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ABSTRACT

SHYAMAL PATEL. Data-driven control and optimal management of electric
distribution grid with high penetration of distributed energy resources (DERs) based
on spectral clustering. (Under the direction of DR. SUKUMAR KAMALASADAN)

Motivated by the government’s clean energy targets, the penetration of Distributed

Energy Resources (DER) is increasing. These DERs interconnections bring the added

generation and storage capacity at the distribution level. Also, with the increasing

implementation of smart inverters and Advanced Distribution Management Systems

(ADMS), the flexibility of the DERs can be leveraged to solve the distribution grid

issues like abnormal voltages, intermittencies, and thermal overloads. The proposed

work focuses on the development of a robust distributed control architecture to control

and optimally manage the load and PV variations using energy storage by creating the

virtual clusters of the distribution grid. The approach is based on a spectral clustering

distributed control methdology that partition the grid into manageable clusters. The

cluster of the distribution grid represents a good balance of local load and DER

generation. An approach for reactive power to voltage sensitivity is also proposed for

voltage regulation purposes at the cluster level based on the grid measurements. The

cluster configurations adapt to accommodate the varying grid topology or changing

load and DER generation. For the distribution grids receiving the set-points at the

substation level for management of transmission power flow, an Alternating Direction

Methods of Multipliers (ADMM) based optimization is proposed to share the area set-

points among the clusters based on the state of charge of each cluster. The controllable

assets of each cluster (BESS) are managed through model predictive control. The

improvement in the grid resiliency is demonstrated through the implementation of

the complete framework to support the loads on the healthy part of the grid without

interruptions during the contingency/outage scenarios on the distribution grid.
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PREFACE

If you decide to have an introduction page, your introduction text would go here.

Depending on the discipline or the requirements of the student’s advisory commit-

tee, an Introduction may be included as a preliminary page.



CHAPTER 1: INTRODUCTION

There is an increasing trend in power outages and the impact of the power outages

in the U.S. (Figure. 1.1). For example, it has been reported that more than 10 million

customers were affected due to power outages between 2003 and 2012 [1]. According to

Fig. 1.2, the majority of outages are weather-related. Between 2003 to 2012, weather-

related events were responsible for 80% of the major outages in the U.S. [2] [1]. On the

other hand, no significant increase in the frequency of hurricanes is observed during

the specified period indicating that, with the aging grid infrastructure, increasing size

and complexity of the power grid, the resiliency of the same is being compromised

(Figure. 1.3).

In addition to the conventional causes of a power outage, cyber-threats and cyber-

attacks are emerging challenges that compromise the power grid’s reliability. Digiti-

zation of the power grid makes the power grid more vulnerable to cyber threats. For

instance, including a more significant number of digital and smart devices in the grid

has introduced a higher number of Internet Protocol (IP) based access points. These

access points, if not adequately secured, act as a gateway for the cyber-attacks [3] [4].

At the same time, increasing adaptation of distributed energy resources (DERs)

such as solar photovoltaics and batteries have introduced new technology options for

energy resilience (Fig. 1.4). Renewable energy portfolios back growth in renewable

energy and goals set by more than half of US states (Fig. 1.6). In addition to the

same, many US utilities are targeting 100% clean energy generation. On the other

hand, there is no significant increase in the overall energy consumption of US Fig.

1.5. With the current trends, the distribution grids would soon become self-sufficient

to host the critical load demand during a power outage. In addition to the same,
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Figure 1.1: Number of major outages (1992-2011)

compared to conventional power backup options, DERs (primarily PV and BESS)

have a lower carbon footprint.

The organization of the chapter is as follows. Section II presents the major problems

faced by critical loads. Section III presents the conventional load support approaches.

Section IV discusses the clean-energy alternatives for providing power backup. Section

V illustrates the effects of increasing DER interconnections on the power quality of

the distribution grid. Section VI presents the additional planning challenges for DER

interconnections on the distribution grid. Section VII discusses the possibilities for

critical load management using DERs. Section VII summarizes the conclusion and
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Figure 1.2: Common causes of major power outages (1992-2012)

Figure 1.3: Hurricane faced by US (1999-2018)
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Figure 1.4: Forecasted growth of DERs

Figure 1.5: Power consumption by consumer category

future work.

1.1 Background and Motivation

Currently, the power grids face challenges in terms of resiliency and power quality.

The increasing penetration of the renewable energy resources tied with the storage

capacities provides the flexibility of controlling the generated energy and the resulting

net load. Also, increasing penetration of Electric Vehicles with bi-directional charging

capabilities and distributed generation may provide an opportunity to address the

resiliency issues of the power grid locally. This section provides a detailed description

of the challenges in terms of grid resiliency and power quality.
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Table 1.1: US utility clean energy targets

Utility Target deadline States served
Avista 2045 WA, ID, OR
Duke Energy 2050 OH, KY, TN,

NC, SC
Green Mountain Power 2025 VT
Idaho Power 2045 ID, OR
Public Service Co.
of New Mexico 2040 NM
Xcel Energy 2050 MN, MI, WI,

ND, SD, CO,
TX, NM

Figure 1.6: Renewable energy portfolios and goals for US states

1.1.1 Resiliency related challenges

Interruptions in power systems are the primary factors affecting the distribution

grid resiliency. The interruptions can be broadly classified into Momentary Interrup-

tions and Sustained Interruptions based on the duration.

1.1.1.1 Momentary Interruptions

According to IEEE Std 1159 (2019) [5], a momentary interruption occurs when the

supply voltage decreases to less than 0.1 pu for less than 1 min. The primary causes

of interruptions in the distribution grid are power system faults, equipment failures,
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transient faults, and control malfunctions. Reclosures detect and clear these faults by

series of close-open operations [6]. Sensitive equipment are vulnerable to momentary

faults. Induction machines can experience negative torque and transients during mo-

mentary interruptions [7]. Electronic loads are sensitive to voltage re-strikes. Voltage

spikes during the restoration by reclosure can damage digital devices. Momentary

interruptions of longer duration are more severe since reclosure is struggling to clear

out the fault. After predefined number of reclosing operations, the reclosure opens

up, and interruption becomes sustained bu nature. [8].

1.1.1.2 Sustained interruptions

According to IEEE Std 1159 (2019) [5], a momentary interruption occurs when

the supply voltage decreases to less than 0.1 pu for less than 1 min. The primary

causes of interruptions in the distribution grid are power system faults, equipment

failures, transient faults, and control malfunctions. Reclosures detect and clear these

faults by a series of close-open operations [6]. Sensitive equipments are vulnerable

to momentary faults. Induction machines can experience negative torque and tran-

sients during momentary interruptions [7]. Electronic loads are sensitive to voltage

re-strikes. Voltage spikes during the restoration by reclosure can damage digital de-

vices. Momentary interruptions of longer duration are more severe since reclosure is

struggling to clear out the fault. After a predefined number of reclosing operations,

the reclosure opens up, and interruption becomes sustained by nature. [8].

Hospitals are considered to be the most critical loads. According to [9], in 2012, dur-

ing the mid-Atlantic storms, around 30% of dialysis centers were impacted by power

outages. REf. [10] analyzes the economic impact of power outages in the US. The

overall economic impact is distributed among electricity consumers’ residential, com-

mercial, and industrial classes. Commercial loads account for the maximum economic

impact of 72% because of power outages. Industrial loads account for 26% of the total

economic impact, whereas residential loads account for less than 2% of the total. The
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analysis, however, does not quantify the psychological and physiological impact of

power outages. The study also claims that the frequency of interruptions affects the

economic loss more than the duration of the interruption. The short-term/momentary

interruptions account for 67%, whereas sustained interruptions contributed 33% to-

wards the total economic loss.

1.1.2 Power Quality

Poor power quality is an indication of a potential power outage. Also, if the quality

issues are not rectified locally before having a critical load connected to the distribu-

tion grid, it may affect the performance or even damage the sensitive loads. Power

quality issues on the distribution grid can be classified into the following.

1.1.2.1 Momentary voltage issues

Industrial loads are more sensitive to abnormal voltage-related problems. Failures

due to such disturbances may create a high impact on production costs. Depending

on the period and magnitude of voltage fluctuations, they can primarily be classified

as follows.

• Sag: A voltage sag can be defined as a decrease in RMS voltage (between 0.1

to 0.9 pu) or current at the power frequency for durations from 0.5 cycles to

1 minute [5]. The voltage sags are generally caused by switching heavy load,

an inrush while starting large motors, or a fault on the adjacent feeder until

it is cleared, resulting in a voltage drop at the substation bus. The impact of

voltage sag depends on the duration of the sag and sensitivity of the critical

load on voltage sag [11]. The sensitive equipment includes adjustable speed

drive controls, PLCs, motor starters, and control relays. Voltage sag is the

most severe power quality problem faced by industrial customers. Voltage sag

is a common reason for malfunctioning in production plants. [12]

• Swell: A voltage sag can be defined as an increase in RMS voltage (between 1.1
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to 1.2 pu) or current at the power frequency for durations from 0.5 cycles to 1

minute [5]. The voltage swells are generally caused by switching off a heavy load,

switching on the capacitor banks, or single phase-ground faults. Voltage swell

is less severe than voltage sag because they are less common in the distribution

system. The voltage swell may result in control delay, tripping, overheating and

many times complete damage to electrical/electronic equipment [13].

• Flicker Flicker is a random or continuous voltage variation of voltage within

the acceptable range of 0.95 to 1.05 pu [5]. As the name indicates, the human

eye can perceive these voltage variations in the form of variations in lamp il-

lumination intensity. Any load with significant periodic variations in reactive

power consumption can cause voltage fluctuations. Flicker is also experienced

because of high variation in DER output. IEEE Std 1453-2015 [14] discusses

the standard practice for analyzing the flicker on power systems. Flicker maybe

a concerning issue for critical loads using incandescent bulbs. However, with

the increasing use of led/energy-efficient lighting systems, the issues concerning

flicker may decrease in the future. [15].

1.1.2.2 Sustained voltage issues

Regulators or tap-changing transformers and capacitors primarily provide voltage

regulation at the distribution level. As per the ANSI standard, the voltage throughout

the distribution grid should remain within the range of 0.95 to 1.05 pu [16]. If

voltage regulating infrastructure is inadequate or malfunctioning, the violation of

voltage operating limits may occur. Depending on the voltage magnitude, the voltage

violation is categorized as follows-

• Overvoltage: An overvoltage is an RMS increase in ac voltage greater than 1.05

pu for a duration longer than 1 min. Overvoltage conditions are normally caused

by poor distribution grid voltage regulation or mal-functioning voltage regula-
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tors. Sustained overvoltage situations affect the insulation of the connected

equipment. Also, the current drawn into the equipment increases resulting in

additional heating of the equipment/devices. [13].

• Undervoltage: An undervoltage is an RMS decrease in ac voltage lesser than

0.95 pu for a duration longer than 1 min. Undervoltage conditions can occur in

a distribution grid with high demand. This increases the current from the feeder

head and the grid losses. Loads at the feeder end are more susceptible to the

under-voltage scenarios because of higher voltage drop. [13]. Since the torque

in the induction motor depends on the stator voltage, the loads running on the

induction motor (eq. HVAC) are affected by undervoltage scenario. Prolonged

undervoltage may also lead to overheating of the motor because of higher than

rated current intake.

1.1.2.3 Frequency issues

Power frequency variations are the power system’s fundamental frequency deviation

from its specified nominal value (60 Hz). The steady-state power system frequency is

directly related to the rotational/synchronous speed of the generators on the system.

Frequency is an indicator of the power grid’s balance of generation and demand. The

magnitude of the frequency shift and its duration depends on the load characteristics

and the response of the generation system to load changes. Small, instantaneous fre-

quency changes occur almost continuously due to load switching, etc. These changes

are limited to the local distribution zone of the grid. High variations on the power

grid frequency are caused by sudden switching of significant generation sources be-

cause of fault, outage/disconnection of major load center from the power grid, and

fault on a weak system. Islanded distribution systems that are relatively weak can

have higher frequency variations due to low inertia. Motor loads are more sensitive

to frequency variations. High-frequency variations would make the motor run faster
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or slower. Hence all the applications depending on the motor rotational speed are

impacted [17].

1.2 Research Objective

Figure 1.7: Thesis Objective

As discussed in the previous sections, increasing penetration of the distributed

energy resources and storage (static or EVs) provides flexibility over the feeder net-

load. This flexibility over the net load can facilitate the applications like net-load

smoothing, management of thermal loading, market participation, etc through active

network management. In addition, the advanced inverters with 4 quadrant operations

can also provide reactive power support.

The objective of the current research work is to create clusters of load and dis-

tributed generation as shown in figure 1.8. Each cluster would represent a local
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balance of load and PV generation. The clusters configurations are expected to vary

dynamically depending on the load and PV generation. The research work also pro-

poses a distributed cluster control of active and reactive power approach for net-load

support applications. The final objective of the proposed approach is to demonstrate

the potential of resilient operation and support of critical loads during the grid outage.

1.3 Research Challenges

The following research challenges are addressed in the current research:

• Simulation environment: To demonstrate the distribution grid management ap-

plications, 12 hours of time-series simulation is required which would capture

variations in PV and load. The capability to transition from one topology

to other is also helpful to demonstrate the universal adaptability of the man-

agement application. The commercially available simulation platforms capable

of 24-hour simulation have the license limitation for parallel execution. Also,

the flexibility of interacting with simulators during the simulation could be a

challenge.

• Clustering Approach: The clustering of a graph is an NP-hard problem. Various

graph-based clustering approaches aim to provide the approximate solution for

graph partitioning.

• Distributed Control: The concept of distributed control is popular among the

transmission grid management for the voltage and frequency control based on

the generator coherency. Multiple approaches have been adopted to calcu-

late the solution of power-flow problems through distributed optimization tech-

niques. However, no significant work has been done on managing distribution

grids through distributed controls.
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1.4 Research Approach

Following approaches were adopted to address the research challenges mentioned

above:

• Co-simulation Environment Development: The distribution grid with DERs is

modelled in OpenDSS. The OpenDSS platform, being an open-source platform,

does not limit the number of parallel executions. Also, extensive Common

Object Model (COM) based APIs are available for automation and external

control of the simulation platform. Hence, the python APIs are leveraged to

develop two parallel co-simulating instances of OpenDSS.

1. Grid Simulator Instance: This process simulates the distribution grid at 1s

time interval. The irradiance and load profiles are separated for different zones

on the distribution grid to emulate the difference in PV generation and load

consumption pattern. At every 5 second time interval, the measurements from

each device are captured in the JSON format and sent to the controller through

a TCP channel.

2. Controller Instance: The controller instance is an independent process co-

simulating with the simulator. The measurements received from the simulator

are used to run an OpenDSS based power-flow at every 3 minute time interval.

The control modules are designed to operate at a resolution between 5 seconds

and 1 minute. The controller module calculates the set-points for each DER

and sends them to the simulator through the TCP channel.

• Clustering Approach: An improved two-layer spectral clustering approach is

developed to accurately identify the naturally occurring islands with a balance

of DER generation and the load on the distribution grid. Chapter 3 discusses

the approach in detail.

• Distributed Control: The research proposes a distributed control approach to
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calculate the active and reactive power set-points for the power balance and

voltage management purposes at very clusters. The efficiency of the approach

is demonstrated for multiple applications: Net-load smoothing, Net-load mini-

mization, and External Set-point tracking.

1.5 Thesis Flowchart

Figure 1.8: Thesis flowchart

• Chapter 2 reviews the clustering methodologies and distributed optimization

approach and their application on the power grid.

• Chapter 3 discuss the development of a two-layer spectral clustering approach

for active power flow-based clusters for active power management and reactive

power sensitivity-based clusters for the voltage management on the distribution

grid.

• Chapter 4 proposes the least square-based optimization techniques for control-

ling active power and reactive power at each cluster for the smoothing applica-
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tion. Chapter 5 proposes the ADMM based cluster SOC-based power-sharing

approach for each cluster to meet the substation’s overall goal/set points. The

approach is demonstrated for the feeder net-load minimization and feeder head

set-point tracking applications.

• Chapter 6 proposes model predictive control of cluster DERs. An ADMM based

transfer function generation approach is also proposed for accurately estimating

the model and state of the clusters based on the measurements.

• Chapter 7 proposes an approach for critical load management and demonstrates

the cluster control architecture for increasing the distribution grid resiliency.



CHAPTER 2: Literature review on clustering, distributed optimization and control

2.1 Introduction

As discussed in Chapter 1, the objective of the current research is to cluster the

distribution grid based on the load and PV generation and coordinate the control

among the clusters to meet the required goals (local and global). Hence, the current

chapter extensively reviews the clustering and distributed optimization techniques

currently used for power system applications.

2.2 Review: Clustering

2.2.1 Kernel based Clustering

• Method: Kernel based clustering is performed through non-linear mapping of

data in the feature space. The relation among the data points is established

through one of the kernel approaches- Polynomial kernals, Guassian Kernals,

Sigmoid Kernel, etc. Once the data-points are projected in the feature space,

the clustering is performed using the linear clustering approaches such as K-

means, SOM (Self organizing maps), SVDD (Support Vector Domain Descrip-

tion), Fuzzy C-Means, etc. The kernel based clustering approaches are efficient

in separating the cluster overlaps. Also, the prior knowledge of data topology

is not required. However, the relations between the data-points is highly sensi-

tivity to the kernel values. The issue of sensitivity to Gaussian kernel values is

addressed in the current research work.

• Method: Power-system Application: Intentional Islanding [18], Multi-Machine

Equivalence [19], Bad data detection [20]
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2.2.2 Swarm Intelligence based Clustering

• Method: Swarm intelligence approaches are inspired from the biological be-

haviours of the swarm. The swarm techniques are developed to solve the opti-

mization problems. The swarm based algorithms are initialized by generating

the set of random solutions within the search space. Based on the fitness of

the solutions, the velocity and the direction of the swarm particles are then

updated till the optimum solutions are determined. The approach leverages

the conventional clustering approaches like k-means to determine the fitness of

each agent vector. The clustering approach typically has high time complex-

ity because of higher number of iterations. Particle swarm optimization, Ant

Colony Optimization and Shuffled from leaping algorithms are adopted for the

clustering purposes.

• Method: Power-system Application: Security assessment in power systems so1,

Coherency detection [21]

2.2.3 Density Based Clustering

• Method: Here the clusters are formed based on the density of the data points.

The area with relatively higher density of the data points forms a cluster. DB-

SCAN is the widely adopted approach for the density based clustering. OPTICS

overcomes the shortfalls of the DBSCAN approach: Sensitivity to radius and

minimum data-points in the neighbourhood area [22]. The density based clus-

tering approach are memory intensive for larger data-sets.

• Power-system Application: Electricity theft detection [23], Generator Coherency

detection [24]
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2.2.4 Spatial Clustering

• Method: The spatial clustering approaches are one of the widely adopted ap-

proaches for grouping of the data based on the feature similarities. The ap-

proaches can also be used along with the other clustering approaches to achieve

the clustering objective. For example, k-means is used in graph partitioning

as well as kernel based clustering. Few of the most used spatial clustering

approaches are K-means, K-medoids, DBSCAN, CLARANS, Wavecluster, etc

• Power-system Application: Fault location identification [25], Bad data detection

[26], Forecasting [27] [28], reactive power management [29]

2.2.5 Hierarchical Clustering

• Method: Hierarchical clustering techniques are among the widely used tech-

niques for clustering. The clustering approaches are divided into two categories:

Agglomerative and Divisive. IN Agglomerative clustering, each data point is

initialized as an individual cluster and merged with the most similar data-point.

The process is repeated till all data points are grouped into one cluster. The

process flow of clustering is reverse in Divisive approach. Dendogram is gen-

erally used to represent the cluster hierarchy. Commonly used agglomerative

clustering approaches are BIRCH (Balanced Iterative Recursive and Cluster-

ing using Hierarchies), CURE (Clustering Using Representatives) and ROCK

(Robust Clustering Using Links).

• Power system application: Grouping of generators [30], Distance based power-

grid partitioning [31], optimal PMU placement [32], power quality analysis [33]

2.2.6 Graph Theory Based Clustering

• Method: The graph based clustering approaches identifies the boundaries of the

clusters characterized by the lowest similarity. If the data-set is not represented
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as a graph, similarity indexes (ex. Guassian similarity index) is used to assign

the branch weights and connect the data points. Spectral clustering approach

is one of the widely used approach for the graph clustering. Current research

work discusses in detail of the application of spectral clustering for partitioning

the distribution grid based on active power flow and reactive power sensitivity.

Few of the other graph clustering approaches are Markov Clustering, Nearest

Neighbour clustering, Minimum spanning tree, and CLICK [34].

• Power system application: Power grid partitioning [35] [36], islanding applica-

tion [37], powergrid restoration [38]

2.3 Review: Distributed optimization

2.3.1 Analytical Target Cascading

• Method: This approach was originally developed to translate the system level

design objectives to the design specifications of the components. It follows

a hierarchical structure to achieve the overall target. [39] proposes the non-

hierarchical structure for solving the problem. The optimization problem is

split into multiple sub-problems. The variables are shared among the parent

and children sub-problems. The coupling among the sub-problems is modelled

as a penalty function. Here, a central coordinator is required to manage the

distributed computations.

• Power system application: Unit Commitment [40], Optimal Power Flow [41]

• Pros: Guaranteed convergence for the convex problems

2.3.2 Auxiliary Problem Principle

• Method: The approach decomposes the problem into sub-problems. The sub-

problems are connected to the adjacent sub-problems through shared variables.

This sub-problems are solved sequentially or in parallel [42]. An augmented
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Lagrangian ensures the consistency among the sub-problems from the adjacent

regions.

• Power system application: Optimal powerflow [43] [44]

• Pros: Guaranteed convergence for the convex problems

2.3.3 Optimality Condition Decomposition

• Method:Every sub-objective functions are assigned a primal and dual variable.

Every agent performs optimization only on it’s assigned variables. The remain-

ing variables are fixed while an agent is solving for it’s objective function. Upon

solving, the agent shares it’s updated variables with the neighbouring agents.

The approach is decentralized and does not require a central coordinator. The

method is further modified to Heterogeneous Decomposition Algorithm where

the agents are regarded as the difference computational units sharing the bound-

ary information.

• Power system application: Distributed MPC for storage and generation dis-

patch [45] [46], voltage management [47], Dynamic Economic dispatch [48], Eco-

nomic dispatch of coupled TD system (Heterogeneous Decomposition (HGD)

algorithm) [49]

• Pros: Low computational time, applicable to real time systems and control,

parallel computation capability.

2.3.4 Dual decomposition

• Method: Dual decomposition approach dates back to 1960s [50]. The method

is based on Dual Ascent algorithm and is a precursor to the ADMM. If the ob-

jective is separable into sub-objectives, the sub-objectives are solved in parallel

at the beginning of each iteration. Then the residue for each sub-objectives is
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gathered for the computation of the dual variable. The dual variable is then

broadcasted to each sub-objectives for the next iteration. Here, a central co-

ordinator is required for the calculation of dual variable at the end of each

iteration.

• Power system application: Large-Scale Power Balancing [51], OPF [52], MPC

based building energy management [53], vehicle energy management [54], Elec-

tric vehicles charging [55]

• Pros: Classical and widely adopted approach.

• Cons: Does not guarantee the convergence.

2.3.5 Consensus+Innovation

• Method: The Consensus+Innovation approach performs distributed optimiza-

tion based on KKT conditions. Here an agent exchanges the information with

the neighbouring agents. Hence a central coordinator is not required and com-

putation is completely distributed in nature. An agent may represent a single

node or a cluster of nodes for the scalability of the approach. The convergence

of the approach is further improved by establishing the communication between

the non-connected areas [56].

• Power system application: Micro-grid Coordination [57], DC-OPF [58] [56],

State Estimation and Energy Management [59]

• Pros: Good convergence, Less computations required per entity, Facilitates

parallel computations.

2.3.6 Alternating direction method of multiplier

• Method: The ADMM approach solves the optimization problem by decompos-

ing it into smaller sub-problems. At each iteration , the local objectives of the
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sub-problems are solved in parallel and the updated local variables are shared

to solve for the global variable. The ADMM approach has combined advantage

of dual decomposition and augmented Lagrangian methods for constrained op-

timization. Since the approach needs a central coordinator, the ADMM is not

fully decentralized. The approach is further modified through proximal mes-

sage passing to achieve full decentralization. Current research work adopts the

ADMM based distributed optimization for consensus and sharing applications.

• Power system application: Distributed OPF [60] [61], Coordination and Control

of PV and storage [62], Micro-grid energy management [63].

• Pros: Simple implementation, Robust, Flexibility in adoption for different prob-

lem types.



CHAPTER 3: New Method for Grouping Distributed Energy Resources to support

Power Distribution System

3.1 Introduction-Spectral Clustering

In the modern grid, distributed generators (DGs) are playing a vital role in fulfilling

the increasing demand [64]. An increasing number of controllable devices and flexible

generation assets on the distribution grid would increase the scale and thereby the

complexity of distribution grid level control and optimization [65]. Also, the load

distribution, as well as the variation, is not uniform in the distribution grids. Hence,

the centralized control for all the flexible assets may not be efficient and optimal and

often a distributed control approach is adopted by creating the virtual clusters of the

distribution grid and assigning the zones of control to the groups of DERs. Power

grids partitioning has a wide spectrum of applications. In planning and analysis of

the power grids, the partitioning is used in network reduction and parallel processing

of the grid partitions. Ref. [66–68] discusses the network partitioning based on the

generator coherency to improve the reliability of the network and [69] and [70] pro-

poses the use of network clustering to restart the power grid zones in from a blackout

scenario.

In the distribution grids, the clustering methods have been primarily applied to

identify the micro-grids during grid contingencies for an islanded operation [71] [72].Since

a power network can be modeled as a graph, various graph-based methods can be

applied for the partitioning. Hierarchical and spectral based clustering approaches

are the commonly used approaches of power grid clustering [73]. Even though the

approach is very effective, the results of the spectral clustering are an approximate

solution and may not ensure the minimum k-way partition of a graph. In addition
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to that, the spectral clustering clusters’ results are often found to be discontinuous.

The issues of discontinuity and non-optimum cut are not addressed in the literature.

Ref. [66] proposes the pre-processing and post-processing approaches to improve the

cluster quality and remove the discontinuities. However, considering the iterative

nature of these approaches, the application in real-time applications of a larger dis-

tribution network may not be feasible.

3.1.1 Algorithm

Spectral clustering is a graph-based partitioning algorithm treating the data points

as graph nodes and partitions the graph based on the weight of the connections among

the graph nodes [74] [75] [76]. In this approach, the distribution grid can be modeled

as an undirected graph G = (V,E). The vertex (V ) of the graph represents the

network buses and the edges (E) represent the connections among the vertices. The

weight (w) of an edge is any physical parameter on which the clustering has to be

performed. It represents the "strength" of the connection between the vertices. In

this chapter, we represent weights as an active power flow through power distribution

lines. For an edge with Np phases, the equivalent weight is

wij =

Np∑
n=1

Pij(n) (3.1)

Further, for a graph with N vertices, the adjacency matrix (A) can be formulated

as an NXN matrix such that, A(i, j) = 0, if vertex i and j are not connected and

A(i, j) = wij, if vertex i and j are connected. The degree of a vertex is defined as

the sum of weights of all edges connecting with the vertex. The "degree matrix" D is

defined as a diagonal matrix representing the degree of all the vertices d1, d2, d3, ..dN

in a graph with N vertices. For m edges connected through a common vertex i, the
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degree of a vertex i is represented as

di =
N∑
j=1

wij (3.2)

Based on the A and D matrices, the Laplacian matrix L is defined and normalized

as follows [77].

L = D − A Ln = D−
1
2LD−

1
2 (3.3)

The Laplacian matrix, both normalized and un-normalized, is symmetric and positive

semi-definite. The eigenvalues of Ln are 0=λ1 ≤ λ2 ≤ λ3 ≤ ... ≤ λN ≤ 2. For un-

normalized Laplacian, there is no definite upper bound value. For the required number

of clusters k, the first k eigenvectors (v1, v2, ...vk) are calculated. These eigenvectors

are then normalized to unit length as ui = vk
||vk||

. Each row i of the normalized matrix

is an individual point in k dimensional Euclidean space and corresponds to the ith

vertex of the system. These points in the spectral embedding are clustered using

vector quantization approaches like K-means or K-medoids. Both the K-means and

K-medoids algorithms are partitional (breaking the data set up into groups). K-means

attempts to minimize the total squared error, while K-medoids minimizes the sum of

dissimilarities between points labeled to be in a cluster and a point designated as the

center of that cluster. The major component in the spectral clustering process is the

clustering of eigen vectors points in the kth dimensional euclidean space using a vector

quantization method. In the spectral embedding, the vertices of an edge with lower

weights are more separated compared to the vertices connected with higher weights.

The K-means and K-medoids are the widely accepted methods used to identify these

gaps representing the weak connection between the vertices in the spectral embedding.

It has been observed that this approach injects discontinuity in cluster formation.
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3.2 Evaluation of the cluster quality

The quality of clusters is assessed based on three main factors a)individual cluster

quality b) overall cluster quality and, c) the factors affecting the cluster quality. Each

of these is discussed in the next subsections.

3.2.1 Quality of individual clusters

• Volume: The volume of a cluster indicates the sum of weights for all connec-

tions within the clusters. For an active power flow based clusters, the volume

represents the total power flow through all the lines within the cluster. A larger

volume represents the higher interconnection or higher power flow through the

lines within the clusters. Volume can be expressed as

vol(s) =
n∑

i,j∈s

Pij(t). (3.4)

• Cut: The cut or boundary of a cluster indicates the sum of weights of all the tie-

lines connecting the cluster with the adjacent clusters. For active power-based

clustering, the boundary value for a cluster indicates the dependency of the

cluster on the adjacent clusters for the power exchanges where the lower value

of the boundary indicating the balance between the demand and generation

within the cluster.

cut(s) =
n∑

i∈s,j /∈s

Pij(t) (3.5)

• Expansion: The expansion of a cluster is a ratio of cut over the volume of the

respective cluster. The lower expansion represents a better clustering quality.

From a distribution grid’s perspective, the lower expansion represents either or

both of higher power flow within the cluster and lower power exchanges with
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the adjacent cluster.

φ(s) =
cut(s)

vol(s)
(3.6)

3.2.2 Quality of overall cluster formations

• Ncut: Normalized cut or Ncut gives the measure of the overall partitioning

quality by taking the sum of expansion φ(s) for all clusters. Since the Ncut

value increases with an increase in the number of clusters, the average Ncut

(Ncutk) is used in our work. This can be expressed as

Ncutk =
1

k

k∑
s=1

cut(s)

vol(s)
(3.7)

• Maximum expansion: The expansion or φ(k) represents the individual cluster

quality of the kth cluster. The lower value of the φ(k) is an indicator of the

good cluster quality. The maximum expansion correlates the overall clustering

quality with respect to the quality of the worst of the k clusters.

φ(max) = maximum(φ(1), φ(2), ...φ(k)) (3.8)

• Discontinuity: The clustering of the graph nodes using K-means and K-medoids

results in the discontinuity of the clusters [78]. This is more visible while clus-

tering the distribution power grids with low interconnections. In our work, a

discontinuity flag (1 or 0) is used to indicate the clustering discontinuity for any

particular instances.

• Cluster size ratio: Lower expansion of the cluster can be obtained either by

lowered boundary value or higher size of the clusters. Hence the cluster size

ratio, represented by the ratio of the number of nodes in smallest cluster (N s)

with respect to the largest cluster (N l), is used to represent the balance between
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the smallest and largest cluster given as

R(k) =
N s

N l
(3.9)

3.2.3 Factors affecting the cluster quality

• Laplacian normalization: Normalized Laplacian helps in better approximation

for minimizing the Ncut. Upon normalization, the off-diagonal elements of the

original Laplacian matrix (L) can be written as

Ln(i, j) =
L(i, j)√
(Di ∗Dj)

(3.10)

An example of a feeder-end power flow snapshot with and without normalization

of Laplacian is shown in Fig. 3.1. The P is the actual active power flow

which can be seen decreasing while moving from node number 105 to nodes

111, 107, and 114. This is expected there is only one generating source (a PV

farm). However, the normalized power flow values represented by Pn does-not

follow the same trend since the normalization is performed with the total power

flowing through the connecting nodes as shown in (3.10). Normalization helps

in avoiding un-wanted cluster cuts near the feeder-end where the magnitude of

power-flow is small and thereby improving the size ratio. Fig. 3.2 shows the

improvement with normalization in the size ratio for 1000 active power-flow

based clustering instances.

• Number of clusters (k): Spectral clustering provides an approximate clustering

of a graph which numerically is an NP hard problem. The closeness of an ap-

proximate clustering solution to an optimum solution is represented by Cheeger

inequality [79] where ρg is the minimum of maximum expansion φ(max). Based

on the inference derived from Cheeger inequality [80], the relative eigengap for
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Figure 3.1: Edge weights with and without Laplacian normalization.

Figure 3.2: Effect of normalization on the size ratio of the clusters.

optimum number of clusters can be found. Highest value of λgk indicates the

optimal clustering into k islands so can k be defined as optimum number of

clusters. This can be considered as λ
2
≤ ρg ≤

√
(2λ). λgk = λk+1−λk

λk
, and

kopt = index(max(λgk)). On running the spectral clustering over the normalized

Laplacian for kopt clusters, considerable improvement in the clustering quality

has been observed. To illustrate this a clustering algorithm was performed over

Table 3.1: Effect of optimal k on the clustering quality

Quality Parameter Random k ∈ {2, 10} kopt ∈ {2, 10}
Ncut 0.14 0.06
Maximum expansion 0.32 0.12
Discontinuities for every
10 clustering instances 2.27 0.25

Size Ratio 0.295 0.31

120 snapshots of power flow scenarios and compared against the 120 clustering

scenarios with optimum k clusters obtained using the relative eigengap, with k
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ranging from 2 to 10. The summary of the analysis is presented in Table 3.1.

3.3 Active power flow based clustering of distribution grids

The spectral clustering approach proposed in section is used to identify the clus-

ters in the distribution system. The clusters are characterised by the local generation

feeding the active power to the local loads with the lower power exchange between

the adjacent clusters. Since the grid condition dynamically changes, the cluster con-

figuration and count also dynamically changes. For example, if the DERs within the

particular clusters are cut-off because of cyber-physical issues, the re-clustering of the

distribution grid would merge the deficient cluster with the nearby clusters. Hence,

the spectral clustering approach is required to identify the optimal number and the

configuration of the clusters.

3.3.1 Drawback of the conventional spectral clustering approach

Figure 3.3: Clustering of 123 bus system with Kmeans eigenvector clustering.

Figure 3.3 shows the output of conventional spectral clustering approach when

applied over a snapshot of grid condition. The optimal number of cluster (k) was
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identified from the relative eigen gap heuristics. However the cluster configuration

suffers from the following drawbacks:

1. Discontinuity: As shown in the figure, the nodes 7 and 9 belongs to the same

cluster. However they are separated at node 8. The discontinuity in the cluster

configuration may not be desirable for the cluster control approaches. The

discontinuity among the clusters is by the kmeans clustering of the eigen vectors.

Discontinuity occurs because the points 7,8 and 9 are close to each other because

of lower weight of the branch connecting nodes 8 and 9. Hence, the centroid

of corresponding to "blue" cluster is closer to point 9 causing the discontinuity

among the "blue" cluster.

2. Non optimal cluster boundaries: The power flowing from "indigo" cluster and

"green" cluster is 518 kW. This issue is caused by the non-linear nature of the

normalized eigen vector space. Figure 3.4 shows the points corresponding to

each nodes in the eigen vector space for a set of 100 nodes connected sequentially

to each other and having same branch weight. It can be noted that the distance

among the eigen vector points at the corresponding to the middle of the graph is

greater compared to the remaining points and thereby increasing the probability

of the cluster cuts at the middle of the graph. Additional post processing is

required here to merge the non-optimal cluster configuration.

3. Sub-optimal cluster cuts: The major component in the spectral clustering pro-

cess is the clustering of eigenvectors points in the kth dimensional euclidean

space using a vector quantization method. In the spectral embedding, the ver-

tices of an edge with lower weights are more separated compared to the vertices

connected with higher weights. The K-means and K-medoids are the widely

accepted methods used to identify these gaps representing the weak connection

between the vertices in the spectral embedding. It can be illustrated that these
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methods are based on balancing the total distance of points from each cluster

with respect to the centroid. Hence, the may not always be efficient in identify-

ing the gaps as clustering as the vector quantization methods may fail to identify

the distribution lines with the lowest weights. To illustrate this, an example

clustering process is explained. In this example, 123 data points are connected

with edges having weight=1. As one of the edge weight is changed to 0.4, a

weak connection can be visually seen as a gap between the eigenvector points.

In active power-based clustering of the distribution grid, these dip in the edge

weight would indicate the downstream DERs supporting the local loads in that

area. By accurately identifying these dips in the active power flow, the local

zones where the DERs are supporting the loads in the distribution network can

be established. For both K-means and K-medoids methods, the total distance

of all points in blue cluster and orange cluster to their respective centroids is

balanced. Hence the traditional approaches fails to identify these gap while

forming the clusters.

All the three drawbacks can be resolved if the distance between the eigen vector

points in spectral clustering can be re-scaled while keeping the node-connectivity

information in the spectral embedding intact. Since Kmeans is unable to retain

the graph connectivity information in the spectral embedding, an another layer

of spectral clustering is proposed by establishing the relation among the nodes

in the eigen-vector space.

Figure 3.4: Eigenvector clustering using Kmeans, K-medoids, and the proposed ap-
proach. Remove the proposed approach plot
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3.4 Proposed Approach: Two Layer Spectral Clustering

The proposed approach of two-level spectral clustering uses the information re-

garding the distance among the eigenvectors points in spectral embedding and their

actual connectivity from the graph of distribution grid to perform spectral clustering

of the eigenvector points. The proposed approach is summarized in the Fig. 3.5.

In this approach, normalized Laplacian of the active power flowing through the dis-

tribution grid is used. Since the optimum number for the clusters identified from

relative eigengap ensures the better clustering quality, k is determined using optimal

conditions discussed earlier. Based on the distance between the eigenvector points

in the spectral embedding and connectivity information from the graph, a similarity

index is calculated using a Gaussian similarity index presented as

S(i, j) = e−(
Dist(i, j)

σ
)2 (3.11)

S ′(i, j) =

 e−(Dist(i,j)−µ
2σ

)2, forDist(i, j) > µ

1, forDist(i, j) ≤ µ
(3.12)

where σ is Gaussian kernel which helps in scaling the similarity index values between

1 and 0. With σ → 0, S → 0 and σ → ∞, S → 1. Hence, a properly tuned value

of sigma is required to distribute the similarity index between 0 and 1. Hence, the

Gaussian similarity function is converted to normal distribution function represented

in (3.12). Here, µ is the average of the distances and σ is the variance of all the

distances between the connecting eigenvector points.

The major component in the spectral clustering process is the clustering of eigen-

vectors points in the kth dimensional euclidean space using a vector quantization

method. In the spectral embedding, the vertices of an edge with lower weights are

more separated compared to the vertices connected with higher weights. The K-means
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Figure 3.5: Flowchart: Proposed approach- 2 level spectral clustering.



35

and K-medoids are the widely accepted methods used to identify these gaps repre-

senting the weak connection between the vertices in the spectral embedding. It can

be illustrated that these methods may not always be efficient in identifying the gaps

as clustering as the vector quantization methods may fail to identify the distribution

lines with the lowest weights. To illustrate this, an example clustering process is ex-

plained. In this example, 123 data points are connected with edges having weight=1.

As one of the edge weight is changed to 0.4, a weak connection can be visually seen

as a gap between the eigenvector points. In active power-based clustering of the dis-

tribution grid, these dip in the edge weight would indicate the downstream DERs

supporting the local loads in that area. By accurately identifying these dips in the

active power flow, the local zones where the DERs are supporting the loads in the

distribution network can be established. Both K-means and K-medoids method fails

to identify these gap while forming the clusters. Next, the spectral clustering using

the proposed approach was performed for the same example. Fig. 3.4 illustrates the

comparisons. It can be seen that with the proposed approach the cut happens at the

gap indicating that cluster cut is happening optimally at the branch with the lowest

weight. It is worth noting that the number of points is the same for this analysis

and the ratio is similar. This illustration explains the advantages of the proposed

approach.

3.4.1 Preliminary Study

Figure 3.6 shows the additional cases with the second layer of the spectral cluster-

ing. Table 3.2 summarizes the 5 cases identified to evaluate the clustering quality.

Case 1 and 2 are the conventional spectral clustering use cases for the bench-marking

the results from case 3, 4 5. The use cases were evaluated on IEEE 123 bus system

with 15 DERs for 600 powerflow snapshots for total clusters (k) ranging from 2 to 6.

The quality of cluster configurations are quantified in terms of discontinuities (3.7),

NCut(3.8), Maximum expansion (3.9) and size ratio (3.11). The maximum boundary
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Table 3.2: Spectral clustering cases

Case 1 Case 2 Case 3 Case 4 Case 5
Eigen Vector
Clustering Kmeans Kmeans Spectral Spectral Spectral

Laplacian
Type

(First Layer)

Un-
normalized Normalized Un-

normalized Normalized Normalized

Laplacian
Type

(Second Layer)
- - Un-

normalized
Un-

normalized Normalized

Figure 3.6: Effect of normalization on the size ratio of the clusters.
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powerflow for the cluster configuration (3.10) is also analysed to relate the NCut and

the Size ratios.

Figure 3.7: Cumulative count of discontinuities in the cluster configuration for 600
power-flow snapshots with varying k requirements

Figure 3.8: Variations in the NCut for 600 power-flow snapshots with varying k
requirements
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Figure 3.9: Variations in the maximum expansion for 600 power-flow snapshots with
varying k requirements

Figure 3.10: Variations in the boundary powerflow for 600 power-flow snapshots with
varying k requirements

• Case 1: Conventional spectral clustering approach without the normalization

of the laplacian

Conventional spectral clustering without normalization is based on actual pow-
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Figure 3.11: Effect of normalization on the size ratio of the clusters.

erflows through the grid. The discontinuities in the cluster configurations are

the highest among all the cases analysed (Figure 3.7). Hence this case is not

desirable for the realtime clustering and control applications.

• Case 2 Conventional spectral clustering approach with the normalized laplacian

The normalization of the laplacian reduces the discontinuities among the cluster

configuration as compared to case 1. However, the count of overall discontinu-

ities is still considerably higher compared to other cases. Also, the clustering

configurations are not always optimal. Figure 3.10 shows the high power flowing

though the cluster boundaries. Hence, this case is not suitable for the cluster

load balancing applications.

• Case 3 represents the conventional spectral clustering approach with the unnor-

malized laplacian at both levels

The discontinuities decreases by 50% with the second level of spectral cluster-

ing. Also the boundary powerflow is the lowest for this case. However, the

cluster size ratio is extremely low indicating huge difference among the cluster
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sizes. Hence, the possibilities of not having any controllable DER asset within

the clusters are higher and hence the approach is not adopted for the cluster

and control application.

• Case 4: Two layer spectral clustering approach with the normalized laplacian

in the first layer and non normalized laplacian in the second layer A significant

improvement in terms of cluster configurations is observed for this case. The

discontinues decreases by 81%. Also the NCut and maximum expansion values

are lower for this case.

• Case 5: Two layer spectral clustering approach with the normalized laplacian

at the second layer

Case 4 and Case 5 are almost comparable in terms of clustering quality (Dis-

continuities, NCut and boundary powerflow). However, the the size ratio is

comparatively higher then case 5. Hence, the case 5 is adopted for the active

power based clustering of the distribution system.

3.5 Voltage sensitivity based clustering of distribution system

Previous approach discusses the active power flow based clustering of the distribu-

tion grids. With the increasing adoption of 4 quadrant inverters, the volt=var based

reactive power control is gaining the traction. By performing the clustering of the

distribution grids based on the reactive power to voltage sentivity, the voltage of the

distrubution grids can be localized. This section proposes an approach to identify the

sensitivity based virtual cluster of the distribution grid.

3.6 Sensitivity based spectral clustering

This design is based on the assumption that measurements available only at legacy

device controller such as a) capacitors, b) transformers, and c) regulators. Also we

are assuming that measurements are available on all DERs, a) PhotoVoltaic (PV) and

b) Battery Energy Storage (BESS). It will be beneficial that we have measurements



41

for critical loads even though it is not mandatory. For the voltage sensitivity based

clustering, first the sensitivity matrix is calculated. The sensitivity matrix is defined

as the inverse of power grid Jacobian The steps for the sensitivity based clustering

are as follows:

• For every time instant when the sensitivity based clustering is performed, first

the Jacobian is calculated as follows. For the Jacobian calculation, the power

grid model with the current status is used. First, with the loads disconnected

the power flow is performed. Then the load Y bus and the voltages is used to

prepare the J submatrices.

J2nx2n =
df

dx
=

[
∂f

∂x1

· · · ∂f
∂xn

]
=


∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...

∂fm
∂x1

· · · ∂fm
∂xn

 (3.13)

This can be expressed as


J1x1 · · · J1xn

...
. . .

...

Jnx1 · · · Jnxn

 =

J1nxm J2mxn

J3nxm J4mxn

 (3.14)

• With this, the reactive power sensitivity can be written as

Snxn =

J1nxm J2mxn

J3nxm J4mxn


−1

(3.15)

where

S4mxn =

[
J4mxn

]−1

=

[
∂V

∂Q

]
Assuming n nodes and m DERs on the distribution system: S4mxn can be
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defined as 
S(DER1,1) · · · S(DER1,m)

... . . . ...

S(DERn,1) · · · S(DERn,m)


• Further, based on active power dispatch from each DER available reactive power

Q for each DER can be calculated as Qm =
√
S2 − P 2

set.

• Thus, maximum voltage support limit at each node on the system can be cal-

culated as 
dvu1
...

dvun

 =


S(DER1,1) · · · S(DER1,m)

... . . . ...

S(DERn,1) · · · S(DERn,m)


T

∗


Q1

...

Qm

 (3.16)

• Every node has value of the maximum available voltage support limit. For the

nodes connected by the distribution lines, the branch weight can be calculated

based on Gaussian Similarity index:(3.17)

Wij = exp−
||dvui −dv

u
j ||

2

2σ2 (3.17)

where dvui and dvuj are upper limits of voltages on the bus i and j respectively,

σ is the variance.

• The sensitivity to available reactive power, unlike power-flow, increases towards

the downstream of the feeder. Equation 3.17 assigns weights between 0 and

1 to all branches based on the variation in dvu. For nodes with similar dvu

values, the weights are assigned as 1. The weights are 0 for higher difference

in the dvu values among the connected nodes. The lower dvu values indicate

a potential cut for the clusters. For IEEE 123 node system, 30% nodes with

potential cuts are identified. Two layer spectral clustering may yield larger

number of small sensitivity based clusters. Such cluster configuration is not
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Figure 3.12: Typical reactive power sensitivity based cluster on distribution system

desirable for reactive power control as it may create hunting of controls among

multiple clusters. Hence, the conventional clustering approach is adopted here.

The ideal cluster for reactive power control has more number of nodes, multiple

DERs and cluster cut characterized by at-least one of the following:

– New branch

– Larger distribution line length or higher distribution line impedance

– Difference in the reactive power availability of reactive power support

.

3.7 Implementation of the proposed approach

The proposed approach of active power and sensitivity based spectral clustering

was implemented on IEEE 123 bus system with 15 PV and Battery Energy Storage

Systems (BESS). Figure 3.13 shows the architecture for online clustering of distri-
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Figure 3.13: Co-simulation of cluster formation module and grid simulator

bution grids based on the measurements. IEEE 123 bus system with 15 DERs is

modelled in OpenDSS simulator. The ratings and locations of the PV and BESS are

summarized in Table. 3.3. The locations and ratings of PVs were assumed based

on the local loads connected in the respective areas of the feeder. Considering the

futuristic scenario of distribution feeders with high PV interconnections, the total

PV penetration was assumed to 80% of the total load on the feeder. The BESS kW

ratings are assumed to be 25% of the connected PVs at the same node. The simu-

lator is configured to run at 1s time interval in time-series mode. The load and PV

profiles is also shown in 3.13. The measurements from grid simulator are logged in

form of JSON file and transmitted to the cluster controller at every 5 second time

interval through TCP channel. The detailed JSON structure for each device category

is shown in Appendix B.

3.7.1 Result and Discussion: Active Power-flow based clusters.

The load and PV variation for 6 hours was captured in a total of 120 power flow

scenarios at an interval of 3 minutes. The performance of clustering algorithms was
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Table 3.3: Locations and ratings of DERs on IEEE 123 bus system

PV Rating BESS Rating NodeIDs
120 kW 30kW/120kWh 82, 87
180 kW 45kW/135kWh 48, 62, 93, 97, 101
210 kW 50kW/150kWh 8, 21,44, 57, 72, 108
240 kW 60kW/180kWh 25
300 kW 75kW/225kWh 1

evaluated based on the quality parameters explained in section 3.2.3. First, the two-

level clustering approach presented in this chapter is compared with conventional K-

means eigenvector based spectral clustering. Fig. 3.3 shows the conventional K-means

eigenvector based spectral clustering scenario over a snapshot of the distribution

power flow. The spectral clustering for the "8" clusters (the value of kopt for the

normalized Laplacian is 8) shows the discontinuity within the blue cluster. The power

flowing through the lines connecting each cluster is also indicated. Similarly 3.14

shows the proposed approach. It can be seen that there is no discontinuity for the

proposed approach as the eigengaps are amplified based on the proposed similarity

index. Also, it can be seen that the power flowing through the lines connecting each

cluster is the same or less when compared to conventional approach.

Table 3.4: Improvement of the proposed approach on cluster quality

Quality Parameter Spectral
clustering

Proposed
approach Improvement

Ncut 0.06 0.029 51.67%
Maximum expansion 0.12 0.051 57.5%
Discontinuities for every
10 clustering instances 0.25 0 100%

Size Ratio 0.31 0.24 -22.6%

The performance of the proposed approach against the conventional spectral clus-

tering approach is summarized in Table 3.4. It can be seen that the proposed archi-

tecture improves the quality of the cluster. Fig. 3.15 and 3.16 compares the Ncut

and maximum expansion values for 120 powerflow instances. These values are sorted
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Figure 3.14: Clustering of 123 bus system with the proposed approach.

Figure 3.15: Ncut for 120 instances of IEEE 123 bus system.

Figure 3.16: Maximum expansion for 120 instances of IEEE 123 bus system.

in ascending order to improve the plot visibility. The improvement in the Ncut and

Maximum expansion values comes against the reduction in the size ratio. It was also

found that the size ratio is reduced. This is expected as the total number of cluster

was changing to reduce the edge powerflow. It is also observed that the major ad-

vantage of the proposed approach lies in the improvement brought on the aspect of

the cluster discontinuities and reduction in the edge powerflow.
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Figure 3.17: Reactive power clusters for full availability of reactive power at each
DERs

3.7.2 Result and Discussion: Sensitivity based clusters.

The sensitivity based clusters are constructed based on the available reactive power

at each BESS. Current implementation does not implement active or reactive power

control through BESS. Hence, all the availability of reactive power is equal to the rates

kVA of the BESS inverters. Figure 3.17 shows 5 sensitivity based cluster configuration

for complete availability of the reactive power at each DER. The configuration is not

expected to change in the absence of reactive power at each BESS (Figure 3.18). In

this case, the cluster represents the cuts at the lines with higher impedence. The

dynamic changes in the cluster configuration is based on the availability of the reactive

power at every BESS. Based on the variation on the available reactive power at each

BESS, figure 3.19 to figure 3.22 demonstrates the variation in cluster configuration.

• Case 1: Figure 3.19 shows a scenario where BESS 3 and BESS 4 do not have

any reactive power available for the support. Here, the cluster 2 merges with

cluster 3 for the voltage support from BESS 5 and BESS 6.
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Figure 3.18: Reactive power clusters for no availability of reactive power at each
DERs

Figure 3.19: Reactive power clusters for availability of reactive power at BESS 3 and
BESS 4
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Figure 3.20: Reactive power clusters for availability of reactive power at BESS 3 and
BESS 9

• Case 2: Figure 3.20 shows a scenario where only BESS 3 and 9 has reactive

power available. Here cluster 2 and 3 merges for the reactive power support

from BESS 3. Whereas, cluster 5 coverage area increases to include nodes from

cluster 4.

• Case 3: Figure 3.21 shows a scenario where only BESS 3, 9 and 15 has reactive

power available. Here the merged configuration for cluster 3 and 4 remains

intact. A new cluster-cluster 6 emerges from the reactive power support of

cluster 15.

• Case 4: Figure 3.22 shows a scenario where only BESS 3, 6, 9 and 15 has

reactive power available. Here the cluster 3, previously merged with cluster 2,

receives an independent voltage support from BESS 6. The rest configuration

remains similar to case 3
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Figure 3.21: Reactive power clusters for availability of reactive power at BESS 3,9
and 15

Figure 3.22: Reactive power clusters for availability of reactive power at BESS 3,9,6
and 15
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3.8 Chapter Summary

The chapter presents an approach to perform clusters of distribution grid for dis-

tributed active and reactive power controls. The active power based clusters are per-

formed through an improved two layer spectral clustering approach. The approach

significantly improves the cluster quality and accurately identifies the clusters with

load and generation balance. The clusters would dynamically vary based on grid op-

erating condition (Load and PV variation). The distributed cluster level controls can

be further used to maintain this balance. The chapter also proposes an approach to

cluster based on the voltage sensitivity to reactive power support from DERs. The

sensitivity clusters varies dynamically based on the reactive power available at each

DER. The future works would include implementation of the proposed approach of

active and reactive power based clusters on a larger distribution network.



CHAPTER 4: Optimal management of power distribution system with clustering for

effective utilization of DERs

4.1 Introduction

In the modern grid, distributed generators (DGs) are playing a vital role in fulfilling

the increasing demand [81–84]. An increasing number of controllable devices and

flexible generation assets on the distribution grid would increase the scale and thereby

the complexity of distribution grid level control and optimization. Also, the load

distribution, as well as the variation, is not uniform in the distribution grids. Hence,

the centralized control for all the flexible assets may not be efficient and optimal.

The challenges mentioned above can be mitigated if the distributed control approach

is adopted by creating the virtual clusters of the distribution grid and assigning the

zones of control to the groups of DERs. Various methods for distribution system

clustering or partitioning have been developed [81–84]. It is demonstrated that the

management of the distribution system with distributed energy resources as one of

the potential applications of the smart power grid [85, 86]. Several applications have

focused on DER integrated power distribution management architecture including

the outage management [87], situational awareness [88], and, phasor measurement

unit applications [89], including the report from agencies such as the Department of

Energy (DOE) [90–92].

For management of DER integrated power distribution grid, applications such as

secondary voltage control including stability [93], splitting strategies [94], dynamic

voltage control areas [95], voltage control area identification [96], and dynamic plan-

ning [97] has been proposed earlier. In our earlier works, we have developed control

architectures for renewable energy management as well as [68, 98–103]. These meth-
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ods are focusing on partitioning the distribution networks into micro-grids during grid

contingencies for an islanded operation, or generically managing the DER. However,

the management of the power grid locally and at the same time integrated into a grid

management framework such as ADMS is extremely critical. Higher penetration of

DERs in the distribution grid leads to higher intermittencies. Most of the literature

work deals with global supply from all the distributed generations to support the

loads during normal as well as intermittent conditions. This may lead to inefficient

utilization of the distributed generations during several scenarios.

Chapter 3 proposed an approach for clustering the distribution grid based on active

power-flows and reactive power voltage sensitivities. Current chapter focuses on an

efficient management of the distribution grid in grid-connected mode. The chapter

presents a robust distributed control architecture control and optimally manage and

support the net-load and voltage variations by leveraging the battery energy storage

systems (BESS) available within that cluster.

The Chapter is organized as follows. Section 4.2 discusses presents an approach

for net-load smoothing through cluster control. Section 4.3 presents an approach for

measurement based voltage management on the grid. Section 4.4 implements the

proposed approach on the IEEE 123 bus system.

4.2 Cluster net-load management

A distribution grid cluster consists of load, PVs and BESS. The cluster net-load

is the results of total load and DER generation within the cluster. Typically the

loads may be controllable upto an certain extent through utility’s demand response

programs, PV may be curtailable through curtailment approaches and BESS dispatch

is controlled based on the targeted application. However, current chapter assumes PV

and loads as the non-controllable assets and leverages the flexibility of BESS dispatch

for the net-load smoothing application.
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4.2.1 Least Square Estimation based Active power-based cluster control for

cluster net-load management

It is assumed that DERs are interconnected through smart inverters and can be

controlled. The virtual clusters identified by the dynamic clustering module can be

further controlled optimally by leveraging the capabilities of smart inverters. In this

work, an active power-based cluster control is proposed, to support the local loads

and reduce the perturbations caused by PV intermittencies and load variations within

the clusters. The mathematical details of cluster control are as follows.

The net-load for cluster k at any time n is given by (4.1). Here Pnl(k, i) is the net-

load without BESS for cluster k at time-step i. If the criticality level is known for the

feeder-loads, the net-load (Pnl) can be made same as the critical net-load (P c
nl(k, i)).

Pnl(k, n) = Pload(k, n)− Ppv(k, n) (4.1)

In the proposed approach, the reference net-load P ref
nl (k, n) for a k cluster is calculated

by taking the moving average of the net-load (Pnl) or the critical net-load(P c
nl(k, i))

for the past N measurements, as shown in (4.2).

P ref
nl (k, n) =

1

N

n∑
i=n−N

Pnl(k, i) (4.2)

As shown in (4.3), the linear least square optimization approach is applied to optimize

the error between the reference net-load P nl
ref and the measured net-load (Pnl) for the

kth cluster over past N measurements. Here x(k) is the optimization co-efficient.

min U =
n∑

i=n−N

1

2
∗ (Pnl(k, i)− x(k) ∗ P ref

nl (k, i))2 (4.3)

The net-load support provided by the BESS is limited by the active power rating

(kW ) rating of the BESS within the cluster. For m BESS within the cluster, the
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total active power support available for the cluster k is represented by PkW (k) =

PBESS
1 + PBESS

2 + ....PBESS
m . Based on the PkW (k), the upper and the lower bounds

of the optimization coefficient x(k) can be formulated as shown in (4.4). Based on

the value of x(k), the optimal active support from the m number of BESS for cluster

k can be calculated as

−PkW + Pnl(n)

Pref
< x(k) <

PkW + Pnl(n)

Pref
(4.4)

PBESS(k, n) = Pnl(k, n)− x(k) ∗ P ref
nl (k, n) (4.5)

The PBESS(k, n) determines the total active power to be dispatched by the BESS of

the kth cluster. Based on the total PBESS(k, n), the dispatch from an individual BESS

is distributed among the cluster BESS based on the decreasing order of the state of

charge error (esoc(j, n)) and the storage capacity of the BESS (BESSkWh) as

esoc(j, n) = SOCt(j, n)− SOC(j, n) (4.6)

ekWhsoc(j, n) = esoc(j, n) ∗BESSkWh (4.7)

A PI-based approach is used to calculate the active power setpoints (P i
set)) for the

individual BESS. This approach aims to improve the SOC recovery for the targeted

state of charge (SOCt(j, n)) and was found to be efficient in keeping the BESS state

of charge within the upper and lower limits. For every BESS within the cluster,

based on the esoc(j, n) value, the ramp-rate coefficient (ζjsoc) is calculated as shown in

(4.8). When the SOC error (esoc) is smaller compared to the error threshold ethsoc, the

proportional component ramp-rate coefficient is based on the proportional component

(kp) which controls the sudden changes in the BESS dispatch. When the SOC error

(esoc) is larger compared to the error threshold ethsoc, the integral component based

on errors for the last N measurements is used to control the BESS dispatch. The
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values of Ki can be further varied dynamically based on charging and discharging

opportunities to improve the SOC recovery.

ζjsoc =

 kp, for esoc(j, n) ≤ ethsoc

ki
∑n

i=n−N esoc(j, i), for soc(j, n) ≥ ethsoc

(4.8)

Based on the ζjsoc, the value of active power dispatch for every BESS within the cluster

is calculated sequentially as shown in (4.9) limited by BESS kW limits P j
kW as shown

in (4.10).

P j
set = ζjsoc ∗

PBESS(k, n)−
∑j−1
∀j>1,m=1 P

m
set

Nk − j + 1
(4.9)

−P j
kW ≥ P j

set ≤ P j
kW (4.10)

4.2.2 Inter-cluster set-point segregation

Equation 4.9 segregates the cluster set-point for every BESS on the system based

on the ζjsoc coefficient. The sequential segregation of the set-point may not be optimal.

Also, approach may not support inter-cluster power exchanges between the BESS. ie.

A BESS with higher SOC may not be able to support BESS with lower SOC. Hence,

an inter-cluster optimization was developed with the goal keeping the BESS SOC

within the tolerance limit.

For every cluster(k), the objective function for BESS set-point segregation can be

formulated as follows:

min
1

2
||SOCtarget

i − SOCi(t)||2 (4.11)

subjected to the kW support limit of the BESS

−P kw
i ≤ Pi(t) ≤ P k

i W (4.12)
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Equation 4.12 can be represented based on the storage capacity of BESS as:

Pi(t) = Ebessi(t− 1)− Ebessi(t) (4.13)

Since Ebessi(t) can also be represented in form of state of charger, equation 4.13 can

be modified to

Pi(t) = Ebessi(t− 1)− SOCi(t) ∗ Ebessi (4.14)

Substituting Pi(t) in equation 4.12

−P kw
i ≤ Ebessi(t− 1)− SOCi(t) ∗ Ebessi ≤ P k

i W (4.15)

Rearranging equation 4.15 to obtain the lower and upper bounds of the optimization

variable SOCi(t)

P k
i W − Ebessi(t− 1) ≤ xi ∗ Ebessi ≤ −P kw

i − Ebessi(t− 1) (4.16)

P k
i W − Ebessi(t− 1)

Ebessi
≤ xi ≤

−P kw
i − Ebessi(t− 1)

Ebessi
(4.17)

For multiple BESS within the cluster, the equality constraint to meet cluster set-

point can be given by
N∑
i=1

Pi(t) = Pset(t) (4.18)

Substituting Pi(t) in equation 4.18

N∑
i=1

Ebessi(t− 1)−
N∑
i=1

SOCi(t) ∗ Ebessi = Pset(t) (4.19)

Re-arranging the equation 4.19, the equality constraint in terms of optimization vari-
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able SOCi(t) can be formulated as

N∑
i=1

Ebessi(t− 1)− Pset(t) =
N∑
i=1

SOCi(t) ∗ Ebessi (4.20)

∑N
i=1Ebessi(t− 1)− Pset(t)∑N

i=1Ebessi
=

N∑
i=1

SOCi(t) (4.21)

Meeting the cluster set-point may not always be possible because of limited sup-

port capability of BESS. Hence, the equality constraint is added to the objective

function as a soft constraint with a penalty coefficient ρ. Equation represents the

final optimization formulation for the inter-cluster setpoint segregation.

min
SOCi(t)

1

2
||SOCtarget

i − SOCi(t)||2 +
ρ

2
||
∑N

i=1Ebessi(t− 1)− Pset(t)∑N
i=1Ebessi

−
N∑
i=1

SOCi(t)||2

s.t.
P k
i W − Ebessi(t− 1)

Ebessi
≤ xi ≤

−P kw
i − Ebessi(t− 1)

Ebessi
(4.22)

Table 4.1 presents 7 cases of inter-cluster set-point segregation for a fictitious cluster

with 3 BESS. The rated kW capacities for three BESS is assumed to be 50, 75 and 25

kW. The rate storage capacity for the BESS is assumed to be 120, 150 and 50 kWh.

The SOCtarget
i for all cases is assumed to be 0.5 or 50%.

• Case 1: The SOC for all BESS is 0.5. The set-point for the cluster is equal to

the combined rated kW of the cluster. Hence all BESS are discharges at the

rated capacity.

• Case 2: The SOC for all BESS is 0.5. The set-point for the cluster is higher

then the combined rated kW of the cluster. Hence all BESS are discharges at

the rated capacity to minimize the tracking error.

• Case 3: The SOC for all BESS is 0.5. The set-point for the cluster is lower
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Table 4.1: Inter-cluster set-point segregation

BESS1 BESS2 BESS3
PkW 50 75 25
Ebess 120 150 50
Case 1 Cluster Set-point = 150 kW
SOC(t-1) 0.5 0.5 0.5
P(t) 50 75 25
Case 2 Cluster Set-point = 200 kW
SOC(t-1) 0.5 0.5 0.5
P(t) 50 75 25
Case 3 Cluster Set-point = 100 kW
SOC(t-1) 0.5 0.5 0.5
P(t) 34.2 59.05 6.65
Case 4 Cluster Set-point = 100 kW
SOC(t-1) 0.5 0.2 0.5
P(t) 50 25 25
Case 5 Cluster Set-point = 75 kW
SOC(t-1) 0.5 0.2 0.5
P(t) 50 0 25
Case 6 Cluster Set-point = 50 kW
SOC(t-1) 0.5 0.2 0.5
P(t) 50 -25 25
Case 7 Cluster Set-point = 70 kW
SOC(t-1) 0.8 0.3 0.4
P(t) 50 45 -25
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then the combined rated kW of the cluster. Hence all BESS are discharges are

proportionate to the rated storage capacity.

• Case 4: The SOC of BESS 2 is low (0.2). The set-point for the cluster is same

as in case 3. But, the set-point for the BESS2 is reduced from 59 kW to 25 kW

and the reduction in the discharge of BESS 2 is compensated by BESS1 and

BESS2.

• Case 5: The SOC of BESS 2 is low (0.2). The cluster set-point for this case is 75

(lower then previous cases). The set-point is achievable through the discharge

from the BESS1 and BESS3. Hence, the BESS 2 temporarily set to "idle" mode

to avoid any further depletion of the SOC.

• Case 6: The SOC of BESS 2 is low (0.2). The cluster set-point for this case

is 50 (lower then previous cases). Hence an additional headroom is available

for the power exchange between the BESS after meeting the cluster set-point.

Hence, the BESS 2 is assigned the set-point to restore the state of charge from

the additional dispatch of BESS 1 and BESS2.

• Case 7: The SOC of BESS1 is 0.8, BESS 2 is 0.3 and BESS 3 is 0.4. The

cluster set-point for this case is 70. Since BESS 1 is having the higher SOC, it

is assigned the set-point to discharge at the rated capacity. Although the SOC

of BESS2 is lower compared to BESS3, the rate storage capacity of BESS 3 is

significantly lower (33%) than BESS 2. Hence, the SOC restoration of BESS

3 is prioritized compared to BESS 2 and the BESS 2 discharges at a reduced

rate.

4.3 Sensitivity based reactive power control for voltage management

Sensitivity based clustering is based on the sensitivity matrix obtained from the

system Jacobin and available reactive power support from all DERs. However, the
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voltage measurements are also available from additional nodes with distribution sys-

tem devices connected to it. These measurements can be further used to calculate the

reactive power set-points from each DER to holistically manage the voltage though

out the clusters. Current approach aims at controlling the voltage deviations from

all measurement nodes of the cluster. The upper limit for voltage support for all

measurement nodes is calculated by:

Based on the upper limit of voltage support, the constraint least square based opti-

mization is formulated to calculate the optimum voltage setpoint for all measurement

nodes(n)

min U =
t∑

k=t−∆t

1

2
∗ ||(Vn(k)− λn ∗ V refn(k)|| (4.23)

for all nodes such that

(vn(t)− dvu)
vrefn(t)

≥ λn ≥
(vn(t) + dvu)

vrefn(t)
(4.24)

Here V refn is the reference voltage and λn is the optimization coefficient for nth

measurement node.

From 4.23 and 4.24, the optimal voltage for nth node at time t+1 can be calculated

as

dvt+1
n = vtn − λn ∗ vref tn. (4.25)

Based on the voltage reference setpoint for every measurement nodes, the optimal

reactive power setpoint is calculated through a least square optimization problem.

The Q for the time step t+ 1 is calculated as follows

min U =
n∑
i=1

1

2
∗ ||dvt+1

n − dQt+1
m ∗ ST || (4.26)

Since, the reactive power control is given the secondary priority after active power



62

control. The reactive power set-point for every DER is constrained by the availability

of the reactive power from each DER.

Qm =
√
S2
m − P t+1

m −Qt
m ≥ dQt+1

m ≥ Qm =
√
S2
m − P t+1

m +Qt
m (4.27)

From (29), the optimal reactive power setpoint for nth node at time t + 1 can be

calculated as Qt+1
m = Qm + dQt+1

m .

4.4 Implementation: IEEE 123 bus system

Figure 4.1: Implementation of active and reactive power control on IEEE 123 bus
system

The active and reactive power management approaches presented in the chapter

was implemented on the dynamically varying active and reactive power cluster con-

figurations of IEEE 123 bus system. Figure 4.1 shows the flow of processes in the

co-simulated environment. The measurements are collected at every 5 seconds and

sent to the simulator. The active and reactive power clustering is performed at every 3

minute time intervals. For the required cluster configurations, the reactive and active

power set-points for the BESS are calculated at every 5seconds. Since the proposed
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approach uses the historical data to calculate the set-points, an online database of the

past measurement is maintained. For every new cluster configurations, the historical

measurements are extracted to re-establish the history of the new cluster based on

the past time-step measurements.

The active and reactive power control is performed for the net-load minimization

and voltage deviation minimization applications. Figure 4.2 shows the PV, load and

the net-load profile through out the simulation time window.

Figure 4.2: Load and PV generation profiles during the simulation window.

4.4.1 Net-load smoothing through dynamic cluster and control

The section demonstrates and analyzes the performance of the cluster based net-

load smoothing. To understand the benefits of cluster control and dynamically varying

cluster, the following three cases are compared:

• Centralized Control: Here complete grid acts as a single cluster and the set-

points are calculated based on the overall grid requirements.

• Control with constant clusters: Here the cluster configuration is kept constant
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through out the simulation. Figure 4.3 shows the cluster configuration followed

through out the simulation.

• Control with dynamic clusters: Here the cluster configuration is dynamically

varying based on power-flows at every 3 minute time interval. Figure 4.4 shows

the variation of clusters through out the simulation.

Figure 4.3: Active power-flow based clusters on IEEE 123 bus system

Figure 4.5 shows the feeder-head power-flow without control and with controls. The

net-load smoothing strategy is based on the moving average as a reference. Hence,

the measurements from the past time-steps helps in determining the set-points for the

next time-steps. Due to the moving average window, the the resulting feeder-head

power flow with controls shows the time-shifts. The approach addresses the inter-

mittacies by reducing the magnitude of the variations and ramp rate of the variations
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Figure 4.4: Dynamically varying active powerflow based clusters

Table 4.2: Effect of cluster control on the net-load smoothing

Without Control Centralized Control
Constant Cluster 0.57 0.96
Dynamic Cluster 0.58 0.98

in the net-load. The feeder-head power-flow for cluster based control is compared

against the centralized control. The overlapping of the net-load profile validates

the consistency of the distributed control approaches. A 1 minute regression based

smoothing index is calculated to compare the improvement in the net-load smoothing.

The cluster based smoothing approaches reduces the net-load intermittacies by 48%.

The clustered net-load control efficient by 4% when compared against the centralized

control in reducing the intermittancies.

Figure 4.6 compares the average active power-loss for all three net-load smoothing

cases. The loses, as expected, are higher for centralized controls. It is to be noted

here, that smoothing applications does not have significant power requirements. The
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Figure 4.5: Feeder-head power-flow for net-load smoothing application

reduction in the losses would be higher for net-load minimization application discussed

in the later chapters.

Figure 4.6: System active power losses

Figure 4.7 compares the voltage variations at all nodes on the distribution feeders.

The nodes after 75 are near the end of the feeder. Here, the x/r ratio is higher and

hence the voltage variations are also high. The centralized control does not address

the variations in the load locally. Hence, the higher voltage variation is observed

for centralized control approach. Constant and dynamic cluster configurations shows

almost similar variations in the voltage magnitude.

Figure 4.8 and figure 4.14 shows the cluster net-load for static and dynamic clus-
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Figure 4.7: Effect of active power control strategies for net-load smoothing on the
distribution node voltages

tering approaches. Since the dynamic clustering, re-configures the clusters with an

improved balance of the net-load, the magnitude of cluster net-load is low. Current

approach does not minimize the net-load. The balance of load and generation is

achieved through re-clustering by the improved spectral clustering based approach.

The improvement in the cluster net-load is summarized in the table ??

Figure 4.8: Cluster net-load for constant cluster configuration
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Figure 4.9: Cluster net-load for dynamic cluster configuration

Table 4.3: Improvement in the cluster net-load support through dynamic clustering

Constant Clusters Dynamic Clusters
Cluster 2 11.2 0.894
Cluster 3 5.47 1.2
Cluster 4 -4.04 9.9
Cluster 5 -46.53 -7.9
Cluster 6 26.27 11.26

4.4.2 Voltage control through dynamic clusters and control

The sensitivity based clustering approach is discussed in the previous chapter 3.

Since the IEEE 123 bus system is relatively small distribution grid, the number of

reactive power based clusters are limited to three. The count on number of clusters

would be relaxed later for the larger system. The the boundaries of voltage sensitivity

to reactive power is not definite, the small size clusters would contribute to the hunt-

ing to the neighbouring clusters. A Measurement based voltage control approach is

proposed for each clusters in this chapter. The measurement nodes could be: trans-

formers, DERs, critical loads, capacitors. Based on the measurements, the proposed

approach pro-actively manages the reactive power dispatch to control the voltages

at the measured nodes. Since, the measurement nodes are distributed through out
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the distribution grid, the effect of voltage management is also observed on the non-

measurement grid.

Figure 4.10 compares the voltage profile for node 82. The measurements from this

nodes are available since the BESS 10 is connected at this node. The variation in the

node voltage is reduced substantially through the PQ control.

Figure 4.10: Effect of control on the measurement node voltage

Figure 4.11 compares the voltage profile for node 114. The node is connected

thorugh a single phase line and is located towards the feeder end. The sensitivity of

the voltage to active and reactive power variation is high for this node. Figure 4.11

shows the voltage variation of 0.02 PU without any control. The nearest measurement

node is node 108 with BESS interconnection. The reactive power based voltage control

reduces the variation substantially.

Figure 4.12 and figure 4.13 shows the voltage for all-nodes on the feeder with P

control and PQ control. It can be observed here, the variations in the voltage are

substantially reduced for measurement as well as non-measurement nodes on the

system.

The difference in the minimum and maximum voltage observed at all nodes is

summarized in figure. The plot compares the improvement with PQ control against

a stand-alone P control (net-load smoothing). Since the active power dispatches are

small for net-load smoothing application, reactive power is always available at each
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Figure 4.11: Effect of control on non-measurement node voltage

Figure 4.12: Voltage profile for all nodes of 123 bus system with dynamic P cluster
control

Figure 4.13: Voltage profile for all nodes of 123 bus system with dynamic PQ cluster
control

BESS. Hence, no significant difference is observed here between static and dynamic

clustering.
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Figure 4.14: Effect of P and Q control strategies for net load smoothing on the
distribution node voltage

4.5 Chapter Summary

The chapter presents a distributed approach for net-load smoothing. Each clusters

acts as stand-alone agents and minimize the load net-load variations through BESS

active power control. The proposed approach is implemented on IEEE 123 bus system

and validated against centralised control approach. A distributed reactive power

management approach is also presented in the chapter. The reactive power set-points

are calculated based on the voltage measurements and the reactive power available at

each DER after active power dispatch. A substantial reduction in the voltage variation

is observed through reactive power control for all measurement and non-measurement

nodes of IEEE 123 bus system.



CHAPTER 5: Dynamic distributed model of power grid for optimization and control

5.1 Introduction

The previous chapter discusses the approach for cluster control. Utilities employ

the OPF algorithms at the sub-transmission levels to manage the losses and the

aggregated demand at the substation level. Currently, active power management

at the substation level is performed only to manage any issues related to thermal

overloads. However, with increasing controllable assets at the distribution level, the

setpoints may be provided at the substation level to include additional applications

such as market participation or transmission grid management. The current chapter

proposes an ADMM based approach to share the feeder head or area setpoints among

the clusters on the distribution grid based on the SOCs of the cluster BESS.

Section 5.2 discusses the ADMM based sharing optimization formulation. Section

5.3 discusses the application of ADMM based sharing optimization problem for the

area set-point sharing. Section 5.4 modifies the least square-based cluster control ap-

proach presented in chapter 4 for the reference set-point tracking application. Section

5.5 implements the sharing and tracking approaches on IEEE 123 bus system.

5.2 ADMM based sharing optimization

Sharing problem is a form of multiple objective optimizations consisting of multiple

local and global cost minimization. Although the local optimization may be indepen-

dent, the global optimization cost is dependent on all local variables. Hence, a sharing

optimization problem aims to minimize the overall system cost, including the local

optimizations. Figure 5.18 illustrates a sharing based optimization where f(xi) are

the local optimization cost functions and g(zi) where is the global optimization cost
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function. Here, xi are the "local variables," and z is the global variable.

Figure 5.1: Sharing optimization problem

The sharing problem is formulated as shown in figure 5.18:

min
N∑
i=1

f(xi) + g(
N∑
i=1

xi) (5.1)

The sharing problem has a dual relationship with a consensus problem, where the

contribution from the local variables to the global optimization problem can also be

expressed as:

min
N∑
i=1

f(xi) + g(
N∑
i=1

zi)

subject to xi − zi = 0, i = 1, 2, 3...N

(5.2)

If z̄ = 1
N

∑N
i=1 zi, the 5.1 can also be represented as:

min
N∑
i=1

f(xi) + g(Nz̄)

subject to x̄− z̄ = 0

(5.3)
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Figure 5.2: Sharing optimization problem

The flow of variables in the ADMM based sharing problem is represented in figure

5.2. The final scaled version of ADMM based sharing algorithm is as follows:

• x update (N parallel executions):

xk+1
i = min

xi
(fi(xi) +

ρ

2
||xi − xki + x̄k − z̄k + uk||2) (5.4)

• z update:

zk+1 = min
z

(g(Nz̄) +
Nρ

2
||z̄ − uk − x̄k+1||2) (5.5)

• u update:

uk+1 = uk + x̄k+1 − z̄k+1 (5.6)

5.3 Area Set-point segregation

A distribution grid with controllable generating assets provides flexibility in control-

ling the feeder-head power flow. The continuous monitoring-based control of active

power generation on the distributed generating asset is often implemented to avoid the

reverse power-flow conditions or the thermal loading on the sub-transmission lines.
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Reference set-point tracking at the feeder head may also be required for advanced

applications like loss minimizing OPFs or market participation.

Segregating the area set-point into multiple optimized cluster set-points is a sharing−

problem requiring a global optimization for minimizing the area set-point error and

multiple local optimizations running in parallel to optimize the local SOC level of

energy storage present in each cluster. The sharing-based optimization problem is

formulated as shown in (5.7).

J = min
xN ,uN

Nc∑
i=1

f(P i
cl(k)) + g(z) (5.7)

where i is the cluster number, Nc is the total number of clusters.

Here, f(P i
cl(k)) is a local optimization function for ith cluster and g(z) is the global

optimization function. Local optimization for every cluster is solved in parallel for

a particular time period k(k = ∆t). Equation 5.8 represents the local optimization

function formulated in the form of a least square problem to determine the cluster

dispatch set-point P i
cl and also manage the state of charge of BESS within the cluster

i.
f(P i

cl) = 1
2

∥∥Ei ∗ soci(ref)− Ei ∗ soci(k − 1) + P i
cl(k + 1) ∗ Tac

3600
‖2

+1
2
‖P i

cl(k + 1)− P i
nl(k − 1)‖2

(5.8)

Here, Ei is the total storage capacity of the cluster, soci(k − 1) is the aggregated

storage available in each cluster at time k, and Tac is the time resolution at which the

area controller is running.

The solution of the local optimization is constrained by total kW support limits

+− pKWi for all BESS within the cluster. (See equation 5.9)

−pKWi ≤ P i
cl(k) ≤ pKWi (5.9)

Let err(k) be the area error (difference between reference and measured power
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flow) at the time k. Since the dispatch from every cluster contributes towards the

total power flow, the previous time-step contribution of the cluster dispatches is

deducted from the error (
∑Nc

i=1 P
i
cl(k − 1)− err(k)). If z is the average dispatch from

all clusters, the global optimization function (g(z)) can be formulated as a least-

square optimization problem to minimize the area error as shown in equation 5.10.

Here z is also known as a global variable.

g(z) = 1
2

∥∥∥Nc ∗ z −
∑Nc

i=1 P
i
cl(k − 1)− err(k)‖2 (5.10)

where err(k) = Parea(k − 1)− Pref(k − 1)

An iteration (k + 1) of ADMM based optimization consists of three steps:

1. Local variable update P
i(k+1)
cl : Updating local variables P i(k+1)

cl , where i =

1, 2..Nc in parallel using equation 5.11

P i
cl

(k+1) = argmin
z,u

(f(Pcl)
i(k) + ρ

2

∥∥∥P i
cl − P i

cl
(k) + P

(k)
cl − z(k) + u(k)‖2) (5.11)

Here, P i
cl is the local variable, P i

cl
(k) is cluster set-point from previous iteration,

P
(k)
cl is an average set-point from previous iteration

2. Global variable update z(k+1): Requires all updated local variables to calculate

the mean P (k+1)
cl using equation 5.12 and then solving equation 5.13

P
(k+1)
cl = 1

Nc

∑Nc
i=1 P

i
cl

(k+1) (5.12)
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z(k+1) = argmin
z

(g(z) + Nc∗ρ
2

∥∥∥z(k) − u(k) − P (k+1)
cl ‖2 (5.13)

Here, ρ > 0 is the penalty parameter and u(k) is the dual variable, and z(k) is

the global variable value from the previous iteration.

3. Dual variable update u(k+1): Calculated based on the difference of the mean of

local variables (P
(k+1)
cl ) and the updated global variable z(k+1), as shown in the

equation 5.14

u(k+1) = u(k) + P
(k+1)
cl − z(k+1) (5.14)

The above theoretical formulation illustrates the ADMM based distributed opti-

mization algorithm that optimally manages each area’s power flow and provides a

consensus framework. All clusters have controllable assets (DERs) to help track the

cluster reference setpoints. The cluster setpoints are optimally calculated to balance

the local objectives and the global setpoint tracking. The local control setpoints are

optimally changed for each cluster to reach the global control objective, which is set

based on the optimization framework.

5.3.1 Use-cases for SOC based set-point generation

Table 5.1 presents 10 cases of the ADMM based set-point sharing. The test cases

assume three constant clusters with BESS kW rated capacities of 70, 25, and 50 kW.

The total BESS storage capacity is 225, 75, and 150 kWh. The storage ratings are

arbitrarily assumed to demonstrate the ADMM based set-point sharing with different

SOC levels of each cluster. Case 1-5 presents the case with SOC management while

tracking area set-point. Case 6-10 illustrates SOC and tie-flow management and area

reference tracking.
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Table 5.1: Test cases illustrating ADMM based area set-point sharing

Area
Error SOC Tieflow Setpoints Area Error

(With Control)
Cluster Cluster Cluster

Case 1 2 3 1 3 3 1 2 3
1 100 0.5 0.5 0.5 – – – 45.8 14.52 37.61 2
2 100 0.25 0.5 0.5 – – – -16 25 50 41
3 100 0.1 0.5 0.5 – – – -75 25 50 100
4 100 0.1 0.1 0.5 – – – -75 -25 50 150
5 100 0.8 0.1 0.3 – – – 75 -25 50 0
6 100 0.5 0.5 0.5 30 -20 10 49.2 -0.1 29.5 21.4
7 100 0.25 0.5 0.5 30 -20 10 -11.8 19.9 49.6 42.2
8 100 0.1 0.5 0.5 30 -20 10 -75 25 50 100
9 100 0.1 0.1 0.5 30 -20 10 -75 -25 50 150
10 100 0.8 0.1 0.3 30 -20 10 58 -25 37.3 29.7

• Equal SOC Case: Case 1 and Case 6 assumes equal SOC level for all clusters.

Case 1 accurately tracks the area reference with an error of only 2kW. Since the

tie-flow contradicts the dispatch set-points for each cluster, the area reference

tracking is compromised while minimizing the overall tie-line flow error. When

tie-flow management is applied, the area error increases to 21.4 kW, whereas

the total tie-flow error reduces from 27 kW to 19.5 kW.

• Low SOC Case: The SOC level of cluster 1 reduces to 0.25 for Case 2 and

Case 7. Hence, cluster 1 is assigned a set-point to charge at a lower rate while

clusters 2 and 3 are discharging at full capacity. The area error increases to 41

kW for case 2. Since the weights for SOC management are higher than tie-flow

management for cluster 1, the area error increases only by a small magnitude

to 1.2 kW, and no significant difference is observed in the tie-flows.

• Extremely low SOC Case (Cluster): The SOC level of cluster 1 reduces down

to the lower threshold of 0.1. Hence, cluster 1 is assigned a set point to charge

at total capacity. The functionalities of area reference tracking are disabled for

cluster 1. To minimize the impact of cluster 1 charging at the rated capac-
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ity, cluster 2 and cluster 3 are assigned the set-points to discharge at the full

capacity.

• Extremely low SOC Case (Grid): The SOC level of cluster 1 and cluster 2

reduces to 0.1. Also, the overall storage level of the grid is below 25% for

Case 4. Hence, clusters 1 and 2 are set to charge at the rated capacities. The

impact of the high charging on the area reference is minimized by cluster 3 by

discharging at full capacity. Since the tie-flow management is automatically

disabled (because of lower priority), there is no variation in the tie-flows of case

4 and case 9.

• Unbalanced SOC: The SOC level of cluster 1 is 0.8 (overly-charged), cluster

2 is 0.1 (lower threshold), and cluster 3 is 0.3 (normal operating range). All

clusters track the area reference accurately without tie-flow management (Case

5). With Tie-flow minimization (Case 10), the area error increases to 29.7 kW,

and the tie-flow error reduces from 34 kW to 22.7 kW.

With the same system configuration (BESS ratings and 3 clusters), the effect of

area control was quantified through 1000 random scenarios of area set-points and SOC

values of three clusters. Figure 5.3 to Figure 5.4 shows the results from area control

without Tie-line flow minimization. System SOC significantly impacts the BESS

support capabilities. The cluster set-point restores the state of charge whenever the

BESS is depleted or over-charged. Figure 5.3 shows the variation in the area error

for different SOC levels of the system. The system SOC level suggests the average

SOC of all clusters. The area error is significantly reduced for the cases with the

system SOC between 0.3 and 0.7. The area error gradually increases for the SOC

below 0.3 and beyond 0.7. The operational bandwidth for tracking the area reference

is between 0.2 and 0.8. Hence, the clusters start SOC restoration for any cases with

system SOC below or above 0.2. As a result, the area error increases for these cases.
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Figure 5.3: Effect of system SOC on area error

Figure 5.4: Effect of area control on area error

Figure 5.4 shows the effectiveness of area control in reducing the area error. The

slope of the regression line indicates 73% reduction in the area error. The higher

density of the points near y = 0 shows the effectiveness of the area control in reducing
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the area error. The reduction in area error is further quantified through the error

distribution plots. Figure 5.5 shows the error distribution without area control. Since

the scenarios are randomly generated, the 100 scenarios are equally distributed for the

area errors between -100 to 100 kW. Every bin of 10kW width has anywhere between

40 to 60 scenarios. The figure 5.6 shows the reduction in area error with the area

control. >65% cases have shifted to the bins with errors between -10kW to 10 kW.

Hence, the proposed approach effectively reduces the error below 10 kW for >65% of

the cases.

Figure 5.5: Error distribution without area control
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Figure 5.6: Error distribution with area control

Figure 5.7 to 5.8 shows the results from area control along with the tie-line flow

minimization. An additional objective in the optimization is expected to impact the

efficiency in reducing the area error. Here, the spectral clustering approach is expected

to identify the balanced clusters, whereas the area controller may help maintain the

load and generation balance within the clusters by minimizing the netload. Figure 5.7

shows the variation in the area error for different SOC levels of the system. The area

error is reduced for the cases with the system SOC between 0.3 and 0.7. However, the

reduction in the area error is not as efficient as in use-case 1. The area error gradually

increases for the SOC below 0.3 and beyond 0.7. The operational bandwidth for

tracking the area reference is between 0.2 and 0.8. Hence, the clusters start SOC

restoration for cases with system SOC below 0.2 or above 0.2. For the boundary

cases, the tie-line flow minimization is automatically disabled by the reduced weights

in the objective function, and hence the area error is comparable to use case 1.



83

Figure 5.7: Effect of system SOC on area error with tie-line flow minimization

Figure 5.8: Effect of area control with tie-line flow minimization on the area error

Figure 5.8 shows the effectiveness of the area control in reducing the area error

along with the tie-line management. The slope of the regression line indicates a 65%

reduction in the area error. The reduction in area error is further quantified through
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the error distribution plots. Figure 5.9 shows the reduction in area error with the

area control. >50% cases have shifted to the bins with errors between -10kW to 10

kW. More than 80% cases show the area error reduction between -50kW and 50kW.

Figure 5.9: Error distribution with area control and Tie-line flow minimization

Figure 5.10 and figure 5.11 shows the distribution of the tie-line flow for use case 1.

The average tie-line flow without the net-load minimization is 47 kW. With the net-

load minimization, the average tieflow gets reduced to 41 kW. The reduction tie-line

flow can be improved by increasing the corresponding weight of the local objective

function in equation 5.11. However, added objective to minimize the tie-flow would

impact the area error. Also, the distribution grid’s re-clustering will identify the

balanced clusters, if required. The proposed approach is intended to maintain the

balance among the clusters while reducing the area error.
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Figure 5.10: Distribution of tie-line flow without control

Figure 5.11: Distribution of tie-line flow with control

5.4 Reference set-point tracking

The ADMM based sharing algorithm provides the reference for each cluster based

on the area error set-points. The cluster reference is calculated at a higher time res-
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olution than the cluster control set-points to avoid the haunting among the controls.

The cluster control set-points are calculated to the least square estimation approach

for every cluster based on the cluster references. The objective function of the least

square estimation is given by:

minU =
∑T

t=T−∆t
1
2
(Pnl(t, k) ∗ x(t, k)− P ref

nl (t, k))2 (5.15)

Every BESS within the cluster is charging or discharging at a different rate. If the

cluster control time resolution is Tc and the ramp-rate limitations for BESS bess(i)

for cluster k is ζbess(i), the total ramp rate limitations for the cluster k is given by:

ζc(k) =
∑N

i=1 ζbess(i) (5.16)

Based on the ramp rate limitations of the cluster, the constraint of the lease square

estimation is formulated as

(−ζc(k)−Pnl(t−1)+P refnl (t)

Pnl(t−1,k)
≤ x ≤ (ζc(k)−Pnl(t−1)+P refnl (t)

Pnl(t−1,k)
(5.17)

Based on the value of optimization coefficient x, the change in the cluster dispatch is

calculated as:

dp(t) = 1
∆t

∑T
t=T−∆t Pnl ∗ x(t)− Pnl(t− 1) (5.18)

Pset(t) = Pbessmeasured(t− 1) + dp(t) (5.19)

The reference set-point tracking is illustrated on a small cluster. The cluster is

assumed to have a rated kW support capacity of 100 kW and a total ramp rate

limitation of 10 kW/s. The total storage within the cluster is assumed to be 300kWh.

The initial SOC is set to 0.5 to understand the effect of the control on the SOC of

the storage. The proposed approach is analyzed for two use cases- Net-load balance

and Dynamic set-point tracking. To better understand the impact of the control time
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resolution on the reference tracking, the three-time intervals - 5s, 30s, and 60s are

analyzed for each use case.

• Net-load Balance: The use case demonstrates the local load support capability

of the control architecture. The cluster net-load reference is zero, indicating a

perfect balance of load and generation within the cluster. Figure 5.12 shows

the tracking performance of the cluster control simulated for >2.5 hours. The

net load without control shows both PV and load intermittencies within the

cluster. High intermittencies between 0 and 2000 seconds indicate the tripping

of PVs. The control at lower time resolution offers granular tracking, especially

during the intermittencies. The table 5.2 shows the root mean square error for

the zero reference tracking. For 5-second control time-resolution, the RMSE

reduces to 11.26 kW, indicating 71% improvement compared to the net load

without control.The SOC variation is similar for all control time resolutions

(Figure 5.13).

Figure 5.12: Effect of control time resolution on the Net-load reference tracking
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Table 5.2: Effect of control time-resolution on the tracking error

Use Case 1
Without Control 39.6 kW
Time Resolution RMSE With Control % Improvement

5s 11.3 kW 71.5%
30s 14.5 kW 63.4%
60s 17.7 kW 55.1%

Use Case 2
Without Control 39.3 kW
Time Resolution RMSE With Control % Improvement

5s 18.2 kW 53.7%
30s 22.4 kW 43.0%
60s 26.5 kW 32.4%

Figure 5.13: Effect of control resolution on the cluster SOC

• Dynamic setpoint tracking: This use case demonstrates the tracking capability

of dynamically varying external setpoint. The cluster set-load reference is gen-

erated every 500 seconds based on the local net-load envelope. The figure 5.14

shows the tracking performance of the cluster control simulated for >2.5 hours.

The setpoint changes from 0 to 75 kW at 5500s. It takes 220 seconds for the

cluster BESS to change the dispatch from -80kW to 50 kW. The higher setting

time is primarily because of the net load, which gradually decreases from 70 kW

to 20 kW. Table 5.2 shows the root mean square error for the set-point tracking.
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For 5-second control time-resolution, the RMSE is 18.19 kW and increases for

the control at lower time resolution. The SOC variation is similar for all control

time resolutions.

Figure 5.14: Effect of control time resolution on netload reference tracking

Figure 5.15: BESS output for control at different time resolution

5.5 Implementation: IEEE 123 bus system

The proposed approach of set-point tracking and ADMM based area controller

set-point sharing is demonstrated on IEEE 123 bus system with DERs. The DER

ratings and locations and the load and PV profile are discussed in chapter 4. The

proposed control is implemented in an OpenDSS based co-simulation environment.
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The ADMM based area control and set-point tracking algorithms are implemented

as a Matlab function. The python based controller script executes the proposed

algorithm periodically. The cluster set-point tracking is performed at a 5-second

resolution, and the area control-based set-point sharing is performed every 5 minutes.

The proposed approach is demonstrated through following case studies.

• Use case 1: Dynamically varying area set-points:

• Use case 2: Net-load minimization:

5.5.1 Use case 1: Dynamically varying area set-points.

Here, the set-points are provided to the area controller for tracking. Figure 5.16

shows the feeder-head power-flow without control and the set-points to track at the

feeder-head. The proposed approach shares the set-points among the clusters based

on the BESS state of charge and tie-line flows. The cluster control is implemented for

static and dynamic clusters. Figure 5.16 shows the feeder-head power-flow tracking

the set-points. Figure 5.17 compares the tracking error for both- constant and dy-

namic cluster configuration. The RMSE tracking error for dynamic cluster control is

72 kW, and for the constant cluster, control is 73kW. The cluster control reduces the

overall error from 238.8 kW to 73 kW. Table ?? summarizes the tracking error at the

cluster level for both static and dynamic control. Figure 5.19 and figure 5.20 shows

the tie-line flow for both control strategies. The tie-line flow is lower for dynamic

clusters because of varying cluster configurations.
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Figure 5.16: Tracking of area controller set-point at feeder-head

Figure 5.17: Tracking error for static and dynamic cluster control
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Table 5.3: Tracking error at cluster level

Constant Cluster Dynamic Cluster
Cluster1 30.0 37.4
Cluster2 14.0 16.9
Cluster3 10.2 19.7
Cluster4 31.0 28.8
Cluster5 30.4 37.4
Cluster6 30.2 9.4

Feeder-head 73.1 72.6

Figure 5.18: Area set-point sharing at tracking at cluster level

Figure 5.19: Tie-line power-flow for constant cluster configuration
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Figure 5.20: Tie-line power-flow for dynamic cluster configuration

5.5.2 Use case 2: Net-load minimization

Here, the feeder-head reference is set to zero. The use case aims at supporting the

loads on the feeder through local DER generation. Here, the use case is intensive

in terms of BESS’s support requirements. The use case also establishes the ground-

work for the islanded operation through cluster control discussed in chapter 7. Here,

the BESS is required to support the dedicated clusters’ local load. The area con-

troller distributes the set-points to each cluster based on the approach discussed in

this chapter. By supporting the loads within the clusters, the net load of the feeders

tracks the zero reference. Figure 5.21 shows the overall of the feeder tracking the zero

reference. Since the BESS KW requirement is substantially high for net-load mini-

mization purposes, the SOC depletes over time, limiting the use case demonstration

to only a few hours. Figure 5.22 shows the envelope of BESS state of charge. One of

the clusters has a higher PV generation than the load. Hence, the BESS belonging to

that cluster charges to make net-load at cluster level equal to zero. 70% is set as an

upper threshold, after which the BESS from the cluster with additional generation

starts contributing at the feeder level in reducing the overall tracking error.
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Figure 5.21: Feeder head powerflow for net-load minimization

Figure 5.22: Variations in BESS SOC during net-load minimization application

5.6 Chapter Summary

The chapter proposes an ADMM based sharing approach for distributing the feeder-

head setpoints provided by the area controller among the cluster. Along with the

tracking error at the feeder-head, the cluster SOC level and the tie-line power flows are

also included in the local objective function of the ADMM based sharing optimization.

The chapter also proposes modifying the cluster control approach presented in the

previous chapter to track the cluster reference setpoints. The proposed approach is

implemented on IEEE 123 bus system for two use-cases: Area controller reference
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setpoint tracking and Feeder net-load minimization.



CHAPTER 6: Model predictive control approach for DER clusters in power

distribution system

6.1 Introduction

Model predictive control is often used to control dynamic systems where predic-

tions can further improve the tracking accuracy. The previous chapter proposed an

approach of ADMM based sharing of the set-points and a least square estimation-

based approach to track the set-points. The least-square estimation-based approach

is further improved in this chapter to work as an optimizer for the model predic-

tive control. Figure 6.1 shows the complete control architecture for the cluster-based

control along with the implementation of the model predictive control.

Figure 6.1: Cluster control architecture

Section 6.2 introduces the model predictive control application for controlling the

cluster net-load. Section 6.3 discusses an ADMM based approach for estimating the

plant model at the given operating state based on the measurements. Section 6.4
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provides the theoretical formulation of the MPC optimizer. Section 6.5 discusses the

results of implementing the complete control architecture on the 650 bus system.

6.2 Model Predictive Control

Model predictive control is a widely used advanced control technique for multiple

variable systems. If a dynamic model of the system is available, optimized input

variables can be calculated based on past measurements and predict their impact on

the output.

The input variables to MPC are classified into three types:

• Manipulated Variables: Manipulated variables are the input variables to the

system that can be changed. In cluster control applications, the BESS set-

points are the manipulated variables.

• Measured Disturbance: The system inputs that can not be altered are the

measured disturbance. The critical load measurements may be available from

the field; however, they are not controlled externally through any set points.

Hence the measured load can also be considered as the measured disturbance.

• Unmeasured Disturbance: Not all the loads on the system are measurable. Also,

the losses in the distribution system can not be measured. Since direct mea-

surements are not available for these variables, they are known as unmeasured

disturbances.

The output variables are also known as the control variables. The control variable

captures the interaction between the manipulated variables and the system distur-

bances. In the current work, the cluster net-load is considered as the control variable

in the proposed application.

Figure 6.6 shows the MPC based cluster control architecture. The MPC-based

control framework is primarily comprised of two components: System Identifier and
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Optimizer. The system identifier is responsible for estimating the system’s state

based on the measurements. An optimizer calculates the optimum set-point values

for the control of the clusters. The system model estimated by the system identifier

is used to predict the system behavior and optimize the future set-points based on

the predictions. The following section discusses the formulation of system identifiers

and optimizers in detail for the cluster control application.

Figure 6.2: MPC based cluster control

6.3 Theoretical Formulation: Plant Model Estimator

The success of the MPC framework depends on the accuracy of the plant model.

An inaccurate model or unstable model can worsen the system’s operating condition.

The predictions are performed using a dynamic model. Although a distribution sys-

tem is non-linear, modeling a non-linear system is analytically and computationally

intensive. Hence, the measurements are used to linearize the system operation at

the specific operating condition. MPC approaches typically prefer the line, empirical

models as a multi-variable version of the step response or difference equation models.
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Figure 6.3: Representation of the cluster as a system

Current research proposes an ADMM based estimation of the transfer functions.

Chapter 5 proposed the application of ADMM based approach for solving the sharing

problem. The same approach is used for solving a consensus problem in this chapter.

The figure 6.3 shows the cluster as a local system with inputs and outputs. The net

load within the cluster is a linear combination of load, PV, losses, and BESS output.

BESS and PVs are inverter-based resources. Hence, all inverter-based resources con-

tribute to the overall dynamics of the system. The measurements are available for

all PVs, storage, and measured loads. Hence the cluster system can be modeled as

a multiple input single output system. The inputs of the MISO system are classified

into a manipulated variable (all BESS), measured noise(Load and PV), and unmea-

sured noise(losses and unmeasured loads). Considering the futuristic scenario of the

potential field application, it is fair to assume that the measurements from all loads

are available. Hence, all PVs and loads can be aggregated as the total measured noise

on the system. The set-points provided to the individual BESS acts are the only

manipulated variables within the clusters.
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A MISO system with inputs u1, u2, and u3 and output P1 can be represented as

[
P1(z)

]
=

[
G11(z) G12(z) G13(z)

]
u1(z)

u2(z)

u3(z)

 (6.1)

Here G(z) are the transfer functions mapping the individual inputs to the output.

The individual transfer functions can also be represented as:

G11(Z) =
P1(z)

u1(z)
=

b1
1z
−1 + b1

2z
−2 + .....+ b1

kz
−k

1 + a1
1z
−1 + a1

2z
−2 + .....+ a1

kz
−k (6.2)

G12(Z) =
P1(z)

u2(z)
=

b2
1z
−1 + b2

2z
−2 + .....+ b2

kz
−k

1 + a2
1z
−1 + a2

2z
−2 + .....+ a2

kz
−k (6.3)

G13(Z) =
P1(z)

u3(z)
=

b3
1z
−1 + b3

2z
−2 + .....+ b3

kz
−k

1 + a3
1z
−1 + a3

2z
−2 + .....+ a3

kz
−k (6.4)

Equation 6.2-6.4 can also be represented in the least square format as follows:

[
L1 M1

]a1

b1

 =

[
B11

]
(6.5)

[
L2 M2

]a2

b2

 =

[
B21

]
(6.6)

[
L3 M3

]a3

b3

 =

[
B31

]
(6.7)

a : is vector of denominator coefficients , a1 = a2 = ....... = a4 = z

b : vector of numerator coefficients
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L : is matrix of previous samples of Pm

M : is matrix of current and previous samples of un

For a MISO system, the denominator of all transfer functions need to be equal.

Hence, the objective here is to make a1 = a2 = ....... = a4 = z. The objective

function for the global consensus problem is represented as:

Min︸︷︷︸
a1,...aq ,z

2∑
q=1

1

2

∣∣∣∣∣
∣∣∣∣∣
[
Lq
] [
aq
]
−

([
Bq

]
−

2∑
i=1

[
M q

] [
bq
])∣∣∣∣∣

∣∣∣∣∣
2

(6.8)

subject to aq − z = 0 (6.9)

Here, z is the global consensus solution, that is obtained when the local estimates

of all local processors denoted by aq reach the same value. The ADMM estimation

method uses Augmented Lagrange multiplier approach

Lρ =
2∑
q=1

1

2

∣∣∣∣∣
∣∣∣∣∣
[
Lq
] [
aq
]
−

([
Bq

]
−

2∑
i=1

[
M q

] [
bq
])∣∣∣∣∣

∣∣∣∣∣+ wTq (aq − z) +
ρ

2
||(aq − z)||2

(6.10)

Here, a and z are the vectors of the primal variables, w is the vector of the dual

variables.

As discussed in chapter 5, an iteration (k+1) of ADMM based optimization consists

of three steps. The forth step is added here to update the numerators of the transfer

function based on the updated denominators (global variables):

1. Local variable update ai(k+1): Updating local variables ai(k+1), where i = 1, 2..Nbess

are calculated in parallel.

2. Global variable update z(k+1): Requires all updated local variables to calculate
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the mean z(k+1) using equation 6.11

z(k+1) = 1
Nbess

∑Nbess
i=1 ai(k+1) (6.11)

3. Dual variable update u(k+1): Calculated based on the difference of local vari-

ables (a(k+1)) and the updated global variable z(k+1), as shown in the equation

6.12

u(k+1) = u(k) + a(k+1) − z(k+1) (6.12)

4. Numerator variable update b(k+1): This is an additional step to the ADMM

approach. Based on the changes in the denominator coefficients, the numerical

variables are re-calculated using the least square approach (Equation 6.13).

[M q][bq] = [Bq]− [Lq][aq] (6.13)

The approach for the transfer function estimation is validated through the following

steps:

• Generate a random nth order stable system with N inputs and 1 output in

MATLAB.

• Simulate the system with a series of training data with small perturbations.

• Use the output and the input data-set to generate the transfer function of mth

order using the proposed ADMM based approach.

• Validate the step response of the estimated and the simulated system.

• Validate the response of the system with the training data-set.
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The validation was performed over a 3rd order system with 3 inputs and 1 output

using the above approach. Figure 6.4 compares the actual and the estimated system.

The transfer function coefficients of the estimated system and the actual system

matches with fair accuracy. The step response and the system response to the training

data match with high accuracy.

Figure 6.4: Validation of estimated transfer function against the actual system of
same order.

An exact order of the distribution system is not known. Hence, a validation is

performed for a 10th order system against the 3rd order estimated system. Figure

6.5 compares the step response and the response to the training data for 10th order

system and the estimated 3rd order system. The step response does not capture

all the oscillation; however, the magnitude and the settling time of the actual and

estimated system are the same. The system output of the reduced-order system does

not capture the smaller intermittencies in the output. However, the overall output

profile closely matches the actual system.
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Figure 6.5: Validation of estimated transfer function against the actual system of
higher order.

The validation cases prove the system estimation accuracy at a given operating

point. If the control is performed at a higher time interval, the transfer functions are

expected to capture the dynamics from the distribution system.

6.4 Theoretical Formulation: Optimizer

An optimizer calculates the set-points for the actual system. An optimization for

the set-points is performed based on the historical values and the predicted response

of the system based on the system model. Figure 6.6 shows the optimizer modelled

for the cluster control.
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Figure 6.6: MPC Optimizer

Figure 6.7: Relevance of MPC configuration paraneters

The optimizer is configured for the following parameters (also represented in Figure
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6.7).

• Prediction Horizon- the future time intervals considered by the optimizer to

determine the manipulated variable’s setpoints.

• Control Horizon- the setpoints calculated for the future time steps based on

the predicted state of the system. The control horizon is kept less than the

predicted horizon.

• Input Limit: The constraint limiting the magnitude of the manipulated variable

• Input Rate Limit: The constraint limits the change of the manipulated variable.

• Input Penalty (R): The weight associated with the magnitude of the manipu-

lated variable in the optimizer cost function.

• Input Rate Penalty (E): The weight associated with the variation in the ma-

nipulated variable at each time-step in the cost function.

• Output Penalty (Q): The weight associated with the tracking error of the system

output.

The reference signal ri is provided by the area controller. The input limit is provided

based on each BESS’s kW rating and ramp rate constraint. If the optimizer calculates

the set-point for every control time-step, a smaller value for the Nc is preferred to

reduce the computational burden.

For cluster control application, the objective function for the optimizer can be

formulated as:

J = min
xN ,uN

t∑
i=t−N

[y(t)− r(t)]T ·Q · [y(t)− r(t)]+

t−n∑
i=t−n−N

UT (t) ·R · U(t)) +
t−n∑

i=t−n−N

∆UT (t) · E ·∆U(t)
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subject to

x(t+ 1) = Ax(t) +Bu(t), t = 0, 1, ..., Np − 1

y(t) = Cx(t), t = 0, 1, ..., Np

ymin ≤ y(t) ≤ ymax, t = 0, 1, ..., Np

umin ≤ u(t) ≤ umax, t = 0, 1, ..., Nc

∆umin ≤ ∆u ≤ ∆umax, t = 0, 1, ..., N

The objective function consists of 3-sub objectives: Tracking error minimization,

Input minimization, and Input rate minimization. A cluster with 2 BESS is used

to understand each sub-objective and the effect of weights associated with each sub-

objective.

1. Tracking error minimization: The r(t) is the reference signal provided externally.

The area controller provides the reference signal for each cluster. The sub-

objective is enforced through the output penalty weight (Q). Figure 6.8 shows

the tracking performance for different values of Q. Table 6.1 quantifies the effect

of Q on the tracking error. The tracking is optimal for the Q>5. No significant

improvement is observed for Q>5.

Figure 6.8: Effect of output weight (Q) on the reference tracking
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Table 6.1: Effect of output weight (Q) on the reference tracking

Q Error
- 34.2
0.5 11.16
1 5.51
5 4.55
25 4.55
50 4.55

2. Input minimization: The BESS setpoints are the inputs provided for the net-

load management. The number of input signals varies based on the controllable

DERs within each cluster. MPC framework determines the optimal inputs for

each DERs within the clusters. The input penalty weight R is used to penalize

the setpoints of each DER. The prioritization of the DERs can also be done by

manipulating the input weights associated with a specific DER. Figure 6.9 and

figure 6.10 shows the effect of input weights on tracking performance and the

SOC level of the storage. Table 6.2 quantifies the effect of R on the tracking error

and BESS utilization. The higher weight of the input penalty coefficient would

reduce the output/setpoint from the DERs and thereby increase the tracking

error. However, the higher weight of Q reduces the depletion of the storage

capacity.
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Figure 6.9: Effect of input weight R on the reference tracking

Figure 6.10: Effect of input weight (R) on the BESS SOC

3. Input rate minimization: This sub-objective aims at reducing the variations in

set-points of each BESS. The lower variations in the BESS output increase the

system stability. Figure 6.11 and 6.12 shows the effect of E on the tracking

error and output variations of the BESS. Table 6.3 quantifies the effect of E on

the tracking error. The input rate penalty weights do not significantly impact
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Table 6.2: Effect of input weight (R) on the reference tracking and BESS SOC

R Error Minimum SOC
- 34.2 -
1 4.55 0.42
5 4.6 0.42
25 14.46 0.44
50 25.27 0.46
100 31.42 0.48

the tracking error; however, it improves the management of individual DERs to

meet the overall goal (Figure 6.12).

Figure 6.11: Effect of input rate weight on the reference tracking
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Table 6.3: Effect of input rate weight (E) on the reference tracking and BESS dispatch

E Error Max(dp)
- 34.2 -
1 4.55 3
5 4.54 3
25 4.29 2.94
50 3.56 2.79
100 2.48 1.68

Figure 6.12: Effect of input rate weight (E) on the changes in BESS dispatch

The PV and load forecast contribute to the accuracy of MPC-based tracking. The

figure 6.13 shows three simple models predicting the disturbance. The research does

not focus on the short-term forecast but utilizes the short-term forecast for MPC

control. PV intermittencies are more compared to the load intermittencies. Hence, for

a system with high DER penetration, an accurate DER forecast itself would improve

the system’s accuracy. In the absence of the forecast, the previous measurement

values can also be extrapolated to get the magnitude of the disturbance (Figure

6.13). Figure 6.14 shows the output for different disturbance models. The tracking

error is minimum for the forecast model. The disturbance model extrapolating the

trend has the highest error because of PV intermittencies. The RMSE for the case of
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each disturbance is summarized in the table 6.4.

Figure 6.13: Short term feeder load forecast

Figure 6.14: Effect of load forecast on the tracking error
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Table 6.4: Tracking Error for different disturbance models

Error Without Control: 47.3 kW
Case Error %Reduction

With Forecast 17.42 63.15
Previous Measurement 20.15 57.37
Trend Extrapolation 23.07 51.18

6.5 Implementation: 650 bus system

Earlier, the cluster control was implemented on IEEE 123 bus system with 15 DERs

(PV + Energy Storage). Here PVs are assumed to be uncontrollable, and hence, the

MPC-based approach leverages the flexibility of energy storage for the cluster level

control. Hence for every cluster, the uncontrolled disturbance is the aggregated load

and PV generation. Since the state-of-art short-term PV forecasting algorithms can

predict the PV generation based on irradiance with a good amount of accuracy, the

forecasted cluster net-load consists of load forecast based on 5 minutes moving average

(figure 6.15) scaled down to local cluster level load and actual PV generation in the

cluster. The evaluation of the model predictive control approach is performed by

analyzing the following two use cases with a fixed cluster configuration.

Figure 6.15: Feeder Netload forecast
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Table 6.5: DER Ratings for 650 bus system

DER Type kW Rating kWh Rating Total Count Total kW Total kWh
PV 30 31 930
PV 60 23 1380
PV 180 22 3960
PV 500 3 1500
PV 1000 1 1000

BESS 45 135 22 990 2970
BESS 125 375 3 375 1125
BESS 250 750 1 250 750
Total 106 10385 4845

In this chapter, the fully integrated framework with all the algorithms viz;, area

controller, ADMM based transfer function development and the cluster control using

MPC is demonstrated on a 650 bus system. The DER ratings for IEEE 650 bus

system is summerized in table 6.5. This section will now show implementation and

use cases with this fully integrated framework with two metrics, the area and cluster

error and b) computationally able to run in less than 1 minutes.

Implementation and Use cases: The information of the distribution feeder is

included in Figure 6.16 for illustration purpose. The PV and load profile is shown in

Figure 6.17.

Figure 6.16: Dynamically varying clusters for 650 bus system
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Figure 6.17: Load and PV generation on the 650 bus feeder

6.5.1 Use case 1: Area Control with Set-point Tracking

The first study was to have the area controller tracks the feeder head power ref-

erence in the form of area reference. Figure 6.18 presents the tracking ability of

the area controller (marked as dynamic clusters with control). It is noted that the

area controller not only tracks the the set-point well, but also delivers appropriate

cluster set-points. We have also tested the algorithm with dynamically changing

cluster formations of DER clusters. The integration of dynamically changing active

power cluster algorithm shows that with dynamic clusters (blue plot), the integrated

framework provides better tracking ability as opposed to static clusters and without

control.

Table 6.6: Average Error: Use case 1

Cluster ID Without Control With Control % Error With Control
Cluster 1 514.4 kW 232.7 kW 1.41%
Cluster 2 60.4 kW 16.3 kW 1.3%
Cluster 3 81.7 kW 17.8 kW 1.7%
Cluster 4 104.6 kW 36.0 kW 2.35%
Cluster 5 69.5 kW 23.4 kW 1.87%
Cluster 6 59.6 kW 14.5 kW 1.54%
Feeder-head 668.6 kW 232.7 kW 1.21%
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Figure 6.18: Use case 1: Area controller set-point profile and feeder response.

Figure 6.19: Use case 1: Cluster Set-point Tracking.

Figure 6.20: Frequency of error distribution between static and dynamic cluster based
overall architecture.

It also ensure that the cluster netload is close to zero based on the given battery

capacity. As it can be seen from figure 6.19, the MPC ADMM framework was able to

track the cluster set-points (set by the area controller) well. Table 6.6 illustrates the

overall % error with and without area control. It can be seen that the maximum %
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error is less than 3. The frequency of error distribution for various tests are illustrated

in figure 6.20. It can be seen that with dynamic cluster, the % error is shifted more

to below 1.

Figure 6.21: Area controller set-point profile and feeder response.

6.5.2 Use case 2: Active and Reactive Power Control

The second test (out of all the integration test) we are going to illustrate is to

show the ability of the overall framework to perform and active power (P) and reac-

tive power (Q) tracking. Figure 6.21 illustrates the cluster counts that is changing

dynamically with time. This shows that the cluster formation is stable and both clus-

ters (active power and reactive power- sensitivity based clusters) are changing with

time. It can also be seen that the active power control tracks the set point better and

accurately as opposed to controller without active power.
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Figure 6.22: Voltage variations for measurement and non measurement node of 650
bus system

Figure 6.23: Voltage variations for 25 random system nodes with active power control
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Figure 6.24: Reduction in the voltage variations for 25 random system nodes with
active and reactive power control.

The goal of the reactive power set-point along with sensitivity based clustering is to

track the Q such that the voltage profile, especially of most important nodes (DERs,

regulator points and PCC) are flat as possible. Figure 6.22 illustrates two voltage

profiles (one on a battery point- BESS 10) and another random load point. It can

be seen that the profile is smooth with the proposed algorithm when compared to no

reactive power clustering and support.

Figure 6.23 represents the voltage variations for 25 random system nodes with

active power control. It can be seen that the voltage band error is between 1.055

and 1.02. Figure 6.24 represents the voltage variations for 25 random system nodes

with active power and reactive power control. It can be seen that the voltage band

error is between 1.05 and 1.027. This illustrates that the voltage profile has a tighter

bandwidth with the proposed architecture.

The frequency of the error distribution with the active and reactive power control

is illustrated in figure 6.25. It can be seen that the error for majority of instances is

still constrained to less than 5% with the added reactive power control.
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Figure 6.25: Frequency of error distribution between static and dynamic cluster based
overall architecture.

6.5.3 Computational time and overall integration time frame

The overall integration framework is illustrated in figure 6.26. it can be seen that

the complete architecture modules can be executed within 20 seconds (sequentially)

time frame. However, not all modules are executed at every time step. The cluster

control is the only module that runs at the 5 second time interval. The computational

time for the cluster control module and parallel execution of processes to calculate the

set-points for each cluster and corresponding DERs is between 2-4 seconds. Hence, the

current architecture is implementable on the real-time systems at a control resolution

of 5 seconds. Currently, we are running the complete framework in the standard PC

with i7-7700 processor @3.6GHz and 16 GB RAM.
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Figure 6.26: Overall integration framework with timing.

6.6 Chapter Summary

The chapter implemented the model predictive control approach to improve the

tracking performance of the clusters. An approach was proposed to estimate the sys-

tem state using the ADMM based optimization. The approach successfully identifies

the systems of similar or higher order. A complete control framework is implemented

on a 650 bus system. Implementation of the control framework on the 650 bus system

proves the scalability of the approach.



CHAPTER 7: Resiliency Management of power distribution system with DERs

7.1 Introduction

Chapter 1 introduces the requirement of a critical load management system. The

primary goal of the critical load management system is to provide uninterrupted

power to the critical loads on the system. From a utility’s perspective, maximizing

the support to both-critical and non-critical assets on the grids would further increase

the overall grid resilience. Chapter 4-6 proposes the cluster-based control strategies

to locally support the load on the distribution grid for multiple applications. The

current chapter proposes an approach to improve the resilience of the distribution

grid through cluster control of DERs and optimized load management.

Section 7.2 introduces the metrics to quantify the system resilience for the critical

loads. Section 7.3 discusses the adaptability of the proposed cluster control approach

for a re-configured grid during the system disturbance. Section 7.4 proposes an ap-

proach for managing the loads within the cluster through DER support in an islanded

operating condition during a grid outage. Finally, the proposed load management ap-

proach is implemented on the IEEE 123 bus system along with the cluster control of

DERs in section 7.5.

7.2 Resiliency Metrics

Presidential policy directive (PPD-21) designates the power grid as critical infras-

tructure and defines resilience as: “The term ‘resilience’ means the ability to prepare

for and adapt to changing conditions and withstand and recover rapidly from disrup-

tions. Resilience includes the ability to withstand and recover from deliberate attacks,

accidents, or naturally occurring threats or incidents.” The resilience of the power
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grids differs from the reliability in terms of the operating state. Reliability of the

grid is quantified for the normal operating conditions, whereas the grid’s resilience is

quantified for the grid to operate during disruptive events capable of creating outages.

Currently, the metrics quantifying resiliency are under development. The power

grid industry still lacks the universally recognized and accepted standards to quantify

resiliency. Hence, the current work derives the consequence-based resilience metrics,

as proposed in [104].

Figure 7.1: Representation of the system resilience level during the disturbance [105]

Figure 7.1 shows the resilience of the system during the disturbance, as implied by

IEEE-PES task force on Resilience framework, Methods and, Metrics for Electricity

Sector [105]. A typical disturbance event is classified into three phases- Disturbance

progress, post-disturbance degraded state, and restorative state. The metrics dis-

cussed in the current chapter represent the system’s resilience level based on the

consequence-based resilience metrics. Here, the resilience during a grid outage event

is calculated through the relative comparison against the normal operation condition.

The cause of the outage is out of the study scope. The resiliency of the distribution
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grid during the loss of service, irrespective of the cause of the outage, is quantified in

terms of loss of loads, economic loss, and social discomfort.

7.2.1 Loss of loads

Figure 7.2: Overall integration framework with timing.

Loss of load metrics is widely used to quantify the system resiliency. Here, the loss

of load is extrapolated for the outage period and compared against the energy served

during the normal operation condition. Figure 7.2 represents the scenario where an

outage affects the part or the complete load on the grid. Here, if En
grid is the energy

served during normal operation and Eo
grid is the energy un-served during the grid

outage, the resiliency is quantified is shown in the equation 7.2

Rl = 1− Eogrid
Engrid

(7.1)

The value of the Rl ranges between 0 and 1. 0 represents the complete loss of

load during an outage, whereas 1 represents a resilient grid capable of overcoming the

grid outage. Depending on the type of load being served at each metering point, the
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criticality level of the load varies. Utilities may categorize the loads on the distribution

grid based on customer data and assign an appropriate critical level. The loss of load

calculation can be further applied for each critical load level to identify the impact

on each category. Current work assumes 5 critical levels (levels 1 to 5) for the loads.

Here the level 5 loads are considered the most critical loads on the system.

Rl(C) = 1− Eogrid(C)

Engrid(C)

where C = 1, 2, 3, 4, 5
(7.2)

7.2.2 Economic loss

Figure 7.3: Economic loss during an outage

The economic consequences during a grid outage are experienced by both-Utility

and the customers. From the utility’s perspective, the economic consequence includes

the loss of revenue and the cost of grid repairs and recovery. The economic loss for

the customer varies based on the type of services being offered by the customer. This

may account for but is not limited to loss of assets, business revenue, and business

interruption. The different types of economic losses are aggregated in the current
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work and represented by assigning an economic loss factor ε to each load on the

system. For an outage duration Tout, the economic loss (REL) for the load i is given

by equation 7.3. For a distribution feeder outage affecting N customers, the total

economic loss is the aggregated economic loss of all load on the system (Equation

7.4). It is to be noted here that the economic loss may or may not correlate with the

criticality level of the load. For example, the economic loss for a grocery store may

be higher; however, the criticality level for a healthcare facility like a clinic may be

high compared to the grocery store.

REL(i) = ε(i) ∗ P i
kw ∗ Tout(i) (7.3)

REL =
∑N

i=1 ε(i) ∗ P i
kw ∗ Tout(i) (7.4)

7.2.3 Loss in social discomfort

The social discomfort aspect of grid resilience is not easily quantifiable. The so-

cial discomfort during the grid outage varies for every customer and depends on the

weather condition. For example, the social discomfort experienced by a nursing home

may be significantly higher compared to a mid-aged residential customer. Also, the

social discomfort may be lower during moderate temperatures than in extreme tem-

peratures (extreme summer and winter). During extreme weather conditions, the

social discomfort may increase non-linearly with outage duration. Hence, during the

system-wide events due to significant loss of generation, utilities plan rotating outages

to reduce the outage duration at specific locations. In the absence of a well-established

model quantifying social discomfort, the current work proposes a linear model where

every load on the distribution grid is assigned a social discomfort factor ψ. For an

outage duration Tout, the total social discomfort (RSD) for the load i is given by equa-

tion 7.5. The total social discomfort caused to all customers during the grid outage
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can be aggregated as shown in the equation 7.6.

RSD(i) = ψ(i) ∗ Tout (7.5)

RSD =
∑N

i=1 ψ(i) ∗ Tout(i) (7.6)

7.3 Situational awareness based cluster formation

The major disturbances may result in partial loss of the distribution grid, loss of

distributed energy resources, or may react through an automated reconfiguration.

The proposed clustering approach in chapter 3 is further improved to adapt to each

of these disturbances. This section demonstrates the adaptability of the distribu-

tion grid clusters to the varying grid conditions. The proposed controller monitors

the variations in the switch positions, DER outputs, and feeder-head power flow. If a

change in the switch position is detected, a re-clustering flag is triggered. An external

power flow is performed by mapping the switch position and the most recent mea-

surements from loads and DERs. The variations in the grid conditions are reflected

in the power flow, which is then considered for the re-clustering of the distribution

grid.
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Figure 7.4: Situational awareness based cluster formation

7.3.1 Partial outage of the distribution feeder

Figure 7.5: Adaptability of the clustering approach during partial outage scenario
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The partial outage on the grid typically occurs due to local faults and the result-

ing response from the protection devices. Routine maintenance may often require an

outage on the distribution grid. Under such operation conditions, the proposed clus-

tering approach is required to accommodate the partial grid outage. Typically, the

power-flow results show zero power-flowing through the lines affected by the partial

outage. Hence, the adjacency matrix, diagonal matrix, and the resulting Laplacian

matrix would be singular. The automated cluster detection algorithm would fail

since the singular matrix only has 0 as the eigenvalue. To overcome matrix singu-

larly due to partial outage, the branches with power flow lower than the threshold

are ignored during the graph formation. Then nodes connecting the branches with

non-zero power flow are re-numbered to create the reduced Laplacian consisting of

only active elements. The clustering is then performed over the reduced Laplacian.

Figure 7.5 shows the cluster formation during the partial outage on the grid.

7.3.2 Grid re-configuration

Figure 7.6: Adaptability of clusters to grid
reconfiguration

The grid reconfiguration during the

disturbances is performed to connect the

healthy part of the affected feeder to

the operational zone of the same feeder

or an adjacent feeder. When an adja-

cent feeder is connected, a new node and

branch is added to the clustering ap-

proach. The algorithm ensures the addi-

tion of the additional nodes and branches

to the system during the reconfiguration.

The figure 7.6 shows the cluster forma-

tions on IEEE 123 bus system during the

grid-reconfiguration scenario.
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7.3.3 Switch location based clusters

Major interruptions often occur dur-

ing severe weather conditions. The clus-

ter control approach can further help

grid operators prepare for any possible

grid disturbances during severe weather events. Constraining the clusters based on

the switch locations and maintaining the net-load balance through cluster control

(discussed as a use-case 2 in the chapter 5) ensures that the load within the cluster is

locally satisfied. Also, this reduces the power flow trough through the switches con-

siderably, which may later help in the seamless operation of switches or beakers upon

the requirement. Also, if the local storage is equipped with grid forming functionali-

ties, the net-load balance through cluster control may help in the seamless transition

of inverters from grid following to grid forming modes. Figure 7.7 shows the clusters

on IEEE 123 bus system contrained by the switch positions. The following additions

are made to the proposed two-layer spectral clustering approach to ensure that the

clusters are formed based on the switch location.

• The power flow through the switch is set to the threshold value

• Minimum number of clusters is set to the zones identified based on the switch

locations.

• Minimum number of DER within the cluster is limited to 2 to support the is-

landed operation. The clustering results are post-processed using the algorithm

to meet the requirement for the minimum number of clusters.
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Figure 7.7: Switch locations based clusters

7.4 Resilient cluster control through management of loads

As discussed in section 7.1, the resiliency of the distribution grid is quantified

based on the duration and the number of customers affected during an outage. The

distribution grids with high penetration of DERs provide an opportunity to support

the grid through DERs during outages. However, DERs require the black-start and

grid forming functionalities for islanded operations. Modern BESS provides the grid

forming functionalities and is often implemented to provide backup power to critical

facilities. However, DERs have limitations in power and energy to support the loads.

Photovoltaics are intermittent generating resources with availability only during the

daytime, and BESS has limited availability based on its capacity and operating SOC

at the time of the event. Hence, advance management of loads is required, which

considers the limitations based on the operating state of local generation to support

the local loads during an outage. This section provides load management based on

its criticality factor and available energy from DERs.
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7.4.1 Load Management Problem Formulation

As discussed in the section, the loads on the distribution system can be classified

based on their criticality levels. In the current work, the loads are classified among

5 critical levels. For every cluster (k), the aggregated load for each criticality level is

given by

P k
kw(c, t) =

NL∑
n=1,n∈C,k

pn(t) (7.7)

The primary objective of load management is to maximize the interval of the load

support for loads belonging to each criticality level. If T (c) is the interval for which

a load of criticality level c is kept on during an outage of duration Tout, the objective

function to balance the duration among each load is given as

min
Nc∑
c=1

||Tout − T (c)||2 (7.8)

If the available energy from DER is known, an equality constraint for equation 7.8

is formulated as follows.

Nc∑
c=1

P k
kw(c, t) ∗ T (c) =

NBESS∑
i=1,i∈k

SOCi(t) ∗ Ebessi + EPV (5) (7.9)

Here, both BESS and PV are considered for the calculation of the available energy.

EPV (c), where c = 5 is the total energy generated by PVs by end of support

duration for critical load level 5. For PV, it is assumed that the PV generation

forecast is available. Based on the forecast, the available energy EPV (5) till time

T (5) is calculated using the following equation.

EPV (c) =

NPV∑
i=1,i∈k

To+T (c)∑
t=To

P forecast
PV (i, t) (7.10)

It is to be noted here that the T (5) is an optimization variable. Hence the pro-
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posed optimization is initiated with an initially assumed/estimated value of T (5)

with updates performed at the end of each iteration. The optimization ends when

the norm of optimization values between the consecutive iterations is less than the

given threshold.

The minimum support duration required for each criticality level is implemented

through the lower bounds of the optimization variable.

Tlb(c) ≤ T (c) ≤ Tub(c) (7.11)

The values of Tlb(c) and Tub(c) can be set by the distribution system operators

based on customer requirements derived through the surveys.

The support duration of the critical loads can be prolonged if the DERs are utilized

efficiently. The equality constraint looks at an overall energy distribution. However,

an additional set of objectives is required to ensure that the PV generation is utilized

efficiently and with a higher priority than BESS. The BESS can support the PV

dispatch by either charging or discharging the energy. Efficient utilization of the PV

generation is represented as a least square problem to reduce the difference between

the total energy produced by DER and total energy consumption by the active loads

till T (c).

min
Nc∑
c=1

||Tout − T (c)||2 + wder ∗
Nc∑
c=1

||(EPV (c)− P k
L(c) ∗ T (c))||2 (7.12)

Here EPV (c) is the forecasted energy from local PVs calculated using equation at

the end of each iteration based on the updated values of T (c). Here P k
L(c) is the

total active load just before the load shedding time T(c). It is calculated using the

following equation.

P k
L(c) =

Nc∑
i=c

P k
kw(i, t) (7.13)

As discussed in the section, the economic loss during an outage contributes to grid
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resiliency. However, the scale of economic loss may not correlate with the criticality

level of the load. Hence, if each load i on the distribution feeder has an economic loss

ε(i) associated with it, the total economic loss for each category of critical load can

be represented as

εkL(c) =
N∑

i=1,i∈c

ε(i) ∗ P k
kw(i, t) (7.14)

Similarly, the social discomfort can also be aggregated based on the criticality levels

of the load.

ψkL(c) =
N∑

i=1,i∈c

ψ(i) (7.15)

The final optimization problem for the load management, including the economic

loss and social discomfort components, is represented as

min
Nc∑
c=1

||Tout − T (c)||2 + wder ∗
Nc∑
c=1

||(EPV (c)− P k
L(c) ∗ T (c))||2+

wel ∗
Nc∑
c=1

||εkL(c) ∗ (Tub(5)− T (c))||2+

wsd ∗
Nc∑
c=1

||ψkL(c) ∗ (Tub(5)− T (c))||2

s.t.

Nc∑
c=1

P k
kw(c, t) ∗ T (c) =

NBESS∑
i=1,i∈k

SOCi(t) ∗ Ebessi + EPV (5)

Tlb(c) ≤ T (c) ≤ Tub(c)

(7.16)

Here Tub(5) is the feasible duration of support during an outage. Its value could be

derived from the historical outage data for a feeder. The weights wder, wel and wsd

changes the priority of the additional objectives of optimization. The values of the

weights can be set based on the field requirements and planning studies.
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Table 7.1: Sample loads for the sensitivity study

Load ID
(i)

Load
PkW

Criticality level
(C)

Economic loss
factor (ε)

Social Discomfort
factor (ψ)

1 18.7991 4 60 3
2 9.3996 3 40 4
3 9.3996 4 40 5
4 18.7991 3 80 5
5 18.7991 2 100 3
6 18.8078 5 80 5
7 18.7991 1 60 5

7.4.2 Prioritization of the objectives

Figure 7.8: PV Generation for the sensitivity study
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Table 7.2: Inter-correlation of objectives and weights

wder wel wsd ftout fder fel fsd

ftout 0.35 -0.71 0.04 1
fder -0.76 0.56 0.08 -0.75 1
fel 0.55 -0.72 0.01 0.95 -0.91 1
fsd 0.59 0.10 -0.36 -0.08 -0.48 0.15 1

Figure 7.9: Variation in the objective function cost due to varying weights

The multi-objective-based optimization framework serves 4 different objectives.

The units and scales of these objective functions are different. However, the opti-

mization variables are the same for all. The primary objective of the optimization

is to minimize the outage time of the loads based on the criticality. The secondary

objectives are to minimize BESS usage and reduce economic losses and social dis-

comfort. The sensitivity of the local and global objectives is different for each of the

weights. Hence, it is essential to tune the weights as per the DSO’s commitments to

customers and the customer requirement.

Here, the estimation of the weights is performed using a sample cluster with 7 load

values and 2 PVs. The Table 7.1 shows the consumption of each load along with

its critically level, economic loss factor, and social discomfort factor. The figure 7.8
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shows the total PV generation considered as a forecast for the sensitivity study.

The weight of the primary objective is set as one. The remaining weights are deter-

mined through the sweep analysis. The weights of wder,wel and wsd are logarithmically

varied (with base 10) from 0.0001 to 100. The figure 7.9 shows the variations in the

objective costs for the 512 combinations of the weights. The self and cross-sensitivity

of the weights and the local objectives are summarized in the Table 7.2. Following

insights can be derived from the figure 7.9 and the Table 7.2.

• As expected, the weights negatively correlate with the local objectives.

• Local objectives fder and fel have similar sensitivity to the local weights, whereas

the sensitivity of fel is lower for the local weight wel

• The economic loss factor for the loads negatively co-relates with the social

discomfort factor. Hence, the correlation between fder and fel is low.

• The loss of load and economic losses are reduced at the expense of higher BESS

support. Hence, ftout and fel negatively co-relate with fder. Also, the higher

weight wder increases the cost of ftout, fel, and fsd.

Based on the above insights, the weight wder plays a vital role in deciding an optimized

cost for global and other local objectives. As shown in the figure 7.9, the cost of fel

has three levels. Hence, the combination of weights corresponding to the middle level

is accepted for the current study.

7.4.3 Effect of BESS SOC level and the event time on the critical load support

Critical loads are expected to be supported entirely by the DERs (PV and BESS)

during an event. Here, PVs are intermittent generating resources with availability

only during the daytime, whereas BESS has limited energy available. Hence, the

time of fault and energy stored in the battery is crucial to the duration throughout

which the critical loads can be supported through DERs. The planning studies, as
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presented here, may help grid operators in preparing for the outage scenarios. Here,

the proposed load management is implemented for the irradiance profile (as shown in

figure 7.8) and varying BESS SOC levels. Figure 7.10-7.14 represents 143 scenarios/

combinations of BESS SOC level and time of an outage event for loads with critical

level 1 to 5. The value at every intersection of the row and column represents the

duration of support for the load of the corresponding critical level. The load support

matrix provides the following insights.

• It can be noted that the load support capacity decreases during the high inter-

mittencies at 10 am and 4 pm.

• The loads are supported atleast for 36 seconds, wherever possible, to reduce the

momentary disruptions due to the temporary faults.

• The load support can be longer for events during the daytime since PVs would

primarily support the loads. Excess energy generated will be utilized in replen-

ishing the BESS SOC for support after the PV generation.

• During the night, the load support capacity decreases since the BESS is utilized

at its full capacity. Following the lower bound of optimization, the critical level

5 loads are supported for at least 1 hour (if sufficient capacity is available).
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Figure 7.10: Support matrix for critical level 1 loads

Figure 7.11: Support matrix for critical level 2 loads
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Figure 7.12: Support matrix for critical level 3 loads

Figure 7.13: Support matrix for critical level 4 loads
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Figure 7.14: Support matrix for critical level 5 loads

7.5 Implementation on IEEE 123 bus system

The proposed approach for load management during a long-term outage is imple-

mented on IEEE 123 bus system with 15 PV and BESS. The ratings of the PV and

BESS has been discussed in chapter 3. The cluster control during regular operation

with model predictive control is discussed in chapter 6. Here, the loads and the DERs

within the clusters are controlled to improve the overall resiliency of the affected part

of the distribution grid.

The breaker locations are shown in the figure 7.7. Here, the fault is simulated

at bus 67(cluster 5). Immediately upon the detection of the fault, the breaker will

isolate the affected clusters (5, 6, and 7) from the grid. The proposed implementation

assumes the grid-forming capacities of the BESS inverters and the deployment of

an efficient protection and reconfiguration scheme for the distribution system. The

reconfiguration scheme will isolate cluster 6 and cluster 7, which is then supported
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Table 7.3: Load Information

Load kW Clevel ε($/kW/Hr) ψ(Discomfort/Hr)

Cluster 1
S87B 18.83 4 60 3
S88A 18.96 1 60 5
S90B 19.58 5 80 5
S92C 18.89 2 100 3
S94A 18.92 3 80 5
S95B 9.42 3 40 4
S96B 9.42 4 40 5

Cluster 2
S102C 9.42 3 100 1
S103C 18.83 4 80 5
S104C 18.83 3 60 5
S106B 18.83 1 40 2
S107B 18.83 2 40 2
S109A 18.83 5 40 5
S111A 9.42 4 60 4
S112A 9.82 1 80 1
S113A 20.42 2 40 1
S114A 9.42 5 60 1

by the local grid forming DERs.

Each load is characterized by the critical load level, economic loss factor, and

social discomfort factor (Table 7.3). The resiliency improvement by implementing

the proposed load management approach is compared against the base case scenario

with a non-load shedding-based cluster control. The base case scenario assumes that

all loads have the same criticality level, and the support is provided till the depletion

of the BESS SOC.

7.5.1 Results and discussion

Here, the three-phase to ground fault is applied at cluster 5. Immediately upon

the detection of the fault, the breaker operates and isolates the clusters 1, 2, and 3.

However, the reconfiguration algorithm isolates the healthy clusters 1 and 3 to reduce

the impact of an outage (figure 7.15).
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Figure 7.15: Economic loss during an outage

BESS 13 and BESS 15 are the higher-rated BESS in clusters 2 and 3, respectively.

Hence, they seamlessly transition into grid forming mode and continues to support

the islanded grid. BESS 12 and BESS 14 are controlled through the MPC-based

net-load minimization. Hence, as shown in figure 7.17 and 7.19, any variations in the

net load are primarily addressed by the BESS 12 and BESS 14, followed by BESS 13

and BESS 15.

Figure 7.16: Economic loss during an outage
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Figure 7.17: Economic loss during an outage

Figure 7.18: Economic loss during an outage

Figure 7.19: Economic loss during an outage

Figure 7.16 and figure 7.16 shows the load and PV generation during the event. The

step reduction in the total cluster load because of the implementation of the proposed

load management approach can be observed in 7.16 and figure 7.16. Since PVs are
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generating till 17:00, the loads are primarily supported through the PV generation,

and the BESS absorbs any additional generation. This helps BESS replenish the

state of charge for an extended support duration for the critical loads in the absence

of PVs. After the PVs go offline, the local storage supports the complete cluster load.

The SOC for grid supporting BESS is between the range of 5%-8% at the end of

load support for critical level 5 loads, indicating an efficient utilization of the BESS.

Table shows the time at which each load is turned off from clusters 1 and 2. It can

be noted that the load support duration is identical for all loads within each cluster

for the base case (without load management). The total energy served is identical for

both cases. Hence, the comparison provides accurate quantification of improvements

in resilience.

Table 7.5 compares and quantifies the grid’s resilience in load loss, economic loss,

and social discomfort for both - the base case and proposed load management. It

can be noted here that the individual load level resiliency is identical for all loads

without managed load shedding scheme. However, the individual load level resiliency

ranges from 0.005% for critical level 6 load to 77% for critical level 5 loads. The

average cluster level resiliency improves 5% for cluster 6 and 14% for cluster 7. The

improvement is more significant for cluster 7 because of higher loads at critical level

5. Also, the economic loss is reduced by 8% for cluster 6 and 12% for cluster 7. The

social discomfort improves by 5% for cluster 6 and 29% for cluster 7. The variation in

the improvements between cluster 6 and cluster 7 is due to differences in the total load

magnitude, economic loss, and social discomfort factors. However, the improvements

in all aspects of resiliency (summarized in Table 7.6) are observed by implementing

the proposed load management approach.

7.6 Chapter summary

The chapter leverages the control capability of the framework to support the distri-

bution network through DERs during the grid contingencies. The chapter proposes
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Table 7.6: Improvement in the resiliency of the cluster through the proposed man-
agement of the loads

Metrics Without Load Management With Load Management % Improvement
Cluster 6

Eo
grid 357.48 338.46 5.32
Rl 0.37 0.39 4.94
REL 25051.48 23018.55 8.12
RSD 94.06 89.17 5.19

Cluster 7
Eo
grid 493.46 469.73 4.81
Rl 0.35 0.40 14.16
REL 27705.26 24319.15 12.22
RSD 87.28 61.98 28.99

improvements to the clustering approach to adapt to the varying grid conditions and

topologies. A multi-objective optimization-based load management approach is also

proposed to improve resiliency and reduce the impacts on the customers during grid

outages. The proposed approach is demonstrated for a grid outage scenario on IEEE

123 bus system. The improvements in the grid resilience are quantified through the

consequence-based metrics and compared against the conventional islanded operation

without managing loads.
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CHAPTER 8: CONCLUSIONS AND FUTURE WORK

In this dissertation, we have proposed an approach to form clusters on the distri-

bution grid based on the active power flow and reactive power to voltage sensitivity.

The DERs within the clusters are then controlled to manage the cluster level net-load

and the voltages.

8.1 Conclusions

Chapter 3 proposes an improved spectral clustering based approach for identifying

the active powerflow based clusters. The chapter also proposes an approach to find

clusters based on reactive power to voltage sensitivity.

• The approach improve the accuracy of cluster detection.

• The discontinuities in the cluster formation are substantially reduced through

the proposed approach.

• The active powerflow based cluster configuration varies based dynamically based

on the powerflow.

• The reactive power sensitivity based clusters varies dynamically based on the

availability of the reactive power.

Chapter 4 proposed an approach for net-load smoothing and voltage management

though cluster control.

• The variations in the net-load reduces by 58% through cluster control approach.

• The losses are lower compared to centralized control approach.

• The voltage variations are lower for active power managed through cluster con-

trol approach.

• Dynamic clustering improves the local load support through improved balance

in the cluster net-load
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• Reactive power control reduces the voltage variation significantly for all nodes

on the system.

Chapter 5 proposes an ADMM based approach for area set-point sharing among

the clusters based on the state of charge and tie-line flows for all clusters.

• The approach shares the area set-points among the clusters with a global ob-

jective of minimizing the tracking error.

• The tracking error is reduced by 71% for the area set-point tracking and by 53%

for net-load minimization.

Chapter 6 proposes an MPC based cluster control approach. An ADMM based

transfer function approach is proposed for the identification of the system transfer

function at a given operating states based on the measurements.

• The transfer function predicts the system state with good accuracy irrespective

of an actual order of the system.

• MPC based cluster control accurately tracks the references of each cluster. An

implementation on 650 bus system also proves the scalability of the control

approach.

Chapter 7 quantifies the grid resilience in terms of load loss, economic loss, and

social discomfort. A multi-objective optimization-based framework is proposed to

manage the critical loads on the system during an outage. The complete framework

of load management and cluster control is demonstrated on the IEEE 123 bus system

for an outage scenario.

• The approach ensures the continuity of the power to the local loads on the

healthy cluster during the islanded period.

• The cluster configurations adapt dynamically based on the grid topology to

maximize the load support.
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• The proposed approach aims to maximize the support to loads at a higher

criticality level.

• The proposed approach of management of loads through cluster control of DERs

improves the grid resilience in terms of loss of loads, economic losses, and social

discomfort.

8.2 Future Works

Future work in this direction includes

• Implement the proposed approach on 2500 node system.

• Implement the proposed approach on a use-case of continued critical load sup-

port during long term system outage.

• Quantify the improvement in grid resiliency through the proposed control in

terms of critical load support, total energy served, financial loss and social

discomfort.

• Implement the complete framework on the real-time simulator.
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APPENDIX A: Simulator

Figure A.1: Python interface for OpenDSS simulator
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APPENDIX B: Measurements

Figure B.1: Measurement format for all devices


