
 

 

TRAVEL TIME FORECASTING ON A FREEWAY CORRIDOR: A DYNAMIC 

INFORMATION FUSION MODEL BASED ON MACHINE LEARNING 

APPROACHES  

 

 

by 

 

Bo Qiu 

 

 

 

 

A dissertation submitted to the faculty of 

The University of North Carolina at Charlotte 

in partial fulfillment of the requirements 

for the degree of Doctor of Philosophy in 

Infrastructure and Environmental Systems 

 

Charlotte 

 

2021 

 

 

 

 

 

 

        Approved by: 

______________________________ 

Dr. Wei Fan 

______________________________ 

Dr. Martin Kane 

______________________________ 

Dr. David Weggel  

______________________________ 

Dr. Jay Wu 

______________________________ 

Dr. Jiancheng Jiang 

  



ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

©2021 

Bo Qiu 

ALL RIGHTS RESERVED 

  



iii 

 

 

 

ABSTRACT 

 

BO QIU.  Travel Time Forecasting on a Freeway Corridor: a Dynamic Information Fusion 

Model based on Machine Learning Approaches. (Under the direction of DR. WEI FAN) 

 

Metropolitan areas suffer from frequent road traffic congestion not only during peak hours 

but also during off-peak periods. Currently, the increasing availability of vehicle probe data has 

made the real-time travel time prediction a reality. The traffic on freeways is complicated to 

interpret, which can be impacted by various traffic features, many of which are also unpredictable. 

Despite the difficulties, a more profound understanding of the change of travel times and the TTP 

will greatly help infrastructure design, traffic management and operations, and transportation 

related decision-makings. 

Various statistical methods and machine learning methods have been employed in travel time 

forecasting. However, such machine learning methods practically face the problem of overfitting. 

Tree-based ensembles have been applied in various prediction fields, and such approaches usually 

produce high prediction accuracy by aggregating and averaging individual decision trees. The 

inherent advantages of these approaches can not only help obtain better prediction results but also 

have an excellent bias-variance tradeoff, which can help avoid overfitting. To improve the 

accuracy and the interpretability of the model, the random forest (RF) method is developed and 

used to analyze and model the travel time on freeways in this research. However, when the travel 

time prediction (TTP) time horizon increases (i.e., greater than 15 min), the performance of the 

RF method decreases significantly. Recently, as another powerful prediction method, the Long 

Short-Term Memory (LSTM) neural network methods have been widely applied to short-term 

traffic prediction. In this research, the attention mechanism (AM) is implemented by developing 

the neural network to capture the inner relationship within the traffic data. The proposed LSTM 

with attention mechanism (LSTM_AM) method achieves its superior capability for TTPs longer 
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than 15 minutes (i.e., from 30 min to 60 min), overcoming the performance issue through long 

temporal dependency and memory blocks. To validate the accuracy and reliability of proposed 

models, the proposed approaches are tested using a freeway corridor in Charlotte, North Carolina, 

using the probe vehicle-based traffic data. The input features are introduced in detail, and data 

preprocessing is also presented. The mean absolute percentage errors (MAPEs) are computed for 

different observation segments in varying prediction horizons ranging from 15 to 60 minutes to 

measure the effectiveness of the proposed TTP algorithms. The features’ relative importance 

values show that variables (such as travel time 15 minutes before and time of day) have the highest 

contribution to the predicted results. The results also indicate that the proposed TTP models 

perform better in prediction at the 15-minute interval than the other time horizons. Besides, the RF 

model has the best prediction performance with an average MAPE of 6.34% in the 15-minute 

prediction horizon, and the LSTM_AM model has the best performance in all other prediction 

horizons (including 30 min, 45 min, and 60 min). In practice, they can be applied in their preferred 

prediction horizons. A comparison with other prediction methods validates that the proposed RF 

and LSTM methods can achieve a better prediction performance in both accuracy and efficiency, 

suggesting that they can be used as a part of the successful solutions to address critical and real-

world transportation challenges. 
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CHAPTER 1:  INTRODUCTION 

 Problem Statement 

In 2006, the average one-way travel time for the commuters in the U.S. was 25.0 minutes. 

The U.S. census bureau showed that the average one-way commute in the United States increased 

to a new high of 27.6 minutes in 2019. The increase of about 2.6 minutes from 2006 to 2019 

represents an increase of about 10% over 13 years. The increase in commuting time is due to urban 

expansion to some extent, but the increase of traffic congestion time per capita proves that 

congestion contributes significantly and forms the main component. Furthermore, congestion not 

only increases travel times but also decreases travel time reliability. This uncertainty entails 

additional costs to travelers and hence to society. Therefore, there is a growing demand for TTP 

and its high accuracy. However, TTP is influenced by a wide range of traffic, weather, and other 

features. Metropolitan areas are suffering frequent road traffic congestion in both peak hours and 

off-peak periods. Accurate and reliable TTP in freeway networks is a critical component that will 

be helpful to all modes of transportation in all urban, suburban, and rural areas. It is widely 

accepted that considerable accuracy and reliability of TTP are highly desired by both travelers and 

transportation planners. Therefore, the capability to forecast dynamically changing traffic 

conditions, particularly travel times, is of utmost importance in a wide range of traffic management 

applications to relieve its negative impact on society, environment, and economy. Accurate TTP 

can significantly help enhance the performance of the traffic management systems (TMS), in 

which travelers are given the opportunities to react to the traffic proactively (Oh et al., 2015).  

A prediction refers to a calculation or an estimation that uses data from previous events, 

combined with recent trends to come up with a future event outcome. TTP is a challenging problem 

because of the traffic and events’ underlying hidden patterns. Furthermore, the required data is not 
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always available. Traditional data sources for travel time are gathered from cameras and traffic 

sensors, and the high costs of installation and maintenance restrict the usage of this equipment to 

only the major roads.  

Another challenge is to select a suitable and efficient prediction method. Most existing 

machine learning methods can capture the nonlinear pattern of travel time but suffer from over-

fitting problems. The acquisition and popularization of big data in transportation have enabled the 

collection and diffusion of real-time traffic information. Different researchers have employed 

various machine learning approaches, and the prediction accuracy indicates that machine learning 

algorithms have better performances than traditional statistical models. However, such machine 

learning methods are practically faced with an overfitting problem that is difficult to overcome, 

and especially when the traffic conditions significantly change, the prediction results are often 

unsatisfactory. In addition, the RF method has a perfect Bias-Variance tradeoff which can help 

avoid the overfitting problem. This research proposes RF TTP prediction models to predict the 

short-term travel time on freeways by using the probe vehicle-based traffic data and therefore helps 

to gain a better understanding of how different contributing factors might affect travel time on 

freeways. As another powerful method, neural network (NN) methods have been extensively 

applied to short-term traffic prediction in the past few years. However, when the traffic conditions 

change considerably, the prediction results are often unsatisfactory. In this research, the second 

machine learning method LSTM_AM method is developed to capture nonlinear properties within 

the traffic data. Compared to traditional NN, the LSTM_AM can overcome the performance issue 

through memory blocks and achieve its superior capability for time series prediction with long 

temporal dependency. To validate the effectiveness of the proposed TTP methods, the proposed 

approaches are tested using a freeway corridor in Charlotte, North Carolina, using the probe 

https://link.zhihu.com/?target=http%3A//scott.fortmann-roe.com/docs/BiasVariance.html
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vehicle-based traffic data. A comparison with the proposed methods and baseline methods is made. 

The results indicate that the proposed methods achieve a better prediction performance in both the 

accuracy and stability. 

 Research Objectives 

 The research objectives of this study are listed as follows: 

1. To develop the TTP methods using appropriate and cutting edge machine learning-based 

approaches to improve the prediction accuracy; 

2. To conduct a case study to evaluate and test proposed prediction models and compare their 

performance in different prediction time horizons; and 

3. To systematically analyze significant impact factors and investigate their relative 

importance. 

 Expected Contributions 

 This study develops TTP methods on freeways based on the RF and LSTM machine learning 

methods. The expected contribution of this study can be summarized as follows:  

1. Develop different machine learning-based TTP methods; and 

2. Validate and compare the proposed TTP models. 

 Research Overview 

 The research is structured as follows. In this chapter, the introduction and motivation of the 

TTP, the research objectives, and expected contribution have been discussed. 

Chapter 2 presents a literature review on the state-of-the-art and state-of-the-practice of the 

short-term TTP. Machine learning (including data-based parametric models and non-parametric 

models) based traffic prediction methods will be described. 
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Chapter 3 introduces the Regional Integrated Transportation Information System (RITIS) 

data set that is used to analyze the TTP. The RITIS traffic data is introduced, and detailed 

information about raw weather data is discussed. Temporal and spatial traffic data and historical 

weather data are combined with the RITIS traffic data. The traffic and weather data combination 

process is also presented and discussed in this chapter.  

Chapter 4 presents the TTP methodologies, including RF and LSTM. Two deep machine 

learning-based TTP models (e.g., RF and LSTM) are developed based on the RITIS and weather 

sample dataset. The model development process is also presented, including the data structure, 

parameter determination, model training, and model validation. 

Chapter 5 validates the proposed TTP models. For the machine learning prediction model, 

the data training step is described to determine the parameters in the model structure. Potential 

factors include but are not limited to the following: TOD, DOW, month, segment characteristics, 

and weather conditions. The optimization process of the proposed model’s parameters (e.g., the 

number of maximum features, and the number of hidden layers) is also discussed.  

Chapter 6 presents the comparison and evaluation of the proposed TTP models. The MAPE 

is set as the statistical criterion that is used to measure the prediction error. 

Chapter 7 concludes the study with discussions of the developed prediction models, solution 

approaches, and research results. Suggestions for future research are also provided. 
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CHAPTER 2: LITERATURE REVIEW  

 Introduction 

In chapter 2, a review of various aspects of TTP studies, including travel time definitions, 

TTP methodologies, TTP modeling, analysis, is conducted. Existing and cutting-edge modeling 

methods for TTP are also introduced. 

The following sections in this chapter are presented as follows. Section 2.2 discusses the 

travel time definitions and TTP classification methods. Section 2.3 presents the review of current 

TTP methods, including statistical methods and machine learning methods. Section 2.4 concludes 

this chapter with a summary.   

 Background 

2.2.1. Travel Time Definition 

Travel time is defined as the total time for a vehicle to travel from one point to another over 

a specified route (Zhu et al., 2009).  

2.2.2. Classification Approach 

TTPs can be categorized from different perspectives, and the most popular classification 

method is to classify them according to their prediction horizon as short, medium, and long-terms 

(Oh et al., 2018). Van Lint (2004) defined the short-term TTP as a 0-60 minute interval. It was 

found that identifying a appropriate time horizon in TTP plays the most significant role in the TTP 

applications (Shen, 2008). The second critical perspective is the road network category, including 

either arterial roads or freeways. Researchers considered the flows, speeds, densities, and travel 

time in short-term traffic flow prediction as an essential component of the intelligence traffic 

system application (Liu et al., 2017). It was more complicated to predict the travel time on urban 

signalized arterial roads due to the presence of signals and intersections (Oh et al., 2018).   
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 Travel Time Prediction Approach 

Thanks to the integration of big data and transportation management, different approaches 

have been developed and applied in this area. The techniques can be divided into two general 

groups: statistical methods and machine learning methods. On the statistical side, linear regression 

(LR) and time series have been widely applied in TTP as in other research areas. Furthermore, 

among the time series model, the autoregressive integrated moving average (ARIMA) model has 

been frequently deployed in TTP based on historical traffic data. Machine learning methods are 

considered more effective, accurate, and feasible. Different machine approaches (such as support 

vector, tree-based ensemble learning, and recurrent neural network) have been applied in TTP 

areas by various researchers. The prediction results indicated that compared with the traditional 

statistical models, machine learning methods have a significant improvement not only in prediction 

accuracy but also in time efficiency (Mori et al., 2015). 

In the last several decades, research on more reliable short-term travel time forecasting has 

attracted numerous researchers, from transportation engineers to data scientists. The machine 

learning (data-based) traffic prediction methods can be divided into two major categories: 

parametric models and non-parametric models (Van, 2004). Parametric models are always model-

based methods, where all of the parameters can be estimated with empirical data, and the model 

structure is predetermined based on certain theoretical assumptions. LR is the most typical 

parametric model, where the dependent variable is a linear function of the explanatory 

(independent) input variables. The input variables are typically traffic observations in several past 

time intervals. Bayesian net is the second type of parametric model, where the explanatory 

variables are assumed to be conditionally independent, given the target variables. The third type 

of parametric model is the time series model, a series of data points indexed in time order. Time 



7 

 

 

 

series forecasting involves the use of a model to predict future values based on previously observed 

values. In the last two decades of the last century, the ARIMA model has been the most widely 

used one for TTP. The first application of ARIMA in traffic analysis dates back to 1979 (Ahmed 

& Cook, 1979). For parameter-based approaches, real-time data integrity is also a critical factor in 

determining the prediction accuracy since many model-based systems deal with feeding data in 

real-time for online services. 

In the non-parametric models, both the structure of the model and the parameters are not 

predetermined. However, the term “non-parametric” does not mean that there are no parameters 

in the models to be estimated. Furthermore, the number and typology of the parameters are 

unknown a priori and sometimes uncountable. Due to the rapid development of data science, non-

parametric estimation methodologies are being quickly updated. One of the most popular ones in 

the literature of TTP is the artificial neural networks (ANN). Due to their ability to capture complex 

relationships in large data sets, ANN methods have been widely used in travel time forecasting 

(Dharia & Adeli, 2003). As the typical non-parametric models, ANN can be developed without 

being given a specific form of the function. Furthermore, the restrictions on the multicollinearity 

of the explanatory variables can be partially overcome. Different types of neural networks have 

been applied to TTP, such as the regular multilayer feedforward neural networks (Yildirimoglu & 

Geroliminis, 2013) and spectral basis neural networks (Park & Rilett, 1999). The input variables 

selection is different, which depends on the data availability and the model training process. 

Different variations of the backward algorithm can carry out different types of neural networks. 

Support vector machine (SVM) methods are another choice for TTP. This advanced algorithm 

consists of the decision function, the kernel functions’ application, and the sparsity of solutions. 

The SVM model is suitable for TTP based on historical travel time data. Some researchers 
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(Yildirimoglu & Geroliminis, 2013; Wu et al, 2004) used SVM methods to estimate travel time. 

In the calculation process, the algorithm maps the input data into a higher dimensional space by 

the kernel function. The process stops after finding the flattest linear function related to the 

transferred input vectors (i.e., when the target variable has an error smaller than a predefined 

threshold). This linear function can be mapped again into the initial space and get the final 

nonlinear function which is used for TTP. Both the ANN and SVM models tend to be overfitting 

due to the complicated structure and the many parameters that need to be calibrated, which is a 

serious problem commonly existing in the non-parameter machine learning algorithm.  

In the TTP applications, another popular non-parametric approach is the local regression 

approach, which can yield accurate prediction results. In the local regression approach, the 

algorithm chooses a set of historical data which have similar characteristics to the current situation. 

The prediction results base themselves on generating a model constructed by the selected data set. 

The local regression models’ types depend on the techniques used to select the set of similar 

historical points and the methodology chosen to fit the model. 

Some semi-parametric models have been developed in traffic time prediction, which is a 

combination of parametric and non-parametric methods. The main idea of the semi-parametric 

method is to loosen some of the assumptions of the parametric model to obtain a more flexible 

structure (Ruppert et al., 2003). In the case of applications, semi-parametric models are presented 

in the form of varying coefficient regression models. Travel time can be calculated by a linear 

function of the naive historical and instantaneous predictors. Furthermore, the parameters differ 

depending on the departure time interval and prediction horizon (Schmitt & Jula, 2007). 

With the wide applications of machine learning algorithms in TTP, different approaches have 

been deployed in different areas with varying data sources. The methodologies that researchers 
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have used include, but are not limited to, the following: neural network approach (e.g., SSNN, 

LSTM), nearest neighbor approach (e.g., k nearest neighbor), SVM, and ensemble learning 

approach (e.g., RF and gradient boosting). Some research efforts are listed as follows, and Table 

2.1 summarizes the studies reviewed in chronological order. 

2.3.1. Nearest Neighbors Method 

2.3.1.1. Myung et al.’s research work 

In 2011, Myung et al. deployed the k nearest neighbor (KNN) approach to predict travel time 

using the data provided by two data sources (i.e., the automatic toll collection system and the 

vehicle detector system). By combining these two sets of data, the limitations of each dataset can 

be minimized by the model, and the prediction’s accuracy can be enhanced. The authors also 

compared the proposed KNN TTP method with other TTP models by using the above datasets. 

The comparison results proved the KNN feasibility for TTP.  

2.3.1.2. Yu et al.’s research work 

In 2017, Yu et al. applied a hybrid prediction method (RF and KNN) to bus TTP. The 

proposed hybrid method was compared with other TTP methods, which included linear regression, 

KNN, SVM, and RF. The prediction results showed that the proposed hybrid TTP methods yield 

the best prediction accuracy and efficiency performance. 

2.3.1.3. Moonam et al.’s research work 

In 2019, Moonam et al. applied multiple machine learning methods, which included KNN, 

least squares regression boosting, and Kalman filter (KF) in TTP. The comparison consisted of the 

link and corridor of the freeway and concluded that the KF algorithm reached the best prediction 

performance (i.e., smallest MAPEs). 
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2.3.2. Support Vector Regression Method 

2.3.2.1. Wu et al.’s research work 

In 2004, Wu et al. first deployed the Support Vector Regression (SVR) model in TTP and 

compared the results with time series methods (as a baseline) using real freeway traffic data. For 

a given training dataset, SVR had a significant ability to locate the global minima. In the model 

comparison, the SVR had better prediction accuracy than the time series approach. The prediction 

results also indicated that the SVR predictor significantly reduces prediction errors. This study 

revealed that the SVR method is suitable for TTP and can improve prediction performance. 

2.3.3. Ensemble Learning Method 

2.3.3.1. Hamner et al.’s research work 

In 2011, Hamner et al. researched to improve the RF TTP accuracy with the data collected 

from the GPS simulation dataset. The authors developed a context-dependent RF method. In the 

validation, the proposed model obtained a reasonable prediction performance, in which the result 

showed the root mean square error (RMSE) of the model was smaller than 7.5%.  

2.3.3.2. Zhang and Haghani’s research work 

In 2015, Zhang and Haghani (2015) proposed an advanced tree-based ensemble learning 

method, and the gradient boosting regression tree was applied to forecast the travel time on 

freeways. The experiment dataset was collected from the freeway in Maryland, U.S. Different 

combinations were used to conduct sensitivity analyses and test the effect of the parameters in the 

gradient boosting regression tree. The prediction results showed that the performance of the 

proposed model is considerably good in the freeway TTP application. 

2.3.3.3. Li and Bai’s research work 
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In 2016, Li and Bai collected trajectory data of freight vehicles in Ningbo, China. The authors 

applied a gradient boosting regression tree in TTP. Bayesian optimization was employed for model 

fitting in this research. The conducted experiment results indicated that the proposed model is 

suitable for real-world applications. 

2.3.3.4. Gupta et al.’s research work 

In 2018, Gupta et al. applied RF and gradient boosting models in taxi TTP in Porto. The taxi 

trajectory data was collected and used for TTP. The model comparison results showed that the 

gradient boosting model performance is superior to the RF model. 

2.3.3.5. Chen and Fan’s research work 

In 2019, Chen and Fan employed the advanced ensemble learning method XGB model to 

forecast travel time variability and freeway travel time in Charlotte, NC, U.S. The data was 

collected from RITIS and combined with weather data. The prediction results showed that the 

XGB performs very well in the TTP application. 

2.3.4. Neural Network Method 

2.3.4.1. Park and Rilett’s study 

In 1999, Park and Rilett developed a BP NN to forecast travel time on freeway links. The 

freeway link travel time was collected in Houston, Texas, and the dataset collected from the 

automatic vehicle identification (AVI) system was used as the validation database. The proposed 

BP neural network achieved a reasonable prediction accuracy, in which the MAPEs ranged from 

7.4% to 18%. 

2.3.4.2. Van Lint et al.’s research work 

In 2002, Van Lint et al. researched to apply the state space neural network (SSNN) in TTP. 

The data was collected from freeway operations simulation (FOSIM). In the validation and model 
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training process, 80% of data was used to train the model, and 20% of data was used to validate 

the model. In the model training process, the authors also ranked each variable’s relative 

importance value (RIV) and kept the most significant parameters to improve the model efficiency.  

2.3.4.3. Wisitpongphan et al.’s study 

In Wisitpongphan et al.’s (2012) study, the authors applied a BP NN model in TTP for the 

freeway link. The data was collected from the selected label probes vehicles via GPS service in 

Thailand, and the 297 vehicles’ one-month trajectories were collected as the sample data. The 

prediction results proved that the proposed model is suitable for predicting travel time based on 

the GPS dataset, which achieved an average mean squared error (MSE) of less than 3%. 

2.3.4.4. Zheng and Van Zuylen’s study 

In 2013, Zheng and Van proposed a TTP model based on the multiple layer neural network, 

and the authors conducted experiments by collecting the traffic data along with probe data. In the 

validation process, the authors used the data simulated from VISSIM simulation software. The 

prediction results proved that the proposed Artificial Neural Network (ANN) model achieves a 

good prediction performance and is suitable in real-world practice. 

2.3.4.5. Duan et al.’s study 

In 2016, Duan et al.’s research group first applied LSTM neural network model in the TTP 

area. The authors conducted the experiment with the data collected from the freeways in England. 

The authors optimized the steps ahead of the TTP and found 1-step ahead of TTP can achieve the 

optimization prediction results.  

2.3.4.6. Liu et al.’s study 

In 2017, Liu et al. continued experimenting with LSTM application in TTP. The authors 

developed different hyper-parameters in TTP based on the data collected from the freeways in 
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California, U.S. The proposed model was compared with the ARIMA model and other models, 

and the comparison results indicated that the LSTM has superior performance in prediction 

accuracy. 

2.3.4.7. Wang et al.’s study 

In 2018, Wang et al. collected the database from floating-car. The authors applied multiple 

different state-of-the-art machine learning methods to conduct the TTP. The database from the 

floating-car included more than one million historical traffic data, and the results indicated the 

proposed three layer neural network achieves the best prediction accuracy. 
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Table 2.1 Summary of TTP approaches 

Year Author 
Country/C

ity 

Roadway 

Category 
Data Source 

Method 

Category 

Data 

Type 
Prediction method 

2000  
Wunderli

ch et al. 
N/A N/A 

Simulated 

data 

(INTEGRAT

ION) 

Native model 

Travel time 
Exponential 

filtering 

2002 
Dion et 

al. 

Virginia, 

US 
N/A 

Simulated 

data 

(INTEGRAT

ION) 

Traffic theory-

based model 
Travel time Delay models 

2002 
Van Lint 

et al. 
N/A Freeway 

Simulated 

data 

(FOSIM) 

Non-

parametric 
Travel time, 

travel speed 

State-Space Neural 

Network 

2005 Wu et al. Taiwan Freeway 
Loop 

detector 

Non-parametric 
Travel time SVR 

2007 
Schmitt 

and Jula 

California, 

US 

Urban 

road 

Loop 

detector 

Native 

model 
Travel time Switch model 

2008 Zou et al. 
Maryland, 

US 
Freeway 

Roadside 

detector 

Hybrid non-

parametric Travel time 

Combined 

Clustering Neural 

Networks 

2009 Li et al. Atlanta, US N/A 

Simulated 

data 

(VISSIM) 

 

Hybrid non-

parametric 

Travel time 

Combined 

Boosting and 

Neural Network 

2010 
Papageor

giou et al. 
N/A N/A 

Simulated 

data 

(MATANET

) 

Traffic theory-

base model 
Travel time 

Macroscopic 

Simulation 

2010 
Hamner 

et al. 
N/A Freeway GPS 

Non-parametric 
Travel speed RF 

2011 
Myung et 

al. 
Korea Freeway ATC system 

Non-parametric 
Travel time KNN 

2012 
Wisitpon

gphan 

Bangkok, 

Thailand 
Freeway GPS 

Non-parametric 
Travel time 

BP Neural 

Network 

2013  

Yildirimo

glu & 

Gerolimin

is 

California, 

US 
Freeway 

Loop 

detector 

 

Hybrid non-

parametric 
Travel time 

Combined 

Gaussian Mixture, 

PCA, and 

Clustering 

2015 

Zhang 

and 

Haghani 

Maryland, 

US 

Interstate 

freeway 
INRIX 

Non-parametric 

Travel time Gradient boosting 

2015 Joao et al. 
Porto, 

Portugal 

Urban 

road 

STCP 

system 

 

Hybrid non-

parametric 
Travel time 

Combined RF, 

Projection Pursuit 

Regression, and 

SVM 

2016 
Duan et 

al. 
England Freeway 

Cameras, 

GPS, and 

loop 

detectors 

Non-parametric 

Travel time 
LSTM Neural 

Network 

2016 
Li and 

Bai 

Ningbo, 

China 
Urban 

Trajectory 

data 

Non-parametric Truck 

trajectory, travel 

time, travel 

speed 

Gradient boosting 

2017 Liu et al. 
California, 

US 

Interstate 

freeway 
PeMS 

Non-parametric 
Travel time 

LSTM Neural 

Network 
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Year Author 
Country/C

ity 

Roadway 

Category 
Data Source 

Method 

Category 

Data 

Type 
Prediction method 

2017 Fan et al. Taiwan Freeway Electric toll 

Non-parametric Travel time, 

vehicle 

information 

RF method 

2018 
Wang et 

al. 

Beijing, 

China 

Urban 

road 

Floating-Car 

Data 

Non-parametric Taxi trajectory 

data 
LSTM 

2018 Wei et al. China 
Urban 

road 

Vehicle 

passage 

records  

Non-parametric 

Travel time LSTM  

2018 
Wang et 

al. 

Beijing and 

Chengdu, 

China 

Urban 

road 
GPS 

Non-parametric 

Travel time LSTM 

2018 
Gupta et 

al. 

Porto, 

Portugal 

Urban 

road 
GPS 

Non-parametric 
Taxi traveltime 

RF and gradient 

boosting 

2019 
Moonam 

et al. 

Madison, 

Wisconsin, 

US 

Freeway 
Bluetooth 

detector 

Non-parametric 

Travel time KNN, KF 

2019 
Kumar et 

al.  

Chennai, 

India 

Urban 

road 
GPS 

Non-parametric 
Travel time KNN 

2019 
Cristobal 

et al. 

Gran 

Canaria, 

Spain 

Urban 

road 

Public 

transport 

network 

Non-parametric 

Travel time 

K-Medoid 

Clustering 

Technique 

2019 Ran et al. England Freeway 
Freeway 

Record 

Non-parametric 
Travel time LSTM  

2020 

Kwak & 

Gerolimin

is 

California, 

US 
Freeway  PeMS 

Parametric  

Travel time 
Dynamic linear 

model 

2020 Fu et al. 

Beijing, 

Suzhou, 

China 

Urban 

road 

Ride-hailing 

platform 

Non-parametric 

Travel time 
Graph attention 

network 

2021 
Chiabaut 

& Faitout 

Lyon, 

French 
Freeway 

Loop 

detector 

Non-parametric 
Travel time 

PCA and 

Clustering 
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 Summary 

 A literature review and synthesis of the existing research related to traditional statistical TTP 

and machine learning-based TTP methodologies have been presented and introduced in the 

preceding sections. 
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CHAPTER 3: DATA COLLECTION AND PREPARATION 

 Introduction 

In this chapter, the data collection and data processing will be discussed, and the raw travel 

time data gathered from the RITIS will be combined with historical weather data to generate the 

dataset needed in this research. Section 3.2 introduces the raw travel time data source collected 

from RITIS. In section 3.3, the weather data collection and categorization are presented, and 

section 3.4 discusses the data combination and preparation process. In the end, section 3.5 

summarizes the chapter with a short conclusion. 

 Data Collection 

The travel time dataset is collected from the RITIS in this research. RITIS is an advanced 

traffic system that includes segment analysis, probe data analytics, and signal analytics. I-485 is 

one of the busiest interstate freeways in Charlotte, which loops encircling the city. A series of 

segments in the southern loop are selected for the case study. To achieve an acceptable accuracy 

of prediction, the model has to be well-established with large historical data that need to be secured 

which typically contain at least one year’s data (Torday, 2010). In this research, the dataset is 

collected from 01/01/2019-12/31/2019, and the time interval is 15 minutes, which has 

uninterrupted coverage in the RITIS data with 24 hours per day (365 days a year). The selected 

study section starts from the interchange with I-77 (Exit 67) and ends at the interaction with US-

74 (Exit 51). Figure 3.1 shows the study road segments and three traffic message record sensors 

(A, B, C) that are selected for the model validation. There are 37 miles of roadways and 32 traffic 

message channel code segments in the clockwise and counterclockwise directions. 
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Figure 3.1 Selected road segments on southern I-485 

In this research, the raw weather data are collected at locations close to the Charlotte Douglas 

International airport, which is not far from the selected roadway segments. The basic weather data 

include weather indexes (including the temperature, dew point, humidity, air pressure, visibility, 

wind speed, wind direction, gust speed, precipitation, and weather conditions). Table 3.1 shows a 

sample of raw weather data.  
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Table 3.1 Weather data sample 

Date Time  Conditions 

Saturday, Oct 5th, 2019 7:55 AM Rain 

Saturday, Oct 5th, 2019 8:55 AM Rain 

Saturday, Oct 5th, 2019 9:55 AM Light Rain 

Saturday, Oct 5th, 2019 10:55 AM Light Rain 

Saturday, Oct 5th, 2019 11:55 AM Light Rain 

Saturday, Oct 5th, 2019 12:55 AM Light Rain 

Saturday, Oct 5th, 2019 13:55 PM Light Rain 

 

It was found that the travel time reliability is sensitive to the weather condition and severe 

weather (Zhao & Chien, 2012). The weather can significantly affect the travel time and speed, 

which are two crucial traffic flow parameters of transportation, resulting in the deterioration of a 

traffic system’s performance (Koetse & Rietveld, 2007). Since the weather data were recorded on 

a per hour basis, the discrepancy in the time intervals is treated by developing and using a mapping 

method to combine the travel time data with the weather conditions. The original weather 

conditions from raw weather data are initially classified into 30 detailed weather conditions. To 

improve the computing power of the model, the weather conditions are further classified into three 

general groups (i.e., normal, rain, and snow/fog/ice) in this research (Chen and Fan, 2019). Table 

3.2 provides the classification of the newly grouped weather conditions.  
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Table 3.2 Newly grouped weather conditions 

Snow/fog/ice Normal Rain 

Haze Light Rain Clear 
Fog Rain Partly Cloudy 

Smoke Heavy Rain Mostly Cloudy 
Patches of Fog Light Drizzle Scattered Clouds 

Mist Heavy Thunderstorm Overcast 
Shallow Fog  Unknown 

Light Freezing R Light Thunderstorm  

Light Ice Pellet Thunderstorm  

Light Freezing D 
Drizzle 
Squalls 

 

Light Freezing F   

Ice Pellets   

Light Snow   

Snow   

Heavy Snow   

 

 Data Structure and Preprocessing Steps 

There are so many factors that can affect travel time, including the traffic volume, speed, road 

class, and occupancy, event, accident information, segment locations, and weather conditions. 

In this research, the raw sample dataset is collected from the southern part of the I-485 

freeway, which is divided into 32 sections by the recorded sensor segment. The raw travel time 

data include 4 main attributes and the TMC-code indicates the segment ID, timestamp, speed, 

travel time in seconds. 

According to the travel time pattern and literature review, the data structure is designed as 

shown in this Figure 3.2. Current travel time is the travel time at the prediction segment 15 minutes 

before the target prediction horizon, which is called 𝑇𝑡−1; The lag1_travel time is the travel time 

at prediction segment 30 minutes before, which is called 𝑇𝑡−2. 

𝑇𝑡−w (the travel time at prediction segment one week before) is the first introduced to the 

TTP-related features. However, the result shows that it is a significant feature and has high related 

importance value in the modeling process. Time dif 1 is the travel time change value at Tt−1, and 
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the calculation process is shown in Figure 3.2. The upper segment travel time is the travel time of 

the nearest upstream road segment 15 minutes before, which is called 𝑇𝑡−1
𝑖−1; The upper segment 

travel time dif 1 is the travel time change value at the nearest upstream road segment 15 minutes 

before. 

 

Figure 3.2 Travel time dataset structure 

The other traffic information on each segment (from  the sensor to sensor) contains the 

subject segment and adjacent segment travel times, day of week (DOW), time of day (TOD), 

segment length, and space mean speed. The missing data rate of the sample dataset in this research 

is less than 0.5% (i.e., 4246 out of 981,083), and the missing values are replaced with the mean 

value of its two closest values. A well-defined preprocessing capability that corrects various types 

of data errors, including missing data, is mandatory for a reliable TTP system with acceptable 

accuracy and efficiency (Oh et al., 2018). In this research, the proposed prediction model is 

developed under normal traffic conditions and does not consider the factor of unexpected 

conditions (e.g., serious accidents or special events). While implementing the proposed model is 

feature selection, as the sample dataset contains more than 980,083 observations and 35 features. 

It is well known that some features are not very relevant. However, no one has the domain expertise 
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to confirm which feature is applicable. In the machine learning application, the predictor features 

(variables) usually significantly affect the prediction results. Testing the effect of the individual 

variable is essential to understand the performance of each feature, in which higher relative 

importance presents a more substantial impact in TTP. Table 3.3 indicates the definitions and 

attributes of selected features. Figure 3.2 shows the data pre-preparation process. 

Table 3.3 Definitions of selected variables 

Variable Attribute Definition 

ID Categorical Road segment ID 

𝑇𝑡 Float The travel time at the prediction road segment 

Speed  Float Space Mean Speed 

TOD Categorical Time of day (indexed 1 to 96, represent the time from 0:00-24:00 by 

every 15-minute timestep) 

DOW Categorical Day of the week (indexed 1 to 7, represent from Monday through 

Sunday) 

Month  Categorical Month (indexed 1 to 12, represent from January to December) 

Weather Categorical Weather (indexed 1 to 3, represent normal, rain and snow/ice/fog) 

𝑇𝑡−1 Float The travel time at the prediction segment 15 minutes before  

𝑇𝑡−2 Float The travel time at the prediction segment 30 minutes before  

𝑇𝑡−𝑤 Float The travel time at the prediction segment one week before  

 

𝛥𝑇𝑡−1 Float The ravel time change value at Tt−1 

𝛥𝑇𝑡−2 Float The ravel time change value at Tt−2 

𝛥𝑇𝑡−𝑤 Float The travel time change value at Tt−w 

𝑇𝑡−1
𝑖−1 Float The travel time of the nearest upstream road segment 15 minutes 

before 

𝑇𝑡−1
𝑖−2 Float The travel time of the second nearest upstream road segment 15 

minutes before 

𝛥𝑇𝑡−1
𝑖−1 Float The travel time change value at the nearest upstream road segment 15 

minutes before 

𝛥𝑇𝑡−1
𝑖−2 Float The travel time change value at the second nearest upstream road 

segment 15 minutes before 

𝑇𝑡−1
𝑖+1 Float The travel time of the nearest downstream road segment 15 minutes 

before 

𝑇𝑡−1
𝑖+2 Float The travel time of the second nearest downstream road segment 15 

minutes before 
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𝛥𝑇𝑡−1
𝑖+1 Float The travel time change value at the nearest downstream road segment 

15 minutes before 

𝛥𝑇𝑡−1
𝑖+2 Float The travel time change value at the second nearest downstream road 

segment 15 minutes before 

 
Figure 3.3 Data preparation steps 

3.4 Summary 

In chapter 3, the data gathering and collection method is introduced, and the data structure 

and pre-preparation approach to combine the travel time with original weather data is also 

discussed. This preparation provides a clean database for developing TTP in future tasks.  
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CHAPTER 4: TTP METHODOLOGY  

 Chapter 4 discusses the TTP methodology based on the dataset collected and presented in 

Chapter 3. Two machine learning-based TTP models (RF and LSTM_AM) are developed. The 

detailed characteristics of each model will be described, including the data structure configuration 

and parameter determination. 

 Random Forest Algorithm 

4.1.1.  Ensemble Learning Methodology  

An ensemble is a supervised learning algorithm because it can be trained and then used to 

make predictions. The ensemble learning methods consist of multiple single tree-based models 

(e.g., decision tree model), each alternatively solving the problem. The prediction results tend to 

be more accurate when substantial diversity among the models exists (Kuncheva and Whitaker, 

2003). Decision trees (DT), RF, and Boosting are among the top sixteen data science and machine 

learning tools used by data scientists. The three methods are similar, with a significant amount of 

overlapping. DT always suffers from high variance, making the estimation results fragile to the 

specific training data used. Building multiple models from samples of the original training data, 

called bagging, can reduce this variance. However, the bagging can make the trees highly 

correlated. RF is an extension of bagging in addition to building trees based on multiple samples 

of the original training data. It also constrains the features that can be used to build the trees, 

forcing trees to be different. The RF models have been widely applied to various research fields 

(Greenhalgh and Mirmehdi, 2012; Xu et al., 2016). For classification tasks, RF typically gives 

high accuracy while also having a faster classification time. An RF classifier requires training with 

large datasets, which in our study are available due to the nature of the travel record data collected. 
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Furthermore, the RF computational process runs efficiently on large data sets, reducing model 

complexity, overcoming overfitting, and improving efficiency. As known, the overfitting comes 

from the estimated model that fits the training data too well. In other words, overfitting is caused 

by the model function being complex to consider each data point and even outliers. The RF 

algorithm can build a large number of random trees and then combine the results from each 

individual tree. The benefit of using the RF methods is that through averaging, the variance can be 

reduced.  

4.1.2.  Random Forest Algorithm 

RF is an algorithm that can compete with gradient enhancement trees in integrated learning, 

especially for its convenient parallel training, which is very tempting in the era of big data and 

large samples. For each tree, the feature selection is conducted randomly. The prediction process 

is shown in Figure 4.1. The difference between the RF algorithm and the decision tree algorithm 

is that in RF, finding the root node and splitting the feature nodes will run randomly.  

 

Figure 4.1 Prediction process of the RF algorithm 

Figure 4.2 shows the prediction process of the RF algorithm, which is described as follows.  

(1) The number of training data points is N, and the number of variables in the classifier is M. 

(2) Select the m variables in the whole variable set M to determine the decision at a node of 

the tree. (Note that m is always considerably smaller than M) 

Input selected variable

(TOD, DOW, Weather, Speed, ...)

Voting process

(ex. 2A, 1B)

Result

(ex. A)



26 

 

 

 

(3) To construct the forest by trees, choose a training set k times with replacement from all N 

training datasets. Each of these datasets is called a bootstrap dataset. The number k is the number 

of the trees to be trained. 

(4) For each tree node, randomly choose m variables on which to make the decision at that 

node. Calculate and get the best split based on these m variables in the training set. 

(5) The “Gini Index” is used to calculate the Gini value to determine the best split point, which 

can describe the purity after the split. The Gini index will fall between 0 and 1, and the smaller the 

value, the better the split. If a dataset contains elements from two classes, the Gini index is defined 

as follows: 

𝐺𝑖𝑛𝑖(𝑇) = 1 − ∑(𝑝𝑗
2

𝑛

𝑗=1

) (1) 

where 𝑝𝑗 is the relative proportion of class j in the original dataset T, and n is the number of 

classes in dataset T. 

𝐺𝑖𝑛𝑖𝑠𝑝𝑙𝑖𝑡(𝑇) =
𝑁1

𝑁
𝐺𝑖𝑛𝑖(𝑇1) +

𝑁2

𝑁
𝐺𝑖𝑛𝑖(𝑇2) (2) 

The randomness in the RF method means two things: n training samples are randomly retracted 

from the training set and the m feature subsets are randomly drawn from M features. They are 

called bootstrapping and random feature selection. The two randomnesses are very important to 

the performance of RF. Bootstrapping ensures that the same data for every tree are not used, which 

helps the trained model to be less sensitive to the original training data. The random feature 

selection ensures one to reduce the correlation between trees. If the model is trained by a single 

DT, the change in one or two data will result in a significant change in the prediction result. 
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Figure 4.2 RF algorithm processing flow 

 

4.1.3. Extreme Gradient Boosting Method 

The extreme gradient boosting (XGB) method is a scalable machine learning method for tree 

boosting (Chen & Guestrin, 2016). XGB model is an efficient ensemble tree-based algorithm, 

which has won many machine learning competitions.  

As an ensemble tree boosting method, the objective function generates a new classification after 

each iteration. The classification can be constantly improved as the predictions are made from 

weak classifiers over the error of the previous classifier. Incorrect classification receives a bigger 

weight which forces the classifier to focus on their performance in the following iterations. The 

process leads the classification to develop tree structures perfectly and efficiently. The objective 

function can be defined as follows. The former part of the function controls the model prediction 
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Random select training 

data

Calculate MAPE 

End

Yes

Yes

Build the next split

End condition 

holds at each 
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No

Number of trees

reached? 

Yes
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GINI index

Choice of 
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accuracy, while the latter part balances the complexity. This function represents the training loss 

and the regularization. The current machine learning algorithm lacks a robust regularization factor, 

making the learning process overfitting. XGB overcomes this weakness by providing a strong 

regularization penalty which constrains overfitting (Dong et al., 2018).  

The objective function of the XGB model can be presented as below (Chen and Guestrin, 

2016):  

𝑂𝑏𝑗(Θ) = 𝐿(Θ) + Ω(Θ) 

where,  

𝐿(Θ) = The training loss, which can measure how well the model fits the training dataset; 

Ω(Θ) = The regularization term, which can measure the complexity of the model. 

The loss of the training data can be calculated as:  

𝐿 = ∑ 𝑙(𝑦𝑖, �̂�𝑖)
𝑛

𝑖=1
 

Ω(𝑓) = 𝛾𝑇 +
1

2
𝜆 ∑ ω2

𝑇

𝑗=1

 

where, 

i = the index of examples; 

T = the number of leaves in the tree; 

𝛾 = the penalty coefficient to the number of leaves; 

𝜆 = the penalty coefficient of regularization; and 

ω = the score of leaf 𝑗. 

For each independent tree structure, T is the number of leaves in the tree. ω is the leaf weight of 

the tree structure. γ and λ are regularized coefficients. 
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4.1.4.  Proposed RF Approaches 

4.1.4.1. Feature Selection and Preprocessing Steps 

In the prediction model, the southern part of the I-485 freeway is divided into 32 sections by 

the recorded sensor segment in this research. Traffic data on each segment (from sensor to sensor) 

contains information on the subject segment and adjacent segment travel times, DOW, TOD, 

segment length, and space mean speed. The RITIS real-world travel time data used for this study 

have a less than 0.5% missing rate (i.e., 4246 out of 981,083). From the previous studies (e.g., 

Wang et al., 2018), the variables that significantly impact the TTP included the basic variables 

(such as TOD, DOW, month, and weather) and the spatial and temporal characteristics of the 

adjacent road segments. 

Furthermore, in this research, the travel times (collected several steps ahead of the travel time 

to be predicted) are also accounted for in the model estimation. The prediction model is developed 

under normal traffic conditions and does not consider unexpected situations (e.g., special events). 

The data on each segment will be used to train one forest, which consists of decision trees. The RF 

model prediction includes two major steps: training and prediction. The forests are constructed 

using randomly selected parameter combinations and different numbers of trees during the training 

step.  

To achieve the best modeling results, it is vital to test the impact of different combinations of 

parameters on the RF model prediction performance. Based on previous studies, three features can 

be tuned to optimize the model’s predictive power: Max_features, N_estimators (number of trees), 

and Min_sample-leaf. They are presented as follows: 
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Max_features: 

This is the maximum number of features in the RF model allowed to try in each individual 

tree. There are multiple options available in Python to assign maximum features. “Auto/None” is 

a command that simply takes all the features that make sense in every tree, which simply does not 

put any restrictions on the individual tree. The “SQRT” option takes the square root of the total 

number of features in each individual run. For example, if the total number of variables is 100, 

under this option, the system can only take 10 of them in each individual tree. The “log2” option 

is another similar type of option used for max_features. In this research, after several tests, the 

random subspace method is applied. The number of features considered at each internal node of 

random forests is m, which is randomly chosen to be m = 𝐼𝑁𝑇(𝑙𝑜𝑔2𝑀 + 1), where M is the total 

number of features, as suggested by Breiman (2001a, b). 

n_estimators: 

This is the number of trees that the model developer wants to build before taking the 

maximum voting or averages of predictions. A larger number of trees will give one better 

performance with a compromise of computing efficiency. One should choose a value as high as 

the processor can handle because this makes the predictions more robust and stable. 

min_sample_leaf: 

The leaf is the end node of a decision tree. A smaller leaf makes the model more prone to 

capture noise in the train data. In this research, after several trials of different leaf sizes, a minimum 

leaf size of 20 is chosen. In addition, researchers have to face the problem named “tuning RF 

parameters in practice” and the excellent answer to it varies from dataset to dataset. In this research, 

the tool RandomSearch is applied to optimize the tuning process. One needs to define the range of 

parameters and then run these procedures to get the best model. In this research, the first run is 
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1000 trees, with 1/2 features per node. RF models are not sensitive if the features are independent 

or dependent, though many will perform better if the data are preprocessed. A simple way to 

identify dependence among features is to calculate a correlation coefficient between each feature 

and all other features. To determine the importance of the features, one can build a forest and see 

which features get used, as RF models tend to split out the results by using the most statistically 

significant features.  

It is also important to note that the performance measure used in this research is the mean 

absolute percentage error (MAPE). The MAPE statistic usually expresses accuracy as a percentage 

that is calculated as follows: 

𝑀𝐴𝑃𝐸 =
1

𝑚
∑|𝑦𝑖 − 𝑦𝑖

^|

𝑚

𝑖=1

 

where, m = The total number of the data points, 

      𝑦𝑖
^ = The predicted travel time value in the test dataset of record i, 

      𝑦𝑖 = The actual travel time value in the test dataset of record i. 

 LSTM Algorithm 

LSTM is an algorithm that was initially introduced by Hochreiter and Schmidhuber (Koetse 

& Rietveld, 2007). Different from the standard feedforward Recurrent Neural Network (RNN), 

LSTM has feedback connections. It can deal with not only single data points but also the sequences 

of the data. A standard LSTM unit comprises a cell, an input gate, an output gate, and a forget gate. 

Cell is responsible for remembering values over arbitrary time intervals, while the input, output, 

and forget gate control the information flow into and out of the cell. LSTM networks are well-

suited to classify, process, and make predictions based on time series data since there can be lags 

of unknown duration between important events in a time series. LSTMs can deal with the vanishing 
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gradient problem, which is hard for modeling using RNN. LSTM cell is different from the 

recurrent unit, which is a specially redesigned cell memory unit. The cell vectors can encapsulate 

the information which is assigned to forget part from previously-stored memory, and to add part 

of the new information. Moreover, as a data-driven approach, LSTM is significantly influenced by 

historical data since the method is highly dependent on the scale and integrity of the historical data.  

4.2.1. Recurrent Neural Network  

Neural networks are a set of algorithms, modeled loosely after the human. The human brain 

is composed of neurons, such as the eyes and the sense of touch. When these neurons receive 

external stimuli, they will generate electrical signals, which are transmitted layer by layer and 

output a result through the brain. RNN is a Neural Network used to process sequential data. 

Compared with ordinary neural networks, it can process sequential data. For example, the meaning 

of a word may have different meanings depending on the content mentioned above. As the travel 

time data is highly relevant sequential data, the predicted result has a high relative with a series of 

time relevant and spatial relevant data. It is more efficient to predict within a context. Event before 

and after has a high impact on the target prediction interval. 

RNN can solve such problems well. It is well understood that the way people understand an 

article and their understanding of each word will depend on what they have seen before, rather 

than discarding everything they have seen before, forgetting, and then understanding the word. In 

other words, there is always continuity in people’s thinking. The inability of traditional neural 

networks to maintain such continuity is a huge drawback. For example, when people watch a 

movie, they try to categorize what is happening in each frame. There is no clear way to use the 

traditional neural network to add events that occurred earlier in the movie to help understand what 
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happened later. However, RNN can do it. As one can see from Figure 4.3, there is a loop of 

operations that allows them to retain what they have learned. 

 

Figure 4.3 RNNs Network 

where 

𝑋𝑡: is the input vector; 

ℎ𝑡: is the model output vector. 

It is crucial to explore and solve such problems as “long-term dependencies” by choosing the 

proper parameters to achieve the best modeling results. Unfortunately, in practice, RNNs cannot 

solve the TTP problem. Bengio et al. (Hochreiter and Schmidhube, 1997) studied this problem and 

found that RNNs were indeed difficult to solve this problem. Another fatal drawback of RNN is 

that the model is hard to train as the back propagation neural network optimization process, which 

is called gradient disappearance and gradient explosion. 

4.2.2. Structure of the Memory Unit of LSTM 

LSTM is a particular type of RNN, which performs better in longer sequences than traditional 

RNN. LSTMs have been widely used to solve various problems, and excellent results have been 

achieved. Specifically, the design of LSTMs aims mainly to avoid the mentioned long-term 

dependency problem. Their essence is to remember information over a long period, and it can be 

done very quickly. LSTM treats the hidden layer as a memory unit. Therefore, LSTM has the 
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advantage of dealing with the correlation in both the short and long term. Moreover, the LSTM 

can automatically determine the optimal time lags. In this research, the structure of the memory 

unit is shown in Figure 4.4, where the memory cell is at the center of the unit. The input data is 

𝑋𝑡 and the output is the prediction result 𝑌𝑡 . There are three gates in the memory unit: input gate, 

forget gate, and output gate (represented by green circles). In this figure, the state of the cell is 

indicated by 𝑆𝑡, and the input of each of the three gates is the input data 𝑋𝑡.  The previous state 

of the memory cell is defined as 𝑆𝑡−1. LSTM cell consists of input layer, hidden layer, output 

layer and context layer. The input layer receives traffic data (such as speeds and time-related data); 

The output layer consists of one neuron that calculates the predicted travel time. The context layer 

stores the previous internal states of the model. In other words, it can store and extract traffic 

context information. The hidden layer receives inputs from the input layer and then stores them in 

context layer, finally transforming them into output layer. 

 

Figure 4.4 Memory unit of LSTM 

The mathematic model of LSTM in Figure 4.5 can be indicated by 

𝑍𝑖 = 𝜎(𝑊(𝑖)𝑋𝑡 + 𝑈(𝑖)𝑆𝑡−1) (3.) 
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𝑍𝑓 = 𝜎(𝑊(𝑓)𝑋𝑡 + 𝑈(𝑓)𝑆𝑡−1) (4.) 

𝑍𝑜 = 𝜎 (𝑊(𝑜)𝑋𝑡 + 𝑈(𝑜)𝑆𝑡−1) (5.) 

𝑍 = tanh (𝑊(𝑐)𝑋𝑡 + 𝑈(𝑐)𝑆𝑡−1) (6.) 

𝑆𝑡 = 𝑍𝑓  ⊙ 𝑆𝑡−1 + 𝑍𝑖  ⊙ 𝑍 (7.) 

ℎ𝑡 = 𝑍𝑜  ⊙ tanh(𝑆𝑡) (8.) 

𝑦𝑡 = 𝜎(𝑊(ℎ)ℎ𝑡) (9.) 

where,  

𝑍𝑖, 𝑍𝑓 , 𝑍𝑜: the output of input gate, forget gate, and output gate; After multiplying the weight 

matrix by the splicing vector, the sigmoid activation function converts it into a value between 0 

and 1, which is used as a gated state. 

Z: is a value between -1 and 1 through the activation function tanh. 

𝑆𝑡 : the new state of the memory cell. 

ℎ𝑡: the hidden state of the memory cell. 

𝑊(𝑖), 𝑊(𝑓), 𝑊(𝑜), 𝑊(𝑐), 𝑈(𝑖), 𝑈(𝑓), 𝑈(𝑜), 𝑈(𝑐): coefficient matrix. 

⊙: Hadamard Product. 

The complex algorithm of LSTM can be understood in combination with the formulas (1-9) 

in a simplified way, as shown in Figure 4.5. Compared to RNN, LSTM can improve the prediction 

accuracy by capturing the correlation within time series in both the short and long term by the 

function of different gates. The critical point to the LSTMs is the cell state. The LSTM can remove 

or add information to the cell state, which is regulated by structures called gates. 
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Figure 4.5 The schematic diagram of LSTM 

 
Figure 4.6 The travel time prediction process in one node in neural networks 

In Figure 4.6, the diagram shows what one node may look like in TTP in the LSTM cell. A 

neuron can receive multiple signals, but some are important and some are not so important. Each 

traffic information as input has a weight that is generated by the sigmoid function to get the binary 

output. Compare with RNN, LSTM has a more complex structure named LSTM cell which adds 

its hidden layer. The former output is ℎ𝑡−1, and the cell’s former state is 𝐶𝑡−1. Compared with 
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RNN that has only one transmission state ℎ𝑡, LSTM has two transmission states, including one 

cell state, and one hidden state. ℎ𝑡 in RNN corresponds to 𝐶𝑡 in LSTM; the cell state changes 

slowly; and the output is usually 𝐶𝑡−1 from the previous state plus some value. The hidden state 

can vary greatly from node to node. This feature behaves like the traffic data, which is highly 

context-related, and it takes time to absorb the change, and changes gradually. 

 

4.2.3. Attention Mechanism 

In the applications, LSTM indicates that such approaches for prediction are suitable and can 

achieve better performances than traditional models. However, in the neural network’s training 

process, the more parameters of the model, the more meaningful the model interpretation, and the 

more information the model stores, which will also bring information overload problem. When the 

traffic conditions considerably change, the prediction results are often unsatisfactory. Attention 

Mechanism in neural networks is a resource allocation scheme to allocate computing resources to 

more critical tasks and solve the problem of information overload when computing capacity is 

limited. The attention mechanism can preset the model to assign different weights to each input 

feature to extract more critical information from the highly related features. This mechanism can 

make the model more accurate. Meanwhile, it will not bring more overhead to the calculation and 

storage of the model. In this research, the attention mechanism is proposed to address the 

drawbacks of LSTM, in which the attention mechanism is over the output layer of each LSTM 

unit. The attention mechanism substitutes the traditional recurrent way to construct the depth of 

LSTM. 

In the attention mechanism, the key point is the resulting probability vector which is called 

the memory distribution and it is presented as follows: 
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𝑃𝑖 = 𝑝(z = ⅈ|X, q) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑠(𝑥𝑖 , 𝑞)) =
exp(𝑠(𝑥𝑖, 𝑞))

𝛴𝑗=1
𝑁 exp(𝑠(𝑥𝑖, 𝑞))

(10.) 

where, 

z: is the defined attention variable, and z = ⅈ means that the attention variable is the variable i, 

i∈ [1, 𝑁]; 

X: can be thought of as information store; 

q: represents the query vector. 
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CHAPTER 5: TTP MODEL VALIDATION 

 Chapter 5 discusses the validation of the developed TTP models based on the dataset gathered 

and presented in Chapter 3. For the RF and LSTM_AM models, the data training steps are 

described to determine the optimal parameters. Potential features include, but are not limited to, 

the TOD, DOW, month, year, weather conditions, and segment characteristics. The selection of 

hyper-parameters, such as the number of hidden units and iterations, is also further discussed. 

 RF Algorithm 

In order to optimize the performance of the proposed method, it is essential to test the effect 

of different combinations of parameters on the model performance. Based on previous research 

(Zhang and Haghani, 2015), the parameters that can be tested and optimized include, but are not 

limited to, Max_features, N_estimators (number of trees), and Min_sample-leaf. In general, these 

parameters need to be optimized in this model training process. 

The grid search method is the most widely used one, and therefore, it is selected and used in 

the tuning process. In this experiment, 70% of the traffic data is used as training data, and 30% of 

the data is used as testing data. The RF model is fitted with various numbers of trees (N_estimators 

ranging from 1 to 500), Min_sample-leaf (ranging from 5 to 50), and Max-feature (which is 

calculated by using the equation, m = 𝐼𝑁𝑇(𝑙𝑜𝑔2𝑀 + 1 )). For example, when M=35, 𝑚 =

 𝐼𝑁𝑇(𝑙𝑜𝑔235 + 1) = 6.  

From Figures 5.1, 5.2 and Table 5.1, the results show that the optimal N_estimator is achieved 

at 50 using the Max_feature with the log2 method, and the values of MAPEs stay nearly the same 

after that optimal point. In statistics, overfitting is the product of an analysis that corresponds too 

precisely to the sample set of data. Therefore, it may fail to fit additional data or predict future 

observations reliably, which is the main weakness of ensemble learning approaches. In other 
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words, the MAPE does not decrease when the N_estimator reaches the optimal point in the tree-

base model. It is also essential to consider the balance between prediction accuracy and 

computational efficiency, and it is evident when the model complexity increases, and the 

computational time increases significantly.  

 

Figure 5.1 Max_features and the number of tree tuning process 

 

 

Figure 5.2 RF TTP model performance with Max_feature =6 
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Table 5.1 The MAPE of the combination of parameters 

Number of 

trees 
Leaf=5 Leaf=10 Leaf=20 Leaf=30 Leaf=50 

1 31.11 29.87 26.56 26.01 26.74 

3 29.05 26.34 23.52 22.46 23.59 

5 27.38 25.9 22.09 21.28 22.24 

10 19.98 16.87 6.13 6.01 6.26 

20 9.78 7.56 6.1 5.99 6.05 

50 6.13 6.14 6.12 5.97 5.99 

100 6.46 6.48 6.51 6.42 6.54 

500 6.7 6.72 6.73 6.6 6.72 

 

To measure the effectiveness of different TTP algorithms, the MAPEs are computed for three 

different observation segments (in which A, B, C are three observation segments along the selected 

study freeway as shown in Figure 4.4) with varying horizons of prediction that range from 15 

minutes to 60 minutes. According to the comparison as shown in Table 5.2 and Figure 5.4, the 

performance of RF is better than the XGB, particularly when the horizon of the prediction time is 

extended. The MAPE of the RF model is noticeably smaller than XGB when the horizon is long 

enough (i.e., longer than 45 min).  

 



42 

 

 

 

 
Figure 5.3 Observation points in the selected segment 

 

 
Figure 5.4 RF TTP model performance comparison 
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Table 5.2 RF model comparison of different prediction methods   

MAPE (%) of different observation points with different prediction time range 

Models 15min 30min 45min 60min 

  A B C A B C A B C A B C 

RF 6.49 6.15 6.39  9.69 9.97 10.67 15.29 16.19 17.37 24.59 25.66 26.76 

XGB 6.57 6.14 6.39 10.58 9.98 10.89 15.35 15.98 17.90 25.90 26.06 28.09 

 

In the feature selection process, the RF model is employed to rank the relative importance 

using the original dataset. The features that have the importance of more than 0.1% are selected in 

the model training process. In this research, 23 features are selected from the original 35 features 

(with the least important feature being the length of the road segment at 0.17%). Table 5.3 presents 

the relative importance for each selected feature and its ranks in the proposed RF model. The 

model results show that the variable 𝑇𝑡−1(i.e., travel time 15 minutes before) has an immense 

contribution (i.e., 34.85%) to the prediction result. The immediate previous traffic condition has 

the most critical impact on the traffic condition in the future, which is consistent with a previous 

study conducted in 2015 (Zhang and Haghan, 2015). TOD is the second-highest important feature 

with an RIV of 30.12%, which is also under the expectation. 𝑇𝑡−𝑤 is the fourth-highest ranked 

variable with a 9.87% RIV, which can be interpreted as a highly similar pattern of traffic times 

between two adjacent weeks. 

The results in Table 5.3 also show that the spatial impact is less than the time impact since 

the RIVs of all the spatial variables are less than 1% (except the variable road ID with an RIV of 

2.28%). The features 𝑇𝑡−1
𝑖−1, 𝑇𝑡−1

𝑖−2 (i.e., the travel time of the nearest and second nearest upstream 

segments 15 minutes before) with the RIVs of 0.31% and 0.42%, respectively. In the meantime, 

the features 𝑇𝑡−1
𝑖+1, 𝑇𝑡−1

𝑖+2 (the travel time of the nearest and second nearest downstream segments) 

with the RIVs of 0.35% and 0.61%. Concerning the travel time change value, the RIVs of the 

nearest and second nearest downstream segments are both 0.29%, and the RIVs of the nearest and 
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second nearest upstream segments are 0.79% and 0.37%, respectively. These experimental results 

indicate that the impact of the downstream segments is more significant than those of upstream 

segments. In this regard, the spatial characteristics of the roadways clearly help explain that when 

the bottleneck occurs at the downstream segments, the upstream will be impacted very soon.   
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Table 5.3 RIV of each feature in the TTP model 

Variable Definition Relative 

importance 

(%) 

Attribute 

ID Road segment ID 2.28 7 

L Length of the road segment 0.17 23 

Speed  Space Mean Speed 10.59 3 

TOD Time of day is indexed from 1 to 96, which represent the 

time from 0:00-24:00 by every 15-minute timestep 

30.12 2 

DOW  Day of week is indexed from 1 to 7, which represent from 

Monday through Sunday 

2.84 5 

Month  The month is indexed 1 to 12, which represent from January 

to December 

1.59 8 

Weather Weather is indexed from 1 to 3, which represent normal, 

rain and snow/ice/fog 

2.63 6 

𝑇𝑡−1 The travel time at the prediction segment 15 minutes before  34.85 1 

𝑇𝑡−2 The travel time at the prediction segment 30 minutes before  0.57 11 

Tt−3 The travel time at the prediction segment 45 minutes before 0.28 18 

𝑇𝑡−𝑤 The travel time at prediction segment one week before  

 

9.87 4 

𝛥𝑇𝑡−1 The travel time change value at Tt−1 0.24 19 

𝛥𝑇𝑡−2 The travel time change value at Tt−2 0.20 21 

𝛥𝑇𝑡−3 The travel time change value at Tt−3 0.18 22 

𝛥𝑇𝑡−𝑤 The travel time change value at Tt−w 0.22 20 

𝑇𝑡−1
𝑖−1 The travel time of the nearest upstream road segment 15 

minutes before 

0.31 15 

𝑇𝑡−1
𝑖−2 The travel time of the second nearest upstream road 

segment 15 minutes before 

0.42 12 

𝛥𝑇𝑡−1
𝑖−1 The travel time change value at the nearest upstream road 

segment 15 minutes before 

0.29 16 

𝛥𝑇𝑡−1
𝑖−2 The travel time change value at the second nearest upstream 

road segment 15 minutes before 

0.29 16 

𝑇𝑡−1
𝑖+1 The travel time of the nearest downstream road segment 15 

minutes before 

0.35 14 

𝑇𝑡−1
𝑖+2 The travel time of the second nearest downstream road 

segment 15 minutes before 

0.61 10 

𝛥𝑇𝑡−1
𝑖+1 The travel time change value at the nearest downstream 

road segment 15 minutes before 

0.79 9 

𝛥𝑇𝑡−1
𝑖+2 The travel time change value at the second nearest 

downstream road segment 15 minutes before 

0.37 13 
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 LSTM_AM Algorithm 

LSTM_AM algorithm contains two training steps. The first one is the training of LSTM, and 

the second is the training of the ODC matrix (Zhao et al., 2017). To represent the highly nonlinear 

function of the model, the neural networks always have many levels of non-linearities.  Hinton 

and Salakhutdinov (2006) introduced a training method named greedy layer-wise unsupervised 

learning algorithm. Model training is the parameters’ determination process in the predetermined 

or designed model structure. In the development of LSTM prediction model, the dimension of the 

hidden layer and the number of iterations are the two most critical hyper parameters, which must 

be predetermined separately from the training process of the other parameters. The sample data set 

is divided into the training set, including 70% sample data, and the validation set, which consists 

of 30% sample data. The adjustment relies on the training set since both the dimension of the 

hidden layer and the number of iterations are determined by the prediction performance on the test 

set and evaluation of the cost function on the validation set. 

The LSTM network is trained layer by layer. At the first step, the weight matrices and bias 

vectors ( W(i), W(f), W(o), W(c), U(i), U(f), U(o), U(c)  ) are initialized and assigned the weight 

randomly. Then, the parameters are trained by using a backward propagation method with 

gradient-based optimization, which can be solved by minimizing the cost function (Zhao et al., 

2017). Secondly, the ODC matrix needs to be predetermined at different time intervals depending 

on the sample dataset. No predetermined time window size is to be required since LSTM can 

automatically calculate the optimal time lags (Ma et al., 2015). Since the sampling frequency is 15 

minutes in the dataset, the proposed model predicts travel time at 30 minutes, 45 minutes, and 60 

minutes intervals (i.e., the number of layers in the neural network is set as 2, 3, 5, and 6, 

respectively).  
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5.2.1. LSTM_AM Training Steps 

The following steps describe the training process of the LSTM_AM model. Furthermore, the 

model performance with different epochs in the training process is shown in Figure 5.5. 

Step 1: Check the data and convert the data to the standard format. 

Step 2: Shuffle the data, and then split the data into training and testing. 

Step 3: Shuffle the data before feeding it into the LSTM_AM model. 

Step 4: Train the data using the LSTM_AM model. 

 

Figure 5.5 Model performance with different epochs in the training process 

To measure the effectiveness of the proposed LSTM_AM TTP algorithm and other methods, 

the MAPEs are computed. The comparison results as shown in Table 5.4 and Figure 5.5 show that 

the proposed LSTM_AM model has a significantly improved performance over the DT and LSTM, 

especially when the prediction horizon is long. The MAPEs of the LSTM-based model with 

attention mechanism is smaller than the other methods when the horizon is long enough (e.g., 

longer than 45 minutes). LSTM indicates a better performance compared with DT. When the 
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prediction horizon is 15 minutes, the LSTM algorithm performance is as good as the LSTM_AM. 

However, when the prediction horizon is longer than 30 minutes, the MAPEs increase significantly. 

Thus, the results demonstrate that both the DT and LSTM methods lack precision when dealing 

with long-term prediction problems. The possible reason is that the causal relation of the time step 

dimension is partially ignored by the tree structure algorithm when fusing the data into the models. 

The experimental results from the sample dataset indicate that the proposed LSTM_AM model 

performance is better than the existing LSTM and other baseline methods, which primarily can 

achieve a higher accuracy in the long-range prediction horizon. 

 

Figure 5.6 LSTM_AM TTP model performance comparison 

 

Table 5.4 LSTM model comparison of different prediction methods 

MAPE (%) of varying observation points with different prediction time range 

Models 15min 30min 45min 60min 

  A B C A B C A B C A B C 

DT 7.45 7.9 9.08 12.56 12.97 13.05 18.45 19.04 19.45 29.05 29.45 31.45 

LSTM 6.49 6.35 6.67 9.69 9.97 10.67 15.29 16.19 17.37 24.59 25.66 26.76 

LSTM_AM 6.44 6.31 6.6 9.4 9.59 9.87 12.29 12.28 13.59 22.08 22.69 23.86 

 

After the development of the proposed LSTM_AM model, a unified comparison of the five 

methods as shown in Figure 5.7 is conducted by using the same group of sample data that was 
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applied in the development of the two groups of models. The 15-minute prediction group 

comparison is also conducted and presented in Figure 5.8. The results indicate that all proposed 

TTP models predicting at a 15 minute interval show a better performance over the other time 

horizons. Besides, the RF model has the best prediction performance with an average MAPE of 

6.34% on the 15 minute prediction horizon (LSTM_AM is 6.45%). The LSTM_AM model has 

the best performance in all other predictions horizons (30 min, 45 min, and 60 min). In practice, 

they can be applied to their preferred prediction horizons. 

 

Figure 5.7 TTP performance comparison at different prediction intervals 
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Figure 5.8 TTP performance comparison in the 15 min prediction horizon 

The non-parametric models tend to be more efficient and, therefore, have a more advanced 

model structure. It is mentioned that the efficiency of data-driven approaches, in general, is poor 

and not suitable for real-time applications (Oh et al., 2015). The artificial neural network is one 

of the most popular methods in the literature of TTP, perhaps due to their ability to capture 

complex relationships in large data sets and their more efficient calculations. Due to the 

introduction of the attention mechanism algorithm, the LSTM_AM algorithm is more efficient in 

capturing adequate information. In Table 5.5, the operation efficiency of various methods is also 

compared and shown. LSTM_AM is more realistic in the real-time application of TTP due to the 

high efficiency of calculation. Note that the 30-minute travel time is predicted based on the 

calculation and use of the previous 15-minute travel time. The computation time increases in all 

proposed models except in RF, which could be caused by the random selection process. 

Furthermore, with the introduction of the random select algorithm, the RF is also more efficient 

than other ensemble learning methods. 
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Table 5.5 The computation time comparison of different prediction methods 

Models 15min 30min 

  A B C A B C 

LSTM_AM 11.2s 12.5s 15.1s 12.4s 12.9s 14.5s 

LSTM 34.5s 35.1s 39.0s 38.5s 40.2s 45.8s 

DT 112s 117s 127s 145s 137s 125s 

RF 45.3s 44.7s 48.9s 39.6s 43.1s 42.2s 
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CHAPTER 6: PREDICTION RESULTS ANALYSIS 

 Chapter 6 provides the evaluation and analysis of the TTP modeling results. The statistical 

index MAPE is used to measure the prediction error. 

 Modeling Results Analysis 

In machine learning, overfitting typically occurs when the model corresponds perfectly to the 

sample set of data. Therefore, the model may fail to fit additional data or predict future 

observations reliably. RF is an ensemble of DTs. The single DT is sensitive to data variations, 

which can overfit to noise in the data. While in the RF model, as the N_estimater increases, the 

tendency of overfitting decreases. The RF is not prone to overfitting and is very noise-resistant 

due to the bagging and random feature selection process. However, it can still be improved, and to 

avoid overfitting in RF, the hyper-parameters of the algorithm should be tuned very carefully. 

TTP is based on accurate modeling of the complex nonlinear spatiotemporal traffic dynamics 

in the real world (Ran et al., 2019). The accuracy and interpretability of models are two major 

concerns. In general, RNN is more like a complex black-box model aiming for achieving the 

accuracy versus less accurate but more interpretable for traditional models such as linear regression 

(Choi et al., 2016). In recent years, the increased congestion on freeways has led to increasing 

uncertainty, making it more challenging for the TTP model to achieve preset prediction accuracy. 

In this research, a systematic machine learning solution is developed for short-term TTP. A feature 

select preparation step is developed to overcome the drawbacks in the existing methods with the 

incorporation of many spatial and temporal characteristics that may affect travel time. TTP 

accuracy can be significantly improved by reducing the time-lag problems when both spatial and 

temporal characteristics are considered (Lee et al., 2020). In statistical theory, the attention 

mechanism tends to make the model more efficient and accurate. 
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Meanwhile, it will not bring more overhead to the calculation and storage of the model. 

Therefore, the attention mechanism can be introduced to focus on the information that is more 

critical to the current prediction task among numerous inputs, reduce attention to other details, or 

even filter out irrelevant information. This way, one can solve the problem of information overload 

and improve the efficiency and accuracy of task processing. This is similar to the visual attention 

mechanism of human beings. By scanning the global image, one can obtain the target area that 

needs to be focused on and then devote more attention to this area to get more details related to 

the target while ignoring other irrelevant information. Due to the ability to concentrate on the 

compelling parts of features adaptively, this approach has been successful in image classification 

(Mnih et al., 2014), neural machine translation (Luong et al., 2015), multimedia recommendation 

(Chen et al., 2017), and some other fields. 

The proposed RF and LSTM_AM models are developed to estimate and forecast the freeway 

travel time, and the results show that the prediction accuracy and model reliability are improved 

significantly. Most existing machine learning models can deal with the nonlinear pattern of travel 

time but suffer from low accuracy when the prediction range gets longer (Zhang et al., 2020). 

Results indicate that the LSTM_AM model can provide reliable prediction results for the 15 

minutes to 60 minutes time ranges. The relative importance of the features shows that the travel 

time one step ahead (i.e., 15 minutes before) contributes the most to the predicted travel time. 

Features (such as the TOW, DOW, the travel time at prediction segment one week before, and 

weather) also have higher RIVs in the model than other features. Adding up the most critical six 

variables’ RIVs (i.e., Tt−1 , TOD, Speed, Tt−w,  DOW, and Weather) in Table 5.3 is as high as 

90.90%, which means that these six selected variables include most of the information needed in 

the TTP. Table 5.3 also shows that the time features (such as Tt−1, TOD, Tt−w,  and DOW) has a 
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significantly higher RIV than the other features (such as weather, road ID, length, and speed). It 

can be seen from Figure 5.5, the proposed RF and LSTM_AM methods have considerable 

advantages over the comparable approaches in short-time TTP. The results from the comparison 

of LSTM and tree-based models also reveal the complexity and difficulty in the optimization for 

machine learning prediction models. LSTM has an automatic optimizer to optimize the 

hyperparameters (node, layer, and batch-size). However, for the tree-based models, one needs to 

set and optimize the hyperparameters and learning rate, which could be a significant amount of 

work for optimization considering changes of all the hyperparameters. In this research, a set of 

appropriate default values is employed for these parameters based on the previous research to 

simplify the comparison. 

In summary, prediction results show that the proposed LSTM_AM model outperforms 

LSTM with a 0.053% lower on average in MAPE (i.e., 6.450% vs 6.503%), however, with a 

higher MAPE than RF and XGB in 15-minute prediction horizon (i.e., 6.343% [RF], and 6.366% 

[XGB]). The proposed RF model has the best prediction performance with an average MAPE of 

6.34% on 15-minute prediction horizon, and the LSTM_AM model has the best performance in 

all other prediction horizons (30min, 45min, and 60min). The proposed RF model is expected to 

have better compatibility (benefit of avoiding overfitting), which means that it may have better 

performance in the new dataset. However, LSTM_AM has the best computational efficiency. In 

practice, they can be applied to their preferred prediction horizons. 

 The Effect of Prediction Horizon 

For different prediction horizons, the four most important variables are the same, and they 

are travel time at prediction segment 15 minutes before, TOD, speed, and travel time one week 
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before. As expected, the travel time of the current period has the greatest influence on the travel 

time of the next period. 

Table 6.1 Relative importance for different prediction horizons 

Variable Definition 15 min 

prediction 

horizon 

30 min 

prediction 

horizon 

45 min 

prediction 

horizon 

ID Road segment ID 8 7 9 

L Length of the road segment 23 23 16 

Speed  Space Mean Speed 3 3 3 

TOD Time of day indexed from 1 to 96, which represent the 

time from 0:00-24:00 by every 15-minute timestep 

2 2 2 

DOW  Day of week indexed from 1 to 7, which represent 

from Monday through Sunday 

6 5 7 

Month  Month is indexed 1 to 12, which represent from January 

to December 

10 8 12 

Weather Weather indexed from 1 to 3, which represent normal, 

rain and snow/ice/fog 

5 6 8 

𝑇𝑡−1 The travel time at the prediction segment 15 minutes 

before  

1 1 1 

𝑇𝑡−2 The travel time at the prediction segment 30 minutes 

before  

7 11 14 

Tt−3 The travel time at the prediction segment 45 
minutes before 

19 18 23 

𝑇𝑡−𝑤 The travel time at the prediction segment one week 

before 

4 4 4 

𝛥𝑇𝑡−1 The travel time change value at Tt−1 16 19 17 

𝛥𝑇𝑡−2 The travel time change value at Tt−2 20 21 22 

𝛥𝑇𝑡−3 The travel time change value at Tt−3 22 22 20 

𝛥𝑇𝑡−𝑤 The travel time change value at Tt−w 21 20 18 

𝑇𝑡−1
𝑖−1 The travel time of the nearest upstream road segment 

15 minutes before 

14 15 19 

𝑇𝑡−1
𝑖−2 The travel time of the second nearest upstream road 

segment 15 minutes before 

11 12 10 

𝛥𝑇𝑡−1
𝑖−1 The travel time change value at the nearest upstream 

road segment 15 minutes before 

18 16 13 

𝛥𝑇𝑡−1
𝑖−2 The travel time change value at the second nearest 

upstream road segment 15 minutes before 

17 16 21 

𝑇𝑡−1
𝑖+1 The travel time of the nearest downstream road segment 

15 minutes before 

13 14 15 

𝑇𝑡−1
𝑖+2 The travel time of the second nearest downstream road 

segment 15 minutes before 

9 10 6 

𝛥𝑇𝑡−1
𝑖+1 The travel time change value at the nearest downstream 

road segment 15 minutes before 

12 9 5 

𝛥𝑇𝑡−1
𝑖+2 The travel time change value at the second nearest 

downstream road segment 15 minutes before 

15 13 11 

 

Since the most important relative feature is the same for different prediction horizons, the 

partial dependence function graphs between predicted travel time and actual travel time in the 
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current period are shown in Figure 6.1. From Figure 6.1, it can be found that current travel time 

has a highly linear relationship with the predicted travel time; however, the curve behaves 

differently for different prediction horizons. Furthermore, when the prediction horizon increases 

(from 15 to 45 min), the change rate of the curve gradually decreases, which demonstrates that 

travel time in the current period has less impact on the TTP. It indicates that the model’s predicted 

performance decreases as the prediction horizon increases. 

 

 
Figure 6.1 Partial dependence function graph for different prediction horizons 

The prediction horizon effect is consistent with the most commonly used statistical methods, 

i.e., linear regression (LR). In the LR model, the dependent variable is a linear function of the 

independent (explanatory) variables. LR demonstrates that travel time in the close future can be 

estimated based on current travel time. The coefficients of regression lines are functions of current 

time and prediction horizons that are shown in the function below.  

𝑇(𝑡 + ℎ) = 𝛼(𝑡, ℎ) +  𝛽 (𝑡, ℎ) × 𝑇(𝑡) 

The LR method shows that the predicted travel time at t+h 𝑇(𝑡 + ℎ) can be presented by a linear 

function of current travel time (t) and prediction horizon (h). One can see that the intercept α and 
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slope β are both a function of h. It can also be seen from this graph that when the prediction horizon 

increases, the slope decreases, which is consistent with the effect as expected. 
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CHAPTER 7: SUMMARY AND CONCLUSIONS 

 Chapter 7 concludes with a summary of the TTP results. Suggestions for future research are 

also provided. 

 Conclusions 

RF and LSTM_AM TTP models were developed and applied using the RITIS dataset with 

selected variables over different prediction time horizons (i.e., 15 min, 30 min, 45 min, and 60 

min). DT was selected one of the traditional algorithms, and enhanced ensemble learning methods 

XGB and LSTM were also chosen as the baseline methods to compare with the proposed TTP 

models. The results indicated that all the proposed TTP models have better performance and higher 

prediction accuracy in predicting travel times at the 15 minute interval over the other time horizons. 

Besides, the RF model had the best prediction performance with an average MAPE of 6.34% in 

the 15 minutes prediction horizon, and the LSTM_AM model had the best performance in all other 

prediction horizons (i.e., 30min, 45min, and 60min). In practice, they can be applied to their 

preferred prediction horizons. 

Most existing machine learning models can capture the nonlinear pattern of travel time but 

suffer from over-fitting. The tree-based ensemble methods have been widely used in the field of 

prediction due to their benefits of avoiding overfitting. Combining a simple tree into a forest 

always produces high prediction accuracy (Zhang and Haghani, 2015). In this research, the RF 

method was applied to analyze and model freeway travel time to improve the prediction accuracy 

and interpretability. Study results indicated that the RF model has considerable advantages in 

freeway TTP. The performance evaluation results also showed that the RF-based model can have 

better predictions in terms of prediction accuracy in the short time prediction horizon (i.e., 15 

minutes). However, when the prediction horizons become longer than 30 minutes, the errors 
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increase significantly in other methods. Different from other machine learning methods, RF 

methods provide interpretable results with varying types of predictor variables. RF can also handle 

data with very high dimensions (i.e., many features) without feature selection (because feature 

subsets are randomly selected) and identify which features are more critical after the training 

process. Furthermore, it effectively estimates missing data and maintains accuracy when a 

significant proportion of the data is missing. In summary, the proposed RF TTP method has 

considerable advantages over the other tree-based approaches. 

The performance evaluation results showed that the LSTM_AM model performs better in 

terms of both prediction accuracy and efficiency in all ranges of short-term TTP. In practice, 

efficiency is as crucial as accuracy in the application. As the level of the information detail 

increases, the parameter tunings are expected to require more computational efforts. LSTM_AM 

procedures require a relatively shorter processing time (even for an extensive network) than other 

machine learning methods. Compared with other proposed methods, the LSTM_AM model 

consumes less time. In addition, in the verification of prediction accuracy, the performance of 

XGB and DT algorithms has poor performance in training time and is less practical in real-time 

prediction. LSTM_AM model can also handle hundreds of input variables without variable 

deletion. It is noted that especially LSTM_AM can still maintain considerable prediction accuracy 

when a large proportion of the data are missing. In this research, the incomplete data was calculated 

according to its missing type, which effectively improves the quality of the data, enhances the 

usability of sample data, and enhances the model’s accuracy to a certain extent. In summary, 

through the validation and comparative analysis of the LSTM_AM, it is found that this method 

has outstanding performance and applicability for short-term TTP on freeways.  
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In summary, the RF model and a new TTP method LSTM_AM have been developed by using 

the RITIS dataset on the Charlotte freeways. Three conventional machine learning models (i.e., 

DT, XGBoost, and LSTM) have been developed by using the same dataset to perform the model 

comparison. The prediction model is tested on the RITIS dataset, and a large set of time, spatial, 

and weather-related variables was generated (collected) as additional input features (i.e., 𝑇𝑡−1, 

𝑇𝑡−2 …, 𝑇𝑡−w, 𝛥𝑇𝑡−1,…, 𝛥𝑇𝑡−𝑤 , 𝑇𝑡−1
𝑖−1… ). 𝑇𝑡−w was first introduced as an input feature in 

TTP and showed that it is very useful to improve the model accuracy. LSTM_AM had a better 

ability to model the traffic dynamics in road networks as they can model long-term dependence in 

time series and extract features from traffic data with recurrent feedback to obtain long-term 

accuracy. For a practical 15-minute prediction interval, the predicted travel time values were 

accurate to within 1 minute of the actual values on most of the routes. In addition, the prediction 

model also performed quite well even if the prediction interval was large (e.g., at the 60-minute 

interval). The maximum error in such a case was around 5 minutes on a route of 18.6 miles. 

 Future Research Directions 

The practice of RF algorithm and LSTM methods in the TTP area is still very limited. The 

future focus of the research would be hybrid models (combination models), which can combine 

several models of the same or different types of prediction models to enhance the model 

performance and prediction. The proposed RF method can be combined with other tree-based 

methods or another type of machine learning method in the preprocessing step or prediction step. 

The LSTM method can be combined with other tree-based methods or another kind of machine 

learning method in the preprocessing step or prediction step. Experimental results showed that the 

combination methods have better prediction than using a technique alone (Li et al., 2009). As the 
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combination model method has been proved superior in prediction accuracy, this should be given 

careful consideration in the future. 

In order to determine whether the prediction results are region-specific, continued research is 

also needed to replicate this study in other types of road categories that exhibit different 

characteristics. More results need to be achieved so as to compare all methods, which may help 

further demonstrate and confirm that the proposed methods have better predictive accuracy in 

short-term TTP. More variables related to traffic characteristics and surroundings such as traffic 

volumes, speed limit, and sun angles could be integrated into analysis if available. 

In addition, a new data structure can be generated and a time-specific model can be trained (i.e., 

creating 30 min interval data to predict 30 min travel time) to test the prediction accuracy and 

efficiency by comparing them with the current prediction method. It is essential to consider the 

severe weather’s impact on the travel time pattern. In practice, one also needs to reduce the effect 

of extreme values that create biased predictions. It is known that reducing the effect of exogenous 

factors can improve the TTP accuracy in the model validation, such as incidents and weather. 

However, the TTP models under special weather conditions, such as the travel time pattern under 

heavy rain, snow, fog, and ice, are valuable. Furthermore, low visibility on freeways provides 

challenges for proactive traffic safety management and TTP under fog conditions. Few studies 

have developed prediction models with a focus on visibility on freeways in a short-term time 

horizon. Therefore, future studies should also establish TTP models considering the visibility of 

freeways at a short-term time horizon.
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