.90 1.61
Eagle 0.2041 9.272 3.93 0.0357 0.0152 3.83 0.96
Falcon 0.0560 8.898 2.39 0.0296 0.0140 3.72 1.04
Goose 0.1765 11.03 1.17 0.0350 0.0152 3.83 0.99
Grackle 0.0829 9.390 2.14 0.0307 0.0144 3.77 1.01
Parrot 0.0603 8.993 2.33 0.0298 0.0141 3.73 1.00
Pheasant 0.0762 9.278 2.19 0.0304 0.0143 3.76 1.02
Squab 0.1748 9.889 2.78 0.0329 0.0152 3.97 1.40

The shunt capacitive admittance does not deviate appreciably when using the ana-

lytical equations as compared to the conventional expression. Hence the conventional

expression is used as in (4.42).

YC = c ω Ω. (4.42)

For falcon cable, c = 1.8608 × 10−6 . The shunt conductance is neglected. These

constants an, bn and cn are dependent on line geometry and conductor type. Since

the tower geometry and the types of cables are standardized, the constant values

can be tabulated for quick reference. Numerical results of line series resistance and

reactance for some select frequencies are shown in Table 4.5. In Table 4.5, R is the

series resistance and XL is the series reactance. Considering up to the 25th harmonic,

the average error of the series resistance in the constant exact PI model is 82.8% and

in proposed model is only 1.63%. Similarly, the average error of series reactance in

exact PI model is 19.19% and in the proposed model is 0.98%. The errors arising

due to the constant exact PI model have been significantly reduced while using the

proposed expressions.
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Table 4.5: Series resistance and reactance comparison at select frequencies.

Analytical Exact PI Proposed

f (Hz) Value (Ω) Value (Ω) % diff Value (Ω) % diff

R

60 0.34 0.34 0.00 0.34 0.00
180 0.91 0.34 45.5 0.61 2.53
300 1.47 0.34 76.8 1.42 3.57
420 2.02 0.34 83.1 1.96 3.13
540 2.56 0.34 86.6 2.50 2.57
660 3.10 0.34 88.9 3.04 2.02
840 3.89 0.34 91.23 3.85 1.22
1140 5.20 0.34 93.4 5.20 0.00
1320 5.97 0.34 94.28 6.01 0.63
1500 6.73 0.34 97.9 6.82 1.25

XL

60 2.59 2.59 0.00 2.60 0.40
180 7.19 7.78 8.16 6.96 3.22
300 11.54 12.97 12.38 11.25 2.49
420 15.74 18.16 15.33 15.47 1.70
540 19.85 23.35 17.62 19.63 1.10
660 23.88 28.54 19.51 23.72 0.67
840 29.81 36.32 21.84 29.72 0.30
1140 39.46 49.29 24.92 39.38 0.19
1320 45.14 57.08 26.45 44.97 0.36
1500 50.75 64.86 27.81 50.41 0.66

4.3.6 Discussion

The approximated equations can have multiple advantages. The first thing to men-

tion which is achieved using such approximation is the speed of execution in digital

simulations. Matlab is used in Windows 7 having 64 bit operating system with In-

tel(R) Core(TM)2 CPU 6700 @ 2.66 GHz and 2.66 GHz with 4.00 GB memory. In

this system, the time taken to calculate resistance for a given cable type, length and

frequency of interest were calculated. The time taken by the analytical expression

was 1.8175 ms and time taken by the approximated equation was only 7.0 µs. The

majority of time in computation of the analytical expression was taken by the execu-

tion of the kelvin functions. The expression of the resistance explicitly as a function

of length and frequency could be used in analyzing power losses involving harmonics.

It can be used to model frequency dependent transmission line models for harmonic

analysis as well.
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This section discussed a technique to simplify the expressions for the frequency-

dependent power distribution line parameters, namely: series resistance and series

inductance. Shunt conductance and shunt susceptance have very small deviation

and conventional expressions are used. Polynomial approximation techniques, which

implement least square methods, are applied to obtain simplified parametric variables.

Although this modeling approach has multiple advantages, this method does not yet

provide the generic frequency-dependent power line model. There is also a room for

minimizing the error of this approximated model. Next chapter discusses about a

novel approach of frequency-dependent power line modeling which provides a generic

frequency-dependent power line model and highly minimized the errors seen in this

modeling approach.



CHAPTER 5: NOVEL FREQUENCY-DEPENDENT POWER LINE MODELS
FOR STEADY STATE ANALYSIS

5.1 Overview

This chapter discusses the development and derivation of a generic frequency-

dependent electric power line model intended to use for steady state harmonic anal-

ysis. First, the modeling approach is briefly discussed. Then the model expressions

are derived using the rational approximation method-Vector Fitting technique. After

that, the model expressions are represented in terms of passive R-L-C components.

The derivation of the circuits are shown. Derivation for both single phase and three

phase lines are discussed.

5.2 Modeling Approach

A novel frequency-dependent model for electric power lines to be used in steady-

state harmonic studies is derived. First, the differential equations representing the

distributed nature of the line electrical parameters are considered; frequency depen-

dency due to the effect of ground return and the skin effect is then incorporated.

These derived equations represent what in this thesis is defined as analytical model,

used as benchmark for model comparison. The analytical model has been described

and derived in chapter 3. The vector fitting technique, used in frequency-dependent

transmission line modeling for electromagnetic transient (EMT) analysis, is used here

to approximate the analytical model and derive a frequency-dependent frequency-

domain model. A passive circuit realization of the proposed model in a PI structure

is presented and can be directly implemented in steady-state analysis tools such as

harmonic power flow solvers.



82

5.3 Proposed Frequency-Dependent Line Model

The proposed model is derived from the analytical model (3.10) and (3.11) using the

vector fitting technique [49]. Each element of the numerical (phase×phase) matrices

Z ′a(f) and Y ′a(f) is approximated by the rational pole-residue model as shown in (5.1)

to obtain the proposed model.

f(s) =
N∑

n=1

cn
s− an

+ d+ s h. (5.1)

The residues cn and poles an are either real quantities or come in complex conjugate

pairs, while d and h are real. Specifically, the approximation to obtain cn, an, d and

h is performed in two stages as explained below.

In the first stage, an initial guess of the starting poles ān is made. An unknown

function σ(s) is introduced and multiplied by f(s) to create an augmented problem

as shown in (5.2).

σ(s)f(s)

σ(s)

 ≈


N∑
n=1

cn
s−ān + d+ s h

N∑
n=1

c̃n
s−ān + 1

 . (5.2)

After multiplying the second row of (5.2) with f(s), we can write,(
N∑

n=1

cn
s− ān

+ d+ s h

)
≈
(

N∑
n=1

c̃n
s− ān

+ 1

)
f(s). (5.3)

This can be written in compact form as,

(σ f)fit(s) ≈ σfit(s) f(s), (5.4)

with the unknowns cn, d, h and c̃n. For multiple frequency points, this is an overde-

termined problem in linear form,

Ax = b , (5.5)

where the unknowns are in the solution vector x. Now, f(s) approximation is obtained

from (5.3). The functions can be expressed in partial fractions in terms of zeros and
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poles as,

(σ f)fit(s) = h

N+1∏
n=1

(s− zn)

N∏
n=1

(s− ān)
, and (5.6)

σfit(s) =

N∏
n=1

(s− z̃n)

N∏
n=1

(s− ān)
. (5.7)

Using (5.6) and (5.7), the following expression is obtained,

f(s) =
(σ f)fit(s)

σfit(s)
= h

N+1∏
n=1

(s− zn)

N∏
n=1

(s− z̃n)
. (5.8)

Equation (5.8) shows that the poles of f(s) are equal to the zeros of σfit(s).

In the second stage, residues can be identified by using the original Equation (5.1).

This again creates an overdetermined linear problem of form Ax = b. The solution

vector x then has the cn, d and h. For higher level of detail on the vector fitting

technique, including discussion on stability, one can look at [49].

The proposed model series impedance Z ′p and shunt admittance Y ′p are therefore

obtained from this approximation of the analytical model. Z ′p and Y ′p are expressed as

the rational pole-residue model, i.e. a transfer function, in the form of ratio of zeros

to poles as,

Z ′p =
Zrz(s)

Plz(s)
, (5.9)

Y ′p
2

=
Zry(s)

Ply(s)
, (5.10)

where the subscript z indicates impedance and y indicates admittance, Zrz(s) is the

set of zeros and Ply(s) is the set of poles. Hence, the series and shunt elements of

the proposed PI-structure model are represented by transfer functions as shown in
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Figure 5.1.

Figure 5.1: Proposed model with shunt and series elements in PI structure expressed
as transfer functions.

Since the proposed model is derived for use in steady state harmonic analysis, the

model accuracy at inter-harmonic frequencies is not as critical. Hence, a weight is

introduced in (5.5) to achieve prioritized accuracy based on the frequency as,

W Ax = W b , (5.11)

where W is the introduced weighting diagonal matrix of order N×N , A is the matrix

of order N × P , b is the matrix of order N × 1, N is the number of frequency points

under consideration and P is the number of unknowns to solve for. This ensures

desired accuracy at the harmonic frequencies without unnecessarily increasing the

order of approximation, i.e. the number of poles. Generally, the use of 2N poles,

where N is the number of frequencies of interest, results in an accurate representation

of the analytical model behavior. As shown in subsequent sections, for shorter lines,

8 poles can be more than sufficient for up to the 25th harmonic frequency.

The proposed line model is derived by approximating the derived benchmark an-

alytical model. The analytical model can be used for higher accuracy; however, for

each frequency of interest, a separate analytical model has to be used. The proposed

model avoids this need for multiple models by providing a single generic model for

all harmonic frequencies of interest without much affecting accuracy. Also, the sim-

ulation time is faster while using the proposed model as compared to the analytical
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model. The simulation speed of the proposed model can be faster than the analytical

model by a factor of 2 to few hundreds, depending on the length of the line, the num-

ber of harmonic frequencies under consideration and the predefined error of accuracy.

This speed during the simulation comes with the cost of off-line model derivation

time since the proposed model is derived by approximating analytical model which

requires the analytical model itself to be derived and executed. Once the off-line

modeling of each line in a system is computed, the computational effort in system

level analysis(such as HPF) is much smaller than if the analytical model were used.

5.4 Passive Circuit Realization

The transfer function obtained from the approximation can be realized using passive

components. Hence, each series and shunt element can be represented by an R-L-

C network. The pole residue model of the derived model can be compared to the

Laplace domain impedance of appropriate circuit. Because each of the shunt or series

element are being synthesized, single port circuit structure is considered.

The pole residue model in (5.1) can be rewritten as,

f(s) =
c1

s− a1

+
c2

s− a2

+ ...+
cN

s− aN
+ d+ s h. (5.12)

The residues cn and poles an are either real quantities or come in complex conjugate

pairs, while d and h are real. Depending on the residues’ and poles’ real or complex

status, the passive circuit can be different. Both types of derivations are shown as

follows.

5.4.1 Real Residues and Poles

The last expression of (5.12), d+ sh can be expressed as an impedance because of

its equivalent form R + sL. The first term of (5.12) can be represented by a parallel

R-C circuit as shown in Figure 5.2.
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Figure 5.2: R-C parallel circuit.

For a parallel R-C circuit, the impedance can be calculated as,

ZRC =
R× 1

Cs

R +
1

Cs

=

1

C

s+
1

RC

. (5.13)

Equation (5.13) can be compared to the first term of (5.12). Comparing the c1 and

a1, the values of R and C can be calculated as,

C =
1

c1

, and (5.14)

R = −
(
c1

a1

)
. (5.15)

Similarly, each of the successive expression of (5.12) can be compared to (5.13) and

the values of R and C can be calculated and then can be connected in series to match

the full expression. The equivalent figure is as shown in Figure 5.3.

Figure 5.3: R-L-C synthesis of real residues cn and poles an.
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5.4.2 Complex Conjugate Residues and Poles

If the cn and an in (5.1) are complex, then another network has to be derived.

Since the residues and poles cn and an always comes in conjugate pairs, (5.1) can be

rewritten as,

f(s) =
p1 + q1j

s− (x1 + y1j)
+

p1 − q1j

s− (x1 − y1j)
+ ...+

pN + qNj

s− (xN + yNj)
+

pN − qNj
s− (xN − yNj)

+ d+ s h, (5.16)

where,

c1 = p1 + q1j, and

a1 = x1 + y1j and so on.

The last expression of (5.16), (d + sh) is represented as discussed earlier as an

impedance. The first two expressions of (5.16) can be combined as,

p1 + q1j

s− (x1 + y1j)
+

p1 − q1j

s− (x1 − y1j)
=

2p1s− 2p1x1 − 2q1y1

s2 − 2sx1 + x2
1 + y2

1

(5.17)

The transfer function as seen in (5.17) is of second order. Hence, two energy storing

components, i.e. L and C has to be used. A number of different circuit combination

has been tested. The network block as shown in Figure 5.4 was a match.

Figure 5.4: R-L-C block.
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The impedance function if the network in Laplace domain is given as,

Z =

(R1 + Ls)


1

C

s+
1

R2C



R1 + Ls+


1

C

s+
1

R2C


(5.18)

This can be simplified to make it comparable to (5.17) as,

Z =

R1

LC
+
s

C

s2 +
(
R1

L
+

1

R2C

)
s+

1

L

(
R1

R2C
+

1

C

) (5.19)

Comparing (5.17) and (5.19), we can write,

1

C
= 2p1, (5.20)

R1

LC
= −2p1x1 − 2q1y1, (5.21)

R1

L
+

1

R2C
= −2x1, and (5.22)

1

L

(
R1

R2C
+

1

C

)
= x2

1 + y2
1. (5.23)

This gives four equations and four variables to solve. Solving (5.20) - (5.23), the

values of R1, R2, L and C can be calculated in terms of p1, q1, x1 and y1. This can

be repeated for all other residues and poles. Then the resulting network is the series

connection of these blocks as shown in Figure 5.5.
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Figure 5.5: R-L-C synthesis of complex conjugate pair residues cn and poles an.

A pair of real residues and a pair of real poles can also be represented by Figure

5.5. The first two expressions in (5.12) can be combined and expressed as,

c1

s− a1

+
c2

s− a2

=
s(c1 + c2)− (c1a2 + c2a1)

s2 − (a1 + a2)s+ a1a2

. (5.24)

This can be compared with (5.19) and we have,

R1

LC
= −(c1a2 + c2a1), (5.25)

1

C
= c1 + c2, (5.26)

R1

L
+

1

R2C
= −(a1 + a2), and (5.27)

1

L

(
R1

R2C
+

1

C

)
= a1a2. (5.28)

Solving (5.25)-(5.28), the values of the R1, R2, L and C can be obtained.

5.4.3 R-L-C Network: Single Phase Line

The transfer function of the form (5.1) can be represented by an R-L-C network.

The residues cn and poles an are either real quantities or come in complex conjugate

pairs, while d and h are real. If the residue cn and poles an are real quantities, the

synthesized circuit could be represented by series of parallel R-C elements with one

R and L to represent d and h as shown in Figure 5.3. If the residue cn and poles an
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are complex conjugate, the synthesized circuit could be represented by a circuit with

R-L-C elements with one R and L to represent d and h as shown in Figure 5.5.

5.4.4 R-L-C Network: Multi Phase Line

Fig 5.5 shows the R-L-C realization of a single phase line. For a multi-phase

line, the mutual impedance can be represented by a mutually coupled transformer.

Moreover, the effect of mutual admittance is included by inserting a network block

between the lines. For a balanced three phase line, the circuit representation is as

shown in Figure 5.6.

Figure 5.6: R-L-C synthesis of a three-phase line with mutual parameters.

In an unbalanced multi phase case, different amounts of current are flowing in the

individual phases. Though the value of the mutual impedance remains the same, the

change in current in one phase affects the change in another phase voltage. During

this study, the authors have found that, in many cases of distribution lines, the

mutual impedances and admittances have almost linear dependency on frequency for

distribution lines up to 3 miles length. The series and shunt mutual reactances for

a 3 mile overhead line with dove cable is shown in Figure 5.7. For this reason, they

can simply be represented by an inductor or a capacitor. The R-L-C network as

shown in Figure 5.6 can be changed to address the unbalance by obtaining a generic
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approximated circuit as shown in Figure 5.8.

Figure 5.7: Series and shunt mutual reactances for a 3 mile overhead line with dove
cable.

Figure 5.8: Simplified R-L-C synthesis of a three-phase line with mutual parameters.
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5.5 Proposed Line Modeling Algorithm

This section summarizes the procedure used to derive the proposed Vector-fitted

frequency-dependent line model. The proposed line model has two predefined mod-

eling criteria to be set before model derivation:

• Number of harmonic frequencies of interest, N , and

• Level of accuracy explained in terms of absolute mean error between the ana-

lytical model and proposed the model series impedance and shunt admittances,

λ.

For the test cases presented in this thesis, for example, the number of harmonic

frequencies of interest was set to 25, i.e. N = 25 and the error limit was set to a

maximum 2% i.e. λ ≤ 2%.

Next, the line information is to be collected:

• Physical properties of the line;

• Line geometry and line length.

The description of the step-by-step procedure follows.

Step 1. Analytical Line Derivation: After the predefined line modeling criteria has

been set and the line information has been collected, the analytical model, which

includes the frequency-dependent effects of the ground return and the skin effect is

derived (as discussed in detail in chapter 3). The analytical model is composed of

the set of N number of exact PI models for N number of harmonic frequencies of

interest. The frequency response of up to 60N Hz is calculated for series impedance

and shunt admittance.

Step 2. Approximation Procedure: The analytical line model is then approximated

using the vector fitting technique. Specifically, the N number of exact PI models is

approximated to a single exact PI model. Each of the shunt and series element of

the N exact PI models is approximated using the pole residue model and expressed

as transfer function as a ratio of zeros to poles. For each series and shunt element,
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the approximation procedure is carried out. The approximation starts with 2 poles.

If the 2-pole approximation results in a model accuracy within the average mean

error of λ% from the analytical model, this step is complete. Else, then the poles are

increased in increment of 2 until the λ% error limit is achieved as described in the

vector fitting technique. It has been observed that to maintain an error limit of 2%,

a maximum 2N number of poles were need to approximated N number of harmonic

frequencies of interest for a line length up to 80 miles in the three phase line case

and up to 120 miles for the single phase line case. Beyond these line lengths, it was

observed that a larger than 2N number of poles were needed to approximate within

the example 2% error.

Step 3. Circuit Realization: The approximated functions are then realized in circuit

by using only passive components. First, shunt and series elements are realized in

circuit representation as described in previously in section 5.4. After that, the mutual

parameters are treated. The same circuit realization as shown in Figure 5.5 can

be used for mutual parameters. However, it has been observed that the mutual

parameters showed an approximately linear dependency on frequency. For this reason,

the mutual impedance is approximated by an inductor and the mutual admittance

by a capacitance. The values of the mutual parameters are replaced directly from

the slope of the approximated line, calculated from linear regression of the data for

mutual parameters. The details of the circuit realization procedure are discussed

previously in section 5.4.

The modeling procedure is graphically summarized in the flowchart as shown in

Figure 5.9. The proposed model used in steady state harmonic analysis is more accu-

rate than commonly used steady-state line models such as the PI model and retains

approximately the similar accuracy of the transient models for the frequencies of in-

terest. This is verified with various test cases, which are presented in the next chapter.

Hence, this model removes the necessity to run time domain simulations if one wants
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to use accurate frequency-dependent line models. This makes the simulation time

faster for accurate steady state harmonic analysis in system level studies.

Figure 5.9: Flowchart to derive the proposed line model.



CHAPTER 6: MODEL EVALUATION AND SIMULATION RESULTS

6.1 Overview

This chapter discusses the development of the test cases used to evaluate the pro-

posed frequency-dependent power line models and the simulation results. First, the

types of lines and cables used in the test cases are discussed. Then the test cases

are presented. After that, single phase and multi phase harmonic power flow is per-

formed for the test cases using the proposed line model, the analytical line model(as

benchmark) and other commonly used line models. The proposed model performance

is compared to the other line models in terms of harmonic power flow results, and

resulting harmonic distortions levels and harmonic losses. The R-L-C circuit repre-

sentations for some example test cases are also computed.

6.2 Test Lines and Cables

In different test cases, multiple types of cables are used. Different overhead ACSR

and underground concentric neutral and tape shielded cables are used. The line types

are discussed briefly in the following subsections.

6.2.1 Overhead Lines

The cables used in the test case overhead lines are Aluminum-Conductor Steel

Reinforced (ACSR) cables. The outer strands are high-purity aluminum alloy, chosen

for its excellent conductivity, low weight and low cost. The strand at the center is

designed for strength and support the weight so that the aluminum is not stretched.

Hence, the center strand is steel chosen for its ductility. ACSR cables comes in

several sizes, which are typically standardized. One example of 24/7 ACSR cable

cross section is shown in Figure 6.1.

The ACSR cable types used in this research are listed as follows.
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• ACSR 1,590,000 54/19

• ACSR 556,500 26/7

• ACSR 4/0 6/1

• ACSR 1/0

Figure 6.1: Cross section of 24/7 ACSR cable.

6.2.2 Underground Lines

Underground cables are laid out for mainly aesthetic purpose. Though they are

more expensive, they also have some advantages over overhead lines. Underground

lines are less vulnerable to air borne elements like wind and ice. Also, in some areas

like downtown districts of cities, they are more practical than overhead lines. In

this research, two types of underground cables, namely concentric neutral and tape

shielded cables are used. These cables are used in IEEE 13 node test feeder.

The cross section of a concentric neutral cable is shown in Figure 6.2. The cable

consists of a central phase conductor covered by a thin layer of nonmetallic semi-

conducting screen to which is bonded the insulating material. The insulation is then

covered by a semi-conducting insulating screen. The solid strands of concentric neu-

tral are spiraled around the semi conducting screen with a uniform spacing between

the strands. Some cables will also have an insulating jacket encircling the neutral

strands [68].
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Figure 6.2: Cross section of a concentric neutral cable.

The cross section of a tape shielded cable is show in Figure 6.3. The cable consists

of a central phase conductor covered by a thin layer of nonmetallic semi-conducting

screen to which is bonded the insulating material. The insulation is covered by a

semi-conducing insulating screen. The shield is bare copper tape helically applied

around the insulation screen. An insulating jacket encircles the tape shield [68].

Figure 6.3: Cross section of a tape shielded cable.

The types of underground cables used in this work are listed as follows.

1. Concentric neutral cable

• phase line: AA 250,000 cmil

• neutral line: 13 Concentric Copper 14 kcmil

2. Tape shielded cable

• phase line: AA 1/0 cmil

• neutral line: Copper 1/0
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6.3 Single Line Test Cases for Model Evaluation

In the first test case, the line parameter values are calculated using different models

and compared against each other. Then after, a two bus case with a single phase line

is considered. Line parameters, as well as the receiving end voltages obtained using

different models are compared. Then, a three phase line is considered and receiving

end voltages obtained using different models are compared. The R-L-C network of

the single phase and three phase lines are also derived.

6.3.1 Case I: Series Impedance Evaluation

A three-phase balanced and transposed overhead line of falcon cable type is con-

sidered for this study. The conductors are assumed to be equilaterally spaced at 15

ft and tower height is assumed to be 50 ft. Because the balanced three phase line is

considered, per phase analysis can be done and hence, calculations for only one phase

are shown.

First, the values of the series resistance and series reactance at frequencies from 1

Hz to 1500 Hz using different models are calculated. For a unit length line, the results

are as shown in Figure 6.4. Fig. 6.4 also shows the frequency response obtained using

the analytical model and the constant exact PI model. It is noted that the proposed

model ’s error with respect to the analytical model (benchmark) is less than the error

obtained with the constant exact PI model.
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Figure 6.4: Line parameter comparison of different models for a unit length line of
falcon cable.

6.3.1.1 Pole Numbers and Frequency Window

This test line was evaluated with different number of poles in the approximation

process and also on different frequency window. Fig. 6.5 shows magnitude of the

impedance vs. frequency resulting from the use of different numbers of poles in the

Vector Fitting technique and their comparison with the analytical and the constant

exact PI models. Various forms of the proposed model are presented; specifically,

models with 2, 10, 20 and 30 poles in 5 kHz and 1.5 kHz approximation window are

considered. It is observed that if more poles are used, the accuracy increases. The

decrease in approximation window also increases accuracy. The 2-pole and 10-pole

approximations are shown in Figure 6.6 in smaller frequency window to show that

the approximation results are better in smaller frequency window. One can compare

how the same 10-pole approximation is behaving in 5000 Hz approximation window

in Figure 6.5 and in 1500 Hz approximation window in Figure 6.6, latter being more
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accurate.

Figure 6.5: Series impedance of the 20 mile falcon cable line for various models.

Figure 6.6: Equivalent impedance of the proposed model and other models.
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6.3.1.2 Series Impedance Comparison

The percentage error of the 10-pole approximation function is calculated and com-

pared with the other models. Table 6.1 shows the comparison between all the models.

For the first 25 harmonic frequencies as shown in Table 6.1, it is clear that the proposed

model is more accurate than the constant exact PI model. The individual percentage

error of the proposed model is always below 1% and the maximum error is only 0.84%

which occurs at the 25th harmonic. The constant exact PI has an average error of

5.31%, the 30 pole approximation done over 5 kHz window has 1.26% error and the

proposed model has only 0.25% error. This clearly shows that the smaller window of

approximation reduces the number of poles required significantly. It is seen that the

proposed model of the 10th order in 1.5 kHz window is more accurate than the 30

pole model approximated in 5 kHz window.
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Table 6.1: Frequency-dependent impedance values for different models.

freq. Analytical Constant Exact PI 30 poles(5KHz Win.) 10 poles(1.5KHz Win.)

(Hz) Z (Ohms) Z (Ohms) % Error Z (Ohms) % Error Z (Ohms) % Error

60 52.31 52.31 0.00 52.31 0.00 52.31 0.00
120 99.39 101.54 2.16 94.85 4.56 99.52 0.13
180 144.31 149.50 3.59 145.62 0.91 144.21 0.07
240 187.60 196.28 4.62 181.13 3.45 187.60 0.00
300 229.44 241.86 5.41 228.91 0.23 229.25 0.08
360 269.89 286.16 6.03 266.81 1.14 269.67 0.08
420 308.97 329.07 6.51 300.80 2.64 309.16 0.06
480 346.65 370.48 6.88 340.89 1.66 347.55 0.26
540 382.91 410.28 7.15 380.78 0.56 384.42 0.39
600 417.69 448.33 7.33 414.64 0.73 419.45 0.42
660 450.95 484.52 7.44 443.96 1.55 452.52 0.35
720 482.65 518.72 7.47 472.83 2.03 483.66 0.21
780 512.72 550.84 7.44 503.26 1.84 513.04 0.06
840 541.11 580.75 7.33 534.28 1.26 540.86 0.05
900 567.78 608.37 7.15 563.70 0.72 567.29 0.09
960 592.69 633.60 6.90 589.82 0.48 592.43 0.04
1020 615.78 656.35 6.59 612.20 0.58 616.25 0.08
1080 637.02 676.54 6.20 631.46 0.87 638.63 0.25
1140 656.38 694.12 5.75 648.66 1.18 659.30 0.45
1200 673.82 709.02 5.22 664.77 1.34 677.93 0.61
1260 689.31 721.19 4.62 680.28 1.31 694.11 0.70
1320 702.84 730.60 3.95 695.17 1.09 707.39 0.65
1380 714.38 737.21 3.20 708.98 0.76 717.31 0.41
1440 723.92 741.01 2.36 721.09 0.39 723.43 0.07
1500 731.46 741.98 1.44 730.89 0.08 725.33 0.84

6.3.2 Case II: Two Bus Single Phase System

In this section, two bus system with a line is considered. The first test line for single

phase case is the falcon cable line discussed in previous section. The second test line

is a three-phase three-wire 20-mile unbalanced line of dove cable. The conductors

are asymmetrically spaced as follows: Phase A-B: 2.5ft, A-C: 7ft & B-C: 4.5ft and

the tower height is 28 ft. The derived analytical model is used as benchmark; other

models for comparison include the simple PI model, the constant exact PI model, the

EMT model and a cascaded PI model. Since the proposed model has multiple R-L-C

circuit elements, the uniformly segmented cascaded PI model with the same number

of elements is included as one of the models for comparison.
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6.3.2.1 Balanced Three-Phase/Single-Phase Test Case

A three-phase three-wire 25-mile long balanced line of falcon cable is considered.

The conductors are assumed to be equilaterally spaced at 15 ft and tower height is

assumed to be 50 ft. As the line is balanced, per phase analysis is performed. The

single phase case with a phase and neutral wire could also be Kron reduced [69] to

have a single element in the impedance or admittance matrices.

First the impedance values of the line is compared. The differences in series

impedance values for various models and the benchmark analytical model are shown in

Figure 6.7 for frequencies up to 1.5 kHz. From the figure it is clear that the proposed

model impedances nearly coincide with the analytical model for all considered fre-

quencies. The average error in model impedance with respect to the analytical model

is 1.81% for the proposed model, 12.57% for the constant exact PI model, 44.72% for

the simple PI model and 27.78% for the cascaded PI model.

Figure 6.7: Series impedance magnitude for different line models of the 25 mile falcon
cable.

Now the steady state harmonic voltages obtained using various line models are

compared. Constant impedance load is used and calculated assuming that at 60

Hz, real power consumed at nominal voltage is 1 MW and reactive power consumed
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is 300 kVar. Frequency-dependent impedances and admittances will have a major

effect on harmonic voltage calculations. The EMT model does not have an equivalent

PI structure and hence, the impedance values of this time domain model cannot

be directly compared with steady-state models. However, time domain models and

steady-state models can be compared in terms of receiving-end voltages or currents.

In this example, the steady-state voltage obtained from the EMT model is compared

to the voltages obtained using the proposed model and the other steady-state models.

Given a known voltage source at the line sending end, a frequency scan is performed

and the receiving end voltage is obtained for all considered line models. Receiving-end

voltage in pu for different models is shown in Figure 6.8. Differences in receiving-end

voltage between the analytical and the other models are shown in Figure 6.9. It is

observed that the results obtained from the proposed model are similar to the results

obtained using the EMT model. This shows that the proposed model can be used

to achieve EMT model accuracy, without the need of running time domain analysis.

The average error in voltage with respect to the analytical model calculated voltage

is 1.71% for the proposed model, 0.01% for the Vector Fitted EMT model, 159.01%

for the constant exact PI model, 92.88% for the simple PI model and 24.33% for the

cascaded PI model.
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Figure 6.8: Receiving-end voltage in pu for different models for comparison for the
25-mile line of falcon conductor.

Figure 6.9: Difference in receiving-end voltage in pu between the analytical model
and the other models for comparison for the 25-mile line of falcon conductor.

A long line of the same test case is also tested. Line length is considered to be

120 miles(193.12 km). First the impedance values of the line is compared. The series
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impedance values for various models and the benchmark analytical model are shown in

Figure 6.10 for frequencies up to 1.5 kHz. From the figure it is clear that the proposed

model impedances nearly coincide with the analytical model for all considered fre-

quencies. The average error in model impedance with respect to the analytical model

is 1.66% for the proposed model, 33.16% for the constant exact PI model, 656.46% for

the simple PI model and 92.39% for the cascaded PI model.

Figure 6.10: Series impedance magnitude for different line models of the 120 mile
falcon cable.

Given a known voltage source at the line sending end, a frequency scan is performed

and the receiving end voltage is obtained for all considered line models. Receiving-end

voltage in pu for different models is shown in Figure 6.11. Differences in receiving-end

voltage between the analytical and the other models are shown in Figure 6.12. It is

observed that the results obtained from the proposed model are similar to the results

obtained using the EMT model. This shows that the proposed model can be used

to achieve EMT model accuracy, without the need of running time domain analysis.
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The average error in voltage with respect to the analytical model calculated voltage

is 1.99% for the proposed model, 0.006% for the Vector Fitted EMT model, 97.53%

for the constant exact PI model, 79.04% for the simple PI model and 167.93% for the

cascaded PI model.

Figure 6.11: Receiving-end voltage in pu for different models for comparison for the
120-mile line of falcon conductor.
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Figure 6.12: Difference in receiving-end voltage in pu between the analytical model
and the other models for comparison for the 120-mile line of falcon conductor.

6.3.2.2 R-L-C Synthesis

The proposed model of the test line is synthesized using passive elements. The

network as shown in Figure 5.5 is created for both series impedances and shunt

admittances. The parameter values of the synthesized R-L-C circuit are shown in

Table 6.2. The series impedance is approximated using the eighth order transfer

function and the shunt admittance is approximated using the second order transfer

function. It is seen that for this line, some of the values of the R-L-C elements

are negative. If the software is made capable of in-taking negative values of these

elements, simulations can be carried out as usual and the negative values will not

create problems. It is also noted that the negative inductor can be represented by an

equivalent capacitor and vice versa.
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Table 6.2: Proposed line model R-L-C synthesis for the 25-mile test line.

Elements Series Impedance

R,L −32.75 kΩ 0.767H
R11, R12, L1, C1 −941MΩ −4.4MΩ 530.9H −145.2pF
R21, R22, L2, C2 21.6GΩ 4.4MΩ 5.04MH 0.142 pF
R31, R32, L3, C3 1.49 kΩ 394.2 Ω 2.1H 1.34 µF
R41, R42, L4, C4 31.7 Ω 47.06 Ω 1.15H 472mF

Elements Shunt Admittance

R,L 396.1mΩ 1.12 nH
R11, R12, L1, C1 −0.37mΩ 5.62mΩ 110 nH 25.16mF

6.3.3 Case III: Two Bus Three Phase System

A three-phase three-wire 20-mile unbalanced line of dove cable is considered. The

conductors are asymmetrically spaced as follows: Phase A-B: 2.5ft, A-C: 7ft & B-C:

4.5ft and the tower height is 28 ft. To increase the level of imbalance, single phase

loads with different power ratings are connected at the receiving end of this line.

A frequency scan is performed from 1 Hz to 1500 Hz, in 1 Hz steps, with a known

voltage source connected at the line sending end. Phase C receiving-end voltage in pu

for different models for comparison for the 20-mile line of dove conductor is shown in

Figure 6.13. The receiving end voltage magnitudes obtained for different models are

shown in Figure 6.14 for phase C, as an example. The proposed model again proves

to be the most accurate as compared to the other steady-state models. The average

error in voltage with respect to the analytical model calculated voltage is 1.81% for

the proposed model, 107.19% for the constant Exact PI model, 354.01% for the simple

PI model and 164.54% for the cascaded PI model.
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Figure 6.13: Phase C receiving-end voltage in pu for different models for comparison
for the 20-mile line of dove conductor.

Figure 6.14: Difference in phase C receiving-end voltage in pu between the analytical
model and the other models for comparison for the 20-mile line of dove conductor.

Phase C receiving-end voltage angle of different models for comparison for the 20-

mile line of dove conductor is shown in Figure 6.15. The receiving end voltage angle

differences for different line models are shown in Figure 6.16. It is observed that

the results obtained from the proposed model have similar accuracy with respect to

analytical model as compared to the analytical model and much better as compared
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to other steady state models. The average deviation of the calculated voltage angle

is 1.81◦ for the proposed model, 69.56◦ for the constant exact PI model, 39.33◦ for the

simple PI model and 67.73◦ for the cascaded PI model.

Figure 6.15: Phase C receiving-end voltage angle of different models for comparison
for the 20-mile line of dove conductor.

Figure 6.16: Difference in phase C receiving-end voltage angle between the analytical
model and the other models for comparison for the 20-mile line of dove conductor.
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6.3.3.1 R-L-C Synthesis

Similarly to the single phase case, the proposed model for this test line is synthesized

using passive elements and the network as shown in Figure 5.5 is created for both

series impedances and shunt admittances. The synthesized values for all phases are

shown in Table 6.3.

Table 6.3: Proposed line model R-L-C synthesis for the 20-mile test line for all phases.

Phase A Elements

Elements Series Impedance

R,L 138.8 Ω 0.102H
R11, R12, L1, C1 −8.99 Ω −10.31 Ω 0.292H 0.317mF
R21, R22, L2, C2 818.6 Ω 148.3 Ω −102mH 1.9 µF
R31, R32, L3, C3 0.365 Ω −15.55 Ω 5.11mH 0.526mF
R41, R42, L4, C4 1.62 Ω 101 Ω 36H 77 µF

Elements Shunt Admittance

R,L −91.1 µΩ 820 nH
R11, R12, L1, C1 −0.14mΩ 254 µΩ 0.161 µH 8.96F

Phase B Elements

Elements Series Impedance

R,L 130.1 Ω 0.101H
R11, R12, L1, C1 15.61 Ω 111.7 Ω −207H −2.2 µF
R21, R22, L2, C2 −0.02 Ω 8.61 Ω −1.1mH −4.14mF
R31, R32, L3, C3 0.22 Ω −0.83 Ω −0.52mH −2.89mF
R41, R42, L4, C4 −13.87 Ω 39.71 Ω −43.3mH −25 µF

Elements Shunt Admittance

R,L −99.6 µΩ 953 nH
R11, R12, L1, C1 −0.13mΩ 194 µΩ 0.138 µH 8.68F

Phase C Elements

Elements Series Impedance

R,L 96.3 Ω 0.105H
R11, R12, L1, C1 5.72 Ω −6.18 Ω 295 µH 4.77 µF
R21, R22, L2, C2 −2.65 Ω 3.40 Ω −8.95mH −0.68mF
R31, R32, L3, C3 35.53 Ω −109.1 Ω −76mH −84 µF
R41, R42, L4, C4 −0.03 Ω 0.03 Ω 16.1 µH 13.4mF

Elements Shunt Admittance

R,L 111 µΩ 598 nH
R11, R12, L1, C1 −1.52mΩ 120 µΩ 0.9 µH 2.56F
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As derived from the analytical model in the three phase case, the mutual parameters

are included in the model by using the network as shown in Figure 5.8. For short and

medium length lines, the mutual parameters are accurately approximated by a linear

function: frequency being the dependent variable. Hence, the mutual impedance

can be represented by a transformer and the mutual admittance by a capacitor. The

parameter values of the synthesized R-L-C circuit of the mutual parameters are shown

in Table 6.4.

Table 6.4: Proposed line model R-L-C synthesis of the mutual impedance and admit-
tance for the 20-mile test line.

Elements Mutual Impedance

Z12(R12 + jωL12) 5 + jω0.109 Ω
Z13(R13 + jωL13) 20 + jω0.113 Ω
Z23(R23 + jωL23) 19 + jω0.114 Ω

Elements Mutual Admittance

C12, C13, C23 525 nF 140 nF 303 nF

The simplified circuit representation of this three phase line is shown in Figure

6.17.
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Figure 6.17: Simplified circuit representation of three phase 20 mile Dove conductor
type.

6.4 Harmonic Power Flow in IEEE 13 Node Test Feeder

In order to perform a preliminary evaluation of the new frequency-dependent line

model performance in system level studies, the IEEE 13 node test feeder [70] was

used. The single line diagram of the test feeder is shown in Figure 6.18. This feeder

is characterized by multi-phase unbalanced overhead and underground lines. The line

impedances and admittance provided by IEEE are for the fundamental frequency of 60

Hz. In order to evaluate the proposed modeling approach, the authors have calculated

the line parameter values for a frequency range from 1 to 1500 Hz using various line

models.

6.4.1 Harmonic Current Injection

To test HPF on the test feeder, arbitrary nonlinear loads are assumed at different

buses. The nonlinearity is created by injecting harmonic currents in the system. The
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nodes with harmonic current injection are:

• Node 646: 11th harmonic current is injected at phase B and the magnitude is

10% of the fundamental current.

• Node 652: 5th harmonic current is injected at phase A and the magnitude is

10% of the fundamental current.

• Node 675: 7th harmonic current is injected at phase A, 13th harmonic current

is injected at phase B and 19th harmonic current is injected at phase C. The

magnitude of each is 10% of the fundamental current.

Figure 6.18: Single line diagram of IEEE 13 node test feeder.

6.4.2 Comparison in Harmonic Distortion

The load ratings are increased from the base case IEEE 13 node test feeder [70]

evenly such that the line fundamental substation current is a few kilo amperes. The
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THD at various points is calculated from (6.1).

THD =

√
N∑

n=2
F 2
n

F1

. (6.1)

where F is either rms voltage or rms current, n the harmonic number, N is the

highest harmonic number under consideration and F1 is the fundamental frequency

rms value. Harmonic power flow is performed and multiple line models are compared.

For clarity, the models under comparison are numbered as shown in Table 6.5.

Table 6.5: Line model numbering.

Model No. Model Type

1 Analytical Model–Benchmark
2 Constant Exact PI Model
3 Simple PI Model
4 Cascaded PI Model
5 Proposed Model

Voltage and current THD values at select nodes in the proximity of the nodes

injecting harmonics are presented in Tables 6.6 and 6.7 respectively. It is observed that

the proposed model THD results are very close to the analytical model in comparison

to the other steady state models, e.g. at node 671-Phase A, the voltage THD for

analytical model is 2.866% and that of proposed model is 2.805%, however for the

exact PI model, simple PI model and cascaded model are 1.681%, 4.894% and 3.097%

respectively.

Table 6.6: Voltage THD values in percentage at select nodes.

Node-Phase Model 1 Model 2 Model 3 Model 4 Model 5

645-B 1.312 3.467 2.321 0.323 1.284
611-C 5.348 3.890 3.914 12.50 4.502
671-A 2.886 1.681 4.894 3.097 2.805
671-B 2.339 1.081 2.481 5.264 2.240
671-C 2.685 2.659 2.903 3.638 2.306
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Table 6.7: Current THD values in percentage at select nodes.

Node-Phase Model 1 Model 2 Model 3 Model 4 Model 5

645-B 0.252 0.998 0.353 0.049 0.242
611-C 2.294 1.239 1.519 4.393 1.933
671-A 0.804 0.372 1.611 0.838 0.842
671-B 0.582 0.221 0.788 1.517 0.658
671-C 0.603 0.364 0.764 0.875 0.562

6.4.3 Comparison in Harmonic Losses

For the test case, harmonic losses were calculated using the different models as

shown in Table 6.5. The results are shown in Table 6.8. Harmonic losses at select

frequencies are normalized with the losses incurred in the analytical model–the bench-

mark; the deviation can be seen from the base value of 1. As seen from the table, the

harmonic losses calculated using the proposed model are within 1% difference from

those obtained using the analytical model, while the other models have up to 110%

error (with the simple PI model performing the worst).

Table 6.8: Normalized harmonic losses at select frequencies f .

f (Hz) Model 1 Model 2 Model 3 Model 4 Model 5

300 1.00 1.03 1.03 1.03 0.99
420 1.00 1.16 1.50 0.77 1.00
660 1.00 0.65 2.10 0.41 0.99
780 1.00 1.00 1.62 0.71 1.00
1140 1.00 1.59 1.93 0.93 1.00

The overall system losses are also calculated. The system loss bar diagram is shown

in Figure 6.19. Losses are expressed as the percentage of the system load power. It is

clearly seen that the loss calculation using the proposed model is very accurate with

the analytical model and other steady state models show significant deviation.
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Figure 6.19: Total harmonic losses using different models.



CHAPTER 7: CONCLUSIONS AND FUTURE WORKS

7.1 Overview

The work presented in this thesis addressed the development and investigation of

novel frequency-dependent electric power line models for steady state harmonic analy-

sis. It took into account the line frequency-dependent characteristics due to the effect

of the ground return and the skin effect. Multiple approaches were investigated and

brought to the development of the proposed generic frequency-dependent line model.

First a multi-segment line modeling approach was investigated and implemented in an

harmonic power flow algorithm. Then an analytical expression capturing the real part

of the line series impedance (apparent resistance) was presented, which can also be

implemented for the imaginary part of the line series impedance (apparent reactance).

Specifically for distribution lines, the expressions were simplified to first and second

order polynomial equations. Lastly, the vector fitted generic frequency-dependent

line modeling approach was presented. All the models were evaluated using differ-

ent test cases and their performance compared to other commonly-used line models.

Some of the metrics used for model evaluation and validation are series impedance,

voltage magnitudes and angles at different buses or nodes on test cases after running

harmonic power flow using different line models, voltage distortion levels etc.

In this chapter, first the summary of the research contributions is presented. Then,

the differences between the EMT model and the proposed model are highlighted.

Finally, possible areas of future work are discussed.

7.2 Summary of Research Contributions

The research contributions can be summarized as follows:

(a) The multi-segment frequency-dependent line model structure was used in a
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non-iterative harmonic power flow tool. Results of the test studies using the

proposed HPF tool were compared to results obtained using a single lumped

parameter segment line model (i.e. the traditional PI model) as well as using

the frequency-dependent line model(EMT model) used in the PSCAD software.

In general, the results obtained using the proposed HPF tool with frequency-

dependent line model structures were closer to the results obtained using the

frequency-dependent line models in PSCAD than the ones obtained using a

single-segment line model.

(b) An analytical expression capturing the frequency-dependent characteristics of

real part of the line series impedance (apparent resistance) was presented. With

this equation, the apparent resistance of the transmission line can be ana-

lyzed independently without deriving and calculating the equation for over-

all impedance of the line. This expression can be used directly in frequency

dependent line models, including phasor domain calculations. A similar ap-

proach can be used for the imaginary part of the frequency-dependent line

impedance(apparent reactance). The simplified approximated equation is com-

pared with the analytical benchmark model and differences in computational

time between the two are presented. Results have shown that during the run of

the digital simulation, the approximated equation is executed 250 times faster

than the analytical equation.

(c) As an extension of the work mentioned in the point above, a technique to sim-

plify the expressions for the frequency-dependent power distribution line param-

eters was presented. The complex equations using the hyperbolic, logarithmic,

trigonometric functions along with the Bessel functions and kelvin functions

are simplified to first and second order polynomial functions. Computational

time and error between the analytical expressions and the simplified expres-

sions are compared. Results have shown that during the digital simulation, the



121

proposed equation is executed much faster than the analytical equations. Also

the simplified expressions clearly retain the frequency-dependency of the line

parameters.

(d) The proposed model presents a generic vector fitting-based frequency dependent

line model to be used in frequency domain behavior analysis. The proposed

model results in much higher accuracy than the simple PI, cascaded PI or

constant exact PI models.

(e) The proposed frequency-dependent line modeling approach removes the neces-

sity to run time domain simulations while still retaining very accurate frequency-

dependent characteristics. This makes the model computationally efficient, and

the simulation execution time faster.

(f) The PI structure of this proposed model allows for simple implementation in

existing system-level analysis algorithms such as harmonic power flow.

(g) The proposed model can be synthesized in an R-L-C network and is therefore

implementable in conventional simulation software. The use of passive elements

also aids in maintaining model stability.

(h) The derived analytical model can be used for higher accuracy. However, for each

frequency of interest, a separate analytical model has to be used. The proposed

model avoids this problem by providing a single generic model for all harmonic

frequencies of interest without much affecting the accuracy of analytical model.

Also, the simulation time is faster when using the proposed model as compared

to the analytical model.

(i) The proposed model is found to be more accurate than currently used steady

state models such as the PI model or the exact PI model calibrated at 60 Hz.

Hence, the proposed model has the advantage of accuracy over the currently

used steady state models. Also, since the proposed frequency-dependent line

modeling approach removes the necessity to run time domain simulations while
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still retaining very accurate frequency-dependent characteristics as that of the

EMT models, the proposed model has the advantage of speed over the EMT

models for steady state harmonic analysis.

7.3 Proposed Model and EMT Model Comparison

The time domain EMT model and the frequency domain proposed model have

some noticeable differences, although both models use the Vector fitting technique.

The major differences between the EMT model [15] and the proposed model are listed

below:

(a) Simulation Domain: The EMT model is designed to be used in for time domain

simulations for transient analysis and cannot be used in frequency domain-based

tools; the proposed model is developed for use in frequency domain simulations

to study the propagation of harmonic frequency components. When comparing

steady-state fundamental and harmonic voltages and currents obtained using

both models, the proposed model is shown to retain the accuracy of the EMT

model.

(b) Approximation Procedure: Both EMT and proposed model use the Vector fit-

ting technique. In the EMT model, modal decomposition is done and propa-

gation H and characteristic admittance Yc are approximated. In the proposed

model, the series impedance Z and shunt admittance Y of the benchmark model

in a PI structure are approximated.

(c) Approximation Window: In EMT studies, a frequency response of up to 1

MHz may be required to capture transients in the microsecond time-scale. For

the proposed model, a much smaller approximation window of up to the 25th

harmonics, i.e. 1500 Hz, is considered. The smaller frequency window for steady

state analysis is justified since transmission lines by nature are low pass filters

and very high harmonics do not propagate in the system.

(d) Circuit Representation: The EMT model circuit representation has an active



123

element: a current source, but the proposed model circuit representation has

all passive R-L-C elements. The use of all passive elements helps in creating

more stable system models.

7.4 Future Work

Several suggestions can be made to extend this research:

(a) In multi-segment frequency-dependent transmission line models, the uniform

segmentation of the line was considered, i.e. each segment series impedance and

shunt admittance were equal. A non-uniform line model segmentation could be

pursued to improve the accuracy.

(b) An analytical expression capturing the real part of the line series impedance

(apparent resistance) was presented. The apparent resistance expression can

be extended to use in other scenarios, e.g. in equivalent frequency-dependent

network to analyze harmonic losses. A similar approach can be used for the

imaginary part of the frequency-dependent line impedance(apparent reactance).

(c) The proposed vector fitted model has R-L-C elements. In some occasions, the

passive elements turn out to be physically unrealizable. An investigation to

ensure physically realizable passive elements can be pursued.

(d) For all the models investigated in this research, the focus was to study state

harmonic propagation in the system. All these models could be investigated on

how they respond to electrical transients.
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