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ABSTRACT

ARMIN AMIRAZAR. Evidence-based human-centric lighting assist tool towards a
healthier lit environment. (Under the direction of DR. MONA AZARBAYJANI)

Light is an essential element of building design that influences human health, com-

fort, performance, and well-being. Humans’ daily rhythms in behavior and physiol-

ogy, such as wake/sleep patterns, have evolved under natural light-dark cycles over

millions of years. Nowadays, as we spend a large proportion of our time in the built

environment, we are exposed to less light during daytime hours and more light during

nighttime hours than what we would have naturally received across day and night.

Thus, inappropriate and insufficient personal light exposure during the day and night

can negatively affect this standard rhythm and is associated with a range of psycholog-

ical, physical, and mental health issues. While most lighting design recommendations

and standards have been limited to addressing the energy and visual aspects of light,

this trend has been criticized, and current standards acknowledge the link between

light and human health. Moreover, lack of low-cost and reliable tool to track and

monitor the characteristics of light exposure as a stimulus that affects the human

circadian system is evident.

This dissertation proposed a novel user-centric lighting assist tool consisting of a

low-cost and wearable spectrometer to measure light spectrum and an interactive

dashboard to visualize the collected data in meaningful and easy to understand quan-

tities. Three studies covering the proposed tool are presented to 1) develop a low-cost

and wearable spectrometer using Artificial Neural Networks (ANNs); 2) examine prac-

tical applicability of wearable spectrometer in the real-world environment ; and 3)

develop and test the usability of an interactive dashboard for continuous tracking of

personal lighting conditions. The first study examines the performance, accuracy, and

fabrication challenges of developing a low-cost, wearable and wireless spectrometer
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to measure Spectral Power Distributions (SPD) of light sources using ANNs. Neu-

ral network was identified as an effective method for improving the accuracy of the

developed spectrometer. Additionally, the developed spectrometer offers real-time

communication that enables it to be integrated into IoT-based intelligent lighting

systems for tailoring indoor lighting systems according to individual circadian needs.

The second study examines the practical applicability of developed spectrometer to

continuously record personal lighting conditions of office workers in real-world envi-

ronment. The study provides insights for enhancing occupants health and well-being

within the built environment. The third study examines the potential of a web-based

app to enable healthier living with light. By engaging the end-user directly through-

out the entire process of design and development of the interactive dashboard, the

study identified the interactive dashboard as a useful and usable tool for end-users.

This dissertation is one of the first attempts to develop a low-cost and wearable

spectrometer together with an interactive application to provide vital information

regarding the non-visual effects of light on health by real-time tracking of personal

lighting conditions. The findings of this dissertation demonstrates the importance of

an affordable and accessible human-centric lighting assist tool as a powerful driver of

promoting healthy behavior change in buildings, outlining new directions in the design

of buildings that are not only comfortable and energy efficient, but also healthier for

their occupants.

Keywords: Non-visual effects of light, Personal circadian monitoring, user-centered

design, usability testing, Low-cost spectrometer; Personal lighting condition.
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CHAPTER 1: INTRODUCTION

Light is essential not only to see things effectively and efficiently, but also syn-

chronizes the timing of our biological clock that consequently affects our health and

sense of well-being. The building is a medium for promoting health, comfort, and

productivity concerning light. The renewed interest in the concept of human-centric

lighting and the discovery of the non-visual effects of light in the past two decades

have dramatically changed the way people live and work. Human-centric lighting is

defined as “lighting devoted to enhancing human performance, comfort, health, and

well-being, separately or in some combination” [1].

Since most people spend more than 87% of their time indoors in modern societies,

personal exposure to lighting is more related to indoor lighting conditions [2]. Build-

ings are lit by daylight or electric light (or both) as the only light sources. Over the

last few decades, the invention of electric lighting has radically altered the pattern of

light exposure, as we are currently exposed to less natural light during the daytime.

Still, we are overexposed to electric light during nighttime. Standard human rhythm

in behavior and physiology, such as wake/sleep patterns, has evolved under natural

light-dark cycles over millions of years. Thus, inappropriate and insufficient personal

light exposure during the day and night can negatively affect this standard rhythm

and is associated with a range of psychological, physical, and mental health issues.

For decades, the primary focus in lighting design has generally been on visual as-

pects of light. The discovery of the third class of ocular photoreceptors in the human

eye, called Intrinsically Photoreceptive Retinal Ganglion Cells (ipRGCs) [3, 4], in-

creased attention on the effects of light beyond vision that influence our health and

sense of well-being. Illustrating the central role of light in building, human health
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can be affected through visual system, and non-visual system (circadian system) [5].

Deviation from the natural light-dark exposure patterns may result in adverse con-

sequences on our sleep [6], alertness [7], mood [8], performance [9], and is associated

with a range of health issues such as depression [10], diabetes [11], seasonal affective

disorder [12], and even cancer [13]. This breakthrough stresses the importance of cre-

ating indoor spaces that mitigate user discomfort and energy consumption and bring

health and well-being to their occupants.

One of the main challenges at the early stages of design, or during the post-design

evaluation, is to assess how well a proposed plan meets the needs of its intended users

in terms of lighting. It has never been so important to capture evidence from human

interactions within existing buildings and investigate the impacts of indoor lighting on

their health, comfort, and well-being. Although indoor light conditions may satisfy

the visual needs, they may be insufficient in spectrum and intensity for biological

needs such as alertness and circadian entrainment. To this end, using vision-related

quantities such as illuminance (lux) or luminance (cd/m2) is inappropriate to measure

circadian lighting due to the difference between the spectral response of visual and

non-visual systems [14,15].

In addition, since the health effects of light vary from individual to individual,

and the movement and activity of humans introduce uncertainty in the prediction of

non-visual responses to light, the light conditions around each individual should be

investigated separately. Recently, a few devices [16, 17] and techniques [18–20] have

been developed to measure the light that stimulates the non-visual system, subse-

quently influencing the occupant’s health and sense of well-being. However, not only

these devices are not equipped to measure Spectral Power Distribution (SPD) as the

complete form to measure light exposures [21], but also, they are not commercially

available, or they are expensive [22,23]. Moreover, although these devices can contin-

uously record individuals'light exposure and activity level over hours and days, they
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do not allow for real-time visualization of the recorded data, which can be a great

source of information for post-design evaluation of buildings.

The present dissertation aims to bridge this gap by expanding our knowledge of

how light exposure and its interplay with occupant’s movements and activities can

affect occupant’s health and well-being. This dissertation seeks to facilitate the post-

design evaluation of architectural space by developing a new human-centric lighting

assist tool for more efficient circadian lighting assessment based on the needs and

requirements of end-users.

1.1 Context and Background

1.1.1 The Effects of Light on Non-Visual System

With the discovery of a new form of photoreceptors in the human retina (ipRGCs),

more attention has been paid to a dual role of the human eyes when exposed to

light: enabling humans to perform visual tasks and maintaining health and well-

being via the non-visual responses [4]. The non-visual system appears to require

high irradiance. It also differs in its time domain from the visual system, with a

more sluggish response, resistance to bleaching by light, and adaptation to prior light

history.

There are five types of photoreceptors within the human retina: Rods, three types

of cones, and ipRGCs [24]. Light as electromagnetic radiation is detected by pho-

toreceptors in the eye in the visible wavelength range between 380 nm and 780 nm.

As the photoreceptors absorb a photon, chemical responses in the eye transform light

information into neural signals. Each type of photoreceptor contains different light-

sensitive pigments that absorb photons in different wavelength ranges, thereby initi-

ating electrical and chemical signals transmitted through neurons to other areas of the

brain. The third class of photoreceptors, ipRGCs, does not collect visual information

from light and has a different characteristic than rods and cones. While ipRGCs are

more sensitive to short-wavelength light (blue light), rods and cones are more suscep-
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tible to green-blue and green light, respectively. Although the exact contribution of

rods and cones into the non-visual system is still unknown, it is evident that besides

ipRGCs as the principal photoreceptor, rods and cones also influence the circadian

system [25–27]. Light received at the eye is detected by ipRGCs and transmitted to

different brain parts in the non-visual system. Most studies have focused on the path

leading to suprachiasmatic nuclei (SCN), which synchronizes the body’s circadian

rhythm. The circadian rhythm regulates the secretion of a hormone called melatonin,

responsible for synchronizing various behavioral and physiological functions such as

alertness level, mood, core body temperature, and hormone secretion/suppression.

The secretion of melatonin is increased during the night and decreases during the

daytime. In the absence of melatonin, cortisol is secreted, which elevates the energy

level and helps the transition from sleep-state to wake-state.

The human circadian system is responsible for entraining the circadian rhythms to

sync to a roughly 24-hours diurnal cycle. Exposure to light after sunset may shift the

circadian rhythm a process called phase shifting. Phase-shifting has been reported

mostly among people who work at night, such as nurses and shift-workers or those who

traveled across different time zones. Therefore, it is evident that irregular light-dark

exposure patterns may disrupt the circadian system and affect human health and well-

being. According to the current state of research, the five qualities of light that affect

circadian entrainment are intensity, spectrum, timing, duration, and history of light

exposure [28]. Thus, as explained above, these five light characteristics, plus spatial

distribution and age, need to be considered to effectively investigate the non-visual

effects of light in the indoor environment.

A recent study on human subjects suggests that cone photoreceptors contribute

identically to non-visual responses at the beginning of light exposure and at low irra-

diance. In contrast, melanopsin appeared to be the primary non-visual photopigment

in response to long-duration light exposure and at high irradiance [29]. The recent
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findings indicated that to evaluate the non-visual efficiency of a light exposure, not

only the spectral sensitivity of the relevant photoreceptor is required but also the

SPD of the illuminant.

1.1.2 Metrics and Devices for Measuring Circadian Light in the Built

Environment

There is a lack of consensus on circadian lighting metrics and the exact threshold

to support the circadian effectiveness of lighting in working environments. Some

standards in the field of light and lighting, such as WELL Building Standard v2 [20],

have recently begun to include metrics that address the proper light exposure for

supporting physical health and adjusting the circadian rhythm with a natural day-

night cycle. The WELL standard recommends using the two most popular circadian

lighting metrics for measuring light exposure: Equivalent Melanopic Lux (EML) and

Circadian Stimulus (CS). The EML is based on Enezi et al. [30] and Lucas et al. [21]

and recommended exposure above specific EML threshold levels that vary in terms

of space type. For example, exposure to at least 240 EML between 9:00 AM and 1:00

PM for every day of the year is suggested for work areas. Circadian Stimulus (CS)

is proposed by the Lighting Research Center (LRC) [31] to evaluate the circadian-

effectiveness of light sources, which range from 0 (no stimulus) to 0.7 (full saturation).

The WELL standard suggests exposure to a CS of 0.3 or higher at the eye for at least

the hours between 9:00 AM and 1:00 PM.

The effect of light exposure on the circadian system should be calculated by consid-

ering the output of all three types of retinal photoreceptors, rods, cones, and ipRGCs

in the human eye [14, 32]. CS considers both spectrum and intensity of the light

source and ties to all three types of retinal photoreceptors necessary for assessing cir-

cadian lighting. However, EML ties to a single photoreceptor and ignores any impacts

of the rods and cones. The recent survey conducted by Edward Clark and Natalia

Lesniak [33], having more than 100 respondents across the architectural design com-
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munity, showed that nearly two-thirds of participants (62%) used CS. In contrast,

only 38% of them used EML in practice. This study used CS to measure light’s

circadian effectiveness using the data collected from the wearable device.

Additionally, there is a lack of low-cost, accurate, and wearable devices to record

the characteristics of light exposure as a stimulus that affects the human circadian

system. The most common wearable devices have been used to measure the photopic

illuminance [34, 35], the irradiance from red, green, and blue of the visible light re-

gion [16,17,36,37], or both photopic illuminance and RGB [38]. Due to the difference

between the spectral response of visual and non-visual systems, photopic illuminance

is improper to quantify circadian-effective light, leading to measurement error up to

98% for measuring circadian lighting [39]. Spectral Power Distribution (SPD) is rec-

ommended to measure light exposure. It measures the light in the most comprehensive

form that can be used by any metrics currently available or even will be developed

in the future [21]. Although only a few portable and wearable devices are designed

to measure the SPD of light [15, 23, 40], they are not accessible to researchers and

practitioners as they are not commercially available or cost-prohibitive [22]. A recent

survey reported that only a few lighting practitioners (28%) always or frequently used

photospectrometers or similar devices to verify that the installed lighting meets the

design goals [33]. Thus, an affordable, accurate, and wearable device for measuring

light spectrum would benefit researchers and lighting practitioners. This study used

a wearable device to measure full spectral data of an individual’s light exposure in

real-time.

1.1.3 Factors Need to be Considered when Investigating the Non-Visual Effect of

Light at the Individual Level

Even though there is currently no consensus on the optimal light dosage required

to support healthy circadian entrainment, at least six factors that induce non-visual

response was determined and categorized into two groups [28,41]:
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• Luminous factors: intensity, spectrum, and directionality of light exposure and;

• Temporal characteristics: timing, duration, and history of light exposure.

Research studies measuring the lighting conditions at the individual level have

mainly focused on health effects of light, such as sleep, mood, and circadian rhythm.

Little attention has been given to investigating the actual lighting conditions at the

individual level, particularly considering inter-individual differences in response to

light exposure. Since the biological effects of light vary from individual to individual,

and some of these light factors affect the circadian system over an extended period, it

is recommended to continuously measure the light conditions around each individual

[42]. In addition to luminous and temporal factors, individual differences in response

to light exposure need to be considered to investigate the non-visual effects of light in

the indoor environment. Previous studies [22,43,44] showed several factors that need

to be considered for measuring lighting conditions at the individual level, particularly

when considering the effect of light beyond vision, which are listed as below:

• Individual trait. The link between individual traits and light exposure on hu-

man circadian rhythm and sleep is evident. Recent evidence strongly suggested

considering the individual differences when designing a well-lit environment to

satisfy the circadian lighting needs of building occupants [44]. The biological

effects of light may differ between individuals based on some Individual factors

such as physiological differences (e.g. age [45,46], health-related issues [47–49]),

genetic differences [50–52], cultural/behavioral differences (e.g. clothing [53,54],

differences in indoor/outdoor-related behavior [53, 55]), and mixed physiolog-

ical/behavioral differences (e.g. gender [56, 57], chronotype [58, 59], different

wake/sleep patterns [60, 61], and different work/social schedules [62–64]). Re-

garding inter-individual physiological differences, for instance, as the age in-

creased, the light transmission in the eye decreased, and people require higher
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light quantity with different spectrums compared to younger populations due to

yellowing of the lens and reducing the pupil size [45,46]. Individual differences in

response to light exposure may vary due to cultural/behavioral variance. For ex-

ample, outdoor clothing varies depending on geographical location, climate, and

different ethnicities and societies. Different Sleep/wake patterns, work/social

schedules, gender, and chronotype, such as morning/evening types, may change

the magnitude of the impact of light exposure on the human circadian system.

• Weather conditions. Light intensity and spectrum of daylight constantly change

each hour of the day throughout the year. Many studies have investigated the

effects of seasonal [7, 65–67] and daily [12, 68] variation of light exposure on

humans.

• Workspace characteristics (e.g., office layouts, distance to window [39, 69], the

color of surfaces/furniture, building orientation, viewing direction [70], blind

condition, amount, and placement of luminaire).

Wearable technologies can investigate individual differences in response to light

exposure by continuously measuring personal lighting conditions. Recently, the term

“personal lighting conditions” was commonly used by several researchers when refer-

ring to lighting conditions at the individual level [42, 71]. The inclusion of this term

is recommended, particularly in studies that investigate the non-visual effects of light

on humans [72].

1.1.4 Emergence of Human-Centric Lighting

As the modern lifestyle compels us to spend a significant amount of time indoors,

we are not exposed to sufficient natural light during the daytime. Still, we are overex-

posed to electric light during nighttime. In comparison to our ancestors, we experience

dimmer days and brighter nights, which can mislead our circadian system’s ability

to distinguish between “day” and “night”, resulting in physiological disruption and
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adversely affecting our health and overall well-being. Poor indoor lighting can cause

serious health issues and adversely affect the occupants'energy level, mood, and pro-

ductivity. Therefore, for the lack of access to natural light indoors, human-centric

lighting can be a solution to provide the appropriate lighting to address human visual,

biological, and behavioral needs. Recently, there has been a renewed interest in HCL

for two reasons: 1) the advancement of lighting technology that makes it possible to

control the light specifications such as intensity, spectrum, and distribution; and 2)

the discovery of the third class of ocular photoreceptor (ipRGCs), which increases our

understanding of the non-visual effects of light on human health and well-being [1].

HCL mimics natural light and tailors indoor lighting by modifying the characteristics

of light such as intensity, spectrum, CCT, etc., for different times of the day according

to special human needs. For example, unlike the early part of a day when exposed to

higher intensity and blue-enriched light, which can elicit alertness and promote cir-

cadian entrainment, towards the evening, on the other hand, the intensity should be

decreased and the spectral composition of the light is shifted to a longer wavelength

(red), which avoids circadian disruption as people prepare to sleep.

Temporal patterns of light (timing, duration, and history of light exposure) should

be intimated as the most critical variable when designing HCL that explicitly induces

the non-visual response [73]. The application of human-centric lighting that mainly

stimulates the non-visual system varies depending on building types. Buildings where

people typically present during their working hours, such as offices and schools, re-

quire only one light setting with a strong biological response. In contrast, buildings

where people sleep, such as residential, hospitals, and hotels, require more than one

light setting, with strong, weak, or even no biological response during different times

of the day. Implementing the HCL becomes even more complex when considering the

individual differences such as age and sleep/wake patterns, particularly for buildings

that demand more than one light setting. Good outcomes are most likely generated
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when a ’personalized smart lighting system’ is used by continuously monitoring in-

dividual lighting conditions in real-time and controlling these lighting conditions by

utilizing an IoT-based intelligent lighting system [74]. For this reason, a low-cost

and accurate wearable device that wirelessly, continuously, and in real-time measures

personal light exposure in its most complete forms (SPD) is essential for the lighting

community.

1.2 Research Scope

This section will outline the present dissertation through an overview of the research

problem, objectives, and approach in this work.

1.2.1 Problem Statement

Developing a new connected support technology is necessary for enhancing human

health and well-being in the built environment through real-time monitoring of vary-

ing internal and external environmental influences from the sun and users. Recently,

a growing number of researchers from different research fields have attempted to de-

velop new tools and methods for investigating the non-visual effects of light and their

applications in lighting design.

While most lighting design recommendations and standards have been limited to

addressing the visual aspects of light, this trend has been criticized, and current

standards acknowledge the link between light and human health. Studies have been

mostly devoted to investigations in energy or visual aspects of light in architecture

and lighting design. However, less attention has been paid to the non-visual effects

of light and how to effectively measure the variation in people’s daily and seasonal

light exposure patterns in buildings. There is a lack of consensus on circadian lighting

metrics and the optimal light dosage required to support healthy circadian entrain-

ment. In parallel, the emergence of the new circadian lighting metrics caused new

challenges to measuring light exposure and increased the need for specialized lighting
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measurement devices.

Although a few devices are available for ambulatory measurement of circadian light

exposure, only a few people have access to those devices as they are commercially

unavailable, expensive, or inappropriate to measure circadian lighting. The majority

of the studies regarding the lighting condition measurements at the individual level

have been primarily focused on the health effects of light, such as sleep, mood, and

circadian rhythm. Little attention has been given to investigating actual lighting

conditions at the individual level, particularly considering inter-individual differences

in response to light exposure. Continuous information provided by long-term lighting

measurement of the microenvironment around the individual can lead to better de-

sign. Accessibility to a low-cost and wearable device that measures the SPD of light

exposure, would greatly benefit the research community to better understand the in-

dividual variability in response to light exposure. Mainly, continuous measurement of

light exposure at the personal level in its most complete form allows an understanding

of the effects of various factors that induce the non-visual response, such as intensity,

spectrum, timing, duration, and history of light exposure.

In addition, a large proportion of previous studies have been conducted in controlled

environments under steady electric light conditions. Therefore, there is not only a

lack of understanding of the variability of non-visual effects of light in real-world

environments within different geographical locations but also a lack of practical tools

to track and measure personal lighting conditions in real-time throughout the 24-

hour-day, together with tips on how to improve those individual lighting conditions.

This dissertation aims to fill this gap by developing a new tool to promote health-

ier living with light by encouraging individuals to engage with their healthcare by

managing and keeping track of their health data. I will explore the accuracy and

fabrication challenges of developing a low-cost and wearable device in tandem with

Artificial Neural Networks (ANNs) to measure light spectrum. Then the practical
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applicability of the designed device for continuous measurement of personal lighting

conditions will be evaluated in a real-world environment. Finally, the development

and usability testing of a novel interactive dashboard to display the data collected by

the wearable device by engaging the end-user directly throughout the entire process

will be described.

1.2.2 Dissertation Objectives

The present dissertation attempts to address the following research question:

How to equip lighting designers and architects with accessible and af-

fordable tools to evaluate critical parameters related to non-visual aspects

of light exposures at the individual level in the building?

Therefore, the primary objective of this dissertation is to employ a human-centric

approach for developing a novel tool to promote healthier living with light. To address

the research question, three goals are identified as follows, which are addressed in

different chapters:

1. Develop a low-cost and wearable device to measure light spectrum using ANNs

(Chapter 2)

2. Examine practical applicability of the low-cost and wearable device in monitor-

ing personal lighting conditions in a real-world environment (Chapter 3)

3. Develop and test the usability of an interactive dashboard for continuous track-

ing and monitoring of personal lighting conditions (Chapter 4)

1.2.3 Dissertation Outline

Chapter 2, 3, and 4 form the core of this dissertation and describe three studies

that aimed to provide evidence regarding the objectives of this dissertation. To orient

the reader, this section presents an outline of the chapters as follows: Chapter 1 be-
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gins with an introduction to the study, followed by reviewing the existing knowledge

regarding the non-visual effects of light on human health, as well as the use of meth-

ods and factors for investigating the non-visual effect of light at the individual level.

Chapter 2 explores the performance, accuracy, and fabrication challenges of develop-

ing a low-cost and wearable spectrometer. The ability of Artificial Neural Networks

is also analyzed to improve the accuracy of the developed spectrometer. Chapter 3

examines the potential of the developed spectrometer in measuring personal light-

ing conditions of two-office workers continuously over eight days by utilizing CS to

evaluate the circadian effectiveness of various lighting conditions. Next, Chapter 4

describes the process of developing and usability testing of a novel interactive dash-

board to provide end-users with easy-to-understand quantities regarding the circadian

effectiveness of the light. In addition, Chapter 5 draws the contributions, indicates

the limitations, and offers potential future research.



CHAPTER 2: A LOW-COST AND PORTABLE SPECTROMETER FOR

MEASURING LIGHT SPECTRUM USING ARTIFICIAL NEURAL NETWORKS

2.1 Introduction

It is widely understood that light has profound effects on our health and sense of

well-being. Daylight provides a combination of the suitable types of light with the

right spectral content at the correct times, which should be considered a primary light

source for human natural lighting needs. The discovery of a new form of photorecep-

tors in the human retina, called Intrinsically Photoreceptive Retinal Ganglion Cells

(ipRGCs) in 2002 [3,4], ignited increased attention among researchers, in various dis-

ciplines, on the unseen effects of light, which influence our mood, alertness, emotion,

health, and sense of well-being [75,76]. This breakthrough stresses the importance of

creating indoor spaces, which mitigate user discomfort and energy consumption and

bring health and well-being to their occupants.

Advancements in electric lighting have drastically changed the way human beings

live by shifting one’s light exposure pattern from natural light to artificial light.

Currently, people spend more than 87% of their time indoors [2]. Thus, they are not

receiving enough light nutrition, which leads to a desynchronization between activity-

rest and environmental light-dark cycles, resulting in disrupted circadian rhythms.

The human circadian system is responsible for entraining the circadian rhythms to

be in sync to a roughly 24-hours diurnal cycle. The emergence of new lighting systems

makes it possible to have light everywhere, efficiently, at multiple wavelengths, and

in various color tones and temperatures. New types of electric lighting, such as

Light Emitting Diodes (LEDs), have considerably been improved in terms of Color

Rendering Index (CRI), Correlated Color Temperature (CCT), brightness, life-span,
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and power consumption, to overtake traditional light sources such as incandescent and

fluorescent [77,78]. Though this breakthrough has been a great benefit for humankind

by improving our home, work, and social environments, a growing number of studies

have shown that these changes have had negative consequences for human health.

Studies have shown that deviation from regular light-dark exposure patterns not only

has direct effects on alertness [7], concentration [79], mood [8], sleep [6, 80], and

performance [9], but also indirectly, it is associated with a range of health issues

such as insomnia [81], depression [10], diabetes [11], seasonal affective disorder [12],

cognitive dysfunction [82], and even cancer [13]. To avoid the adverse effects of

these changes, electric light sources should be designed per individuals’ specific needs

by mimicking daylight in the built environment. It has been proven that a good

interplay between natural light and light from electric lighting and further adjusting

the intensity and spectrum used in varying locations at different times of the day

directly affect occupants’ health. Hence, there is a need to measure the characteristics

of light exposures with reasonable precision and utilize intelligent lighting systems

that promote occupants’ health, well-being, and comfort in the built environments.

2.1.1 Emergence of New Metrics Lead to New Challenges to Measuring the Light

Exposure

The emergence of new metrics to evaluate circadian lighting created new challenges

to measuring light exposure and increased the need for specialized lighting techniques

and devices. Several researchers attempted to apply short-term or long-term mea-

surement techniques in scene capture [83, 84] or light intensity [17, 34] to assess the

circadian lighting values in the built environment. Over the last few years, many stud-

ies have been found to employ static measurement devices [39, 83, 85, 86] or personal

measurement devices [15–17, 34–37] for measuring circadian lighting in architectural

practice. However, most of the individual devices are equipped to gather photopic

values. A few were used to measure irradiance from the visible spectrum’s red, green,
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and blue regions. In addition, many of these devices are not accessible to researchers

and practitioners as they are not commercially available, or they are prohibitively

expensive [22, 23, 87]. It is proven that the devices and techniques utilized to assess

circadian lighting should be reliable and accurate to record the characteristics of light

such as intensity, timing, duration, and wavelength that stimulate an individual’s

non-visual system.

Since 2002, the devices and methods for measuring light have been shifting from

vision-related quantities such as illuminance (lux) or luminance (cd/m2) to those

which take into consideration the spectral composition of light radiation by growing

knowledge about the link between light and health [21, 30, 31]. Vision-related quan-

tities are weighted by the sum of M and L cones; therefore, they do not consider the

effects of light on all three types of retinal photoreceptors in the human eye, which is

necessary for assessing circadian rhythm lighting. The recent findings show that the

photopic luminous efficiency function alone, V(λ), is improper to quantify circadian

lighting due to the difference between visual and non-visual systems [14,15]. A study

by Konis [39] confirmed the previous findings and reported that the error, up to 98%,

may have occurred by using photopic illuminance for measuring circadian stimulus

potential. Therefore, Lucas et al. [31] suggested to record the corneal Spectral Power

Distribution (SPD) as the most comprehensive form to measure light exposures due

to the complexity of non-visual photosensory systems, since the contribution of each

individual photoreceptor is not clear in terms of irradiance response. One of the

most notable benefits of recording the SPD of the light sources is that it enables a

re-analysis of the collected data by using any unit of measure currently available or

developed in the future. However, the metrics related to photopic vision, such as

illuminance, are presently used to evaluate circadian lighting due to lack of standard,

knowledge, or most importantly, suitable measurement devices.

A range of devices such as spectroradiometers can be used to record the SPD of
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the light sources. The calibrated spectroradiometers are precise and accurate as they

undergo absolute calibration against National Institute of Standards and Technology

(NIST) guidelines. However, there are some limitations associated with the spec-

troradiometers in the field measurements as they are expensive, bulky, slow, and

fragile [88]. It is important to note that only a few laboratories worldwide can mea-

sure the spectrum of light sources within 3% uncertainty [89]. To overcome these

limitations, the development of array spectrometers such as complementary metal-

oxide-semiconductor (CMOS) based sensors is an appealing solution to the problem of

spectroradiometers. Compared to spectroradiometers, CMOS sensors are character-

ized by lower cost, smaller size, faster measurement, energy efficiency, higher signal

to noise (S/N) ratio, and higher wavelength precision [90–92]. Yet, they currently

do not have the same precision as regulatory reference devices as they deliver higher

noise under low illumination, lower sensitivity, and decreased resolution than spectro-

radiometers [92]. While low-cost sensors have emerged as an alternative to reference

devices, these sensors usually provide data with uncertain precision.

One possible solution to improve the precision of the low-cost sensors is to ap-

ply different computational techniques to increase their accuracy. Over the past

few years, many scholars have used other computational methods such as Artificial

Neural Networks (ANNs) to improve the performance of low-cost sensors for light

measurement [40], air-quality monitoring [93,94], soil moisture measurement [95], so-

lar irradiance measurement [ [96,97], food storage time prediction [98], and occupancy

detection [99]. ANNs are computational models that try to simulate the structure and

functions of the network of neurons in the brain so that the computer will learn from

recognized patterns in data. Ultimately, the decision can be made in a humanlike

manner [100].

Recent advancements in various fields such as computer science, architectural en-

gineering, and healthcare have led to increased interest in measurement devices that
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are accurate, low-cost, portable, with wireless communication capabilities, and real-

time data monitoring and visualization [101–104]. These types of devices will play

a significant role in the future of the built environment. It is possible to imagine

an IoT-based intelligent lighting system that continuously measures personal lighting

conditions and controls these conditions by adjusting the SPD of the electric light-

ing towards users’ preferences and desires in real-time. Essentially, these systems

reduce energy consumption and make buildings more comfortable and healthier for

the people in them. Portable and wearable devices are an emerging technology that

offers continuous tracking and monitoring of an individual’s vital data during daily

life. They provide a critical opportunity to evaluate the non-visual effects of light on

circadian regulation and long-term health, thus allowing individuals to have healthier

living about light. These devices employed in the field should consistently and ac-

curately collect characteristics of light exposures such as intensity, spectrum, timing,

and duration as a stimulus that may affect the human circadian system. Portable and

low-cost spectrometers could also be used as a “dosimeter” to continuously monitor

spectral irradiance for assessing the circadian effectiveness of lighting conditions in

living and working spaces or light therapy in long-term care facilities for people with

dementia or Alzheimer’s. Additionally, portable spectrometers can be embedded in

smartphones to be helpful in various applications, including food quality inspection,

agriculture, and even water quality monitoring. Due to the current lack of availability

of an affordable, accurate, and portable device, a personal device to measure occu-

pants’ light exposure wirelessly and in a real-time manner would be advantageous for

researchers and practitioners.

2.1.2 Objective of the Research

The main objective of the present study was to develop a low-cost, portable, and

wireless spectrometer for measuring Spectral Power Distribution by exploring its per-

formance, accuracy, and fabrication challenges. We used ANNs as a method to recon-
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struct SPD for improving the accuracy of the developed spectrometer. This study is

the first step of a larger project to develop a system and method for real-time mon-

itoring and visualizing personal circadian lighting on a mobile application through

an automated process. The device developed in this study will be used in our future

studies to measure personal light exposures by employing the metrics recommended

by CIE S 026/E:2018 [19] and Well Building Standard v2 [20]. This study had two

primary goals:

• Compare various ANNs architectures, activation functions, and learning algo-

rithms to find the best fit with promising performance and the lowest training

error.

• Evaluate the performance of ANNs to improve the accuracy of the developed

spectrometer for measuring SPD independent of light sources and environmental

conditions.

2.2 Materials and Methods

This section presents the hardware used to develop a low-cost and portable spec-

trometer incorporating a spectral sensor to record the SPD of light sources and the

hardware employed in calibration and validation of the performance of the developed

spectrometer. To answer the goals of the present study, four experiments were de-

signed: pre-experimental calibration, experiment 1, experiment 2, and experiment

3.

2.2.1 Design Methodology of the Proposed System

The process of developing the proposed system is summarized into the following

steps:

• The enclosure of the developed spectrometer was designed in Fusion 360 and

built using a 3D printer.
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• Different pieces, including a spectral sensor and microcontroller, etc., were as-

sembled together and fixed to the enclosure. The scripting for data acquisition

was generated.

• Pre-experimental calibration was performed to evaluate the monochromatic and

spectral response of the developed spectrometer across the visible spectrum.

• Experiments 1 and 2 were conducted under different conditions to measure the

light source’s SPDs. The recorded SPDs were stored in the cloud database for

building the initial datasets with 30 and 106 samples for experiments 1 and 2,

respectively.

• The initial dataset for each experiment was pre-processed separately by down-

sampling and normalizing the SPD of every single one of the light sources.

• In the primary processing, the SPD of each sample of light sources was combined

with other samples in predefined percentages to build the final dataset with 5280

and 55,650 samples for experiments 1 and 2, respectively.

• The two final datasets were used to train MLP models and test different algo-

rithms’ performance for reconstructing the SPD.

• Three different activation functions and eight different learning algorithms were

compared using the two final datasets separately for each experiment to find

the most accurate neural network with the best performance.

• Forty measurements under real-world environments were conducted in experi-

ment 3 to assess the ability of the most accurate MLP model obtained from the

previous experiment when exposed to unique and complex SPD.
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2.2.2 Hardware

In the following sections, the hardware used to develop the low-cost and portable

spectrometer, to calibrate the developed spectrometer in pre-experimental calibra-

tion, to measure light sourceâs SPDs in the experiments 1 and 2 for building the final

dataset to be used in training and testing of MLP models, and to evaluate the de-

veloped spectrometer under real-world conditions for measuring SPD using the most

accurate MLP model in experiment 3 are described in detail.

2.2.2.1 Low-Cost and Portable Spectrometer

In this study, the development of a portable spectrometer includes a spectral sensor,

a microcontroller, a power supply, a battery, a real-time clock, and a micro-SD card

adapter that costs only $125 to build. Portable spectrometers have become popular in

recent years mainly due to their lower price and smaller size than bulky and expensive

spectroradiometers. Currently, the market price of portable spectrometers ranges

between $750 and $3000 [ [105,106]. In some cases, there are software options, which

would considerably increase the price of the portable spectrometer. Fig. 2.1 shows

the exterior view and inner parts of the developed spectrometer. The developed

spectrometer size is 77 mm long, 46 mm wide, with a height of 28 mm. Its total

weight, including the inner parts and enclosure, is about 50g, and if the device samples

every 30s, its battery lasts up to 23h. Table 2.1 shows some important characteristics

of the spectral sensor, such as its resolution and peak sensitivities of 18 channels. The

developed spectrometer consists of the following parts:

• AS7265X spectral sensor is a CMOS-based sensor consisting of three sensors

that detect wavelengths in a range from visible to NIR region, specifically for

18 channels with peak sensitivities at 410 nm, 435 nm, 460 nm, 485 nm, 510 nm,

535 nm, 560 nm, 585 nm, 610 nm, 645 nm, 680 nm, 705 nm, 730 nm, 760 nm,

810 nm, 860 nm, 900 nm, 940 nm, each with 20 full widths at half maximum
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(a) (b)

Figure 2.1: a) The developed spectrometer is 77 mm in length, 46 mm in width, 28 mm
in height, weighs about 50g, b) Inner parts include spectral sensor, microcontroller,
power supply, battery, real-time clock, and micro-SD card adaptor.

(see Table 2.1).

• It also includes a low-power microcontroller, a power supply, a battery, a real-

time clock, and a micro-SD card adaptor to store the collected data internally.

• The enclosure was designed in Fusion 360, a cloud-based CAD/CAM tool, fab-

ricated using a 3D printer with polylactic acid (PLA).
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Table 2.1: Characteristics of the AS7265X spectral sensor.

Characteristics AS7265X Unit

Sensor Photodiode [NA]

A/D Resolution 16 [bits]

Communication I2C or UART [NA]

Operating voltage 2.7 - 3.6 [V]

Temperature −40 to +85 [°C]

FWHM 20 [nm]

Wavelength accuracy ±10 [nm]

Angle of incidence ±20.5 [°]

Integration time 2.78−711 [ms]

Channels 410, 435, 460, 485, 510, 535,

560, 585, 610, 645, 680, 705,

730, 760, 810, 860, 900, 940

[nm]

The different pieces, including microcontroller, spectral sensor, etc., were assem-

bled, and the scripting for data acquisition was generated. These parts were fixed to

the enclosure with nylon screws. In addition, this device has internal storage wher-

ever no other types of connection are available. It also offers real-time communication

using Bluetooth, Wi-Fi, or SIM card connections. The collected data was stored on a

cloud database using a Wi-Fi connection in a real-time manner. As shown in Fig. 2.2,

the developed spectrometer will be used in our future studies for real-time tracking

and monitoring of personal circadian lighting. For this reason, spectral sensitivities

of all five types of photoreceptors: s-cones, m-cones, l-cones, rods, and ipRGCs need

to be measured [32, 107]. Therefore, only wavelengths for 14 channels (out of 18)

within the visible spectrum (from 410 nm to 760 nm) were considered in this study

for calibration and training.
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Figure 2.2: Application of the developed spectrometer presented in this study for
measuring personal light exposures.

2.2.2.2 Calibration Instrument

The following instrument was used in the pre-experimental calibration to validate

the wavelength accuracy of the spectral sensor by measuring the spectral response of

all 14 channels.

2.2.2.2.1 Spectrofluorophotometer

For calibration, a spectrofluorophotometer with an operating range between 200 nm

to 850 nm and wavelength accuracy of ± 0.2 nm was used to adjust the wavelength

manually to acquire the central wavelengths for all 14 channels of the developed

spectrometer. The Spectrofluorophotometer consists of a light source, an excitation

monochromator, a sample cell, an emission monochromator, and a detector. It should

be noted that the Spectrofluorophotometer was only used during pre-experimental

calibration.

2.2.2.3 Reference Instruments

In the following sections, the instruments utilized as a reference in different ex-

periments are described in detail. WaveGo and Integrated sphere were employed in

experiments 1 and 2 to measure the light source’s SPDs. The AvaSpec-Mini2048CL

spectrometer was used in experiment 3 to record SPD under real-world conditions.
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2.2.2.3.1 WaveGo

The Ocean Insight WaveGo light spectrum meter uses a high-performance spec-

trometer that is calibrated against NIST standards to analyze light spectrum ranging

between 350 nm and 800 nm with 3 nm FWHM optical resolution. The main advan-

tage of WaveGo is the ease of data storage on the cloud account that provides access

and analysis of the results anywhere, from an app or desktop. In addition to mea-

suring light spectrum and intensity, it can be used to measure the color and quality

of the light source, such as CCT and CRI. We employed the WaveGo to measure the

light source’s SPDs in experiment 1 (Fig. 2.4) and experiment 2 (Fig. 2.5).

2.2.2.3.2 Integrated Sphere

Integrating spheres are commonly employed in conducting photometric and ra-

diometric measurements. An integrated sphere was used to measure the total light

radiated in all directions from a light source uniformly over all the positions within

its circular aperture. From one side, getting the light source into the sphere and after

numerous reflections, the radiation is dispersed highly uniformly at the sphere walls.

The integrated radiation level is easily measured with a detector from another side.

The main advantage of using the integrated sphere is to measure all the light scattered

from all directions from a light source by averaging the illumination radiated over all

angles. The integrated sphere was used as the reference instrument to measure the

light source’s SPDs in experiment 1 (Fig. 2.4) and experiment 2 (Fig. 2.5).

2.2.2.3.3 AvaSpec-Mini2048CL Spectrometer

AvaSpec-Mini2048CL is a handheld spectrometer that is calibrated against a NIST-

traceable irradiance calibration standard. It detects wavelengths in a range be-

tween 200 nm and 1100 nm with 0.09 nm FWHM optical resolution. The AvaSpec-

Mini2048CL was only used in experiment 3.
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2.2.3 Experimental Setup

In the following sections, the process of calibrating the developed spectrometer,

developing the ANN models using recorded light source’s SPDs from experiments 1

and 2 to reconstruct SPD, and evaluating the developed spectrometer under a real-

world environment utilizing the most accurate MLP model, is explained in detail.

2.2.3.1 Pre-experimental Calibration

We conducted the calibration process to test the accuracy of spectral measure-

ments of the developed spectrometer compared to a laboratory-grade spectrofluo-

rophotometer. Fig. 2.3 shows the experimental setup and working mechanism of the

Spectrofluorophotometer used to calibrate the developed spectrometer. The calibra-

tion process starts by manually adjusting the wavelength for all 14 channels, ranging

in wavelengths between 410 nm and 760 nm, using a PC connected to the Spectroflu-

orophotometer. The excitation wavelength was sent out from the light source, and

it passes through the excitation monochromator, which transmits a wavelength spe-

cific to the excitation spectrum while blocking other wavelengths. The output of the

Spectrofluorophotometer was measured, first by an embedded detector, as a reference

value. Then it led to the spectral sensor to be assessed by a microcontroller and

stored values on a cloud database to be analyzed by a PC. The collected values were

used to quantify the gain of each channel of the spectral sensor, and then by scanning

each channel, the spectral response curve of the spectral sensor was reconstructed.

The wavelength was recorded by both the developed spectrometer and the Spectroflu-

orophotometer in nanometers by a four-digit counter. The Spectrofluorophotometer

was only used during the calibration process.

2.2.3.2 Artificial Neural Network (ANN) Model Development

In the following sections, described in detail, are the process of collecting data

from experiments 1 and 2 for building initial datasets, processing the collected data
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Figure 2.3: Schematic illustration of the calibration process. Light source (1), exci-
tation monochromator (2), detector (3), PC (4), developed spectrometer (5), cloud
database (6), and PC (7).

to build final datasets, and using the final datasets to train MLP models and to test

the performance of different algorithms for reconstructing the SPD.

2.2.3.2.1 Experiment 1: Control Lab Measurement

To minimize measurement errors, we conducted the first experiment at a controlled

laboratory that was completely in darkness with the exception of the light to be

assessed for validating the accuracy of the developed spectrometer and the MLP

model. Fig. 2.4 shows the experimental setup and the instruments that were used to

measure the SPD of 30 LEDs in a controlled laboratory. The WaveGo, the developed

spectrometer, and the integrated sphere were employed to measure the SPD of 30

LEDs to build the initial dataset. To avoid entering any light other than the measured

light sources into the integrated sphere, a lightbox was designed and 3D printed to

fit into the integrated sphere. The lightbox sized 100× 100× 30mm, has an opening

toward the integrated sphere, and the LED was connected to a mini breadboard at the
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Figure 2.4: Experimental setup used to measure SPDs of 30 LEDs and validate the
accuracy of both the developed spectrometer and ANNs in experiment 1.

back. Each of the 30 LEDs was placed individually into the lightbox, and their SPDs

were measured several times with the WaveGo and the developed spectrometer. The

SPD of each LED was recorded 20 times at 15 seconds intervals over 5 minutes using

both the developed spectrometer and the WaveGo. The initial dataset, including

the measured SPDs of 30 LEDs by the WaveGo and the developed spectrometer, was

stored on the cloud database to be used in the pre-processing and the main-processing

phase for developing ANN models.

2.2.3.2.2 Experiment 2: Semi-Real-World Environment Measurement

For the second experiment, we validated the accuracy of the developed spectrom-

eter once without the help of ANNs and then the ability of ANNs to increase the

accuracy of the developed spectrometer. Hence, we added various light sources and

measured outside the controlled lab to represent a condition close to the real-world

environment. Since the designed device will be used in practice with spatially and
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spectrally changing light conditions, for the second test, we used a larger number with

a greater diversity of light sources, including both electric light and daylight. Fig.

2.5 shows the experimental setup and the instruments used to measure the SPD of

106 different light sources in a semi-real-world environment. The performance of the

developed spectrometer without the help of ANNs was investigated in a semi-real-

world setting. We hypothesize that the various sources of error, such as stray light,

could negatively affect the accuracy of the developed spectrometer. Thus, we tested

the MLP model’s ability to improve the accuracy of the developed spectrometer when

considerable stray light was presented.

We used 106 different types of light sources as an input to the integrated sphere. A

variety of commercial electric light sources, including 54 LEDs, 5 Fluorescent, 11 In-

candescent, and 3 Halogen, were chosen from different manufacturers. In addition, 33

samples of daylight were measured during sunny days, partly cloudy days, and rainy

days to be as close as possible to all conditions that would occur in a real-world envi-

ronment. As shown in Fig. 5, the integrated sphere was placed at 60 cm from electric

light sources and 200 cm from the window. Because both electric light and daylight

sources were placed within a distance from the integrated sphere, the measurement

was subjected to a significant error from stray light. It is important to note that we

turned on the electric light for at least 15 minutes before starting the measurement

to reach a steady state. Electric light such as fluorescent and incandescent lamps

requires time to warm up, and it varies from lamp to lamp. The SPD of different

light sources was measured 15-20 times over five minutes, and the collected data was

stored on the cloud to be used in data processing phases. Similar to experiment 1, we

used the WaveGo and the developed spectrometer to measure light sources’ SPD to

build an initial dataset with 106 samples. We used the collected data to train and test

MLP models. We used the initial dataset from experiment 2 in the pre-processing

phase and the main-processing step for the training and testing of ANN models.
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Figure 2.5: Experimental setup used to measure SPDs of 106 different types of light
sources and to validate the performance of the developed spectrometer and ANNs in
experiment 2.

2.2.3.2.3 Train and Test ANN Models

We designed a two-step procedure; first, the measured SPD from experiments 1

and 2 were processed by downsampling and normalizing in the pre-processing phase.

Second, the output of the pre-processing phase was used in the main-processing phase

to test and train ANN models for reconstructing SPD.

In the pre-processing phase, the initial datasets collected from experiment 1 and

experiment 2 were processed separately by downsampling and normalizing the SPD

of every single one of the light sources. For every single one of the light sources, we

acquired 14 samples at a wavelength range between 410 nm and 760 nm from the

developed spectrometer and 779 samples at a wavelength range between 390 nm and

778.5 nm from the reference instrument (WaveGo). To reconstruct the SPD of the

developed spectrometer based on the reference instrument, 111 centers were defined

by a resolution of 3.5 nm from 779 samples obtained by the reference instrument. We
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downsampled the 779 samples of the reference instrument (WaveGo) to 111 samples

as the output of the ANN model by using a window averaging method to fit with the

resolution of 3.5 nm. Finally, we normalized 14 samples at a wavelength range between

410 nm and 760 nm from the developed spectrometer and 111 samples resulting from

downsampling of the data obtained by the reference instrument to be used as an

input and output of the ANN model, respectively. Because the downsampling and

normalizing of the SPD reduced the output size of the ANN model and decreased

the effect of noises, the speed and accuracy of the ANN model were significantly

increased.

We used pre-processing data collected from experiments 1 and 2 to build two final

datasets to develop ANN models in the main-processing phase. We employed the two

final datasets to train and test different ANNs architectures, activation functions,

and learning algorithms for reconstructing SPD. Fig. 2.6 shows the instrument and

method used in experiments 1 and 2 to measure SPDs of different light sources, build

datasets (initial dataset and final dataset), and use processed data for training and

testing the ANN model. We performed the main-processing stage as follows.

First, the SPD of each sample of light sources was combined with other samples

to build two final datasets for experiments 1 and 2, separately. The combination

percentage for two individual light source samples varied between 10% and 50% for

the developed spectrometer and the reference instrument (WaveGo). We built two

final datasets with 5280 and 55,650 samples by combining 30 samples in experiment

1 and 106 samples in experiment 2. It is important to note that the different light

sources were combined to recreate conditions as close as possible to real-world envi-

ronments where there is usually more than one type of light source found in indoor

environments.

Second, we used the final datasets to train and test different algorithms for recon-

structing SPD. In this study, we utilized MLP as the most commonly used type of



32

ANNs [108], which has been applied in about 70% of ANNs studies [109], as a method

to reconstruct SPDs. Fig. 2.6(7) shows the architecture of the MLP, including input,

hidden, and output layers. Each layer consists of neurons that transmit data in one

direction from one layer to the adjacent layer. The neural network has an input layer

with 14 neurons corresponding to the channels of the spectral sensor within the visible

spectrum between 410 nm and 760 nm.

Moreover, the number of neurons for the output layer was set to 111, defined

according to data collected by the reference spectrometer (Wavego). The number of

hidden layers and the number of neurons per layer varied depending on the complexity

of the link between the input and output layers. It is a common practice to select the

number of hidden layers and their neurons by trial and error [110]. MLP was trained

by Back-propagation (BP) learning method, as the most widely used algorithm to

train MLP networks [111], and its performance was validated to reconstruct the SPD.

We used a 5-fold cross-validation procedure by splitting the dataset into 80% for

training and 20% for testing to avoid over-fitting. For this purpose, we employed the

neural network toolbox provided by MATLAB in cloud environments that enable us

to run multiple jobs simultaneously and increase the training speed considerably. We

tested several MLP models with different numbers of hidden layers ranging between

1 and 3, and different numbers of neurons per layer varied between 5 and 35, in

increments of 5.

Finally, we tested different parameters that could improve the performance of the

MLP model and enhance the data processing performance. We compared three ac-

tivation functions and eight different learning algorithms to find the neural network

with the best performance in terms of training error and training time. We used the

linear activation function (purelin) [112], and two non-linear activation functions, Log-

Sigmoid (Logsig) [113] and Hyperbolic Tangent Sigmoid (Tansig) [114]. Dorofki, M.,

et al. [115] compared these three ANNs activation functions to find the most appro-



33

priate one. In addition, we used eight different learning algorithms: Traingdx [116],

Trainlm LevenbergâMarquardt [117], Traincgf Fletcherâreeves [118], Traincgp Po-

lakâRibiere [119], Traincgb PowellâBeale [120], Trainoss [121], Trainbfg BFGS [122],

and Traingd [123]. Zhao, Z, et al. [124] compared weaknesses and strengths of different

types of learning algorithms employed in this study.

2.2.3.3 Experiment 3: Evaluate the Developed Spectrometer under a Real-World

Environment

We compared the performance of the ANN model between experiment 1 and ex-

periment 2 to find the most accurate ANN model to be used in experiment 3. In

experiment 3, we utilized the most accurate MLP model directly from the previous

experiment without any modification and alteration to challenge its performance for

reconstructing the measured SPD in a real-world environment. The ability of the

MLP model was evaluated under real-world conditions when it was exposed to SPD

from transmitted and reflected light through surfaces with different colors and tex-

tures. The AvaSpec-Mini2048CL and the developed spectrometer were positioned

side-by-side on a vertical plane at 170 cm above the floor to represent the view at

eye level when standing, taking random measurements from different perspectives. It

should be noted that the AvaSpec-Mini2048CL and the developed spectrometer were

positioned so that they were not exposed to direct irradiance from the light sources.

Additionally, we eliminated the integrated sphere, so ambient light enters detectors

based on their field of view.

A total of 40 real-world measurements, including 30 indoors and ten outdoors, were

taken under different lighting conditions to build the initial dataset. We conducted

measurements within two residential buildings for the indoor environment by taking

ten measures under electric light (warm and cool LEDs) as the only light source,

ten under daylight as the only light source, and five under mixed electric light and

daylight. In addition, ten measurements were performed in the outdoor environment.



34

Figure 2.6: Process of collecting data from experiments 1 and 2 using the collected
data for training and testing of the MLP model. (1) light sources, (2) integrated
sphere, (3) WaveGo, (4) spectral sensor microcontroller, (5) Initial dataset, (6) Final
dataset, (7) MLP architecture selection, (8) 5-fold cross-validation, (9) MLP training,
(10) MLP testing, and (11) Model Comparison.
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(a) Indoor-warm LED light (b) Indoor-electric light and daylight

(c) Indoor-daylight (d) Outdoor

Figure 2.7: Fish-eye view photographs show the full view of the sensors in experiment
3. a) indoor measurement under warm LED light, b) indoor measurement under
mixed electric light and daylight, c) indoor measurement under daylight, and d)
outdoor measurement.

The measurements were performed between 10 AM and 4 PM from May 15th to

May 21st during sunny and partly cloudy days. It is important to note that we

used four large background colored surfaces (red, blue, green, and yellow), sized

152.5×214cm, to cover a significant part of the sensors’ view in more than half of the

indoor measurements under different light sources (see Fig. 2.7(c)). Fig. 2.7 shows

four examples of fish-eye view photographs for real-world measurements, including

indoor and outdoor environments. The initial dataset from experiment 3 was pre-

processed by downsampling and normalizing the SPD in the most accurate MLP

model obtained from the previous experiment.
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2.3 Results

This section presents the results of pre-experimental calibration of the developed

spectrometer, the development of an ANN model to reconstruct SPD using data

collected from experiments 1 and 2, and measurement of SPD in experiment 3 using

the most accurate MLP model obtained from the previous experiment.

2.3.1 Pre-Experimental Calibration of the Developed Spectrometer

Fig. 2.8 and Fig. 2.9 show the pre-experimental calibration results that were

carried out to check the monochromatic and spectral response of the spectral sensor

across the visible spectrum for 14 channels with peak sensitivities between 410 nm

and 760 nm. As explained in section 2.2.2, the Spectrofluorophotometer was used to

characterize the spectral sensor by adjusting the wavelength manually to obtain the

central wavelengths for all 14 channels. The Spectrofluorophotometer was adjusted

manually to the central wavelengths of each of the 14 channels of the spectral sensor.

At each wavelength, 120 readings were done by one-second intervals over two minutes.

Although the Spectrofluorophotometer precisely transmitted a wavelength specific to

the excitation spectrum while blocking other wavelengths, in some cases, the adjacent

channels of the spectral sensor were also activated. In other words, there was channel

interference for all 14 channels; for some, it is negligible, and for some, it is noticeable.

As shown in Fig. 2.8, the channel interference for the wavelength 410 nm, 435 nm,

460 nm, 485 nm, 510 nm, 535 nm, 585 nm, 610 nm, 645 nm, 705 nm, 730 nm, and

760 nm was insignificant. However, the channel interference was considerably high for

the wavelengths 560 nm and 680 nm as the adjacent channels were highly activated.

Fig. 2.9 presents the spectral response of 14 channels of the spectral sensor mea-

sured with the Spectrofluorophotometer to assess the wavelength accuracy of the

developed spectrometer. To verify the characteristics of the developed spectrometer,

it is crucial to carry out the monochromatic response. The results can be compared
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Figure 2.8: Monochromatic response of the spectral sensor measured with the Spec-
trofluorophotometer for all 14 channels.

with the reported central wavelengths from the manufacturer. The horizontal axis

of Fig. 2.9 shows the deviation between the wavelength value acquired in the cali-

bration process from the reported one from the manufacturer (see Table 2.1). The

wavelength value differs by 3-5 nm for almost all channels except for two wavelengths

(680 nm and 705 nm), where the wavelength value differs by approximately 10 nm.

The results show that the AS7265X spectral sensor is a powerful optical inspection

sensor with a wavelength accuracy of lower than ±5 nm for 12 channels (out of 14)

except for two channels with a wavelength accuracy of ±10 nm. We performed this

process once before starting the experiments and under laboratory conditions to eval-

uate the accuracy of spectral measurement of the developed spectrometer against the

manufacturer's reported wavelengths.

2.3.2 Experiment 1

To answer the first goal of this study, we experimented with training the MLP and

validating its performance by comparing different architectures, activation functions,

and learning algorithms. Additionally, to answer the second goal of this study, we

reconstructed the SPD of 30 LEDs measured in the controlled laboratory to evaluate

the performance of MLP for improving the accuracy of the developed spectrometer.
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Figure 2.9: Spectral response of the developed spectrometer measured with the Spec-
trofluorophotometer for assessing the accuracy of all 14 channels.

2.3.2.1 ANNs Architecture Selection

The performance of the neural network can be affected by learning algorithms.

The structure of the MLP model is another important factor that could influence

the neural network’s performance. Table 2.2 shows the effect of different training

algorithms and activation functions on the performance of the MLP model in exper-

iment 1. The activation function as a mathematical component in each layer could

change the MLP structure. The neural network’s performance in terms of the train-

ing error and training time when it was trained with different activation functions

and learning algorithms is shown in Table 2.2. Three types of activation functions

and eight types of learning algorithms were used to find the neural network with the

best performance. The non-linear activation function (Tansig) combined with the

Trainlm LevenbergâMarquardt algorithm had the lowest training error, while it had

the highest training time. Trainlm LevenbergâMarquardt algorithm has the lowest

training error between all three activation functions (linear and non-linear activation

functions) compared to other learning algorithms.
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Table 2.2: The training error and training time for the ANNs trained with three
different activation functions and eight different learning algorithms for experiment
1.

Learning

Algorithms

Activation Functions

Purlin Tansig Logsig

Training

error

(MSE)

Training

time

(sec)

Training

error

(MSE)

Training

time

(sec)

Training

error

(MSE)

Training

time

(sec)

Traingdx 1.30E+00 28 2.49E-01 42 1.18E-03 50

Trainlm

Levenberg-

Marquardt

5.35E-07 12,838 6.87E-08 348,265 1.35E-06 35,263

Traincgf

Fletcher-reeves

2.26E-05 373 9.47E-01 188 1.63E-03 49

Traincgp

Polak-Ribiere

4.13E-04 129 9.47E-01 26 1.59E-03 48

Traincgb

Powell-beale

2.85E-05 151 9.47E-01 26 1.59E-03 43

Trainoss 1.49E-04 172 8.54E-01 59 1.76E-03 24

Trainbfg BFGS 5.57E-06 4,096 8.32E-01 595 1.76E-03 36

Traingd 1.91E-02 38 3.49E-02 64 1.19E-03 50

The size of the hidden layers and the number of neurons in each layer were other

parameters that had a significant effect on the structure of the MLP model. To

find the neural network with the lowest training error, the number of hidden layers

and numbers of neurons per layer was selected by trial and error, as mentioned in

section 3.2. Fig. 2.10 shows the learning performance of the neural network when
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Figure 2.10: Comparing the Mean Square Error (MSE) for different numbers of hidden
layers (L) and different numbers of neurons per layer (N), when MLP trained with
non-linear activation function Tansig combined with Trainlm LevenbergâMarquardt
algorithm in experiment 1.

trained with different numbers of hidden layers (L) versus other numbers of neurons

per layer (N) using the non-linear activation function Tansig, combined with Trainlm

LevenbergâMarquardt algorithm L1, L2, and L3 represent the neural network with

one, two, and three hidden layers, respectively. As shown in the X-axis of Fig. 2.10,

the number of neurons per layer varies between 5 (N5) and 35 (N35), in increments of

5. This graph shows that the network with one hidden layer and 20 neurons per layer

has the lowest training error. To find the neural network with the lowest training

error, the number of hidden layers and numbers of neurons per layer were selected by

trial and error, as mentioned in section 2.2.3.2.3.

2.3.2.2 Reconstruction of SPD

Fig. 2.11 shows five examples of reconstruction of the SPD of the LEDs with differ-

ent colors using the proposed model. The blue line shows the SPD of the light source

measured by the WaveGo. In contrast, the direct response from the developed spec-

trometer is demonstrated by the black line. The SPD estimates by the MLP model
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with linear function are shown with a green line, while non-linear Tansig and Logsig

functions are shown with a red line and a yellow line, respectively. It is observed

that the estimated SPD using MLP with linear and non-linear activation functions is

much closer to the SPD measured by WaveGo compared to the direct response from

the developed spectrometer. The results clearly show that implementing the neural

network affects saving SPD information. Additionally, the non-linear activation func-

tion Tansig (red line) is the most accurate MLP model to reconstruct the SPD of

light sources.

Closer inspection of Fig. 2.11 shows that the developed spectrometer accurately

measured SPDs of light sources as the direct response from the developed spectrom-

eter without the interference of neural networks was significantly close to the source

measured by the WaveGo in the experiment with minimum measurement errors. Even

though the developed spectrometer had acceptable accuracy for measuring SPDs of

light sources, SPDs estimated with neural networks were closer to the source mea-

sured by WaveGo. The results indicated that neural networks have a remarkable

ability to improve the accuracy of the developed spectrometer.

We evaluated the ability of the neural network to reconstruct the SPD of each light

source individually for testing the MLP model. Different error and similarity factors

such as correlation coefficient were used to compare the SPD measured by WaveGo

and the reconstructed SPD by the MLP model (see Fig. 2.12). Fig. 2.12 shows the

value of different types of errors for all 30 LEDs for the most accurate neural net-

work in experiment 1 (Tansig function combined with Trainlm LevenbergâMarquardt

algorithm). It shows the Correlation Coefficient (R-value), Sum of Squared Errors

(SSE), Mean-Square Error (MSE), Root-Mean-Square Error (RMSE), and Normal-

ized Root-Mean-Square Error (NRMSE). As shown in Fig. 2.12 (e), the maximum

NRMSE is 0.6%, and the minimum NRMSE is 0.02%.

Moreover, most of the samples have a correlation coefficient (R-value) near 1.0
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(a) Blue LED (b) Blue Red LED (Grow light)

(c) Green LED (d) RGB LED

(e) Red LED

Figure 2.11: Estimated SPD with the two non-linear functions (red and yellow lines)
and the linear function (green line), the source measured by WaveGo (blue line), and
direct response from the developed spectrometer (black line) for the test in experiment
1.
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Figure 2.12: Estimated errors for 30 LEDs for the most accurate neural network
(Tansig function combined with Trainlm LevenbergâMarquardt algorithm) in exper-
iment 1. a) Correlation Coefficient (R-value), b) Sum of Squared Errors (SSE), c)
Mean-Square Error (MSE), d) Root-Mean-Square Error (RMSE), and e) Normalized
Root-Mean-Square Error (NRMSE).

that indicates a perfect positive correlation (Fig. 2.12 (a)). These results suggest

that the proposed model is very accurate and reliable, with an error lower than 1% to

reconstruct the SPD of the light source. The results presented in Fig. 2.12 indicate

that using the developed spectrometer in tandem with the neural network can measure

SPD with high accuracy.

2.3.3 Experiment 2

To answer the first goal of this study, experiment 2 was performed to train the

MLP and validate its performance by comparing different architectures, activation

functions, and learning algorithms. To answer the second goal of this study, the SPD

of 106 different types of light sources was reconstructed that was measured in the
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semi-real-world environment to evaluate the performance of MLP for improving the

accuracy of the developed spectrometer.

2.3.3.1 ANNs Architecture Selection

We performed the same procedure to train the MLP network for the second ex-

periment in a semi-real-world environment following the first experiment. Similarly,

the effects of learning algorithms and different structures of the MLP model were

investigated on the neural network’s performance. Table 2.3 compares some of the

main characteristics of the neural network with the best performance implemented in

experiment 1 and experiment 2. Each experiment shows the best activation functions

and learning algorithms in terms of training error and training time. For experiment

2, the neural network with one hidden layer and 25 neurons per layer with Logsig

activation function and Trainlm LevenbergâMarquardt algorithm has the lowest train-

ing error. Non-linear activation functions perform better than the linear activation

function (purelin) for experiments 1 and 2 (see Table 2.3).

The training error (MSE) is 7 × 10−6 for experiment 2, higher than experiment

1. In experiment 2, 85% of samples (all light sources) have NRMSE under 20%, and

the Mean NRMSE is below 10%. While experiment 1 has Mean Normalized Root-

Mean-Square Error (NRMSE) below 1% and 100% of its samples have the NRMSE

under 20%. Although experiment 2 has a higher training error and training time than

experiment 1, it still shows an acceptable performance while subjected to a significant

amount of measurement errors.
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Table 2.3: Specifications of neural network with the best performance in experiment
1 vs. experiment 2.

Experiment Activation

Function

Mean square

error (MSE)

Mean

NRMSE

Under

20%

NRMSE

Mean

R-value

Training

time

(hours)

1 Tansig 0.000000069 0.0046 100 0.999 97

2 Logsig 0.000007154 0.0989 85 0.922 213

2.3.3.2 Reconstruction of SPD

Fig. 2.13 shows reconstructed SPD for five different light sources, Fluorescent,

Halogen, LED, and Incandescent, and Daylight, using the proposed model. Because

the measurement was subjected to stray light from the surrounding surfaces, there is a

discrepancy between the SPDmeasured byWaveGo (blue line) and the direct response

from the developed spectrometer (black line). Despite this test being conducted under

a significant source of error, similar to the first test, the reconstructed SPD estimated

by the neural network is still very close to the SPD measured by the WaveGo. The

SPD estimated with a non-linear activation function called Logsig (yellow line) has

the best performance and is closer to the SPD measured by WaveGo than the other

two activation functions. The results of non-linear activation functions are more

accurate compared to the linear ones.

As shown in Fig. 2.13 (d), the error is higher for daylight than other light sources,

which could be due to the complexity of the SPD. Although there is a deviation

between the direct response from the developed spectrometer without the help of

the neural network (black line) and the source measured by WaveGo (blue line), the

accuracy of SPD estimated with the neural network is significantly improved, as it

is close to the source measured by WaveGo. The results indicate that the neural

network can significantly save the information from the SPD measured by WaveGo
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even if considerable stray light is present.

Fig. 2.14 shows the average value of different error types for all samples of light

sources to demonstrate the performance and accuracy of the implemented neural

network. Additionally, the correlation coefficient (R-value) can be used as a factor to

evaluate the similarity between the output of the MLP model and data measured by

WaveGo as the reference. The average NRMSE for all five light sources is under 20%.

While the average NRMSE of Daylight’s samples is around 18%, for Fluorescents’

samples the average NRMSE is as low as 0.6% (Fig. 2.14 (e)). As shown in Fig.

2.14(a), all light sources have a high correlation coefficient above 0.9, except Halogen,

which is around 0.8.

2.3.4 Experiment 3: Evaluate the Developed Spectrometer under a Real-World

Environment

To reconstruct the SPD of 40 real-world measurements in experiment 3, we em-

ployed the most accurate MLP model from experiment 2 (one hidden layer and 25

neurons per layer with the Logsig activation function and the Trainlm Levenbergâ-

Marquardt algorithm). It should be noted that the most accurate MLP model from

experiment 2 without any modification, training, and alteration was directly used to

reconstruct the 40 samples (30 indoors and 10 outdoors) of measured SPD in ex-

periment 3. Fig. 2.15 shows the reconstructed SPD of four examples of real-world

measurements in experiment 3 using the most accurate MLP model. To help in better

understanding of the conditions of the measurements, four examples of fish-eye view

colored photographs illustrated in Fig. 2.7 were taken side by side with the developed

spectrometer and AvaSpec-Mini2048CL; thus, they represent the position and field of

view of the sensors that are shown in Fig. 2.15. The SPD of the light source measured

by the AvaSpec-Mini2048CL as a reference is shown by the blue line, while the direct

response from the developed spectrometer is demonstrated by the black line, and the

SPD estimates by the most accurate neural network are shown with a red line. Even
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(a) Fluorescent (b) Halogen

(c) Incandescent (d) Daylight

(e) RGB LED

Figure 2.13: Estimated SPD with two non-linear functions (red and yellow lines), a
linear function (green line), the source measured by WaveGo (blue line), and direct
response from the developed spectrometer (black line) for the test in the experiment
2.
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Figure 2.14: Average estimated errors for five different types of light sources for the
most accurate neural network (Logsig activation function combined with Trainlm
LevenbergâMarquardt algorithm) for experiment 2. a) Correlation Coefficient (R-
value), b) Sum of Squared Errors (SSE), c) Mean-Square Error (MSE), d) Root-
Mean-Square Error (RMSE), and e) Normalized Root-Mean-Square Error (NRMSE).

though it is observed that the estimated SPD by the most accurate MLP model is

much closer to the SPD measured by AvaSpec-Mini2048CL compared to the direct

response from the developed spectrometer, there is still a discrepancy between the

estimated SPD by the MLP model and the AvaSpec-Mini2048CL as a reference. The

results show that the MLP model reconstructed the electric lighting’s SPDs in the

indoor environment with higher accuracy and lower error than the daylight’s SPDs

in the outdoor environment.

Fig. 2.16 shows the Correlation Coefficient (R-value) and the value of four different

types of errors (SSE, MSE, RMSE, and NRMSE) along with Maximum Error for 40

real-world measurements utilizing the most accurate MLP model that was obtained

from experiment 2. Fig. 2.16 (e) shows that the lowest NRMSE was approximately

11% by measuring SPD in the indoor environment under electric light. In comparison,

the highest NRMSE was 40% in the outdoor environment under daylight. All of the

measurements under electric light have an R-value above 0.85 that indicates a perfect

positive correlation between the output of the MLP model and data measured by
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(a) Indoor-warm LED light (b) Indoor-mixed electric light and daylight

(c) Indoor-daylight (d) Outdoor

Figure 2.15: Estimated SPD with the most accurate MLP model using 106 samples
in four different experiment scenarios: a) indoor space under warm LED as the only
light source, b) indoor space under mixed warm LED and daylight, c) indoor space
under daylight as the only light source, and d) outdoor space under daylight as the
only light source. The SPD of light exposure was measured by AvaSpec-Mini2048
(blue line), the direct response from the developed spectrometer (black line), and the
estimated SPD by the most accurate neural network (red line).

AvaSpec-Mini2048CL as the reference. Moreover, all of the real-world measurements

under electric light have an error lower than 17%. The measured SPD in the outdoor

environment under daylight has higher NRMSE, between 29% and 40%, and a lower

R-value, between 0.64 and 0.81, compared with that SPD measured in the indoor

environment under electric light. In addition, Fig. 2.16 (f) shows the maximum

difference between the estimated SPD by the MLP model and the measured SPD by

AvaSpec-Mini2048CL as the reference for all 40 real-world measurements. The mean

Maximum Error was 192.6% ± 138.8% for all 40 measurements. Although the indoor

measurements under electric light had a mean Maximum Error of 109.3% ± 23.7%,

the outdoor measurements had a higher mean Maximum Error of 338.9% ± 207.1%.
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Figure 2.16: Estimated errors for 40 measurements under real-world conditions
using the MLP with the best performance (Logsig activation function combined
with Trainlm LevenbergâMarquardt algorithm) for experiment 3. a) Correlation
Coefficient (R-value), b) Sum of Squared Errors (SSE), c) Mean-Square Error
(MSE), d) Root-Mean-Square Error (RMSE), e) Normalized Root-Mean-Square Error
(NRMSE), and f) Maximum Error.

2.4 Discussion

This study performed a pre-experimental calibration to assess the developed spec-

trometer’s wavelength accuracy and spectral response across the visible spectrum.

We also conducted two experiments to develop ANN models to reconstruct the light

source’s SPD to improve the developed spectrometer’s accuracy. The accuracy and

performance of the MLP models were demonstrated at a controlled laboratory that

was entirely in darkness in experiment 1 and when a significant source of error from

stray light was present in experiment 2. It should be noted that experiment 2 dif-

fered from experiment 1 in terms of position and distance of light sources from the

integrated sphere and the number and the type of light sources used in each experi-

ment. Finally, in the third experiment (experiment 3), we utilized the most accurate

MLP model obtained from the previous experiment (experiment 2) to challenge its
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performance by exposing it to complex and unique SPD measured under real-world

environments.

Findings from this study suggest that selecting an appropriate ANNs architecture

has a significant impact on the accuracy of reconstructed SPD. For example, the

results of experiment 1 indicated that the optimum size of the neural network with

the best performance was a network with a single layer and around 20 neurons per

layer (Fig. 2.10). We found that deviation from the optimum size of the network by

increasing or decreasing the number of layers of neurons per layer hurt the accuracy

of reconstructed SPD. A possible explanation for this might be that the MLP model

in this study was under-fitted when the number of neurons was less than 10. The

network could not estimate the SPD accurately compared with a larger-sized network.

On the other hand, the model shows a lower performance when the size of the network

grew, and the number of neurons surpassed 20, specifically for the multi-hidden layer

networks. In this case, the network could be over-fitted, not learning anymore, and

memorized the data instead [125].

Reconstructed SPD by the non-linear function combined with Trainlm Levenbergâ-

Marquardt algorithm had the lowest training error for experiments 1 and 2. While the

Trainlm LevenbergâMarquardt algorithm had the best performance with the lowest

training error, training time dramatically increased compared to other learning algo-

rithms (Table 2.2). These results agree with previous studies [126,127], which showed

that the Trainlm LevenbergâMarquardt algorithm was the most efficient method with

non-linear characteristics to learn the features based on related datasets.

The findings show the significant benefits of using ANNs to improve the precision

of the developed spectrometer (Fig. 2.11, Fig. 2.13, and Fig. 2.15). The estimated

error for reconstructing the SPD ranged from 0.02% to 0.6% for experiment 1 using 30

samples of the light source (Fig. 2.12). Even in experiment 2 with 106 different light

sources, when the test was subjected to the significant source of error from stray light,
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the highest reported error was lower than 18% (Fig. 2.14). The error was increased

under daylight in real-world measurements due to the complexity and uniqueness of

the SPD. Moreover, in experiment 3, we challenged the most accurate MLP model

obtained from the previous experiment by exposing the developed spectrometer to

unique SPDs from reflected light off surfaces with different colors within indoor and

outdoor environments under other lighting conditions. We found that the neural

network was very effective in reconstructing SPD with the known patterns in data,

while it had a higher error rate (up to 40%, Fig. 2.16) when exposed to SPDs

with unrecognizable patterns. We also found that the MLP model could learn from

recognized patterns in data under electric lighting in real-world measurements and

ultimately reconstructed SPD with reasonable accuracy (below 17%, Fig. 2.16).

The MLP model was trained by measuring the SPD of 106 different types of light

sources, including LEDs, fluorescents, incandescent, halogens, and daylight in exper-

iment 2. Moreover, to build the final dataset, we combined the different light sources

to recreate conditions as close as possible to real-world environments. Although we

measured 33 SPDs of daylight during sunny, partly cloudy, and rainy days for exper-

iment 2, the spectral characteristics of natural daylight in real-world environments

can change dramatically during a single day, and from season to season, day to day,

and at different geographical locations. There were also significant differences be-

tween the initial conditions used to measure SPD in experiments 2 and 3 in terms

of the experimental setup, position and direction of light sources, and the time and

season of the measurements. Additionally, excluding the integrated sphere consider-

ably increased the instrument-related source of error from stray light and interference

in experiment 3 due to a change in the collecting optics. The higher error for the

real-world condition (experiment 3) can be attributed to the considerable differences

between the measured SPD used to train the MLP model in experiment 2 and the

SPD that the developed spectrometers and the reference instruments were exposed



53

to in experiment 3.

Although the idea of improving the accuracy of the low-cost sensors using ANNs

is not new and has been used by many researchers over the past few years [93–99],

only one study [40] attempted to develop a spectrometer using ANNs for measuring

light source’s SPDs. However, this study did not consider errors introduced by stray

lights and interferences within the real-world measurements. In addition, the size and

diversity of samples that we used to train the MLP model in experiment 2 were much

larger (106 samples) compared with only 81 samples used in the previous study. In the

current study, the inclusion of a significant source of error from stray light increased

the NRMSE from under 1% in experiment 1 (control laboratory) to 18% in experiment

2 (semi-real-world environment). In experiment 3, the developed spectrometer was

exposed to transmitted and reflected light from surfaces with different colors and

textures in the paths from the light sources to the developed spectrometer. Therefore,

it created a unique SPD that was not exactly similar to previous samples, even if it

comes from the known pattern of light sources. Previous studies showed that deep

learning methods such as Convolutional Neural Network (CNN) have much better

learning efficiency and outperform the older types of networks such as multilayer

perceptron (MLP) [128–130]. Providing more samples from different light sources

and using deep learning techniques to improve the device’s accuracy under real-world

conditions remains for future study.

The accurate measure of accuracy for low-cost personal devices is unknown. Except

daylight, the accuracy of the developed device when exposed to both known and

unknown SPD of electric light sources matches the reported accuracy (7-20 %) of

personal devices measuring circadian lighting [131] and also the accuracy of (5-20 %)

low-cost devices that measure luminance distribution of light in the building realm

[132–134]. It should be noted that these devices only measured light exposures of

irradiance from red, green, and blue in the visible light spectrum and did not measure
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SPD within the entire visible spectrum. While the accuracy within these ranges

would not qualify as laboratory-grade devices, a range based on previous studies

seems appropriate for a practical personal measurement device.

The work we presented in this paper is novel in at least four aspects. First, the

developed spectrometer used the most advanced low-cost spectral sensor (AS7265X)

in the market regarding accuracy and resolution that measures spectral irradiance in

a range between 410 nm and 760 nm. This sensor can be used to assess circadian

lighting as it considers the spectral sensitivities of all five types of photoreceptors.

Second, the most popular portable devices measure irradiance from red, green, and

blue regions of the visible spectrum or record photopic value (lux) and store the col-

lected data in internal memory. However, the developed spectrometer can measure

SPD as the complete form to measure light exposures with wireless communication.

It enables it to connect with a cloud-based web service to store collected data in

real-time. Measuring SPD allows us to re-analyze the collected data using any unit

of measure currently available or that may be developed in the future. The device

can be integrated into intelligent lighting systems for turning indoor lighting sources

into proper human-centric lighting. It can also be used as a connected technology

using an App to monitor how light affects individuals’ health and get tips to control

their living conditions. Third, utilizing the neural network for reconstructing the

SPD of light sources considerably increased the resolution and accuracy of the spec-

tral sensor with 14 channels from over 20 nm to 111 points around 3.5 nm, which is

close to the resolution of the expensive commercial devices. Finally, we used various

light sources, including electric light and daylight (106 samples). We employed an

integrated sphere to design a reliable measurement process to compare the perfor-

mance of a non-calibrated spectrometer developed in this study with the calibrated

one (WaveGo).

This study is part of the larger project, for which spectral irradiance measured
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by the developed device is converted to W/m2 to measure personal light exposures

by employing the metrics recommended by different standards such as Well Building

Standard and CIE. The developed device will be used in our future studies for real-

time monitoring of personal circadian lighting and to visualize collected data in a

real-time manner on an application. Thus, as previously mentioned, we only use 14

bands out of the 18 bands of the spectral sensor in the wavelength between 410 nm

and 760 nm to address the peak sensitivity for all five human photoreceptors.

Providing continuous information by long-term measurement of the micro environ-

ment around the individuals can mitigate user discomfort and energy consumption

and bring health and well-being to occupants in existing buildings. Capitalizing on

the potential of monitoring personal lighting exposures, our developed device incor-

porates a spectral sensor that records varying internal and external environmental

influences from the sun and users. The proposed device holds promise for a healthier

built environment by offering real-time tracking and monitoring of an individual’s

lighting conditions and control these conditions (e.g., via a connected lighting sys-

tem) towards the individual’s needs and desires. Outcomes of the study contribute to

a body of evidence that can inform significant design decisions related to the current

use and future design of office, educational, and healthcare facilities.

2.4.1 Limitations of the Study

We measured a limited number of light sources, 30 samples in experiment 1 and 106

samples in experiment 2, to build the final datasets, and utilized a limited number

of ANNs architecture, activation functions, and learning algorithms for training the

MLP model for reconstructing the SPD. Therefore, the most accurate MLP model

is most effective when reconstructing the SPD of light sources, similar to the SPD

utilized to build the final dataset. Its accuracy decreases when it is generalized to

all types of light sources. Additional research is needed to improve the performance

of neural networks when it is subjected to significant error and unique SPD of day-
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light under real-world conditions (experiment 3) by providing more samples of light

sources as an input and/or applying more advanced techniques such as deep learning.

In contrast, the present study focused specifically on evaluating the performance of

one type of low-cost spectrometer, which is commercially available. Future studies

can integrate different types of spectral sensors or mini spectrometers with various

computational techniques to increase the accuracy of measurement devices.

2.5 Conclusions

There is a lack of an accurate, affordable, and portable spectrometer to measure

light source’s SPDs, which affects the human circadian system. The current study

demonstrated the development of a low-cost, portable and wireless spectrometer in

tandem with Artificial Neural Networks to improve the accuracy of the measured

light source spectrum. We used an MLP model to reconstruct the light source’s SPDs

measured in 14 bands in the wavelength between 410 nm and 760 nm to an SPD of

111 points. We found that the MLP with a single layer and neurons ranged between

20 and 25 per hidden layer with non-linear activation functions in combination with

Trainlm LevenbergâMarquardt learning algorithm can estimate the SPD with an error

lower than 1% in experiment 1 and lower than 18% in experiment 2 affected by the

existence of considerable stray light. Although the neural network learned the pattern

of SPD of the electric lighting effectively by an error lower than 17% in real-world

conditions, it had a higher error rate when exposed to daylight with unrecognizable

patterns due to the complexity and uniqueness of the SPD. Findings from this study

suggest that the more samples used to train neural networks, the more accurately

neural networks can reconstruct SPD.

This study has been one of the first attempts to integrate a low-cost spectrome-

ter with artificial intelligence to provide valuable insights to lighting designers, re-

searchers, and architects. The spectrometer prototype developed in this study can

be integrated into an IoT-based intelligent lighting system to measure personal light-
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ing conditions continuously. The intelligent lighting system can further tailor indoor

lighting conditions according to individual needs and desires. Additionally, the devel-

oped device offers several applications by monitoring individuals’ vital information,

such as real-time tracking of personal light exposures and visualizing the collected

data on a mobile device. The recorded data can help individuals or their health

coaches control their living conditions, health, and lifestyles.



CHAPTER 3: EVALUATING THE CIRCADIAN-EFFECTIVENESS OF LIGHT

THROUGH PERSONAL LIGHT EXPOSURE MEASUREMENT: RESULTS OF

A FIELD STUDY USING A LOW-COST AND WEARABLE SPECTROMETER

IN HOME-OFFICE

3.1 Introduction

Natural light is an essential element of building design that influences human health,

comfort, performance, and well-being. Natural light provides a combination of suit-

able types of light with the right spectral content at the correct times. Humans’ daily

rhythms in behavior and physiology, such as wake/sleep patterns, have evolved under

natural light-dark cycles over millions of years. However, the invention of electric

lighting has dramatically changed human home, social, and work environments by

shifting the light exposure pattern from natural light to electric light over the past

decades. Currently, exposure to natural light is significantly reduced in the US as

people spend more than 87% of their working hours indoors compared to the 1800s

where they spent about 90% of their time working outside [2]. Despite the advantages

of this invention for humankind, lack of natural light exposure during the day and

increased exposure to electric light during the night are associated with psychological,

physical, and mental health issues that can disrupt circadian rhythms and sleep.

Circadian rhythm is a natural process that regulates the sleep-wake cycle by synch-

ing the internal clock to roughly a 24-hours diurnal cycle in an outdoor environ-

ment. Disruption of circadian rhythm may result in mood disorders, displacement of

wake/sleep cycle, melatonin suppression, and phase-shifting of the circadian system.

Ocular light exposure provides measurable benefits for both visual and non-visual

systems. Even though we interact with our environment through a visual system, the
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discovery of the third class of photoreceptors within the eye [3], named Intrinsically

Photoreceptive Retinal Ganglion Cells (ipRGCs), placed increased attention on un-

seen effects of light that influence our mood, alertness, emotion, health, and sense

of well-being. Deviation from regular light-dark exposure patterns negatively affects

sleep [6], mood [8], performance [135] and is associated with a range of health issues

such as seasonal affective disorder [12] and even cancer [13].

Nowadays, as we spend a large proportion of our time in the built environment, we

are exposed to less light during daytime hours and more light during nighttime hours

than what we would have naturally received across day and night [136]. For the past

seven decades, the exposure to electric light has increased between 3% and 6% annu-

ally as people are mostly indoors, which may increase the likelihood of disrupting the

circadian rhythms [137]. In recent years, the work landscape has changed dramat-

ically, as companies have started to cut costs by downsizing their office spaces and

allowing their employees to work-from-home (WFH). The number of people remotely

WFH surged by 173% from 2005 to 2018 [138]. The pace of this change is increas-

ing as a direct result of the COVID-19 pandemic, as currently, an ever-increasing

number of people are WFH. Studies show strong links between an irregular natural

day-night cycle and disruption of circadian rhythms, poorer sleep quality, impairment

of cognitive function, and the onset of depression in office workers without or with

less access to natural light [ [139]. Therefore, it has never been more important to

capture evidence from human interactions within existing buildings and investigate

the impacts of indoor lighting conditions on human health, comfort, and wellbeing.

Currently, there is a lack of consensus on circadian lighting metrics and/or the exact

threshold to support circadian effectiveness of lighting in working environments. Some

standards in the field of light and lighting such as, WELL Building Standard v2 [20],

have recently begun to include metrics that address the proper light exposure for

supporting physical health and adjusting the circadian rhythm with a natural day-
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night cycle. The WELL standard recommends using the two most popular circadian

lighting metrics for measuring light exposure: Equivalent Melanopic Lux (EML) and

Circadian Stimulus (CS). The effect of light exposure on the circadian system should

be calculated by considering the output of all three types of retinal photoreceptors,

rods, cones, and ipRGCs, in the human eye [32]. CS considers both spectrum and

intensity of light source and ties to all three types of retinal photoreceptors, which

are necessary for assessing circadian lighting [14]. However, EML ties to a single

photoreceptor and ignores any impacts of the rods and cones. This study used CS to

measure the circadian effectiveness of light using the collected data from the wearable

device.

Tailoring indoor lighting conditions per individuals'specific needs and desires can

promote health and wellbeing in the built environments. Previous studies suggested

we consider at least six factors (timing, duration, history, intensity, spectrum, and

directionality of light exposure) when assessing the effects of light beyond vision [42].

The spectrum and intensity of the light exposure need to be aligned with the human

circadian system throughout the day to avoid circadian disruption and enhance hu-

man health and productivity. For example, exposure to light in the early morning

advances the timing of the circadian clock; however, receiving bright light during the

evening delays the timing of the biological clock and may cause circadian disruption,

which consequently reduces sleepiness [140]. Thus, people who spend a large propor-

tion of the day under electric light expose themselves to steady light intensities and

spectrum, specifically during the evening/night hours, which may shift the human bi-

ological clock [141]. In the field of architecture and lighting design, different metrics,

techniques, and devices need to be utilized other than what traditionally have been

used by lighting designers to address human biological needs for light. In this way,

wearable technologies can be used to measure personal light conditions continuously

in their most complete forms (Spectral Power Distribution of light), which is essential
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for the lighting community. Recently, the term âpersonal lighting conditionsâ was

commonly used when measuring lighting conditions continuously at the individual

level [42]. The inclusion of this term is recommended, particularly in studies that

investigate the non-visual effects of light on humans [72].

The objective of the present study was to measure the personal lighting conditions

of two-office workers continuously over eight days in a home office using a recently

developed wearable spectrometer. We used CS to evaluate the circadian effectiveness

of various lighting conditions during the study period. We further explore the effect

of work schedules in response to light exposure between two office workers.

3.2 Method

We conducted a field study using a novel wearable spectrometer to measure partic-

ipants'light exposures continuously in a home office over eight days in Seattle, WA.

Fig. 3.1 shows the processes used in this study for data processing and analysis. The

following sections describe the process of collecting and analyzing the data and the

instrument used for data collection in detail.

3.2.1 Test Space Selection Criteria and Participants

During the COVID pandemic, an ever-increasing number of people have beenWFH.

Therefore, data collection was performed at a home office on the third floor of a

residential building located in Seattle, WA. Fig. 3.2 shows the schematic plan of the

home office and its surrounding urban context. The home office has five separate

spaces, including a working area, a kitchen, a bathroom, a living room furnished

with a TV for resting time, and a bedroom for sleep at night. The working space

had one West-side window that was covered with a Venetian blind. Except for the

distance to the window, we attempted to minimize the variation between the features

in participants working spaces. Features are similar for both participants included:

room size; wall and furnishing color; siting orientation; amount and placement of
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Figure 3.1: Procedure used for collection, processing, and analysis of data. (a) only
daylight/electric light and mixed daylight/electric light used as light source, (b) wear-
able light measurement device used to measure complete spectral data at the indi-
vidual level, (c) SPDs measured by a low-resolution spectral sensor in 14 channels,
(d) SPDs stored on cloud database using Wi-Fi, (e) processed and analyzed collected
SPDs on the server, (f) Using ANNs to reconstruct SPD, (g) reconstructed SPDs
calculated in terms of W/cm2, and (h) CLA and CS calculated for two participants
across the three-day study period.
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(a) (b)

Figure 3.2: Example of home-office layout. a) plan shows where the subjects were
seated, positions of computer monitors, LED smart bulb, locations, and view orien-
tations of HDRI sensors, b) surrounding urban context.

furniture and luminaire; size, building orientation, blind condition of the window (as

well as size, number, and the height of the monitors). The living room had a west-

facing window with a fully closed blind during this study, and there was a small source

of lighting coming from a TV that could be ignored. The bedroom had an east-facing

window covered by a fully closed blind during the nighttime because this space was

only used for sleep.

We chose Seattle as the cloudiest major US city in the lower 48 states [142]. On

average, Seattle has 226 days (62% of days) with clouds covering more than three-

quarters of the sky and 308 days (84% of days) with clouds covering over one-quarter

of the sky in a year. Thus, with fewer sunny days, there is limited access to daylight

as an ideal light source for the human circadian system. The length of the day

varied significantly in Seattle for the year. Fig. 3.3 shows how the length of the

day changes throughout the year in Seattle, WA. The present study was conducted

between September 27 and August 4, when sunrise was about 07:00 and sunset was

around 19:00, with total daylight of fewer than 12 hours. Two office workers (one
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Figure 3.3: Sun graph shows the sunrise and sunset for September 27th, 2020, in
Seattle, WA.

male: age 36 years and one female: age 36 years) volunteered for the study.

3.2.2 Wearable Lighting Measurement Device

We used a low-cost and wearable device with 14 channels that detect wavelengths

within the visible spectrum with 20 FWHM to continuously measure Spectral Power

Distributions (SPD) of light sources every 30 seconds. The device incorporates a

CMOS-based sensor (AS7265x Smart Spectral Sensor, AMS AG, Austria) consisting

of three sensors that detect wavelengths ranging from 410 to 760 nm. To validate the

spectral sensitivity, accuracy, and linearity of the device, we calculated the calibra-

tion equations for fourteen channels according to simultaneous measurements with a

calibrated spectrometer (Ocean Insight WaveGo light spectrum meter, UNC Char-

lotte, North Carolina, USA) using 106 different types of light sources including both

daylight and artificial lighting to represent all possible lighting conditions. Utilizing

Artificial Neural Networks enabled us to increase the resolution of the spectral sen-

sor from over 20 nm to around 3.5 nm, which is close to the resolution of expensive

commercial devices such as calibrated spectroradiometers.
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3.2.3 Outdoor Context

We monitored the outdoor lighting conditions during the study period from 08:00

to 19:00 between September 27 and August 4. For this purpose, we employed two

low-cost and programmable High Dynamic Range Image (HDRI) sensors consisting

of Raspberry Pi microcomputers with fisheye cameras modules to provide the visual

record of interior and exterior scenes at the working space. The HDR images collected

from two sensors were used in the present study to compare any variations of outdoor

lighting conditions during the entire period that the analysis was performed. As

shown in Fig. 3.2, the two HDRI sensors were positioned on a vertical plane at 1.2 m

above the floor to represent the view from seated eye height. The first HDRI sensor

was placed at 1 m from the window with a window-facing view. The second one was

attached to the window from outside to capture the exterior scene. A Python script

was embedded in the Raspberry Pi to schedule the camera to capture a series of low

dynamic range (LDR) images with different exposures value (EV), ranging from very

dark (-3 EV) to very bright (+3 EV) for all three days from 08:00 to 19:00 at 15-

minute intervals from window-facing view and exterior scene. It took about 50 s to

capture a full set of LDR images at a given time interval. An open-source command-

line software HDRgen was used to combine LDR images into an HDR image.

3.2.4 Lighting Interventions

We built a custom luminary for the study using one ilumi BR30 Bluetooth LED

Smart bulb [143] inserted into a luminaire head on the ceiling of the working space

to be only used during Day 7 and Day 8 of the study. A warm LED (2700 K) was

used between Day 1 and Day 6 that was replaced with a new ilumi BR30 Bluetooth

LED Smart bulb. The color temperature of this multicolor light source is adjustable

from 2700 K to 6500 K, at nearly any brightness level. The Ilumi app automatically

turned the light source on at 7 AM and turned it off at 11 PM between Day 7 and Day
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8. An additional layer of control called “Circadian Experience” was used to improve

the daily routine to schedule lighting brightness and color setting depending on the

time per human circadian rhythm. The lighting automatically transitioned from a

cool, energetic white (6500 K) morning to a relaxing, warm (2700 K) evening. The

Circadian Experience was utilized to replicate the natural light cycle. The luminaire

was placed in the middle of the working space to affect both participants equally.

3.2.5 Data Collection and Protocol

We provided the required materials and instructions to participants before the com-

mencement of the study. We asked participants to wear the wearable spectrometer

as a pendant (at chest height) for eight consecutive days during data collection pe-

riods. The device was attached to the participants'clothes at the left-hand side of

the chest and measured light exposure at a similar view direction of the eye in the

vertical plane (see Fig. 3.1(b)). We asked participants to keep the wearable device

always uncovered. Each participant wore a device during waking hours and placed

it next to their bed at the charging station during sleep. Participants had different

working schedules as one started working at 7 AM (± 30 minutes) and the other one

from 11 AM (± 30 minutes), but they went to bed at the same time (11 pm). To

compare light-dark patterns between the two participants, we asked them to log their

bedtimes, waketimes (waking hours), and working times (when they are behind the

desk) during the data collection period. To evaluate the circadian efficacy of different

indoor lighting conditions, we designed other lighting conditions for each day of the

data collection period (see Fig. 3.4).

Fig. 3.4 shows the protocol designed for the present study. The study was per-

formed over eight days. From Day 1 to Day 5, the participants had the freedom to

close the blind if they experienced excessive direct sunlight entering from the window

or open the blind if there was a need for more daylight in the working area. Addition-

ally, the participants had the freedom to turn on/off a warm LED (2700 K) placed
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Figure 3.4: The eight-day protocol for the study. Participants wore the wearable
devices for all eight study days during waking hours and placed the device next to
their bed during sleep. The blind was fully retracted during Day 6 and 8 but fully
closed during Day 7. The lighting interventions were operational on Day 7 and Day
8.

in the middle of the room. During day 6, the blind was fully retracted, and electric

light was kept off to record the lighting conditions in the working space entering from

the West-facing window. During day 7, we turned on the ilumi BR30 Bluetooth LED

Smart bulb in the working area and closed the blind to investigate the effects of light-

ing intervention. Finally, during day 8, the blind was fully retracted, and the ilumi

BR30 Bluetooth LED Smart bulb was turned on to allow for both natural light and

electric light in the working space.

3.2.6 Analysis of Measured SPD Data

We employed a mathematical model of human circadian phototransduction pro-

posed by Rea et al. to calculate Circadian Light (CLA) and Circadian Stimulus (CS)

for any spectral irradiance distribution [31,144]. The CLA metric is the weighted ir-

radiance of light incident at the cornea to reflect the spectral sensitivity of the human

circadian system. Additionally, the CS metric is determined by how much melatonin

is suppressed by nocturnal lighting after one-hour light exposure from threshold (CS

= 0.1) to saturation (CS = 0.7) to reflect the absolute sensitivity of the circadian sys-

tem [18]. We used MATLAB to analyze each SPD collected from the wearable device

to calculate circadian light (CL) and circadian stimulus (CS). First, we converted the

corneal SPD into CLA, and then, second, CLA is transformed into CS. CS metric

was employed to quantify the effectiveness of corneal spectral power distribution to

stimulate the human circadian system.
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It should be noted that a new light measurement strategy is currently recommended

to report corneal spectral irradiance in five illuminance quantities by calculating the

effective irradiance for rhodopic, melanopic, cyanopic, chloropic, and erythropic inde-

pendently [19]. However, currently, there is a lack of biological lighting metrics that

utilize these five illuminance quantities to assess the lighting conditions in indoor en-

vironments. Therefore, we reported the results in units of CS, as the WELL Building

Standard recently recommended this unit of analysis [20].

We analyzed the data collected from the wearable device to compare the total light

exposure among all eight days for both participants. As we only altered the lighting

conditions in the working space, we analyzed the collected data based on the time

participants spent in this space (working hours) to better understand the circadian

effectiveness of different lighting conditions. Moreover, we analyzed the data from

the wearable device to assess the total light exposure during both working hours and

the total light exposure during waking hours for each participant. We calculated

the total light exposure during both working hours and waking hours based on the

times participants reported being at the working space and being awake, respectively.

Additionally, we went one step further to analyze the light exposure on an hourly

basis during both working hours and waking hours and for different parts of a day,

which included Morning (0600-1200), Afternoon (1200 - 1700), Evening (1700 - 2000),

and Night (2000 - 0600). This helped us to better understand the circadian stimulus

potential of light for each participant during their waking and working hours within

different hours and different parts of the day. It is important to note that each

participant has a different schedule, so each participant’s working hours and waking

hours differ from that of the other.

3.2.7 Statistical Analysis

Statistical analysis was performed with SPSS Version 27. statistical software pack-

age (IBM, Armonk, NY, USA). A one-way ANOVA was conducted on light exposure
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data with the factors “days” (eight days: day 1, day 2, day 3, day 4, day 5, day 6, day

7, and day 8) to determine the effects of the light intervention across the eight-days

study period. Tukey′s post hoc analysis was further applied to compare the significant

main effects and interactions of attributes where significant differences were found in

ANOVA. A two-way ANOVA was conducted to explore how the participants schedule

(3 states: sleep, waking, and working) and daytime periods (4 parts: 6 a.m−12 p.m.

= morning, 12 p.m−5 p.m. = afternoon, 5 p.m−8 p.m. = evening, and 8 p.m−6 a.m.

= night) affect light exposure (CS) throughout the study. Results were considered to

be statistically significant when p < 0.05.

3.3 Results

3.3.1 Monitoring the Variations of Outdoor Lighting Conditions

As shown in Fig. 3.5, we monitored the outdoor lighting conditions by utilizing two

low-cost and programmable High Dynamic Range Image (HDRI) sensors consisting

of Raspberry Pi microcomputers with a 5-megapixel fisheye lens with a 180-degree

field of view (FOV) to provide the visual record of interior and exterior scenes at

the working space. We applied a false-color luminance mapping on each HDR to

visualize the luminance distribution of the window-facing view and external setting

and monitor any variations of outdoor lighting conditions during the study period

from 08:00 to 19:00 between September 27 and August 4. A comparison between Day

1 and Day 8 of exterior scenes (Fig. 3.5(b)) shows that outdoor lighting conditions

were almost the same among all eight days with a clear sky and no cloud cover.

For the window-facing view of the interior scenes, Fig. 3.5(a) shows a significant

decrease in window light exposures during Day 7 compared to Days 6 and 8, as the

blind was fully closed for the entire day. Closer inspection of Fig. 3.5(a) shows that

the participants closed the blind mainly during the afternoon between Day 1 and Day

5 to reduce the excessive sunlight entering the window. During Day 6 and Day 8, the

blind was fully retracted for the entire day.
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Figure 3.5: False Color luminance mapping of a) window-facing views and b) exterior
scenes from 09:00 to 19:00 between Day 1 and Day 8.
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Figure 3.6: Mean CS values measured for an entire day for each study day. The error
bars represent the standard error of the mean.

3.3.2 Exploring the Circadian Effectiveness of Various Lighting Conditions

Circadian stimulus (CS) was estimated by analyzing SPD collected from the wear-

able device worn by the participants. Fig. 3.6, Fig. 3.7, and Fig. 3.8 summarize

the outcomes in terms of the mean CS level over the eight-day study period grouped

into the entire day, working and waking hours, and daytime periods. As expected,

the one-way ANOVA revealed significant differences in CS values for the study days,

F(7, 43261)=163.665, p<0.001. Post-hoc analysis using the Tukey HSD model show

significant (p<0.001) difference in mean CS levels between two intervention days (Day

7 (M = 0.12, SD = 0.19), and Day 8 (M = 0.14, SD = 0.21)) and the first six days.

Fig. 3.6 shows two intervention days (Day 7 and Day 8) had the highest CS

value compared with other study days. As shown in Fig. 3.7, the mean CS level

dramatically increased from Day 6 to Day 8 during waking and working hours. For

different daytime periods, there is a surge in mean CS level from Day 6 to Day 8

during morning and evening, except for afternoon as there was a slight decrease from

CS = 0.31 to CS = 0.3 between Day 7 and Day 8, respectively (Fig. 3.8).
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Figure 3.7: Mean CS values measured during working hours and waking hours for
each study day. The error bars represent the standard error of the mean.

Figure 3.8: Mean CS values measured during different daytime periods for each study
day. The error bars represent the standard error of the mean.
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(a) Participant 1

(b) Participant 2

Figure 3.9: Participant profiles and their daily schedule and locations for all eight-
day study periods. Orange, blue, and grey cubes indicate each participant’s hours
working, waking, and sleeping, respectively.

3.3.3 Exploring Personal Lighting Conditions per Individual

Fig. 3.9 presents the daily schedule of both office workers for all eight-day study

periods. Each participant self-reported their daily schedules and locations during the

entire study period. Participants had different sleep-wake schedules (blue and grey

cubes) and working schedules (orange cubes). As shown in Fig. 3.9, the average

reported duration of working hours was 345 minutes (SD = 140) and 315 minutes

(SD = 138) for participant 1 and participant 2, respectively. The sleep-wake schedule

of each participant was different from one another. The average reported duration of

waking hours was 960 minutes (SD = 30) and 720 minutes (SD = 50) for participant 1

and participant 2, respectively. In general, participant 2 had a longer sleep duration

by approximately 12 hours compared with 8 hours for participant 1. It should be

noted that participant 2 was not presented in the working area during Day 3.
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Figure 3.10: Mean CS values measured at the chest of each participant for an entire
day. The error bars represent the standard error of the mean.

Fig. 3.9−Fig. 3.12 can be used to understand the significant impact of individual

differences between participants on measured light exposure data reported in units of

CS. Fig. 3.10, Fig. 3.11, and Fig. 3.12 compared the measured levels of CS between

two participants during each study day, waking hours, and only working hours for

the study. The two-way ANOVA revealed significant main effects of the participant's

schedule, F(2, 43130)=4697.851, p<0.001. The mean CS level increased from Day

6 to Day 8 for both participants. Fig. 3.12 shows mean CS values during working

hours were significantly higher for participant 2 during all study periods (CS > 0.3),

except Day 3, compared with participant 1.

Fig. 3.13 presents the mean CS level for four different daytime periods acquired

by taking light exposure data of each participant throughout the study. There was

a significant main effect of daytime periods, F(3, 43130)=203.431, p<0.001. For

participant 1, the mean CS level decreased from morning to night during all three

study days. For participant 2, the mean CS level increased between morning and

afternoon, followed by a decrease towards the night during all eight-study days, except

for an unexpected surge on mean CS level during the evening on Day 7. Except a

slight increase between afternoon and evening on Day 1 and Day 8 and an unexpected
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Figure 3.11: Mean CS values measured at the chest of each participant during waking
hours. The error bars represent the standard error of the mean.

Figure 3.12: Mean CS values measured at the chest of each participant during only
working hours. The error bars represent the standard error of the mean.
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increase from morning to afternoon on Day 5.

3.4 Discussion and Conclusions

This research assessed the practical applicability of an affordable and wearable

spectrometer in the context of aiding individuals to have healthier living with relation

to light. In this study, the circadian effectiveness of light was measured in terms of

CS across the eight-day study period. Previous studies showed that the office workers

who received CS ≤ 0.15 in the morning had difficulty sleeping at night with higher

levels of depression compared to those who received CS ≥ 0.3 in the morning [7, 8].

Hence, in the present study, CS ≥ 0.3 is considered a high circadian-effective light

level that reduces sleepiness and improves energy and alertness in office workers. It

should be noted that each participant used the same wearable device on each day of

the study.

We evaluated the circadian effectiveness of lighting during a two-day intervention

(Day 7 and Day 8) following the baseline between Day 1 and Day 6 for two office

workers. The findings show a significant difference between the first six days and

Days 7 and 8 in terms of CS value that indicated the potential of utilizing dynamic

electric lighting in combination with daylight to impact the circadian stimulus poten-

tial of indoor lighting significantly. As expected, participants were exposed to higher

amounts of circadian-effective light during working hours compared to waking hours

(Fig. 3.7). CS values during waking hours for the two intervention days were above

0.2 (see Fig. 3.7). We found that the two office workers received high circadian-

effective light levels (CS ≥ 0.3) while at work (during working hours) on intervention

Day 7 and Day 8 compared to baseline days (Fig. 3.7). The average CS value for both

participants was 0.37 on Day 7, followed by a considerable increase to 0.45 on Day

8. Increasing circadian stimulation during Day 8 was because of access to a mixture

of daylight and electric light compared to Day 7, where electric light was the only

source of lighting. The importance of daylight and its impact on improving the level
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(a) Participant 1

(b) Participant 2

Figure 3.13: Mean CS values measured at the chest during different daytime periods
for a) participant 1 and b) participant 2. The error bars represent the standard error
of the mean.
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of circadian-effective light in indoor spaces is comparable to the studies presented by

Konis et al. [39] and Boubekri et al. [145]. They showed the benefits of daylit spaces

in comparison with windowless environments regarding increasing circadian stimula-

tion. Participants were exposed to a significantly higher amount of circadian-effective

light in the afternoon for most of the study days compared to other daytime periods

(Fig. 3.8). The mean CS value increases during the afternoon can be explained by

the more significant proportion of time that both participants spent at their working

space with higher circadian-effective light levels than other spaces such as the living

room and bedroom (see Fig. 3.9).

Even though we performed this study in summer 2020 and we only have two partic-

ipants doing the same job tasks in the exact location, we still found large individual

differences between the two participants in their lighting conditions. These differ-

ences between the personal lighting conditions of two participants may be explained

by mixed physiological/behavioral differences and workspace characteristics such as

different wake/sleep patterns, work schedules, and distance to the window. As men-

tioned in section 2.1, the variation between workspace characteristics was minimized

for both participants. Variations as siting orientation, amount and placement of fur-

niture and luminaire, size of the building, building orientation, blinds and condition

of window coverings, and the size, number, and height of the monitors were similar

for both participants.

Even though the study was performed on sunny days during the summer season,

both office workers were generally exposed to low circadian-effective light levels (CS

≤ 0.3) during waking hours (Fig. 3.11). We can speculate on a few reasons why

the measured amount of circadian light for both participants for the entire day (Fig.

3.6) and during waking hours (Fig. 3.7) on all eight study days was low. One is due

to the building design, a narrow facade, and a small window-to-wall ratio that had

been poorly designed to provide enough daylight availability in the space (Fig. 3.3).
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Another is due to the building orientation, as the West-facing window had only about

two hours of direct sunlight (Fig. 3.5). In contrast, the East-facing window did not

provide enough daylight availability for even the bedroom during the daytime period.

The third reason would be the lack of enough number, placement, intensity, and

spectrum of electric lighting installed in the building where less daylight is available.

As expected, distance from the West-side window at the working space was asso-

ciated with a difference in participants’ lighting conditions. Except for Day 3, the

average CS values during working hours for participant 2 were above 0.3 (Fig. 3.12).

In contrast, for participant 1, the average CS value during working hours was above

0.3 only on two intervention days (Day 7 and Day 8). As shown in Fig. 3.12, a 2-meter

increasing distance to the West-facing window resulted in a significant increase in the

mean CS level between Day 6 and Day 8 when daylight was the source of light for

the working space. The CS level reduces for an increasing distance can be explained

by the limited penetration depths of daylight in a room [146]. These results are con-

sistent with previous studies showing distance-to-window has a significant impact on

the personal lighting conditions [43], particularly the amount of circadian-effective

light that participants were exposed to during daytime [66]. These findings highlight

the importance of considering the impact of distance to the window when measuring

the personal lighting conditions within daylit spaces.

The difference in personal lighting conditions between the two participants was

also found and can be impacted by changing the office workers'sleep-wake schedules

and working schedules. As mentioned in section 2.6, the working hours and waking

hours were calculated based on the amount of time each participant spent at the

working space and being awake, respectively. Although participant 2 woke up about

4 hours later than participant 1, the percentage of time spent at the working space

was much higher compared to participant 1 (Fig. 3.9). Participant 2 received a higher

amount of circadian-effective light in the afternoon than other daytime periods during
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all eight-day study periods, except Day 3 when participant 2 was not present in the

working area for the entire day (Fig. 3.13). However, participant 1 was exposed to

the highest level of circadian-effective light in the morning for intervention on Day 7

and Day8.

Additionally, a low CS level on Day 4 and Day 5 compared with other study days

for participant 1 can be explained by the lower number of working hours during these

days (see Fig. 3.9). Similarly, for participant 2, a considerable decrease in CS level on

Day 3 resulted from a significant reduction in the number of working hours. Future

research is recommended to include a more substantial number of participants with

different age groups, jobs, cultures, and genders to explore a complete set of factors

to better understand the actual lighting conditions at the individual level.

The present study is the first to employ a low-cost and wearable spectrometer that

allows us to measure light source′s SPDs in real-time and store personal light expo-

sure data on an external Firebase cloud database using wireless communication. The

concept of a “personalized smart lighting system” can be deployed by continuously

monitoring individual lighting conditions in real-time using the spectrometer proto-

type developed in this study and controlling these lighting conditions by utilizing an

IoT-based intelligent lighting system.

3.4.1 Limitations of the study

Firstly, due to the impact of the COVID pandemic, we had a limited number of

participants in this study. The small sample size does not allow us to investigate the

inter-individual differences in response to light exposure between larger populations

with different ages, genders, and jobs. Physiological, genetic, behavioral, and cul-

tural differences may cause different biological reactions even under the same lighting

conditions.

Finally, this study was performed in the summer, and the specific weather condi-

tions with much longer daylight hours per day may vary when compared with win-
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tertime. The previous studies demonstrated that the average lighting conditions are

lower in winter and autumn compared with summer [65− 67]. This may have caused

the level of circadian-effective light to be considerably higher during the summer

compared to other seasons.

3.4.2 Future research directions

Future research needs to consider four aspects. First, it is recommended to include

a larger number of participants with different age groups, jobs, cultures, and genders

to explore a complete set of factors to better understand the actual lighting condi-

tions at the individual level. Secondly, additional research is needed to evaluate the

personal lighting conditions in other space types with different light settings, such as

hospitals and residential spaces. It will help us better understand the circadian ef-

fectiveness of indoor lighting within a broad range of building types and populations.

Thirdly, as briefly mentioned in section 3.4.1, “limitations of the study”, the inclusion

of different seasons and even other locations for recording personal lighting conditions

may result in more robust recommendations to enhance the level of circadian-effective

light in indoor spaces. Therefore, additional research is needed to repeat this study

in winter/autumn conditions and the south/near the equator. And fourth, further re-

search is required to explore the personal lighting conditions in buildings using similar

IoT-based wearable devices equipped with wireless communication to be integrated

with intelligent lighting systems to adjust the spectrum and intensity according to

individual needs and desires in real-time.



CHAPTER 4: USER-CENTERED APPROACH TO BUILDING AN

INTERACTIVE DASHBOARD FOR ASSESSING THE CIRCADIAN

EFFECTIVENESS OF LIGHT: DEVELOPMENT AND USABILITY STUDY

4.1 Introduction

Light affects human health, well-being, and performance through the visual and

circadian systems. The suitable types of light with the right spectral content at

the correct times can support the 24 hours of human circadian rhythms. In turn,

light exposure with the right spectral content at the wrong times can disrupt human

circadian rhythms. For example, lack of natural light in winter and long daylight

hours in summer in Canada and Northern Europe is associated with a mismatch

between sleep/wake schedules that disrupt circadian rhythms [147]. Disruption of

circadian rhythm may result in mood disorders, displacement of sleep/wake cycle,

melatonin suppression, phase-shifting of the circadian system, and lead to a range

of health issues such as depression, diabetes, seasonal affective disorder, and even

cancer [10–13,148].

Since 2002, by growing interest in the link between light and health, tools, and

methods for measuring light exposure have been shifted from vision-related quanti-

ties (e.g., lux) to those considering the spectral composition of light radiation. To

address humans’ biological needs for light, the effect of light exposure on the circadian

system should be calculated by considering the output of all three types of retinal

photoreceptors: rods, cones, and ipRGCs, in the human eye [32, 149]. Recently, a

metric called Circadian Stimulus (CS) was proposed by the Lighting Research Cen-

ter (LRC) [31] to evaluate the circadian-effectiveness of light sources. The WELL

standard suggests exposure to a CS of 0.3 or higher at the eye for at least the hours
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between 9:00 AM and 1:00 PM [20]. CS considers both spectrum and intensity of

light source and ties to all three types of retinal photoreceptors. Despite the signifi-

cant effect of light exposure on the circadian system, there is still a lack of practical

tools to measure and deliver the CS to non-expert end-users as an easy-to-understand

outcome. Individuals who are exposed to irregular patterns of light and darkness such

as office workers and nurses receive less natural light during daytime hours and more

artificial light during nighttime hours, which lead to lower productivity, lower physi-

cal and psychological well-being, and a higher risk of accidents and errors [150, 151].

Technologies such as web-based and mobile apps have a great potential to engage

individuals in their health care by supporting real-time personalized health moni-

toring and promoting healthy behavior change [152–154]. Our study developed an

interactive dashboard specifically for these groups to manage and track their lighting

conditions data.

This study is the second step of a larger project to develop a novel connected

support technology, including a low-cost and wearable spectrometer and an interactive

dashboard to help people live healthier with light. The main objective of the present

study is to develop an interactive dashboard through a user-centric approach by

engaging the end-user directly throughout the entire process, from needs finding to

usability testing of medium- and high-fidelity prototypes.

4.2 Materials and Methods

4.2.1 System and Details

We developed a novel human-centric lighting assist tool including a low-cost and

wearable spectrometer and an interactive dashboard to enable individuals to contin-

uously track and monitor their lighting conditions throughout a 24-hour day (Fig.

4.1). Past studies describe the fabrication challenges, calibration, and validation of

the wearable spectrometer. The interactive dashboard aims to provide non-expert

users with meaningful and easy-to-understand quantities on how much circadian-
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Figure 4.1: The proposed human-centric lighting assist tool includes a) a low-cost and
wearable spectrometer to record SPD, b) a cloud database to store collected SPD,
c) a server to analyze data, and d) an interactive dashboard to visualize the data in
meaningful and easy to understand quantities.

effective lighting they receive, together with improving indoor lighting systems into

proper human-centric lighting. The interactive dashboard allows the users to explore

the effect of circadian-effective lighting within three different time frames: (1) the

yearly and monthly time frame includes the holistic overview of the average CS for

each day of the recent or previous years (2) Hourly time frame includes the average

CS for every hour of the specific day, and (3) the part-of-day time frame includes the

average CS during the morning, evening, afternoon, and night. In addition, if indi-

viduals’ everyday life is not aligned with their circadian rhythms, the app provides

tips and/or live updates as a state of emergency for enhancing an individual’s lighting

conditions. The high (good) and low (poor) circadian effectiveness of light are shown

by different colors. The same color codes are used for different time frames to increase

consistency throughout the application. Information such as the definition of CS and

the app’s purpose can be found on the “About” page.
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Figure 4.2: Study overview.

4.2.2 Study Design

We implemented a user−centered approach guided by Information System Research

(ISR) framework to develop a functional interactive dashboard through a three−phase

iterative process (Fig. 4.2) [155,156]. We engaged the end−user directly throughout

the process of design and development of the interactive dashboard to provide the

most beneficial outcome [157]. We performed a three−cycle iterative user−centered

approach spread over 20 months consisting of relevance, rigor, and design cycles. Dur-

ing the relevance cycle, we identified the end-user's needs and requirements through

a series of interviews with various stakeholders. We evaluated the past and exist-

ing knowledge and artifacts during the rigor cycle to ensure the interactive dash-

board innovation. Finally, during the design cycle, we developed and assessed low−,

medium−, and high−fidelity prototypes of the interactive dashboard to enhance the

design and increase its acceptance likelihood.
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4.2.3 Phase 1: the Relevance Cycle

The goal of phase 1 was to identify the end user's needs and requirements. We

conducted a series of in-person interviews with intended end-users. Inclusion criteria

included: (1) non-expert users such as office workers who spend most of their time

indoors and are exposed to less natural light during daytime hours and more artificial

light during nighttime hours; and (2) expert users who improve the indoor lighting

conditions such as lighting designers. Exclusion criteria included: those who spend a

large proportion of their time working outdoors under natural light.

We conducted 34 semi-structured interviews between June and August 2019 with

15 office workers and 19 lighting designers ages between 31 and 60 years to determine

the interactive dashboard’s desired functional and design requirements. All interviews

were audio-recorded and transcribed. The duration of each interview was between 20

and 60 minutes.

4.2.4 Phase 2: the Rigor Cycle

The goal of phase 2 was to evaluate the past and existing knowledge and artifacts to

ensure the interactive dashboard innovation. We reviewed both white and grey liter-

ature for existing artifacts, including web-based and mobile apps with the functional

specifications and systems qualities drawn from the relevance cycle. We searched for

artifacts designed to evaluate the effects of light on human health, specifically on the

circadian system.

4.2.5 Phase 3: the Design Cycle

Phase 3 comprises two stages: Develop/Build and Evaluate. For the first stage,

we developed a low-fidelity prototype using findings from interviews with intended

end-users during phase 1 to evaluate the optimal features, global structure, and visual

design of the interface. We performed two usability tests for the second stage using the

medium- and high-fidelity prototypes to evaluate the developed prototypes'usability,
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usefulness, and acceptability. During the design cycle and through an iterative pro-

cess, we applied the lesson learned from participants'feedback and literature review

from the previous phases to improve the design and increase the likelihood of the pro-

posed app acceptance. We performed three iterative studies with low-, medium-, and

high-fidelity prototypes explained in detail in the following sections (Fig. 4.2). For

each iteration, we recruited 5 participants, which is typical sample size for usability

studies to acquire the majority of usability issues [158, 159]. We collected usability

data both qualitatively and quantitatively using questionnaires, observations, and

individual interviews. All interviews were conducted remotely. Each session was

video-recorded using the Zoom video conferencing platform and lasted less than 45

minutes.

4.2.5.1 Develop/Build: Low-Fidelity Prototype

The goal of the develop/build stage was to identify the global structure, optimal

features, and the visual design of the interface and acceptability of the proposed app.

We incorporated the output drawn from relevance and rigor cycles, including a list

of functional requirements and features based on analyzing interviews, reviewing the

literature, and identifying the existing web-based and/or mobile apps. Before de-

signing the low-fidelity prototype, several paper-based prototypes were created based

on the need's analysis (interviews with end-users) and literature review to define the

potential functions and features included in the proposed app. We designed a low-

fidelity prototype of the interactive dashboard in Figma [160]. Five participants were

recruited in March 2020 from previous participants in the relevance cycle.

At the beginning of the interview, we provided a brief introduction and the project's

goal for each participant. Then, we shared our screen with participants through Zoom

to show the low-fidelity prototype. We discussed the functions and features that

could be included in the interactive dashboard. The participants shared their ideas

on the information, content, and features presented in the low-fidelity app. During



88

the discussion, we asked probing questions to stimulate discussion, such as “What

would improve some of the current features that are presented in the prototype?”

and “What information do you need from a web-based app related to quality and

quantity of light you receive throughout a 24-hour day?”.

At the end of each interview, we reviewed all the transcripts, notes, and obser-

vations obtained from the interviews. We used the AI software program named

Otter.ai [161] to transcribe the recording of the interview. This software provided

accurate speech-to-text along with metadata such as the date and time stamps. Us-

ing a low-fidelity prototype immensely helped us explore our end-users needs and

desires related to functional content and features of the interactive dashboard. The

finding from the develop/build phase provided information for further refinement of

the prototype in terms of the interface’s visual design and functional requirements.

4.2.5.2 Evaluate: Usability Testing

The goal of the evaluation stage was to evaluate usability and explore the usefulness

and acceptability of the proposed app. We conducted two usability testing using

medium- and high-fidelity prototypes to assess the usefulness and acceptability of

the proposed app. Similar to phase 1, we designed the medium- and high-fidelity

prototypes in Figma.

We conducted the usability testing using Zoom and asked participants to share their

screens to observe their interaction with the prototype. We prompted participants to

“think-aloud” their thoughts during each interview as much as possible while working

through the prototype. Each interview was video-recorded and lasted for about 45

minutes. Each participant completed the System Usability Scale (SUS) at the end of

the session. SUS was one of the most frequently used, validated, easy to interpret,

and reliable with small sample sizes instruments for assessing subjective usability

[162–167].

All interviews were transcribed, coded, and analyzed for generalizable themes. We
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used Excel for descriptive quantitative analysis of participant characteristics and the

SUS scores. We analyzed qualitative data using a content analysis approach to iden-

tify usability issues and navigation problems to create themes [ [168]. Additionally,

we used a rainbow spreadsheet proposed by Tomer Sharon [169, 170] to analyze in-

terview transcripts and observation notes. We coded participants’ statements and

comments from transcribed recordings. To identify themes, we coded all participant

comments under six categories: visibility, navigation, aesthetic, understandability,

usefulness, workflow, and content. In the following sections, the process of usability

testing using medium- and high-fidelity prototypes is explained in detail.

4.2.5.2.1 Medium-Fidelity Prototype

We conducted usability testing using a medium-fidelity prototype. We performed

two types of usability assessments in February 2021: (1) expert review of the pro-

totype using 2 participants who have experience in the field of User Interface (UI)

design and human-computer interaction and (2) end-users usability testing with two

office workers and three lighting designers. The procedure included a semi-structured

interview with each participant as follows: (1) brief introduction of the project and

goal of testing; (2) asking five open-ended warm-up questions; (3) describing the

full functionality of the medium-fidelity app; (4) providing six tasks and observing

participant's interaction using the prototype; (5) asking follow-up questions after

completing each task; (6) filling the SUS questionnaire. According to Bangor's ad-

jective rating scale, a product is qualified as a “good product” when a SUS score is

above 70 (acceptable) [162,163].

4.2.5.2.2 High-fidelity prototype

We designed a high-fidelity prototype incorporating the usability issues evaluated

from the previous usability test to improve the functionality and user interface of

the prototype. To test the usability of the high-fidelity prototype, we performed
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the remote usability testing with five intended end-users (2 office workers and three

lighting designers) during June 2021 who did not participate in the previous sessions.

We used the same six-steps usability testing procedures (section 4.2.5.2.1) to conduct

a semi-structured interview with each end-user. Interviews were video-recorded. We

took observation notes during each session. The analysis was based on transcriptions,

observation notes, and the SUS questionnaire.

4.3 Results

4.3.1 Population Descriptive Statistics

We had 51 participants aged between 31-60. Thirty-four participants in phase 1

(between June and August 2019) identified the end-user's needs and requirements

of the proposed app. For phase 3, we recruited 15 eligible participants between

March 2020 and June 2021. Of those, 5 participants evaluated the low-fidelity pro-

totype in terms of global structure and the interface's visual design, 5 tested the

usability of the medium-fidelity prototype, and 5 assessed the usability and explored

the usefulness and acceptability of the high-fidelity prototype. Additionally, two

expert reviewers evaluated the medium-fidelity prototype. Table 4.1 shows the par-

ticipants'characteristics.
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Table 4.1: Sociodemographic characteristics of the participants (n=51).

Number and types of participants at each phase (n) (%)

Subgroup

Lighting designer 27 52.9

Office worker 22 43.1

Expert reviewer 2 3.9

Gender

Female 23 45

Male 28 55

Phase 1

Lighting designer 19 56

Office worker 15 44

Phase 3

Low-fidelity prototype

Lighting designer 3 17.6

Office worker 2 11.7

Medium-fidelity prototype

Lighting designer 2 11.7

Office worker 3 17.6

Expert reviewer 2 11.7

High-fidelity prototype

Lighting designer 3 17.6

Office worker 2 11.7
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4.3.2 Phase 1

Overall, all participants like the idea of the proposed app as they think it is noble

and would greatly help them track their lighting conditions. They were primarily in-

terested in the solution that would greatly help for improving their lighting conditions.

The interview transcripts'thematic analysis resulted in identifying four categories of

functional requirements: track personal lighting exposures, staying healthy, my infor-

mation management, and resources (Table 4.2).

Table 4.2: Findings from interviews with intended end-users.

Category Content

Track personal lighting exposure Different hours, days, months, and years

Staying healthy An ideal spectrum of light for individuals,

solution for improving lighting conditions

My information management Log of previous measurements

Resources Importance of circadian lighting for health

4.3.3 Phase 2

There is a growing interest among researchers within different fields in investigating

the non-visual effects of light on human health and well-being. The extensive review

of the previous and existing artifacts revealed that there are only a few mobile apps

available to evaluate the effects of light on humans by tracking users'sleep, activity

levels, and in some cases measuring lighting conditions. We did not find any apps us-

ing metrics such as Circadian Stimulus (CS) to monitor the biological effects of light

on human health in real-time. Two web-based online tools have recently been devel-

oped to explore non-visual spectrum lighting for human health [171] and calculate the

relevant physiological quantities for light [172]. We also found one connected tech-

nology, including a wearable device and a mobile app to record vertical illuminance
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(lux) with a real-time recording of how much light they receive over time [38]. We

considered these artifacts in the next phase (design cycle) to increase the acceptance

likelihood of the proposed app.

4.3.4 Phase 3: Low-Fidelity Prototype

All participants (n = 5) appreciated the possibility of accessing detailed information

about an individualâs lighting conditions. Three participants, two office workers, and

one lighting designer commented on the global structure and the visual design of the

static interactive dashboard. They thought minimizing the text and the number of

clicks to accomplish a task would greatly help improve the app’s functionality. They

stressed the need to enhance the visual design of the bottom bars by combining them

into one graph with less text to minimize the number of clicks for selecting a specific

date. Furthermore, they emphasized reducing texts by removing legend at the left

side of the dashboard.

All participants (n=5), except one, were confused by the purpose of the app. They

indicated that providing instruction on using this app and what the metric implied

would greatly help them. Two participants (office workers) preferred attaching the

hourly average to the top bar by relocating the hours of a day from the top to the

bottom to improve the visual design of the interactive dashboard. The evolution from

low- to medium-fidelity prototype is illustrated in Fig. 4.3 (b).

4.3.5 Phase 3: Medium-Fidelity Prototype

Three office workers and two lighting designers participated in usability testing of

the medium-fidelity prototype. The median SUS score of 76 (SD = 5.48) indicated

that the medium-fidelity prototype was relatively intuitive (Table 4.3). The findings

from the qualitative data showed that overall, the participants had positive feelings

about the prototype. Table 4.4 shows some examples of the usability issues identified

by participants in testing medium-fidelity prototypes. Additionally, two experts re-
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viewed the medium-fidelity prototype to check for possible usability issues. We used

the recommendations made by two expert reviewers and five end-users to modify the

app design. Fig. 4.3(c) shows the evolution from medium- to high-fidelity prototype.

Table 4.3: System usability scale score for medium- and high-fidelity prototypes.
(Scores of the ten items were transformed into a summary score ranging from 0 to
100; higher = more user friendly).

System usability scale items (SD) (1 =

Strongly disagree; 5 = Strongly agree)

Medium-

fidelity

(SD)

High-

fidelity

(SD)

All (SD)

1. I think that I would like to use this app

frequently.

3.60 (0.55) 3.80 (0.84) 3.70 (0.69)

2. I found the app unnecessarily complex. 1.60 (0.55) 1.20 (0.45) 1.40 (0.50)

3. I think the app was easy to use. 3.60 (0.89) 4.20 (0.45) 3.90 (0.67)

4. I think that I would need the support of

a technical person to be able to use this

app.

1.80 (0.45) 1.60 (0.55) 1.70 (0.50)

5. I found the various functions in this app

were well integrated.

4.20 (0.84) 4.00 (1.00) 4.10 (0.92)

6. I think there was too much inconsistency

in this app.

2.00 (0.00) 1.80 (0.45) 1.90 (0.22)

7. I would imagine that most people would

learn to use this app very quickly.

4.80 (0.45) 4.40 (0.55) 4.60 (0.50)

8. I found the app very cumbersome to use. 1.80 (0.45) 2.00 (0.00) 1.90 (0.23)

9. I felt very confident using the app. 3.80 (0.84) 4.00 (0.00) 3.90 (0.42)

10. I needed to learn a lot of things before I

could get going with this app.

2.40 (0.55) 2.00 (1.00) 2.20 (0.78)

Total System Usability Scale score 76 (5.48) 79.50 (4.47) 77.75 (4.98)
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Table 4.4: Modifiable usability issues identified by participants with related themes
after testing the medium- and high-fidelity prototype.

Category Themes Examples of participant comment

1. Visibility: Ability

to quickly recognize

critical messages and

instructions provided

by the interactive

dashboard

• Visibility

improved when

providing tips on

how to enhance CS

• I need to see a list of

recommendations on enhancing

CS (medium- and high-fidelity

prototype).

• User-definable metrics help set

limits for people of different ages

like kids and the elderly

(high-fidelity prototype).

• Visibility

improved when

instructions and

information are

added

• I do not know what to do with

the app? The purpose of the app

is unknown to me

(medium-fidelity prototype).

• Put a legend on the dashboard

to show the CS metric (medium-

and high-fidelity prototype).

• What PCM stands for? Pl

define it (high-fidelity prototype).

Continued on next page
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Table 4.4 – continued from previous page

Category Themes Examples of participant comment

• Instruction is too longâtoo

much text in the last paragraph

of the about page. I want to see

something graphically

(high-fidelity prototype).

• Visibility

improved when the

help button is

located in the

dashboard

• Put some legend in the

dashboard to describe what

different colors are. Not intuitive

at this point. Nice to have a

legend to show high and low

circadian rhythms by hovering

over the blue and orange cubes

(medium- and high-fidelity

prototype).

• Change the title from hour/day

to Hourly in the dashboard

(high-fidelity prototype).

• I like the hourly average starts

from midnight instead of 6 am

(high-fidelity prototype).

• Write noon for noon and

midnight for 12 am on an hourly

average (high-fidelity prototype).

Continued on next page
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Table 4.4 – continued from previous page

Category Themes Examples of participant comment

• I want to understand why

between 2-5, the data is high and

then drops; what happened

between those hours? Somebody

was moving to the window or

waking from point A to point B?

(high-fidelity prototype).

• The warning sign is not

intuitive; make it better

(high-fidelity prototype).

• The tips do not mention how

much should I deem light

(high-fidelity prototype)?

• The help button icon was not

clear enough (high-fidelity

prototype).

• Nothing here to indicate the

year. Specify the year

(high-fidelity prototype).

• Shade the upper limit or make

a line on 0.3 to show the

threshold between acceptable and

not acceptable on the upper

graph (high-fidelity prototype).

Continued on next page
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Table 4.4 – continued from previous page

Category Themes Examples of participant comment

• Like the tips to pup-up

automatically when there is any

suggestion for improving CS

instead of a danger sign, put a

piece of information with the

blue bar to catch my attention

(high-fidelity prototype).

2. Navigation:

Ability in

recognizing and

using buttons and

moving easily

through the app

• The title should

appear on the left

location of each of

the three sections

and add a little

horizontal distance

between them to

facilitate

navigation

• I am confused about where

each section starts. Add distance

between each section. The title

for each section would help to

find the date or hourly average

easily (medium-fidelity

prototype).

• A marker to show where each

month starts and ends

(high-fidelity prototype).

• Not easy and intuitive to find

out what day you want. Make a

black line between different

months (high-fidelity prototype).

Continued on next page
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Table 4.4 – continued from previous page

Category Themes Examples of participant comment

• White line between each hour

to the top (high-fidelity

prototype).

• Connect each part of the day to

the representative hour by copy

the moon and sun to the top part

(high-fidelity prototype).

3. Aesthetic: The

color and look and

feel of the program

• Aesthetic

improves when the

color changed with

blue and orange

• Replace current colors or use

patterns instead of colors

(medium-fidelity).

• Add icons for

each part of the

day to find

morning and night

much easier

(medium-fidelity).

• More visually pleasing when

adding icon beside each part of a

day.

• Make text smaller in the

middle of the circle in part of a

day (high-fidelity).

Continued on next page
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Table 4.4 – continued from previous page

Category Themes Examples of participant comment

4.

Understandability:

Ability to quickly

comprehend the

meaning of the text,

instructions, and the

purpose of the

interactive

dashboard

• Using a complete

circle with a CS

label from 0 to 0.7

improves

understandability

• Use a complete circle for

different parts of the day like

morning, afternoon, etc.

(medium-fidelity).

• I am confused by a good CS for

a different part of the day. Why

is there tip and issue for the

night and not evening in some

days (high-fidelity prototype)?

•

Understandability

improves when

using common

terminology with

precise instructions

on about page

• Vocabulary such as âCSâ was

not understandable by most office

workers (high-fidelity prototype).

Continued on next page
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Table 4.4 – continued from previous page

Category Themes Examples of participant comment

• I like to have a legend on the

left side of the dashboard to

describe the meaning of different

colors (high-fidelity prototype).

• Label part of the day by

putting 0.3 on each circle

(high-fidelity prototype).

5. Usefulness:

Ability of the app to

improve speed,

decreasing the

cognitive burden,

and/or enhancing

the accuracy of the

interactive

dashboard

• Implementing

supplementary

functionalities are

essential to improve

usefulness and so

acceptability

• Add all days of the week in

yearly (medium-fidelity).

• The graphic for different parts

of the day is not clear. Just keep

them and write morning

(high-fidelity prototype).

• Add some instructions in the

dashboard (medium- and

high-fidelity).

Continued on next page
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Table 4.4 – continued from previous page

Category Themes Examples of participant comment

• Find the way to show results

for multiple users (high-fidelity

prototype).

• Besides, add another value that

is user-definable to say too much

light or poor light. A scoring

system from 0 to 10 shows that

CS is good or bad for different

hours and parts of the day

(high-fidelity prototype).

• Track the mood of people. Pop

up in the computer every hour to

ask your mood (high-fidelity

prototype).

• As it is a desktop app, I want

little access that can bring down

and show me what is below 0.3

means (high-fidelity prototype).

Continued on next page
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Table 4.4 – continued from previous page

Category Themes Examples of participant comment

6. Workflow: • To prevent

workflow

disturbance, the

PCM app should

be accessible on

various devices and

provide additional

functionalities

• The PCM app user interface

should be adapted to be usable

on smartphones and tablets

(high-fidelity prototype).

7. Content:

Appropriateness of

the interactive

dashboard

information

• Content improves

when having

another page to

provide instruction

on how to use the

app and what the

metric implies

• Better to have another page for

a short demo video and

instructions. Have a walkthrough

tutorial like other apps we used

for the first time (medium- and

high-fidelity prototype).

• It could be an added value to

have access to older data for up

to several years. For example,

compare the personal lighting

conditions for specific times

between different years

(high-fidelity prototype).

Continued on next page
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Table 4.4 – continued from previous page

Category Themes Examples of participant comment

• I might put a hyperlink

(publications and standards) to

describe circadian rhythm

in-depth (high-fidelity

prototype).

4.3.6 Phase 3: High-Fidelity Prototype

The results of usability testing of the high-fidelity prototype revealed that the

median SUS score was slightly improved from 76 (SD=5.48) to 79.5 (SD=4.47) after

modification of the interactive dashboard (Table 4.3). A total of 37 changes were made

to the high-fidelity prototype based on the end-users recommendations. Qualitative

feedback indicated that participants appreciated the refinement and modifications

of the prototype. Testing of the high-fidelity prototype of the interactive dashboard

revealed more concerns regarding visibility, usefulness, and navigation. Some usability

issues by the participant for further improvement of the prototype are listed in Table

4.4.

4.4 Discussion

In this study, a user-centered approach guided by the ISR framework was performed

through a three-phase iterative process to develop a novel interactive dashboard for

real-time monitoring of personal lighting conditions. At each phase of the study,

significant improvements were made to the interactive dashboard. Throughout the

entire process, we focused on the end user’s needs, recommendations, and feedback
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(a) Low-fidelity prototype

(b) Medium-fidelity prototype

(c) High-fidelity prototype

Figure 4.3: Changes between the low-fidelity (a), medium-fidelity (b) and high-fidelity
(c) prototypes.
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as a foundation for developing a highly usable and useful interactive dashboard. A

critical advantage of the user-centered approach implemented in this study is that it

enabled us to evaluate usability issues of an interactive dashboard and modify them

before launching the actual app.

We found that the medium- and high-fidelity prototypes were considered acceptable

with SUS scores of 76 and 79.5, respectively. No significant changes in SUS score

between medium- and high-fidelity prototypes might result from the small sample

sizes and a limited number of usability issues identified by participants [173–175].

Although there is no agreement on an acceptable SUS score [176], Bangor et al. [162]

recommended considering a product with SUS score above 70 as a “good product”.

The results of phase 1 enabled identifying four categories of end-users functional

requirements used in designing the low-fidelity prototype. Results of phase 2 revealed

the unavailability of an interactive dashboard for real-time tracking and monitor-

ing of biological effects of light on human health. We found two previously devel-

oped web-based online tools for exploring the non-visual spectrum lighting for hu-

man health [171] and calculating the physiological relevant quantities of light [172].

Our interactive dashboard differed from existing tools because it enables individual

non-expert users to continuously monitor how much circadian-effective lighting they

receive throughout the 24-hours day, together with how to improve their lighting

conditions. Results of phase 3 allowed identification of several usability issues of test-

ing the medium- and high-fidelity prototypes. The usability issues identified during

the usability testing of the high-fidelity prototype need to be addressed before being

assessed in a fully functional app. Most importantly, because more concerns were ex-

pressed regarding the usability issues related to visibility, usefulness, and navigation,

they should be prioritized when modifying the high-fidelity prototype.

There are several limitations to this study. First, we conducted usability testing

of medium- and high-fidelity prototypes with 5 participants, a typical sample size
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used to find the most usability issues of a product [159,175]. However, future studies

should be performed on a larger sample size with more diversity to identify a higher

number of usability issues along with a significant difference in SUS score. Second,

future study is needed to perform usability testing of a fully functional prototype

of an interactive dashboard. Our funding was limited due to the evaluation of the

medium- and high-fidelity prototypes. Third, future research can utilize the same

approach for developing a mobile app for tracking personal lighting conditions.

4.5 Conclusion

Implementation of a user-centered approach with three-phase iterations led to de-

veloping a novel interactive dashboard for real-time monitoring of the biological effects

of light on human health. First, we started by identifying the end user's needs and

requirements; second, we evaluated the past and existing knowledge and artifacts;

third, we assessed the global structure and the visual design of the interface; and

finally, we evaluated usability, exploring usefulness and acceptability of the proposed

app. We found that the interactive dashboard was usable, useful, and satisfying

for the participants. Both qualitative and quantitative analyses gave us an in-depth

understanding of different usability issues. Even though we addressed the usability

issues identified during the testing of the medium-fidelity prototype, some issues still

need to be addressed in our future developments.

This study is one of the first attempts to develop an interactive application to

provide vital information regarding the non-visual effects of light on health through

real-time tracking of personal light exposures. Tracking personal lighting conditions

can significantly help individuals or their health coaches to take more control over

their living conditions, health, and lifestyles.



CHAPTER 5: CONCLUSION

5.1 Contribution

Light has a profound impact on our health and general well-being. Today more

than ever, we depend on electric lighting for a considerable portion of the day, as

we spend most of our time indoors. Due to technological advances in lighting and

the discovery of the non-visual effects of light, the use of human-centric lighting has

become an attractive option as we reconsider our relationship with light. Human-

centric lighting can provide a range of evidence-based solutions to promote better

health and well-being in the built environment by tailoring indoor lighting conditions

according to individual circadian needs in real-time. Using human-centric lighting,

however, first requires a consistent and constant recording of lighting characteristics

that affect the circadian system over the entire course of the 24-hour day. Developing

a tool to track and record circadian light exposure is one of the most promising

responses to this problem.

This dissertation proposed a novel user-centric lighting assist tool consisting of

a wearable spectrometer and an interactive dashboard. The low-cost and wearable

spectrometer records different light characteristics that stimulate the circadian system

characteristics such as intensity, spectrum, timing, duration, and history of light

exposure. The spectrometer displays vital information regarding the non-visual effects

of light on humans through an interactive dashboard to improve personal knowledge

of lighting and increase end-user awareness to help them live healthier about light.

This research can be referenced as guidance towards a healthier lit environment in

the post-design evaluation of existing buildings.

Numerous studies have shown the necessity of developing a portable, low-cost,
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and accurate tool with wireless communication capabilities and real-time data mon-

itoring and visualization [40, 101–104]. A few wearable measurement devices have

been used for measuring personal light exposure within the field of lighting research

[15–17, 35–37, 40, 177, 178]. However, these devices are typically expensive, commer-

cially unavailable, or have questionable accuracy in measuring circadian lighting.

Currently, most studies have been utilizing wearable devices that measure vision-

related quantities such as photopic illuminance [34, 35], or the irradiance from red,

green, and blue of the visible light region [16,17,36,37] or both [38] to assess the non-

visual effects of light. This could be problematic as it is recommended to measure

SPD of the light exposure due to the complexity of non-visual photosensory systems

and limited knowledge regarding the contribution of each individual photoreceptor

in terms of irradiance response. The devices that record SPD enable researchers to

re-analysis the collected data using any unit of measure currently available and any

unit that may be developed in the future. Further, several field studies have been car-

ried out using expensive hand-held and portable spectrometers to measure circadian

lighting in the built environment [39, 179]. Other researchers have applied measure-

ment techniques using high dynamic range (HDR) photography [39,83,85] or lighting

simulation techniques [180–184] to evaluate the non-visual effects of light in the built

environment.

This research has bridged the gap by developing a low-cost, wearable, and accurate

device to measure personal light exposure in the most comprehensive form recom-

mended by lighting communities. My study departs from previous investigations

in at least three aspects. First, the user-centric lighting assist tool incorporates a

low-cost, wearable, and wireless spectrometer to continuously measure SPD of light

exposure with a resolution of 3.5 nm in the visible spectrum using Artificial Neural

Networks (ANNs). Second, the developed spectrometer offers real-time communica-

tion to transmit the collected SPD for storage on a cloud-based database using Blue-
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tooth, Wi-Fi, or SIM-card connection. This capability enables it to be integrated into

IoT-based intelligent lighting systems for tailoring indoor lighting systems according

to individual circadian needs. Third, the user-centric lighting assist tool allows vi-

sualizing the circadian-effectiveness of light exposure for end-users on an interactive

dashboard to track and monitor their personal lighting conditions easily. It also pro-

vides recommendations on how to improve indoor lighting conditions according to

individual circadian needs. To this end, through a user-centered approach, the end-

users were engaged throughout the entire process, from design to build an interactive

dashboard.

This tool can be a great source of information for lighting designers and post-design

evaluation of buildings. Moreover, it provides non-expert end-users with meaningful

and easy-to-understand information to take more control over their living conditions

and health by promoting healthy behavior change in buildings.

5.2 Limitation and Future Research Directions

First, the research has looked at only one type of neural network called multilayer

perceptron (MLP) to improve the accuracy of the wearable spectrometer. In addition,

a limited number of samples (light sources) and a few neural network architectures, ac-

tivation functions, and learning algorithms have been used to train and test the MLP

model for reconstructing the SPD. Future research can overcome this shortcoming by

applying more advanced computational techniques such as deep learning, with higher

samples of light sources, to facilitate the performance of the neural network, which

consequently could improve the accuracy of the developed spectrometer.

Second, due to the impact of the COVID pandemic, this study had some limita-

tions for conducting the field experiments intended to explore the performance of the

wearable spectrometer in real-world environments. Another possible future research

direction would be to understand the practical applicability of the wearable spectrom-

eter with a higher number of participants and with greater diversity during different
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seasons and in geographical locations. In addition to evaluating the performance of

the wearable spectrometer, this would greatly help investigate the inter-individual

differences in response to light exposure.

Third, the future study must consider the sensitive group of non-expert end-users

as the eventual customer for the interactive dashboard, not just the academic elite.

The potential segment for our technology could be those who spend most of their

time indoors, who are exposed to less natural light during daytime hours and more

artificial light during nighttime hours than what we would have naturally received

during day and night people such as nurses with rotating work schedules, and the el-

derly. Nurses'working hours are often outside the standard working schedule, leading

to poorer quality and shorter sleeping hours, extended periods of wakefulness, and

circadian disruption. Those nurses commonly have lower productivity, lower physical

and psychological well-being, and a higher risk of accidents and errors. Therefore,

shift work-related fatigue is a direct consequence of circadian disruption and sleep

loss and considerably affects nurse and patient safety. This tool would greatly help

end-users like nurses to initiate healthy behavioral change by engaging them with

their health data.

Fourth, future research is recommended to integrate the human-centric lighting

assist tool into an IoT-based intelligent lighting system for turning indoor lighting

sources into accurate human-centric lighting. This goal is achieved by continuously

measuring personal lighting conditions and tailoring indoor lighting conditions by

adjusting the spectrum and intensity according to individual circadian needs in real-

time.

Lastly, in recent years, sensor-enabled mobile health (mHealth) apps such as Fitbit

has emerged to enhanced users’ consciousness of their health status. Using wearable

sensors with mHealth apps empower users to be more involved in their health by

tracking and monitoring data related to users’ behavior (activity and motion) and
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characteristic (lighting exposure and body temperature). It also promotes behavior

change by providing a huge amounts of data for individuals or their health coaches.

However, there has been surprisingly lack of study in this area due to unavailability of

an affordable and accessible tools for real-time tracking and monitoring of biological

effects of light on human health. Current tools are either inappropriate to measure

circadian lighting, commercially unavailable, or not able to visualize the collected

data in meaningful and easy to understand quantities. Future study is recommended

to focus on conducting usability testing of the tool that is developed in this study

to investigate how users adopt and sustain healthy lifestyle choices through the use

of personalized approach for self-monitoring of biological effects of light in real-time.

This tool can drive the behavior change process by supporting users in optimizing per-

sonal light exposure, activity, and overall health. Use of innovative technologies such

as sensor-enabled mHealth apps have been proven as an effective way to re-engineer

healthcare system throughout the world by improving healthcare access and afford-

ability, and reducing healthcare costs by engaging users and encouraging meaningful

behavior change.
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