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ABSTRACT

FANG FANG. Improving Semiparametric Estimation of Longitudinal Data with
Covariance Function. (Under the direction of DR. YANQING SUN)

In this dissertation, we aim to improve efficiency of estimation in longitudinal data

under generalized semi-parametric varying-coefficient models.

First, we investigate a profile weighted least square approach for model estima-

tion by utilizing within subject correlations. Several methods for incorporating the

within subject correlations are explored, including quasi-likelihood approach(QL),

minimum generalized variance approach (MGV), the quadratic inference function

approach (QIF) and newly proposed weighted least square approach (WLS). Our

simulation study shows that the covariance assisted estimation is more efficient then

working independence approach(WI).

Second, we apply the above methods to more complex generalized semiparamet-

ric varying-coefficient models that not only describe time-constant effects and time-

varying effects as above but also model covariate-varying effects. The asymptotic

properties of the estimators are derived theoretically. The simulation study demon-

strates similar results as above.

The proposed estimation methods are applied to two real data sets. One is ACTG

244 clinical trial, the other is the STEP study with MITT cases. Both show that

our methods by using correlation structure in estimation give more efficient estima-

tion and provide more information about the data, and have broad applications in

biomedical studies where within subject correlation often exists.
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CHAPTER 1: INTRODUCTION

In biomedical, epidemiological, social and economical research, where data are often

collected at different time points for different subjects, we need to use longitudinal

data or more generally clustered data. However, for longitudinal data or clustered

data, there is often serial correlation between repeated measurements for the same

subject, how to incorporate such with-subject correlation into estimation procedure

is a major problem. In AIDS clinical trials, for example, viral loads and CD4 counts

are measured repeatedly during the course of studies. These biomarkers within the

same subject are often correlated positively. An important objective of the AIDS

clinical trials is to examine treatment effectiveness on these longitudinal biomarkers.

In this dissertation, we use a generalized semiparametric varying-coefficient model

to study treatment effects in such clinical trials, and improve the estimation efficiency

by utilizing within-subject correlation that often exists in longitudinal data.

1.1 Motivation

A motivating example is a historical case study of antiretroviral treatment regi-

mens, ACTG 244. Zidovudine (ZDV) was the first drug approved for treatment of

HIV infection. Initial approval was based on evidence of a short-term survival advan-

tage over placebo when zidovudine was given to patients with advanced HIV disease.

Shortly after that, zidovudine resistance was associated with disease progression mea-
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sured by a rise in plasma virus and decline in CD4 cell counts in both children and

adults receiving zidovudine monotherapy (Larder et al., 1991). Subsequent stud-

ies suggested benefits of switching patients to treatments that combined ZDV with

didanosine (ddI) or with ddI plus nevirapine (NVP). ACTG 244 enrolled subjects

receiving ZDV monotherapy and monitored their HIV in plasma bi-monthly for the

T215Y/F mutation. When a subject’s viral population developed the 215 mutation,

the subject was randomized to continue ZDV, add ddI or add ddI plus NVP.

An important question is whether and how the treatment switching has any ben-

eficial effects in treating the HIV infected patients. We investigate the treatment

switching problem under the generalized semiparametric varying-coeffcient model for

longitudinal data. Varying-coefficient models, first proposed by Hastie and Tibshi-

rani (1993), are appealing in longitudinal studies as they help to explore the ex-

tent to which covariates effects change with time comparing with parametric models.

It allows effective simultaneous modeling of parametric effects for some covariates

and varying coefficient effects for other covariates. For the varying-coefficient ef-

fects, some may depend on time called time-varying effects, some may depend on

other covariates other than time, which called covariate-varying effects. Generalized

varying-coefficient models provide a rich family of models with different link func-

tions, including categorical response data where little work has been done. Here

we apply generalized varying coefficient model to consider such treatment switching

effects, which represents a covariate-varying covariate effect with the exposure mod-

ifying variable the time since treatment switching. What’s more, associated with

inferences are the standard errors of the estimated coefficients. To make predictions
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or inferences more accurate, we want the standard errors to be as small as possi-

ble. The estimators obtained when considering correlation structure in estimating

equations will reduce the standard error significantly in general while maintain the

consistency.

These methods further have broad applications since treatment switching is com-

mon in medical studies, including switching antiretroviral therapies in response to

results of viral load and drug resistance testing (Grabar et al., 2000), and, very gen-

erally, switching therapies for chronic diseases based on biomarker response results.

1.2 Literature Review

For longitudinal data, to explore the possible time-dependent effects of some co-

variates, we have to use time-varying coefficient model which was proposed by Hastie

and Tibshirani (1993). It allows some covariates’ effect on responses changes with

time. In more general setting, the time in time-varying coefficient model does not

have to be time, but can be any time-dependent covariate. By relaxing assump-

tions of time-varying coefficient model, varying-coefficient models can explore how

covariates affect responses depend on other time-dependent covariates, thus to widen

time-varying coefficient model’s applicability.

Cai et al. (2000) applied varying-coefficient models to generalized linear models,

which works both for continuous and discrete responses under a generalized linear

model framework. The conditional distribution of response belongs to an exponential

family and a known transform of the underlying regression function is linear. More

recently, generalized semiparametric varying-coefficient models are often used in lon-
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gitudinal study in econometrics, biomedical research, and epidemiology. As shown in

Model (2.1), the mean of outcome variable Y depends on some covariates Z para-

metrically and some covariates X nonparametrically. In many instances, this model

is desirable since it retains the flexibility of nonparametric modeling and parsimony

and ease of interpretation of parametric modeling. We can make inference of Z while

making minimal assumptions on the effects of X when we don’t know the effects of

X are linear or nonlinear. Moreover, with appropriately chosen link function, this

model can be applied to both continuous and discrete responses. For instance, if Y

is continuous, we use identity link, if Y is bernoulli we use logit link and if Y follows

a counting process we can choose logarithm link.

µi(t) = E{Yi(t)|Xi(t), Zi(t)} = g−1{αT (t)Xi(t) + βTZi(t)}, (1.1)

for 0 ≤ t ≤ τ , where g(·) is a known link function, α(·) is a p1-dimensional vector of

completely unspecified functions, β is a p2-dimensional vector of unknown parameters.

We assume that,

E{Yi(t)|Xi(t), Zi(t), Xi, Zi} = E{Yi(t)|Xi(t), Zi(t)} = µi(t) (1.2)

(see Pepe and Couper (1997) for a discussion of this assumption).

Model (2.1) is very flexible since it can be reduced to many important statistical

models in special settings. For example, when β = 0, it becomes a generalized

nonparametric model for repeated measurements (Lin and Carroll, 2000; Wang, 2003).

When p1 = 1 and Xi ≡ 1, it becomes a generalized partially linear model for clustered
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data (Lin and Carroll, 2001b; He et al., 2002, 2005; Wang et al., 2005; Huang et al.,

2007). Furthermore if we let g(·) be an identity link, it becomes a partially linear

model (Härdle et al., 2012).

In model (2.1), T can be multiple dimensional to include multiple nonparametric

curves. Due to the curse of dimensionality, here we assume T is univariate for sim-

plicity. The first component of X is set to be 1 to include a nonparametric baseline

function.

Several authors have applied above model to independent data (Carroll et al., 1997;

Hastie and Tibshirani, 1990; Severini and Staniswalis, 1994), and they used kernel

method to estimate α(t) and the profile likelihood-based method to estimate β. A

lot of work has been done to estimate the unknown nonparametric function α(t) and

parametric parameter β. Zeger and Diggle (1994), Severini and Staniswalis (1994)

and Lin and Carroll (2001a,b) estimated α(t) using a kernel method by ignoring

the within-subject correlation while estimating β using weighted least squares by

accounting for the within-subject correlation, and Lin and Carroll (2000) showed that

by ignoring the within-subject correlation will achieve the most efficient estimation

of α(t) when standard kernel methods are used. To approximate α(t), the pth local

polynomial kernel smoothing can be used. When p = 1, it’s local linear kernel

smoothing; when p = 0, it becomes local average kernel method. Zeger and Diggle

(1994) considered a semiparametric mixed model, where they decomposed the error

into a random effect part for the serial correlation within subjects and a random

measurement error part, and used a back-fitting algorithm and local-average kernel

smoothing for estimation. Severini and Staniswalis (1994) also used local average
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kernel to approximate α(t) and profile-kernel GEEs to estimate β.

Lin and Carroll (2001a) and Lin and Carroll (2001b) both use local linear kernel.

The former showed that when nonparametric part is only a smooth function of a

subject-level covariate (i.e., Ti(t) doesn’t change with t), the most efficient estimators

of α(t) and β are obtained by incorporating the actual correlation matrix into both

the estimation equations. However, Lin and Carroll (2001b) showed that when Ti(t)

and Zi(t) are both time-varying covariates that changes with t, to achieve a consistent

estimate of β, we need either assume working independence or undersmooth α(t)(i.e.

choosing a bandwidth smaller than the one selected by cross validation) when using

the actual correlation matrix. Such consistent estimator is still not semiparametric

efficient. To estimate α(t), when covariate Xi(t) is time-invariant, we need to use the

actual correlation matrix to achieve a more efficient estimate of α(t); when covariate

Xi(t) is time-varying, then we need to assume working independence.

Chen and Jin (2006) avoided the above undersmoothing problem through a (non-

smooth) piecewise local polynomial approximation of α(t), and Huang et al. (2006)

used (smooth) spline approximations to approximate the nonparametric part and

then apply GEE to estimate the parameters. Both Chen and Jin (2006) and Huang

et al. (2006) achieved the semiparametric efficiency by accounting for with-subject

correlation and only assumed conditional moment restrictions without the strict mul-

tivariate Gaussian error assumption. Wang (2003) and Wang et al. (2005) revised the

original kernel GEE estimating equation in Lin and Carroll (2001b) to incorporate the

true correlation matrix for both α(t) and β and achieved semiparametric efficiency in

Gaussian case. However the improvement of efficiency from Lin and Carroll (2001b)’s
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estimator to Wang et al. (2005)’s is not significant comparing with the improvement

from independence case to Lin and Carroll (2001b)’s.

When using profile-kernel method to estimate α(t) and β, we need to estimate

the true covariance function of Y and iterate with estimation of α(t) and β until

convergence. A more efficient estimation of α(t) and β depends on the precision of

estimation of the covariance function of Y . How to estimate the covariance function

is another key problem in model (2.1). All the work above assume a simple structure

of covariance function that can be decomposed into marginal variance of Y and sym-

metric correlation matrix. The symmetric correlation matrix depends on a nuisance

parameter θ that can be estimated by method of moments in parametric general-

ized estimating equations(GEE) method (Liang and Zeger, 1986). Fan et al. (2007)

proposed another two methods to estimate θ, one is optimizing the quasi-likelihood

(QL), and the other one is minimizing the generalized variance of β (MGV).

The quasi-likelihood (QL) method proposed in Fan et al. (2007) constructs the

likelihood based on a normal distribution, since their model is a special case of our

model with an identity link for continuous responses, however in the generalized linear

model with non-identity link, the error part doesn’t follow a normal distribution but

possibly an Bernoulli or a Poisson distribution for discrete responses, thus we propose

Weighted least squares (WLS) method to circumvent this restriction.

Either using method of moments (Liang and Zeger, 1986), or quasi-likelihood

method (QL) and minimizing generalized variance of β (MGV) in Fan et al. (2007)

or our weighted least square method(WLS), the existence of θ̂ will not be guaran-

teed in some situations and θ̂ may not be close to the true value when the working
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correlation structure is misspecified. Qu et al. (2000) introduced the quadratic infer-

ence function method(QIF) to avoid the above issues. They represent the inverse of

working correlation matrix by a linear combination of basis matrices, and then us-

ing a quadratic inference function which follows the generalized method of moments

(GMM) in Hansen (1982) to construct estimating equations. In this way, they don’t

need to estimate the nuisance parameters in correlation matrix, and can achieve an

asymptotically efficient estimator for β even the correlation structure is misspecified.

Qu and Song (2004) showed a better robustness property of QIF method compared

to GEE. Qu and Li (2006) applied QIF method to varying-coefficient models for lon-

gitudinal data and used penalized splines to approximate the varying-coefficient part.

Bai et al. (2008) generalized QIF method to partial linear models for longitudinal

data and used B-splines to approximate the nonparametric part.

Qi et al. (2016) has done some research assume working independence within sub-

jects for this model, however, for repeated measurements of longitudinal data, corre-

lation within subjects often exists and is helpful to be used to improve the estimation

efficiency and prediction. Incorporation of the within-cluster correlation has been ap-

plied to various models along the lines of generalized estimating equations (see,e.g.,

Lin and Carroll, 2001a,b; Chen and Jin, 2006; Wang et al., 2005; Huang et al., 2007).

However, they focus on either a partially linear regression model with an identity link

under the multivariate Gaussian assumption, or a generalized partial linear model

with only a time trajectory as the nonparametric part. Our model contains not

only a time-varying effect on some covariates but also a covariate-varying effect on

other covariates with a general link, thus can characterize the treatment effects and
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treatment switching effects.



CHAPTER 2: SEMIPARAMETRIC ESTIMATION OF LONGITUDINAL
DATA—A COMPARATIVE STUDY

In this chapter we apply different methods to generalized semiparametric varying-

coefficient models for longitudinal data and compare their performance in different

settings. In Section 2.2 and 2.3, we describe the above methods in detail. In Sec-

tion 2.4, we assess the finite sample performance of different methods with Monto

Carlo simulation and illustrate the strength and limitations of them for continuous

responses. In Section 2.5, we do similar empirical study for discrete responses. In

Section 2.6, we apply these methods to a real data problem. Concluding remarks are

given in Section 2.7.

2.1 Model

In this chapter we study a generalized time-varying coefficient model for longitudi-

nal data, to explore the possible time-dependent effects of some covariates. It allows

some covariates’ effect on responses changes with time. In more general setting, the

time in time-varying coefficient model does not have to be time, but can be any time-

dependent covariate. In Chapter 3, we will turn to a generalized varying-coefficient

model by relaxing assumptions of time-varying coefficient model, which can explore

how covariates affect responses depend on other time-dependent covariates.

Model (2.1) is a generalized time-varying coefficient model, where the conditional

expectation of response Y depends on some covariates Z parametrically and the other
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covariates X nonparametrically.

µi(t) = E{Yi(t)|Xi(t), Zi(t)} = g−1{αT (t)Xi(t) + βTZi(t)}, (2.1)

for 0 ≤ t ≤ τ , where g(·) is a known link function, α(·) is a p1-dimensional vector of

completely unspecified functions, β is a p2-dimensional vector of unknown parameters.

We assume that,

E{Yi(t)|Xi(t), Zi(t), Xi, Zi} = E{Yi(t)|Xi(t), Zi(t)} = µi(t) (2.2)

(see Pepe and Couper (1997) for a discussion of this assumption).

In model (2.1), T can be multiple dimensional to include multiple nonparametric

curves. Due to the curse of dimensionality, here we assume T is univariate for sim-

plicity. The first component of X is set to be 1 to include a nonparametric baseline

function.

2.2 Profile-kernel Estimation of Regression Coefficients

To estimate the coefficients in above model (2.1), we use profile-kernel method

to estimate nonparametric function α(t) and parametric coefficient vector β in an

iterative nature.

First, given β, one can use pth local polynomial smoothing to approximate α(t)

(Lin and Carroll, 2000), here we use local linear smoothing (i.e. p=1)(Lin and Carroll,

2001a,b; Wang et al., 2005; Fan et al., 2007). Local linear smoothing has some nice

properties: good boundary behavior (Fan and Gijbels, 1996), high statistical efficiency

and design adaptation (Fan, 1993). At each t0, let α(t) = α(t0)+α̇(t0)(t−t0)+O((t−
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t0)
2) be the first order Taylor expansion of α(·) for t ∈ Nt0 , a neighborhood of t0,

where α̇(t0) is the derivative of α(t) at t = t0. Denote α∗(t0) = (αT (t0), α̇
T (t0))

T ,

X∗i (t, t− t0) = Xi(t)⊗ (1, t− t0)T , where ⊗ is the Kronecker product.

For t ∈ Nt0 , model (2.1) can be approximated by

µ̃(t, t0, α
∗(t0), β|Xi, Zi) = g−1{α∗T (t0)X

∗
i (t, t− t0) + βTZi(t)}, (2.3)

At each t0 and for fixed β, we propose the following local linear estimating function

for α∗(t0):

Uα(α∗; β, t0) =
n∑
i=1

X∗i (t0)
T∆i(t0)K

1/2
ih (t0)V

−1
1i (t0)K

1/2
ih (t0) [Yi − µ̃∗i ] , (2.4)

where for simplicity we denote Yi(Tij) = Yij, µi(Tij) = µij, Xi(Tij) = Xij and

Zi(Tij) = Zij, let Yi = (Yi1, · · · , YiJi)T , µ∗i = (µ∗i1, · · · , µ∗iJi)
T , µ∗ij = µ(Tij, α

∗(t0), β|Xij,

Zij), ∆i = diag{µ̇ij}, µ̇(·) is the first derivative of µ(·), V −11i (t0) is a nonnegative

weight process, K(·) is a kernel function, h = hn > 0 is a bandwidth parameter

and Kh(·) = K(·/h)/h, Kih(t0) = diag{Kh(Tij − t0)}. The solution to the equation

Uα(α∗; β, t0) = 0 is denoted by α̃∗(t0, β). Let α̃(t0, β) be the first p1 components of

α̃∗(t0, β).

Second, given estimated α(t) derived above, the profile weighted least-squares es-

timator β̂ is obtained by minimizing the following profile least-squares function:

`β(β) =
1

n

n∑
i=1

[Yi − µ̂i(β)]TV −12i [Yi − µ̂i(β)], (2.5)

where V −12i is the inverse of working covariance matrix, and Yi, µi are defined the same

way as those in (2.4) except that they are evaluated at µ̂ij(β) = g−1{α̃T (Tij, β)Xij +
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βTZij}.

How to choose the weight process V −11i (t0) in equation (2.4) and the working covari-

ance matrix in V −12i in equation (2.5)? There are several work addressing this issue

in literature (Lin and Carroll, 2001a,b; Wang et al., 2005; Fan et al., 2007). They

all assume the working covariance function in equation (2.4) denoted by Vki, where

k = 1, 2 is decomposed as below for simplicity:

Vki = AiRki(θ)Ai (2.6)

where Ai = diag{σ(Tij)} is the square root of marginal variance of Yi, Rki(θ) is

the working correlation matrix. All of these work agreed on that a more efficient

estimation of nonparametric part α(t) is achieved by ignoring the correlation within

subjects, while the most efficient estimation for β is obtained by choosing the working

covariance matrix as the inverse of true covariance matrix of response Y . Thus we let

R1i(t) in V1i(t) as defined in equation (2.2) be an identity matrix in equation (2.4),

and V −12i be the inverse of covariance matrix of response Y in equation (2.5). Here

we assume the covariance function of Y is known. In the following section we will

discuss how to estimate this covariance function of Y using different methods.

Taking the derivative of `β(β) with respect to β leads to score function for β.

Uβ(β) =
n∑
i=1

{∂α̃(Ti, β)

∂β
Xi + Zi}T∆iV

−1
2i [Yi − µ̂i(β)}] (2.7)

where ∂α̃(Ti,β)
∂β

Xi = {∂α̃
T (Ti1,β)
∂β

Xi(Ti1), · · · ,
∂α̃T (TiJi ,β)

∂β
Xi(TiJi). Here ∂α̃(t,β)

∂β
be the first

p1 components of ∂α∗(t,β)
∂β

which can be expressed in terms of the partial derivatives

of Uα(α∗; β, t) at α∗ = α̃∗(t, β). Specifically, since Uα(α̃∗(t, β); β, t) ≡ 02p1 , it follows
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that α̃∗(t, β) satisfies

{
∂Uα(α∗; β, t)

∂α∗
∂α̃∗(t, β)

∂β
+
∂Uα(α∗; β, t)

∂β

}∣∣∣∣
α∗=α̃∗(t,β)

= 02p1 .

Therefore,

∂α̃∗(t, β)

∂β
= −

{
∂Uα(α∗; β, t)

∂α∗

}−1
∂Uα(α∗; β, t)

∂β

∣∣∣∣∣
α∗=α̃∗(t,β)

, (2.8)

where

∂Uα(α∗; β, t)

∂α∗
= −

n∑
i=1

X∗i (t)T∆i(t)K
1/2
ih (t)V −11i (t)K

1/2
ih (t)∆i(t)X

∗
i (t), (2.9)

and

∂Uα(α∗; β, t)

∂β
= −

n∑
i=1

ZT
i ∆i(t)K

1/2
ih (t)V −11i (t)K

1/2
ih (t)∆i(t)X

∗
i (t). (2.10)

When we choose identity link for model (2.1), the score function (2.4) and (2.7) will

reduced to an explicit form, otherwise they will not have closed form for other links

of g(·). The Newton-Raphson iterative method can be used to solve the above score

functions.

To ensure convergence in above iteration between estimation of α(t) and β, we use

the independence case as the starting value, that is, let weight matrix V −12i in (2.7)

be identity matrix to get the initial estimation of α0(t) and β0. No more than five

iterations, we achieve convergence in above profile-kernel algorithm. Estimation of β

is not very sensitive of bandwidth h, as long as it is not too large to cause biases.

We use k fold cross-validation to choose bandwidth. Fan and Li (2004) mentioned

that α(t) cannot be estimated well at some tail of the observation times because of
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sparsity. We adopted their suggestion to eliminate 5% of the data at the tail.

A more efficient estimation will be achieved when the weight matrix chosen in

function (2.7) is close to the inverse of true covariance matrix of Y (Fan et al., 2007),

thus in the following section we will discuss how to estimate the covariance function

of Y .

2.3 Estimation of Covariance Function of Responses

To estimate covariance function of Y in model (2.1), there are different methods,

such as generalized estimating equation(GEE) approach proposed by Liang and Zeger

(1986), quasi-likelihood(QL) approach and minimum generalized variance(MGV) ap-

proach, both proposed by Fan et al. (2007), and weighted least squares(WLS) ap-

proach newly proposed here. Also there is another way to deal with weight matrix

V −12i . Qu et al. (2000) proposed quadratic inference function(QIF) approach which

circumvent estimating covariance function of Y by approximating the weight matrix

by a family of basis matrices. We will introduce these approaches briefly in this

section.

The covariance function of Yi denoted as Σi is decomposed as below for simplicity:

Σi = AiRi(θ)Ai (2.11)

where Ai = diag{σ(Tij)} is the square root of marginal variance of Yi, Ri(θ) is the

correlation matrix. In the following we will discuss how to estimate the marginal

variance and correlation matrix of Yi respectively.
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2.3.1 Estimation of Marginal Variance

To estimate Ai = diag{σ(Tij)} in equation (2.3), we need to estimate marginal

variance of Yi. In GEE approach, it assumes that the marginal density of Yij = y is

from an exponential family, i.e.,

f(y) = exp[{yη − a(η) + b(y)}φ], (2.12)

and the first two moments of Yij are given by

µij = E(Yij) = a′(ηij), var(Yij) = a′′(ηij)/φ. (2.13)

where ηij = αT (Tij)Xij + βTZij, a
′(·) = g−1(·) and φ is the scale parameter. Given

estimation of α(t) and β in Section 2.2, we obtain η̂ij = α̂T (Tij)Xij + β̂TZij. The

current Pearson residual is defined by r̂ij = {Yij − a′(η̂ij)}/{sqrt(a′′(η̂ij))}, and the

scale parameter φ can be estimated by φ̂−1 =
∑n

i=1

∑Ji
j=1 r̂

2
ij/(N−p1) where N =

∑
Ji

is the total number of observations and p1 is the dimension of parameter β.

When Y is following a normal distribution, then a′(η̂ij) = µ̂ij = α̂T (Tij)Xij+β̂
TZij,

a′′(η̂ij) = 1 and the marginal variance formula of Y is:

v̂ar(Yij) = φ̂−1 =
n∑
i=1

Ji∑
j=1

r̂2ij/(N − p1). (2.14)

When Y is a Poisson process, we use a log link in model a′(η̂ij) = µ̂ij = exp{α̂T (Tij)Xij+

β̂TZij}, φ̂ = 1, and the marginal variance formula of Y is:

v̂ar(Yij) = a′′(η̂ij) = µ̂ij = exp{α̂T (Tij)Xij + β̂TZij}. (2.15)

When Y is from a Bernoulli distribution, a′(η̂ij) = µij = 1/1 + exp{−[α̂T (Tij)Xij + β̂TZij]},
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φ̂ = 1, and the marginal variance formula of Y is:

v̂ar(Yij) = a′′(η̂ij) = µ̂ij(1− µ̂ij). (2.16)

Fan et al. (2007) used univariate kernel smoothing to estimate marginal variance

of normal random variable Y by the following formula:

v̂ar(Yij) = σ̂2(t) =

∑n
i=1

∑Ji
j=1 r̂

2
ijKh1(t− Tij)∑n

i=1

∑Ji
j=1Kh1(t− Tij)

(2.17)

The above formula is in the same spirit of GEE’s method of moments approach, but

adding a kernel weight when taking average which is more accurate for time-dependent

and nonstationary random error process.

2.3.2 Estimation of Correlation Coefficient

To estimate correlation coefficient vector θ in correlation matrix R(θ), when the

correlation matrix is unstructured, the GEE approach is using methods of moments,

i.e.,

R̂kl(θ) =
n∑
i=1

r̂ik(θ)r̂il(θ)/(N − p1). (2.18)

When the correlation structure is defined as special cases such as one-dependent,

exchangeable and AR(1) structure, Liang and Zeger (1986) have derived formulas to

calculate θ̂ for each specific case.

The above GEE approach in Liang and Zeger (1986) is based on a parametric

model, but it can also be extended to kernel GEE approach to be applied to our

semiparametric model (Lin and Carroll, 2001a,b; Wang, 2003; Wang et al., 2005).

Kernel GEE approach is using local linear kernel function to approximate the non-
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parametric part α(t) in model (2.1), thus to transform the model to a parametric

form for each time point t, then above method of moments can be applied to esti-

mate the covariance function as well. As shown in Lin and Ying (2001)’s simulation

study, semiparametric estimators have an extremely high relative efficiencies relative

to Parametric GEE method, being greater than 95% in all cases.

Fan et al. (2007) proposed quasi-likelihood (QL) approach to estimate correlation

coefficient vector θ, that is, to optimize the following quasi-likelihood function.

θ̂ = arg max
θ

(
−1

2

n∑
i=1

{log|Ri(θ)|+ r̂Ti A
−1
i Ri(θ)

−1A−1i r̂i}
)
, (2.19)

where Ri and Ai are defined the same as in equation (2.3), r̂i = {r̂i1, . . . , r̂iJi} is

estimator for vector εi and r̂ij is the same as the current Pearson residual defined

in section (2.3.1). Fan et al. (2007) focused on continuous responses, but it can be

extended to discrete responses such as counting process or binary responses as well.

In Fan et al. (2007), they also proposed minimum generalized covariance (MGV)

approach to estimate correlation parameter vector θ by minimizing the generalized

variance of β̂, that is,

θ̂ = arg min
θ
|Σβ̂(σ̂2, θ)|, (2.20)

where Σβ̂(σ̂2, θ) is the estimated covariance matrix of β̂ that depends on estimated

marginal variance σ̂2 and correlation parameter vector θ. The generalized covariance

of β̂ was defined as the determinant of Σβ̂(σ̂2, θ).

Based on Fan et al. (2007)’s quasi-likelihood(QL) approach, we propose the Weighted-

Least-Square (WLS) approach to estimate θ by minimizing the weighted least squares,
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that is,

θ̂ = arg min
θ

(
r̂Ti A

−1
i Ri(θ)

−1A−1i r̂i
)
, (2.21)

For responses that don’t follow a Gaussian process, we expect Weighted-Least-Square

(WLS) approach will give a more robust estimation than Quasi-likelihood(QL)approach.

2.3.3 Quadratic Inference Function

It has been shown in literature that as long as θ̂ is n1/2 consistent, it will not

affect the asymptotic distribution of α̂(t) and β̂ in model(2.1). However, when we

try to estimate the covariance function for Y using above GEE, QL, MGV or WLS

approaches, the estimates of θ may be nonexistent or inconsistent, and the estimated

correlation matrix may not be positive definite when the correlation structure is

misspecified. Qu et al. (2000) proposed quadratic inference function (QIF) approach

to circumvent the above problems. The inverse of the working correlation matrix was

represented as a linear combination of basis matrices, that is

R−1 ≈ a1M1 + a2M2 + · · ·+ amMm, (2.22)

where M1 is an identity matrix, and M2, · · · ,Mm are symmetric basis matrices which

are determined by the structure of R(θ), and a1, · · · , am are constant coefficients.

The advantage of this approach is that it does not require estimation of nuisance

parameters ai’s. They further stack above basis matrices of the correlation matrix to
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construct a ‘extended score’ of β:

gn(β) =
1

n

n∑
i=1

gi(β) =
1

n


∑n

i=1{
∂α̃(Ti,β)

∂β
Xi + Zi}T∆iA

−1
i M1A

−1
i [Yi − µ̂i(β)}]

...∑n
i=1{

∂α̃(Ti,β)
∂β

Xi + Zi}T∆iA
−1
i MmA

−1
i [Yi − µ̂i(β)}]


(2.23)

The quadratic inference function is constructed to be,

Qn(β) = g′nC
−1
n gn (2.24)

where Cn = (1/n2)
∑n

i=1 gi(β)gi(β)′. Given estimated α(t) in section 2.2, the QIF

estimator of β is

β̂ = arg min
β
Qn(β) (2.25)

Qu et al. (2000) mentioned that QIF performs as well as GEE with the true corre-

lation structure, however when the correlation structure is misspecified, QIF is still

optimal among the family where the misspecified working correlation structure can

be represented by the chosen basis matrices. Thus QIF is more robust and more

efficient than GEE method.

2.3.4 Mixed correlation structure

When the correlation structure is known or defined as one specific form like ex-

changeable, AR(1) or ARMA(1, 1) structure, then we can directly apply the methods

discussed in section 2.3.2 to estimate θ since the correlation matrix R(θ) is a known

function of coefficient vector θ. However when the correlation structure is unknown or

a complex form, we used a mixed correlation structure to approximate the unknown
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R(θ).

Borrowing the idea of Fan et al. (2007), we embed a given working correlation

into a family of correlation matrix ρ0(s, t, θ0), . . . , ρm(s, t), and approximate the true

correlation matrix by a combination of the members in this family, that is,

ρ(s, t, θ) = b0ρ0(s, t; θ0) + b1ρ1(s, t, θ1) + · · ·+ bmρm(s, t, θm), (2.26)

where θ = (θ0, b0, θ1, b1, . . . , bm, θm) and b0 + · · ·+ bm = 1 with all bi ≥ 0.

This mixed correlation structure can be applied to above QL, MGV or WLS ap-

proaches by substituting the mixed correlation matrix in objective function (2.19),

(2.20) and (2.21). In this way, we may estimate complicated unknown correlation

structure. This can also be applied to QIF approach. We stack possible basic ma-

trices of the unknown correlation matrix to construct a general quadratic inference

function. In equation (2.22), M1 is an identity matrix, and M2, · · · ,Mm are symmet-

ric basis matrices which are combination of the basic matrices of the members in the

correlation family.

2.4 Simulation Study for Continuous Response

First, we examine the performance of the various methods for continuous longitu-

dinal responses for model (2.1) with identity link function.

Yi(t) = αT (t)Xi(t) + βTZi(t) + εi(t), (2.27)

where 0 ≤ t ≤ τ , α(·) is a p1-dimensional vector of completely unspecified functions,

β is a p2-dimensional vector of unknown parameters, and εi(t) is a mean zero pro-

cess. In this section, we conduct a simulation study to assess the performance of
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above methods for estimation of model (2.27) in various model settings for different

scenarios.

2.4.1 Simulation Models and Performance Comparisons

For longitudinal data, there are many possible formulations of how data were col-

lected. The time points {tij} are a random sample from a certain population. In

Lin and Ying (2001), they proposed four different cases of the observation times:

(1)Observation times are independent of covariates; (2) Observation times depend on

covarites; (3)Observation times are fixed; (4) Observation times are scheduled but

can be randomly missed.

Based on their discussion, we consider two categories: independent observation

times (Observation I) and dependent observation times (Observation II). One example

of independent observation times is that the measurements are taken at scheduled

time points and any deviation from the schedule occurs in a completely random

fashion. We use the following setting in Fan et al. (2007)’s simulation study for

independent observation times.

(A1) Every individual has the same scheduled time points, {0,1,2,. . . ,12}, each

of which has a 20% probability of being skipped except time 0. Then a uniform

[0, 1] random variable is added to the nonskipped scheduled time points. Thus every

subject has approximately 7 ∼ 13 observations with an average 11 and different time

points. X1(t) ≡ 1, (X2(t), Z1(t))
T follows a bivariate normal distribution with mean

0, variance 1 and correlation 0.5 for a given t, and Z2(t) is a Bernoulli random variable

with success probability 0.5 for each subject i and doesn’t change within subjects to
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mimic a treatment effect. For coefficients, β = (1, 2)T , and α(t) = (α1(t), α2(t)) =

(
√
t/12, sin(2πt/12)). The error part ε(t) is a Gaussian process with mean 0, variance

changing with time σ2(t) = 0.5exp(t/12) and the correlation structure is ARMA(1, 1),

i.e., corr(ε(s), ε(t)) = γρ|t−s| for s 6= t. We let θ = (γ, ρ) = (0.85, 0.9), θ = (γ, ρ) =

(0.85, 0.6), θ = (γ, ρ) = (0.85, 0.3) to consider strong, moderate and weak correlation

respectively.

However the only difference here from Fan et al. (2007)’s model in their simulation

example Z2i(t) does change within subject, i.e., Z2i(t) is a Bernoulli random variable

with probability 0.5 within each subject. Here we consider Z2i as a treatment effect

just to diversify covariates’ setting. Sometimes the observation time may not be

random and may depend on covariates. To consider dependent observation times, we

use the following setting in Lin and Ying (2001) and Sun et al. (2013).

(A2) Observation time Ti for each subject i is a Poisson process with the propor-

tional mean rate hi = 0.6 exp(0.7Z2i), which depends on covariate Z2i. Let Ci be the

end of follow-up time or censoring time, whichever comes first. The responses for

subject i can only be observed at time points before Ci. The censoring times Ci are

generated from a uniform distribution on [1.5, 8] and 0 ≤ t ≤ τ with τ = 3.5. There

are approximately three observations per subject on [0, τ ] and about 30% of subjects

are censored before τ = 3.5. Let α0(t) = 0.5
√
t, α1(t) = 0.5 sin(t) and β = (0.5, 1)T ,

Z1i(t) is an uniform random variable on[0, 1], Z2i is a Bernoulli random variable with

success probability of 0.5 for each subject i, X1i(t) ≡ 1, and X2i(t) is a Bernoulli

random variable with success probability of 0.5 at each time point t within each sub-

ject i. The error εi(t) has a normal distribution with mean φi and variance ν2, and
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φi is N(0, 1). We can show that when ν = 0.5, the true covariance matrix of εi(t)

is exchangeable structure with correlation coefficient θ = 0.8 and constant variance

σ2 = 1.25. We also consider moderate and weak correlation letting ν = 1 and ν = 2

such that correlation coefficient θ = 0.5 and θ = 0.2 respectively.

The simulation result of parameter estimation in Observation I with strong corre-

lation ((γ, ρ) = (0.85, 0.9)) is shown in Table 1. Each entry of the table is calculated

based on 1000 repetitions for 200 subjects. It summarizes the Bias, SEE, ESE, CP,

Median and MAD for β1 and β2 by different approaches. Bias is calculated as the

mean of 1000 estimates minus the true value of β, we expect it to be close to zero

if the estimators are consistent. SEE is the sample standard error of 1000 estimates

which can be regarded as the true standard errors except for Monte Carlo error. ESE

is the sample mean of the estimated standard errors using the asymptotic standard

error formula derived theoretically. We can test the accuracy of the standard error

formula by comparing SEE and ESE. CP is the 95% empirical coverage probability

which indicates how accuracy of the confidence interval. Median is the median value

of 1000 estimates minus the true value of β, and MAD is the median absolute devia-

tion of the 1000 estimates divided by a factor of 0.6745, which is a robust estimator

of standard error to exclude the effects of extreme values.

We have four blocks in the table, the first block is assuming a working independence

correlation structure(WI), i.e., letting weight matrix V −12i in estimating equation (2.7)

be an identity matrix. This is our baseline case. We compare all other cases to WI

case. The second block is assuming an exchangeable correlation structure, which is a

misspecification scenario for Observation I since the true correlation is anARMA(1, 1)
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process. The third block is assuming an ARMA(1, 1) correlation structure which is

the true scenario for Observation I. The fourth block is assuming a mixed correlation

structure as we discussed in section 2.3.4. In each scenario we compare different

approaches. The kernel function is taken as the Epanechnikov kernel K(x) = 3
4
(1 −

x2)+ and bandwidth is chosen by k − fold cross validation where k = 10.

From Table 1, firstly, we can see the estimates from all methods are consistent, the

theoretical standard error formula is correct since SEE and ESE are close for each

case. The coverage probabilities are close to the 95% nominal level for most cases

except for QL method when estimating β2 by assuming true or mixed correlation

structure. MAD is close to SEE which means there are rarely any effects from outliers.

Secondly estimation of QL, MGV and WLS have a smaller standard error than that

of WI, which means the methods consider correlation can improve the efficiency of

estimation comparing with working independence case that ignores the correlation

within subjects. Thirdly, the efficiency improved is more evident for β1 than β2.

Fourthly, assuming a true or mixed correlation structure will be more efficient than

the scenario where correlation structure is misspecified.

Table 2 is the simulation result for the same model but with a moderate correlation

((γ, ρ) = (0.85, 0.6)), and Table 3 is for a weak correlation ((γ, ρ) = (0.85, 0.3)), from

which we can see the stronger is the correlation, the more efficiency will be obtained.

MGV approach has large variance when correlation is misspecified for estimation of

β2.

Results for Observation II are shown in Table 4, Table 5 and Table 6 for strong,

moderate and weak correlation respectively, from which we can draw similar results
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as those from Observation I. Again MGV method is not robust, as there are outliers

in either misspecified correlation scenario or mixed correlation scenario.

Lin and Carroll (2001b) showed that conventional profile-kernel method does not

yield an efficient estimator of β when the parametric covariate Z is dependent of the

nonparametric covariate T . Thus we only consider Z that are independent of T . For

these time-independent covariates Z, we compare the different methods’ performance

between time-invariant covariates and time-variant covariates. Time-invariant means

that the covariate doesn’t change with time for each subject, such as gender and

treatment effects. While time-variant means that the covariate changes with time for

each subject such as biomarker CD4 level for each patient during a clinical trial. In

Observation I settings, Z2ij is a time-variant covariate while Z2i is a time-invariant

covariate and is a Bernoulli random variable with success probability of 0.5 for each

i. Here we didn’t see much improvement in efficiency for time-invariant covariate Z2i,

which also appears in the simulation studies in Lin and Carroll (2001b) and Wang

et al. (2005). They both showed that no gain in efficiency is realized in estimation

of coefficients of time-invariant covariates which are also independent of Tij and the

design is balanced with respect to the corresponding covariates, but for time-variant

covariates, the methods considering correlation reduce the variance by more than

50%.

We draw several conclusions based on these simulation results. For time-variant

covariate Z1, WLS, QL, MGV and QIF all perform well and improve the efficiency

comparing with working independence(WI) method, and there is good agreement be-

tween the estimated and empirical standard errors. The difference between SEE and
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ESE is less than half of a standard deviation of the 1000 estimated standard errors.

This implies that standard error formula is accurate. Comparing Table (2), Table (3)

with Table (1), the stronger the correlation is, the efficiency obtained will be greater.

However, for time-invariant covariate Z2, the efficiency doesn’t improve much. The

estimates are unbiased and there is good agreement between the estimated and empir-

ical standard errors for time-variant covariate Z1 while the estimated standard errors

by sandwich formula still tend to underestimate the covariance for time-invariant co-

variate Z2. And compare Observation I with Observation II, whether observation

time depend on covariates or not doesn’t affect the performance of all the methods.

When assuming exchangeable correlation structure (misspecified correlation struc-

ture), the estimation error are slighted higher than assuming ARMA(1, 1) correlation

structure (true correlation structure) and assuming mixed correlation structure(a fam-

ily of possible correlation structures), but still less than working independence case.

The performance of assuming ARMA(1, 1) correlation structure (true correlation

structure) and assuming mixed correlation structure(a family of possible correlation

structures) are close. Thus assuming a mixed correlation structure when we don’t

know the true correlation structure performs as well as when we know the correlation

structure in advance.

2.4.2 More Simulation Study of Robustness

To see whether the different methods still perform well under misspecified corre-

lation structures, we consider the following scenarios of correlation structures which

are not exchangeable, ARMA(1,1) or mixture of both.



28

(B1) Random intercept model. We add an random intercept part bi ∼ N(0, 0.22)

to the original error in Observation I model in section 2.4.1 where it follows a mul-

tivariate standard normal with an ARMA(1, 1) correlation structure and correlation

coefficients (0.85, 0.6). Now the new error becomes ε(t) = bi +ARMA(1, 1). Since bi

is a subject level covariate shared by same subject i, this transformation will make

the correlation stronger within subjects.

(B2) Random slope model. We add both a random intercept and random slope

to the original ARMA(1, 1) error, now bi = bi0 + bi1Wij(t) where bi0 and bi1 are

subject level covariate which doesn’t change within subject i, butWij is a time-varying

covariate. In the new model we let the error part be εi(t) = [bi0 + bi1 cos(2πt/14) +

bi2 sin(2πt/14)+ei(t)]/3 where bi0, bi1, bi2 are independent normal with zero mean and

standard deviation 2/5, 1/5, 1/5 respectively and ei(t) ∼ N(0, 1) with ARMA(1, 1)

correlation structure and correlation coefficients (0.85, 0.6).

(B3) Unimodal mixnormal model. Now instead adding a perturbation term to the

original error, we substitute the error part by a unimodal mixnormal error with the

same ARMA(1,1) correlation structure and correlation coefficients (0.85, 0.9). Let

ε(t) ∼ 0.25N(−0.75, 0.3642) + 0.75N(0.25, 0.3642). The histogram of the error shows

a skewed and unimodal shape.

(B4) Bimodal mixnormal model. We change the above unimodal mixnormal to bi-

modal mixnormal for ε(t) with the same ARMA(1, 1) correlation structure and corre-

lation coefficients (0.85, 0.9). Let ε(t) ∼ 0.25N(−1.05, 0.18032)+0.75N(0.35, 0.18032).

The histogram of the error shows a skewed and bimodal shape.

The simulation for QL, MGV, WLS and QIF methods under (B1), (B2), (B3) and
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(B4) by assuming EX, ARMA(1,1) and EX+ARMA(1,1) are conducted. The results

are illustrated in Table 7 for random intercept model and Table 8 for random slope

model respectively. We can see the similar result as before, and assuming ARMA(1,1)

structure still performs well even adding a random effect to the model. The estimation

results of Unimodal mixnormal model are shown in Table 9. The estimation results

of Bimodal mixnormal model are shown in Table 10. Under skewed non-normal

distribution, we still get similar results.

2.5 Simulation Study for discrete response

In this section we examine the performance of the various methods for model (2.1)

with logarithm and logistic link functions when the longitudinal response is discrete.

(D1) Bernoulli I model. We generate independent observation time with random

missing similar as Observation I model. Every individual has the same scheduled time

points, {0,1,2,. . . ,8}, each of which has a 20% probability of being skipped except

time 0. Then a uniform [0, 1] random variable is added to the nonskipped sched-

uled time points. The error part ε(tij) is a Gaussian process with mean 0, constant

variance 1 and the correlation structure is exchangeable structure with parameter θ,

i.e. corr(ε(s), ε(t)) = θ for s 6= t. We let θ = 0.5. For the covariates, Xij ≡ 1,

Zij = (Z1ij, Z2ij)
T for a given tij, Z1ij and Z2ij are independent standard normal

random variables. For coefficients, β = (0.01, 0.01)T , α(t) = sin(πt/30)− 0.5. We use

the methods in Macke et al. (2009) to generate bernoulli random variable Yij with

the given mean µij such that logit(µij) = α(Tij)Xij + βTZij and given correlation

structure.
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(D2) Poisson model. We generate the Poisson random variable Yij with mean µ

such that log(µ) = α(Tij)Xij + βTZij and exchangeable correlation structure with

θ = 0.5. The other covariates and coefficients are the same as the above model.

(D3) Bernoulli II model. We use the same model setting in Study 1 in simulation

part of He et al. (2005). We generate a bernoulli response with mean µ such that

logit(µ) = α(Tij)Xij + βZij, where Xij ≡ 1, Zij ∼ Uniform[−1, 1], β = 0.4, α(t) =

cos(πt/2) and Tij ∼ Uniform[−1, 1] and is independent from Zij. This is a balanced

design with cluster size ni = 3, let Yi1 = bi1wi0+(1−bi1)wi1, Yi2 = bi2wi0+(1−bi2)wi2,

and Yi3 = bi3wi0 + (1− bi3)wi3, where (bi1, bi2, bi3) are independent Bernoulli variables

with mean 0.5 and wi0, wi1, wi2 and wi3 are independent Bernoulli variables with

means µi1, µi1, 2µi2 − µi1 and 2µi3 − µi1. Thus Yij has an exchangeable covariance

structure for each i, but the covariances vary from cluster to cluster.

The estimation results of these three models are summarized in Table 11 for

Bernoulli I model, Table 12 for Poisson model and Table 13 for Bernoulli II model.

Under each model setting we generate 1000 datasets, each consisting of n = 200

subjects. We obtain similar results as in continuous responses and is summarized in

Section 2.7.

2.6 Real Data Application

In this section, we apply the above methods to a real data example. We demon-

strate how various methods that consider correlation structure improves estimation

efficiency than working independence case. We consider the analysis of a HIV-1 RNA

data set from an AIDS clinical trial. In this study, all subjects received a single
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protease inhibitor(PI) while others received a double-PI antiretroviral regimens in

treating HIV-infected patients. HIV-1 RNA levels in plasma was measured repeat-

edly during the follow-up. The scheduled visit times were at weeks 0, 2, 4, 8, 16

and 24. But the actual visit times of individuals may vary around the scheduled

visiting times. Some patients had prior antiviral treatment with non-nucleoside ana-

logue reverse transcriptase inhibitors(NNRTI) and others did not have prior NNRTI

treatment. The prior NNRTI treatment is considered to be a factor that affects the

antiviral responses to the antiretroviral regimens in the current study.

A total of 481 patients were enrolled in the study, with 2626 total visits. Owing

to technical limitations, 175 measurements of HIV-1 RNA levels were censored below

the detection limit, and three were censored above the detection limit. We restrict our

analysis to those responses within detection range. This data set has been analyzed

by Sun et al. (2013) and Sun and Wu (2005). Here we use the same transformed

time scale t = log10(day of actual visit+40)−log10(32) of actual visits so that the

transformed sampling time points are more evenly distributed suitable for bandwidth

selection. The maximum of the transformed sampling times is τ = 0.88. The response

variable Yi(t) is the change of HIV-1 RNA level using a log10 scale at time t ∈ [0, τ ]

from the baseline. Let X = 1 denote the patients who received a double-PI treatment

and X = 0 for patients who received a single-PI treatment. Let Z be the indicator of

the prior antiviral treatment with NNRTI, with 1 for having had NNRTI and 0 for

having not received NNRTI.

Analysis of Sun and Wu (2005) shows that the effect of treatment(double-PI versus

single-PI) is time-varying after adjusting for the prior NNRTI antiviral treatment
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experience under the semiparametric additive regression model, and Sun et al. (2013)

show that the identity link will give a smaller prediction error than logarithm link

function. Thus we consider to fit the following model

Yi(t) = α0(t) + α1(t)Xi + βZi + εi(t), (2.28)

where 0 ≤ t ≤ τ , α0(t) is the baseline function, α1(t) is the time-varying treatment

effect, β is a fixed parameter denoting the effect of prior antiviral treatment with

NNRTI, and εi(t) is a mean zero process.

We used the K -fold cross-validation method with K = 50 to get the bandwidth

hcv = 0.06. The estimates of β by different methods is list in Table (14). The

estimates of α0(t) and α1(t) and the confidence intervals by different methods are

plotted in Fig. 1, Fig. 2, Fig. 3, Fig. 4, Fig. 5, Fig. 6. The double-PI antiretroviral

regimens works better than the single PI regimens in reducing viral load in treating

HIV-infected patients and this effect becomes stronger over time during the course of

the study. The patients who had prior antiviral treatment with NNRTI tend to have

higher level of viral load than those who did not have the prior treatment.

2.7 Concluding remarks

Based on above analysis, we get the following conclusions:

1. The estimates by all methods are consistent, the coverage probabilities are close

to the 95% nominal level for most cases.

2. WLS, QL, MGV and QIF all perform well and improve the efficiency comparing

with working independence(WI) method, and there is good agreement between
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the estimated and empirical standard errors for time-variant covariate while the

estimated standard errors by sandwich formula still tend to underestimate the

covariance for time-invariant covariate.

3. The efficiency improved is more evident for time-variant covariate then time-

invariant covariate. We didn’t see much improvement in efficiency for time-

invariant covariate, but for time-variant covariates, the methods considering

correlation reduce the variance and in strong correlation case by QL method

the reduction can be more than 50%.

4. Assuming a true or mixed correlation structure will be more efficient than the

scenario where correlation structure is misspecified, i.e., when assuming a mis-

specified correlation structure, the estimation error are slighted higher than as-

suming the true correlation structure or assuming a mixed correlation structure,

but still less than working independence case. Assuming a mixed correlation

structure when we don’t know the true correlation structure performs as well

as when we know the correlation structure in advance.

5. Estimation of correlation parameter from QL method is closer to the true value

than that of MGV or WLS method. MGV and WLS method tend to underes-

timate the correlation parameters.

6. The stronger is the correlation, the more efficiency will be obtained.

7. MGV method is not robust, as there are outliers in either misspecified correla-

tion scenario or mixed correlation scenario.
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8. Whether observation time depend on covariates or not doesn’t affect the per-

formance of all the methods. Under skewed non-normal distribution such as

perturbation of normal distribution or discrete responses that follow a Poisson

or Bernoulli distribution, all above results stand.
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Table 13: Summary of Bias, SEE, ESE, CP, Median and MAD for β1 and β2 with
n = 200, h = 0.66 based on 1000 simulations under Bernoulli II model (D3).

β = 0.4
Method Bias SEE ESE CP Median MAD

Working Independence
WI -.0031 .1462 .1449 .951 .0047 .1421
Assuming Exchangeable correlation structure(Perturbation)
WLS -.0049 .1369 .1373 .950 .0000 .1341
QL -.0038 .1398 .1395 .954 .0031 .1359
MGV -.0036 .1376 .1372 .949 .0027 .1348
QIF -.0041 .1393 .1389 .954 .0028 .1366

Assuming Mixed correlation structure
WLS -.0049 .1371 .1371 .949 .0001 .1342
QL -.0044 .1399 .1410 .950 -.0031 .1388
MGV -.0026 .1381 .1367 .953 .0027 .1350
QIF -.0041 .1393 .1388 .953 .0032 .1370

Assuming ARMA correlation structure(Misspecification)
WLS -.0047 .1371 .1372 .950 .0001 .1344
QL -.0097 .2418 .2258 .948 -.0079 .2275
MGV -.0035 .1401 .1390 .952 -.0019 .1408
QIF -.0040 .1393 .1389 .953 .0025 .1352

Table 14: Point estimates of β based on HIV-1 RNA data under model (2.28) by
different approaches.

β (NNRTI treatment)
Method Estimate SD p-value

WI 0.6265 0.0888 < 0.0001
QL 0.0376 0.0671 0.575

MGV 0.1492 0.0662 0.024
QIF 0.2239 0.0657 0.001
WLS 0.3489 0.0670 < 0.0001
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Figure 1: Estimates of baseline and varying-coefficient functions based on HIV-1 RNA
data under model (2.28) by different approaches using h = 0.06. (a) is the estimated
baseline function α̂0(t) by different approaches; (b) is the estimated vaccine effects
α̂1(t) by different approaches.
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Figure 2: Estimates of baseline and varying-coefficient functions with 95% pointwise
confidence intervals based on HIV-1 RNA data under model (2.28) by WI approach
using h = 0.06. (a) is the estimated baseline function α̂0(t) by WI approach; (b) is
the estimated vaccine effects α̂1(t) by WI approach.
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Figure 3: Estimates of baseline and varying-coefficient functions with 95% pointwise
confidence intervals based on HIV-1 RNA data under model (2.28) by QL approach
using h = 0.06. (a) is the estimated baseline function α̂0(t) by QL approach; (b) is
the estimated vaccine effects α̂1(t) by QL approach.
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Figure 4: Estimates of baseline and varying-coefficient functions with 95% pointwise
confidence intervals based on HIV-1 RNA data under model (2.28) by MGV approach
using h = 0.06. (a) is the estimated baseline function α̂0(t) by MGV approach; (b)
is the estimated vaccine effects α̂1(t) by MGV approach.
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Figure 5: Estimates of baseline and varying-coefficient functions with 95% pointwise
confidence intervals based on HIV-1 RNA data under model (2.28) by QIF approach
using h = 0.06. (a) is the estimated baseline function α̂0(t) by QIF approach; (b) is
the estimated vaccine effects α̂1(t) by QIF approach.
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Figure 6: Estimates of baseline and varying-coefficient functions with 95% pointwise
confidence intervals based on HIV-1 RNA data under model (2.28) by WLS approach
using h = 0.06. (a) is the estimated baseline function α̂0(t) by WLS approach; (b) is
the estimated vaccine effects α̂1(t) by WLS approach.



CHAPTER 3: IMPROVING ESTIMATION OF GENERALIZED
SEMI-PARAMETRIC VARYING-COEFFICIENT MODELS USING

COVARIANCE FUNCTION

Chapter 3 is organized as follows. In Section 3.1, we introduce the generalized semi-

parametric varying-coefficient model with treatment switching effects, and estimation

procedure that can be applied when considering the correlation within subjects. In

particular, estimation of parametric parameters and nonparametric functions are im-

plemented by profile-kernel method, and iterated with the estimation of covariance

function of responses, which can be fulfilled by various methods in literature, such

as GEE, QL, MGV and QIF methods. The asymptotic properties for the nonpara-

metric and parametric estimators of the above methods are developed in Section 3.2.

The finite sample performance of the proposed estimators with different methods is

examined in simulations in Section 3.3.

3.1 Estimation Procedures

3.1.1 Model Description

Suppose the data consist of n clusters with the ith (i=1,. . . , n) cluster having Ji

observations. In particular, in longitudinal study, a cluster represents an individual.

Suppose there is a random sample of n subjects and τ is the end of follow-up. Let

Xi(t) and Ui(t) be possibly time-dependent covariates for the ith subject. Suppose

that observations of the response process Yi(t) for subject i are taken at the sampling
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time points 0 ≤ Ti1 < Ti2 < · · · < TiJi ≤ τ . The sampling times can be irregular

and dependent on covariates. In addition, some subjects may drop out of the study

early. Let Ni(t) =
∑Ji

j=1 I(Tij ≤ t) be the number of observations taken from the ith

subject by time t, where I(·) is the indicator function. Let Ci be the end of follow-up

time or censoring time, whichever comes first. The responses for subject i can only

be observed at time points before Ci. Thus Ni(t) can be written as N∗i (t∧Ci), where

N∗i (t) is the counting process of sampling times.

Assume that {Yi(·), Xi(·), Ui(·), Ni(·), i = 1, · · · , n} are independent identically dis-

tributed (iid) random processes. The censoring time Ci is noninformative in the sense

that E{dN∗i (t) |Xi(t), Ui(t), Ci ≥ t} = E{dN∗i (t)|Xi(t), Ui(t)} and E{Yi(t)|Xi(t), Ui(t),

Ci ≥ t} = E{Yi(t)|Xi(t), Ui(t)}. Assume that dN∗i (t) is independent of Yi(t) con-

ditional on Xi(t), Ui(t) and Ci ≥ t. The censoring time Ci is allowed to depend on

Xi(·) and Ui(·).

Let Xi(t) = (XT
1i(t), X

T
2i(t), X

T
3i(t))

T consist of three parts of dimensions p1, p2 and

p3, respectively, over the time interval [0, τ ]. Let Ui(t) be the scalar covariate process

with support U . To characterize the treatment switching effects of X3i(t) with respect

to Ui(t), we propose the generalized semiparametric varying-coefficient model

µi(t) = E{Yi(t)|Xi(t), Ui(t)} = g−1{αT (t)X1i(t) + βTX2i(t) + γT (Ui(t); θ)X3i(t)},

(3.1)

for 0 ≤ t ≤ τ , where g(·) is a known monotonic and differentiable link function, α(·)

is a p1-dimensional vector of completely unspecified functions, β is a p2-dimensional

vector of unknown parameters and γ(u) = γ(u; θ) is a p3-dimensional vector of para-
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metric functions specified up to a finite number of unknown parameters θ. Setting

the first component of X1i(t) as 1 gives a nonparametric baseline function. γ(u) is

the effect of X3i(t) at the covariate level Ui(t) = u. Both discrete and continuous

longitudinal responses can be modelled with appropriately chosen link functions. For

example, the identity link function can be used for continuous response variables

while the logit link function can be used for binary responses and logarithm link for

Poisson process.

For the motivating example the ACTG 244 study, t is the time since initiation of

antiretroviral therapy (ART). It is of interest to know how biomarkers such as viral

load and CD4 counts respond to the new treatments. It is natural to assume that the

effects of the new treatments depend on the time duration Ui(t) = t − Si since the

switching, where Si is the time of treatment switching. Letting X3i(t) = I(t > Si)

in (3.1), γ(u) represents the change in the conditional mean response at time u after

treatment switching adjusting for other covariates X1i(t) and X2i(t). On the other

hand, if we let X3i(t) = Xo
3i(t)I(t > Si) where Xo

3i(t) are the indicators for the new

treatments after switching, then γ(u) are the effects of new treatments starting from

treatment switching.

3.1.2 Estimation of Regression Coefficients

In this section, we apply different methods to model (3.1) and compare the perfor-

mance of these methods. The proposed approach utilizes profile-kernel method to esti-

mate the parametric, and nonparametric coefficients, meanwhile uses quasi-likelihood

(QL), Minimum Generalized Variance (MGV) or Quadratic Inference Function (QIF)
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method to estimate the variance and correlation coefficients within subjects.

We use a profile weighted least square approach to estimate the model coefficients:

first, given parametric part we approximate the non-parametric part by local linear

smoothing and ignore the correlation within subjects in the estimation function; sec-

ond, given non-parametric part, we incorporate the correlation matrix as a weight in

a weighted least square function to estimate the parametric part. By iteration of the

above two steps until convergence we achieve the estimation of model coefficients.

At each t0, let α(t) = α(t0) + α̇(t0)(t− t0) + O((t− t0)2) be the first order Taylor

expansion of α(·) for t ∈ Nt0 , a neighborhood of t0, where α̇(t0) is the derivative of

α(t) at t = t0. Denote α∗(t0) = (αT (t0), α̇
T (t0))

T , X∗1i(t, t − t0) = X1i(t) ⊗ (1, t −

t0)
T , where ⊗ is the Kronecker product. In the following, we denote Yi(Tij) = Yij,

µi(Tij) = µij, Xi(Tij) = Xij and Ui(Tij) = Uij for simplicity. Let ζ = (βT , θT )T ,

X∗2ij = (XT
2ij, X

T
3ij)

T , and η(Uij, ζ) = (βT , γT (Uij, θ))
T . For t ∈ Nt0 , model (3.1) can

be approximated by

µij(t0, α
∗(t0), β, θ|Xij, Uij) = g−1{α∗T (t0)X

∗
1ij(t0) + βTX2ij + γT (Uij, θ)X3ij},

which can be simplified further as

µij(t0, α
∗(t0), ζ|Xij, Uij) = g−1{α∗T (t0)X

∗
1ij(t0) + ηT (Uij, ζ)X∗2ij}, (3.2)

At each t0 and for fixed ζ, we propose the following local linear estimating function

for α∗(t0):

Uα(α∗; ζ, t0) =
n∑
i=1

X∗1i(t0)
T∆i(t0)K

1/2
ih (t0)V

−1
1i (t0)K

1/2
ih (t0) [Yi − µ∗i ] , (3.3)
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where Yi = (Yi1, · · · , YiJi)T , X∗1i = (X∗1i1, · · · , X∗1iJi)
T , µ∗i = (µ∗i1, · · · , µ∗iJi)

T , µ∗ij =

µij(t0, α
∗(t0), ζ|Xij, Uij), and X∗1i(t0) denotes a Ji × 2p1 matrix with each row vector

being X∗1ij(t0) = X1ij ⊗ (1, Tij − t0)T , ∆i = diag{µ̇ij}, µ̇(·) is the first derivative of

µ(·), V −11i (t0) is a nonnegative weight process, K(·) is a kernel function, h = hn > 0 is

a bandwidth parameter, Kh(·) = K(·/h)/h, and Kih(t0) = diag{Kh(Tij − t0)}. The

solution to the equation Uα(α∗; ζ, t0) = 0 is denoted by α̃∗(t0, ζ). Let α̃(t0, ζ) be the

first p1 components of α̃∗(t0, ζ).

Second, given estimated α(t), the profile weighted least-squares estimator ζ̂ is ob-

tained by minimizing the following profile least-squares function with respect to ζ:

`ζ(ζ) =
1

n

n∑
i=1

[Yi − µ̂i(ζ)]TV −12i [Yi − µ̂i(ζ)], (3.4)

where V −12i is the working covariance matrix, and µi and µij are the same as those

defined in (2.4) except that they are evaluated at µ̂ij(ζ) = g−1{α̃T (Tij, ζ)X1ij +

ηT (Uij, ζ)X∗2ij}. The profile estimator for α(t0) is obtained by α̂(t0) = α̃(t0, ζ̂) through

substitution.

The Newton-Raphson iterative method can be used to find the estimator ζ̂ that

minimizes (3.4). Taking the derivative of `ζ(ζ) with respect to ζ leads to score function

for ζ.

Uζ(ζ) =
n∑
i=1

{∂α̃(Ti, ζ)

∂ζ
X1i +

∂η(Ui, ζ)

∂ζ
X∗2i}T∆iV

−1
2i [Yi − µ̂i(ζ)}] (3.5)

where

∂η(Ui, ζ)

∂ζ
X∗2i = (

∂ηT (Ui1, ζ)

∂ζ
X∗2i1, · · · ,

∂ηT (UiJi , ζ)

∂ζ
X∗2iJi)

T ,

∂ηT (Uij, ζ)/∂ζ = diag{Ip2 , ∂γT (Uij, θ)/∂θ}
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and

∂α̃(Ti, ζ)

∂ζ
X1i = (

∂α̃T (Ti1, ζ)

∂ζ
X1i1, · · · ,

∂α̃T (TiJi , ζ)

∂ζ
X1iJi)

T .

Here ∂α̃(t,ζ)
∂ζ

be the first p1 components of ∂α
∗(t,ζ)
∂ζ

which can be expressed in terms of the

partial derivatives of Uα(α∗; ζ, t) at α∗ = α̃∗(t, ζ). Specifically, since Uα(α̃∗(t, ζ); ζ, t) ≡

02p1 , it follows that α̃∗(t, ζ) satisfies

{
∂Uα(α∗; ζ, t)

∂α∗
∂α∗(t, ζ)

∂ζ
+
∂Uα(α∗; ζ, t)

∂ζ

}∣∣∣∣
α∗=α̃∗(t,ζ)

= 02p1×(p2+p3).

Therefore,

∂α∗(t, ζ)

∂ζ
= −

{
∂Uα(α∗; ζ, t)

∂α∗

}−1
∂Uα(α∗; ζ, t)

∂ζ

∣∣∣∣∣
α∗=α̃∗(t,ζ)

, (3.6)

where

∂Uα(α∗; ζ, t)

∂α∗
= −

n∑
i=1

X∗1i(t)
T∆i(t)K

1/2
ih (t)V −11i (t)K

1/2
ih (t)∆i(t)X

∗
1i(t), (3.7)

and X∗1i(t) denotes a Ji × 2p1 matrix with each row vector being X∗1i(Tij, Tij − t) =

X1i(Tij)⊗ (1, Tij − t)T and

∂Uα(α∗; ζ, t)

∂ζ
= −

n∑
i=1

X∗1i(t)
T∆i(t)K

1/2
ih (t)V −11i (t)K

1/2
ih (t)∆i(t){

∂η(Ui, ζ)

∂ζ
X∗2i}. (3.8)

When estimating α(t), we let R1i(t) in V1i(t) be an identity matrix to ignore cor-

relation in estimating equation (2.4), since it has been shown in literature that a

more efficient estimation of nonparametric part is achieved by ignoring the correla-

tion within subjects (Lin and Carroll, 2000, 2001b; Fan et al., 2007). However, the

most efficient estimation for ζ is obtained by letting V2i in equation (3.5) be the true

covariance matrix of Y , which is proved in Theorem 3.2.
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When link function is the identity link, α̃∗(t0, ζ) and ζ̂ can be solved explicitly as

the root of the estimating function (3.3) and (3.5). However, under a general link

function, they need to be solved using iterative algorithm such as Newton-Raphson

method. The estimation procedure iteratively updates estimates of the nonparametric

component α̃∗(t, ζ) and the parametric component ζ̂ until convergence. We denote

the first p1 component of the convergent α̃∗(t, ζ) as α̂(t).

3.1.3 Estimation of Covariance Function

The following section concentrates on estimation of V1i and V2i. To ensure positive

definite of the working covariance matrix V1i and V2i , we decompose it as the sandwich

form:

V1i(t) = Ai(t)R1i(t, ρ)Ai(t) (3.9)

where R1i(t, ρ) = I. and similarly,

V2i = AiR2i(ρ)Ai (3.10)

where Ai(t) = diag{σ(t)} and R2i(ρ) is the working correlation matrix of Yi. Given

α̂(t) and ζ̂ obtained in Section (3.1.2), we can get estimated residual r̂ij = Yij − µ̂ij,

where µ̂ij = g−1{α̂(Tij)X1ij + ηT (Uij, ζ̂)X∗2ij}. The marginal variance of Y can be

estimated either by methods of moments in GEE, or via univariate kernel smoothing in

Fan et al. (2007). Especially when variance of Y depend on time and is nonstationary,

we use the following formula in Fan et al. (2007):

v̂ar(Yij) = σ̂2(t) =

∑n
i=1

∑Ji
j=1 r̂

2
ijKh1(t− Tij)∑n

i=1

∑Ji
j=1Kh1(t− Tij)

(3.11)
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To estimate the correlation matrix used in above weighted least square function,

there are quasi-likelihood(QL) approach, minimum generalized variance (MGV) ap-

proach both proposed by Fan et al. (2007) and weighted least square(WLS) approach

newly proposed here. QL, MGV and WLS approaches share the same framework

which is derived from Generalized Estimating Equation(GEE) framework, and their

only difference is the objective functions in their optimization procedure, see equa-

tion (2.19) for QL, equation (2.20) for MGV and equation (2.21) for WLS. Quadratic

inference function method (QIF) proposed by Qu et al. (2000) doesn’t involve esti-

mating the correlation parameter but incorporate correlation structure in estimating

equations to improve efficiency, see equation (2.23).

Specifically, the estimations of α(t), ζ, σ2(t) and ρ can be accomplished through

the following iterated algorithm:

Computational algorithm

1. Let α̂(t){0} and ζ̂{0} be initial values which can obtained assuming working

independence simultaneously in score function (3.3) and (3.5);

2. Given α̂(t){0} and ζ̂{0}, use formula (3.11) or methods of moments to estimate

Âi, and use QL, or MGV, or WLS approach to estimate ρ in R2i(ρ), hence

Σ̂
{0}
i = ÂiR̂2i(ρ̂)Âi.

3. Let the correlation matrix R1i(t) in score function of α(t) equation (3.3) be

identity matrix, while the weight matrix in score function of ζ equation (3.5) be

V −12i = {Σ̂{0}i }−1, by profile-kernel procedure in Section 3.1.2, we get updated

α̂(t){1} and ζ̂{1}.
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4. Repeating step 2 and 3, the estimators α̂{m}(t), ζ̂{m} and Σ̂
{m}
i are updated at

each iteration until convergence. ζ̂, α̂(t) and Σ̂i are ζ̂{m}, α̂{m}(t) and Σ̂
{m}
i

respectively, at convergence.

In our empirical experience, m will be no more than 3 and we will not lose any statis-

tical efficiency provided the initial estimator is good enough. The initial estimators

are obtained by assuming working independence which are consistent, thus after only

a few iterations the convergence is achieved.

3.2 Asymptotic Properties

In what follows, let Ji = J < ∞ (i.e.,assuming finite cluster size) and Ti be a

continuous observational-level covariate (e.g., a time-varying covariate in longitudinal

studies). We allow Ti = (Ti1, · · · , TiJ) as well as Xi and Ui to be correlated unless

stated otherwise, let fj(·) denote the marginal density of Tij. We further assume

that the (Yi, Xi, Ui, Ti)(i = 1, · · · , n) are iid observations with a continuous density

function, and both V1i(µi, ρ) = V1(µi, ρ) and V2i(µi, ρ) = V2(µi, ρ) are invertible.

Let νjk1 and νjk2 denote the (j, k)th element of V −11 (·) and V −12 (·) respectively. Let

CK(r) =
∫
zrK(z)dz and γK(r) =

∫
zrK2(z)dz. We further assume that nh→∞ as

n→∞ and h→ 0.

We first rewrite the profile estimating equations for ζ in (3.5) as

Uζ(ζ) =
n∑
i=1

{∂α̃(Ti, ζ)

∂ζ
X1i +

∂η(Ui, ζ)

∂ζ
X∗2i}T∆iV

−1
2i [Yi − µ̂i(ζ)}] (3.12)

Let ζ0 and α0(t) be the true values of ζ and α(t) under model (3.2), respectively.

Let µij = g−1{αT0 (Tij)X1ij + ηT (Uij, ζ0)X
∗
2ij}, µ̇ij is the first derivative of µij(·), ∆i =
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diag{µ̇ij} and εij = Yij − µij. Appendix A shows that, asymptotically,

∂α∗(t, ζ)

∂ζ
= −e−111 (t)e12(t), (3.13)

where, suppressing the index i denoting µj = g−1{αT0 (Tj)X1j + ηT (Uj, ζ0)X
∗
2j} (j =

1, · · · , J), define

e11(t) =
J∑
j=1

E
[
∆2
jj(t)ν

jj
1 (t)X1jX

T
1j|Tj = t

]
fj(t)

and

e12(t) =
J∑
j=1

E
[
∆2
jj(t)ν

jj
1 (t)X1j{

∂ηT (Uj, ζ)

∂ζ
X∗2j}T |Tj = t

]
fj(t),

where ∆jj(t) = µ̇j(α(t), ζ|Xj, Uj). Denote

Bij = −eT12(Tij)e−111 (Tij)X1ij +
∂ηT (Uij, ζ0)

∂ζ
X∗2ij

and

Bi = (Bi1, · · · , BiJi)
T .

Let µ̂ij = g−1{α̂T (Tij)X1ij + ηT (Uij, ζ̂)X∗2ij}, ∆̂i = diag{ ˙̂µij} and ε̂ij = Yij − µ̂ij. Let

Ê11(t) = n−1
n∑
i=1

{XT
1i∆̂i(t)K

1/2
ih (t)V −11i (t)K

1/2
ih (t)∆̂i(t)X1i}

and

Ê12(t) = n−1
n∑
i=1

[
XT

1i∆̂i(t)K
1/2
ih (t)V −11i (t)K

1/2
ih (t)∆̂i(t){

∂η(Ui, ζ̂)

∂ζ
X∗2i}

]
.

Denote

B̂ij = −ÊT
12(Tij)Ê

−1
11 (Tij)X1ij +

∂ηT (Uij, ζ̂)

∂ζ
X∗2ij
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and

B̂i = (B̂i1, · · · , B̂iJi)
T .

The following theorems characterize the asymptotic properties of the proposed

estimator ζ̂ and α̂(t). Conditions and proofs are given in the Appendix.

Theorem 3.1. Under Condition I in the Appendix, the estimator ζ̂ is consistent for

ζ0, and
√
n(ζ̂ − ζ0) converges in distribution to a mean zero Gaussian random vector

with covariance matrix P−1DP−1, i.e.,

√
n(ζ̂ − ζ0)

D−→ (0, P−1DP−1), (3.14)

where suppressing the subscript i in each term inside the expectations,

P = E
[
BT∆V −12 ∆B

]
,

and

D = E
[
BT∆V −12 ΣV −12 ∆B

]
,

where Σ = cov(Y |X,U, T ).

The matrix P can be consistently estimated by

P̂ = n−1
∑n

i=1

[
B̂T
i ∆̂iV̂

−1
2i ∆̂iB̂i

]
and D can be consistently estimated by

D̂ = n−1
∑n

i=1

[
B̂T
i ∆̂iV̂

−1
2i (Yi − µ̂i)(Yi − µ̂i)T V̂ −12i ∆̂iB̂i

]
.

Theorem 3.2. When V2i is taken to be the conditional variance-covariance matrix
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of Yi given Xi and Ui for i = 1, . . . , n, then P = D. In this case

√
n(ζ̂ − ζ0)

D−→
(
0, D−10

)
,

where D0 = E
{
BT∆Σ−1∆B

}
and

P−1DP−1 −D−10 ≥ 0, (3.15)

for any matrix V2i, where A ≥ 0 means that the matrix A is nonnegative definite.

Theorem 3.3. Under Condition I, we have that α̂(t) converges to α0(t) uniformly in

t ∈ [t1, t2], and

√
nh(α̂(t)− α0(t)−

1

2
CK(2)h2α̈0(t))

D−→N (0,Σα(t)) , (3.16)

where CK(2) =
∫ 1

−1 t
2K(t) dt, γK(0) =

∫ 1

−1K
2(t) dt, σjj = var(Yj|Xj, Uj, Tj), σjj is

the (j, j)th element of Σ = cov(Yi|Xi, Ui) and α̈0(t) is the second derivative of the

true α0(t) with respect to t,

Σα(t) = e−111 (t)Σe(t)e
−1
11 (t)

and

Σe(t) = γK(0)
∑J

j=1E{∆2
jj(t)(ν

jj
1 (t))2σjjX1jX

T
1j|Tj = t}fj(t).

Thus

Σα(t) ≈
γK(0)

∑J
j=1E{∆2

jj(t)(ν
jj
1 (t))2σjjX1jX

T
1j|Tj = t}fj(t){∑J

j=1E[∆2
jj(t)ν

jj
1 (t)X1jXT

1j|Tj = t]fj(t)
}−2

The variance-covariance matrix Σα(t) can be estimated consistently replacing e11(t)
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by Ê11(t) and Σe(t) by

Σ̂e(t) = n−1h
n∑
i=1

{XT
1i∆̂iK

1/2
ih (t)V −11i (t)K

1/2
ih (t)(Yi−µ̂i)(Yi−µ̂i)TK1/2

ih (t)V −11i (t)K
1/2
ih (t)∆̂iX1i}.

It follows that Σα(t) is minimized when assuming working independence R1 = I and

is

Σα(t) ≈
{
γK(0)

J∑
j=1

E[∆2
jj(t)σ

−1
jj X1jX

T
1j|Tj = t]fj(t)

}−1
3.3 Simulation Studies

For correlated continuous responses in generalized varying-coefficient model, we use

a similar setting in Qi et al. (2016)’s simulation studies with identity link.

E{Yi(t)|Xi, Si} = α0(t) + α1(t)X1i(t) + βX2i + γ(t− Si, θ)X3iI(t > Si),

for 0 ≤ t ≤ τ with τ = 3.5, where α0(t) = 0.2
√
t, α1(t) = 0.1 sin(t), γ(u, θ) =

θ1exp(−θ2u) and ζ = (β, θ1, θ2) = (0.1, 1.0, 0.5), X1i(t) = (t/3 + N(0, 1.52))/6 and

X3i is a uniform random variable on [−1, 1], X2i is a Bernoulli random variable with

success probability of 0.5 and Si is a uniform random variable on [0, 1]. Si, X2i

and X3i are all subject-level covariates which doesn’t change within subject i. The

observation time follows a Poisson process with the proportional mean rate model

h(t|Xi, Si) = 1.5 exp(0.7X2i). The censoring time Ci is generated from a uniform

distribution on [1.5, 8]. There are approximately six observations per subject on [0, τ ]

and about 30% of subjects are censored before τ = 3.5.

We consider two different model settings for the error part:

(C1) ARMA model. The error part εi(t) is a Gaussian process with mean 0,
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variance changing with time σ2
i (t) = 0.5exp(t/12) and the correlation structure is

ARMA(1,1), i.e., corr(εi(s), εi(t)) = γρ|t−s| for s 6= t. We let θ = (γ, ρ) = (0.85, 0.9),

θ = (γ, ρ) = (0.85, 0.6), θ = (γ, ρ) = (0.85, 0.3) to consider strong, moderate and

weak correlation respectively.

(C2) Exchange Model. The error εi(t) = Yi(t) − E{Yi(t)|Xi, Si} has a normal

distribution with mean φi and variance ν2, and φi is N(0, 1). By this setting, it

can be shown that the correlation structure of error within subjects is exchangeable

correlation structure with correlation coefficient ρ = 0.8 if ν = 0.5, ρ = 0.5 if ν = 1

and ρ = 0.2 if ν = 2. We choose above three different values of ν to consider strong,

moderate and weak correlations.

In the following, we present simulation results of the proposed methods and se-

lect the bandwidth by the K-fold cross-validation bandwidth selection method. The

bandwidth selected is h = 1.4 for ARMA model and h = 2.9 for Exchange Model

when sample size n = 400. The Epanechnikov kernel K(u) = 0.75(1− u2)I(|u| ≤ 1)

is used. We take t1 = h/2 and t2 = τ − h/2 in the estimating functions for α(t) to

avoid larger variations on the boundaries.

The performances of the estimators for ζ are measured through the Bias, the sample

standard error of the estimators (SEE), the sample mean of the estimated standard

errors (ESE) and the 95% empirical coverage probability (CP). Boxplots are drawn

to show the median, quantiles and outliers. Each entry of the table is calculated

based on 1000 repetitions for sample size n = 400. Each table we have four blocks,

and each block is for one of the following scenarios: (1) working independence case;

(2) assuming Exchangeable correlation structure; (3) assuming ARMA correlation
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structure; (4) assuming a mixed correlation structure. QL, MGV, WLS and QIF ap-

proaches are compared when assuming an exchangeable, ARMA or mixed correlation

structure.

Table 15, Table 16 and Table 17 show the results for strongly, moderately and

weakly correlated observations within subjects for ARMA model respectively. Table

19, Table 20 and Table 21 show the results for strongly, moderately and weakly

correlated observations within subjects for Exchange model respectively. Since QL,

MGV and WLS methods involve estimating the correlation coefficients, we list the

estimation results when assuming true correlation and a mixed correlation for each

model. Table 18 is for ARMA model and Table 22 is for Exchange model.

We get several conclusions from these tables:

1. All the estimates are unbiased under each scenario by each method. There are

a good agreement of SEE and ESE for θ1 and θ2, while ESE tends to be smaller

than SEE for β. Since θ1 and θ2 are the coefficients of time-variant covariate

X3iI(t > Si), while β is the coefficient of time-invariant covariate X2, we can

say that the standard deviation formula performs well for the coefficient of time-

variant covariate but tends to underestimate that of time-invariant covariate.

CP value are near the 95% nominal level for most cases.

2. When estimating the coefficients of time-variant covariate θ1 and θ2, QL, MGV

QIF and WLS approaches all perform well and reduce the SEE comparing with

working independence(WI) case, while for β, the coefficient of time-invariant

covariate, SEE doesn’t change much comparing with WI case. This phenomenon
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is also shown in (Lin and Carroll, 2001b; Wang et al., 2005).

3. When estimating θ1 and θ2, QL approach achieve the smallest SEE for each

scenario which means QL is most efficient estimator. From results of correlation

coefficients estimates in Table 18 and Table 22, QL approach almost target the

correlation coefficient either assuming the true correlation structure or assuming

a mixed one, while MGV and WLS tend to underestimate the true correlation

coefficients.

4. The stronger the correlation is, more efficiency will be obtained when estimating

the time-variant covariates. The reduction of SEE by QL, MGV, QIF and

WLS methods compared to WI in Table 15 where correlation coefficient is θ =

(γ, ρ) = (0.85, 0.9) will be more than those in Table 16 and Table 17 where

θ = (γ, ρ) = (0.85, 0.6) and θ = (γ, ρ) = (0.85, 0.3) respectively. Similar results

can be drawn from Table 19, Table 20 and Table 21.

5. When the correlation structure is misspecified, the efficiency achieved is not

as much as the case of the correlation is true or assuming a mixed correlation

structure and there are extreme outliers. The performance of assuming true

correlation structure and assuming a mixed correlation structure are close. Thus

assuming a mixed correlation structure when we don’t know the true correlation

structure performs as well as when we know the correlation structure in advance.
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Table 15: Summary of Bias, SEE, ESE and CP for β, θ1 and θ2 for n = 400, h = 1.4
based on 1000 simulations under ARMA model with strong correlation coefficients
(0.85, 0.9).

θ = (0.85, 0.9)

β = 0.1 θ1 = 1 θ2 = 0.5

Method Bias SEE ESE CP Bias SEE ESE CP Bias SEE ESE CP

Working Independence

WI -.0009 .0766 .0754 .950 -.0022 .0953 .0923 .944 .0164 .1146 .1118 .945

Assuming ARMA correlation structure(True)

QL -.0016 .0708 .0662 .926 -.0003 .0485 .0475 .954 .0073 .0677 .0662 .944

MGV -.0016 .0697 .0674 .944 -.0008 .0540 .0520 .941 .0092 .0794 .0786 .945

QIF -.0018 .0702 .0673 .938 -.0010 .0638 .0597 .937 .0094 .0873 .0845 .945

WLS -.0018 .0698 .0674 .943 -.0009 .0568 .0545 .944 .0088 .0760 .0756 .944

Assuming Mixed correlation structure

QL -.0017 .0708 .0662 .926 -.0004 .0484 .0475 .954 .0071 .0676 .0661 .945

MGV -.0018 .0695 .0670 .941 -.0008 .0538 .0519 .938 .0078 .0727 .0724 .942

QIF -.0024 .0704 .0666 .938 -.0008 .0616 .0576 .935 .0094 .0818 .0795 .939

WLS -.0018 .0698 .0674 .943 -.0010 .0570 .0547 .945 .0087 .0760 .0755 .944

Assuming Exchangeable correlation structure(Misspecification)

QL -.0020 .0720 .0675 .932 -.0005 .0554 .0545 .945 .0055 .0730 .0735 .955

MGV -.0020 .0698 .0670 .939 -.0010 .0574 .0560 .942 .0063 .0714 .0721 .947

QIF -.0024 .0730 .0689 .930 -.0009 .0696 .0669 .937 .0104 .0821 .0834 .952

WLS -.0020 .0701 .0676 .940 -.0014 .0614 .0596 .940 .0078 .0743 .0748 .937
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Table 16: Summary of Bias, SEE, ESE and CP for β, θ1 and θ2 for n = 400, h = 1.4
based on 1000 simulations under ARMA model with moderate correlation coefficients
(0.85, 0.6).

θ = (0.85, 0.6)

β = 0.1 θ1 = 1 θ2 = 0.5

Method Bias SEE ESE CP Bias SEE ESE CP Bias SEE ESE CP

Working Independence

WI -.0015 .0660 .0643 .943 -.0022 .1033 .1015 .946 .0117 .1088 .1141 .963

Assuming ARMA correlation structure(True)

QL -.0024 .0599 .0569 .936 .0013 .0641 .0648 .949 .0104 .0888 .0888 .949

MGV -.0022 .0598 .0572 .938 .0012 .0686 .0681 .939 .0099 .0884 .0902 .953

QIF -.0020 .0606 .0577 .935 .0005 .0756 .0734 .942 .0096 .0957 .0950 .946

WLS -.0022 .0603 .0579 .936 .0004 .0732 .0723 .938 .0101 .0906 .0931 .950

Assuming Mixed correlation structure

QL -.0025 .0600 .0569 .936 .0012 .0641 .0648 .949 .0103 .0888 .0887 .950

MGV -.0024 .0605 .0576 .937 .0011 .0717 .0714 .941 .0091 .0901 .0928 .958

QIF -.0026 .0605 .0570 .933 .0010 .0753 .0723 .931 .0098 .0935 .0925 .946

WLS -.0022 .0604 .0579 .936 .0003 .0735 .0726 .940 .0100 .0905 .0930 .950

Assuming Exchangeable correlation structure(Misspecification)

QL -.0027 .0627 .0592 .936 .0009 .0823 .0828 .952 .0084 .1036 .1069 .963

MGV -.0026 .0626 .0591 .934 .0009 .0823 .0828 .951 .0084 .1029 .1063 .965

QIF -.0025 .0633 .0595 .927 .0003 .0879 .0858 .942 .0099 .0957 .0996 .959

WLS -.0022 .0622 .0592 .932 -.0007 .0860 .0854 .950 .0087 .0957 .1007 .964



72

Table 17: Summary of Bias, SEE, ESE and CP for β, θ1 and θ2 for n = 400, h = 1.4
based on 1000 simulations under ARMA model with weak correlation coefficients
(0.85, 0.3).

θ = (0.85, 0.3)

β = 0.1 θ1 = 1 θ2 = 0.5

Method Bias SEE ESE CP Bias SEE ESE CP Bias SEE ESE CP

Working Independence

WI -.0009 .0548 .0537 .948 -.0008 .1036 .1030 .951 .0115 .1119 .1108 .943

Assuming ARMA correlation structure(True)

QL -.0018 .0497 .0480 .945 -.0018 .0771 .0764 .948 .0079 .0914 .0918 .949

MGV -.0019 .0499 .0483 .947 -.0006 .0806 .0797 .948 .0098 .0950 .0950 .944

QIF -.0015 .0510 .0493 .948 -.0010 .0854 .0828 .946 .0090 .0999 .0966 .941

WLS -.0015 .0505 .0487 .947 -.0007 .0832 .0825 .947 .0092 .0955 .0951 .946

Assuming Mixed correlation structure

QL -.0019 .0497 .0480 .943 -.0019 .0771 .0764 .948 .0079 .0915 .0917 .950

MGV -.0017 .0505 .0489 .945 -.0003 .0858 .0849 .939 .0098 .0978 .0979 .946

QIF -.0021 .0511 .0485 .945 -.0008 .0850 .0819 .940 .0091 .0987 .0950 .945

WLS -.0016 .0505 .0487 .947 -.0007 .0834 .0828 .947 .0092 .0956 .0952 .945

Assuming Exchangeable correlation structure(Misspecification)

QL -.0020 .0521 .0504 .940 -.0001 .0952 .0943 .937 .0113 .1100 .1109 .955

MGV -.0021 .0530 .0513 .942 .0003 .0970 .0957 .938 .0131 .1176 .1184 .955

QIF -.0017 .0532 .0504 .927 .0008 .0949 .0935 .938 .0115 .1044 .1033 .946

WLS -.0015 .0523 .0506 .938 -.0002 .0956 .0951 .944 .0106 .1052 .1057 .950
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Table 18: Estimation of correlation coefficients on 1000 simulations for ARMA model
by different approaches.

Method Assuming Mixed Structure Assuming ARMA Structure(true)

θ = (0.85, 0.9)

QL 0.750× 0.882−|s−t| + 0.091 0.847× 0.899−|s−t|

MGV 0.303× 0.607−|s−t| + 0.250 0.607× 0.607−|s−t|

WLS 0.298× 0.637−|s−t| + 0.150 0.439× 0.787−|s−t|

θ = (0.85, 0.6)

QL 0.834× 0.577−|s−t| + 0.005 0.847× 0.596−|s−t|

MGV 0.303× 0.607−|s−t| + 0.250 0.607× 0.607−|s−t|

WLS 0.442× 0.360−|s−t| + 0.039 0.471× 0.430−|s−t|

θ = (0.85, 0.3)

QL 0.839× 0.282−|s−t| + 0.002 0.848× 0.297−|s−t|

MGV 0.303× 0.607−|s−t| + 0.050 0.607× 0.607−|s−t|

WLS 0.482× 0.152−|s−t| + 0.012 0.489× 0.178−|s−t|
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Table 19: Summary of Bias, SEE, ESE and CP for β, θ1 and θ2 for n = 400, h = 2.9
based on 1000 simulations under Exchange model with strong correlation ρ = 0.8.

ρ = 0.8

β = 0.1 θ1 = 1 θ2 = 0.5

Method Bias SEE ESE CP Bias SEE ESE CP Bias SEE ESE CP

Working Independence

WI .0047 .1170 .1138 .943 .0012 .1239 .1329 .964 .0219 .1562 .1549 .940

Assuming Exchangeable correlation structure(True)

QL .0018 .1054 .1016 .935 -.0010 .0598 .0600 .957 .0065 .0656 .0637 .947

MGV .0035 .1084 .1063 .939 .0011 .0913 .0979 .968 .0140 .1129 .1132 .950

QIF .0021 .1074 .1046 .936 .0003 .0889 .0890 .952 .0118 .1061 .1042 .941

WLS .0027 .1044 .1027 .937 .0003 .0685 .0717 .964 .0081 .0799 .0795 .946

Assuming Mixed correlation structure

QL .0018 .1054 .1016 .936 -.0010 .0598 .0600 .955 .0064 .0658 .0637 .945

MGV .0029 .1058 .1041 .939 -.0007 .0780 .0815 .964 .0107 .1036 .1056 .952

QIF .0022 .1063 .1023 .936 -.0011 .0829 .0813 .948 .0108 .1012 .0978 .943

WLS .0027 .1044 .1027 .937 .0003 .0685 .0717 .965 .0081 .0805 .0800 .945

Assuming ARMA correlation structure(Misspecification)

QL .0021 .1050 .1020 .935 -.0014 .0650 .0649 .954 .0070 .0747 .0725 .941

MGV .0026 .1050 .1034 .943 -.0006 .0722 .0736 .956 .0112 .1054 .1054 .949

QIF .0030 .1076 .1038 .937 -.0014 .0888 .0879 .952 .0122 .1140 .1122 .940

WLS .0027 .1045 .1028 .939 .0002 .0691 .0720 .969 .0087 .0862 .0862 .948
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Table 20: Summary of Bias, SEE, ESE and CP for β, θ1 and θ2 for n = 400, h = 2.9
based on 1000 simulations under Exchange model with moderate correlation ρ = 0.5.

ρ = 0.5

β = 0.1 θ1 = 1 θ2 = 0.5

Method Bias SEE ESE CP Bias SEE ESE CP Bias SEE ESE CP

Working Independence

WI .0034 .1189 .1184 .947 -.0091 .1670 .1584 .942 .0307 .1830 .1823 .946

Assuming Exchangeable correlation structure(True)

QL .0016 .1081 .1086 .954 -.0068 .1184 .1138 .945 .0183 .1243 .1216 .952

MGV .0023 .1110 .1112 .951 -.0059 .1338 .1288 .944 .0208 .1422 .1422 .949

QIF .0016 .1112 .1101 .948 -.0079 .1309 .1250 .937 .0239 .1449 .1402 .938

WLS .0021 .1092 .1097 .955 -.0072 .1266 .1213 .944 .0212 .1344 .1330 .954

Assuming Mixed correlation structure

QL .0016 .1081 .1086 .955 -.0068 .1185 .1137 .944 .0184 .1246 .1216 .953

MGV .0022 .1086 .1098 .957 -.0079 .1266 .1214 .947 .0211 .1400 .1405 .954

QIF .0023 .1105 .1090 .948 -.0103 .1297 .1226 .939 .0223 .1410 .1370 .942

WLS .0021 .1092 .1097 .955 -.0072 .1267 .1213 .944 .0213 .1350 .1333 .953

Assuming ARMA correlation structure(Misspecification)

QL .0018 .1078 .1088 .957 -.0069 .1207 .1159 .942 .0200 .1294 .1253 .951

MGV .0022 .1086 .1101 .957 -.0083 .1329 .1275 .948 .0229 .1509 .1472 .947

QIF .0041 .1139 .1127 .947 -.0121 .1421 .1359 .940 .0235 .1646 .1573 .951

WLS .0021 .1091 .1098 .953 -.0072 .1266 .1216 .946 .0218 .1375 .1359 .953
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Table 21: Summary of Bias, SEE, ESE and CP for β, θ1 and θ2 for n = 400, h = 2.9
based on 1000 simulations under Exchange model with weak correlation ρ = 0.2.

ρ = 0.2

β = 0.1 θ1 = 1 θ2 = 0.5

Method Bias SEE ESE CP Bias SEE ESE CP Bias SEE ESE CP

Working Independence

WI .0018 .1426 .1350 .936 -.0047 .2482 .2315 .936 .0306 .2598 .2496 .940

Assuming Exchangeable correlation structure(True)

QL .0004 .1359 .1289 .937 .0013 .2213 .2108 .945 .0276 .2477 .2214 .953

MGV .0005 .1361 .1290 .936 .0020 .2242 .2118 .941 .0322 .2690 .2250 .951

QIF .0012 .1375 .1286 .934 -.0005 .2290 .2117 .937 .0273 .2442 .2237 .944

WLS .0012 .1370 .1298 .936 -.0011 .2279 .2149 .938 .0265 .2405 .2266 .945

Assuming Mixed correlation structure

QL .0004 .1359 .1288 .936 .0017 .2213 .2107 .944 .0280 .2482 .2215 .952

MGV -.0001 .1361 .1296 .938 .0056 .2234 .2158 .948 .0366 .2693 .2303 .952

QIF .0012 .1379 .1279 .932 -.0014 .2302 .2101 .932 .0266 .2464 .2218 .940

WLS .0012 .1370 .1298 .935 -.0009 .2279 .2148 .938 .0268 .2409 .2268 .944

Assuming ARMA correlation structure(Misspecification)

QL .0004 .1357 .1289 .936 .0022 .2211 .2112 .947 .0288 .2467 .2225 .946

MGV -.0012 .1390 .1330 .939 .0087 .2459 .2428 .947 .0570 .3450 .2573 .963

QIF .0008 .1411 .1326 .931 -.0017 .2396 .2230 .936 .0308 .2568 .2404 .940

WLS .0011 .1369 .1299 .936 -.0007 .2277 .2150 .939 .0272 .2416 .2277 .943
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Table 22: Estimation of correlation coefficients on 1000 simulations for Exchange
model by different approaches.

Method Assuming Mixed Structure Assuming Exchangeable Structure(true)

ρ = 0.8

QL 0.012× 0.417−|s−t| + 0.791 0.796

MGV 0.303× 0.607−|s−t| + 0.050 0.100

WLS 0.020× 0.299−|s−t| + 0.354 0.362

ρ = 0.5

QL 0.023× 0.348−|s−t| + 0.484 0.496

MGV 0.288× 0.605−|s−t| + 0.050 0.100

WLS 0.014× 0.361−|s−t| + 0.176 0.192

ρ = 0.2

QL 0.014× 0.107−|s−t| + 0.180 0.196

MGV 0.290× 0.606−|s−t| + 0.051 0.195

WLS 0.007× 0.061−|s−t| + 0.075 0.079



CHAPTER 4: REAL DATA APPLICATIONS

4.1 DATA EXAMPLE 1: Application to ACTG 244 Trial

AIDS Clinical Trials Group(ACTG) protocol 244, a randomized double-blinded

trial, aims to evaluate the effects of randomizing HIV infected patients to combined

drug therapy based on development of drug resistant mutations. HIV infected pa-

tients who received a Zidovudine (ZDV) monotherapy were enrolled in this study.

Zidovudine is demonstrated as an effective drug to control the clinical progress of dis-

ease in HIV infected patients (Montaner et al., 1998). However after taking the drug,

some patients may develop Zidovudine resistance (ZDVR), which can be detected

by monitoring the ZDVR mutation T215Y/F in HIV reverse transcriptase. Patients’

CD4 cell counts and log10plasma HIV RNA were measured and T215Y/F mutation

are monitored from patients’ plasma bimonthly since study entry. The visit dates

varied across individuals. Upon detection of the mutation in some patient’s plasma,

he or she was randomized to continue ZDV, or add another drug didanosine (ddI) or

add ddI plus nevirapine (NVP). Patients’ demographic information were collected at

the study entry.

289 HIV infected patients were enrolled in this study, among which 284 were dis-

pensed Zidovudine (ZDV). 57 of them developed T215Y/F mutation during the study

and 234 of them were not detected of the mutation. Among the 57 who developed
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mutation, 8 were off the study before the randomization, among the rest 49 patients,

17, 15 and 17 of them are randomized to ZDV , ZDV + ddI and ZDV + ddI +NV P

respectively. Among those 234 patients who didn’t develop the mutation during the

trial, 97 were off treatment before the interim interview, while for the rest 137 pa-

tients, 69 and 68 were randomized to ZDV +ddI and ZDV +ddI+NV P respectively

after the interim interview.

To see whether switching from ZDV monotherapy to combined therapy ZDV +ddI

or ZDV +ddI+NV P based on ZDVR mutation T215Y/F will alter the deterioration

of the disease, we apply a varying coefficient model to study the treatment switching

effects. We choose the CD4 cell counts as our endpoint, which is an independent

predictor of AIDS/death (Mocroft et al., 2003).

4.1.1 Analysis of the effects of switching treatments after drug-resistant mutation

was detected

First, we examine the effects of switching treatments following detection of the

T215Y/F mutation. After preliminary exploration of the data, we propose the fol-

lowing model for each subject i:

Yi(t) =α0(t) + β1Z1i + β2Z2i + β3Z3i + β4Z4i + γ1(U1i(t), θ1)TA1i(t)

+ γ2(U1i(t), θ2)TA2i(t) + γ3(U1i(t), θ3)TA3i(t) + εi(t) (4.1)

for t ∈ [0, τ ], where τ = 2.5 years. Let Yi(t) be the square root of CD4 cell counts

at t years since study entry for subject i, Z1i be sex of subject i (1 if Female; 0 if

Male), Z2i be age in years at study entry of subject i, Z3i and Z4i be dummy variables
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coding race (Z3i = 1 if white and 0 otherwise, Z4i = 1 if black and 0 otherwise). Let

U1i(t) = t−S1i be the time elapsed from the treatment randomization after T215Y/F

mutation was detected, where S1i is the treatment switching time, i.e., the time from

study entry to the first randomization based on detection of the T215Y/F mutation.

We set S1i = 3 years which is longer than the study duration for the 234 subjects who

did not experience mutation during the study. The length of the range of the observed

values for U1i(t), t ∈ [0, 2.5], is 2.25. Let TA1i(t) = 1 if t > S1i and randomized to

ZDV and 0 otherwise, TA2i(t) = 1 if t > S1i and randomized to ZDV+ddI and 0

otherwise, and TA3i(t) = 1 if t > S1i and randomized to ZDV+ddI+NVP and 0

otherwise; note that all the three treatment indicators are zero prior to detection

of the mutation. All n = 284 enrolled subjects dispensed ZDV monotherapy were

studied in this analysis. The eight subjects who were off treatment prior to the first

randomization as well as the 90 subjects who were off treatment prior to the interim

review were censored at the time of drop-off; the 137 subjects who did not develop

the mutation and were randomized at the interim review were censored at the time

of the second randomization.

We assume that γk(u, θk), k = 1, 2, 3, are the second order polynomial functions.

Let γ1(u, θ1) = θ10 + θ11u + θ12u
2, γ2(u, θ2) = θ20 + θ21u + θ22u

2 and γ3(u, θ3) =

θ30 + θ31u+ θ32u
2, where θ1 = (θ10, θ11, θ12), θ2 = (θ20, θ21, θ22) and θ3 = (θ30, θ31, θ32).

The 3-fold cross-validation method for bandwidth selection yields h = 0.41 while the

bandwidth formula h = Cσ̂Tn
−1/3 yields h = 0.36 for C = 4 h = 0.45 for C = 5.

The results of analysis are hardly affected by the bandwidth choice between 0.36 and

0.47.
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The parameter estimates of β1, β2, β3 and β4 by different approaches are presented

in Table 23. Since we don’t know the true correlation structure, we assumed a mixed

correlation structure when using WLS, QL and MGV methods. As the number of

parameters in above model is totally 13, which is too large to achieve convergence

when solving the quadratic inference functions in QIF approach, we didn’t report

the result of QIF approach here. The estimates of varying-coefficient functions α(t),

γ1(u, θ1), γ2(u, θ2) and γ3(u, θ3) are presented in Figure 7. We also list the confidence

intervals for each method in Figure 8, Figure 9, Figure 10 and Figure 11.

From Table 23 under model (4.1) where switching treatment after mutation was

detected(shown in the left column), we can see that none of the estimated parameters

are significant when using WI method, but all of them become significant at level 0.01

when using methods considering within subject correlation. Females tend to have less

CD4 counts, and younger people have slightly less CD4 counts. People of black or

white race tend to have less CD4 counts than other race of people.

From Figure 7, Figure 8, Figure 9, Figure 10 and Figure 11, baseline level of CD4

counts by all the methods show similar downward trend and switching to the combi-

nation therapies show a less decreasing trend than the ZDV monotherapy. We notice

that when switching to ZDV+ddI+NVP, CD4 counts increase until 1.5 years after

switching by all the methods except WI approach. Thus switching to the combina-

tion therapies from ZDV monotherapy have benefits for HIV patients even after they

developed the drug-resistant mutation.

Since we have demonstrated in the simulation study that QL approach always

target the true correlation coefficients and have a better performance than MGV and
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WLS approaches. We only list the result from QL approach. When assuming a mixed

correlation structure by QL approach, the correlation coefficient ρ(s, t) between time

s and t is ρ(s, t) = 0.4987 × 0.5828−|s−t| + 0.2656 for s 6= t and ρ(s, t) = 1 for s = t.

As the distance of time points s and t increases, the correlation of responses at these

time points within the same subject decreases.

4.1.2 Analysis of the effects of switching treatments before drug-resistant

mutation was detected

Next, we examine the effects of switching treatments before drug-resistant mutation

was detected. In September 1996, the Data Safety Monitoring Board reviewed the

data in this study independently. After this interim review, all the 234 subjects

who were not detected mutation were offered randomization to the ZDV+ddI or

ZDV+ddI+NVP arms with six months of additional follow-up. This section we focus

on this group of people. We exclude the subjects who developed the T215/F mutation

here as the time to develop T215/F mutation likely introduces dependent censoring.

90 out of the 234 patients were off the treatment prior to the interim review, whose

censoring time is the time of dropping-off. Similarly as above analysis, we used a

varying coefficient model:

Yi(t) =α0(t) + β1Z1i + β2Z2i + β3Z3i + β4Z4i

+ γ2(U2i(t), θ2)TB2i(t) + γ3(U2i(t), θ3)TB3i(t) + εi(t), (4.2)

for t ∈ [0, 2.5]. Yi(t), Z1i, Z2i, Z3i and Z4i are defined the same as in Model (4.1).

U2i(t) = t − S2i, where S2i is the second randomization time after interim review
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for subject i. The range of observed values of U2i(t), t ∈ [0, 2.5], is [0, 0.70]. Let

TB2i(t) = 1 if t > S2i and randomized to ZDV+ddI and 0 otherwise. Let TB3i(t) = 1

if t > S2i and randomized to ZDV+ddI+NVP and 0 otherwise. TB2i(t) = 0 and

TB3i(t) = 0 indicates a subject is on ZDV monotherapy at time t after the interim

review. Also we use the second order polynomial functions for γ2(u, θ2) and γ3(u, θ3).

From Table 23 under model (4.2) where switching treatment before mutation was

detected(shown in the right column), we get similar results of β1, β2 and β3 as those

under model (4.1) where switching treatment after mutation was detected. None

of the estimated parameters are significant when using WI method, but all of them

except β1 become significant at level 0.01 when using QL and MGV methods. All

the estimated coefficients of parameters have the same sign no matter before or after

mutation, that is, females tend to have lower CD4 level, and younger people have a

slightly lower CD4 level. People of black or white race tend to have lower CD4 level

than other race of people.

Figure 12 lists the results of estimated baseline level α0(t), estimated γ2(u, θ2) and

γ3(u, θ3) by all methods in the same plot. We also list the confidence intervals of

these results by WI, QL, MGV and WLS approaches in Figure 13, Figure 14, Figure

15 and Figure 16 respectively. We can see that baseline level of CD4 counts of all

patients show similar downward trend until it bumps up a little at 1.5 years since

study entry by all the methods. The estimated switching-treatment effects are above

the horizontal zero line by all methods, suggesting that combination therapy improve

CD4 counts for patients who have not yet developed the T215/F drug resistance

mutation.
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From the estimation of covariance function by QL method assuming a mixed cor-

relation structure, the correlation coefficient ρ(s, t) between time s and t is ρ(s, t) =

0.3440 × 0.3907−|s−t| + 0.3884 for s 6= t and ρ(s, t) = 1 for s = t. As the distance of

time points s and t increases, the correlation of responses at these time points within

the same subject decreases.

4.2 DATA EXAMPLE 2: STEP Study with MITT Cases

In HIV vaccine efficacy trials, as soon as the patients were diagnosed with Ab+,

they may start antiretroviral treatments and their longitudinal biomarkers, e.g., viral

loads and CD4 counts in their blood samples are monitored regularly. However in-

stead of assessing the effects from the time point that Ab+ were diagnosed for these

patients, we may be more interest in studying the vaccine effects from the time when

they actually became HIV infected. Hence two time scales are involved, one is the

time from diagnosis of Ab+, the other is the time from actual HIV acquisition. The

varying-coefficient model proposed above can be used to solve such two-time-scale

problems and help us to understand the treatment effects or vaccine effects on pa-

tients’ disease progress. Using advanced PCR test can approximate well the actual

HIV acquisition time for patients shown Ab+ (Piatak Jr et al., 1993).

The MRKAd5 HIV-1 gag/pol/nef vaccine, which elicits T cell immunity, aims to

control the replication of Human immunodeficiency virus (HIV) among the partici-

pants who got HIV-infected after vaccination (Gray et al., 2011). STEP study (cf.

Buchbinder et al. (2008); McElrath et al. (2008)), a multi-center, double-blinded,

randomized phase II clinical trial, was to determine whether the MRKAd5 HIV-1
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gag/pol/nef vaccine is capable to fulfill this goal and how the effects evolve with

time.

This study started in December 2004. 3000 HIV-1 negative participants with high

risk of HIV-infection aged from 18 to 45 were enrolled in this study. They are from

34 sites selected in North America, the Caribbean, South America, and Australia and

were randomized to receive vaccine or placebo in a ratio 1:1, stratified by sex, study

site and adenovirus type 5 (Ad5) antibody titer at baseline. Some of the participants

were fully adherent to vaccinations while others were not.

MITT cases are the modified intention-to-treat subjects who became HIV infected

during this trial. The modified intention-to-treat refers to all randomized subjects,

excluding the few that were found to be HIV infected at study entry. Our analysis

focuses on all the 174 MITT cases as of September 22, 2009. Since there are only

15 females that are less than 10% of the sample, we exclude these female patients to

avoid the sex effect. Thus we have totally 159 HIV-infected males in our analysis.

For each participant, we have the records of their first positive diagnosis date and

estimated infection date. The first positive diagnosis date was the date their first

positive Elisa was confirmed by Western Blot or RNA, and the estimated infection

date was determined by the dates of their first positive PCR test.

After the first positive diagnosis for each of 159 HIV-infected patients, he or she

would be scheduled 18 post-infection visits, that is, weeks 0, 1, 2, 8, 12, 26, and every

26 weeks thereafter through week 338. However, the actual visiting dates and time

may vary due to each individual. We define a patient is right censored if he or she

started the antiretroviral therapy(ART) or was censored traditionally such as went
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off the study or reached the end of study. The right censoring time is the time from

the first positive diagnosis date to right censoring. We have the measurements of HIV

virus load and CD4 cell counts for each patient before the right censoring time.

Among the 791 visits from all these 159 males, 156 were missing in CD4 cell counts

and 5 were missing in HIV virus load and there are no missing data in CD4 and virus

load simultaneously. We used a linear regression method to impute these missing

values. Firstly we built a linear regression model based on complete data of log10(viral

load) and square root of CD4 count for each time point. Secondly, we used the built

model to predict the missing viral load value from corresponding CD4 cell counts at

one time point or predict the missing CD4 count from virus load value. However,

there are no complete data at three time points and only one complete data at two

other time points where fail to conduct the linear regression. At another time point,

the predicted value of virus load was far beyond the normal range. Thus we delete

the observations at these six time points and conduct our data analysis based on the

rest 785 observations for 159 subjects. 97 of them were randomized to vaccine and

62 were in the placebo group. 122 are in the sites of North America or Australia, and

37 reside in other sites in Caribbean or South America.

In order to see how vaccine affects HIV virus load and CD4 counts over time since

the actual HIV acquisition date, we built two varying coefficient models as model (4.3)

and model (4.4) for HIV virus load and CD4 counts respectively. There are two time

scales in these models. Ti(t) is the time from the first positive diagnosis date to the

jth visit for ith subject. The time elapsed from estimated infection date is denoted

by Ui(t) = Ti(t) + Oi, where Oi is the gap between estimated infection date and the
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first positive diagnosis date. Time is measured in years. The right censoring rate of

Ti(t) is 69.81%. We choose τ = 2.5 since there are few data after time point 2.5. The

range for observed Ui(t), t ∈ [0, 2.5], is [0, 3.0]. Let Y1i(t) and Y2i(t) be the common

logarithm of HIV virus load and the square root of CD4 counts for ith subject at

time t respectively. We choose the same covariates for both models. Let X1i(t) be

the natural logarithm of Ad5 (adenovirus type 5 antibody titer at baseline), X2i(t) be

the site indicator (1 if North America or Australia; 0 otherwise), X3i(t) be the pre-

protocol indicator (1 if the subject was fully adherent to vaccinations; 0 otherwise)

and X4i(t) be the treatment indicator (1 if the subject received vaccine; 0 if receiving

placebo).

After preliminary exploration of the data, X1, X2 and X3 show no evidence of

varying coefficients. We propose the following models: Virus Load model

Y1i(t) = α(t) + β1X1i(t) + β2X2i(t) + β3X3i(t) + γ(Ui(t))X4i(t) + εi(t), (4.3)

and CD4 model

Y2i(t) = α(t) + β1X1i(t) + β2X2i(t) + β3X3i(t) + γ(Ui(t))X4i(t) + εi(t). (4.4)

where

γ(u) = θ0 + θ1u+ θ2u
2.

By the empirical bandwidth formula a possible reasonable choice of the bandwidth

for this data set is 0.35 for both model (4.3) and model (4.4). When we ignore

the correlation among observations within subjects using Working Independence(WI)

approach, the estimates of β1, β2 and β3 are shown in Table 24 for Virus Load model
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(4.3) and in Table 25 for CD4 model (4.4). We can see that none of them are significant

at 5% level except β2 in CD4 model (4.4). Thus there are no significant effects of

baseline Ad5 titer, study sites or the pre-protocol on the HIV viral load level, and

only study sites have significant effect on the CD4 counts by WI approach.

However when we incorporate the correlation within subjects using QL, MGV, QIF

and WLS approaches by assuming a mixed correlation structure(since we don’t know

the true correlation structure), some of the estimates of parameters β1, β2 and β3

become significant as shown in Table (4.3) and Table (4.4). In Virus Load model β̂1

becomes significantly negative by QL and MGV methods at level 0.05, while β̂2 is

significantly negative when using QL, MGV and QIF methods at level 0.05, which

means a patient with higher Ad5 antibody titer level at study entry will have a lower

virus load and one lives in North America or Australia will have a lower virus load

than those reside in Caribbean or South America. In CD4 model, β̂1 is significantly

negative by QL, MGV and WLS methods at level 0.05, β̂2 is significantly negative

for all methods and β̂3 is significantly positive by QL and QIF methods at level 0.05.

This means that a person with a higher Ad5 antibody level at study entry tends

to have a lower CD4 level, which is counterintuitive. People in North America or

Australia tend to have a higher CD4 counts and those adherent to vaccination will

have a higher CD4 level, which is consistent with the results from Virus Load model.

The estimated results of α(t) and γ(u) by all approaches are illustrated in Figure

(17) and Figure (23) for Virus Load model and CD4 model respectively. We also

plot α̂(t) and γ̂(u) together with their 95% pointwise confidence intervals by each

approach in Figure 18, Figure 19, Figure 20, Figure 21 and Figure 22 for WI, QL,
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MGV, QIF and WLS approach respectively for Virus Load model (4.3). Similarly

Figure 24, Figure 25, Figure 26, Figure 27 and Figure 28 are for WI, QL, MGV, QIF

and WLS respectively under CD4 model (4.4).

From Figure (17), Figure 18, Figure 19, Figure 20, Figure 21 and Figure 22, except

QL method, baseline function α̂0(t) doesn’t show much trend and γ̂(u) is below the

zero horizontal line for all other methods under Virus Load model, which implies that

controlling the effects from other covariates in the model, patients’ virus load didn’t

change much with time while the vaccine have a negative effect on virus load since

actual HIV infection.

From Figure (23), Figure 24, Figure 25, Figure 26, Figure 27 and Figure 28, baseline

function α̂(t) shows a downward trend for all methods but bounced up a little at

the second year since first positive diagnosis, and γ̂(u) goes upward from negative

before the second year to be postive after the second year since actual infection for

CD4 model, which indicates excluding the effects from other covariates in the model,

patients’ CD4 level was decreasing with time and the vaccine effect changes over time

since actual infection and improves the CD4 counts at a later time.

When using QL method by assuming a mixed correlation structure, the estimated

covariance function under Virus Load model is ρ(s, t) = 0.8498×0.3701−|s−t|+0.0567

for s 6= t and ρ(s, t) = 1 for s = t, while the estimated covariance function under

CD4 model is ρ(s, t) = 0.5481 × 0.8189−|s−t| for s 6= t and ρ(s, t) = 1 for s = t. As

the distance of time points s and t increases, the correlation of responses at these

time points within the same subject decreases. The correlation structure is close to

an ARMA(1,1) process.
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Table 23: Point estimates of β1, β2, β3 and β4 on the ACTG 244 data under model
(4.1) and model (4.2), where switching treatments after and before drug-resistant
mutation was detected respectively by different approaches.

β1 (Sex:1 if female)
after mutation before mutation

Method Estimate SD p-value Estimate SD p-value
WI -1.3155 0.7216 0.0683 -0.6719 0.6488 0.3004
QL -2.4615 0.3989 < 0.0001 -1.1806 0.5142 0.0217

MGV -1.6663 0.4147 0.0001 -0.9666 0.5352 0.0709
WLS -1.4344 0.4694 0.0022 -0.8623 0.5531 0.1190

β2 (Age)
after mutation before mutation

Method Estimate SD p-value Estimate SD p-value
WI 0.0619 0.0284 0.0292 0.0203 0.0251 0.4186
QL 0.0885 0.0117 < 0.0001 0.0434 0.0145 0.0027

MGV 0.0765 0.0123 < 0.0001 0.0430 0.0149 0.0038
WLS 0.0556 0.0147 0.0002 0.0313 0.0170 0.0645

β3 (Race:1 if White)
after mutation before mutation

Method Estimate SD p-value Estimate SD p-value
WI -0.7575 0.7746 0.3281 -1.0888 0.7227 0.1319
QL -4.2366 0.3309 < 0.0001 -2.8251 0.4132 < 0.0001

MGV -2.5806 0.3245 < 0.0001 -2.0906 0.4084 < 0.0001
WLS -1.3100 0.3814 0.0006 -1.2749 0.4521 0.0048

β4 (Race:1 if Black)
after mutation before mutation

Method Estimate SD p-value Estimate SD p-value
WI -0.8163 0.8565 0.3405 -1.7619 0.7781 0.0235
QL -1.9153 0.4111 < 0.0001 -2.6880 0.4994 < 0.0001

MGV -1.7389 0.4015 < 0.0001 -2.5629 0.4881 < 0.0001
WLS -1.0980 0.4548 0.0158 -1.8945 0.5208 0.0003
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Figure 7: Estimates of baseline and treatment effects after drug-resistant mutation
was detected based on the ACTG 244 data under model (4.1) by different approaches.
(a) is the estimated baseline α̂0(t) using h = 0.41 by different approaches; (b) and (c)
are the estimates of γk(u), k = 1, 2, 3, respectively by different approaches.
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Figure 8: Estimates of baseline and treatment effects with 95% pointwise confidence
intervals after drug-resistant mutation was detected based on the ACTG 244 data
under model (4.1) by WI approach. (a) is the estimated baseline α̂0(t) using h = 0.41
by WI approach; (b) and (c) are the estimates of γk(u), k = 1, 2, 3, respectively by
WI approach.
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Figure 9: Estimates of baseline and treatment effects with 95% pointwise confidence
intervals after drug-resistant mutation was detected based on the ACTG 244 data
under model (4.1) by QL approach. (a) is the estimated baseline α̂0(t) using h = 0.41
by QL approach; (b) and (c) are the estimates of γk(u), k = 1, 2, 3, respectively by
QL approach.
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Figure 10: Estimates of baseline and treatment effects with 95% pointwise confidence
intervals after drug-resistant mutation was detected based on the ACTG 244 data
under model (4.1) by MGV approach. (a) is the estimated baseline α̂0(t) using h =
0.41 by MGV approach; (b) and (c) are the estimates of γk(u), k = 1, 2, 3, respectively
by MGV approach.
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Figure 11: Estimates of baseline and treatment effects with 95% pointwise confidence
intervals after drug-resistant mutation was detected based on the ACTG 244 data
under model (4.1) by WLS approach. (a) is the estimated baseline α̂0(t) using h =
0.41 by WLS approach; (b) and (c) are the estimates of γk(u), k = 1, 2, 3, respectively
by WLS approach.
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Figure 12: Estimates of baseline and treatment effects before drug-resistant mutation
was detected based on the ACTG 244 data under model (4.2) by different approaches.
(a) is the estimated baseline α̂0(t) using h = 0.41 by different approaches; (b) and (c)
are the estimates of γk(u), k = 2, 3, respectively by different approaches.
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Figure 13: Estimates of baseline and treatment effects with 95% pointwise confidence
intervals before drug-resistant mutation was detected based on the ACTG 244 data
under model (4.2) by WI approach. (a) is the estimated baseline α̂0(t) using h = 0.41
by WI approach; (b) and (c) are the estimates of γk(u), k = 2, 3, respectively by WI
approach.



98

(a)
 

α
0̂
(t

)

t

1
7

2
0

2
3

0 0.5 1 1.5 2 2.5

Baseline

(b)
 

γ
2̂
(u

)

u

−
2

0
2

4
6

8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Rand to ZDV+ddI

(c)
 

γ
3̂
(u

)

u

−
2

0
2

4
6

8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Rand to ZDV+ddI+NVP

Figure 14: Estimates of baseline and treatment effects with 95% pointwise confidence
intervals before drug-resistant mutation was detected based on the ACTG 244 data
under model (4.2) by QL approach. (a) is the estimated baseline α̂0(t) using h = 0.41
by QL approach; (b) and (c) are the estimates of γk(u), k = 2, 3, respectively by QL
approach.
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Figure 15: Estimates of baseline and treatment effects with 95% pointwise confidence
intervals before drug-resistant mutation was detected based on the ACTG 244 data
under model (4.2) by MGV approach. (a) is the estimated baseline α̂0(t) using h =
0.41 by MGV approach; (b) and (c) are the estimates of γk(u), k = 2, 3, respectively
by MGV approach.
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Figure 16: Estimates of baseline and treatment effects with 95% pointwise confidence
intervals before drug-resistant mutation was detected based on the ACTG 244 data
under model (4.2) by WLS approach. (a) is the estimated baseline α̂0(t) using h =
0.41 by WLS approach; (b) and (c) are the estimates of γk(u), k = 2, 3, respectively
by WLS approach.
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Table 24: Point estimates of β1, β2 and β3 based on STEP data under Virus Load
model (4.3) by different approaches.

β1 (Ad5 antibody level)
Method Estimate SD p-value

WI 0.0105 0.0436 0.8090
QL -0.0701 0.0264 0.0078

MGV -0.0668 0.0302 0.0267
QIF -0.0239 0.0302 0.4299

WLS -0.0270 0.0315 0.3903
β2 (1 if in North America or Australia)
Method Estimate SD p-value

WI -0.1405 0.1645 0.3929
QL -0.5863 0.1026 < 0.0001

MGV -0.4201 0.1109 0.0002
QIF -0.2569 0.1062 0.0156

WLS -0.2288 0.1201 0.0568
β3 (1 if adherent to vaccination)

Method Estimate SD p-value
WI -0.0888 0.1938 0.6469
QL -0.1811 0.1144 0.1135

MGV -0.2931 0.1388 0.0347
QIF -0.1351 0.1299 0.2985

WLS -0.1841 0.1338 0.1687
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Table 25: Point estimates of β1, β2 and β3 based on STEP data under CD4 model
(4.4) by different approaches.

β1 (Ad5 antibody level)
Method Estimate SD p-value

WI -0.2179 0.1873 0.2446
QL -0.4004 0.1219 0.0010

MGV -0.3344 0.1274 0.0087
QIF -0.0715 0.1270 0.5731

WLS -0.2940 0.1396 0.0352
β2 (1 if in North America or Australia)
Method Estimate SD p-value

WI 3.3128 0.7816 < 0.0001
QL 5.5436 0.5270 < 0.0001

MGV 4.6546 0.5457 < 0.0001
QIF 2.2328 0.4887 < 0.0001

WLS 3.9258 0.5914 < 0.0001
β3 (1 if adherent to vaccination)

Method Estimate SD p-value
WI -0.0682 0.8579 0.9367
QL 1.4325 0.5401 0.0080

MGV 0.9835 0.5545 0.0761
QIF 1.4971 0.4927 0.0024

WLS 0.4815 0.5943 0.4178
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Figure 17: Estimates of baseline and varying-coefficient functions based on STEP
data under Virus Load model (4.3) by different approaches. (a) is the estimated
baseline function α̂(t) by different approaches using h = 0.35; (b) is the estimated
vaccine effects γ̂(u) by different approaches.
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Figure 18: Estimates of baseline and varying-coefficient functions with 95% pointwise
confidence intervals based on STEP data under Virus Load model (4.3) by WI ap-
proach. (a) is the estimated baseline function α̂(t) by WI approach using h = 0.35;
(b) is the estimated vaccine effects γ̂(u) by WI approach.
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Figure 19: Estimates of baseline and varying-coefficient functions with 95% pointwise
confidence intervals based on STEP data under Virus Load model (4.3) by QL ap-
proach. (a) is the estimated baseline function α̂(t) by QL approach using h = 0.35;
(b) is the estimated vaccine effects γ̂(u) by QL approach.
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Figure 20: Estimates of baseline and varying-coefficient functions with 95% pointwise
confidence intervals based on STEP data under Virus Load model (4.3) by MGV
approach. (a) is the estimated baseline function α̂(t) by MGV approach using h =
0.35; (b) is the estimated vaccine effects γ̂(u) by MGV approach.
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Figure 21: Estimates of baseline and varying-coefficient functions with 95% pointwise
confidence intervals based on STEP data under Virus Load model (4.3) by QIF ap-
proach. (a) is the estimated baseline function α̂(t) by QIF approach using h = 0.35;
(b) is the estimated vaccine effects γ̂(u) by QIF approach.
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Figure 22: Estimates of baseline and varying-coefficient functions with 95% pointwise
confidence intervals based on STEP data under Virus Load model (4.3) by WLS
approach. (a) is the estimated baseline function α̂(t) by WLS approach using h =
0.35; (b) is the estimated vaccine effects γ̂(u) by WLS approach.
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Figure 23: Estimates of baseline and varying-coefficient functions based on STEP
data under CD4 model (4.4) by different approaches. (a) is the estimated baseline
function α̂(t) by different approaches using h = 0.35; (b) is the estimated vaccine
effects γ̂(u) by different approaches.
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Figure 24: Estimates of baseline and varying-coefficient functions with 95% pointwise
confidence intervals based on STEP data under CD4 model (4.4) by WI approach.
(a) is the estimated baseline function α̂(t) by WI approach using h = 0.35; (b) is the
estimated vaccine effects γ̂(u) by WI approach.
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Figure 25: Estimates of baseline and varying-coefficient functions with 95% pointwise
confidence intervals based on STEP data under CD4 model (4.4) by QL approach.
(a) is the estimated baseline function α̂(t) by QL approach using h = 0.35; (b) is the
estimated vaccine effects γ̂(u) by QL approach.
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Figure 26: Estimates of baseline and varying-coefficient functions with 95% pointwise
confidence intervals based on STEP data under CD4 model (4.4) by MGV approach.
(a) is the estimated baseline function α̂(t) by MGV approach using h = 0.35; (b) is
the estimated vaccine effects γ̂(u) by MGV approach.
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Figure 27: Estimates of baseline and varying-coefficient functions with 95% pointwise
confidence intervals based on STEP data under CD4 model (4.4) by QIF approach.
(a) is the estimated baseline function α̂(t) by QIF approach using h = 0.35; (b) is
the estimated vaccine effects γ̂(u) by QIF approach.
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Figure 28: Estimates of baseline and varying-coefficient functions with 95% pointwise
confidence intervals based on STEP data under CD4 model (4.4) by WLS approach.
(a) is the estimated baseline function α̂(t) by WLS approach using h = 0.35; (b) is
the estimated vaccine effects γ̂(u) by WLS approach.
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APPENDIX A: PROOFS OF THE LEMMAS

Condition I.

(I.1) The processes Yi(t), Xi(t) and Ui(t), 0 ≤ t ≤ τ , are bounded and their total

variations are bounded by a constant;

(I.2) The kernel function K(·) is symmetric with compact support on [−1, 1] and

bounded variation; bandwidth h→ 0; nh2 →∞ and nh5 is bounded.

(I.3) The link function g(·) is monotone and its inverse function g−1(·) is twice dif-

ferentiable;

(I.4) α0(t), e11(t) and e12(t) are twice differentiable; e−111 (t) is bounded over 0 ≤ t ≤ τ ;

the matrices P and D are positive definite;

(I.5) The weight process V −11 (t, x)
P−→v−11 (t, x) uniformly in the range of (t, x); v−11 (t, x)

is differentiable with uniformly bounded partial derivatives;

(I.6) The equation

hE{XT
1 ∆K

1/2
h (t)V −11 (t)K

1/2
h (t)(Y − µ)(Y − µ)TK

1/2
h (t)V −11 (t)K

1/2
h (t)∆X1}

exists and is finite.

Lemmas

Let

uα(α, ζ, t) = E{XT
1 ∆(t)K

1/2
h (t)V −11 (t)K

1/2
h (t) [µ(α0(t), ζ0|X,U)− µ(α(t), ζ|X,U)]}
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by suppressing index i. Define αζ(t) as the unique root such that uα(αζ , ζ, t) = 0 for

ζ ∈ Nζ0 and α∗ζ(t) = (αTζ (t),0Tp1)
T where 0p1 is a p1 × 1 vector of zeros. Let

eζ,11(t) =
J∑
j=1

E
[
∆2
ζ,jj(t)ν

jj
1 (t)X1jX

T
1j|Tj = t

]
fj(t)

and

eζ,12(t) =
J∑
j=1

E
[
∆2
ζ,jj(t)ν

jj
1 (t)X1j{

∂ηT (Uj, ζ)

∂ζ
X∗2j}T |Tj = t

]
fj(t),

where ∆ζ,jj(t) = µ̇j(αζ(t), ζ|Xj, Uj). When ζ = ζ0, we have αζ(t) = α0(t), eζ,11(t) =

e11(t) and eζ,12(t) = e12(t).

The following lemmas are used for proving the main theorems. The proof of the

lemmas make repeated applications of the Glivenko-Cantelli Theorem (Van der Vaart,

1998). A sufficient condition for applying the Glivenko-Cantelli Theorem can be

checked by estimating the order of the bracketing number, similar to the proof of

Lemma 2 of Sun et al. (2009). This sufficient condition holds under the conditions

provided in Condition I. Let H = diag{Ip1 , hIp1}.

Lemma A.1. Under Condition I, as n→∞, Hα̃∗(t, ζ)
P−→α∗ζ(t),

H∂α̃∗(t, ζ)/∂ζ
P−→(−(eζ,11(t)

−1eζ,12(t))
T ,0Tp1×(p2+p3))

T , (A.1)

and H∂2α̃∗(t, ζ)/∂ζ2 converges in probability to a deterministic function of (t, ζ) of

bounded variation, uniformly in t ∈ [t1, t2] ⊂ (0, τ) and ζ ∈ Nζ0 at the rate n−1/2+ν

for ν > 0.

Proof of Lemma A.1

The first result of this lemma follows from Lemma 1 of Sun et al. (2013) directly.
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We only prove the second and the third results.

By (3.6),

H
∂α̃∗(t, ζ)

∂ζ
= −

{
n−1H−2

∂Uα(α∗, ζ, t)

∂α∗

}−1
n−1H−1

∂Uα(α∗, ζ, t)

∂ζ

∣∣∣∣∣
α∗=α̃∗(t,ζ)

.

Note that

n−1H−2
∂Uα(α∗, ζ, t)

∂α∗

= −n−1H−2
n∑
i=1

X∗1i(t)
T∆i(t)K

1/2
ih (t)V −11i (t)K

1/2
ih (t)∆i(t)X

∗
1i(t)

= −H−2
J∑
j=1

E{∆2
jj(t)ν

jj
1 (t)X∗1j(t)X

∗
1j(t)

T |Tj = t}fj(t) +Op(
1√
nh

)

uniformly in t by Glivenko-Cantelli Theorem.

Since Hα̃∗(t, ζ)
P−→α∗ζ(t), we have

n−1H−2
∂Uα(α∗, ζ, t)

∂α∗

∣∣∣∣
α∗=α̃∗(t,ζ)

= −

 1 0

0 CK(2)

⊗ J∑
j=1

E{∆2
jj(t)ν

jj
1 (t)X1jX

T
1j|Tj = t}fj(t)

+O(h2) +Op(
1√
nh

)

P−→−

 1 0

0 CK(2)

⊗ J∑
j=1

E
[
∆2
jj(t)ν

jj
1 (t)X1jX

T
1j|Tj = t

]
fj(t) (A.2)
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uniformly in t and ζ ∈ Nζ0 . Similarly,

n−1H−1
∂Uα(α∗, ζ, t0)

∂ζ

∣∣∣∣
α∗=α̃∗(t,ζ)

P−→

 −
∑J

j=1E
[
∆2
jj(t)ν

jj
1 (t)X1j{∂η

T (Uj ,ζ)

∂ζ
X∗2j}T |Tj = t

]
fj(t)

0

 (A.3)

uniformly in t and ζ ∈ N (ζ0). Therefore, (A.1) holds uniformly in t and ζ ∈ N (ζ0).

By a similar argument, the third statement holds.

Lemma A.2. Under Condition I,

√
nh{α̃(t, ζ0)− α0(t)−

1

2
CK(2)h2α̈T0 (t)} = e−111 (t)(nh)1/2n−1Uα(α0(t), ζ0) + op(1),

(A.4)

uniformly in t ∈ [t1, t2] ⊂ (0, τ), where

Uα(α0(t), ζ0) =
n∑
i=1

XT
1i∆i(t)K

1/2
ih (t)V −11i (t)K

1/2
ih (t) [Yi − µi]

Further, (nh)1/2n−1Uα(α0(t), ζ0) = Op(1) uniformly in t ∈ [t1, t2] ⊂ (0, τ).

Proof of Lemma A.2

Applying the first order Taylor expansion to Uα(α̃∗(t, ζ0), ζ0), we have

√
nhH(α̃∗(t, ζ0)− α∗0(t)) = −

{
n−1H−2

∂Uα(α∗0(t), ζ0)

∂α∗

}−1√
h

n
H−1Uα(α̃∗(t, ζ0), ζ0)

The first p1 components of the above equation is

√
nh(α̃(t, ζ0)− α0(t)) = e−111 (t)(h/n)1/2Uα(α̃(t, ζ0), ζ0){1 + op(1)} (A.5)
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By the local linear approximation for α0(t) around t0,

µi(t)− g−1{α∗T (t0)X1i(t) + ηT (Ui(t), ζ0)X
∗
2i(t)}

= g−1{αT0 (t)X1i(t) + ηT (Ui(t), ζ0)X
∗
2i(t)} − g−1{α∗T (t0)X1i(t) + ηT (Ui(t), ζ0)X

∗
2i(t)}

= µ̇i(t){
1

2
α̈T0 (t0)X1i(t)(t− t0)2 +O((t− t0)3)}, (A.6)

Denote µi = (µi1, · · · , µiJi)T and µ∗i = (µ∗i1, · · · , µ∗iJi)
T where

µij = g−1{αT0 (Tij)X1ij + ηT (Uij, ζ0)X
∗
2ij}

and

µ∗ij = g−1{α∗T (Tij)X1ij + ηT (Uij, ζ0)X
∗
2ij}

It follows that

(h/n)1/2Uα(α̃(t, ζ0), ζ0)

= (h/n)1/2
n∑
i=1

XT
1i∆i(t)K

1/2
ih (t)V −11i (t)K

1/2
ih (t)

× [Yi − µi + µi − µ∗i ]

= (h/n)1/2
n∑
i=1

XT
1i∆i(t)K

1/2
ih (t)V −11i (t)K

1/2
ih (t) [Yi − µi] +

1

2

√
nhCK(2)h2α̈T0 (t)e11(t)

Hence

√
nh(α̃(t, ζ0)− α0(t)−

1

2
CK(2)h2α̈T0 (t))

= e−111 (t)

√
h

n

n∑
i=1

XT
1i∆i(t)K

1/2
ih (t)V −11i (t)K

1/2
ih (t) [Yi − µi]

+ op((nh)−1 +
√
nh5)

Follow Appendix A of Tian et al. (2005), the right hand side of above equation is
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Op(1) uniformly in t ∈ [t1, t2].

APPENDIX B: PROOFS OF THE THEOREMS IN CHAPTER 3

Proof of Theorem 3.1.

We first consider the proof for the consistency of ζ̂. By Glivenko-Cantelli theorem

and Lemma A.1, we have

n−1Uζ(ζ)
P−→E{BT∆V −12 [Y − µ̂(ζ)]}, (B.1)

uniformly for ζ ∈ Nζ0 , where

Bi = (Bi1, · · · , BiJi)
T

and

Bij = −eT12(Tij)(e11(Tij))−1X1ij +
∂η(Uij, ζ)

∂ζ
X∗2ij,

By suppressing the index i, we denote B = (B1, · · · , BJ)T , similarly for Y , ∆, V2 and

µ.

The right side of equation (B.1) equals to

E{BT∆V −12 [µ− µ̂(ζ)]}.

defined as u(ζ) by double expectation. Taking partial derivative of Uζ(ζ) with respect
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to ζ and applying Lemma 1, we have

n−1
∂Uζ(ζ)

∂ζ
= −n−1

n∑
i=1

{∂α̃(Ti, ζ)

∂ζ
X1i +

∂η(Ui, ζ)

∂ζ
X∗2i}T∆iV

−1
2i ∆i

{∂α̃(Ti, ζ)

∂ζ
X1i +

∂η(Ui, ζ)

∂ζ
X∗2i}

+ n−1
n∑
i=1

{
∂2α̃(Ti, ζ)

∂ζ2
X1i +

∂2η(Ui, ζ)

∂ζ2
X∗2i

}T
∆iV

−1
2i [µi − µ̂i(ζ)] , (B.2)

where {∂
2α̃(Ti,ζ)
∂ζ2

X1i + ∂2η(Ui,ζ)
∂ζ2

X∗2i} is a Ji × (p2 + p3) matrix with each element being

{∂
2T α̃(Tij ,ζ)

∂ζ2
X1ij +

∂2η(Uij ,ζ)

∂ζ2
X∗2ij}. When ζ = ζ0, the latter term goes to zero as n goes

to infinity by Lemma A.1 and the Glivenko-Cantelli theorem. It follows that

−n−1 ∂Uζ(ζ)

∂ζ

∣∣∣∣
ζ=ζ0

P−→E
[
BT∆V −12 ∆B

]
= P (B.3)

uniformly in a neighborhood of ζ0. Since u(ζ0) = 0 and P is positive definite, ζ0 is

the unique root of u(ζ). By Theorem 5.9 of Van der Vaart (1998), we have ζ̂
P−→ζ0.

Now we show the asymptotic normality of n−1/2Uζ(ζ0).

n−1/2Uζ(ζ0)

= n−1/2
n∑
i=1

{∂α̃(Ti, ζ)

∂ζ
X1i +

∂η(Ui, ζ)

∂ζ
X∗2i}T∆iV

−1
2i [Yi − µ̂i(α̃(Ti, ζ0), ζ0)]

= n−1/2
n∑
i=1

{∂α̃(Ti, ζ)

∂ζ
X1i +

∂η(Ui, ζ)

∂ζ
X∗2i}T∆iV

−1
2i [Yi − µi]

+ n−1/2
n∑
i=1

{∂α̃(Ti, ζ)

∂ζ
X1i +

∂η(Ui, ζ)

∂ζ
X∗2i}T∆iV

−1
2i

[
µi − µ̂i(α̃(Ti, ζ0), ζ0)

]
(B.4)
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where

µi − µ̂i(α̃(Ti, ζ0), ζ0)

= g−1{α0(Ti)X1i + η(Ui, ζ0)X
∗
2i} − g−1{α̃(Ti, ζ0)X1i + η(Ui, ζ0)X

∗
2i}

the element of which is

g−1{αT0 (Tij)X1ij + ηT (Uij, ζ0)X
∗
2ij} − g−1{α̃T (Tij, ζ0)X1ij + ηT (Uij, ζ0)X

∗
2ij}

The second term of (B.4) is negligible because by Taylor expansion, which is

− n−1/2
n∑
i=1

{∂α̃(Ti, ζ)

∂ζ
X1i +

∂η(Ui, ζ)

∂ζ
X∗2i}T∆iV

−1
2i ∆i

{α0(Ti)X1i − α̃(Ti, ζ)X1i}

= op(1),

by Lemma 1 in Lin and Ying (2001), and the element of vector {∂α̃(Ti,ζ0)
∂ζ

X1i +

∂η(Ui,ζ0)
∂ζ

X∗2i} is {∂α̃
T (Tij ,ζ0)

∂ζ
X1ij +

∂ηT (Uij ,ζ0)

∂ζ
X∗2ij}

Hence,

n−1/2Uζ(ζ0)

= n−1/2
n∑
i=1

{∂α̃(Ti, ζ)

∂ζ
X1i +

∂η(Ui, ζ)

∂ζ
X∗2i}T∆iV

−1
2i [Yi − µi] + op(1)

= n−1/2
n∑
i=1

BT
i ∆iV

−1
2i [Yi − µi] + op(1), (B.5)

which converges in distribution to N(0, D) by central limit theorem, where D is

defined in (3.1).

It follows from (B.3) and (B.5) that n1/2(ζ̂ − ζ0)
D−→N(0, P−1DP−1).
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Proof of Theorem 3.2.

Write Σ = cov(Y |X1, X2). Define

S =
{
E(BT∆V −12 ∆B)

}−1
BT∆V −12 Σ

1
2 −

{
E(BT∆Σ∆B)

}−1
BT∆Σ−

1
2

Then

SST =
{
E(BT∆V −12 ∆B)

}−1
BT∆V −12 ΣV −12 ∆B

{
E(BT∆V −12 ∆B)

}−1
−
{
E(BT∆V −12 ∆B)

}−1
BT∆V −12 ∆B

{
E(BT∆Σ∆B)

}−1
−
{
E(BT∆Σ∆B)

}−1
BT∆V −12 ∆B

{
E(BT∆V −12 ∆B)

}−1
−
{
E(BT∆Σ∆B)

}−1
BT∆Σ∆B

{
E(BT∆Σ∆B)

}−1
Because SST is nonnegative definite, we have that

E(SST ) =
{
E(BT∆V −12 ∆B)

}−1
E(BT∆V −12 ΣV −12 ∆B)

{
E(BT∆V −12 ∆B)

}−1
−
{
E(BT∆Σ−1∆B)

}−1
is nonnegative definite. Hence

P−1DP−1 −D−10 ≥ 0

The equality holds if and only if S = 0, which occurs when V2 = Σ.

Proof of Theorem 3.3.

Since α̂(t) = α̃(t, ζ̂), we have α̂(t)
P−→α0(t) uniformly in t ∈ [t1, t2] by applying

continuous mapping theorem and the uniform consistency results in Lemma A.1 and

Theorem 3.1. Now we prove the asymptotic normality.
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By Taylor expansion we have

√
nh(α̃(t, ζ̂)− α̃(t, ζ0)) = −(nh)1/2

∂α̃(t, ζ̃)

∂ζ
(ζ̂ − ζ0),

where ζ̃ is on the line segment between ζ0 and ζ̂, which is Op(h
1/2), by (A.1) and

Theorem 3.1. Thus

√
nh{α̂(t)− α0(t)−

1

2
CK(2)h2α̈T0 (t)}

=
√
nh{α̃(t, ζ0)− α0(t)−

1

2
CK(2)h2α̈T0 (t)}+

√
nh(α̃(t, ζ̂)− α̃(t, ζ0))

= e−111 (t)−1(h/n)1/2
n∑
i=1

XT
1i∆iK

1/2
ih (t)V −11i (t)K

1/2
ih (t) [Yi − µi] +Op(h

1/2)

= e−111 (t)n−1/2
n∑
i=1

ψi(t) +Op(h
1/2),

for t ∈ [t1, t2] by (A.4).

Note that E(ψi(t)) = 0. It follows that n−1/2
∑n

i=1 ψi(t)
D−→N(0,Σe) by applying

the Lindeberg-Feller central limit theorem. Consequently,

√
nh(α̂(t)− α0(t)−

1

2
CK(2)h2α̈T0 (t))

D−→N
(
0, (e11(t))

−1Σe(t)(e11(t))
−1) .


