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ABSTRACT

SAMANTHA LUU. MultiCloud Edge Gateway for IoT Computer Vision. (Under
the direction of DR. ARUN RAVINDRAN)

The last decade has witnessed tremendous advances in cloud computing, IoT, and
computer vision. IoT computer vision brings powerful capabilities that enables society
to tackle complex problems such as autonomous driving vehicles, smart cities, public
safety, and interactive healthcare. However, the field faces challenges of large data
streams, complex processing, low latency requirements, and data privacy concerns.
Processing at the Edge vastly reduces the data that needs to be sent to the cloud
(by a factor of 1000). Additionally, Edge processing results in lowered application
latency and sensitive video streams are confined to the privacy perimeter of the end-
user (for example, homes, hospitals, etc.). However, current IoT system software
infrastructures are designed for low data rate sensor applications and do not satisfy
the demanding needs of computer vision-based IoT.

In this thesis, we design and implement an Edge gateway targeted specifically at
emerging [oT computer vision applications. The proposed Edge gateway, which we
call VEI, enables realization of multiple vision algorithms at the Edge from a single
camera stream. Furthermore, unlike existing Edge gateways, VEI is vendor-neutral,
and capable of connecting to any Cloud provider. This allows for increased application
resilience, lowers costs, and avoids Cloud vendor lock-in. We experimentally evaluate

the performance of VEI for canonical object detection applications. Public clouds

considered in this work include those from Amazon (AWS) and Google (GCP).
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CHAPTER 1: INTRODUCTION

The last decade has witnessed tremendous advances in the fields of cloud computing
and computer vision. Cloud computing makes available on-demand and highly salable
computing and storage with a pay-as-you-go model [1]. Deep neural networks with
millions of parameters have enabled computer vision to surpass humans in certain
tasks such as object detection [2]. Furthermore, advances in wireless networks such
as 4G and 5G have ushered in Internet of Things (IoT) applications, where events
regarding real-world activities from non-human "things" are sensed, transmitted to
the Cloud, persisted in highly scalable data stores, processed using powerful machine
learning algorithms, and results transmitted to users via smartphones. An example
of such an IoT application is fleet tracking in transit systems to provide passengers
with accurate delivery information. With computer vision allowing complex sensing
of the environment, the events are sensed as video streams using Internet-enabled
cameras. Vision processing allows more powerful applications in a variety of areas
including transportation (for example, autonomous vehicles), healthcare (for example,
continuous patient monitoring), smart cities (for example, pedestrian safety), and
many others [3].

While IoT computer vision brings powerful capabilities that enables society to
tackle complex problems, it is beset by technical and social challenges. On the tech-
nical side, the amount of data generated by always-on cameras is vast (on the order
of 1 TB of data per camera per day). Transmitting this "big data" to the Cloud is
expensive and overwhelms network capacity. On the social side, are privacy concerns
in transmitting potentially sensitive video data outside the privacy perimeter such

as homes, hospitals, and industrial facilities to a distant data center. Edge comput-
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ing, where computing is done at or near the edge of the network, has emerged as a
promising technology for addressing these concerns. Processing at the Edge vastly
reduces the data that needs to be sent to the Cloud (by a factor of 1000). Addition-
ally, processing at the Edge results in lowered application latency through reduced
data transmission. Furthermore, sensitive video streams are confined to the privacy
perimeter of the end-user [4]. However, the current IoT system software infrastructure
is designed for low data rate sensor applications. Edge gateways provided by Cloud
vendors (for example, AWS Greengrass [5]) are only able to handle message sizes of
128 KB [6]. Note that a single raw video frame is at least 1 MB in size. An Edge
gateway capable of handling the large data sizes associated with computer vision is
thus needed. Due to the high costs associated with installing cameras, often multiple
vision applications may consume a single camera stream for detecting different events.
The Edge gateway must be capable of supporting multiple vision applications. Fur-
thermore, to respond to dynamically changing Cloud service availability, the Edge
gateway must be able to readily switch between Cloud Service Providers.

In this thesis, we design and implement an Edge gateway targeted specifically at
emerging [oT computer vision applications. The proposed Edge gateway, which we
call Vision Edge IoT (VEI), enables the realization of multiple vision applications at
the Edge, processing video stream from a single camera. The proposed architecture
is scalable to multiple cameras. Furthermore, unlike existing Edge gateways, VEI
is vendor-neutral and capable of connecting and dynamically switching between any
Cloud provider. We experimentally evaluate the performance of VEI on an Edge
server for canonical object detection applications, and utilize multiple Cloud Service

Providers.
1.1 Contributions
The thesis makes the following contributions -

e Demonstrates the need for Edge processing for IoT computer vision.
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e Proposes VEI - an Edge gateway architecture that enables multiple computer

vision algorithms to consume on a single video stream.
e Experimentally evaluates the latency, and resource usage associated with VEIL
e Demonstrates the ability of VEI to scale with multiple vision algorithms.

e Demonstrates the ability of VEI to dynamically switch between Cloud providers,

and evaluates the delays incurred in the switch.

1.2 Thesis organization

The thesis is organized as follows - In chapter 2 we provide a brief background of the
technologies investigated in the thesis. In chapter 3, we describe VEI, the proposed
multi-Cloud Edge gateway for IoT Computer vision. In chapter 4 we present exper-
imental evaluation of VEI. Chapter 5 concludes the thesis and includes suggestions

for future work.



CHAPTER 2: BACKGROUND

The following chapter will go over relevant technologies and terminologies that were

used in development.
2.1 Computer Vision

Computer vision is a popular technology that has various applications from facial
recognition to object detection. The field of computer vision studies different com-
putational methods that can take images and videos to have a system think similarly
to that of a human. It is a popular field that stems from artificial intelligence that
utilizes both machine and deep learning to better itself [2]. Computer vision requires
a lot of data and training for the system to learn and become reliable. For example,
using computer vision for facial expression applications will have to run through thou-
sands of images before becoming accurate enough to quickly identify a face. In one
assessment, the total number of images used was 35887 of different facial expressions
in various settings, lights, and models |7].

Since computer vision is very versatile, the most difficult component is ensuring that
it has completed enough training. If the system does not receive enough data, then
it could be the creator’s fault that it is not accurate enough. Specifically, problems
can include image tagging, object, and event identifications in video data [8]. Using
fast data-collecting technology, like IoT, can help train computer vision applications
and make them more reliable. There are many applications where the data used to
train is a live feed, such as cameras to ensure the visually impaired navigate safely [9].
Computer vision systems thus needs to handle large quantities of data, in addition to

high processing requirements. Furthermore, for use cases involving real-time sensing



and decision-making, the systems have to provide low latency as well.
2.2 Cloud Computing

Utilizing the Cloud has become increasingly popular and advantageous as it offers
a variety of functions. Cloud computing provides on-demand services and resources
that are accessed through the Internet. These providers are Cloud Service Providers
(CSPs) that will offer various services including infrastructure, platform, software, and
backend as on-demand services. Using these services provides us with the advantage
of scaling, increased performance and efficiency, and cost savings. The global Cloud
computing market size was valued at USD 368.97 billion in 2021 and is expected to
expand at a compound annual growth rate (CAGR) of 15.7% from 2022 to 2030 [1].

There are three different types of cloud computing that are offered: public, private,
and hybrid. Public clouds are those provided by a third-party company, for example,
AWS from Amazon, GCP from Google, and Azure from Microsoft. Private clouds
are those built and owned by an organization that focuses on their internal uses.
Hybrid clouds combine public and private clouds to provide on-demand services and

data centers [10]. In this thesis, we utilize two public clouds: Amazon Web Services

(AWS) and Google Cloud Platform (GCP).
221 Amazon Web Services

AWS has over 200 services that provide resources and tools to help with machine
learning, computing, processing, 10T, etc. The services used and mentioned in this
thesis are IoT Core and AWS Greengrass. This is a service that allows [oT devices
to be connected to the cloud for communication, processing, or data storage. AWS
allows console, programmatic, and command-line interface (CLI) to access services
that are in use on a device [11].

[oT Core is the service used to connect IoT devices to the Cloud. Using IoT Core

provides a means of communication between multiple devices or between a device
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and AWS. These communications can be used for sending data to the Cloud for
processing, querying, and updating device statuses. Billions of various messages can
be sent through IoT Core as long as the device is connected to the Internet. Messages
from IoT core can be sent to other services within AWS for further processing or
storage. The device connections and the data sent to and from AWS are secured
with mutual authentication and end-to-end encryption. It supports both MQTT and
HTTP communication protocols sent over the Transport Layer Security (TLS) [12]
[13].

AWS Greengrass is an Edge gateway service that is used to build, deploy, and
manage device software. Using Greengrass makes using edge processing easier as AWS
provides some template components of device software to watch for any anomalies on
the devices [5]. Greengrass can also operate independently on the Edge device even
during intermittent connection outages.

As a use case, a large number of sensors that track the temperature throughout
the day. Every hour, the data will be sent to AWS using IoT Core. With each
sensor sending data to AWS, using Greengrass would allow processing if the network
is unreliable. If the sensors needed to be updated, having all of them in a group

makes sending updates simple and easy.
2.2.2  Google Cloud Platform

GCP is another well-known public Cloud service provider that has extensive ser-
vices including those for computer vision, artificial intelligence, and machine learning
[14]. The services used in this thesis are Google [oT Core and Google Pub/Sub.

GCP has services that are very similar to AWS, like IoT Core. GCP IoT Core is the
same as AWS’ where it is used to allow secure connections for IoT devices to connect
to the Cloud. GCP IoT Core can manage and ingest data from the connected devices
and can connect with other services on GCP [15] [16]. However, unlike AWS IoT

Core, the service is not used for messaging. GCP has a separate service for messaging



called Pub/Sub.

Pub/Sub is GCP’s messaging platform that uses MQTT or HTTP as its commu-
nication protocol. GCP IoT Core connects with Pub/Sub so that devices can send
statuses and data to other devices or GCP for further processing. For IoT devices
to send messages to Pub/Sub, they need to utilize a gateway, which is specific to
GCP. The gateways are used by the MQTT bridge to connect and enable messaging
between GCP and the IoT devices [17]. To send data to GCP, the device will first
connect to the gateway, then to GCP IoT Core, and then to Pub/Sub. The Pub/Sub
service will be where messages converge and republished to other devices or used in

other GCP services [16] [18].
2.3  Edge Computing

Edge computing allows for processing to occur at the edge of the network near
data sources and thus facilitates low latency processing [19]. The number of devices
at the edge of the network has rapidly increased within the last decade, and so has
the amount of data produced. Cloud computing has been a reliable source for data
processing and the computing power is constantly improving, however, the amount
of data that is being sent to the Cloud for processing has caused network congestion
issues. Sending an intense amount of data to the Cloud for any service would cause
higher latency, decreased efficiency, and increased network pressure [20)].

As an example, consider a traffic light system that is constantly aware of vehicles
and pedestrians at an intersection. The system will need to measure the distances
and speeds of incoming traffic and consider the pedestrians waiting to cross the street.
The system will need to be able to stop pedestrians from jaywalking, provide warning
signs for incoming traffic, and constantly learn to improve its warnings for safety [20].
Performing the associated computations at the Edge ensures faster results to make
real-time decisions. The need for fast and real-time data processing can be used in

web applications, smart homes, smart vehicles, and health data management [21].



2.4 Internet of Things

Internet of Things (IoT) are devices that are connected to the Internet and to other
devices that we can monitor remotely. It has provided a way for any device to be
turned into a "smart device". When we hear about smart devices, we automatically
think of something that can be controlled with our voices or phones. IoT offers
considerable versatility in that any device can be an IoT device, such as thermostats,
cars, ovens, and refrigerators. The device itself must be connected to the Internet.
From there, it can be connected to an app on a smartphone, a computer, or to the
Cloud [3] [22].

There are four layers to IoT: sensor, gateway, processing, and front-end application.
The sensor layer is the physical device that is collecting or producing any data. The
gateway layer is responsible for moving the sensor data to the processing layer. The
data is then processed at the processing layer and useful information is extracted
(analytics). Finally, the front-end application layer is where the user will interact
with the data. An example would be a busy parking deck that has sensors in each
space to detect parked cars. When a parking space is taken, the sensor will collect that
data and send it through the IoT layers to let the end-user know via a smartphone

app about available parking spots [23].



CHAPTER 3: MULTICLOUD EDGE GATEWAY

In this chapter, we present the design and implementation of the MultiCloud Edge
gateway for IoT computer vision applications. As stated in Chapter 1, current Edge
gateways are targeted toward low-bandwidth applications. Computer vision applica-
tions at the Edge are characterized by big data, high bandwidth, and have the need
for low latency. Furthermore, Edge gateways need to be able to handle multiple com-
puter vision algorithms from a single or multiple camera streams. Finally, we aim to
make the Edge gateway interoperable with various Cloud Service Providers with the

ability to switch between them.
3.1  Motivation and Related Work

We investigate the suitability of current Cloud IoT infrastructures for computer
vision applications. Amazon AWS and Google GCP are among the leading Cloud
Service Providers. To facilitate IoT applications, AWS provides two services - AWS
[oT Core which runs on the AWS Cloud, and AWS Greengrass, which is an Edge
gateway running on the Edge server. Data produced at the Edge is transmitted
to the AWS IoT Core either directly, or via AWS Greengrass. Use of Greengrass
allows applications to tolerate intermittent network connectivity. From the IoT core,
data can readily be transmitted to any AWS service, as mentioned in Chapter 2.
Since the current IoT applications involve low bandwidth sensor data (for example,
temperature readings), the maximum message size supported by AWS IoT Core (and
AWS Greengrass) is 128 KB [6]. Similarly, Google Cloud IoT supports message sizes
of 256 KB. A single raw video frame is around 1 MB in size, and thus cannot be

handled by existing Cloud IoT infrastructures. Two alternatives exists, with the first
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is to upload the video frames to a Cloud object storage such as AWS S3, or Google
object storage, for further processing by vision algorithms running on the Cloud.
However, use of object storage incurs high costs and latency of 24/7 transmission of
large data frames to the Cloud and any other services that would be necessary for
processing. The second alternative is to do the vision processing at the Edge, and
transmit the results (for example, list of objects detected) to the Cloud. However,
scaling to multiple vision applications that consume a single video stream requires an
Edge gateway that provides a pub/sub messaging system. As mentioned previously,
existing Edge gateways such as AWS Greengrass are limited to small data sizes. The
VeerEdge proposed by Dayalan et. al. [24], builds an abstractions over existing CSP
Edge gateways to make the Edge vendor-neutral, however it still suffers from the

same data size limitations as existing Edge gateways.
3.2 Requirements

Our proposed Edge gateway for vision applications, called VEI (Vision Edge IoT)

needs to meet the following requirements -

e Needs to handle large message sizes, corresponding to the size of individual

video frames
e Should minimally contribute to overall latency
e Needs to enable multiple vision applications with low resource overhead
e Should be able to tolerate intermittent connectivity to the Cloud

e Should support multiple Cloud Service Providers and dynamically switch be-

tween them fairly rapidly

e Should be secure from unauthorized data access

While many of the requirements stated above are readily apparent, we elaborate on

the need to support multiple vision applications and multiple Cloud Service Providers.
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Consider the use case of a Department of Transportation for a large city that seeks
to alleviate traffic during busy hours by installing cameras in multiple traffic inter-
sections. They would want to stream the data from all the cameras for processing
at the Edge and generate real-time results for fast decision-making such as rerouting
traffic or changing the traffic light duration in real-time. Since camera installations
are expensive, other departments in the city could also use the camera data for pur-
poses such as public safety. Different vision algorithms would thus be consuming the
same camera data to generate different data.

The need to be able to interface the Edge gateway to multiple cloud providers is
needed to (a) prevent vendor lock-in, (b) take advantage of dynamic pricing models
in the Cloud, (c) increase resilience in case of unavailability of a particular Cloud,
and (d) support the ability of different vision applications running at the Edge while

connected to different Cloud Service Providers.
3.3 APIs

We first designed the APIs that VEI needs to support. The three APIs that VEI

supports are listed below.

e PublishImage
— Inputs: Topic and Image Stream
e Subscribelmage

— Input: Topic

— Output: Image Stream
e PublishToCloud

— Inputs: CSP, Topic, and Data Stream
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The PublishImage API is invoked by the camera to send a stream of video frames to
VEIL The topic identifies the particular image stream, which is typically the camera
ID. The Subscribelmage API is invoked by the vision application to subscribe to a
particular image stream identified by the topic. Note that a particular application may
subscribe to multiple topics corresponding to multiple cameras. The PublishToCloud
API is invoked by the vision application to publish the output of the vision processing
to a particular Cloud Service Provider (CSP) with the data stream identified by a

topic name (for example, the application name).
3.4 Architecture

The VEI architecture is composed of three main components: the pub/sub sys-
tem, a data store for persistence, and the multicloud mux. Figure 3.1 provides the
architectural block diagram of VEI (shaded in green), along with the external clients

(camera, vision processing algorithm, and Cloud Service Providers).

Vison Edge loT Gateway

E— L@

Publish and Data Store MultiCloud API

n Subscribe API
Camera e
A
Vision

Algorithm

A

Edge

Figure 3.1: VEI architecture. VEI components are shown in the green box. The
camera, VEI, and the vision application all physically reside on an Edge server.

3.4.1  Pub/Sub System

A pub/sub system is a type of messaging system that implements a publish-
subscribe pattern of communication between data producers and consumers. A pro-

ducer publishes data to a particular topic. At least one consumer subscribes to pull
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data from one or more topics. A pub/sub system decouples producers from con-
sumers. Producers are not aware of the consumers subscribing to the topic they
publish to. If the producer or consumer fails, the pub/sub system buffers the data
(often in persistent storage), so that operations can resume when the publisher or

subscriber is restored.
3.4.2 Data Store

The data store can persist the data generated by the vision processing application.
This data can optionally be consumed by an analytics application at the Edge or
could be streamed to a Cloud Service Provider for further processing. The persistence
provided by the data store allows VEI to recover data following a crash and prepare
for intermittent loss of connectivity to the Cloud. Note that if the pub/sub system
provides persistence, the data store is optional, unless specialized querying patterns
for Edge analytics needs to be supported. While the choice of the data store depends
on the analytics use case, a time series database would be a good choice for many

[oT analytics applications.

3.4.3  MultiCloud Mux

The multicloud mux implements the PublishToCloud API. Essentially, the multi-
cloud mux is a wrapper around different Cloud service APIs. The mux establishes
a connection to the specified CSP, performs authentication, and starts transmitting
data. When switching to another CSP, the mux aborts the connection of the existing
CSP, establishes a new one with the new CSP, and starts streaming data. The Cloud
service APIs are invoked programmatically using the programming language-specific

Software Development Kits (SDKs).
3.5 Implementation

The following subsections will go over how we implemented VEI using specific

ope€n-source resources.
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351 gRPC

To implement APIs, we needed a fast communication protocol that could handle
the large data size of images. Remote Procedure Calls (RPC) is a high-level com-
munication protocol where calls are made between a client and a server. These calls
mimic local function calls. We specifically used gRPC, which is an open-source RPC
framework from Google that is language-neutral and allows for highly efficient com-
munication. Figure 3.2 provides an example of a gRPC server and client with two

clients programmed in different languages than the server.

gRPC Server Ruby Client

C++ Service

p/
Of,
° Response(s)

Android-Java Client

Figure 3.2: Example gRPC Block Diagram

gRPC was chosen because of its ability to stream data and its support for au-
thentication [25] [26]. It is imperative that the technologies used in the Publish and
Subscribe APIs have streaming abilities as it results in lower latency as compared to

individual pushing and pulling of data.
3.5.2 NATS

We utilized NATS for the pub/sub system. NATS is an open-source messaging
infrastructure that is designed for high bandwidth applications. Figure 3.3 is a basic

example of the NATS publish /subscribe system using topics, also known as subjects.
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msgl

Subscriber

Figure 3.3: NATS Example

Publisher

The PublishImage API internally invokes the NATS Publish API via a NATS client.
As shown in Figure 3.4, the NATS client publishes to the NATS server under the
named topic. Similarly, the SubscribeImage API invokes the NATS Subscribe API
via a NATS client, and subscribes to images from the named topic on the NATS

server.

Vision Edge |oT Gateway

blish
P, ______ > NATS Publish

Camera

NATS Subscribe | . Subscribe | Vision g'rgc’mhm

MultiCloud Mux

Publish and Subscribe API

Figure 3.4: NATS Publish and Subscribe

NATS supports message persistence via file store on the Edge server storage. This
allows the application to snapshot important images, and recover images after crash

failures.
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3.5.3  Data Store

In our implementation, we did not use a data store, as NATS provided built-in
persistence. As stated previously, the data store is optional if the the pub/sub system
provides persistence. However, if we were to implement a data store, we would have
used the open-source time-series data store, InfluxDB, due to the time-series nature
of video frame analysis data generated by the vision application. InfluXDB is a
NoSQL datastore, where different time-series data streams are organized as buckets,
queried via InfluxQL - a SQL-like query language. InfluxDB persists data on the
Edge server storage medium for crash recovery. On loss of connectivity to the Cloud,
the PublishToCloud API could retransmit the missing data fetched from InfluxDB.

Figure 3.5 shows the diagram of the implementation without the data store.

Vison Edge IoT Gateway

Publish and
Subscribe API MultiCloud API

Camera
A
\/

———

\

Vision
Algorithm

Edge

Figure 3.5: VEI implementation without a data store. The pub/sub system imple-
mented has persistence included, therefore data store was not necessary

3.5.4  MultiCloud Mux

As previously stated, our goal is that the Edge gateway can work with multiple
CSPs. With the plethora of CSPs, they all have their proprietary SDK to push and
pull data from the Cloud. Rather than manually calling API calls from the CSP SDKs

directly, the mux compiles all of the necessary SDKs and function calls within the
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mux API. In our implementation, we utilize Amazon Web Services (AWS) and Google
Cloud Platform (GCP). The multicloud mux publishing APT allows specification of
the CSP, the topic - which is wherein the Cloud the data should go to, and the actual

data.
3.5.5  Docker Containers

All VEI components including NATS, data store, and the computer vision applica-
tions are run as Docker containers on the Edge. Containers are lightweight OS-level
virtual machines. Docker uses containers to build self-contained containers with all
dependencies included [27]. For reduced latency along the VEI pipeline, the appli-
cations need to be containerized such that the resource footprint is minimized. The
containers could be managed using a container orchestration platform such as Ku-
bernetes. Containerization facilitates a microservice architecture [28] and enables
DevOps [29] practices of continuous integration, and continuous deployment. This

allows quick roll of out of new features and bug fixes in VEI.



CHAPTER 4: EVALUATIONS AND RESULTS

In this chapter, we experimentally evaluate the functionality and performance of
VEI on an Edge server using YOLO V3, a well-known deep learning-based object
detection computer vision algorithm. The Edge server used in our evaluations is a
Lenovo Ideapad laptop with the Intel i7 dual-core processor and 16 GB of memory.
The operating system is Linux (Ubuntu 18.04, kernel version 4.15). The Cloud Service
Providers used are Amazon AWS, and Google GCP. The laptop camera is used to
capture live images.

Note that while the above described Edge server is sufficient for our purposes for
evaluating VIE, a realistic setup would have the computationally expensive YOLO

running on a GPU equipped Edge server.
4.1  VEI Latency

We first establish a latency baseline in running YOLO at the Edge and with the
results transmitted to the Cloud (AWS IoT Core Python SDK). No Edge gateway
is employed, so only a single vision algorithm can be run at the Edge. Figure 4.1
shows the block diagram of the experimental setup. To measure end-to-end latency,
1000 samples are measured starting from the images captured by the camera (1 frame
every 4 seconds), processed by YOLO, and then transmitted by the AWS IoT client to
finally arrive at AWS IoT Core. Figure 4.2 shows the latency Cumulative Distribution
Function (CDF) from 1000 image frames. The 95th percentile latency is observed to
be 1.61 seconds. The individual components of the latency are analyzed as shown
in the pie chart of Figure 4.3. The largest latency component of 97.1% is due to

YOLO, with the remaining 2.9% latency due to that of the network from the Edge to
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the Cloud. As noted above, running YOLO on GPUs rather than the Intel i7 CPUs

would greatly reduce the YOLO processing time.

= YOLO _ | YOLO Results -~ AWS loT Publish
O - (JSON) ™ PythonsDK [ ™

Camera

Figure 4.1: Setup for testing Edge processing

Edge Processing Latency
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0.6 A

CDF

0.4
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0.0
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Latency (s)

Figure 4.2: Latency CDF for Edge processing
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B Network
mam YOLO

Figure 4.3: Component breakdown for Edge processing

We next characterize the latency of VEI with the experimental setup shown in
Figure 4.4. Image frames from the camera are published to VEI, consumed by YOLO,
and then published to the Cloud. Latencies are measured for operations that involve
only VEI (excludes YOLO processing). Figure 4.5 plots the latency CDF for VEI. The
95th percentile latency is observed to be 6.29 milliseconds or 0.00629 seconds. VEI
thus adds 0.39% additional latency. We also measure the increase in CPU and memory
utilization with VEI. Compared to the baseline setup, VEI increases CPU utilization
by 1.6% and memory utilization by 1.1%. Note that an end-to-end measurement
is completed in the baseline setup of Figure 4.1 would be misleading for our setup
since the increased CPU and memory utilization by VEI impacts the performance of

YOLO running on the CPU.
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4.2 Application Scaling with VEI

The key advantage of an Edge gateway is the ability to support multiple computer
vision processing applications that can subscribe to a single image stream. To evalu-
ate VEI's capability to support multiple vision processing applications, we scale the
number of independent YOLO instances that consume the image stream as shown
in the setup of Figure 4.6. Due to resource limitations on our Edge server, and our
interest in VEI latency and resource usage, we emulate the object detection algorithm
through a lookup table of detected objects. Figure 4.7 shows the average VEI latency
that would contribute to the end-to-end latency as the number of object detection
instances increases. An increase of 45.36% in average latency is observed as the num-
ber of object detection instances is scaled from 1 to 4. Figure 4.8 plots the scaling
in memory and CPU utilization (as a relative percentage). The CPU utilization in-
creases by 3.7% and memory utilization increases by 4.45% as the number of object

detection instances are scaled from 1 to 4.
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Figure 4.6: Setup for testing multiple vision applications with VEI
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Resource Usages with Multiple Vision Applications
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Figure 4.8: Resource breakdown for multiple vision applications

4.3  Dynamic MultiCloud Support

VEI is designed for dynamically switching between Cloud Service Providers for
reasons mentioned in Chapter 3. The metric we seek to evaluate is the excess latencies
incurred in switching from one cloud service provider to another. Our experimental
setup is shown in Figure 4.9. Object detections are sent to one Cloud Service Provider
(AWS) and then switched to another (GCP). A total of 10 images are sent through
where the first 4 are sent to AWS, and the remaining are switched to send to GCP.
Figure 4.10 shows the extra latency incurred in switching from AWS to GCP. The
switch from AWS to GCP results in an excess latency of 45.5 % while the steady-state
results show a decreased delay of 50 %. Whether such delays are tolerable depends on
the particular use case depending on real-time requirements. For example, counting
pedestrians crossing an intersection versus determining that a pedestrian is in danger

from an imminent vehicular crash.
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Figure 4.9: Setup for testing multiple CSPs with VEI
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Figure 4.10: End-to-end latency measurements with AWS and GCP. Images 1 - 4 are
sent to AWS. Images 5 - 10 are sent to GCP. We note an initial 45% spike in latency,
before settling down to its steady state value.



CHAPTER 5: CONCLUSION AND FUTURE WORK

In this chapter we summarize our work, and comment on future extensions.

In this thesis we have identified the need for performing vision processing at the
Edge for IoT applications involving computer vision. We note that existing solutions
from Cloud vendors such as Amazon and Google are geared towards low data rate
sensor applications, and are unable to address the "big data" challenge presented by
video streams. We propose VEI, an Edge gateway for vision applications, that is
not only able to handle video frames, but also support multiple vision applications,
and provide dynamic access to multiple Cloud service backends. We experimentally
evaluate the latency and resource usage of VEI across different use-case scenarios.
Experimental results indicate that VEI is a viable solution for IoT vision Edge pro-
cessing.

Several future extensions of our work are possible. The experimental setup can be
made more realistic through a GPU powered Edge platform, freeing up CPU resources
for exclusive use by VEI. Benchmarking of VEI could be done with more diverse
vision algorithms with different processing requirements. We could also incorporate
data store, and Edge analytics in our experimental evaluation of VEI. Cloud service
providers could be extended to include Microsoft Azure IoT. The ability of VEI to

handle multiple camera streams could also be investigated.
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APPENDIX A: List of API Scripts

A.1 Publish API

func (s *server) Publish(stream VEI.VEI PublishServer) error

{
autoReply := &VEIL. AutoResponse{}

//start new connection with nats
var nc, err = nats.Connect(nats.DefaultURL)
if err != nil {
panic(err)
}
defer nc. Close ()

//Streaming loop
for {
//start receiving streaming messages from client
req, err := stream.Recv ()
//check if the stream has finished
if err =— io.EOF {
//close mnats and stream connection and send autoReply
nc. Close ()
return stream.SendAndClose (autoReply)
}
//Grab individual data from req
publishSubj := req.GetSubj()

publishData := req.GetData()



//Let client know that data was successfully published
autoReply . AutoResp = fmt. Sprintf(

"Successfully _published _data_to_%s",
publishSubj)

//Publish data using nats
nc. Publish (publishSubj, publishData)
nc. Flush ()

A.2  Subscribe API

func (s xserver) Subscribe

(in *VEIL. SubscribeParams ,

stream VEI.VEI SubscribeServer) error ({
subscribeSubj := in.GetSubj()

var nc, _ = nats.Connect(nats.DefaultURL)

//Using NATs

wg = sync.WaitGroup{}

wg.Add (1)
msgNum := 0 //message number
if | err := nc.Subscribe(subscribeSubj, func(m xnats.Msg)

31



msgNum-+
responding data := VEI.ImageData{Data: m.Data}
if err := stream.Send(&responding data); err != nil {
log.Printf("send_error _%v", err)
}
}); err != nil {
log.Fatal(err)

}

//Wait for messages to arrive
wg . Wait ()

//close the connection

nc. Close ()

return nil

}

A.3  MultiCloud Mux — Configure and Send to AWS

def configAWS(clientID ):
H#AWS MQTT PARAMS
cli = AWSIoTMQTTClient ( clientID)
cli.configureEndpoint (iotCoreEndpoint, port)
cli.configureCredentials (rootCAPath

privateKeyPath , certPath)

cli.configureAutoReconnectBackoffTime (1, 32, 20)
cli.configureOfflinePublishQueueing(—1)
cli.configureDrainingFrequency (50)
cli.configureConnectDisconnectTimeout (360)

cli.configureMQTTOperationTimeout (360)
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cli.connect ()

clients|clientID| = cli

#AWS PUBLISHING FUNCTION

def AWS Pub(clientID , pubTopic, msg):

clients.get(clientID ).publish (pubTopic,msg, 0)

A4 MultiCloud Mux — Configure and Send to GCP

def GCP_Pub(payload):

token = {

n lat n

datetime.datetime .now(tz = datetime.timezone.utc),

datetime.datetime .now(tz = datetime.timezone.utc) +

datetime.timedelta (minutes=20),

projectID |

with open(private key file, "r") as f:

private key = f.read()

jwtToken

clientID

jwt .encode (token , private key, algorithm="RS256")

"projects/{}/locations /{}/

uuuuuuuuuuuuu registries /{}/devices/{}".format (

projectID , region, registryID , devicelD



gecpMQTTCli

gecpMQTTCli.

username

)

gecpMQTTCli.

gecpMQTTCli
gecpMQTTCli

gecpMQTTCli.
gecpMQTTCli.
gecpMQTTCli.

topic

gecpMQTTCli.

.on_connect

.on_publish
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mqtt. Client (client id= clientID)

username pw _ set (

"unused" , password = jwtToken

tls set(ca_certs ca_cert path,

tls version

ss1 .PROTOCOL_TLSvl 2)

on_connect

on_publish

on_disconnect on_disconnect
on_message = OoNn_message

connect ("mqtt. googleapis.com" , 443)

"/devices /{}/events".format(devicelD)

publish (topic, payload=(str)(payload), qos=1)



