A PRESENTATION AND EVALUATION OF GUIDED-LEARNING ACTIVITIES
AND PROGRAM VISUALIZATION TOOL, DISSAV, TO TEACH STACK
SMASHING

by

Erik Akeyson

A thesis submitted to the faculty of
The University of North Carolina at Charlotte
in partial fulfillment of the requirements
for the degree of Master of Science in
Cyber Security

Charlotte

2022

Approved by:

Dr. Meera Sridhar

Dr. Harini Ramaprasad (Co-Chair)

Dr. Erik Saule

©2022
Erik Akeyson
ALL RIGHTS RESERVED

i

il

ABSTRACT

ERIK AKEYSON. A presentation and evaluation of guided-learning activities and

program visualization tool, dissav, to teach stack smashing. (Under the direction of
DR. MEERA SRIDHAR)

The aim of this thesis is to improve student learning of advanced cybersecurity top-
ics, more specifically, stack smashing attacks, by increasing student engagement and
interaction. To achieve the aim, this thesis develops a program visualization tool
for teaching stack smashing attacks, DISSAV (Dynamic Interactive Stack Smashing
Attack Visualization) with an accompanying hands-on activity. DISSAV provides
a simulated attack scenario that guides the user through a three-part stack smash-
ing attack. The hands-on activity assists the user throughout conducting an attack
while highlighting key stack smashing concepts for students. In addition, this thesis
incorporates a collection of guided-learning activities into a secure software module.
The collection of guided-learning activities help student groups work systematically
through increasingly challenging content and questions that eventually help them
infer and co-construct knowledge with their peers, unlike traditional lecture-style
pedagogy.

This thesis evaluates the effectiveness of DISSAV , the hands-on activity and the
guided-learning activities and presents the results of deploying them within a soft-
ware security module in two sections of an undergraduate, introductory cybersecurity
course in the Fall 2021 semester, reaching a total of roughly 100 students. Results
from a student survey, including two user interface, six student learning, and six
student engagement questions, are presented. Results indicate that the majority of
students have positive responses to the student engagement questions while 10.3%
of responses are negative. For student learning, nearly 80% of responses are positive
while under 4% of responses are negative. This thesis then evaluates data based on

a number of factors including age and prior experience with stack smashing attacks,

iv
program visualization tools and C programming to see how effective DISSAV is across
different demographics. This thesis finds consistent responses to the student engage-
ment questions across different demographics. Finally, the thesis compares student
performance in past semesters where the software security module was taught using
traditional approaches, i.e., without using guided-learning activities or program vi-
sualization tools, to that in Fall 2021. The thesis concludes that the guided-learning
activities and program visualization tool help improve the majority of students’ en-

gagement and perceived learning.

ACKNOWLEDGEMENTS

Foremost, I would like to express my sincere gratitude to my advisor Dr. Meera
Sridhar for the continuous support throughout my Masters Thesis and research, and
for her patience, motivation, enthusiasm, and immense knowledge. Her guidance has
greatly helped me through the research and writing of my thesis. I am truly grateful
to have her as my advisor and mentor for my thesis study.

I would like to thank my co-advisor, Dr. Harini Ramaprasad, for providing quality
groundwork for this topic of research, providing immensely constructive feedback,
and helping me present my research ideas more concisely. She has brought significant
benefit to my research and writings.

I would also like to thank my committee member, Dr. Erik Saule, for his background
knowledge and insightful comments throughout the work of my thesis.

This research was supported by NSF award NSF-DGE # 1947295.

TABLE OF CONTENTS

|LIST OF TABLES|

[LIST OF FIGURES|

CHAPTER 1: |INTRODUCTION|

1.1. |Research Questionsl

1.2. |Main Contributions|

13
14

CHAPTER 2: BACKGROUND)|

2.1. |Stack Smashing Attacks|

2.2. |Pr0gram Visualization|

CHAPTER 3: IDISSAV: DYNAMIC, INTERACTIVE STACK SMASH-|
|ING ATTACK VISUALIZATION|

3.1. |DISSAV Workﬁowl

3.1.1. |Create the Programl

3.1.2. |Construct the Payload|

3.1.3. |Execute the Program|

3.2. [DISSAV highlights and limitations|

3.2.1. |Engagement in Program Visualization|

322
323

3.3. |DISSAV Accompanying Hands-on Activityl

vi

viil

1X

11

12

17

17

17

19

19

CHAPTER 4: [GUIDED-LEARNING ACTIVITIES FOR TEACHING]
ISTACK SMASHING ATTACKS|

4.1. |Introduction to C|

4.2. |Pr0cess Memory Layoutl

4.3. |Stack Smashing|

4.4. |Stack Smashing Defenses|

CHAPTER 5: DEPLOYMENT AND ANALYSIS OF THE STUDENT]

GUIDED-LEARNING ACTIVITIES|

5.1. |Deployment of Resources|

5.2. |Student survey on DISSAV and the hands-on activity|

5.3. |Demographic Analysis of Student Surveyl

5.4. |Comparative Grade Analysis with Previous Semesters

CHAPTER 6: RELATED WORK|

6.1. |Guided—Learning Activitiesl

6.2. |Effectiveness of Program Visualization Tools|

6.3. I\/isualizations for buffer overflow attack|

CHAPTER 7: |[CONCLUSIONS|

[REFERENCES|

vii

21

22

22

23

24

26

26

26

29

35

39

39

39

40

42

44

viil

LIST OF TABLES

TABLE 5.1: |Student Survey questions and responses| 28

TABLE 5.2: |Effect of age on student learning| 31

TABLE 5.3: |Effect of age on student engagement| 31

TABLE 5.4: |Effect of prior stack smashing knowledge on student learningl 32

TABLE 5.5: [Effect of prior stack smashing knowledge effect on student]| 32
|engagement|

TABLE 5.6: [Effect of prior experience with program visualization tools| 33

lon student learning]

TABLE 5.7: [Effect of prior program visualization tool experience on stu-| 33
|dent engagement|

TABLE 5.8: |Effect of prior C programming knowledge on student learningl 34

TABLE 5.9: [Effect of prior C programming knowledge on student engage-| 34
ment

TABLE 5.10: |Grade Analysis for Secure Software Quiz| 36

TABLE 5.11: |Grade Analysis for Class Exam| 36

TABLE 5.12: |Grade Analysis for Secure Software Activities| 37

TABLE 6.1: |Comparison of visualizations for buffer overflow attacks| 41

LIST OF FIGURES

FIGURE 3.1: |Function name, parameters, and local variables|

FIGURE 3.2: |Function Displayl

FIGURE 3.3: |Program Display|

FIGURE 3.4: |Dynamic payload diagraml

FIGURE 3.5: |Construct Pa,yload|

FIGURE 3.6:
FIGURE 3.7:

FIGURE 3.8: |Finish Button|

FIGURE 3.9:|Call Stack

FIGURE 3.10: (Calling strcpy|

FIGURE 3.11: |Following argv|

FIGURE 3.12:

FIGURE 3.13: |Attack Status|

FIGURE 3.14: |Landing Page|

FIGURE 3.15: |Instructional Steps|

FIGURE 4.1: |Structure of strings in C|

FIGURE 4.2: |Relative positions of memoryi

FIGURE 4.3: |Stack Smashingl

FIGURE 4.4: |Stack Canary

1X

10

11

11

12

13

13

13

14

15

15

16

17

18

18

22

23

24

25

CHAPTER 1: INTRODUCTION

In 2021, there was a 50% increase in overall cyber attacks per week on corporate
networks compared to 2020 [I]. The increasing number of daily cyber threats that
companies and governments face results in an increase in the number of security ex-
perts desired within these entities. Yet, the global skill shortage in the cybersecurity
field is well-known by business owners and experts in the field [2]. Effective cyberse-
curity education is essential to meet the increasing demand for cybersecurity experts.
However, we see that educational institutions within the United States fail to keep
up with this growing need for cybersecurity talent [3].

Control-hijacking attacks are a class of cyber attacks that aim to take over a tar-
get machine by hijacking the application’s flow to achieve remote or arbitrary code
execution [4, [5]. These types of attacks are quite popular today [0, [7]. A common
technique for conducting a control hijacking attack is exploiting a buffer-overflow
vulnerability [4, 5], a vulnerability that allows an attacker to write data to a buffer
that overflows the buffer’s capacity, overwriting adjacent memory locations [§]. Buffer
overflow vulnerabilities are known to be some of the most dangerous vulnerabilities
because they are often used for remote code execution or privilege escalation [9].
Buffer overflow vulnerabilities have the ability to alter video streams from an IP cam-
era [10], eavesdrop on conversations through desktop conferencing IoT gadgets [11],
and even start someone’s Cosori Smart Air Fryer without their knowledge [12].

A stack smashing or stack-based buffer overflow attack is a type of buffer overflow
attack that targets the call stack in C programs; stack smashing attacks are represen-
tative of control hijacking attacks because they both aim to take control over a system.

Stack smashing attacks are an important topic to teach and should be considered a

2
core part of the computer security curriculum at educational institutions due to their
impact and consistently high severity rating [13]. However, teaching stack smashing
is a complex task as research shows that the C programming language is particu-
larly difficult for novice programmers to understand |14, 15, [16] and vast background
information is required. For example, students have to acquire all of the following
background in order to grasp stack smashing: (i) parameter passing in C, (ii) how
parameters are stored on the stack, (iii) C compilation using gcc, (iv) assembly code
(to comprehend assembly code instructions on the stack), (v) process memory layout
(to understand how the heap, data, and code sections of memory work), (vi) the
meaning and usage of argv (to grasp how the program passes user input), (vii) buffer
storage (to know how character arrays are stored on the stack), (viii) buffer overflow
and how the program handles data when unsafe functions, such as strcpy, copies a
value into a buffer that contains less memory space than the value, (ix) overwriting a
return address to comprehend how someone can change the return address of a sub-
routine, (x) and shellcode to demonstrate the dangers of stack-based buffer overflow
attacks [I7]. Our goal is to create content that is interactive, engaging, and guided,
to help address these teaching and learning challenges.

Program visualization is the process of using graphics to aid in the programming,
debugging, and understanding of computer systems [18]. Program visualization aims
to expand the types of resources available to teachers and institutions to enhance stu-
dents’ understanding of software topics along with encouraging active engagement.
Program visualization tools provide visual representation for the student, with the
aim of increasing engagement. Prior work suggests that program visualization is
a beneficial resource in the classroom [19, 20, 21, 22 23, 24]. Researchers develop
a number of program visualization tools to educate students on buffer overflow at-
tacks [25] 26, 27, 28]. A number of papers evaluate the overall effectiveness of program

visualization tools [29, 30, [31].

3

Our guided-learning activities — which attempt to follow the Process Oriented
Guided Inquiry Learning or POGIL [32] style — present models that capture rele-
vant content, allows students to ezplore the models via a series of simple questions,
then move on to questions that require them to infer concepts based on the mod-
els and finally answer questions that require them to apply the concepts they infer.
The activities encourage students to discover or construct the more complex ideas
themselves, compared to being directly taught about it.

In this thesis, we present a program visualization tool, DISSAV: Dynamic, Inter-
active Stack Smashing Attack Visualization, an accompanying hands-on activity and
a collection of guided-learning activities that address the above challenges and facili-
tate teaching stack smashing. Our program visualization tool teaches students stack
smashing attacks through a guided, simulated attack scenario. Our set of guided-
learning activities along with DISSAV and the hands-on activity are packaged into
a “Secure Software” module. The guided-learning activities include four activities,
namely: (1) Introduction to C, (2) Process Memory Layout, (3) Stack Smashing, and
(4) Stack Smashing Defenses. The guided-learning activities are designed to be com-
pleted by students in small, self-managed groups that test students’ knowledge on
the current concept before they continue to the next concept. This design encourages
students to discover the more complex ideas themselves. We design the following

research questions to show our motivation for this work.
1.1 Research Questions
1. Do students find DISSAV and the hands-on activity an engaging resource for

learning about stack smashing attacks within the classroom?

2. Do the guided-learning activities improve student learning by encouraging stu-

dents to discover the more complex ideas themselves?

3. Do DISSAV and the hands-on activity consistently improve student learning and

4

engagement across all age groups while also effectively teaching stack smashing

even to students with no prior experience on the topic?

To answer the above research questions, we deployed the guided-learning activities,
DISSAV, and the hands-on activity within two sections of a junior level undergraduate
course in the Fall 2021 semester, reaching a total of roughly 100 students. We also
administered a student survey to obtain student feedback on DISSAV and on their
perceived learning and engagement with the tool and activity. The student survey
consists of two user interface questions, six student learning questions, and six student
student engagement questions. This thesis reports the averages of responses from 26
students (who consented to have their responses analyzed) for all questions from
our student survey to find that 73% of students provided positive responses, 21%
provided neutral responses, and 6% provided negative responses. We find that over
75% of students provided positive responses to the student learning questions. We also
find that over 60% of students provided positive responses to the student engagement
questions. We compare grade averages from prior semesters to the Fall 2021 semester
using a subset of questions from the secure software quiz and an exam. We find
statistically significant student learning improvements when analyzing the averages
of a subset of quiz questions but also finds no statistically significant improvements

in averages from the exam grades.
1.2 Main Contributions

1. We design, develop, and deploy a program visualization tool, DISSAV, and
accompanying hands-on activity that teaches stack smashing attacks to under-

graduate students through a guided, simulated attack scenario.

2. We deploy four guided-learning activities that cover an introduction to C, pro-
cess memory layout for C programs, stack smashing attacks, and defenses to

stack smashing attacks.

5
3. We evaluate the collection of guide-learning activities, the program visualization
tool and the hands-on activity through a student survey, demographic analysis

of the student survey, and comparative grade analysis with previous semesters.

1.3 Publications

Parts of this thesis have been published in another venue. The Colloquium for
Information Systems Security Education (CISSE) published “Dissav: A dynamic,

interactive stack- smashing attack visualization tool,” in vol. 9, no. 1, in 2022.
1.4 Roadmap

Chapter |2 provides background information about stack smashing attacks. Chap-
ter [3] describes the design of DISSAV. Chapter [4] describes the collection of guided-
learning activities previously created. Chapter |5 describes the deployment and anal-
ysis of the student survey, DISSAV, the hands-on activity, and the guided-learning
activities. Chapter [0] discusses related work. Chapter [7] presents our conclusion and

future work.

CHAPTER 2: BACKGROUND

2.1 Stack Smashing Attacks

In C programs, a call stack, also referred to as an execution stack, is a data struc-
ture that holds information on active functions of a program [33]. A stack frame is
pushed onto the call stack when a function is called and is popped once the func-
tion execution has completed. Each stack frame contains a return address to direct
program execution back to the calling function after the running function completes
execution. In C programs, execution starts with the main function and main’s stack
frame is the first to be pushed onto the call stack. The main function accepts an
arbitrary number of parameters provided by the user through an array called argv,
which goes into main’s stack frame.

In a stack smashing attack, the attacker attempts to corrupt the call stack [I7] by
overwriting the return address of a stack frame to point to a place in memory where the
attacker stores their malicious code of choice [I7]. The attacker does this by locating
and exploiting a buffer overflow vulnerability in code written using unsafe functions,
e.g., strpcy, to copy more data into a local buffer than it can hold. If the value being
copied into a buffer takes up more space than the buffer can hold, the program stores
the data in adjacent memory. It is possible for an attacker to overwrite the return
address in this process because the program stores local variables at a lower memory
address than the return address. By cleverly overwriting the local buffer (which goes
on to the call stack as part of the running function’s stack frame) with code input
through argv, the attacker overwrites the return address of the stack frame.

For the payload (malicious input) construction, the attacker uses three main com-

ponents: (1) the NOP sled, (2) the shellcode (the attacker-chosen malicious code),

7

and (3) a repeated malicious return address (the address of the shellcode). Each of

these components are described in more detail below:

e the NOP sled: The payload starts with a series of nop, or “no operation”
assembly language instructions, called a NOP sled. A NOP instruction performs
a null operation that simply continues execution and is usually used to delay
execution for purposes of timing [I7]. The attacker wants their new return
address to point to the beginning of the shellcode, which executes the shellcode.
The issue is the attacker needs to know the exact address where the shellcode
begins in memory. It is very difficult to calculate the correct return address
due to stack randomization and other runtime differences [34]. An attacker
can estimate where the shellcode begins in memory by guessing the offset of the
shellcode from the beginning of the stack, however, this is not an efficient process
and would take at best a hundred tries, and at worst a couple of thousand [17].
To account for this, the attacker places a long series of NOP instructions in
memory. Once program execution lands in the NOP sled, program execution
“slides” to the beginning of the shellcode and begins execution of the shellcode.
Landing in the NOP sled ensures complete shellcode execution. The shellcode
will most likely crash or result in a segmentation fault if the program returns

to an address anywhere but the beginning of the shellcode.

e the shellcode: The program the attacker wishes to execute is often referred to
as shellcode because it starts a remote shell on a machine. The program stores
the shellcode in the local variables section of its corresponding stack frame since

the program stores the payload in a local buffer.

e repeated malicious return address: The last component of the payload is
the new return address (the address of the payload), which is repeated several

times. Since the exact position of the return address on the stack is also difficult

8
to calculate, because its value changes each time the program compiles, the
attacker repeats the new return address in the payload to increase the chances

the new return address is correctly positioned on the stack [35].

The attacker then passes the payload as a parameter to the program and the
program stores the payload in argv. The program stores argv as a parameter to main
in its stack frame. The strcpy function then copies the payload contained in argv
into a local variable buffer. The program returns to the malicious return address if a
correct payload is used. The program executes the shellcode once program execution
has reached the malicious return address.

Although stack smashing attacks only affect languages with unsafe functions, they
have widespread impact due to the large amount of legacy code used in today’s

applications [36].
2.2 Program Visualization

Program visualization is the process of using graphics to aid in the programming,
debugging, and understanding of computer systems [I8], which educators and devel-
opers most commonly implement as web interfaces. Program visualization aims to
expand the types of resources available to teachers and institutions to enhance stu-
dents’ understanding of software topics along with encouraging active engagement.
Teachers use such systems in lectures to illustrate the changes in program states dur-
ing the execution of programs [37]. These tools also allow students to independently
practice topics that they find difficult [37]. Educators and researchers develop a num-
ber of program visualization tools to assist students in the classroom [19] 20}, 21|, 22].
Program visualization tools cover a wide variety of topics from simple introductory
algorithm comprehension [38] 21] to more specialized areas such as call stack visual-
izations [28]. Prior work shows that program visualization is a beneficial resource in

the classroom [29] 26], 39, 24].

CHAPTER 3: DISSAV: DYNAMIC, INTERACTIVE STACK SMASHING
ATTACK VISUALIZATION

DISSAV is an interactive program visualization tool that aims to teach stack smash-
ing attacks to undergraduate students [40]E]. Our overarching goals are to engage a
broader and more diverse student body and foster student interest in the field of cy-
bersecurity and ultimately improve student learning outcomes in cybersecurity topics.
We aim to achieve these goals by teaching important cybersecurity concepts such as
stack smashing attacks in an interactive and engaging manner.

DISSAV allows the user to construct a customizable stack smashing attack scenario,
guided through incremental steps, to promote engagement and understanding. The
user can change the program and payload through dynamic input while working with
the tool. First, the user creates up to three functions and adds them to a program
named intro.c. Next, the user can optionally construct a payload to provide as
input to the program. Lastly, the user executes the program to interact with the call

stack visualization and to complete a successful stack smashing attack.

3.1 DISSAV workflow
3.1.1 Create the Program

In this phase, the user incrementally builds a program named intro.c by creating
one or more functions and adding them to the program. Our Create a function
phase allows the user to create a basic function by providing a function name and
optionally adding local variables and parameters, as shown in Figure The user

can create a local variable or parameter by specifying the name, selecting a data type

!This chapter includes previously published ([40]) joint work with Erik Akeyson, Meera Sridhar,
and Harini Ramaprasad

10
from a dropdown box, and declaring a value. DISSAV currently supports char, int,

and char[] data types.

0 Create a function

Function Name ’!‘ o intro.c

Parameter char

Local Variable char

Figure 3.1: Function name, parameters, and local variables

Additionally, when creating a function, the user can 1) add a call to an unsafe C
function; 2) pass argv[1] as a parameter; and 3) call another function that has been
previously added to the program. The first two of these features play key roles in the
stack smashing attack and the ability to call an additional function enhances the call
stack visualization. As code is added to the function being created, DISSAV displays

the code to the left of the buttons shown in Figure [3.2]

void{
¥

Figure 3.2: Function Display

After a function is created, a colored pointer directs the user to add it to the
program, intro.c, and DISSAV displays the program on the right side of the screen,
as shown in Figure DISSAV dynamically updates the program code as the user
adds new (currently up to three) functions.

Our design supports the minimal functionality needed to create a C program that
can be used to construct a stack smashing attack and allows users with even the most
basic understanding of programming to build valid C programs. Our design allows
the user to view the program code, main function, the role of argv and function calls

from the main function, all while constructing the program.

11

» intro.c

|4
- #include <stdio.h>
! Add to intro.c #include <string.h>
int main(int argc, char* argv[])

functionOne("param1”, 8);
functionTwo(5);
functionThree();

}

void functionOne(char paramOne[], int param2){

char var = "v";

char varTwo[] = "variable";
3

void functionTwo(int num){
functionOne(param1, 8);

3

void functionThree(){

3

Figure 3.3: Program Display

3.1.2 Construct the Payload

After creating the program, the user can choose to use the Construct Payload
phase to create a custom payload, by clicking a checkbox indicating that they want
to attempt a stack smashing attack. If the user chooses not to construct a payload,
DISSAV allows them to provide simple strings such as “cat" or integers such as 15 as
input to the program instead.

If the user chooses to construct a Payload, DISSAV displays a dynamic diagram that
represents each part of the payload in a separate color, as shown in Figure[3.4] As the
user continues through each part of the payload, DISSAV highlights the corresponding
colored section with a border.

QConstruct Payload

argv[0] NOP Sled Shellcode Return Address

Jintro \x90\x90\x90\x90 \FA\xDA\x00\xB0\x77 | \xAB\xCD\xFF\xAE

Figure 3.4: Dynamic payload diagram

Our payload consists of three parts. Each part contains hints on how to construct
the corresponding section, as shown in Figure [3.5, The user begins with creating a

NOP sled, then adds the shellcode and finally ends with a repeating return address

12

as explained in section §2 We implement this design to provide sectioning of the

e
@ sBegin with NOP sled ©
W90\ w90\ x990 \x90
< =
— &) Add shellcode @ —
Note
*Bam ul of the length of the ma ne ae

O shut down 05

XF DD \AZ\xCH\ AL\ xD3I xFF\D 3 \x99\ a0

O 6et root priviledge Wipe OS

(]
m
]
T
J
m
1

]
o

AYxDA\X00\XBO\XTT

@ End with repeating Return Address (&

Hints

‘\xAB\xCD\xFP\xAE

Figure 3.5: Construct Payload

payload, which allows the user to analyze and work on individual pieces to break

down each concept.
3.1.3 Execute the Program

After completing the Create the Program phase and optionally the Construct
Payload phase, the user moves to the Execute the Program phase. The user clicks

the Start button shown in Figure [3.6] to start program execution. Once program

13

execution starts, DISSAV passes argv to the main function, where argv is either the

constructed payload or a simple string that the user provides as input.

o 3

Figure 3.6: Start Button

The user clicks the Next button shown in Figure [3.7] to step through the program.
DISSAV pushes / pops a function each time the user clicks the Next button and
passes the user’s input to functions that take argv as a parameter (either directly

or copied into local variables). Once the program reaches the end of main, DISSAV

o xS

Figure 3.7: Next Button

displays the Finish button shown in Figure [3.8, which pops the main function and

ends program execution.

Figure 3.8: Finish Button

DISSAV provides dynamic visual representations for the call stack, stack frame, and
program code during program execution. We discuss the details of each component

next.

3.1.3.1 Visualize Call Stack

A key aspect of DISSAV is the Call Stack, which displays the current state of
the call stack during program execution, as shown in Figure DISSAV pushes /
pops stack frames onto the Call Stack as the user steps through each function call.

For each function that is currently on the Call Stack, DISSAV displays a box with

14
the name of the function at the center and provides a dropdown button that can be
opened to view the details of the function’s stack frame (We explain this component
in Section . DISSAV uses a red background color for unsafe functions and
does not provide stack frame details for the unsafe (library) functions themselves

since those are not created by the user.

High Memory Address (Bottom of Stack)

Stack

main() 0xABCED000()

func2()

funci()

strepy()

Stack Limit

Figure 3.9: Call Stack

We do not intend for DISSAV’s Call Stack to be a detailed program execution call
stack similar to ones presented in Jeliot [21], Jype [20], and VIiLLE [23], which include
details such as visualization of the control flow and object structures and a visualiza-
tion for each line of code in the program. We design DISSAV as an interactive call
stack visualization tool that only provides information relevant to a stack smashing
attack. We choose this design to provide a simple, dynamic view that is easy for the
user to comprehend. We implement the dropdown functionality for each stack frame
to maintain a cleaner look and avoid overwhelming the user with all the details at
the same time. DISSAV allows the user to return to the Create the Program phase
at any time, to make changes to their functions and see how the changes impact the

Call Stack.

15
3.1.3.2 Visualize Program Code

DISSAV highlights the corresponding program line for each movement of a stack
frame, as shown in Figure [3.10] DISSAV highlights the function’s name and parame-
ters when the function is pushed onto the stack and highlights only the name of the

function when popping the function off the stack.

void funcOne(char p[]){
char v[] = "v";

strepy (v, p);

b

Figure 3.10: Calling strcpy

The parameter argv plays an essential role in stack smashing attacks. DISSAV
uses a dark blue font color to represent the argv parameter, as shown in Figure [3.11]
DISSAV shows argv starting as a parameter in the main function, moving as a param-
eter to a function called from the main function, then finally being passed to strcpy.
The different font colors and highlights help the user make a connection between the
program execution, the movement of the stack and the movement of argv.

int main(int argc, char* argv[]) funcTwo(argv[1]);

void funcTwo(char userInput[]) strepy(v,userInput);

Figure 3.11: Following argv

3.1.3.3 View Stack Frame

DISSAV provides a detailed stack frame display, which contains the parameters,
return address, saved frame pointer, and local variables, all with their corresponding
memory addresses, for each stack frame that is open (i.e., for which the user clicks
on the dropdown button), as shown in Figure m DISSAV displays a label next
to each section of the stack frame (e.g. Parameters), to describe the data within the
section. DISSAV updates the stack frame dynamically if the user passes input to the

corresponding function. We choose this design to provide a simple representation of

16
the stack frame that is easy to understand and track data in. The view assists the

user in understanding how data is pushed and moved within the stack frame.

func()

\0 OxABCDFFEE
r 0xABCDFFED
OxABCDFFEC

Parameters

0xABCDFFEB
OxABCDFFEA
OxABCDFFE9
OxABCDFFE8
OxABCDFFE7
OxABCDFFE6G
OxABCDFFES

Return Address

Saved Frame
Pointer 0OxABCDFFE4

OxABCDFFE3

OxABCDFFE2
0xABCDFFE1
OxABCDFFEO
OxABCDFFDF

Local Variables

Figure 3.12: Stack Frame

3.1.3.4 Complete a Stack Smashing Attack

DISSAV allows the user to attempt to complete a stack smashing attack. The
user does so by creating a function that contains a buffer overflow vulnerability, con-
structing a payload that attempts to exploit the vulnerability, and then executing the
program with the payload. An attack is successful if a correct payload is constructed.
The user’s goal is to overwrite the return address to an address that falls within the
NOP sled of the payload. The stack frame display assists the user in choosing a correct
return address and calculating the length of the payload. The set of correct return
addresses varies based on the current state of the call stack, the parameters, and local
variables. DISSAV tracks all functions where a successful attack has taken place and

displays them along with an attack status for feedback, as shown in Figure [3.13]

17

Attack Status: Successful in: f1

Attack Status: Unsuccessful

Figure 3.13: Attack Status

3.2 DISSAV highlights and limitations
3.2.1 Engagement in Program Visualization

The early 2000s saw a great interest in the research of engaging the learner in an
active way with software visualization tools. Many influential papers [41] define six
categories of engagement: No viewing, viewing, responding, changing, constructing,
and presenting. DISSAV provides engagement in the constructing category, allowing
the user to not only provide dynamic input, but to construct and then see a visual
representation of their own code. Researchers have found constructing to be more
engaging than changing [29]. We aim to implement responding and presenting in

future work to increase student engagement.
3.2.2 Ease of Use

DISSAV is an interactive web-based application built using React JS for the user
interface or front-end. It is easily accessible via a weblink and has been tested on
the most commonly used browsers, Chrome, Safari and Firefox. It requires no prior
knowledge of C and minimal programming experience. DISSAV brings the user to a
simple landing page (shown in Figure where they are able to click on the Begin
button. The user is guided through the DISSAV workflow by the numbered markers
shown in Figure [3.15] Most of the markers are simply buttons that the user clicks to
go to the next stage and require no inference. Markers one (Create a function),
and four (Construct Payload) require the user to infer some knowledge. The user

can always return to the first section for code modifications.

18

DISSAV

Dynamic Interactive Stack Smashing Attack Visualization

Begin

Figure 3.14: Landing Page

o Create a function o
intro.c ° Stack > OCOnstruct Payload

Figure 3.15: Instructional Steps

19
3.2.3 Limitations

DISSAV supports a limited version of a C program that only features representa-
tive aspects to allow a simple stack smashing attack. A function may only contain
parameters, local variables, a single strcpy function call, and calls to other functions
within the program; no other program statements are supported. Parameter and local
variable data types are limited to char, int, and char[]. During program execution,
the Next button, the Call Stack and program highlights correlate to each function
call and not to each line of code. DISSAV provides a limited implementation of pro-
gram execution that features only representative aspects. The C code that DISSAV
displays has no connection to the C programming language, simply a representation.
The next button, call stack, and highlighted code correlate to each function call,
not each line of code which is common in step through program execution. Finally,
since DISSAV is a web-based application, only users with access to a computer with

internet connection can use DISSAV.
3.3 DISSAV Accompanying Hands-on Activity

We design and deploy a hands-on activity to accompany DISSAV. The activity
guides the student through a stack smashing attack while touching on concepts cov-
ered earlier in the secure software module for review. The activity includes five mul-
tiple choice, four short answer, three screenshot upload, and one matching question.
The activity starts by covering simple C programming concepts (e.g., data types)
then continues to the three phases discussed in Section [3.1] The activity provides
instructions on creating a vulnerable function, constructing a payload, and executing
the function. The activity encourages students to use “different strings of different
lengths and number of words” before attempting to construct an attack payload. We
incorporate this feature to allow students to test different inputs and to experiment

and visualize how the computer passes and stores data on the stack before construct-

20
ing a full payload. While the activity provides instructions for payload construction
along with hints, the exact process is not given. Students must experiment by using
different numbers of NOP sleds, retrieving a good malicious return address, and for-
matting the return address. We encourage students to learn how the return address
is overwritten and how the shellcode is executed through trial and error, similar to a
real stack smashing attack. We include questions that cover major variables on the
call stack (e.g., argv and the character ‘\x’) to highlight their importance. At the end
of the activity we provide more high-level questions — e.g., how did they determine
their new return address, how did they determine the length of the payload, etc. —
with the aim of emphasizing key concepts in a stack smashing attack. The aim of the
activity is to have students build up to these more abstract concepts such as how the
computer passes data from argv to main’s stack frame and the execution of shellcode

on the call stack to adequately understand stack smashing attacks.

CHAPTER 4: GUIDED-LEARNING ACTIVITIES FOR TEACHING STACK
SMASHING ATTACKS

In this ChapteIE]7 we briefly discuss a sequence of guided-learning activities devel-
oped to teach concepts that relate to stack smashing attacks. The activities attempt
to follow the Process Oriented Guided Inquiry Learning or POGIL [32] style for cre-
ating engaging activities. POGIL-style activities present learning models (a model
could be program code, graphical representations of concepts, tables of data, etc.,
depending on the topic). Students first start by exploring the models via a series
of simple questions, then move on to questions that require them to infer concepts
based on the models and finally answer questions that require them to apply the con-
cepts they infer. Such activities encourage students to discover or construct the more
complex ideas themselves, compared to being directly taught about it and have been
shown to improve student mastery of content in a variety of areas and topics [42].

The four guided-learning activities are Introduction to C, Process Memory Layout,
Stack Smashing, and Defenses. The activities start with basic concepts of C pro-
gramming and then gradually move to more complex ideas such as a stack smashing
attack payload. The end of each activity provides external resources for students to
review and a discussion question to encourage further learning among each group.
Two out of the four guided-learning activities have been posted as “Activities for
Review” — which is the first stage in the POGIL activity endorsement process —
in the POGIL Activity Clearinghouse or PAC [43] . The remaining two activities

are being prepared for submission to the PAC in the near future. We hope to have

I This chapter includes previously unpublished work by Yates Snyder, Meera Sridhar, and Harini
Ramaprasad.

22
all four activities classroom-tested and eventually endorsed by POGIL. To the best
of our knowledge, there are currently no POGIL-endorsed activities for advanced

cybersecurity topics [44].
4.1 Introduction to C

The first activity introduces the C programming language to students and contains
32 questions. The goal is to teach students how to create and run a C program
that uses command-line arguments. The first learning objective is to teach students
how to create simple C programs using variables, functions, and arrays. The second
objective is to have students understand the structure of strings in C as referred to in
Figure their memory composition in bytes, and the unsafe C function strcpy().

smallString

s m a 1 1 AU}

0x5556 | 0x5557 | Ox5558 | Ox5559 | 0x555A | 0x555B

Figure 4.1: Structure of strings in C

4.2 Process Memory Layout

The next activity covers concepts relating to how a computer handles and processes
data in memory and contains 38 questions. The goal of this activity is to have
students understand the process memory allocation details required to conduct a
stack smashing attack. This activity discusses what a stack pointer is, what a program
counter is, what constitutes a stack frame, how and when they are added and removed
from the call stack, and how to recognize the current state of the call stack when given
a program at the current place of execution. The objective is to have students be
able to describe the different segments within the main memory of a computer, their
growth directions, and relative positions as referred to in Figure[4.2] Figure shows
the layout of the call stack and it’s state at a given point of execution. The arrow

pointing to the strcpy function represents the current point of execution. We also

23

cover identifying the values of important variables, such as argv and argc, when

given a command-line input.

Fbrgh Kismory Addrsm

Btack

Heap

Bottom of Stack

main()

re WriteString()

strepy()

[remaining avaiiabie space)

Stack Limit

#include=stdio b
#include<string h=>

void reWriteString(char oldString|])
char newString]]

= strepyi oldSirng, newSirmg J:

it maan{ it arge, char®* |_“ i
char string[] = "outdated string”;
reWriteStringstring):
printf["The old string is now: %s”,

string);

Figure 4.2: Relative positions of memory

4.3 Stack Smashing

After the students understand basic C programming concepts and process memory

layout, we move to the stack smashing attack activity that contains 24 questions. The

goal of this activity is to have students understand how previously taught concepts

can be used to complete a stack smashing attack. The learning objective is to have

students be able to describe the relevance and importance of the return address and

NOP sleds in a stack smashing attack as shown in Figure [£.3] Figure [4.3] displays the

three components of the payload that we describe in Section 2.1l We represent the

NOP sled with a yellow background, the shellcode with a green background, and the

attacker’s new return address with a red background. We use an arrow that points

from the payload figure on the lower left to argv to represent that the program uses

argv to pass the payload to the function. We discuss the contents of memory at

24

different stages of program execution when given an example of a stack smashing

attack. Lastly, we cover how to determine the size of memory addresses, the size of

the payload required, and the size of each of the payload’s components when given a

diagram of a stack.

. by ol

oo ik
s
mam}
Stack
Sk L
g
1 P Dl Ll
Heap
1
.
Draza
Code

. D AEIDFFEA
HIOE Sled Restumm Addrezs
|_';|3_.-|.._|;||,~i ruEadrcRO . refad) Shelic e [l A TG
|
|
. .
|
)
I
III
N i
dmeclude<stdia b= !
P ' I
#melude=stnmg b=
imt mani int arpe, char® argvd | 1f
char stning|] = "outdated string™;

strepy strg. argv[1]
printl* The ald strg 15 now: %"

1
I

stng):

Eiinale £ (i

Jintro

Figure 4.3: Stack Smashing

4.4 Stack Smashing Defenses

-,

Byte A ddressng Brytes
ABCORFFE
sRCTIFFFT
arge
Al
ek BCTFFFS ‘wAR
ABCOFFFS ‘T
il
ABCORFFI 'xFF
(ABCOFFF2 ‘B4
ekBCTIFFF
WesRCTFFFO
TR |
ABRCDEFEE
.-, _ .5|:||:|J|:-o:|.c - O
o3 Dl \xEl)
IABCOFFEC
wAECLFFER
ABECIFFEA
[LARCDFFER
(EANCONTER
eABCOFFED
i1
ARG DFFDF x G0
AuARC DFFIE L

After students understand and are able to complete a stack smashing attack, we

cover the defenses activity that contains 16 questions. The goal of this activity is to

present a number of techniques to prevent stack smashing attacks. The learning ob-

25
jective is to have students be able to explain how and why defenses such as ASLR [45],
non-executable stacks [46], and stack canaries [47] can help prevent a stack smashing
attack. A stack canary is a known value that the system places between the buffer and
important values such as the return address that tells the system if the data within
the stack frame has been overwritten. Using Figure [4.4] we ask students to select an
acceptable location to place the stack canary. We also discuss why strncpy ()is safer

than strcpy().

High Memory Addresses

the function's parameters

A

return adddress

B

saved frame pointer (EBP)

the function's local variables

Low Memory Addresses

Figure 4.4: Stack Canary

CHAPTER 5: DEPLOYMENT AND ANALYSIS OF THE STUDENT SURVEY,
DISSAV, THE HANDS-ON ACTIVITY, AND THE GUIDED-LEARNING
ACTIVITIES

5.1 Deployment of Resources

We deploy the guided-learning activities, the program visualization tool, DISSAV,
and the hands-on activity within the secure software module of two sections of an
undergraduate, introductory cybersecurity course at UNC Charlotte in the Fall 2021
semester, reaching a total of roughly 100 students. The module includes a set-up
activity to help students create the correct environment to run C code. We first release
the activities discussed in Chapter [4] followed by DISSAV and the hands-on activity
described in described in Chapter [3[and then finally the student survey presented in
Chapter [5.2] It is worth noting that we deploy the activity, Introduction to C, in two
parts, as completing the activity within in a single class session is extremely difficult

for students.
5.2 Student survey on DISSAV and the hands-on activity

We design and deploy a student survey (approved by UNC Charlotte ’s Institutional
Review Board or IRB) to obtain feedback on DISSAV and the accompanying hands-on
activity. The survey asks two user interface questions, six student learning questions,
and six student student engagement questions. The survey also includes demographic
questions such as age, gender, and experience level in three different areas. We
summarize the responses from the non-demographic questions next and analyze the
demographic data in Section Throughout the survey and demographic analysis,

we use the term positive to refer to the responses of Strongly Agree or Agree, neutral

27
to refer to Neither Agree Nor Disagree, and negative to refer to Disagree or Strongly
Disagree.

We summarize the responses from 26 students who consented to the student survey
in Table We provide overall averages first and then discuss the student learning
and engagement question responses in more detail. Overall, 73% of students provided
positive responses, implying that they find DISSAV and the hands-on activity to
be good resources in the classroom. 21% of students provided neutral responses,
implying that they see no benefit nor drawback to the resources. Only 6% provided
negative responses, implying that they find DISSAV and the hands-on activity not to
be beneficial. Additionally, we see that only one question falls below the 60% mark
for Strongly Agree or Agree, namely “I was so involved in the activity that I lost track
of time.”

For a more detailed view on student engagement and learning, we analyze the
respective sections of the student survey. In the Student Learning section, we see
that 74.4% of responses are positive, implying that DISSAV and the hands-on activity
improve their perceived learning. An average of 18% of responses are neutral, implying
that they find the resources did not make a difference in their learning, while only
7.6% of responses are negative, implying that they find the resources not beneficial
for learning. For Student Engagement, 58.3% of responses are positive, implying that
they find DISSAV and the hands-on activity engaging. We see that 26.3% of responses
are neutral, implying that the resources neither help nor hurt their engagement. We
see that 15.4% of responses are negative, implying that they find the resources not
to be engaging. In summary, a majority of the students find the activity useful and
agreed that it assisted with their engagement, while nearly 75% of students agreed
that it assisted with their learning. It is worth noting that one student answered
“Strongly Disagree” to the last question about whether they prefer learning with this

style of activity or not. As they did not prefer this style of learning, the student might

Table 5.1: Student Survey questions and responses

28

Question (N=26) Strongly | Agree Neither | Disagree| Strongly

Agree A /D Dis-

agree

User Interface
The application design is at- | 7 (27%) | 14 5(19%) | 0 (0%) | 0 (0%)
tractive (graphics, interface, (54%)
layout)
The text font (size and style) | 8 (31%) | 15 3 (11%) | 0 (0%) | 0 (0%)
and colors are clear and con- (58%)
sistent.

Student learning
The learning content and/or | 5 (19%) | 12 6 (23%) | 2 (8%) |1 (4%)
previous activities were suffi- (46%)
cient to help me understand
relevant concepts and do the
activity smoothly.
The content and structure of | 7 (27%) | 10 9 (35%) | 0 (0%) |0 (0%)
the activity helped me gain (38%)
confidence in the concepts.
The contents of the activity | 5 (19%) | 13 727%) | 1(4%) |0 (0%)
are relevant to my interests. (50%)
It is clear to me how the con- | 9 (34%) | 16 1 (4%) |0 (0%) |0 (0%)
tents of the activity are re- (61%)
lated to the targeted concepts.
The activity helped me rein- | 9 (34%) | 16 1 (4%) |0 (0%) |0 (0%)
force relevant concepts. (61%)
This activity is an adequate | 8 (31%) | 13 3(11%) | 0 (0%) |2 (7%)
teaching method for the in- (50%)
cluded concepts.
Student Engagement

I found the activity to be | 7 (27%) | 10 8 (30%) | 1 (4%) | 0 (0%)
fun/highly engaging (i.e., it (38%)
does not become monotonous
or boring).
Completing the individual | 10 7T27%) | 7T(27%) | 2 (8%) | 0 (0%)
tasks/phases of the activity | (39%)
gave me a satisfying feeling of
accomplishment.
I was so involved in the activ- | 0 (0%) | 6 (21%) | 10 7(27%) | 3 (6%)
ity that I lost track of time. (38%)
This activity is appropriately | 7 (27%) | 12 6 (23%) | 1 (4%) |0 (0%)
challenging for me. (46%)
I would recommend this activ- | 9 (34%) | 11 5(19%) | 1 (4%) | 0 (0%)
ity to others. (42%)
[prefer learning with this style | 7 (27%) | 13 5(19%) | 0 (0%) | 1 (4%)
of activity to other styles that (50%)

I have experienced.

29
have had a negative overall experience with DISSAV | leading to negative responses.
In the future, we plan to add more questions relating to the type / style of learning
students prefer in general.

For more open-ended responses, we ask two short answer questions about DISSAV
and the hands-on activity. First, we ask students to “list two strong aspects of the
activity”. We find three aspects of the tool that are common among several student
answers. The most common aspect that students like is the visual representation
of different components. Another common, strong aspect is the ease of navigation
throughout the tool. Finally, students also state that they find the tool engaging.
Then, we ask students to “give two suggestions to improve the activity” and find two
suggestions that are common among several student answers. The most common
suggestion is to provide more explanation or hints. While explanations / hints are
provided in the activity, some students feel that more detail would make the activ-
ity smoother. The other common suggestion is that the tool needs User Interface

improvements, specifically better window scaling for different laptop and screen sizes.
5.3 Demographic Analysis of Student Survey

To evaluate the effectiveness of DISSAV and the hands-on activity across different
demographics, we collect and analyze information on age, gender, and level of prior
knowledge in three different areas. The demographic analysis utilizes the responses
from the 26 students who consented to the student survey. We do not analyze gen-
der data because we found the sample sizes to be too small for effective statistical
analysis. We separate each demographic group based on prior experience with stack
smashing, program visualization tools and C programming into groups with no expe-

rience, little experience, and some experience[] The percentages we use in the tables

"'We now recognize that the phrases “some experience” and “little experience” could be under-
stood as similar experience levels. In future work, we plan to provide improved phrasing so that
students can easily distinguish between the terms. We emphasize the responses from students with
no experience within each applicable demographic group (i.e., demographic groups based on prior
experience) as the large majority of student within the class have little or no previous experience

30
showing demographic analysis results represent a portion of the total responses for
each demographic, not a portion of the student sample size. For example, if there are
six student learning questions answered by 26 students, then there are 156 responses.
If 40 of the responses are “Agree”, then the percentage for “Agree” would be 25.6%.
Our goal is for DISSAV and the hands-on activity to consistently improve student
learning and engagement across all age groups while also effectively teaching stack
smashing even to students with no prior experience on the topic.

We first analyze whether responses to student learning questions are consistent
across different age groups. We summarize the results in Table We see that
nearly 80% of responses to the student learning questions from students between
the ages of 18 and 22 are positive, showing that DISSAV and the hands-on activity
improve their perceived learning. Less than 1% of responses from students within
this age group are negative, indicating that DISSAV and the hands-on activity does
not improve their perceived learning. We emphasize this age group because it is the
most common age group for undergraduate students. The data shows that DISSAV
and the hands-on activity consistently improve the majority of students’ perceived
learning in all groups.

We analyze whether responses to student engagement questions are consistent
across different age groups. We summarize the results in Table We see that
over 54% of responses from students in all groups are positive. We see that 9% or
less of responses from students under the age of 25 are negative. We discuss the
responses from students under the age of 25 as they make up 88% of the sample
size. While we do see an increase in negative responses in students that are above 26
compared to other age groups, the sample size is extremely small which causes even a

single response to weigh heavily on the overall percentages. Overall, the data shows

with these topics.
2The two age groups, 18-22 and 22-25 have an overlapping age of 22. We will address this issue
in future surveys.

31
that a majority of students in all age groups find DISSAV and the hands-on activity
engaging.

Table 5.2: Effect of age on student learning

Age Strongly Agree | Agree | Neither A/D | Disagree | Strongly Disagree N

18 - 22 14.9% 64% 19.3% <1% <1% 19
22 -25 50% 20.8% 20.8% 8.4% 0% 4
26+ 77.8% 11.1% 0% 0% 11.1% 3

Table 5.3: Effect of age on student engagement

Age Strongly Agree | Agree | Neither A/D | Disagree | Strongly Disagree N

18 - 22 21% 44.7% 27.2% 5.2% 1.9% 19
22 -25 29.1% 25% 37.5% 4.2% 4.2% 4
26+ 50% 11.1% 5.5% 22.3% 11.1% 3

We analyze whether responses to student learning questions are consistent across
groups with different prior knowledge of stack smashing. We summarize the results in
Table [5.4f We see that over 77% of responses from all groups are positive, indicating
that DISSAV and the hands-on activity improve their perceived learning. We see that
over 78% of responses from students with no experience with stack smashing attacks
are positive while only 5.5% of responses within this group are negative. Overall, our
data shows that DISSAV and the hands-on activity have a positive impact on the
large majority of students’ perceived learning.

We analyze whether responses to student engagement questions are consistent
across groups with different prior knowledge of stack smashing. We summarize the
results in Table We see that over 60% of responses in each group are positive
while students with some experience find DISSAV and the hands-on activity highly

engaging as 75% of responses from students within this group are positive. The data

32

shows that the majority of students in all groups consistently find DISSAV and the

hands-on activity engaging.

Table 5.4: Effect of prior stack smashing knowledge on student learning

Experience Level | Strongly Agree Neither A/D | Disagree | Strongly N
Agree Disagree

No experience 27.8% 51.1% 15.6% 2.2% 3.3% 15

Little Experience | 25.9% 51.8% 20.3% 2% 0% 9

Some experience 33.3% 50% 16.7% 0% 0% 2

Table 5.5: Effect of prior stack smashing knowledge effect on student engagement

Experience Level | Strongly Agree Neither A/D | Disagree | Strongly N
Agree Disagree

No experience 24.4% 36.7% 26.6% 10% 2.3% 15

Little Experience 24% 40.7% 27.8% 2% 5.5% 9

Some experience 41.7% 33.3% 16.7% 8.3% 0% 2

We analyze whether responses to student learning questions are consistent across

groups with different experience levels with program visualization tools. We summa-

rize the results in Table 5.6 We see that over 74% of responses from students in all

groups are positive while over 83% of responses from students with some experience

are positive. We see that less than 6% of responses from each group are negative. We

see that over 83% of students with no experience with program visualization tools

provided positive responses showing that DISSAV and the hands-on activity improve

their perceived learning. Overall, our data shows that DISSAV and the hands-on

activity have a positive impact on the large majority of students’ perceived learning

regardless of prior experience with program visualization tools.

33

We analyze whether responses to student engagement questions are consistent

across groups with varying levels of experience with program visualization tools. We

summarize the effects in Table 5.7 We see that over 61% of responses from students

in each group are positive while 11% of responses in each group are negative. The

data shows that students in all groups consistently find DISSAV and the hands-on
activity engaging.

Table 5.6: Effect of prior experience with program visualization tools on student
learning

Experience Level | Strongly Agree Neither A/D | Disagree | Strongly N
Agree Disagree

No Experience 19.4% 63.9% 11.1% 2.8% 2.8% 6

Little Experience | 28.2% 46.1% 20.5% 2.6% 2.6% 13

Some experience 33.3% 50% 16.7% 0% 0% 7

Table 5.7: Effect of prior program visualization tool experience on student engagement

Experience Level | Strongly Agree Neither A/D | Disagree | Strongly N
Agree Disagree

No Experience 16.7% 44.4% 30.5% 2.8% 5.6% 6

Little Experience | 30.7% 32% 25.6% 7.8% 3.9% 13

Some experience 23.8% 42.8% 23.9% 9.5% 0% 7

We analyze whether responses to student learning questions are consistent across
groups with varying levels of prior C programming knowledge. We summarize the
results in Table 5.8 We see that over 76% of responses from students in all groups
are positive while only 6% or less of responses are negative. We see that over 83% of
responses from students with no experience are positive. We emphasize that perceived

learning improves even in students with no prior experience with C programming,

34
which is in line with our explicit intention of making DISSAV and the hands-on
activity accessible to students in this group.

We analyze whether responses to student engagement questions are consistent
across groups with varying levels of prior C programming knowledge. We summarize
the results in Table We see that over 62% of responses from all groups are posi-
tive while over 83% of responses from students with no experience are positive. The
data shows that students in all groups consistently find DISSAV and the hands-on

activity engaging.

Table 5.8: Effect of prior C programming knowledge on student learning

Experience Level | Strongly Agree Neither A/D | Disagree | Strongly N
Agree Disagree

No Experience 37.5% 45.8% 12.5% 0% 4.2% 4

Little Experience | 19.6% 59% 15.1% 3% 3% 11

Some experience 28.3% 48.3% 23.4% 0% 0% 10

Table 5.9: Effect of prior C programming knowledge on student engagement

Experience Level | Strongly Agree Neither A/D | Disagree | Strongly N
Agree Disagree

No Experience 29.2% 54.2% 16.6% 0% 0% 4

Little Experience | 15.1% 47% 21.3% 12.1% 4.5% 11

Some experience 36.7% 26.7% 30% 5% 1.6% 10

Overall, our data shows that the majority of students across all four demographic
groups that we analyze find DISSAV and the hands-on activity engaging. While the
data shows that DISSAV and the hands-on activity consistently improve students’

perceived learning (even in students with no prior experience on stack smashing,

35
program visualization, or C programming), we need more research and data to come

to a more definitive conclusion on whether students’ learning actually improved.
5.4 Comparative Grade Analysis with Previous Semesters

We compare grade averages from a subset of questions from the Fall 2021 secure
software module quiz and class exam with exact or similar questions from the Fall
2019 & Spring 2019 semesters where the stack smashing module was taught with
traditional activities (i.e., activities without a guided inquiry learning style and /
or program visualization tools). We hypothesize that our program visualization tool
and guided-learning activities improve student learning, or the grades of the students,
compared to previous semesters. The null hypothesis is that there is no change in
student learning or more specifically, there is no statistically significant difference
between the grade averages we analyze. The subset of questions we select for the
quiz and exam grade comparisons tests students’ knowledge on the material we cover
in the guided-learning activities, DISSAV and the accompanying hands-on activity.
The UNC Charlotte ’s Institutional Review Board (IRB) approves the use of data
collected from previous semesters.

We select 11 exact or similar questions that we asked in the Fall 2021, Spring 2019,
and Fall 2019 secure software module quiz for comparison. We average the grades
from the 11 questions for an overall view of the grades. We summarize the results in
Table While we do not see an improvement in the Fall 2021 semester quiz grades
when compared to Spring 2019, the percentages are very similar. We also see that
the averages for both sections of the Fall 2021 semester are greater than the average
from the Fall 2019 semester. We conduct an unpaired t-test with a significance level
of a=5% on the secure software module quiz grades from the Fall 2019 semester and
the Fall 2021 Section 1 & 2. We receive a p-value of 0.0452 when comparing the
Fall 2021 Section 1 grades to the Fall 2019 grades, based on which we reject the null

hypothesis. The result is expected based on the analysis presented in Section [5.3]

36
since we found that over 60% of students’ perceived learning increased. We compare
the Fall 2021 Section 2 grades to the Fall 2019 grades to receive a p-value of 0.1040,
indicating that the improvement in Fall 2021 Section 2 grades, even though present,
is not statistically significant.

Table 5.10: Grade Analysis for Secure Software Quiz

Spring 2019 Fall 2019 Fall 2021 (1) Fall 2021(2)
Average 68.52% 60.77% 67.14% 66.45%
N 68 71 58 43

We select seven exact or similar questions that we asked in the Fall 2021, Spring
2019, and Fall 2019 secure software exams. We then average the grades for the
questions for an overall view of the grades and summarize the results in Table [5.11]

Table 5.11: Grade Analysis for Class Exam

Spring 2019 Fall 2019 Fall 2021(1) Fall 2021(2)
Average 71.43% 60.71% 56.62% 59.10%
N 12 68 58 44

We see a decrease in the exam question averages when comparing the Fall 2019
semester to both sections of the Fall 2021 semester. We use an unpaired t-test with a
significance level of a=5%. We compare Fall 2019 semester to the Fall 2021 semester
section 1 to receive a p-value of 0.4945, showing no statistical significance between
the two groups. We compare Fall 2019 semester to the Fall 2021 semester Section
2 to receive a p-value of 0.7229, showing no statistical significance between the two
groups. We exclude the comparison to the Spring 2019 semester as the exam was
optional; students who were satisfied with their grade did not have to take the exam.
We infer that the 12 students who took the exam were well prepared in an attempt

to boost their final grade, leading to higher overall averages.

37

We also analyze the grade averages from six activities included in the secure soft-
ware module from previous semesters to the six activities included in the Fall 2021
semester. The six activities from previous semesters include three activities that cover
a software security warm-up along with the activities “Understand Call Stacks”, “The
role of argv in stack smashing”, and “Shellcode, NOP sleds, and Canaries”. The six
activities in Fall 2021 include five different guided-learning activities (note that we
separate Introduction to C into two activities), along with DISSAV’s hands-on activ-
ity. We summarize the results in Table While we see that all activity grades
have a high grade average, we find it hard to come to a conclusion on improvements
as the grade percentages for the activities vary across each semester.

We see an increase in activity averages when we compare the Spring 2019 activity
grade averages to the Fall 2021 section 2 activity grade averages. We hypothesize
that the increases in the grade averages are statistically significant, meaning that
DISSAV and the guided-activities improve student learning. Our null hypothesis is
that there is no statistical significance to the grade increase in activities meaning that
there is not strong enough evidence to state whether DISSAV and the guided-learning
activities improve student learning. We conduct an unpaired t-test with a significance
level of a=5% on the activity grades from the Spring 2019 semester and the Fall 2021
Section 2. We receive a p-value of 0.1007 when comparing the Fall 2021 Section 1

grades to the Fall 2019 grades, leading us to accept the null hypothesis.

Table 5.12: Grade Analysis for Secure Software Activities

Spring 2019 Fall 2019 Fall 2021(1) Fall 2021(2)

Average 78% 81% 1% 82%

In regard to the grade analysis, we note four additional aspects. First, we did not
conduct a survey about prior experience levels of students in either Spring or Fall

2019. So, there may be variability in the overall background level of students in past

38
semesters when compared to Fall 2021. In general, there is obviously also variability
in the student body in every semester. Second, Fall 2021 was the first semester
back on campus for students at UNC Charlotte due to the COVID-19 pandemic.
We recognize that while some students are happy to be back on campus, others
are apprehensive about coming back on campus. We observe that many students
needed time to adjust back to in-person learning, which requires more engagement and
participation in the classroom. Third, during the Fall 2021 semester, the instructor
significantly reduced the level of direct instruction for the secure software module
when compared to previous semesters. This leads us to believe that there may need
to be a better balance between direct instruction and solely student-driven guided-
learning activities, especially for undergraduate students.

Lastly, we find that some of the guided-learning activities were too long to complete
within a class period. The activities Introduction to C' and Process Memory Layout
contain 32 and 38 questions, respectively. Even with the separation of the activity
Introduction to C into two parts, many students were unable to complete the activity
within the time period. While the instructor allowed extra time for students to
complete the activity, the lack of continuity of group work on the guided-learning

activities may have reduced overall engagement and performance.

CHAPTER 6: RELATED WORK

6.1 Guided-Learning Activities

Process Oriented Guided Inquiry Learning (POGIL) is a student-centered, group-
learning instructional strategy and philosophy developed through research on how
students learn best. [32]. The activities encourage students to work together in self-
managed teams. The activities stimulate critical thinking, problem solving and col-
laboration. POGIL facilitates activities using clear learning objectives, assessment
questions and tips [32].

POGIL Activity Clearinghouse (PAC) [43] contains student-centered instructional
activities at various stages of development centered around the (POGIL) pedagogy.
The purpose is to facilitate the collaboration, peer review, and classroom testing

stages associated with creating high-quality materials meeting the standards approved

by The POGIL Project.
6.2 Effectiveness of Program Visualization Tools

Rajala et. al [23] evaluates the effectiveness of the ViLLE tool. The paper makes
use of a number of pre and post test questions to analyze the tool. The authors
find that the tool enhances students’ learning regardless of previous programming
experience [23]. The study also finds that the tool benefits novice learners more than
learners with some previous experience.

Karnalim [38] evaluates the effectiveness of the visualization tool PythonTutor.
The authors use a student survey and a quiz to analyze student use of their tool.
The authors find that program visualization is a promising tool to assist student

learning programming, particularly in Introductory Programming course [38]. They

40

also conclude that their tool has positively affected the learning process.
Cisar [31] evaluates the effectiveness of the visualization tool Jeliot 3. The research
lasted for two school years and 400 students were included [31]. Their analyze finds

that Jeliot 3 does have an influence on the process of learning Java.
6.3 Visualizations for buffer overflow attack

Many buffer overflow visualization tools have been developed and deployed to assist
in the education of secure programming.

Sasano [25] proposes a visualization tool for detecting when a program overwrites
a return address by a buffer overflow attack. The tool provides a gdb visual of the
call stack during the execution of a given C program, to assist novice developers
in detecting whether a function contains a buffer overflow vulnerability. The user
requires background knowledge of memory and gdb to use and understand the outputs
of certain commands. The main focus of Sasano’s tool is to check if a function contains
a buffer overflow vulnerability while DISSAV aims to simulate an attack scenario.
Sasano’s tool requires background knowledge of gdb, while DISSAV does not.

Zhang [26] et al. proposes an interactive visualization to teach buffer overflow
concepts. This tool displays a segment of memory for the user to learn how a buffer
stores memory along with how a program overwrites memory. This tool lacks an
interactive call stack representation, which is a key focus of DISSAV.

Walker [27] et al. designs a tool to visualize the process address space for teaching
secure C programming. Unlike DISSAV, SecureCVisual does not allow the user to
conduct a stack smashing attack by using a payload.

Most closely related to our work is the Simple Machine Simulator (SMS) [28], which
gives a dynamic visual representation of the stack during program execution. SMS
allows the user to step through a C program while viewing the stack and applies rigid
rules for mapping source code to memory. The final exercise allows users to overwrite

a return address in an attempt to execute code at a different spot in memory. The

41
instructor predefines the SMS programs and they cannot be changed by the users
during the lab, unlike DISSAV which is highly customizable, allowing users to modify

the program and the payload during the lab.

Table 6.1: Comparison of visualizations for buffer overflow attacks

DISSAV | Zhang | Walker SMS Sasano
Stack Visualization Yes No Yes Yes Yes
Dynamic Payload Yes Yes No No No
Attack Scenario Yes Yes No Yes No
Code Visualization Yes No Yes Yes Yes

In Table [6.1, we compare and contrast DISSAV with the buffer overflow attack
visualization tools discussed above, highlighting the main functionalities provided
by each tool. To the best of our knowledge, DISSAV is currently the only tool that
provides stack visualization, dynamic payload, attack scenario construction, and code

visualization.

CHAPTER 7: CONCLUSIONS

We present DISSAV — a web-based, dynamic, interactive program visualization
tool to teach stack smashing attacks. DISSAV allows the user to create a program,
construct a payload, and execute the program to attempt a simulated stack smashing
attack. DISSAV is designed to be easy to access and use even for novice program-
mers. Our overall aim is to improve student learning and engagement in advanced
cybersecurity topics such as stack smashing attacks, as part of an effort to foster a
broader and more diverse student body in cybersecurity.

We discuss the deployment and evaluation of a student survey, a collection of
guided-learning activities, DISSAV | and an accompanying hands-on activity. We
find that DISSAV and the hands-on activity improve over 75% of students’ perceived
learning while over 60% of students find the tool and hands-on activity engaging. This
thesis finds that the majority of the 26 students who consented to the student survey
find DISSAV and the hands-on activity an engaging resource in the classroom. While
the data shows that DISSAV and the hands-on activity consistently improve students’
perceived learning (even in students with no prior experience on stack smashing,
program visualization, or C programming), we need more research and data to come
to a more definitive conclusion on whether students’ learning actually improved. We
compare grade averages from prior semesters to the Fall 2021 semester using a subset
of questions from the secure software quiz and an exam. While we find statistically
significant student learning improvements when analyzing the averages of a subset of
quiz questions, we need further research and data to come to a conclusion on whether
the guided-learning activities encourage students to discover the more complex idea

themselves since we also find no statistically significant improvements in averages

43
from the exam grades. While we see that activity grades from all semesters have a
high grade average, we find it hard to come to a conclusion on improvements as the
grade percentages for the activities vary across each semester.

In future work, to increase engagement and interactivity with DISSAV | we plan to
incorporate our hands-on activity into Criminal Investigations, an interactive, gam-
ified, scalable, web-based framework for teaching and assessing Internet-of-Things
(IoT) security concepts [48]. Specifically, we will present a narrative and questions to
the student within the Criminal Investigations framework and then have them per-
form the actual activity steps within the DISSAV web application. We plan to design
a narrative describing how an attacker has successfully completed a stack smashing
attack on a UNC Charlotte software system and it is the student’s responsibility to
recreate the attack so that law enforcement and the UNC Charlotte cybersecurity
department can gain more knowledge of how the attack occurred.

We plan to improve aspects of DISSAV that students think need improvement, such
as window scaling and provide more hints and explanations. We plan to improve the
hands-on activity by providing more process memory layout background within the
activity before completing the stack smashing attack. We also plan to release DISSAV
in future semesters to gain more data on students’ engagement and learning with the

tool and activity.

44
REFERENCES

[1] Check Point Technologies, “Check point research: Cybersecurity attacks in-
creased 50% year over year.” https://checkpoint.com /.

7

[2] S. Furnell, “The cybersecurity workforce and skills,” Computers & Security,

vol. 100, 2021.

[3] W. Crumpler and J. Lewis, “The cybersecurity workforce gap.”
https:/ /www.csis.org/.

[4] C. Hritcu, “Control hijacking attacks.” http://citeseerx.ist.psu.edu.

[5] L.-H. Chen, F.-H. Hsu, C.-H. Huang, C.-W. Ou, C.-J. Lin, and S.-C. Liu, “A
robust kernel-based solution to control-hijacking buffer overflow attacks,” Journal
of Information Science and Engineering, vol. 27, pp. 869-890, 05 2011.

[6] L. Vaas, “Pulse secure VPNs get quick fix for critical RCE.”
https:/ /threatpost.com.

[7] S. Gatlan, “Foxit Reader bug lets attackers run malicious code via PDFs.” bleep-
ingcomputer.com.

[8] Cloudflare, “What is buffer overflow?.” cloudflare.com.

[9] S. Niculaa and R. Zotaa, “Exploiting stack-based buffer overflow using modern
day techniques,” Procedia Computer Science, vol. 160, pp. 9-14, 2019.

[10] J. Leyden, “Research exposes vulnerabilities in IP camera firmware used by mul-
tiple vendors.” portswigger.net.

[11] T. Seals, “STEM audio table rife with business-threatening bugs.” threat-
post.com.

[12] A. Hashim, “Vulnerabilities in Cosori Smart Air Fryer could allow remote code
execution attack.” latesthackingnews.com.

[13] B. Taylor and S. Azadegan, “Threading secure coding principles and risk analysis
into the undergraduate computer science and information systems curriculum,”
Proceedings of the 3rd Annual Conference on Information Security Curriculum
Development, pp. 24-29, 2006.

[14] E. Heinsen and C. McDonald, “Program visualization and explanation for novice
C programmers,” Proceedings of the 16th Australasian Computing Education
Conference, vol. 148, pp. 51-57, 2014.

[15] D. Budny, L. Lund, J. Vipperman, and J. Patzer, “Four steps to teaching C
programming,” 32nd Annual Frontiers in Education, vol. 2, pp. 18-22, 2002.

https://blog.checkpoint.com/2022/01/10/check-point-research-cyber-attacks-increased-50-year-over-year
https://www.csis.org/analysis/cybersecurity-workforce-gap
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.644.7294&rep=rep1&type=pdf
https://threatpost.com/pulse-secure-vpns-critical-rce/166437/
https://www.bleepingcomputer.com/news/security/foxit-reader-bug-lets-attackers-run-malicious-code-via-pdfs/
https://www.bleepingcomputer.com/news/security/foxit-reader-bug-lets-attackers-run-malicious-code-via-pdfs/
https://www.cloudflare.com/learning/security/threats/buffer-overflow/
https://portswigger.net/daily-swig/research-exposes-vulnerabilities-in-ip-camera-firmware-used-by-multiple-vendors
https://threatpost.com/stem-audio-table-business-bugs/166798/
https://threatpost.com/stem-audio-table-business-bugs/166798/
https://latesthackingnews.com/2021/04/27/vulnerabilities-in-cosori-smart-air-fryer-could-allow-remote-code-execution-attacks/

[16]

[17]
18]

[19]

[20]

[21]

22]

23]

[24]

[25]

[26]

27]

28]

45

D. Radosevic, T. Orehovacki, and A. Lovrencic, “New approaches and tools in
teaching programming,” 20th Central European Conference on Information and
Intelligent Systems, pp. 23-25, 2009.

A. One, “Smashing the stack for fun and profit.” https://inst.eecs.berkeley.edu.

B. Myers, “Taxonomies of visual programming and program visualization,” Jour-
nal of Visual Languages and Computing, vol. 1, no. 1, pp. 97-123, 1990.

P. Guo, “Online Python Tutor: embeddable web-based program visualization for
CS education,” Proceedings of the 44th ACM Technical Symposium on Computer
Science Education, pp. 579-584, 2013.

J. Helminen and L. Malmi, “Jype - A program visualization and programming
exercise tool for python,” Proceedings of the 5th international symposium on
Software visualization, pp. 153-162, 2010.

A. Moreno, N. Myller, E. Sutinen, and M. Ben-Ari, “Visualizing programs with
Jeliot 3, Proceedings of the Working Conference on Advanced Visual Interfaces,
pp. 373-376, 2004.

J. Cross, D. Hendrix, and D. Umphresss, “‘jGRASP: An integrated development
environment with visualizations for teaching Java in CS1, CS2, and beyond,”
Journal of Computing Sciences in Colleges, vol. 23, no. 2, pp. 170-172, 2007.

T. Rajala, M. Laakso, E. Kaila, and T. Salakoski, “Effectiveness of program visu-
alization: A case study with the ViLLE tool,” Journal of Information Technology
Education, vol. 7, pp. 15-32, 2008.

S. Halim, Z.-C. Koh, V. Loh, and F. Halim, “Learning algorithms with unified and
interactive web-based visualization,” Olympiads in Informatics, vol. 6, pp. 5368,
2012.

[. Sasano, “A tool for visualizing buffer overflow with detecting return ad-
dress overwriting,” Proceedings of the 9th EAI International Conference on Bio-
wnspired Information and Communications Technologies, vol. 2, no. 5, 2016.

J. Zhang, X. Yuan, J. Johnson, J. Xu, and M. Vanamala, “Developing and assess-
ing a web-based interactive visualization tool to teach buffer overflow concepts,”
IEEFE Frontiers in Education Conference, pp. 1-7, 2020.

J. Walker, M. Wang, S. Carr, J. Mayo, and C.-K. Shene, “A system for visualizing
the process address space in the context of teaching secure coding in C,” Pro-
ceedings of the 51st ACM Technical Symposium on Computer Science Education,
pp. 1033-1039, 2020.

D. Schweitzer and J. Boleng, “A simple machine simulator for teaching stack
frames,” Proceedings of the j1st ACM Technical Symposium on Computer Sci-
ence FEducation, pp. 361-365, 2010.

https://inst.eecs.berkeley.edu/~cs161/fa08/papers/stack_smashing.pdf

[29]

[30]

[31]

32]

[33]
[34]
[35]
136]

137]

[38]

[39]

[40]

[41]

[42]

46

J. Urquiza-Fuentes and J. A. Velazquez-Iturbide, “A survey of successful evalua-
tions of program visualization and algorithm animation systems,” Transactions
on Computing Education, vol. 9, no. 2, pp. 1-21, 2009.

J. A. Velazquez-Iturbide, I. Hernan-Losada, and M. Paredes-Velasco, “Evaluating
the effect of program visualization on student motivation,” IEEE Transactions
on FEducation, vol. 60, no. 3, pp. 238-245, 2017.

S. Cisar, R. Pinter, and D. Radosav, “Effectiveness of program visualization in
learning Java: a Case Study with Jeliot 3,” International Journal of Computers
Communications & Control, vol. 6, no. 4, pp. 668-680, 2011.

POGIL Project Team, “Process-oriented guided inquiry learning.”
https:/ /pogil.org/.

DBpedia, “About: Call stack.” dbpedia.org,.
Rodrigo, “How does a nop sled work?.” stackoverflow.com.
USNA, “Lesson 8: Buffer overflow attack.” usna.edu.

J. Xu, Z. Kalbarczyk, S. Patel, and R. Iyer, “Architecture support for defend-
ing against buffer overflow attacks,” International Conference on Information
Technology: Research and Education, pp. 243-250, 2003.

E. Kaila, T. Rajala, M.-J. Laakso, and T. Salakoski, “Effects of Course-Long use
of a program visualization tool,” Proceedings of the 12th Australasian Conference
on Computing Education, vol. 103, pp. 97-106, 2010.

O. Karnalim and M. Ayub, “The effectiveness of a program visualization tool on
introductory programming: A case study with PythonTutor,” Communication
and Information Technology, vol. 11, no. 2, pp. 67-76, 2017.

T. Rajala, M.-J. Laakso, E. Kaila, and T. Salakoski, “ViLLE: A language-
independent program visualization tool,” Proceedings of the 7th Baltic Sea Con-
ference on Computing Education Research, vol. 88, pp. 151-159, 2007.

E. Akeyson, M. Sridhar, and H. Ramaprasad, “DISSAV: A dynamic, interactive
stack- smashing attack visualization tool,” Colloquium for Information Systems
Security Fducation, vol. 9, no. 1, 2022.

T. Naps, S. Cooper, B. Koldehofe, C. Leska, G. Robling, W. Dann, A. Korhonen,
L. Malmi, J. Rantakokko, R. Ross, J. Anderson, R. Fleischer, M. Kuittinen, and
M. McNally, “Evaluating the educational impact of visualization,” Innovation
and Technology in Computer Science Education, pp. 124-136, 2003.

POGIL Project Team, “Effectiveness of process-oriented guided inquiry learning.”
https:/ /pogil.org/about-pogil /effectiveness-of-pogil.

https://pogil.org/
https://dbpedia.org/page/Call_stack
https://stackoverflow.com/questions/14760587/how-does-a-nop-sled-work
https://www.usna.edu/ECE/ec312/Lessons/host/EC312_Lesson_8_Buffer_Overflow_Attack_Course_Notes.pdf
https://pogil.org/about-pogil/effectiveness-of-pogil

[43]

[44]

[45]

[46]

[47]

48]

47

POGIL Project Team, “POGIL activity clearinghouse.” https://pogil.org/pogil-
tools/pac.

CS POGIL Project Team, “Process oriented guided inquiry learning in computer
science.” https://cspogil.org/Home.

Y. Jang, S. Lee, and T. Kim, “Breaking kernel address space layout random-
ization with intel TSX,” Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, pp. 380-392, 2016.

G. Kc and A. Keromytis, “e-NeXSh: achieving an effectively non-executable stack
and heap via system-call policing,” Proceedings of the 21st Annual Computer
Security Applications Conference, pp. 15-302, 2005.

H. Liljestrand, Z. Gauhar, T. Nyman, J.-E. Ekberg, and N. Asokan, “Protecting
the stack with PACed canaries,” Proceedings of the Jth Workshop on System
Software for Trusted Execution, pp. 1-6, 2019.

J. Hall, A. Mohanty, P. Murarisetty, N. Nguyen, J. Bahamon, H. Ramaprasad,
and M. Sridhar, “Criminal Investigations: An interactive experience to improve
student engagement and achievement in cybersecurity courses.,” Proceedings of

the 53rd ACM Technical Technical Symposium on Computer Science Education,
2022.

https://pogil.org/pogil-tools/pac
https://pogil.org/pogil-tools/pac
https://cspogil.org/Home

	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	Research Questions
	Main Contributions
	Publications
	Roadmap

	BACKGROUND
	Stack Smashing Attacks
	Program Visualization

	DISSAV: DYNAMIC, INTERACTIVE STACK SMASHING ATTACK VISUALIZATION
	DISSAV workflow
	Create the Program
	Construct the Payload
	Execute the Program

	DISSAV highlights and limitations
	Engagement in Program Visualization
	Ease of Use
	Limitations

	DISSAV Accompanying Hands-on Activity

	GUIDED-LEARNING ACTIVITIES FOR TEACHING STACK SMASHING ATTACKS
	Introduction to C
	Process Memory Layout
	Stack Smashing
	Stack Smashing Defenses

	DEPLOYMENT AND ANALYSIS OF THE STUDENT SURVEY, DISSAV, THE HANDS-ON ACTIVITY, AND THE GUIDED-LEARNING ACTIVITIES
	Deployment of Resources
	Student survey on DISSAV and the hands-on activity
	Demographic Analysis of Student Survey
	Comparative Grade Analysis with Previous Semesters

	RELATED WORK
	Guided-Learning Activities
	Effectiveness of Program Visualization Tools
	Visualizations for buffer overflow attack

	CONCLUSIONS
	REFERENCES

