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ABSTRACT

TYLER J GREAR. Supervised Projective Learning for Electroencephalography Analysis.
(Under the direction of DR. DONALD JACOBS)

The brain-computer interface has emerged as a promising field of research with the capacity

to significantly transform multiple technological sectors. The imagining of limb movement

known as motor imagery (MI) serves as an auspicious paradigm for the interface control of

such a device. Masked by volume conduction, electroencephalography (EEG) MI signals

exhibit a low signal-to-noise ratio. Additionally, the underlying spatio-temporal pattern

is manifested spectrally by the suppression and amplification of the respective ` and V

frequency bands during sensorimotor cortical activity. These challenges necessitate further

advancements in pattern recognition and feature extraction by way of machine learning.

A novel bottom-up approach for the artifact removal and single-channel classification of

EEG MI signals known as supervised projective learning for EEG analysis (SPLEEGA)

is introduced in this thesis. The underlying engine of SPLEEGA is supervised projec-

tive learning with orthogonal completeness (SPLOC). For each electrode, a SPLEEGA

eigenchannel provides a characteristic vector space that discriminates MI from resting state

signals in both the ` and V frequency bands while simultaneously performing temporal

alignment as an emergent property of the developed orthonormal basis.

The 52-subject GigaDBMI dataset from Gwangju Institute of Technology was utilized in

this work. At a sparse-sensor configuration, complete separation of MI signals from resting

state signals is achieved for 73% of subjects. With a contralateral montage, this is increased

to 100% of subjects revealing at least two discriminatory eigenchannels. Utilizing only

7% of data for training during an automatic channel selection procedure, SPLEEGA attains

comparable MI classification accuracy to the state-of-the-art using only a single electrode

and frequency band. Furthermore, the utility for real-time applications is encouraging due

to a rapid classification which takes < 100 ms after an initial calibration is executed.
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CHAPTER 1: INTRODUCTION

The brain-computer interface (BCI) provides a promising avenue for many applications

such as neuroprosthetics [1, 2, 3], computer-assisted eye-gaze targeting [4, 5] and control-

ling exoskeleton apparatus [6, 7]. A systemic workflow for a generalized BCI is shown

in Figure 1.1. Effectively utilizing a BCI remains largely untapped due to the open chal-

lenge of deciphering electroencephalography (EEG) signals. A novel methodology for the

artifact removal and analysis of EEG signals, introduced as supervised projective learning

for electroencephalography analysis (SPLEEGA) is presented in this work. Furthermore,

SPLEEGA allows for a more-informed manner of automatic channel selection with respect

to discrimination from resting state and optimal frequency bands on a per-subject basis.

The challenges facingBCI systems are presented in this chapter, followed by an evaluation

of previous work; thereafter, the SPLEEGA algorithm is proposed. Chapters 2 through 5

follow the progression of the SPLEEGAalgorithm andmotivate the choices for development

at each juncture. Chapter 6 focuses on an application of the SPLEEGA algorithm in terms of

automatic channel selection and single-channel classification. Chapter 7 will cover results

from algorithmic development then conclusions are elucidated in Chapter 8.

Figure 1.1: General BCI Paradigm. The process begins with experimental acquisition of
EEG signals. Next, useful features are constructed for the purpose of classification. Finally,
prediction algorithms are developed to identify desired interface control signals.
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1.1 Spatio-Temporal Challenges

Motor imagery classification serves as a proving ground for the identification of spatio-

temporal patterns. These types of patterns are of recent interest in many fields spanning

molecular engineering [8, 9] to atmospheric physics [10, 11]. It is not enough to consider

just spatial snapshots of a process at a given time, nor just time-series profiles at a given

spatial location - the behavior at spatial locations at one time point will affect the behavior at

nearby spatial locations at the next time point. Only by considering time and space together

can we address how spatially coherent entities change over time or, in some cases, why they

change [12]. In this section, the spatio-temporal challenges associated with motor imagery

classification are presented in terms of i) spatial resolution; and ii) temporal variability.

1.1.1 Spatial Resolution

A favored conduit for communication between a brain and computer is the acquisition of

EEG signals through non-invasive techniques. This is largely due to low cost, high temporal

resolution sensors, and a minimized risk for the subject [13, 14]. The EEG signals act as the

interface control which are procured through experimental trials where subjects imagine

limb movement known as motor imagery (MI). The problem of low spatial resolution arises

due to the proximity of the electrodes from the signal source occurring somewhere within

the brain. Consequently, the cortical current propagates through different resistive mediums

prior to measurement. As a result, the recorded potentials at each sensor are a statistical

mixture of the underlying brain sources [15].

These factors motivate the use of blind source separation (BSS) which exploits primarily

spatial diversity, that is, the fact that different sensors receive different mixtures of the

sources. BSS approaches look for structure across the sensors, not across time [16]. A

simplified BSS model assumes there are = unknown independent signals B1(C), ..., B= (C) that
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produce = observed mixtures G1(C), ..., G= (C). This is generally expressed as:

x(C) = �s(C) (1.1)

where � represents the n x n mixing matrix that transforms s(C) to x(C). Alternatively,

Equation 1.1 can be reformulated to find y(t), the source signal approximations:

y(C) = �x(C) (1.2)

The objective of this work can be condensed to constructing the set of basis vectors that

comprise � in Equation 1.2 such that the desired motor imagery signals are separated from

the resting state at the eigenchannel level. This information can subsequently be used to

construct the orthonormal basis * that optimally separates left-hand (LH) from right-hand

(RH) motor imagery tasks, known as the SPLEEGA eigenbrain.

1.1.2 Temporal Variability

The first temporal issue that presents itself during MI tasks is based on human reaction

time (RT). The response to a stimulus can vary from person to person [17]; additionally, RT

can also depend on the type of stimuli [18]. The next temporal problem is associated with all

signal acquisition techniques by way of electroencephalography. The volume conduction

effects that result in spatial distortion also contribute to a temporal smearing across all

sensors [19]. Subsequently, spontaneous EEG signals recorded by different electrodes tend

to appear more phase locked than they actually are, inducing artificially high between-

site coherence [20]. Electroencephalographic coherence and covariance are often used as

large-scale measures of the functional interrelations among pairs of neocortical regions.

Normalizing this covariance by the product of individual variances results in the correlation

function coefficient [20, 21]. This coefficient is a function of the delay time between signals;
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furthermore, an evoked potential waveform at one spatial location may be correlated with

another spatial location only after some temporal delay [22]. These first two considerations

(RT and correlative time delay) necessitate an effective methodology for the temporal

alignment of motor imagery tasks which is directly addressed in this work.

The nonstationarity inherent in EEG signals is also considered a temporal challenge

when conducting analysis. Nonstationarity expresses that the statistical moments such as

mean and variance of the signal change over time. This presents a problem in the choice of

method to construct the power spectral density. An underlying assumption of the Fourier

transform is that a source signal is infinitely periodic [23]. This assumption has utility, a

good example being quantum mechanics where spectral decomposition of the Hamiltonian

operator is performed. Here, the source wave being decomposed is a probability wave, and

thus the stationary states are independent of time. For real-world signals, window-based

Fourier approaches have been implemented to address the nonstationarity of EEG signals

with success [24, 25]. However, there is a trade-off between the periodicity of a signal and

loss of information from approximating its frequency components.

1.2 Motor Imagery Classification for Brain-Computer Interfaces

Previous work has shown [26] that an underlying pattern emerges within the power

spectral density (PSD) of EEG signals due to expected neuronal population activity during

MI tasks [27]. Furthermore, the ` (7.0-13.0 Hz) and V (13.0-30.0 Hz) frequency bands

exhibit a structured trend which allows various pattern recognition methodologies to apply.

This trend is observed as event-related synchronization (ERS) followed by an event-related

desynchronization (ERD) of brain activity over the sensorimotor cortex [28]. An ERS

corresponds to an amplification of the evoked V waves localized to one region of the brain

while simultaneously an attenuation of the ` frequency band takes place in another region.

Thereafter, ERD occurs which returns the system to its high statistically-mixed natural state

until an MI task is performed again. Given the known suppression/amplification across
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the `/V frequencies during MI [29], this serves as a pertinent starting point for identifying

patterns under the BCI-EEG MI paradigm.

There is not a strict range of frequencies that are guaranteed to be effective for all humans,

further adding to the challenge of constructing an efficient BCI. Akin to the biometric

uniqueness of a fingerprint, certain brain activity related to MI can vary substantially from

subject to subject. This is exemplified in a recent high-quality meta analysis [30] of notable

ML methodologies for MI BCIs. The utilized frequency ranges for each study are shown

in Figure 1.2. There is no clearly-defined standard for the selection of frequency bands. It

has even become a recent trend for deep learning approaches to use a single large frequency

range from ∼0.1 Hz to 100 Hz, in the spirit of "let the neural network figure it out".

This uncertainty in optimal frequency band selection is directly addressed in this thesis;

furthermore, the SPLEEGA exploratory procedure pursues where the information required

for discrimination exists.

Figure 1.2: Analyzed frequency band vs. Study plot from Altaheri et al. (2021). The
vertical orange bars represent the ranges of frequencies used in 78 studies from 2016-2021
indicated by the x-ticks. There are two general trends present here, first being the large
single bands from ∼0.1 Hz to 100 Hz that are presented to deep learning architectures.
Second, the trend of band selection from 7-28 Hz which agrees with the selection for this
work. There is a distinction between the high V frequency (∼18-40 Hz) and low V (∼14-22
Hz). In this work, the low V band was favored over high V because the higher end of this
band relates directly to stress, anxiety, paranoia, high energy, and high arousal.
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Due to recent hardware and algorithmic developments, machine learning (ML) has

become a focal point in the field of BCI. This is a result of its pattern recognition and

predictive capabilities for complex and nonlinear systems [31]. The ML approaches for

BCI-EEG can be decomposed into two processes: i) feature extraction, and ii) classification

on both known (training) and unknown (testing) systems. The features extracted, then

ultimately selected, weigh heavily on how the problem is posed to the machine. The

process of identifying a subset of features to be used for model training and prediction

is considered dimension reduction (DR). Both feature extraction and selection represent

critical steps for discriminating the information content in EEG signals.

In the context of projection pursuit (PP) [32, 33, 34, 35, 36, 37], customized features

are extracted based on a particular objective function to yield a desired outcome. principal

component analysis (PCA) is a PP optimization of second statistical moments, given as

covariance [38]. Other examples include optimizing covariance with projections to latent

structures (PLS) [39], and higher statistical moments such as kurtosis with independent

component analysis (ICA) [40].

An effective feature extraction approach for EEG analysis is Common Spatial Pattern

(CSP) that aims to acquire optimal components using eigendecomposition with the pooling

of class covariance matrices [41, 42]. Frequency bandpass filters with either Finite Impulse

Response (FIR) or Infinite Impulse Response (IIR) are used to extract features within time-

series data [43, 44]. Alternatively, wavelet-based features with their subsequent BCI-EEG

methods [45, 46] provide an informed choice of features that are well-equipped to deal with

the nonstationary nature of EEG signals [47]. Classification is executed once the signals

are represented by a collection of features.

The first BCI-EEG ML paradigm utilized discriminative filter banks to leverage the

variable range of brain activity within the ` and V bands [48, 49, 50]. This approach reveals

that the sensorimotor cortical activity is not spatially consistent on a per-subject basis

[51], creating a moving target for the classification of ERS/ERD patterns. To overcome
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this confounding factor some methods include a more comprehensive set of subbands

[52, 53, 54]. Unfortunately, this added computational complexity [55] does not resolve the

intrinsic problem of spatial-temporal variation in EEG signals.

Deep learning has become popular in BCI-EEG motor imagery classification. A large

body of work using convolutional neural networks [56, 57, 58, 59, 60] are able to handle

an extremely low Signal-to-Noise Ratio (SNR) that exists in BCI-EEG systems [53, 58, 60,

61, 62]. The low SNR is thought to be a result of having a conglomerate of biological

signals from a multitude of involuntary muscle contraction sources such as eye blinking and

heart rhythm. Moreover, EEG sensors are sensitive to interference from nearby electrical

power sources [63], further suggesting noise removal is of vital importance. The origin of

EEG sensors being burdened by low spatial resolution falls under biological phenomenon

associated with volume conductive effects [22]. To better deal with blind source separation,

recurrent neural networks equipped with attention mechanisms [64] such as long short-term

memory (LSTM) and gated recurrent units to extract sequential relationships in time series

has been implemented [65, 66, 67, 68].

A common practice in BCI-EEG studies has been to omit bad trials from subjects or the

removal of all data from certain subjects classified as EEG-illiterate [26, 48, 51, 54, 56, 57,

58, 57, 59, 60, 65, 66, 67, 68, 69]. While the removal of statistical outliers is justified in

the scientific method given a high SNR, at low SNR this practice in ML creates a minimum

failure rate baseline as an initial step. The long term aim would then be to reduce the

minimum failure rate in applications through improved methods if possible.

1.3 Supervised Projective Learning for Electroencephalography Analysis

The primary purpose of SPLEEGA is the removal of artifacts fromEEG signals. Through

an exploratory process of multivariate EEG signals, SPLEEGA is capable of identifying

underlying spatio-temporal patterns. The SPLEEGA paradigm can be decomposed into

4 generalized procedural steps As illustrated in Figure 1.3: i) preprocessing; ii) artifact
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removal; iii) feature extraction; and iv) classification.

Figure 1.3: SPLEEGA pipeline. (a) An infinite impulse response filter is applied to create
the ` and V components of the power spectral density. (b) A time-correlated state space is
created per frequency band to increase the dimensionality from 1 to p. (c) The subspace
that discriminates motor imagery from resting state signals is created by training SPLOC
at both frequency bands independently. (d) The SPLEEGA eigenchannel is obtained as
the direct sum of the (`,V) state spaces projected onto the (`,V) discriminant basis vectors
from SPLOC. (e) Phase 2 begins by taking a direct sum of the eigenchannels. (f) SPLOC is
then used for binary classification of LH and RH MI signals. (g) The discriminant modes
from SPLOC are used to construct the eigenbrain. (h) Utilizing the eigenbrain to cluster
LH and RH MI data, a support vector machine with a cubic kernel is employed to obtain
a decision boundary. On test data, raw EEG signals are manipulated using a sequence of
linear operations to (i) construct eigenchannels, (j) construct the eigenbrain, and (k) make
predictions based on how the data is represented with respect to the decision boundary.

Dimension reduction is achieved by identifying a discriminant basis set. Importantly,

SPLOC constructs an orthonormal basis that isolates the a priori ambiguous metric con-

taining discriminatory information [70, 71]. The application of an SVM then becomes

straightforward. An important computational aspect of SPLEEGA is that after an initial

calibration phase, brain patterns are revealed by projecting EEG signals onto a small number

of basis vectors, making this a rapid calculation [72, 73].



CHAPTER 2: DATASET AND PREPROCESSING

2.1 Giga Science Motor Imagery Dataset

The GigaDB dataset [69] from the Gwangju Institute of Science and Technology is

utilized in this study. This data consists of 64 EEG channels and 4 EMG channels. The 64

Ag/AgCl active electrodes were configured according to the international 10-10 standard.

All EEG signals were recorded at a sampling rate of 512 Hz during MI tasks using the

BioSemi ActiveTwo system with the BCI2000 3.0.2 software. The pool of participants

was comprised of 52 subjects. Each recording session was divided into 5 runs where

either 20 or 24 MI trials were performed. This resulted in 100 or 120 total left and right-

hand trials per subject. As noted by the original authors, 38 of the subjects contributed

well-discriminated datasets while the remaining 14 were deemed non-discriminatory. A

comprehensive explanation of the subject characteristics and experimental protocols during

data acquisition can be found in the original work. The procedure for the acquisition of one

motor imagery trial is shown in Figure 2.1.

Figure 2.1: The experimental protocol for MI signal acquisition. During EEG recording
sessions, subjects were prompted with a visual cue on a screen in order to isolate MI trials.
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During experimentation, two criteria were evaluated to identify bad trial indices which

are often omitted. The first of these criteria is the removal of a trial if an amplitude greater

than ±100 `V is measured within a 500-2500 ms segment. Second, correlation with EMG

(real hand movement) is considered following an approach in [74]. Here, all trials highly

correlated with EMG are omitted. In the methodology presented here, the bad trials are

not omitted as a real-time solution is expected to handle these types of outliers. This study

utilizes both sparse (C3, C4) and contralateral (Cz, C1-C6, T7, T8) sensor configurations;

subsequently, this reduces the dimensionality of MI trials to 2 and 9 respectively as shown

in Figure 2.2.

Figure 2.2: Electrode configurations. The 64 electrode 10-10 international standard mon-
tage used during signal acquisition. (left) The sparse-sensor selection consists of the C3 and
C4 electrodes indicated by red rectangles. (right) The contralateral electrode configuration
is comprised of 9 sensors. In the right figure, the corresponding channel numbers to the
channel names (left) are used for categorizing the dimensions of the dataset.

2.2 Channel Referencing and Trial Partitioning

The LH and RH data matrices of raw EEG signals are of size 358400 x 64 from GigaDB.

This is reduced to 358400 x 4 for the sparse sensor array and 358400 x 9 for the contralateral

configuration. A reference signal is defined as the average signal of the twomastoid channels
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TP7 and TP8 as shown in Figure 2.3. Referencing is performed by subtracting the reference

signal from the desired elctrode signals (C3-C4, and contralateral) [75].

Figure 2.3: Reference electrode configuration. The 64 electrode 10-10 international stan-
dard montage used during signal acquisition. Referencing was conducted relative to the
mastoid TP7 and TP8 channels shown in blue ellipses.

Given the event markers within a response vector, MI trials were analyzed over 4 second

intervals (2048 samples) from the onset stimulus time. A signal skip of 0.5 seconds (256

samples) was used to compensate for human reaction time. After the referencing and

partitioning steps, there were 100 trials of size 2048 x 2 (sparse sensors) and 2048 x 9

(contralateral) for LH and RH MI. Some subjects contain 120 trials, in these cases 20 trials

were randomly omitted. The RS signals were experimentally acquired for 60 continuous

seconds prior to MI yielding a 33792 x 64 data matrix. Other than the acquisition time

difference, the RS signals are processed in the same way as the LH and RH signals, resulting

in 14 trials of size 2048 x 2 and 2048 x 9.
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2.3 Infinite Impulse Response Filter

Infinite impulse response (IIR) is a property that applies to time-invariant systems where

an induced pulse does not converge to zero after some given time [76]. Two IIR filters were

applied to the partitioned trials in order to construct the ` (7.0-13.0 Hz) and V (13.0-28.0

Hz) components of all referenced EEG signals. An IIR filter can be expressed by the transfer

function:

� (I) = . (I)
- (I) (2.1)

Where . (I) and - (I) represent the z-transformed output and input signals respectively.

Note that after the z-transformation, the source input signal G(C) → - (I) and the output

H(C) → . (I). Expanding . (I) and - (I) as a ratio of polynomials:

� (I) =
∑"
:=0 1: I

−:

1 −∑#
;=0 0;I

−;
=
I#

I"

10I
" + 11I

"−1 + ... + 1" I"
I# − 01I#−1 − ... − 0#−1I−1 − 0#

(2.2)

There are " roots in the numerator of Equation 2.2 known as the zeros, with # roots in the

denominator called poles. The goal is then refined to finding the filter coefficients 0 and 1

such that the desired frequency responseH(I) is attained:

H(l̂) = � (I)
���
I=48 l̂

= � (48l̂) (2.3)

The real component of Equation 2.3 represents the magnitude response |H (l̂) |. As

a developmental check, the magnitude responses for both filters were computed and an

example for ` is provided in Figure 2.4. Each filter contained a stopband attenuation of 40

Hz, and a passband ripple of roughly 0.1 Hz. The use of bandpass filters was motivated to

mitigate undesired frequencies outside the defined ranges due to spectral leakage [77]. A

typical LHMI time sequence trial is shown in Figure 2.5 along with its ` and V components.

After completion of IIR filtering, each referenced EEG signal becomes bifurcated as two

distinct time series, which are subsequently processed independently.
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Figure 2.4: Magnitude response plot for ` IIR filter. The solid blue line represents the
transfer function over the desired frequency range. The stopband attenuation of 40 decibels
is shown where the transfer function is constrained outside of 8-12 Hz.

Figure 2.5: IIR filtered signals. (top) A typical referenced EEG signal from the subject
executing LH MI. (middle) The time series after a ` bandpass filter is applied. (bottom)
The time series after a V bandpass filter is applied.
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2.4 State Space Representation

Given a signal G(C) for a channel and frequency band, a ?-dimensional state space

is defined by forming the state vector - (C) = [G(C), G(C + g), G(C + 2g), . . . , G(C + (? −

1)g)]. For the results shown here, ? = 32 with g = 0.015625 seconds using a 8 sample

step, thus reducing each trial to 2048 samples. As ? increases there is less sampling in

higher dimensions, although more memory is retained in the state vector for discrimination.

Experimentally observed, ? ranging from 8 to 128 works well, with ? = 32 being a good

compromise between sampling adequacy and number of discriminant modes comprising

the eigenchannels. A general example of expanding one signal at the ` frequency into its

respective state space is presented in Figure 2.6. Within the pipeline, the data matrices

per frequency band (`/V) used to construct an eigenchannel are of size 2048 x 32 for LH,

RH, and RS which are presented to SPLOC for training in following steps. Worth noting,

the expansion into a highly-correlated state space contains mostly redundant information.

When the top basis vector from eigenchannel construction is retained, this represents the

transformed state vector which contains the most discriminatory information; therefore, this

acts as an indirect temporal alignment with respect to optimal discrimination.

Figure 2.6: State space representation. An example signal from the C3 electrode in the `
frequency which is expanded into a 32-dimensional highly-correlated state space.



CHAPTER 3: SPLOC AND THE MODE-FEATURE SPACE PLANE

The underlying engine of SPLEEGA is a new intelligent PP network known as super-

vised projective learning with orthogonal completeness (SPLOC). SPLOC was created by

Professor Donald Jacobs in 2018, then it was further developed by Tyler Grear and Chris

Avery from 2019-2020. Here, projection pursuit (PP) is implemented as an iterative process

to change the directions of a complete set of basis vectors for the purpose of maximizing a

projection index. Using Dirac bra-ket notation, the 8-th basis vector in column form on the

B-th step is denoted as |8, B〉. The molecular conformation of # atoms is described by 2#

vectors that span a 2# dimensional space. This generalizes to higher dimensional structures.

Through successive orthogonal rotations, the set of basis vectors remain orthonormal and

complete, ∀B, such that 〈 9 , B |8, B〉 = X 98 and
∑2#
8=1 |8, B〉〈8, B | = �, where X 98 is the Kronecker

delta and � is the identity matrix.

The initial projection index is comprised of three objective sub-functions that seek to

optimize three criterion during rotations: the primary member - signal to noise, with the

secondary members - statistical significance and clustering quality. These sub-functions

are referred to as the decision triad, and together they decide which basis vectors are

discriminate (d-mode), undetermined (u-mode), or indifferent (i-mode). Let |:1〉 and |:2〉

be two randomly selected vectors defining a plane. An orthogonal rotation of the plane is

performed where the step size of the rotation angle q defines the resolution of the vector

pair sweeps. Upon each iterative rotation, the data is projected onto the basis vectors |:1〉

and |:2〉, from which two emergent features are extracted: the mean and standard deviation.

These are evaluated by the decision triad to determine the final efficacy projection index �: .

�: ranks the procured basis sets according to the best performers from statistical testing.

The primary member of the decision triad contains a scoring function Sk that is applied



16

to the k-th mode. Furthermore, Sk bifurcates the problem by setting the minimum threshold

for being a discriminant mode Sd or an indifferent mode Si independently, with Sd > Si.

Let B=A (: |U, V) = |`: (U) − `: (V) |/
√
E: (U) + E: (V) define the signal to noise ratio for the

:-th mode when comparing the U-th functional system to the V-th nonfunctional system,

and B1=(: |U, V) = max (0, B=A (: |U, V) − 1) is signal beyond noise. Let A4G(: |U, V) =

max (f: (U)/f: (V), f: (V)/f: (U)) − 1 be the excess ratio of standard deviations from the

two systems being compared. Let (< =
√
(8(3 be the geometric mean of the two thresholds.

This allows Sk to be expressed as:

(: (U, V) =


√
B1=2 + A4G2 + 1 when > (3
√
B=A2 + A4G2 + 1 when < (8

(< otherwise

(3.1)

Note, the decision to index a basis vector is determined by Sk; however, in order to remain

either a i-mode or d-mode, it must pass further testing by the secondary objective functions.

Next, the objective function for statistical significance is applied. For this purpose, two

Voting Activation Functions (VAFs) are introduced, 53 and 58. Each VAF is presented with

a d-mode or i-mode by (: , and a consensus vote accepts or rejects the proposal through the

functions:

53 (G) = [1 + exp (16(G3 − G))]−?3 (G) (3.2)

58 (G) =
[
1 − [1 + exp (16(G8 − G))]−1] ?8 (G) (3.3)

The powers ?3 (G) and ?8 (G) ensure the functions 53 (G) and 58 (G) change more rapidly

than a sigmoid function when respectively G < G3 and G < G8. A consensus vote threshold

is set for the scores of 53 (G) and 58 (G) on the proposal that a mode is either discriminant or

indifferent, this voting threshold is denoted +C .

The final test of the decision triad is for quality of clustering. The emergent features

`: and f: characterize how a data packet projects onto the :-th mode. Together, (`: , f: )
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defines a point on a plane representing a two-dimensional cross-section in the 2? (e.g.

4#) feature space, this plane is called a mode feature space plane (MFSP) comprising #�

functional and ## nonfunctional systems. After the final modes are selected, the complete

basis set is ranked-ordered by �: . The MFSP is an important output of SPLOC which has

been integrated into SPLEEGA which can be seen in Figure 3.1c. The MFSP acts as a

multi-dimensional ’observation window’ during multivariate exploration.

Figure 3.1: A diagram of the SPLOC mode-generating algorithm. (top left) The vector pair
|:1〉 and |:2〉 define a plane which is iteratively rotated from -c/4 to c/4. This sweep spans
the 2D space of the plane. (top right) With each rotation step q, the data is projected along
|:1〉 and |:2〉 and the emergent features `: and f: are extracted for testing of: signal to
noise, statistical significance, and quality of clustering. (bottom left) Once a mode passes
the first two tests it is evaluated for class separation on anMSFPwhere each point represents
an entire synthetic molecule data packet. (bottom right) A schematic of the decision triad
shows how the problem is bifurcated by (: .
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The original motivation for SPLOC was to classify molecular dynamics trajectories that

represent data packets. For this application, the extended state spaces at different points

in the pipeline represent a multivariate time sequence of data (e.g. data packet). Then

SPLOC finds the optimal basis set for discrimination as a neural network by presenting to it

examples of two distinct classes of data packets. For an eigenchannel, the two classes were

MI versus RS. For the eigenbrain, the two classes were LH versus RH.



CHAPTER 4: ARTIFACT REMOVAL USING PROJECTION PURSUIT

4.1 SPLEEGA Eigenchannel Construction

For a state space dimension of 32, SPLOC is presented # LH and # RH data packets as

an MI-class, and 14 RS data packets as an RS-class during the eigenchannel construction.

This gives 2# examples of the MI-class and 14 examples of the RS-class. In this section,

channel C4 is used to illustrate the process of constructing an eigenchannel, which is the

same for any channel. The example SPLOC basis vector spectrum is shown in Figure 4.1.

Figure 4.1: SPLEEGA eigenchannel C4 ` basis spectrum. The primary output of SPLOC
is the basis spectrum which represents a complete basis set comprised of discriminant
(red), undetermined (yellow), and indifferent (blue) basis vectors. To be considered a
discriminant mode, the basis vectors must pass the tests of each triad member: clustering
quality (top), consensus (middle), and selection power (bottom). This is a complete basis
of 32 dimensions that is the same number of dimensions as the ` state space which was
presented to SPLOC for training.



20

To construct a single eigenchannel, the (`,V) state spaces of C4 are projected along their

respective d-modes. This process removes noise, and constitutes artefact removal. The

eigenchannel is constructed by the direct sum of the found d-modes for both frequency

bands. For example, when 10 d-modes are identified by SPLOC in the ` band and 5

d-modes from the V band, the direct sum of these d-modes results in a 15-dimensional

discriminant subspace. In general, each eigenchannel will end up with a discriminant space

of different dimensions. An example case for illustration is presented in Figure 4.2.

Figure 4.2: SPLEEGA eigenchannel C3. The first SPLOC run during eigenchannel con-
struction separatesMI fromRS signals. (a) For the ` frequency, 14 d-modes were identified.
(b) The MFSP from the top d-mode for the ` band exhibits advanced clustering of MI sig-
nals (blue and red circles) with respect to resting state (solid black circles). (c) 9 d-modes
were captured by SPLOC within the V component of eigenchannel C3.



CHAPTER 5: CLASSIFICATION OF EEG SIGNALS

5.1 Support Vector Machines

This section gives a brief review of the basic elements behind a support vector machine

(SVM). The SVMwas originally developed for the purpose of binary classification; however,

research is ongoing in theMLfield to generalize for multi-class classification [78]. Here, the

foundations for SVMs are presented which were proposed by Vladimir Vapnik in his PhD

thesis at Moscow University in 1963 [79], later in 1995 this was generalized for statistical

and computational learning [80]. The SVM optimization problem is shown in Figure 5.1.

Figure 5.1: The foundation for the optimization problem of SVMs. Two distributions of
data from two classes are plotted on an xy-plane where the blue dots indicate positive
samples, and the red dots indicate negative samples. (a) Two support vectors are defined
by a known data point from each class. (b) A decision boundary is placed such that the
margin between support vectors (c) is maximized. A vector of undetermined length w is
introduced, constrained to be perpendicular with the support vectors. Two vectors point
in the direction of known samples of each class x+ and x-. The width of the margin w′ is
determined by subtracting x+ from x-, then projecting along a normalized vector w.
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Figure 5.1 shows that the SVM optimization problem takes the form:

<0G
1
‖w′‖ >A <8=‖w′‖ (5.1)

It is important to note that with certain data domains linear class separation is not possible

due to the overlap in coordinates. For this reason, many SVMs implement a soft boundary

that controls the overlap of class samples by the use of slack variables [81]. In order

to apply SVMs to non-linearly separable classes a kernel function is introduced that will

transform the data from the current space, to a space that is more convenient. This method

is often referred to as the kernel trick [82], and is made possible by the total mathematical

dependence on the dot product of samples, which can be shown when the problem is

formalized as an Euler-Lagrange equation for constrained optimization [83]. The goal is to

map the data to a higher dimensional space in order to acquire class separation. To do this,

a kernel K is introduced such that:

 (x8, x 9 ) = k(x8) · k(x 9 ) (5.2)

where k represents the transformation that maps the data to a higher dimensional space.

Equation 5.2 implies that the actual transformation into a higher dimensional space does

not need to be known, just the kernel function given the constraints of the Euler-Lagrange

equation are fulfilled. Not all functions can serve as kernel functions, only those that are

considered convex spaces [84]. This is because a convex space does not suffer from local

minima or local maxima where some methods such as neural networks exhibit problems

dealing with these issues [85]. The mathematical criterion in which a kernel is valid to use

in this manner is called Mercer’s condition [86]. An example of separating two non-linearly

separable classes using a linear hyperplane accompanied by the radial basis function as the

kernel is presented in Figure 5.2.
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Figure 5.2: Application of an SVM to non-linearly separable distributions of two classes.
(left) A 2D plot of the data points indicates that there is no linear boundary that will achieve
good separation. (right) The data is projected into a third dimension using a kernel function,
class separation is then dictated by a linear hyperplane. (right) Somemisclassifications occur
which is allowed by utilizing a soft margin when constructing the SVM.



CHAPTER 6: AUTOMATIC SINGLE-CHANNEL CLASSIFICATION

The development of the automated procedure for single channel classification was mo-

tivated largely from the trends observed during SPLEEGA eigenchannel development. In

this chapter, SPLEEGA is reformulated as an iterative optimization procedure over the 9

contralteral electrodes. Here, the number of MI trials used for eigenchannel construction

were held fixed at 7, resulting in 14 MI trials (7 LH and 7 RH). This was to achieve balance

in the class distribution during eigenchannel training since there are 14 available RS trials

at 2048 samples. The number of testing trials was held fixed at 50 (100 LH and RH), and

the remaining 86 trials (43 LH and RH) were put aside as a validation set. There are 3

iterations of varying frequency ranges for both ` and V. For `, iteration 1 utilized 8-12 Hz,

iteration 2 used 7.5-12.5 Hz, and iteration 3 applies the range of 7-13 Hz. For V, iteration 1

used 14-24 Hz, iteration 2 utilized 16-26 Hz, and iteration 3 contained the frequency range

28-28 Hz. The reasoning for multiple frequency bands during optimization is grounded in

the uncertainity of a clearly-defined set of viable bands as discussed in Section 1.2.

The automated SPLEEGA procedure can be expressed in x general steps: First, for

channel # an eigenchannel is constructed at the ` and V bands resulting in (discrimi-

nant,undetermined,indifferent) subspaces. Only if d-modes are identified at the eigenchan-

nel level they are then projected into the corresponding discriminant subspace and SPLOC

is performed for a validation step. For example, with the ` frequency for channel # 8

d-modes are identified during artifact removal, then the trials are projected into this in-

complete discriminant subspace of dimensionality 8. The 8-dimensional trials are then

presented to SPLOC for validation where 7 LH trials comprise class 1 with class 2 con-

taining RH trials. Of the 8 dimensions presented to SPLOC during this phase, if d-modes

are identified, their corresponding MFSPs are evaluated for prediction accuracy through the
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application of an SVM. If no d-modes are available for validation, the algorithm defaults

to u-modes. If no u-modes are available for validation, the frequency band of channel #

is omitted. Continuing the example, only the top mode identifed by SPLOC during valida-

tion progresses to an SVM box constraint optimization. Here, the 86 validation trials are

used as a check while sweeping over 1250 different box constraints. After box constraint

optimization the top mode from each frequency band is retained and a final classification is

performed using only the 100 testing trials. This accuracy is then recorded for both bands of

each contralateral electrode. The best performing channel and frequency band are recorded

and represent the optimal electrode selection over the 9-channel sweep.

Ultimately, the SPLEEGA automated channel selection procedure explores whether a

sparse-sensor configuration is sufficient for a large enough population, or more flexibility is

required when determining which sensors can contribute most effectively for analysis.

Figure 6.1: (a-d) The preprocessing steps for this procedure remain the same as previous
algorithmic protocols. (e) Single-channel classification is performed at each desired fre-
quency band. (f) The SVM model developed using the training data is validated to attain
the optimal box constraint before presenting the machine with testing data. The automatic
channel selection procedure performs the workflow shown above for = iterations, where = is
the number of desired frequency bands to sweep over during optimization. The small scale
of the MFSP in (f) is intentional and used to illustrate that an SVM decision boundary is
applied at this point of the pipeline.



CHAPTER 7: RESULTS

7.1 Artifact Removal Results

The purpose of the eigenchannel is to separate MI from RS at both ` and V frequency

bands. The results presented in this section are for all 52 subjects from the GigaDB

dataset. For this phase, the sparse-sensor configuration was utilized for a rapid sweep

over subjects using the two most commonly used electrodes, C3 and C4. To consolidate

the artifact removal results, a quantity known as an artifact removal score denoted W�' is

introduced. Heuristically, W�' is the sum of 4 components corresponding to 4 (discriminant,

undetermined, or indifferent) subspaces from eigenchannel construction for C3 and C4. If a

given subspace for a given channel contains at least one d-mode that separates all MI from

RS testing trials, this represents a value of 0.25. For C3 `/V and C4 `/V, a maximum W�'

is therefore 1.0. Figure 7.1 and Figure 7.2 present 2 cases (s50 and s11) which respectively

correspond to good and bad artifact removal performance.

The separation ofMI trials in Figure 7.1 indicates that SPLOC is finding directions within

the 32-dimensional space where the characteristics of MI signals differ from those of RS.

An observed trend at all training set sizes of the top d-modes identified by SPLOC is the

advanced clustering between the LH and RH MI signals. This is especially noteworthy

given the machine was not informed that the MI-class consisted of two types of systems by

way of labeling. This sub-clustering is a general property of SPLOC as noted previously

[8]. The significance of advance clustering is that there are consistent patterns inherent

in the data. These results suggest that the advanced clustering within the MFSPs during

eigenchannel construction may provide a distinctive signature for robust classification of

LH and RH systems with the eigenbrain.
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Figure 7.1: The C3 eigenchannel for subject 50. (top left) For the ` frequency band,
SPLOC is trained to distinguish between MI and RS signals, represented by the blue/red
and black circles respectively. Solid circles indicate training systems, while empty circles
represent MI trials that were unknown to the machine. (top right) Advanced clustering can
be observed after projecting along the 1st C3-` d-mode and plotting on an MFSP. Similarly
the results are favorable for s50 in the (bottom) ` band discrimination as well. It is readily
apparent in both frequency ranges perfect separation from RS systems is achieved.

Moving to the example bad case (s11) as exemplified with the C3 eigenchannel displayed

in Figure 7.2. For both the ` and V frequencies, zero d-modes were identified. It can be

seen in the BVS for both bands, there are modes that satisfy the 1st (selection power) and

2nd (signal to noise) decision triad evaluations; however, since the quality of clustering

metric did not surpass minimum thresholds, a d-mode could not be properly declared. It is
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possible that for subject 11 C3 and C4 are not the optimal electrodes for MI classification,

this will be discussed further in Section 7.2.

Figure 7.2: The C3 eigenchannel for subject 11. (top left) The basis vector spectrum for
the C3-` component of the C3 eigenchannel. (bottom left) The basis vector spectrum for
the C3-V component of the C3 eigenchannel.(right) The trials are projected along the top u-
mode direction and the emergent features are plotted in anMFSP. In this case, the separation
of MI and RS signals is not attained in either 1-dimensional undetermined subspace for
both bands. Although no d-modes were identified, through undirected orthogonal rotations
a creative exploration of the undetermined subspace can be performed.

The results from a 52-subject sparse-sensor configuration run are presented in Table 7.1.

Here, the number of d-modes acquired during eigenchannel construction for C3-`, C3-V,

C4-`, C4-V were recorded and provided in columns 2-5. The W�' was recorded for all 52

subjects which is provided in column 6, with column 1 listing the subject nomenclatures.
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Table 7.1: Eigenchannel artifact removal results for 52 subjects from GigaDB MI dataset.

Subject C3 ` d-modes C3 V d-modes C4 ` d-modes C4 V d-modes W�'

s01 11 10 23 8 1.00

s02 16 8 14 10 1.00

s03 11 10 14 6 1.00

s04 9 8 11 10 1.00

s05 16 8 17 9 1.00

s06 8 10 9 13 1.00

s07 8 10 12 10 1.00

s08 7 9 0 0 0.50

s09 8 9 13 5 1.00

s10 0 0 6 5 0.50

s11 0 0 0 0 0.00

s12 13 9 14 8 1.00

s13 17 9 15 8 1.00

s14 0 0 12 7 0.50

s15 0 0 0 0 0.00

s16 17 10 15 10 1.00

s17 7 8 0 0 0.50

s18 9 13 14 7 1.00

s19 7 6 17 9 1.00

s20 17 9 0 0 0.50

s21 10 6 10 6 1.00

s22 0 0 12 11 0.50

s23 6 8 16 6 1.00

s24 8 7 5 5 1.00
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Table 7.1 continued from previous page

Subject C3 ` d-modes C3 V d-modes C4 ` d-modes C4 V d-modes Γ�'

s25 0 0 16 7 0.50

s26 10 10 7 7 1.00

s27 6 4 0 0 0.50

s28 10 11 0 0 0.50

s29 8 11 15 12 1.00

s30 0 0 7 8 0.50

s31 9 10 16 7 1.00

s32 15 11 0 0 0.50

s33 15 7 13 7 1.00

s34 0 0 0 0 0.00

s35 17 11 17 8 1.00

s36 11 11 17 12 1.00

s37 14 5 11 6 1.00

s38 10 4 15 7 1.00

s39 10 10 12 11 1.00

s40 11 10 14 6 1.00

s41 10 10 17 10 1.00

s42 16 6 8 9 1.00

s43 0 0 0 0 0.00

s44 15 9 10 7 1.00

s45 0 0 0 0 0.00

s46 0 0 12 11 1.00

s47 13 9 13 10 1.00

s48 16 10 13 4 1.00
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Table 7.1 continued from previous page

Subject C3 ` d-modes C3 V d-modes C4 ` d-modes C4 V d-modes Γ�'

s49 4 7 7 5 1.00

s50 7 9 9 8 1.00

s51 15 12 17 9 1.00

s52 12 10 12 5 1.00

The average W�' for all 52 subjects was 0.80. Perfect separation of MI signals from

RS signals was achieved for 38 (73.08%) subjects, each having a W�' of 1. Interestingly,

there were 38 subjects having a W�' = 1, and 14 subjects that scored a W�' < 1. This

corresponds to the original authors who stated that within the GigaDB dataset, there are 38

discriminatory subjects and 14 they identified as non-discriminatory [69].

The average number of d-modes identified per subject was 8.9 ± 5.7 for C3-`, 7.0 ±

4.1 for C3-V, 10.1 ± 6.2 for C4-`, and 6.3 ± 3.9 for C4-V. In Table 7.1 it is shown

that for any given channel if the ` component of the eigenchannel was successful, so was

the V component. Conversely, it never occurred that within one electrode either the `

or V eigenchannel component succeeded independently of the other. This would imply a

correlation in the performance of an eigenchannel regardless of selected frequency bands.

Selecting one good (W�' = 1) and one semi-bad case (W�' = 0.5) which are respectively

s05 and s20 as shown in Figure 7.3. These example subjects are represented using a

showcase output of SPLEEGA, the brainmap. Here, a top-down comprehensive view of

the artifact removal process can be visualized. Subject 5 is one of the advanced clustering

cases, whereas subject 20 was not. For subject 20, the C3 eigenchannel was successful

at both bands; however, for the C4 channel, zero d-modes were procured, suggesting an

alternative electrode would be optimal.
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Figure 7.3: (left) The s05 SPLEEGA brainmap for the sparse-sensor configuration exper-
iment. At least 1 d-mode that separates MI from RS is indicated by a red ring for the `
(inner ring) and V (outer ring). The coloring scheme follows suit with the SPLOC basis
vector spectra. When only u-modes and no d-modes are available, this is expressed as
a yellow ring. (right) For s20, there were no d-modes identified for either band of C4
(channel number 14); furthermore, C4-V was not able to develop an undetermined subspace
spanned by u-modes. The vantage provided by the brainmap allows for quick interpretation
of the artifact removal process. The basis vector spectra along the bottom are intentionally
displayed at small scale for the explicit connection of the brainmap colored rings and the
developed SPLOC subspaces.
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7.2 Automatic Single-Channel Classification

As a preemptive measure to contextualize classification results, at the time of writing this

manuscript the average accuracy over all subjects for state-of-the-art methods falls within

66-69% [30, 67, 69, 87]. Here, the number of MI trials used for eigenchannel construction

was held fixed at 7, resulting in 14 MI trials. This was to achieve balance in the class

distribution during training since there are 14 available RS trials at 2048 samples. Carrying

over observations from the results in Section 7.1, subjects 11, 15, 34, and 45 contained

zero discriminant C3 or C4 eigenchannels; therefore, each had a W�' corresponding to 0.

Additionally, 10 subjects (s08, s10, s14, s20, s22, s27, s28, s30, s32, and s46) only separated

MI from the resting state in one of the two electrodes (W = 0.5) during the sparse-sensor

experiment. Considering the per-subject variability of brain activity during MI tasks, the

utility of sweeping over multiple frequency bands and channels is evident in Figure 7.4.

Figure 7.4: (left) The SPLEEGA brainmap for s11 using contralateral electrodes. As with
the results from Section 7.1, channel C4-50 still does not attain discriminatory eigenchan-
nels. Considering optimal frequency bands and the C5-14 (top right) and C6-51 (bottom
right) electrodes, perfect separation of MI and RS is achieved.
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During the automatic channel selection procedure, the 14 subjects that previously had

not attained an W�' of 1.0 have now reached successful artifact removal. Resulting in all 52

subjects containing at least two discriminatory electrodes having a W of 1.

Originally, the SPLEEGA eigenbrain was the conduit for final classification [88]; how-

ever, during experimentation it was observed that advanced clustering can be identified both

within a single channel and within a single frequency band as well. This observation was

explored in the automatic channel selection procedure, where classification was performed

using these individual optimized channels. According to the neuroscience, the ERS/ERD

spatio-temporal amplification/suppression in the ` and V bands occurs between two spa-

tially distinct regions of the brain. It was expected a single channel approach would not

result in sufficient information for the identification of the standard MI underlying pattern.

Through a 52-subject contralateral run, it is presented that much discriminatory information

between LH and RH MI tasks exists within a subject-specific ideal electrode. The results

from this contralateral experiment are presented in Table 7.2.

Table 7.2: Automatic contralateral run. Subject; Single-channel classification accuracy;
Channel number; Channel name; Optimal frequency band; Artifact removal efficacy.

Subject Accuracy Channel # Chan Name Frequency Efficacy

s01 62% 13 C3 7.5-12.5 Hz 5194.8

s02 66% 52 T8 16-26 Hz 3128.5

s03 58% 50 C4 8-12 Hz 4279.2

s04 62% 52 T8 8-12 Hz 6649.2

s05 88% 50 C4 8-12 Hz 3265.6

s06 76% 15 T7 16-26 Hz 1093.4

s07 62% 52 T8 14-24 Hz 3528.7

s08 68% 13 C3 16-26 Hz 2639.3

s09 64% 12 C1 8-12 Hz 1815.5

s10 54% 13 C3 8-12 Hz 1284.2
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Table 7.2 continued from previous page

Subject Accuracy Channel # Chan Name Frequency Efficacy

s11 58% 14 C5 16-26 Hz 2176.1

s12 58% 50 C4 7.5-12.5 Hz 5474.5

s13 74% 50 C4 7.5-12.5 Hz 2443.3

s14 54% 14 C5 8-12 Hz 2483.3

s15 56% 14 C5 16-26 Hz 2589.7

s16 60% 50 C4 18-28 Hz 1928.8

s17 64% 51 C6 18-28 Hz 3960.1

s18 60% 49 C2 16-26 Hz 3586.8

s19 58% 49 C2 8-12 Hz 3229.9

s20 56% 12 C1 8-12 Hz 3556.8

s21 64% 49 C2 8-12 Hz 5089.7

s22 54% 12 C1 16-26 Hz 3905.2

s23 60% 14 C5 7.5-12.5 Hz 1944.7

s24 58% 48 Cz 7.5-12.5 Hz 4414.3

s25 66% 15 T7 7.5-12.5 Hz 4056.3

s26 90% 50 C4 8-12 Hz 3245.5

s27 56% 12 C1 7.5-12.5 Hz 4580.2

s28 62% 50 C4 16-26 Hz 1639.9

s29 64% 14 C5 8-12 Hz 5452.9

s30 58% 48 Cz 8-12 Hz 3389.1

s31 70% 49 C2 14-24 Hz 3477.5

s32 62% 52 T8 14-24 Hz 4277.6

s33 64% 50 C4 7.5-12.5 Hz 3142.5

s34 66% 49 Cz 18-28 Hz 5040.2
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Table 7.2 continued from previous page

Subject Accuracy Channel # Chan Name Frequency Efficacy

s35 68% 52 T8 18-28 Hz 4649.0

s36 72% 13 C3 16-26 Hz 1181.6

s37 58% 15 T7 8-12 Hz 1294.5

s38 62% 48 Cz 7.5-12.5 Hz 6524.4

s39 64% 52 T8 14-24 Hz 5282.5

s40 62% 52 T8 14-24 Hz 5282.5

s41 60% 50 C4 8-12 Hz 3835.8

s42 62% 12 C1 14-24 Hz 3060.5

s43 86% 14 C5 7.5-12.5 Hz 2065.4

s44 66% 52 T8 16-26 Hz 1455.5

s45 58% 12 C1 7.5-12.5 Hz 2534.3

s46 66% 14 C5 16-26 Hz 5793.7

s47 60% 14 C5 7.5-12.5 Hz 2891.1

s48 66% 13 C3 14-24 Hz 3217.2

s49 86% 51 C6 8-12 Hz 1879.9

s50 98% 50 C4 8-12 Hz 3385.4

s51 56% 15 T7 7.5-12.5 Hz 2563.2

s52 60% 13 C3 8-12 Hz 2310.8

The average classification accuracy was calculated as 64.65%. This directly falls near

the current state-of-the-art methods for the same dataset. For any channel and frequency

bands during optimization, if there was a tie in classification accuracy over multiple bands

or channels, the selection was based on efficacy. Efficacy in the context of LH vs. RH

MI classification is an indirect qualitative measure of how well RS was separated from MI

signals. A notable trend observed during the automated contralateral procedure was the `
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band defined as 7-13 Hz was never an optimal frequency range over all subjects.

Throughout algorithmic development, the most common trend with respect to clustering

at the eigenchannel level was a conspicuous grouping of five (GRP-5). The GRP-5 pattern

was common enough to necessitate further consideration of this underlying structure in

the 2-dimensional slices of higher-dimensional space. Revealed in the original work was a

possible explanation, the number of separate runs during recording sessions. The number of

runs was exactly 5 within a 90 minute EEG recording session. An example case containing

the GRP-5 pattern was reproduced with subject 43 as presented in Figure 7.5. First tracking

the MI trials prior to random shuffling allows for the identification of recording runs

separated by increments of 20 (in the case there are 100MI trials available). Projecting along

the top C3-` eigenchannel d-mode and constructing the MFSP, an unexpected temporal

trend emerges. From left to right in the example provided, there is a temporal progression

respectively from run 1 to run 5. This is yet to be determined as a spatio-temporal pattern;

however, the temporal structure is unavoidable. Verification of thisGRP-5 pattern is required

to determine whether this was a systematic error introduced during preprocessing of the

SPLEEGA algorithm.

Figure 7.5: (left) The C3-` eigenchannel for subject 43. (right) The GRP-5 pattern is un-
covered to be a temporal pattern exhibiting a shift in the characteristics of signals correlating
to the chronological order of the inter-session runs.
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7.3 A Prelude to the Automatic Eigenbrain

In this section, a brief glimpse in the direction of future work is provided. The results

from both the sparse-sensor and contralateral experiments would suggest that increasing the

automatic procedure to include all 64 electrodes is a natural next step in development. As

a proof-of-concept, a complete 64 electrode eigenbrain for subject 26 is introduced.

Figure 7.6: The SPLEEGA brainmap of s26 for all 64 electrodes. The automated channel
selection procedure at this range of electrodes shows encouraging results. Allowing for
the biometric uniqueness of each human’s brain, this methodology could provide a more-
informed manner of automatic channel selection within the context of discrimination.
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Automatically scanning the 64-electrode montage allows for a more precise identification

of advanced clustering. This expands the search space for advanced clustering in subjects

where it was previously unseen. For the example provided in Figure 7.7, 5 channels were

automatically selected as candidate electrodes. Only 1/5were considered in the contralateral

case (C4-50), and it could be well-argued it is the worst in terms of advanced clustering of

the 5 identified. It is still quite the case that for all brains, there may exist an eigenbrain

vector space inherent to each person that can distinguish control signals of interest from all

other interfering signals.

Figure 7.7: (center) The SPLEEGA brainmap of select electrodes for subject 26. Isolating
the 5 best electrodes with strong advanced clustering allows for a more-informed manner of
automatic channel selection. MFSPs are shown for channels: AF8-35-` (top), AF4-36-V
(left middle), F6-41-` (middle right), FC6-44-V (bottom right), and C4-50-` (bottom left).



CHAPTER 8: CONCLUSIONS

An intelligent projection pursuit network was employed to construct a SPLEEGA eigen-

channel for the blind source separation of MI signals. Across all 52 subjects, it was shown

that complete separation of MI and resting state signals is achieved through an automatic

channel-selection process. This was performed absent the removal of bad trials given an

effective real-time BCI should be able to handle these types of statistical outliers. Further-

more, it was shown that a single electrode can provide sufficient discriminatory information

for EEG MI classification.

The results from the contralateral experiment suggest this protocol is a promising route

that automatically obtains the optimal electrode for each subject. Competitive classifi-

cation accuracy was achieved during automatic single-channel classification with regards

to the current state-of-the-art methods. A key component to this work has been the use

of SPLOC which was recently developed as a general-purpose projection pursuit neural

network. Subject-specific patterns of electrode discrimination have been successfully visu-

alized through a SPLEEGA brainmap which acts to increase the discriminatory resolution

of analysis as more electrodes are considered.

Multiple underlying patterns were recognized through the use of SPLEEGA. Notably,

advanced clustering demands further analysis; in particular, when advanced clustering is

observed it is seemingly independent of the ` and V frequency bands. It will be explored

whether advanced clustering can be induced for more subjects or perhaps this spatio-

temporal pattern is inherent in the subjects themselves. Additionally, the temporal trend

corresponding to the chronological progression of recording sessions will be further eval-

uated. This may provide explanatory power regarding unusually low performance metrics

of recent approaches using the GigaDB dataset.
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