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ABSTRACT

EVAN NEELY. Data-Driven Strategy for Improving Energy Efficiency in Retail
Banks. (Under the direction of DR. ROBERT COX)

This thesis explores a data-driven strategy approach to curtailing HVAC energy

consumption in a large retail portfolio. Energy building simulation software was

utilized to predict setpoint related energy savings potential across all United States

climate zones. An extensive field study was conducted using building automation data

of current setpoints, setpoint scheduling, various programmable features, and general

building operations during the cooling season in Phoenix, Arizona. Experiments

were conducted during the cooling season in Phoenix, Arizona, in order to verify

suggested simulated cooling savings. Extrapolation models were created with building

automation data to predict annual site energy reduction to further verify the savings

opportunities suggested with simulation models.
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CHAPTER 1: INTRODUCTION

Space heating, ventilation, and cooling account for roughly about 44% of commer-

cial building energy consumption[3]. Large real-estate portfolio owners have signif-

icant incentive to utilize data-driven strategies to reduce energy consumption. For

instance, Wells Fargo Corporate Properties Group is responsible for approximately

6,000 retail banking locations in the United States. The average annual energy con-

sumption at each branch is approximately 80,000 kWh; therefore,the approximate

energy consumption across their retail portfolio is 480,000 MWh. The average retail

home in the United States consumes on average per year of about 10,766 kWh. If

Wells Fargo could even see at minimum a 1% reduction to their overall energy retail

portfolio, it would be like taking away the energy consumption of 445 homes. Us-

ing the 2017 national electricity average of 10.59 cents/kWh, the savings this could

generate per year is nearly $508,320.

This thesis focuses on using building automation system data to determine potential

savings opportunities in a large retail portfolio. Specifically, the focus is on deter-

mining optimal setpoint schedules for building operation. A data driven approach to

each specific building would likely be the ideal approach to building setpoint opti-

mization. However, Wells Fargo did not show any interest in such an approach due to

cost concerns. In addition, we also explore the impacts of improper maintenance and

other practical issues that make achieving an optimal solution somewhat difficult.

To clarify the thesis agenda further, lets examine the diagram in figure 1.1 of a typ-

ical setpoint schedule for a retail zone. Typically, HVAC energy can be represented

through 3 main user control variables.Those variables being setpoint scheduling, un-

occupied setpoints, and occupied setpoints. Let us define those there variables as the
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user input variables. It is important to note that this is assuming ideal conditions,

which is often not the case in many real world applications. We’ll discuss that further

in the subsequent section.

Figure 1.1: Savings variables

Let us now define each setting in figure 1.1 a variable as follows: X1=setpoint

scheduling, X2=unoccupied setpoint, and X3=occupied setpoint. What would be the

optimal mix of these variables that would lead to minimized energy consumption?

We can visualize this question by expressing it mathematically. Equation 1.1 shows

the mathematical expression for minimized building HVAC energy J, with the asso-

ciated defined input variables. This thesis will aim to explore strategies Wells Fargo

Corporate Properties Group might explore to minimize their building HVAC energy

consumption J.

J = min(E(X1, X2, X3) (1.1)

1.1 Improper Equipment Usage

A field study in 2004 discovered 72% of 4,168 air conditioners in service had re-

frigerant levels below manufacture specifications[4]. It has been reported that nearly

50-67% of all air conditioners suffer from improper refrigerate charge or air flow prob-

lems causing systems to run up to 20% less efficiently[5]. Building automation data
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explored throughout this research would show that some sites had problematic be-

havior that could possibly be attributed to low refrigerant charge or level. Figure 1.2

shows two plots—one on the top with the compressor on-off state—and another on

the bottom with the discharge air temperature, zone temperature, and zone temper-

ature setpoint. This particular zone is showing an extremely high DAT and the zone

doesn’t seem to be properly cooling. The inability of the zone to cool is causing the

compressor to continuously run throughout the day and never reach its setpoint. It

appears that only a small percentage of the sites on the building automation system

actually utilize alarm systems that notify building operators of troublesome behav-

ior. Also, there are inefficiencies in some zones causing others zone compressors to

overcompensate and run more than they would otherwise to mask system inefficien-

cies. In addition to spiking energy consumption, these type of building inefficiencies

make the task of constructing data driven models from actual site automation data

a challenging process.

Figure 1.2: Problematic zone behavior



4

1.2 Thesis Approach

The thesis approach ended up being broken down into three separate parts. Figure

1.3 represents the flow of the thesis approach that will be outlined in detail in the

subsequent chapters.

Figure 1.3: Thesis approach diagram

EnergyPlus is the software tool used to build predictive building energy models.This

simulation tool allows users to input specific building parameters into building tem-

plates in order to customize simulations to fit particular building types. Simulations

were ran across each climate zone in the United States in order to explore the potential

of setpoint optimization energy savings.

An extensive field study of building automation data was then conducted in order

to examine current building operations and behavior. Current setpoints, schedules,

discharge air temperatures, and other various programmable features were explored.

In addition, building zone temperature behavior and compressor functionality were

examined in order to determine if sites seem to be working optimally.

The final stage of this thesis was experimental verification.Setpoints and schedules

were manipulated during the cooling season at retail buildings in Phoenix, Arizona.

Analysis was conducted by comparing experimental day consumption with the con-

sumption of a recent similar benchmark day. In addition, data-driven energy ex-

trapolation models were developed using experimental results and historical building

data.
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1.3 Summary

The remaining chapters of this thesis describe the complete approach mentioned

in Section 1.2. Chapter 2 begins by providing the theoretical underpinnings of the

proposed scheme and energy predictions using model building simulation software.

Chapter 3 presents a summary of field findings documenting the current challenges

associated with implementing improvements across a large portfolio. Finally, Chapter

4 explains the experimental procedure, results, and data-driven extrapolation model

development using real building automation system data.

In conclusion, the full scale of the savings potential will be explored with data sup-

ported strategies. Challenges that exist for setpoint optimization, building efficiency,

and data-driven modeling approaches will be discussed in detail as well.



CHAPTER 2: MODEL DEVELOPMENT AND PREDICTIONS

If the thermodynamic properties of a building can be understood in a theoreti-

cal sense, it becomes possible to build useful and practical predictive energy models.

There is one specific phenomenon intrinsic to all buildings that this chapter will aim to

address. The natural heating and cooling phenomenon in buildings is a complicated

process, but capturing that behavior is certainly possible. Modern technological ad-

vancements have aided our ability in capturing these processes, but what is the theory

behind these software tools? That is the first topic addressed in this chapter.

In addition to taking a dive into the theoretical background behind modern build-

ing energy modeling, an existing simulation software tool used to build models in this

thesis will be explored. EnergyPlus is a free public access software that was utilized

during this research. Energy prediction models were created using this software and

ran across various climate zones. This modeling would lay the foundation for con-

structing further change-point regression models with actual experimental data.This

entire process will be explored in more detail towards the end of this chapter.

2.1 Theoretical Building Modeling

There are many different variables that contribute to a buildings natural ability to

heat up or cool down. The thermostat control of building zone temperature is not so

ambiguous. When the temperatures rise above a specified cooling setpoint range, the

HVAC system will operate to cool the zone temperatures. And Likewise, when the

temperatures dip below the specified heating setpoint range,the HVAC system will

operate to warm the zone temperatures. Saving on energy consumption by setting a

thermostat during the day higher during the summer might seem intuitive. However,
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managing setpoints in commercial buildings during unoccupied hours is slightly more

complex. If a building is utilizing unoccupied setbacks, there often is an extended

period of time the system stays off. Figure 2.1 shows the zone temperature following

its occupied setpoint throughout the day and a setpoint change as it goes unoccupied.

But how does the zone temperature heat up and work its way towards the higher

setpoint during this time period? This phenomenon plays a key role in the savings

associated with unoccupied setbacks. In order to explore this question further, various

building thermodynamic properties need to be considered.

Figure 2.1: Zone setpoint change

Figure 2.2 is a diagram of building wall surfaces with their associated thermal

nodes. To is the outside air node, T1 is the node on the outside wall, T2 is the

node on the inner wall, and Ti is the node associated with the inside of the building.

There is an associated resistance between each node, based on the building physical

parameters. There is an energy storage capacitance associated with T1 and T2. These

two capacitance play an integral role in how the zone in figure 2.1 will naturally warm

up and trend towards its new programmed setpoint.
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Figure 2.2: Surface circuit modeling[1]

Outdoor air temperature has a contribution to the overall stored energy in the wall

surfaces. However, there are other variables in play that contribute to this energy

storage. Let us examine the diagram in figure 2.3. The sun is contributing shortwave

radiation to the outside of the wall—while longwave radiation is being generated

from the inside environment. The convective heat exchange with the outside air is

also highlighted in the diagram. All of these processes are contributing to the stored

energy in the wall capacitance—energy that eventually dissipates into the interior

system of the building during the cooling season.

Figure 2.3: Radiation surface modeling[1]
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During certain periods of the year, an inverse relationship can be observed with zone

temperature and outdoor air temperature during the overnight hours. For example,

zone temperature might rise and trend towards a higher setpoint, while the outdoor

air temperature trends down and eventually below the zone temperature. Figure 2.4

highlights this behavior during a fall month in Phoenix, Arizona. The temperature

rises towards the setpoint of 80◦F, while the OAT temperature continues to drop.

This phenomenon highlights the energy exchange taking place between the building

walls and the zone temperature of the buildings.

Figure 2.4: OAT and zone temperature

The exact nature of the process in which an accumulation of energy storage dis-

sipates into an interior is a complicated process. Fortunately, the process can be

simplified and theoretically modeled with an RC circuit at a high level. The concept

in figure 2.2 and figure 2.3 can be expanded upon with additional inputs being added

to the system.
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Figure 2.5: Full building circuit model

Figure 2.4 shows a circuit model of an entire building zone air system, TZ .The

variables in the circuit are defined as such:

TOA=outside air temperature

TSO=outside wall convective node

TSi=inside wall convective node

Radi=internal radiation

Q̇i=internal load

˙Qsys=cooling system output∑Nzones
n=1 Tzi=separate zone air

CSO=energy stored in outside wall

CSi=energy stored in inside wall

CZ= energy stored in zone air

The capacitance at node TOA is getting much of its energy storage from the sunlight

and the outdoor air temperature.The capacitance at node TSi gets a good bit of its

energy storage from internal radiation within the building. Figure 2.5 shows the

building model when it goes into its unoccupied mode at night when the sun goes

down. Internal radiation has become negligible for any further energy contributions

at this point. Also, since the building has switched to its unoccupied mode, this
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means the building has either no occupants or very few; therefore, the internal load

Q̇i is said to be negligible. In addition, the system ˙Qsys has turned off until the

zone temperature reaches its new thermal equilibrium or its desired setpoint. Let

us assume this is the circuit model for the building in figure 2.1, when the setpoint

changes and the building can start to naturally warm.

Figure 2.6: Unoccupied overnight building circuit model

In order to get the circuit in 2.5 in a more simplistic form, we use Thevenin’s

theorem to create a thevenin network. The circuit is broken on the left side of the

dotted line; thus, the Thevenin source can be defined as TSi. One final assumption is

used for the zone air temperature interactions,
∑Nzones

n=1 Tzi. The zone temperatures

are said to be approximately equal; therefore, we have TZ ≈ ∑Nzones
n=1 Tzi and we can

ignore the contributions from Tzi in this specific model.

Figure 2.7: Simplified building circuit model
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Figure 2.7 shows the simplified building model. A first order ordinary differential

equation can be derived easily using this model. Equation 2.1 shows the differential

equation for the circuit in figure 2.7.

RCZ
dTZ
dt

+ TZ = TSI (2.1)

where R is defined as RTH +RSI

The solution and waveform for the temperature TZ is then defined in equation 2.2

as follows:

TZ(t) = (TSI(t = 0+)− TSI)e
− t
τ (2.2)

where τ is defned as RCZ

The time constant τ controls the rate at which the temperature rises. Figure 2.8

shows the plot of equation 2 as a function of time. TZ(t) rises to a natural equilibrium

state with a max of TSI . If this model is actually an accurate high level representation,

there should be a similar behavior with zone temperatures as they rise towards their

natural peak.

Figure 2.8: Theoretical TZ(t) plot[2]
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As it turns out, that is exactly the type of behavior seen when the real data is

examined. Figure 2.8 shows the rising zone temperature in one specific zone at a

retail branch in Phoenix, AZ. The behavior is exactly as expected. Each building

would have a specific τ associated with it, and its zone temperature would rise at

that rate until it hits its natural peak. In other words, the energy storage associated

with the rest of the wall surfaces will dissipate its energy into the zone capacitance

and it will rise according to its specific τ .

Figure 2.9: Actual TZ(t) plot

If the τ behavior of a building can be captured, predictive energy modeling becomes

possible. It becomes possible to create models that give energy usage predictions

based on particular building parameters. In theory, the impact of setpoint, setback,

and schedule adjustments on HVAC energy consumption could all be estimated if

the buildings natural heating and cooling ability is understood. Fortunately, there is

existing software that uses this theoretical concept, albeit in a much more detailed

manner. That software will be examined in the subsequent subsection.

2.2 EnergyPlus Modeling

The DOE has funded the development of a software called EnergyPlus that utilizes

the building τ concept discussed in Section 2.1, but at a much more detailed level.

EnergyPlus allows users to run building simulations that can output total building

energy consumption. The software allows users to use building templates and adjust
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their physical parameters and technical equipment to fit specific "builds". In addition,

the user has the ability to vary lighting loads, scheduling, setpoints, setbacks, and

building occupancy.

The main goal of the EnergyPlus modeling process was to gain insight concern-

ing how building cooling and heating energy is impacted by setpoint changes. Wells

Fargo seemingly had a fairly "loose" setpoint policy and seemed somewhat interested

in moving towards a stricter policy if data proved to support significant savings po-

tential. The UNCC team worked with the Wells Fargo team with the aid of building

automation data to determine a base case occupancy schedule and temperature set-

tings.The occupancy schedules were held constant and temperature settings would

be varied in simulations.Table 2.1 shows the base case setpoints settings used for

occupied and unoccupied periods.

Table 2.1: Base Case Setpoints for occupied/unoccupied periods

Setpoints
Occupied cooling 72◦F
Unoccupied cooling 78◦F
Occupied heating 70◦F
Unoccupied heating 67◦F

Like the determination of the base case settings, the new setpoints to be used in

simulations were determined in collaboration with the Wells Fargo team. Table 2.2

shows the new range of occupied setpoints and unoccupied setpoints that will be

simulated and compared to the base case.

Table 2.2: New programmed setpoints and setbacks

New setpoints and setbacks
Occupied cooling 74◦F
Unoccupied cooling 80◦F 81◦F 82◦F 84◦F 85◦F
Occupied heating 70◦F
Unoccupied heating 62◦F 63◦F 64◦F

A template was created by the SIBS research team during a prior project that
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modeled a typical Wells Fargo retail branch building. This template was used to

simulate new temperature setpoints and setbacks. The EnergyPlus software is able

to simulate typical daily weather within a specific climate zone, which includes day-

lighting effects and temperature patterns. For example, figure 2.10 shows the energy

plus simulation interface where the user loads a specific weather file. This partic-

ular simulation is using historical weather data from Chicago O’Hare International

Airport, Chicago, Illinois.

Figure 2.10: EnergyPlus user interface

The simulation outputs can be specified within the building template as well. For

example, if outputs for hourly electric energy, hourly outdoor air temperature, hourly

day type, and hourly zone mean air are wanted they would be programmed at the

beginning of the building template. Day type is useful as it specifies whether the

system was in a cooling or heating mode for that specific day. Figure 2.11 shows the

programming scheme for the specified output variables.

Figure 2.11: Simulation outputs
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The initial simulations were ran over the range of unoccupied hours for only week-

days(Monday AM- Friday PM)throughout the year.The actual experiments ran at

buildings during this research would only address unoccupied weekday energy sav-

ings; therefore, creating an initial base case model was essential. Why the experiments

only addressed unoccupied weekday energy consumption will be discussed further in

Chapter 4. The EnergyPlus software produces output summary PDF files and CSV

raw data files.The summary files are great for cumulative high level analysis, but

obviously lack the fine detail found within the raw data files. The raw data files were

used to create detailed comparisons with the base case models.

Figure 2.12 shows the weeknight energy consumption over an entire year vs average

daily outdoor air temperature. This particular simulation was ran in the Phoenix,

Arizona climate zone. Blue represents the base case setback of 78◦F and orange repre-

sents the a new setback of 85◦F. The plot shows a pretty distinct difference in energy

consumption between the two difference setbacks. Interestingly, they seem to diverge

at an outdoor air temperature of approximately 80◦F. This turns out to be a fairly

significant divergence, and will play a key role in the development of the extrapola-

tions models built with experimental data. The point at which the divergence takes

place is defined as the change-point. Above this change-point is where the higher

temperature setbacks start making a difference in energy consumption.
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Figure 2.12: EneryPlus change-point model

This distinct change-point where there is a divergence of energy consumption sort of

makes sense when the theoretical models in Section 2.1 are considered. It seems some-

what intuitive to think that when the average outdoor air temperature is lower there

would be less overall energy to charge the surface capacitance in the building walls.

In such conditions, buildings can maintain lower setbacks with minimal compressor

activity during the overnight unoccupied hours. However, when the average outdoor

air temperature trends up, the walls in the building become charged with more en-

ergy. This excess of energy eventually dissipates into the building during the overnight

hours; hence, the zone air capacitance charges to a higher peak—ultimately leading

to higher indoor temperatures. If the zone allows the temperatures to rise higher

without activating the system, minimal compressor activity is still possible—which

is the scenario you get with the orange curve in figure 2.1. On the other hand, the

blue curve represents a system that has to cycle much more during its unoccupied

hours in order to maintain a lower space temperature. Simulations were ran to in-

clude weekends in order to do a complete comprehensive analysis of setback savings

potential. One specific example of the cooling energy savings in the Phoenix area

will be highlighted in this chapter, as well as a total climate zone summary for all

setpoint adjustments. Figure 2.13 shows simulated building cooling energy for the

Phoenix climate zone with the base case settings and all new setpoint adjustments.

The savings is at its max percentage at 85◦F. It is important to note that the savings

with the 85◦F setback is 2,773 kWh. That will be key in comparing what we find in

Chapter 4. Table 2.3 shows the energy kWh and percent reduction for each setpoint

adjustment.
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Figure 2.13: Climate zone 2A & 6A energy consumption

Table 2.3: Climate Zone B simulated energy & reduction

Setpoint◦F kWh % reduction
78 18460.9 0
80 15687.66 15.1
81 15486.3 16.1
82 15335.26 16.9
83 15224.96 17.5
84 15136.87 18
85 15065.99 18.4

The high end of the initial Wells Fargo setback standard was at 85◦F. The Energy-

Plus model seemed to suggest significant savings potential at that temperature. Lets

look at the cooling savings potential with climate zone 2B compared with climate

zone 6A in figure 2.14.The cooling savings opportunity is going to be much greater

in warmer climates like Phoenix because there is just considerable more consumption

going on. For example, the savings at the 85◦F case for climate zone B is 3,394 kWh

and the savings in climate zone 6A is 1,195 kWh. Climate zone B has roughly 35%

more than climate zone A. To explore the cost difference, let us use the national

average for commercial energy pricing at 10.59 cents/kWh and compute the savings

for both 85◦F cases. The savings in Phoenix is approximately $359, while the savings

in Minneapolis is only $126.
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Figure 2.14: Climate zone 2A & 6A energy consumption

Estimating heating savings in some parts of the country might be a bit more difficult

than cooling savings due to the use of natural gas. Simulations were ran to predict

heating savings, but obviously this would only be valid where electric heating actually

took place. It is important to note that heating potential could not be verified in the

experimental process associated with this thesis.

The SIBS team had many discussions with Wells Fargo concerning what setpoints

and setbacks should actually be. Although the most effective approach might be on

a per climate zone basis, Wells Fargo eventually determined that a hard standard

might at least initially be most effective. Initial discussions lead the SIBS research

team to believe the setpoints in table 2.4 would be the standard implemented across

their retail portfolio. However, that would be an ongoing process of adjustment due

to some concerns with building recovery. This will be addressed in further throughout

chapter 4.

Simulations for heating and cooling across each climate zone were ran under the
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Table 2.4: Initial proposed setpoint standard

Proposed setbacks
Occupied cooling 74◦F
Unoccupied cooling 85◦F
Occupied heating 70◦F
Unoccupied heating 64◦F

setpoints in table 2.4 and compared to the conditions in the base case specified in

table 2.1. Fan energy was included in this analysis as well. Figure 2.15 shows the

energy consumption comparison by climate zone for each case. The average savings

across all of the climate zones was about 4.9%.

Figure 2.15: Energy comparison old and and new standards



CHAPTER 3: EXAMINING THE REAL DATA

The branches examined in the Phoenix metro area were all connected to a building

automation system contracted out by Wells Fargo. Building operators can adjust oc-

cupancy scheduling, temperatures, or other various operational settings through its

online interface. Various operational nodes were deployed in order to track different

aspects of the HVAC performance. For example, compressor on/off time, discharge

air temperature, and zone air temperature were all tracked. The building automa-

tion system had easy data trending capability; therefore, various different aspects of

building performance could be visually inspected. In addition, data could easily be

extracted out of the system in CSV format for further extensive analysis with data

tools such as Matlab.

Diving into the real time data would provide a sense of how schedules and set-

points might be further optimized to create more energy efficiency. The first settings

explored were the existing occupancy scheduling and occupied/unoccupied set points.

Other system behaviors such as discharge air temperature, compressor-run time, and

system recovery would be explored.

3.1 Occupancy Scheduling, Setpoints, User Adjust Capability

The branch occupancy schedules are relative to specific branch hours. All 24 of

the Phoenix sites chosen for experimentation were utilizing the occupancy scheduling

feature in the building automation system. However,branch hours are not listed

anywhere on the building management site, so it could not be determined if schedules

were being optimized with specific branch hours by using the data in the building

automation site alone. Fortunately, Wells Fargo has a public access data base online
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that lists all of their retail branch hours.

Since a major emphasis of the experiments in this study will be on overnight un-

occupied setpoints and system recovery, it seemed reasonable to take a deep dive

into the current times the branches were switching to their occupied modes during

the morning hours. Occupancy schedules in 24 buildings were explored and the time

they each went occupied in relation to its opening hours was documented. Figure 3.1

is a bar chart highlighting those findings.

Figure 3.1: Occupancy in relation to branch Hours

The overwhelming majority of branches go occupied approximately 2 hours before

the store opens. With the system smart recovery being activated in all of the branches

examined, it is questionable whether or not it’s necessary to bring the branch to its

occupied temperatures so early. It is true that some employees do arrive earlier than

the stores open, but there still seems to be some room to play with the occupancy

time without risking occupancy comfort.

The next settings examined during the data dive was the occupied and unoccupied

zone setpoints. Wells Fargo had a preliminary temperature standard for occupied

temperature of 72-74◦F that was enforced very loosely. Out of the 96 zones examined,

most occupied set points fell around 74◦F-which is the high end of the standard.

Figure 3.2 shows the distribution of setpoints in all the zones across the 24 sites.
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Figure 3.2: Occupied Setpoints

Wells Fargo also had a preliminary standard being used for the unoccupied setpoints

of 83-85◦F. The unoccupied temperature distribution across the 96 zones is shown

in figure 3.3. Unlike the current occupied temperature settings, an overwhelming

majority of the unoccupied setpoints were outside of the standard range and around

80◦F. Pushing the unoccupied set points to the high end of the standard could create

opportunity for energy savings by shaving off compressor run time. However, recovery

time might have to be examined if temperatures are allowed to float higher during

the unoccupied hours. Wells Fargo has stated repeatedly how important it is that

zones be able to recover properly if pushed to the high end of the current standard.

Figure 3.3: Unoccupied setpoints

Most of the thermostats being utilized throughout the Wells Fargo retail portfolio

allow a programmable range of temperature user adjust capability for occupants to

utilize. Wells Fargo has stated that this range should not exceed +/- 2◦F, but such

a standard lacks any real traction. If occupants have too much control of thermostat
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settings it could be detrimental to building performance and hinder any conservation

strategies implemented; therefore, it seemed reasonable to explore the current pro-

grammed user adjust settings across a sample size of retail branches. The results were

not entirely consistent with what Wells Fargo had loosely implemented as a standard.

Although most of the user adjust ranges were programmed to be controlled in the

specified range of+/- 2◦F, some were found to be as high as +/- 5◦F, and even one

zone as high as +/- 7◦F. Figure 3.4 shows the distribution of user adjust settings of

150 zones in the Phoenix area.

Figure 3.4: User adjust temperature range

3.2 Smart Recovery & Zone Temperature Recovery

As already discussed, Wells Fargo Corporate Properties Group has shown great

concern in the ability of zones to recover by morning operational hours. But what

exactly do we mean by recover? This means that a zone can properly recover from

its unoccupied setpoint to its occupied setpoint by the time the time employees and

customers show up at the branch. This is a valid concern since Wells Fargo is a

service orientated business. Fortunately—at least in a majority of the sites examined

throughout this research—many zones seem to be utilizing thermostats with a con-

trol feature called "Smart Recovery". This control feature takes building load into

consideration and ramps the setpoint slowly when going from its unoccupied mode to

occupied mode[6]. When a specific zone switches to its occupied mode, in theory the
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"Smart Recovery"control should already have the zone at its occupied temperature.

Figure 3.5: Morning cool down with smart recovery activated

The "System Recovery" is a particularly important feature that Wells Fargo should

properly utilize. If the "Smart Recovery" is properly working, zone temperatures

should be at their occupied temperatures well before the time the store actually

opens. However, examining the recovery capability of "x" amount of zones might

lead to misleading results. As already mentioned in Chapter 1, some zones never

seem to show the capability of maintaining or even reaching certain setpoints. Table

4.1 breaks down the zone recovery of 96 zones utilizing "Smart Recovery" and gives

the time relation to their specific store hours (30 minutes or 60 minutes before the

store opens) for 3 different scenarios.

Table 3.1: Zone Recovery

74◦F 75◦FZone Parameter 30(min) 60(min) 30(min) 60(min)
97 Total zones 87% 78% 93% 89%
92 Total zones capable of hitting 75◦F N/A 96% 91%
94 Total zones capable of hitting 74◦F 91% 83% N/A

All of the zones in the analysis actually had a programmed setpoint of 73◦F, but

the analysis was when they were in a +1 or +2 ◦F range of setpoint. This analysis

was actually done on the actual experimental day, which will be discussed in more

detail in Chapter 4. Moreover, at first glance the analysis seems to suggest that zones
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do not seem to all be optimally recovering. But when troublesome zones that never

seem to reach their setpoints consistently are taken into consideration the numbers

of recovered zone start looking much better.

3.3 System Anomalies & Struggling Zones

The building automation system has an alarm system set up for a small minority of

retail sites. However, some zone issues are not necessarily even detected by existing

alarm protocols in place. Figure 3.6 shows some odd zone behavior in one of the

Phoenix retail building zones. The zone temperature is the blue- line that is following

the green setpoint. The temperature seems to quickly drop when the store goes into

its unoccupied state. This could possibly be due to some sort of signal inversion.

These types of behaviors might lead to faulty data models and more importantly

energy inefficiencies. Regardless, temperature sensors and data points relaying these

type of signals should be examined to ensure proper functionality. These type of

issues might be easily spotted when looking directly at the data, but they might slip

through the cracks of less robust automated alarm systems.

Figure 3.6: Odd zone temperature behavior

In addition to system anomalies, some of the zones examined showed an inability

to maintain or even reach occupied setpoints at all. Figure 3.7 shows a Phoenix

branch zone struggle to reach its occupied setpoints. The system does actually hit the

setpoint eventually —albeit only momentarily. The system looks like it tried to ramp
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down during "System recovery", but after touching the occupied temperature 2 hours

after the zone went occupied—the zone temperature just floats back up and doesn’t

maintain setpoint throughout the day. This seems to be a common occurrence in this

particular zone. Factors such as undersized units, low or undercharged refrigerate

might be responsible for these type of system faults. The faults discussed throughout

this research did not have any sort of fault detection in place through the automation

system.

Figure 3.7: Setpoint issues

Zones that seem to never hit their setpoint or rarely ever hit it seemed to be an issue

as well. Figure 3.7 shows one of the branch zones that never rarely seemed to hit its

occupied setpoint. The plot in figure 3.7 is temperature (blue-line) following setpoint

(green-line) over an entire week. There were some days towards the end of the week

where it never came close to hitting its programmed setpoint. It is worth mentioning

that the last day on this plot is the day the branch was actually the experimental

day associated with this research. However, the day before it experienced similar

issues maintaining its occupied setpoint. That is an important note when it comes

to examining the zone behavior when overnight setbacks were pushed back to 85◦F.
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Figure 3.8: More setpoint issues

Figure 3.9 shows a snapshot of one of many excel spreadsheets created to highlight

some zone statistics in the retail branches in Phoenix. There are some interesting

statistics highlighted. For example, AVG DAT is the average discharge air tem-

perature while the compressor is running. Most of the zones are reading an AVG

DAT in the 60s—which seems reasonable according to Pacific Northwest National

Laboratory[7]for occupied hours. However, the south platform zone is reading an

AVG DAT temperature in the high 80s and that seems problematic. Another inter-

esting statistic in figure 3.9 is the integral. In this context the value of the integral is

defined as a numerical value that is strictly the measure of the area between the zone

setpoint and the actual zone temperature. For example, the integral value is con-

sistently reading above 800 for the South Platform/Office zone. Zones like BR/RR

have normal setpoint and zone temperature behavior and its corresponding integral

value is consistently around 200-300. Anything above 500 seems to suggest problems

maintaining zone setpoint. The South Platform has an extremely high integral value

on 7/9 at about 2834. This zone had extreme issues on that day maintaining its

setpoint.
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Figure 3.9: Zone statistics



CHAPTER 4: EXPERIMENTAL VALIDATION

Experiments were ran in the summer months during the cooling season in one of

the more extreme climates in Phoenix,Arizona. The big question heading into the

experimental aspect of this thesis was pretty much summed up as follows: will pushing

the overnight setback result in energy savings, without risking occupant comfort? To

answer this question, the overnight compressor cycling and morning warm-up became

key areas of interest. Many of the current setbacks were around 78-80◦F, which fell

short of current Wells Fargo standard of 83-85◦. After discussions between the Wells

Fargo and UNCC team, it was decided that those overnight unoccupied setpoints

would be pushed to 85◦F in all the building zones during experiments.

Figure 4.1 highlights the overnight cycling of a single compressor during an unoc-

cupied period. The top plot with the green binary signal shows the on-off signal for

a single compressor unit. The bottom plot shows the space temperature (blue-line)

and the set-point (green-line). When the space temperature reaches the setpoint,

the compressor unit begins to cycle. If the temperatures are allowed to float slightly

higher, there might be some inherit risk for the system to actually consume more

energy trying to cool back down, or even losing its ability to properly recover; hence,

risking occupant comfort.

Since this study was aimed at retail branches rather than administration buildings,

occupant comfort was a major concern during the duration of this study. If temper-

atures in branches are pushed to a level where it makes their recovery troublesome

than pushing unoccupied temperatures higher might not be advisable.
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Figure 4.1: Compressor unoccupied activity

There were originally 32 retail buildings identified as ideal experimental sites within

a 20 mile radius of Phoenix, Arizona. It was determined that all test sites should be

stand alone sites. Stand alone in this context means they are not connected to any

other spaces that might have separate controlled HVAC systems; this would ensure

the test site could be properly controlled.

4.1 Experimental Setup

To avoid any potential conflicts during branch operational hours, it was determined

that all experiments would be conducted during the branches official unoccupied hours

over the weekend. Figure 4.2 shows the scheduling setup used during the experimental

process. The idea was to use a Sunday as a hypothetical workday. In order to do

so, the occupancy schedule for Saturday was adjusted at each branch to make its

unoccupied period start where it would typically go unoccupied Monday-Thursday.

The Sunday occupancy schedule was also adjusted to each stores typical Monday-

Thursday hours. Unoccupied setpoints at each branch were adjusted during the
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day on Saturday before the branches went unoccupied and set to 85 ◦F. Occupied

setpoints for Sunday were set to 73 ◦F after the stores went unoccupied on Saturday.

The experimental setpoint for the occupied period was initially set to 73 ◦F, but it

was determined at a later date that 74 ◦F would be ideal. This detail would be taken

into consideration during the analysis of the experimental data. During the day on

Sunday, all unoccupied setpoints were returned to their usual settings. When the

stores went unoccupied Sunday evening, all scheduling and occupied setpoints were

to returned to their usual settings. All programmed setpoints and schedule changes

were implemented using remote write access on the building automation system.

Figure 4.2: Experimental day scheduling

The experimental process was broken up into 2 separate weekends during July. Half

of the sites would be reprogrammed over one weekend to operate at new occupied

and unoccupied setpoints and the other half the following weekend. This was to

ensure that changes could be made in an efficient manner and without complications.

The "Smart Recovery" option was left on for all the zones during the experimental

process.
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4.2 Experimental Results

After the experiments were ran and the data was processed, a benchmark day was

needed to conduct a preliminary analysis. Since its rare that any two days are exactly

the same, the most similar recent day was found to make energy comparisons with.

The temperature profile for the unoccupied overnight period for the experimental and

benchmark days used is shown in figure 4.3 The red-lines represent the experimental

days and the blue-lines represent the benchmark days.

Figure 4.3: Temperature profiles

Figure 4.4 is a scatter plot of percent reduction in energy for experimental week 1.

All of the sites saw an overall reduction in energy consumption. It is important to note

that this is only taking into account the compressor energy. The building automation

site used to collect data in this experiment was not tracking any actual building energy

consumption. After discussions with the Wells Fargo team, the energy analysis was

done assuming 3-ton packaged roof top units and using a COP of 3. Details of how

this calculation was made is shown in Appendix C. Fan energy was also not taken

into account in this analysis.
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Figure 4.4: Experimental week 1 -% energy change

There is one extreme case where the savings came back over 70%. This was due to

one of the zones that stayed unoccupied and never experienced a morning cool down.

Figure 4.5 shows the zone temperature and temperature setpoint plot. The zone

never responded to the occupancy changes made on 7/9; therefore, the compressor

never needed to run to cool the branch, resulting energy savings that were somewhat

exaggerating for this particular branch.

Figure 4.5: Desert F. setpoint(green) & zone temperature(blue)

Figure 4.6 is a scatter plot of percent reduction in energy for experimental week

2. Although most branches saw an overall reduction in energy, there were a couple
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that did not. One of the sites had some unusual zone temperate issues that made the

compressors at this branch run continuously. The issues at this branch extended to

days beyond the experimental day and seemed to be somewhat of a common theme.

The other branch that saw an increase was a branch that actually had overnight

setbacks as high as 90◦F and they were brought to 85◦F. That will be discussed in

more detail shortly.

Figure 4.6: Experimental week 2 -% energy change

Figure 4.7 shows a zone that had a fairly dramatic decrease in overnight compressor

cycling. The plot on the left side shows the comparison day zone temperature (blue)

following its set point (green). The bottom plot on the left is the compressor on/off

signal for the comparison day. When compared to the experimental day plots on the

right side of figure 4.7, its obvious that compressor run time dramatically decreased.
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Figure 4.7: Zone decrease in run time

Figure 4.8 shows a zone that had a fairly dramatic increase in overnight compressor

cycling. This entire branch saw an increase in energy consumption in experimental

week 2. This was due to the temperature being taken from 85 ◦F to 90◦F

Figure 4.8: Zone increase in run time

4.3 Extrapolation Model & Annual Predictions

While the cooling saving results in Section 2.1 are encouraging, they needed to be

investigated in the field, given the various problems observed in the field. There was

a question about whether the expected savings could be achieved. The EnergyPlus

change-point model discussed in Chapter 2 would serve as a useful guide in how to

create predictive models for the experimental buildings and extrapolate potential an-

nual energy savings. If a potential change-point can be identified in a set of buildings
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in a specific region, then such a point can serve as an divergence point for two dis-

tinct setpoints. Figure 4.9 shows an overview of the construction of a change-point

regression model for one of the experimental sites in Phoenix, Arizona. The x-axis is

weekday unoccupied average outdoor air temperature and the y-axis is energy con-

sumption. The original building automation data does not give a reading for cooling

energy. It gives a binary signal for the compressor being on or off. Since the signal

is sent in minute intervals—each 1 is assumed as a minute of compressor run time.

As noted earlier in Section 4.2,compressor run time can be easily turned into energy

by making assumptions of the typical branch compressor units and efficiency. Since

the experimental data only addresses weekday energy savings—extrapolation models

will only address weekday energy savings.

Figure 4.9: Overview of extrapolation model

The baseline consumption model is marked with the blue regression line. This rep-

resents the regression model for the ordinary cooling setbacks throughout the year.The

red line represents an extrapolation line for the test day with the newly implemented

setback. The point where outdoor air temperature seems to start impacting cooling

consumption for the phoenix area seemed to be around 60◦F. This is the point chosen

to represent the change-point for the Phoenix metro area.
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The idea behind the extrapolation process is to create two linear regression mod-

els—one with all the days above the chosen change-point of 60◦F at the old setback,

and another with the test day data with the new setback. The daily average out-

door air temperature for each day above the change-point was then taken and passed

through both models as inputs. The difference in the two model outputs is the pre-

dicted energy reduction between prior and the newly implemented setback on the test

day. To make this procedure clearer, the three main steps of the model development

will be explained in more detail. Figure 4.10 shows a scatter plot for one of the experi-

mental sites in Phoenix, Arizona. Like the plot in figure 4.13, the x-axis is the average

weekday unoccupied outdoor temperature and the y-axis is energy consumption.

Figure 4.10: Ray & McQueen yearly scatter plot model

Since the change-point has already been defined at the point of 60◦F, a linear

regression model can be constructed for every overnight period after that point. You

can see clear linear behavior for each day past 60◦F. Figure 4.11 shows the adjusted

regression model.The form of this is obviously linear and the equation for the model

is shown in equation 4.2
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yo = a0xo + b0 (4.1)

where yo is the compressor energy output for days after change-point unoccupied

outdoor air temperature and under old setbacks; xo is the average unoccupied outdoor

air temperature input for the days after the change-point.

Figure 4.11: Ray & McQueen change-point regression model

The test day extrapolation is then determined by fitting a linear line from the point

on the y-axis where the point at which the change-point to the test day run time.

Figure 4.12 shows the linear fit for the test day. The form of this model is clearly just

linear and is shown in equation 4.2:

ye = aexe + be (4.2)

where ye is the compressor energy output for days after change-point unoccupied

outdoor air temperature and under new setback; xe is the average unoccupied outdoor

air temperature input for the days after the change-point.



40

Figure 4.12: Ray & McQueen experimental day extrapolation model

With the two models now constructed—calculations can be made to get the energy

reduction predictions. Equation 4.3 represents the equation used to calculate the

energy reduction.

yrr = yo − yi = a0xo + b0 − aexe + be (4.3)

where yrr is the compressor energy reduction; xo and xe are the days the average

unoccupied temperature is greater than specified change-point temperature. The full

extrapolation model for this example is shown in figure 4.13
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Figure 4.13: Ray & McQueen experimental day extrapolation model

Unfortunately, some of the sites are not so easy to construct models with, due

to questionable data at some of the sites. Figure 4.14 shows a regression model at

one of the branches in Phoenix. This is a site that is most likely experiencing some

faults that cause the cooling system to run inconsistently. Sites like this make the

extrapolation model building quite challenging.

Figure 4.14: Problematic site data
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Figure 4.15 shows the energy reduction across 19 of the experimental Phoenix sites.

Extrapolation regression models for some of the experimental buildings did not get

constructed due to fault issues similar to the model shown in figure 4.14. Two of

the sites had negative reduction—which means the site actually was predicted to

consume more energy. However, the one of those sites is the branch discussed in

earlier that moved from 90◦ to 85◦ setbacks. For most locations, predicted energy

was positive—which means there was potential for cooling energy reduction.

Figure 4.15: Experimental energy reduction

Historical building energy data was attained from Wells Fargo in order to do an

analysis of total site energy reduction potential. Figure 4.16 shows the percent reduc-

tion of total building energy throughout the 19 experimental buildings with models.

There was an average of 0.85 % reduction of total building energy. It is important to

remember this number only reflects Monday-Friday weeknight savings and does not

include the weekends—where there is quite a bit of savings potential as well. It also

does not include any sort of fan energy independent of the compressor.
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Figure 4.16: Experimental percent of total building energy



CHAPTER 5: CONCLUSIONS

Even if the site savings of total building reduction was simply only 0.85% like the

experiments ran in Phoenix, Arizona, suggested, Wells Fargo Corporate Properties

group would still have quite a bit of incentive to realize this potential due to their

large retail portfolio. Using the analogy in Chapter 1, an 0.85% savings would be like

taking 379 homes off the grid—potentially saving $432,072 dollars per year. This is

a reminder that with large numbers even small percentages can make quite a bit of

difference. Table 5.1 shows the average site reduction per site in Climate Zone B and

the simulation reduction at the experimental setpoints.

Table 5.1: Climate Zone B simulation and experimental comparison

Climate Zone B (Cooling only) kWh/y
Simulation Site Reduction 2773
Average Site Experimental Reduction 1097

As mentioned in Chapter 4, it is important to remember that the experimental

savings only reflects cooling weeknight energy savings potential —while the simulation

reduction includes weekend potential. The average simulation total building energy

reduction potential across all climate zones with newly implemented cooling and

heating setpoints was about 4.8%. There was no way to quantify heating savings

during this thesis, as experimental opportunity was minimal and only during the

cooling season over the course of a couple weekends.

Modern energy simulation software can be a very useful tool that utilizes basic the-

oretical framework. However, these tools assume ideal operating conditions—which

is often not the case in the field with real systems. Faults in real systems will pre-

vent savings in the field from reaching suggested simulated potential. The field study
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conducted with this thesis highlighted many problematic issues within a fairly small

sample size of the Wells Fargo retail portfolio. Given that Wells Fargo has about

6000 retail sites, the cost for these sort of inefficiencies could start piling up quickly

if these sort of issues are as prevalent throughout the rest of their retail portfolio.

Simulation and experimental results do suggest significant savings potential associ-

ated with setpoint optimization strategies. Also, the field study suggests that many of

the current setpoints, scheduling and other programmable features being used across

the Wells Fargo portfolio have room for further optimization. Implementing full fault

detection across the retail portfolio would provide significant opportunity for energy

savings as well. In addition,ideal setpoint optimization would likely be on a per-site

basis using analytics. Buildings can differ so drastically in behavior and what works

well in one building might not work very well in another.

Developing data-driven statistical models can often be a challenging task when

confronted with the reality of real world systems. Faults in real systems will create

large variances that will ultimately lead to wider confidence intervals. In other words,

the model accuracy will suffer. Models developed in this thesis did seem to verify the

energy savings opportunity associated with setpoint optimization strategies. However,

it seems reasonable to question how much savings could actually be realized with

setpoint strategies if faults are as common throughout the rest of the Wells Fargo

retail portfolio as they were in the sample size of retail stores examined in this thesis.
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APPENDIX A: ENERGYPLUS CLIMATE ZONE COOLING & HEATING

ENERGY PLOTS

Attached in this appendix are energy plots for all the simulated cooling and heating

setpoint adjustments across climate zones.

A.1 Climate zone cooling energy plots

Figure A.1: Climate 1A cooling

Figure A.2: Climate 2A cooling



48

Figure A.3: Climate 2B cooling

Figure A.4: Climate 3A cooling

Figure A.5: Climate 3B cooling

Figure A.6: Climate 3C cooling



49

Figure A.7: Climate 4A cooling

Figure A.8: Climate 4B cooling

Figure A.9: Climate 4C cooling
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Figure A.10: Climate 5A cooling

Figure A.11: Climate 5B cooling

Figure A.12: Climate 6A cooling
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Figure A.13: Climate 6B cooling

Figure A.14: Cooling 7 cooling

Figure A.15: Cooling 8 cooling
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A.2 Climate zone heating energy plots

Figure A.16: Climate 1A heating

Figure A.17: Climate 2A heating

Figure A.18: Climate 2B heating



53

Figure A.19: Climate 3A heating

Figure A.20: Climate 3B heating

Figure A.21: Climate 3C heating
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Figure A.22: Climate 4A heating

Figure A.23: Climate 4B heating

Figure A.24: Climate 4C heating
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Figure A.25: Climate 5A heating

Figure A.26: Climate 5B heating

Figure A.27: Climate 6A heating
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Figure A.28: Climate 6B heating

Figure A.29: Cooling 7 heating

Figure A.30: Cooling 8 heating
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APPENDIX B: SITE EXTRAPOLATION MODELS

Figure B.1: Extrapolation model 44th Thomas

Figure B.2: Extrapolation model Bell 35th
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Figure B.3: Extrapolation model 59th Thomas

Figure B.4: Extrapolation model 75th Thomas
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Figure B.5: Extrapolation model Pima Pinnacle

Figure B.6: Extrapolation model Desert Ridge
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Figure B.7: Extrapolation model Goodyear

Figure B.8: Extrapolation model Higley & Ray
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Figure B.9: Extrapolation model Lakeshore Baseline

Figure B.10: Extrapolation model Litchfield
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Figure B.11: Extrapolation model Maryvale

Figure B.12: Extrapolation model Mcdowell Mountain
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Figure B.13: Extrapolation model Octillo Mcqueen

Figure B.14: Extrapolation model Paradise Valley
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Figure B.15: Extrapolation model 9th Street & Greenway

Figure B.16: Extrapolation model 7th & Thunderbird
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APPENDIX C: COMPRESSOR RUN TIME CONVERSION TO ENERGY (kWh)

Assumption is typical retail branch uses 3 ton roof top units. We know 1 ton =

12,000 BTUs; therefore, we have 36,000 BTU’s when compressor is on. Converting

this to KW for mechanical power in equation C.1

36, 000BTU ′s ∗ 1KW

3412BTU ′s
= 10.55KWm (C.1)

Now we can convert mechanical power to electrical power by assuming the system

coefficient of performance to be a value of 3.Equation C.2 shows the conversion to

electrical power KWe.

10.55KWm

3
= 3.51KWe (C.2)

The electrical power in equation C.2 can now simply be scaled with the cumulative

site compressor run time in minutes and converted to kWh.


