
VISUAL ANALYTICS APPROACHES TO EXPLORING MULTIVARIATE TIME
SERIES DATA

by

Tinghao Feng

A dissertation submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in

Computer Science

Charlotte

2021

Approved by:

Dr. Jing Yang

Dr. Aidong Lu

Dr. Xi Niu

Dr. Zachary Justin Wartell

Dr. Martha-Cary Eppes



ii

©2021
Tinghao Feng

ALL RIGHTS RESERVED



iii

ABSTRACT

TINGHAO FENG. Visual Analytics Approaches to Exploring Multivariate Time
Series Data. (Under the direction of DR. JING YANG)

Time-oriented data analysis has attracted the attention of researchers for decades,

across many research domains, including but not limited to medical records, busi-

ness, science, engineering, biographies, history, planning, and project management.

However, the complexities of time-oriented data with a large number of variables

and varying time scales hinder scientists from completing more than the most basic

analyses. In this dissertation, I present two design studies where multivariate time se-

ries data are involved. In the first design study, I developed an interactive interface,

t-RadViz, for a manufacturing company to visually monitor and analyze real-time

streaming multivariate testbench data with continuous numeric values. In the second

design study, I developed a visual analytics prototype named EVis for analyzing and

exploring how recurring environmentally driven events are related to high dimensional

time series of continuous numeric environmental variables. In both design studies, I

closely collaborated with domain users in the whole process of requirement analysis,

design, and evaluation. Besides a rich set of fundamental graphic charts for sup-

porting basic analysis functions, new visual analytics techniques were developed in

the design studies for addressing challenging tasks, such as a novel trajectory-based

multivariate time series visual analytics approach in EVis for exploring temporally

lagging relationships between events and antecedent conditions. The effectiveness and

efficiency of the prototypes are illustrated by case studies conducted with real users

and feedback from domain experts.
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CHAPTER 1: Introduction

Time is a peculiar data dimension that is common across many application domains,

such as manufacturing, Earth science, medical records, business, biographies, history,

planning, or project management. An ever-larger body of time-series datasets is

generated nowadays from these fields. Following the attention of data analysts, a

high interest in mining time-series data is coming along and has led to thousands of

papers introducing new algorithms to index, classify, cluster, segment, and predict

time series. Lots of data mining algorithms are targeted on time-series data, such as

temporal association rules mining and pattern evolution discovery [10]. They are used

in tasks such as extracting useful structures [11], finding interesting representations

[12], measuring similarity [13], and detecting change points [14].

Besides traditional analytical methods, visual analytics for time-series data has also

been introduced. One of the earliest visual representations of time series illustrated

planetary orbits. It was created in the 10th or 11th century [15]. In recent decades,

data visualization has been employed in analytics processes to inspire researchers,

discover patterns, explain ideas, and analyze data [16]. To inspire researchers is not

only to superficially wow them but also to really engage people into deeper thinking.

Visual perception is always prioritized on attracting people’s attention, which moti-

vates people to find patterns from data visualized. Human beings are a kind of visual

creature, and a picture is worth a thousand words [17]. Data visualization is often

used to explain some complex ideas, phenomenon, or processes through graphic rep-

resentations. A well-designed interactive visualization can efficiently and effectively

help researchers find patterns behind numbers. The main goal of data analysis is to

extract information from data with the purpose of answering questions and under-
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Figure 1.1: An abstract overview of the different stages and their transitions in Visual
Analytics [1]. The figure is used without the permission of its authors.

standing phenomena of interest. Scientists have defined Visual Analytics as "a science

of analytical reasoning supported by interactive visual interface" [18], which "com-

bines automatic and visual analysis methods with a tight coupling through human

interaction in order to gain knowledge from data" (Figure 1.1).

In my dissertation, I focus on visual analytics of multivariate time-series data,

where each time primitive is associated with multiple data values [19]. Many analysis

methods and algorithms have been developed for multivariate time series data [20].

Also, visualization of multivariate time series data is a flourishing research area. Many

visual analytics approaches have been proposed to help analysts explore patterns of

multivariate time series data. For example, TimeWheel is used to explore temporal

distributions of multiple attributes [21]; ThemeRiver uses the metaphor of a river

that flows through time to reveal thematic changes in a document collection [5];

LifeLines uses horizontal bars to show temporal locations and duration of health-

related incidents that are related to several facets of patient information [22].

However, when encountering a specific domain application, existing techniques can-
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not always satisfy the analysis requirements. It means specific visual analytics ap-

proaches needed to be developed for the specific data and tasks. In this dissertation,

I will present two design studies for two domain applications and show how to de-

velop visualization methods to assist domain experts in conducting time-series data

analyses.

The first design study is to develop an interactive visual interface to monitor and

analyze live streaming data generated from a testbench of a vehicle manufacturer.

The data is time series containing multiple input and output variables that need to

be monitored and compared in live when experiments are running. In this study,

I have worked closely with domain experts from the manufacturer and developed a

working prototype that has been evaluated on-site in real experiments. To monitor

and compare multivariate time-series data from multiple experiments, the prototype

projects multivariate time series to 2D trajectories using a dimensionality reduction

method named RadViz [23]. The trajectories are used to visually compare and auto-

matically align the settings and performances of a running experiment with a baseline

experiment. The prototype also integrates other interactive visualizations for exper-

iment monitoring and comparison.

The second design study is to develop a visual analytics prototype for analyzing

rock mechanical weathering data. I have collaborated with an Earth scientist on this

project. She has studied rock mechanical weathering for more than 12 years. To

study the impact of environmental conditions on rock’s mechanical weathering, she

set up an instrumentation system with sensors affixed on the surface of granite rock

to collect environmental data and weathering data. Inside cracking of the rock is

"listened" by the sensors as AE (Acoustic Emission) events. The information was

collected per minute for about three years. It formed a large time-series dataset,

including a time sequence of AE events as well as multi-dimensional time series of

environmental conditions. I developed a prototype named EVis to visually analyze
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this data set for exploring the relationship between the environmental conditions

and the AE events. It uses a set of coordinated visualizations to support the goals

mentioned above.

EVis provides customized scatterplots, histograms, and heatmaps to conduct foun-

dational analyses that are common across virtually all Earth sciences applications.

They allow users to explore the relationships between AE events and one, two, or

three environmental conditions. In addition, through interactions provided in these

basic visualizations, users can select subsets of interesting AE events for further anal-

yses. EVis also provides a RadViz [23] view to allow users to explore the relationships

between AE events and multiple environmental conditions. To address the challeng-

ing task of exploring the temporally lagging relationships between AE events and

their antecedent environmental conditions, a novel RadViz-Leash approach has been

proposed and implemented in EVis. Leashes are RadViz projections of multivariate

time series segments recording environmental conditions before the AE events hap-

pened. By calculating similarities among leashes, clustering leashes based on their

similarities, and visually presenting the resulting clusters, EVis provides an effective

and efficient way to explore and analyze the temporally lagging relationships between

a large number of AE events and their antecedent environmental conditions.

In Chapter 2, I will introduce related work on multivariate time series visualization.

The design study for streaming testbench data is introduced in Chapter 3. In Chapter

4, EVis, the prototype resulting from the design study of rock mechanical weathering

data, is introduced. Chapter 5 introduces the evaluation of EVis and in Chapter 6

I propose the updated version EVis 2.0 that improves the adaptability of EVis and

evaluates it using the Yosemite rockfall data. Then I summarize the whole work and

discuss the future direction and plan on further analysis in Chapter 7.



CHAPTER 2: Related Work

2.1 Multivariate Time Series Visualization

Many efforts have been made to visualize a collection of multivariate time series.

For example, TimeSearcher2 [2] presented time series with multiple variables in a set

of line charts, one for each variable, and placed them vertically side by side sharing the

same horizontal timeline (see Figure 2.1). It provided a similarity search interaction

where line chart segments similar to a user selected sample segment are automatically

selected and highlighted (see Figure 2.1 for an example). This approach was intuitive,

but it only applied similarity search on univariate line charts of single dimensions and

did not explicitly reveal the temporal relationships among the dimensions.

Many researchers used dimensionality reduction (DR) [24, 25] when visualizing

multivariate time series. For example, Fujiwara et al. [24] projected a group of

multivariate time series to 2D points using a Two-step Dimension Reduction (TDR)

process (the first DR used Principal Component Analysis (PCA) [26] along a variable

mode for dimensions and the second DR used Uniform Manifold Approximation and

Projection (UMAP) [27] along a time mode for time points). Users could examine

feature contributions of selected clusters in the projection space. A drawback of this

approach was that each time series is reduced to one point in the projection space.

It was not intuitive for users to conduct tasks where temporal trends and temporal

relationships need to be examined for a large number of time series. Yang et al. [28]

extracted a set of features to characterize a large number of short 1D time series

and projected the time series to a PCA biplot based on these features. From this

biplot, users could identify clusters of time series and learn correlations among the

features. Takami and Takama [3] used animations and trajectories to show how values
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Figure 2.1: A screenshot of TimeSearcher2 [2]. It arranged multiple line charts verti-
cally for visualizing multivariate time series. Segments similar to the sample segment
(highlighted in red in the top line chart) were highlighted in the bottom view in red.
The figure is used without the permission of the authors.
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Figure 2.2: Animations and trajectories were used to show multivariate time series
[3]. The figure is used without a permission of its authors.

of multiple objects change over time in a shared 2D space. For example, in Figure

2.2, the scatter plot view showed how the projections of multiple objects changed

over time. A trajectory of one object was displayed. The detailed view showed the

line charts of the two dimensions displayed in the scatter plot view. They revealed

how the individual objects changed over time on these dimensions. The drawbacks of

this approach were the potential clutter and change blindness problems when many

objects were visualized.

StreamVis [4] divided a multivariate time series into time slices. It then projected

the time slices to a Multi-Dimensional Scaling (MDS) [29] plot based on their simi-

larities. The temporal order of the time slices was mapped to the color density of the

projections. Figure 2.3 shows a screenshot of StreamVis.

Time Curves [6] projected temporal multivariate data cases through a time line

to a 2D MDS [29] space and connected them by a time curve according to their

temporal order. Figure 2.4 shows an example of Time Curve. Similarly, Elzen et al.
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Figure 2.3: The interface of StreamVis [4]. The StreamGraph display showed the
whole time series in Theme River [5]. It allowed users to select a certain time range
for further analyses. The Time Slice Similarity Plot showed the MDS plot for time
slices in the selected time range. The time order was represented by color density
with lighter points for earlier time. Users can select a rectangular range in the MDS
plot. The selected time slices were highlighted in the StreamGraph plot. The figure
is used without a permission of its authors.
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Figure 2.4: Time Curves [6]. Data cases were displayed along a curved timeline.
The timeline was folded so that similar data cases were close to each other. Similar
data cases were also displayed in similar colors. The right figure showed a long time
series displayed in Time Curves. It could be considered as a MDS projection of the
data cases, where the projections were connected by a curved timeline according to
the temporal order of the data cases. The figure is used without a permission of its
authors.

[7] discussed different DR approaches for snapshots of a dynamic network. Figure 2.5

shows an example where the snapshots of a dynamic network were projected to a 2D

space and connected by a line. The dime dimension was also represented by color

in this figure. A representative network of each stable state was also displayed in a

temporal order.

Schreck et al. proposed a trajectory-based financial time series visualization [30].

It plotted 2D time series as trajectories in a 2D space, extracted high dimensional

feature vectors from the trajectories, clustered the trajectories using a Self-Organizing

Map [31] based on the feature vectors, and provided a rich set of visualizations and

interactions to explore the clusters. A limitation of this approach was that it was

designed for 2D time series rather than multidimensional time series. I also proposed a

trajectory-based time series visualization approach. Different from Schreck et al. [30],

my approach targets multivariate time series, projects them from a multidimensional

space to a 2D space to construct the trajectories, and uses a trajectory similarity

measure for clustering. Besides providing overview for the clusters, my work also
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Figure 2.5: Elzen et al.’s approach to visualizing dynamic networks [7]. In the top
figure, snapshots of a dynamic network were projected to points in a 2D space and
connected in their temporal order. Projections of similar snapshots were closer to
each other in the 2D space. Through the projection, seven stable states (A-G) were
detected. The bottom figure showed a representative snapshot for each state and
their transitions. The figure is used without a permission of the authors.

provides a view allowing users to examine full details of the trajectories in the original

multidimensional space.

Clustering approaches have been developed for multivariate time series. Recent

examples include model-based clustering [32], subspace clustering [33], and shape-

based clustering [34, 35]. For example, Ghassempour et al. [32] proposed an approach

to clustering time series with both categorical and continuous variables based on

Hidden Markov Models[36]. Dasu and Swayne [37] clustered time series based on

nonparametric statistical summaries using a k-means algorithm [38]. Different from

these approaches, my approach clusters time series based on trajectory similarity in

a 2D projection space so that the clustering result is consistent with what users see

from the visualization and domain knowledge integrated into the dimension reduction

process is reserved.

2.2 RadViz

RadViz (Radial Coordinate Visualization) is a visualization technique for analyzing

multi-dimensional data [23]. After placing dimensions along the circumference of a
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circle as anchors, it projects a multidimensional dataset to a 2D space. The projection

of a data point is solely decided by the anchor positions, the value range used for

normalization of each dimension, and the values of the data point itself. This feature

makes RadViz a good choice for generating trajectories of multivariate time series

data, where new data points coming in will not change the layout of existing data

points. This feature distinguishes it from other dimension reduction methods such as

MDS [29, 39], PCA [40, 25], t-SNE [41], and UMAP [27], where the projection of a

data point is also decided by the values of other data points.

RadViz maps data points from an n-dimensional space to a 2D plane, inside a

circle usually. All dimensions are normally situated around a circle as anchors. It is

supposed that each anchor holds its own virtual spring of variable stiffness and all

the loose ends of the springs are bound together (Figure 2.6).

Consider [
−→
S 1, ...,

−→
S n] are vectors for n anchors around the circle. To decide the

RadViz position −→u of a point [d1, ..., dn] from the n-dimensional space, set the stiffness

of the virtual spring of each anchor j to corresponding value of the dimension dj, and

then apply the Hooke’s law of mechanics to get equation (2.1) that all the spring

forces reach balance (sum to 0). Finally, the position of −→u is given by equation (2.3)

[8].

n∑
j=1

(
−→
S j −−→u )dj = 0 (2.1)

n∑
j=1

−→
S jdj = −→u

n∑
j=1

dj (2.2)

−→u =

∑n
j=1

−→
S jdj∑n

j=1 dj
(2.3)

RadViz allows users to see data points in relation to their attributes, which is a

feature distinguishing it from other dimension reduction approaches. PCA [40] and
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Figure 2.6: Definition of RadViz mapping.[8]
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related displays, such as biplots [42], are not optimized for this type of tasks [43].

MDS [29, 39] and t-SNE [41] also cannot support this type of tasks since they lost

the data-dimension relationships in the projection process [43]. This feature makes

RadViz an ideal approach for visualizations designed for domain applications, where

domain experts would like to see data points in relation to their attributes in a

projection space.

Many efforts have been made to improve the original RadViz design to address

problems such as clutters in the center of the RadViz space. Cheng et al. [43] intro-

duced RadViz Deluxe, which automatically relocated dimension anchors for clutter

reduction and insight discovery. They employed several optimization procedures to

enforce a variety of distance constraints. Angelini et al. [44] proposed a method

to automatically rearrange dimension anchors based on a point disposition heuristic.

Their prototype also allowed dragging the anchors freely along the circumference.

Zhou et al. [45] designed rich interactions in RadViz, such as adding and removing

dimensions as well as selecting data from RadViz and examining them in a coordi-

nated detail view. Their case studies revealed the benefits of providing interactions

in RadViz. We provide a rich set of interactions in RadViz in our system. Rather

than using automated anchor dimension relocation algorithms, we propose two inter-

active distortion techniques to reduce clutter in RadViz, which avoids changing the

anchor layout created by scientists since it may carry their domain knowledge and

hypotheses.



CHAPTER 3: t-RadViz: A Real-Time Visual Interface for Monitoring Multivariate

Streaming Testbench Data

3.1 Introduction

In this design study, I have worked closely with an automobile manufacturing com-

pany to design, develop, and evaluate a visual interface to allow testbench operators

to monitor results of running testing for optimizing vehicle designs. Since feedback

from the company to this visual interface was highly positive, it has been employed

by the company in multiple work groups.

When a vehicle is designed, a series of tests and adjustments are always necessary

for the best setting[46]. For the final adjustment of a design, a testbench is usually

used to simulate a real situation. A testbench usually consists of multiple runs of

testing, in each of which a vehicle being tested has different design parameters. In

each run of the testing, testbench operators continuously adjust the body positions

of the vehicle (input variables to be explored) following the same predefined plan by

engineers and measure its aerodynamics parameters (output variables to be explored).

The positions and aerodynamics parameters are collected in real-time through a set

of sensors during the testing. The aerodynamics parameters of the vehicle at the

same position at different runs are compared to learn cons and pros of the design

parameters used in each run. The adjustment of the design parameters is usually

subtle and incremental during a testbench.

A critical task of testbench operators is to monitor the input and output variables in

real-time and compare a running test (referred to as current run) against one or more

reference runs. By monitoring the input variables and comparing them with those in

the reference runs, the engineers verify that the positions of the vehicle are adjusted
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as planned so that the outputs of these runs are comparable. If an unexpected error

that may fail the current run is detected, the operators can terminate the current run

before it ends to reduce cost. By comparing the outputs of the current run with the

reference runs on the fly, the operators can learn whether the new adjustments they

made to the vehicle in this run is good or bad. If they observe that the performance

of the vehicle in the running test is worse than the reference runs, they may also

terminate the current run before it ends to reduce cost.

Before using the visual interface I developed, the company conducted this task

using a visualization system consisted of line charts and scatterplots (see Fig 3.1).

The line charts showed how the input variables change over time. Users could turn

on a vertical line and move it along the line charts to view the status for all input

variables at a specific time. Users could also add one reference run to the line charts

to compare it with the run under investigation. Several scatterplots were used to

check the relationships between any two selected dimensions. Users could examine

those relationships in a current run or compare the relationships in a current run with

one or more reference runs using the scatterplots.

The testbench operators were not satisfied with their previous visualization system

for several reasons. First, it didn’t provide any visual aid to help the operators

compare multiple line charts in a real-time environment. It was difficult for the

operators to simultaneously examine multiple line charts to compare a current run

with reference runs to identify errors. Second, it didn’t handle delays in the tests,

which are common in testbenches. The delays caused unsynchronized line charts,

where the same input settings of different runs were not displayed at the same time

point (X position) for effective comparsion. Third, the operators needed to check

multiple line charts to get a comprehensive picture about whether a current run

was comparable to the reference runs according to the input variables, which was

overwhelming.
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Figure 3.1: The previous visualization system consisted of traditional line charts and
scatterplots. (This figure is from the collaborators with variable names covered for
confidentiality.)

In addition, as shown in Figure 3.1, the scatterplots were very cluttered when all

data posts in one or more runs were plotted. It was difficult to get a comprehensive

view of how the input variables were related to the output variables from the cluttered

scatterplots. The operators were able to filter the data by selecting line segments in

the line charts and only showing the corresponding data in the scatterplots, but it

was difficult for them to manually select synchronized matching segments in other

runs after a segment in one run was selected. Therefore, the company had a strong

need for a new visualization system that can better help the operators.

To address this needs, I have worked toward a visual interface for monitoring real-

time streaming testbench data. I have designed, developed, and evaluated a fully

working prototype named t-RadViz. It works in a streaming mode. It keeps receiving

new data streaming in from the testbench. The visualization highlights the newest

burst while providing a context of historical data. It allows users to analyze input path

development, variations of output, and compare input and output between a current
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run and one or more reference runs on the fly. This prototype has been employed

by the manufacturing company after it received positive feedback in evaluations with

several runs of real testbench experiments.

t-RadViz adopts RadViz, an existing multivariate visualization technique, to visu-

alize multivariate time series consisting of selected input and output variables. To the

best of my knowledge, my work is among the first efforts that use RadViz to visualize

multivariate time series data. When only input variables are selected, the RadViz

view provides an overview of parameter change paths and allows users to compare

the input parameters between multiple runs of testing. When both input and output

variables are selected, the RadViz view provides an overview of the differences among

multiple runs in performance at different input settings.

Besides the RadViz view, the prototype also provides line charts and scatterplots.

Similar to the previous practice of the company, the line charts allow users to exam-

ine the temporal evolution of selected variables and compare the same variables in

multiple runs. Each scatterplot allows users to examine the relationship between a

selected input variable and a selected output variable. Different from the previous

practice, t-RadViz only displays the most recent time series segments in a current

run and its matching segments in one or more reference runs to reduce the cognitive

load of engineers. A new algorithm has been developed to search matching segments

on the fly using projections of input paths in the RadViz space.

In addition, the prototype provides delta histograms and table views. The delta

histograms are set attached to the line charts to highlight the difference between

the current run and a reference run in real-time. The table view displays detailed

information in digital form in a way that engineers and operators are accustomed to.

I have applied color coding on the table to enhance the reading efficiency.
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3.2 Development Process, Data, and Tasks

3.2.1 Development Process

This design study was conducted from 2020 Summer to 2021 Spring. During this

period of time, I conducted bi-weekly meetings with target users of this prototype,

namely testbench operators and engineers from the manufacturing company. Along

the process, I also participated in multiple experiments conducted by the users in

the testbench lab to test the prototype with real data in a real working environment.

I developed the prototype iteratively with multiple designs and evaluation cycles.

Typically, in each cycle, a version of the prototype was developed based on input

and feedback from the users. A few meetings were conducted where I presented the

prototype with test data to the users for their feedback. After the prototype met their

expectations, the prototype was tested on the spot. During and after the real-time

test, I met with the users to collect input and feedback for the next cycle.

3.2.2 Data

Each testbench experiment consists of multiple runs. Before each run, the engineers

physically fine-tune a vehicle being tested. The goal of the experiment is to find the

best design parameters with which the vehicle has the best performance.

When a run of testing starts, the vehicle runs in the lab. The operators change

its position along a pre-defined input changing path to study how the fine-tuning of

the vehicle affects the driving performance under different positions. The lab collects

the position and aerodynamics measures of the vehicle through a set of sensors at 10

Hz, or say, 10 multivariate data points are generated per second. Each data point

consists of position measures and aerodynamics measures, as well as a timestamp.

During the test, the data collected by sensors is written to a hard drive to form a

streaming multivariate time series. In an example experiment, each run lasted about

15 minutes. The time series data for each run contains about 9,000 rows and 46
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columns/dimensions (including timestamps, all input variables, all output variables,

and errors for input variables) at the end of the runs. The experiment had 8 test

runs. So, it resulted in 8 such time series.

Note that the datasets contain both independent variables and dependent variables.

The vehicle position measures are independent variables controlled by the operators.

We also call them input variables. The aerodynamics measures are dependent vari-

ables. We also call them output variables. They change when the vehicle position

changes. A hidden independent variable is the design parameters of the vehicle, which

are different in each run of testing. The engineers are not only interested in how the

aerodynamics measures change when the position changes, but also how the aerody-

namics measures are different under the same position settings in different runs, and

how the differences change when the position settings change. Although the runs in

a testbench experiment usually follow the same position change plan, the time ranges

of the runs vary - random delays happen in position adjustments within the runs,

which are common and unpredictable in testbench experiments.

3.2.3 Tasks and Requirement Analysis

In the bi-weekly meetings and lab experiments, the testbench operators and en-

gineers explained how a testbench works and what kind of analyses they conduct.

According to them, the data is analyzed while a test is running. Multivariate time

series are generated in a stream. The testbench operators need to make real-time

decisions based on the results of the analyses. For example, if they discover that the

performance of a vehicle in a running test is worse than a previous run, they may

terminate the run immediately to reduce cost. The tasks of interest are summarized

below:

R1 - Monitor a run to make sure it is conducted smoothly. If the operators

observe anomalies, they may need to stop the test to address the problems. To

conduct this task, the operators need to monitor how the input and output variables



20

change over time. Additionally, in the streaming mode, every time when new data

comes in, called a burst, the average delta, which is the difference of each dimension

between the current burst and respective data of a reference run, for any dimension

need to be highlighted for the judgment of the current moment.

R2 - Compare the input of a running test with the input of one or

more reference runs. The operators need to know whether the position changes

are conducted along a similar path as in the reference runs. If the path is significantly

different from the reference runs (e.g., there are unexpected errors), the operators will

not be able to compare the results of the current run with the reference runs. The

operators may need to terminate the current run immediately to reduce cost.

R3 - Compare the output of a running test with the output of one or

more reference runs. The operators need to know whether the tuning conducted

for a run has positive or negative effects on the performance. Toward this goal, they

may compare the output variables of multiple runs in either the whole input space or

segments of the input path of interest. The results will help the operators understand

how the tuning affects the performance of the vehicle in different positions. They will

also help them decide how to further tune the vehicle in the tests to be conducted.

For example, if the vehicle was turned along a direction in the most recent run and the

performance was better than other runs, the operators may further tune the vehicle

along with that direction. If the tuning has shown clear negative effects in a current

run, the operators may terminate it immediately to reduce cost.

R4 - Examine temporally evolving relationships between the input vari-

ables and the output variables. A basic observation required during a test is

how an adjustment of input variables impacts the output. The operators also need

to observe the trend of this relationship.

To support these tasks, a visual interface designed for the target users must satisfy

the following requirements:
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1) Since the users are not visualization experts and their decisions are made in a

time-critical environment, the visualizations need to be intuitive and straightforward.

2) The delays in the runs bring noises to the data analyses. Their impacts on the

visualizations need to be minimized.

3) The interests of the users may vary from time to time. The visual interface

should allow them to customize the visualizations to fit their drifting needs.

3.3 t-RadViz Prototype

I have developed t-RadViz, a visual interface for monitoring the streaming test-

bench data. It allows operators to monitor and analyze testbench experiments in

real-time. The interface consists of four parts: a control panel to manage finished

and current runs and set reference runs for comparison (Figure 3.2A), a monitor table

to show real-time status based on presetting of specific input values (Figure 3.2B), a

RadViz panel to visualize and compare multiple runs with multiple variables simul-

taneously considered (Figure 3.2C), a set of scatterplots to show how relationships

between pairs of variables of a live run change over time and how they are different

from reference runs (Figure 3.2D), and a set of line charts to monitor how single

variables of a live run change over time and how their values are different from ref-

erence runs (Figure 3.2E). Since the time series have absolute timestamps and are

not synchronized with regard to their test plan, an algorithm has been developed to

identify and align matching input path segments of a current run and its reference

runs.

3.3.1 Prototype Implementation and Data Processing

For better flexibility and interactivity, the client of t-RadViz is written by HTML

and JavaScript, which can be run on any browser. The raw data is binary data (0

and 1) updated at 10Hz generated by sensors from a lab. To collaborate with t-

RadViz, the raw data is transformed into a CSV file using Matlab. The CSV file
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Figure 3.2: The prototype of t-RadViz. A). Control panel; B). Monitor table; C).
RadViz panel; D). Scatterplots; E). Line charts. (All dimension names and comments
are covered for confidentiality.)

keeps updating at a consistent frequency and is stored at an accessible file storage

server.

3.3.2 socket.io

To work with the real-time updating data, I used socket.io [47] to rebuild the

communication between server and client ends. Compared to the traditional HTTP

request, which only allows the client to send requests to the server, socket.io enables

real-time, bi-directional, and event-driven communication between the client and the

server.

When the system starts, a socket.io connection is built. Under this connection, the

client end, namely the browser, can listen to any event emitted from the server end.

In our case, the server monitors the CSV data file and emit the new data to the client

whenever the CSV file changes. The browser then updates the visualization with the
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new data coming in real-time.

3.3.3 RadViz panel

The RadViz panel provides an overview of multiple runs with a set of selected vari-

ables examined simultaneously. Unlike the most common use of RadViz for revealing

clusters in multivariate data, t-RadViz mainly uses it to show paths of changes for

multivariate time series. Figure 3.3 shows the RadViz projections of three runs of

testing. The runs are represented by distinct colors. Four input variables are placed

along the circle as anchor points. Each multivariate data point in a run is projected

to a 2D point in the RadViz space. The closer a 2D projection to an anchor, the big-

ger the normalized value of the corresponding variable compared to other variables

at that data point. For each run, the data points are chronological, so are their 2D

projections. There is an option to connect the 2D projections of the same run using

a polyline following their chronological order to reveal the path of changes over time.

From Figure 3.3, we can see that the operators kept changing the input variables in

many different directions. We can also see that the three runs displayed match in the

input space pretty well since their polylines largely overlap. We can also identify out-

liers from the figure, such as the blue points which are far away from their immediate

neighbors. Also, from the figure, we can quickly find the offsets between the orange

run and the green run (the blue run matches the green run quite well). In addition,

the figure also reveals the input space covered and uncovered by the input paths.

Besides examining and comparing paths of input variables, the users can also use

the RadViz panel to check how outputs changes when input changes. Figure 3.4

shows when analyzing the live data, two RadViz circles are displayed side by side

to show the projections of input and output respectively. The left RadViz displays

four input variables and the right RadViz displays ten output variables. Through the

position of the trajectories in the output RadViz (right), we can see the current run,

which is displayed in orange, was offset to the bottom left, which indicates the tuning
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Figure 3.3: RadViz with four input variables. The right figure only displays points.
The left figure displays points and polylines connecting the points, which makes it
easier to detect outliers

for the current run has a greater impact on the variables set to the bottom left in the

RadViz view.

When a test is running, the RadViz panel shows the complete path of any refer-

ence runs selected by users as the background and updates the current run as the

foreground with the most recent burst highlighted with a bigger point size (see Figure

3.5).

3.3.4 Line Charts

Line charts are among the most intuitive visualizations to represent a univariate

time series. In a line chart, the X-axis is a time axis and the Y-axis represents a

variable. t-RadViz provides this basic visualization for monitoring individual input

or output variables of the streaming data and analyzing the existing data.

A line chart panel of t-RadViz contains five line charts, according to the preference

of the target users. The top line chart displays all four input variables, each repre-

sented by a line, for a current run and a reference run, respectively. The current run’s

lines are displayed in distinct colors and the reference run’s lines are all in gray. This
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Figure 3.4: Left: RadViz with four input variables. Right: RadViz with ten output
variables.

line chart is useful for engineers to compare the input change between the current

run and the reference run and to analyze the relative changes of the input variables.

Below the top line chart are four line charts, each displays an output variable selected

by users. The output of the current run is represented by orange lines and the output

of the reference run is represented by blue lines in these line charts.

3.3.5 Bar Charts

It is critical to alert users about significant performance differences between a

current run and a reference run in this application. With the line charts, users need

to manually compare the performance of the current run and the reference run by

comparing the vertical positions of their lines and decide whether the differences

are significant. It is not straightforward for decision-making. Moreover, "significant

differences" are often unnoticeable in the line charts since the lines are scaled by the

whole value range of an output variable, which could be much larger than the scale

of "significant differences".

To address this problem, I coupled a bar chart with each of the four line charts

to display the value differences between the current run and the reference run on
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Figure 3.5: RadViz is showing the current test run in live.
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an output variable explicitly. A bar chart is displayed below its corresponding line

chart. In particular, the time axis is split into time slices. The average value difference

between the current run and the reference run on the output variable in each time

slice is visually represented by a bar. It is called a delta bar since it represents

a different value. It adopts the horizon graph [48] to save the vertical space and

highlight differences. All the bars are displayed on the top of a horizontal line based

on the absolute value of the difference. For each output variable, domain experts

define whether a positive difference is good or a negative difference is good on that

variable. The delta bars are filled in green for good performance or red for bad

performance. Meanwhile, the experts define a threshold beyond which a difference

value is considered significant. If a bar is taller than this value, its top beyond

the threshold line is cut and moved to the bottom of the bar and displayed in a

darker green or a darker red. This approach explicitly displays difference values and

highlights significant differences in a way that is semantically meaningful and intuitive

to users.

Figure 3.6 shows an example of the coupled line charts and bar charts. The top line

chart shows four input variables, with variable names hidden for confidentiality. The

four line charts below it show four pre-selected output variables, with variable names

hidden for confidentiality. In this example, on all four output variables, a run with

higher values has a better performance. It can be seen from the figure that the current

run has better performance on the first output variable and worse performance on

the second and third output variables than the reference run. The delta bars with

dark colors highlight the time points when the differences are significant.

In this interface, users can select variables displayed in the line charts via a drop-

down menu trigger by clicking the variable names. The value and delta range of each

variable are pre-defined by engineers. Users can also interactively change them via a

pop out dialog triggered by clicking the Y-axis ticks.
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Figure 3.6: The top line chart contains all four input variables. Each of the bottom
four line charts and its delta bars are related to a pre-selected output variable. In the
line charts, the current/reference run is displayed in orange/blue. In the bar charts,
the delta bars in red/green indicate the current run has a worse/better performance
than the reference run. For confidentiality, the names of input are covered and the
names of variables of the bottom four line charts are removed.
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3.3.6 Scatterplots

Scatterplots is a basic way to explore the relationship between two independent

variables. t-RadViz provides several scatterplots to represent the relationships be-

tween pairs of variables.

Users can select variables for both X-axis and Y-axis for all the scatterplots and

interactively change their value ranges. However, the scatterplots lack a time dimen-

sion. They become cluttered soon when more and more data come in. To reduce

clutter, an interaction is provided to allow users to check data in a selected time

range. In particular, users can select a time range in the line charts and only data

within that time range will be displayed on the scatterplots.

3.3.7 Time Series Alignment

When data points of multiple runs are projected to the RadViz plane, users can

easily compare the runs based on the positions of the 2D projections. However, if we

display two or more runs in a line chart to compare them, we need to align the runs for

effective comparison. The reason is that not only the runs have a different start time,

but also the variables adjustment speed varies from run to run. For example, Figure

3.7 shows two line charts (one for an input variable and one for an output variable)

where a current run (the orange line) is compared with a reference run (the blue line).

A clock time scale is used in the line charts and the two runs are aligned at their start

points. It can be seen that the current run has a different input adjustment speed

from the reference run, and thus the current run has a different input value from the

reference run at the same X position. It makes comparisons of the line charts difficult

and the delta bars lose their effectiveness.

To compare the runs effectively, we need to plot the current burst of the current

run to the corresponding X positions at the time axis of the reference run on the fly.

Since the input change path involves multiple variables, all input variables need to be
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Figure 3.7: The line chart for the current test running in live.

considered in the alignment. Therefore, I developed the following algorithm to align

two multivariate time series based on their similarity in the input space as well as the

temporal orders of the data points (all runs follow the same input adjustment plan,

so the adjustments are made in the same order):

With this algorithm, we used the RadViz projections to find a time series segment

from a reference run that matches the current burst of the current run. The current

burst and its matching segment are displayed in the same time range in the line

charts. In the scatterplots, they are both displayed in dots with a bigger sizes for

easy comparison (see Figure 3.8).

When users do not specify a time range for the display in the scatterplot, the system

will automatically display the most recent bursts and their matching segments in the

reference run identified using the algorithm. In this way, the users can examine the

performance of the most recent data and compare it with the reference run in the

scatterplots. Figure shows the comparison of scatterplots for pairs of variables.

3.4 Expert Feedback

t-RadViz has been used in in-situ continuous motion tests of the manufacturer

after a few round of field tests with positive feedback. To learn whether t-RadViz is

useful in real work and collect suggestions for improving the system, a google form

questionnaire was recently distributed to two direct users of t-RadViz, including an

end-users and a project manager from the manufacturer. They provided feedback

based on their experience with t-RadViz. Below are the questions and answers of the
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Algorithm 1 Align Segment
Declare a Segment as a two element array with its start and end points
Define the minimum length of the segment MinSeg
Define related distance Radius
Select point P from the reference run
if Length of Segment is 2 then

Empty Segment
end if
if Length of Segment is 1 then

if Distance between P and Segment[0] less then MinSeg then
Return

end if
end if
Q = GetPoint(P )
if Q is Null then

Return
end if
Push (P,Q) to Segment
procedure GetPoint(P )

MinDist=the minimum distance to P from all points of live run
Define Q is the point of live run with distance to P is MinDist
if MinDist ≤ Radius then

Return Q
else

Return Null
end if

end procedure
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Figure 3.8: The scatterplot for the current test running in live.

questionnaire (the original words of the users are quoted):

Do you think the visualizations and functions are useful in your work? Both users

answered yes and left comments on the usefulness of t-RadViz. “The application

provides a very useful tool to analyze and compare large data sets, in near real-

time.” “We are able to quickly evaluate data as it comes to us.” “This allows us to

more quickly find potential issues and to more quickly make decisions regarding the

direction of the testing.”

What are the potential benefits/advantages (if any) of monitoring data using this

software compared with the other visualization or other software you used? The users

compared t-RadViz with the analysis tool they used before. Here are their comments:

“The speed of the data processing and analysis provides a more efficient use of wind

tunnel time.” “The benefits of having it very user configurable make it useful for many

of the test configurations we typically encounter.” “This software does not require

any additional hardware as it has been written specifically for this purpose.” “Other
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software would have required considerably more effort from a hardware perspective.

Web-based software potentially allows more lightweight analysis.”

Would you like to use the software in your work? Both users provide positive

comments to this questions: “The software is getting used more frequently as the de-

velopment process moves toward increased continuous motion data collection.” “Other

users are making use of the near real-time analysis to help make decisions faster and

more efficiently.” “Multiple analysis methods give more complete information for

better decision making.” “We currently use this software at almost all tests.”

What are the limitations? Please provide your top 2 suggestions to improve the

software. The users provided a few suggestions to improve the current design. One

concern is about the performance. “Large data sets seem to increase the frequency of

app failures.” “This is only problematic due to needing time to reset the conditions

during testing.” “The software should include a state file which can reconstruct the

views” The other concern is about the functionality. “It would also be quite useful

to have more customization capability for the frame layout” The feedback provides

useful insights for future improvement of t-RadViz.

3.5 Conclusion

In this chapter, I presented t-RadViz, an interactive visual interface developed for

a manufacturing company to help testbench operators and engineers monitor and

analyze real-time streaming testbench data. It uses socket.io to build the communi-

cation between the server end and the client end to monitor the real-time data stream.

At the client end, the user interface consists of a runs management, RadViz view,

line charts, scatterplots, and a table view enhanced with color coding. t-RadViz is

among the first effort to use RadViz on visualizing multivariate time series data. It

also makes use of the RadViz projection to align multivariate time series segments of

multiple runs.

t-RadViz has been used in a real working environment to analyze real-time data
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of vehicle tests on the spot. According to the feedback of its users, it is useful and

greatly improves the work efficiency of testbench operators and engineers.



CHAPTER 4: EVis: Visually Analyzing Environmentally Driven Events

4.1 Introduction

Earth’s environmental systems—its atmosphere, biosphere, hydrosphere, and litho-

sphere—are all linked together via complex pathways that make a prediction of

changes in any one system extremely challenging. In particular, discrete ’events’

such as rock fracture, flooding, and landslides, for example, are driven or limited by

environmental factors like air temperature, rainfall, or river discharge. To best pre-

pare for climate change’s impacts, Earth scientists are monitoring Environmental

conditions (E-conditions) at increasingly high temporal resolutions to understand

triggers, namely the driving environmental factors, of natural event phenomena

(hereafter events) [49, 50]. However, the large number of variables contributing to

events, combined with the convolution of their covariance, has hindered a large ma-

jority of scientists from completing more than the most basic analyses [51]. Most

researchers employ line plots, ’wiggle matching’, Fourier, or bivariate analyses, and

rely on hand filtering to test correlations within data subsets related to one or more

dimensions. As a result, there is little room for the discovery of relationships not

hypothesized by the viewers. Thus, there is a strong need for time series analy-

sis tools that readily facilitate - without coding - more functionalities than plotting

multicolored lines or heatmaps versus time.

Moreover, current approaches employed by Earth scientists lack the flexibility to

readily data-mine for temporally lagging relationships like those related to an-

tecedent conditions. The rates and magnitude of many environmental phenomena are

predicated not only on simultaneous conditions but also on antecedent conditions for

periods of minutes to days or weeks prior. Currently, the state of the science regarding



36

Figure 4.1: The New Mexico Rock Dataset [9] in EVis. (a) The value-time scatter-
plot of Ambient Temperature Change (ATC). A group of discrete-time-points with
negative ATCs are selected as POIs. (b) RadViz with two top surface temperature
variables placed on the top and two bottom surface temperature variables placed at
the bottom. (c) Histograms showing event hours and event rates of the whole dataset
(in blue) and the POIs (in orange). (d) The cluster timeline view where three-hour
leashes of the POIs are grouped into eight clusters and displayed over timelines. The
clusters are sorted by event rate in descending order. Leashes of non-event hours are
dimmed.

lag-correlations requires scientists to know the period of the antecedence or to itera-

tively test multiple periods - a time-consuming and dissuading process. In addition,
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there is a need to readily explore the relationships among multiple environmental

variables in the time(s) leading up to events of interest.

In this chapter, I present EVis (Fig. 4.1), a fully working visual analytics proto-

type, developed to help scientists who have minimal coding or data mining expertise

visually analyze time series of complex environmental data. EVis was developed via

a two-year collaboration between Earth scientists (scientists for short) and visualiza-

tion researchers (vis-researchers for short). The New Mexico Rock dataset [52, 9],

a previously well-studied dataset devoted to identifying key environmental variables

driving natural rock cracking, was used to develop and evaluate the prototype. The

scientists used sensors attached to natural rocks to capture rock cracking events and

E-conditions in real-time. This dataset records 280,979 rock cracking events and 22

E-conditions simultaneously collected from a rock at an interval of one minute over

three years. The overall goal of the research is to identify driving factors of the rock

cracking events, with temporally lagging relationships related to antecedent condi-

tions considered. Importantly, this dataset represents a typical exemplar of a broad

array of scientific problems that may be addressed using continuous environmental

monitoring in the context of any particular events of interest.

EVis was created to allow scientists to evaluate known and discover unknown event

triggers - not only in terms of simultaneous E-conditions when events happened but

also environmental changes and other events occurring before the events of interest

occurred. Toward these goals, EVis provides a set of basic and advanced graphi-

cal charts as well as a novel visual analytics approach, all coordinated in the same

visual interface for a smooth visual analytics workflow. The basic charts include scat-

terplots, histograms, and heatmaps. The advanced chart is a RadViz view [53, 8]

with new interaction techniques. They allow users to interactively explore relation-

ships between events and one, two, three, or more simultaneous E-conditions. EVis

also provides a new visual analytics approach named RadViz-Leash. It integrates
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RadViz projection [53, 8], trajectory clustering, and visualizations to allow users

to interactively explore temporally lagging relationships between events and multiple

Preceding Environmental conditions (PE-conditions), namely the environmen-

tal changes before the events occurred. The usefulness of EVis is illustrated by two

case studies conducted with a senior Earth scientist and feedback collected from 11

domain experts.

The main contributions of this chapter include (1) EVis, a visual analytics pro-

totype specifically designed for Earth scientists to explore environmentally driven

events and their relationships to multiple E-conditions, (2) RadViz-Leash, a new vi-

sual analytics approach for interactively analyzing temporally lagging relationships

between events and their multidimensional preceding conditions, and (3) case studies

and expert feedback to evaluate the usefulness of EVis and RadViz-Leash.

4.2 Background - Rock Mechanical Weathering

One co-author of this work is a senior Earth scientist. She and her team have

been studying the type of rock mechanical weathering datasets presented herein for

about 15 years. Mechanical weathering refers to the physical breakdown - cracking -

of rock that naturally occurs when rocks are exposed to Earth’s atmosphere and to

water. It is a key component of all Earth surface processes and one for which data

and understanding have been strongly lacking [54]. The scientists employed Acoustic

Emission (AE) technology to study mechanical weathering by ’listening’ to rock crack-

ing events in real-time [52, 9]. They collected the dataset used in this chapter from

a granite boulder placed in Sevilleta National Wildlife Refuge in New Mexico [55].

An instrumentation system was affixed to the boulder, which consisted of multiple

thermocouples, strain gauge rosettes, surface moisture sensors, and AE sensors. All

sensors were installed on the boulder and calibrated in control. Measures of surface

strain and temperature, surface moisture, and other E-conditions from an adjacent

weather station were collected once a minute for about three years. During the same
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period of time, cracking events, as recorded by AE, were monitored continuously and

recorded whenever they occurred. Each AE signal exceeding a defined threshold was

recorded as an individual ’event’ with associated ’energy’ related to the strength of

the captured signal. Therefore, in this case, cracking is the environmental event of

interest, and that cracking also has an additional attribute of energy. This scenario is

typical of other Earth science applications. For example, the ’event’ might be a flood

and the additional attribute volume of water.

Twenty-two E-conditions were recorded for 1,578,240 minutes. The E-conditions

included not only sensor-collected variables but also derived variables such as Vapor

Pressure, which was calculated from Ambient Temperature and Relative Humidity.

Meanwhile, 280,979 AE events were detected and recorded during this period. The

dataset was fully vetted for quality in past work before this study.

In past work, the scientists employed stacked and annotated line charts (hand-

selected and assembled in drawing software), histograms of hand-filtered data, and

bivariate plots to analyze this dataset and similar datasets collected from other rocks

[52]. Selecting days and hours of key data from the datasets required thousands of

people-hours of data mining through hundreds of individual purpose-built graphs to

find trends in a handful of the 22 dimensions available. They improved this approach

by developing heatmaps of cracking rates under different E-conditions, but could only

co-plot up to two dimensions simultaneously [9]. Based on the analyses presented

in past publications, the scientists hypothesized not only that multiple dimensions

are interconnected in contributing to observed cracking, but also that the temporal

relationship between these dimensions and the onset of cracking varies. For example,

they make the qualitative observation that cracking occurs in concert with rapid

cooling immediately before cracking—brought on by both wind and rain—following

week-long periods of similar hot days [52, 9]. To date, however, there has been no

ability to readily test or explore these hypotheses. The scientists have identified a
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sequence of weather phenomena that appear to lead to events, but had not quantified

that sequence in any way, nor identified repeated sequences of phenomena that lead

to other events in the database.

4.3 Development Process and Requirement Analysis

4.3.1 Development Process

The vis-researchers and scientists in my team have been working together on this

project for two years. The first year was an exploration stage with bi-weekly meetings.

The collaboration started with helping the vis-researchers understand the domain

problem, the data, and the current practices in Earth sciences. Then, several Tableau

[56] dashboards and ad hoc D3 [57] prototypes with different visualization designs

were created using real datasets from the scientists. Some designs were suggested by

the scientists based on their previous practices and leveraged by the vis-researchers.

Others were contributed by the vis-researchers. The dashboards and prototypes were

demonstrated to the scientists in face-to-face meetings for feedback.

The exploration stage was important for the collaboration - the scientists did not

have a thorough understanding of what the vis-researchers could do for them at the

beginning. New tasks and requirements often popped up after they were inspired by

the visualizations brought to them. Also, the exploration allowed the vis-researchers

to explore the design space and find the most desired visualizations by the scientists.

For example, the RadVis-Leash was found to provide a ’new’ view of the data, whereas

an attempt to plot the daily time series of selected data was found to be redundant

and unnecessary.

In the second year, EVis was developed using Node.js [58] and D3 [57]. It integrated

the designs most positively perceived by the scientists. The team met weekly to

report the development progress and collect feedback for recently developed functions.

Throughout March 2021, the team met intensively (multiple one-hour Zoom meetings

per week) to test the system using the pair analytics method [59]. In these meetings, a
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senior scientist explored her data using EVis. She drove the data exploration process

and a vis-researcher conducted interactions for her. Usability issues noticed in the

process were recorded and addressed before the next meeting. New functions were

also added to EVis to address needs not captured in the original design but deemed

desirable in the initial stages of evaluation. Chapter 5 recorded three case studies

conducted in those meetings and feedback from a group of domain experts.

4.3.2 Requirement Analysis

Tasks and requirements for EVis became more and more clear when the collab-

oration went on. The high-level tasks of EVis are to evaluate known and discover

unknown triggers for events. To achieve these goals, the scientists need to: (1) rapidly

explore relationships among time (both calendar and diurnal time), one or more E-

conditions, and events (e.g., the foundational analyses), such as learning condi-

tions coupled with high cracking rates and examining cracking rates at different value

ranges; (2) effectively explore temporally lagging relationships between E-conditions

and events, such as identifying typical PE-conditions associated with high cracking

rates and analyzing events whose PE-conditions were different from prior knowledge

of the scientists; (3) interactively conduct intuition-based exploration of hypotheses

(e.g., the exploratory analyses), such as highlighting data items with characteris-

tics of interest and then examining their distributions in other dimensions and their

relationships to events.

High-level requirements include the ability to: (1) employ vetted visualization

practices of Earth scientists and leverage them; (2) effectively and efficiently ex-

amine—without coding—a large number of relationships, no matter if they are hy-

pothesized ahead of visualizing the data or not; (3) examine intuitive visualizations

through easy-to-use interactions since Earth scientists are usually not visualization

experts. More minor specific requirements included the ability to: (1) visualize E-

conditions with events, together with E-conditions without events, to eliminate biases,
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since a value range may contain a large/small number of events simply because the

E-conditions are heavily/rarely sampled in this value range; (2) analyze events and

environmental factors in the context of calendar time and diurnal time for seasonal

and diurnal patterns; (3) provide quantitative information, such as event statistics,

to guide visual exploration.

4.4 EVis

4.4.1 Data Preprocessing and Concepts

To generate visualizations, the continuously monitored E-conditions were aggre-

gated using a domain-expert-selected time granularity (one hour in this chapter).

This resulted in a time series dataset where the dimensions are environmental vari-

ables, and each data item recorded the aggregated values of these variables in an

hour (thus a data item is called a discrete-time-point). Then, metrics for the nat-

ural phenomenon under investigation (e.g. sum of energy or count of rock cracking

events in this chapter) were aggregated using the same granularity and added to the

dataset as a Dimension of Interest (DOI). Discrete-time-points with no event de-

tected are called non-event hours and those with non-zero event counts are called

event hours. The New Mexico Rock dataset contains 26,304 discrete-time-points

(the null-value missing data was linearly interpolated), including 2,240 event hours.

Users could set either event energy or event count as the DOI in an exploration.

The discrete-time-points users selected in exploration are called Points Of Interest

(POIs). The total number of event counts (or the energy sum) divided by the total

number of hours of a group of discrete-time-points is called the event rate of the

group.

4.4.2 Visualization Overview

EVis provides a set of coordinated visualizations (see Fig. 4.1 for a screenshot

of EVis). To conduct foundational analyses that are common across virtually all
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Earth science applications, EVis provides scatterplots (Fig. 4.1(a)) to depict how

individual environmental variables change over time and how they are related to the

DOI, histograms (Fig. 4.1(c)) to show total numbers of event hours and event rates of

discrete-time-points in different value ranges on each dimension, and heatmaps (Fig.

4.2(a)) to depict event rates of discrete-time-points in value ranges defined by three

environmental variables. Although not yet widely employed in Earth sciences, EVis

includes RadViz visualization [53, 8] (Fig. 4.1(b)) because of its strong potential in

this application [60], particularly when examining the relationships between the DOI

and multiple variables and their temporal trends. The new approach RadViz-Leash

is implemented in EVis for visually analyzing temporally lagging relationships among

the DOI and multiple variables.

To coordinate and simplify visualizations for users, the same bubble metaphor and

color coding are implemented in most visualizations. In particular, discrete-time-

points are represented by bubbles in scatterplots, RadViz, and RadViz-Leash, whose

sizes represent the DOI values of the discrete-time-points. The bigger the values,

the bigger the bubbles. Event hours are represented by blue (unselected), orange

(selected), or green (selected with a different approach) bubbles, and non-event hours

are represented by small, hollow gray bubbles.

EVis supports intuition-based exploratory analyses and a smooth, flexible visual

exploration pipeline. Users can select discrete-time-points from scatterplots, his-

tograms, and RadViz. The selected discrete-time-points (POIs) are highlighted in

all scatterplots and RadViz so users can examine their distributions in these views.

Users can also examine aggregated information of the POIs in the histograms. More-

over, users can explore PE-conditions of the POIs within a user-selected time span at

multiple levels of detail and examine discrete-time-points with similar PE-conditions

of a focus POI using RadViz-Leash .
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Figure 4.2: Studying POIs with high wind speeds. (a) Heatmaps with Vapor Pressure
(outer dimension), ATC (Y-axis), and Wind Speed (X-axis). (b) RadViz with a few
well-known triggers as anchor dimensions. Highlighted POIs are well-distributed in
this view. (c) Histograms. Bars of high wind speeds are selected.

4.4.3 Basic Graphical Charts

Value-time scatterplot: Discrete-time-points are mapped to a 2D ’value vs. time’

scatterplot as bubbles (Fig. 4.1(a)). The X and Y axes of the scatterplot are time

and an environment variable, respectively. Users can observe the relationships among

the DOI, the variable, and time via the positions, colors, and sizes of the bubbles.

Users can click the tags above the scatterplot to switch among different environment

variables. I chose this simple approach since it is intuitive but reveals rich insights.

Line charts were not used since the many zero values in the dataset would lead to

very cluttered line charts.

Date-diurnal time scatterplot: Discrete-time-points are also mapped to a 2D ’date

vs diurnal time’ scatterplot, inspired by LastHistory [61], to reveal diurnal patterns

from midnight to midnight, which is of interest to scientists (Fig. 4.3(a)). The X and

Y axes of this view are date and diurnal time, respectively.

Heatmaps: The heatmaps (Fig. 4.2(a)) provide insights into multivariate relation-
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ships among the DOI and three user-selected environmental variables. The variables

are mapped to X, Y, and an outer dimension of the heatmaps, respectively. The outer

dimension is divided into multiple value ranges, each for a heatmap. The X and Y

dimensions are also divided into multiple value ranges. In each heatmap, the color of

a cell represents the event rate of all discrete-time-points falling in the 3-dimensional

region defined by the corresponding X, Y, and outer value range. The depicted color

scale for event rate is normalized to the event rate of the whole dataset: green/red

colors represent relatively low/high event rates. Users can interactively change the

divisions of the value ranges to examine event rates at different granularities. The

side-by-side heatmap layout allows users to compare event rates in different value

ranges of the outer dimension easily.

Since E-conditions are not evenly distributed (e.g., there are very few hours with

ambient temperatures lower than -10 Celsius degree), it is important for scientists

to learn the densities of discrete-time-points in the cells. To support this task, EVis

overlays a scatterplot over the heatmap, whose X and Y axes are the same as the

heatmap, and only discrete-time-points falling in the value range of the outer dimen-

sion for that heatmap are displayed as bubbles. Users can turn the scatterplots on or

off by clicking a button. To reduce the complexity of the interface, the scatterplots

and the heatmaps share the same display space. Users can switch among them by

clicking a button.

Histograms: EVis provides a set of histograms, one for each variable, to facilitate

selection and reveal relationships between the DOI and the variables with relation

to the whole dataset and POIs. A histogram consists of a set of bars and crosses

(Fig. 4.1(c) and 4.2(c)). Its X-axis is divided into equal-width value ranges of the

variable it represents. Heights/Y positions of blue bars/crosses represent numbers

of event hours/event rates of the whole dataset in the corresponding value ranges,

normalized within each histogram to make the best use of the space. Numbers of event
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Figure 4.3: Studying a leash of interest using similarity search. Red: the focus POI.
Orange: POIs with similar leashes to the focus POI. Green: POIs with dissimilar
leashes but similar POI positions to the focus POI. (a) The date-diurnal time scatter-
plot shows orange POIs are distributed around 15:00 pm. (b) RadViz shows different
distributions of orange POIs and green POIs. (c) The histograms show orange POIs
and green POIs have different event rates in many value ranges. (d) Leashes of orange
POIs are displayed in a timeline view and a detail view similar to Fig. 4.7 (not fully
displayed due to the page limit).

hours/event rates of POIs in the value ranges are represented by oranges bars/crosses

so that users can compare them with those of the whole dataset. A bar/cross is

hidden if the number of event hours/rate is zero to distinguish it from those with

small values.

Selection: Users can drag a rectangle to select discrete-time-points in any of the

scatterplots. They can also click a bar of a histogram to select discrete-time-points

in that value range. Users can merge a new selection with a previous selection via an

intersection or union set operation. For example, a user selects discrete-time-points

with low ambient temperatures from the Ambient Temperature histogram and then

intersects it with a selection from a rectangle in the date-diurnal time scatterplot
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to highlight discrete-time-points with low ambient temperatures that also occurred

around noon. The POIs are highlighted in other visualizations, so the user can

learn how the POIs are related to Wind Speed, Precipitation, and other variables.

They may explain why the event counts/energy are different within similar ambient

temperatures and times of the day.

4.4.4 RadViz

EVis provides a RadViz view (Fig. 4.1(b) and 4.2(b)) to explore relationships

among the DOI and multiple user-selected environmental variables. These variables

are interactively selected and placed along the circumference of a circle as anchor

dimensions. Discrete-time-points are projected to the interior of this circle as bub-

bles, whose sizes and positions reveal relationships among the DOI and the anchor

dimensions. Assume [
−→
S 1, ...,

−→
S n] are vectors for anchor positions of n dimensions.

After normalizing all dimensions to [0, 1], a discrete-time-point [d1, ..., dn]’s projection

vector −→u is calculated using the following equation:

−→u =

∑n
j=1

−→
S jdj∑n

j=1 dj
(4.1)

I chose RadViz over other dimension reduction methods because (1) RadViz ex-

plicitly reveals the relationships between the discrete-time-points and the anchor di-

mensions and (2) the projections are solely decided by the anchor positions and the

domains of the anchor dimensions and, thus, I can use RadViz to generate trajectories

of multivariate time series (see Section 4.4.5).

A drawback of RadViz is that the projections are often concentrated in a small

region of the 2D space. To overcome this problem, I propose two new interactive

distortion methods for RadViz. Note that there are automated anchor dimension

relocation algorithms [43, 44] for clutter reduction in RadViz. I did not choose them

because they would change the anchor layout created by scientists, which may carry
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Figure 4.4: Rescale the projections. (a) An illustration of how rescaling works. (b)
A cluttered RadViz view. (c) (b) rescaled with s = 5.

their domain knowledge and hypotheses. In addition, my distortion methods are fully

controllable by users, which makes it easier for users to understand the distortion.

Distortion method 1: Rescale the projections If the anchor dimensions are

highly correlated, the projections may be concentrated near the center of the cir-

cle, which makes RadViz less effective in revealing subtle patterns. For example,

Fig. 4.4(b) shows a RadViz view where anchor dimensions are top and bottom sur-

face temperatures. These temperatures are highly correlated and all the points are

concentrated at the center. Such clutter cannot be reduced by reallocating anchor

positions using algorithms such as RadViz Deluxe [43]. To address this problem, I

introduce a global rescale factor s to move −→u to
−→
u′ using the following equation:

−→
u′ =

−→u
||−→u ||

· ||−→u ||
1
s , (s ≥ 1) (4.2)

Since 0 ≤ ||−→u || ≤ 1, increasing s will monotonically push
−→
u′ away from the center

without changing its original direction. If ||−→u1|| < ||−→u2||, then ||
−→
u′1|| < ||

−→
u′2|| for all

s ≥ 1. The smaller ||−→u ||, the bigger the distortion. Therefore, this distortion amplifies

tiny distances among data points around the center of RadViz while keeping their

angles and orders in the radial coordinate unchanged. Users can interactively change

s through a scale to enlarge or reduce the distortion effect. Fig. 4.4(a) illustrates how

u moves to u′ with rescaling. Fig. 4.4(c) shows Fig. 4.4(b) rescaled with s = 5.
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Distortion method 2: Adjust weights of dimensions It is often observed that

data points are concentrated in a region distant or proximal to an anchor dimension in

RadViz (see Fig. 4.5(b) for an example). I propose a new approach to pull data points

toward or push them away from an anchor dimension to reduce clutter. Inspired by

iPCA [62] where users can interactively set weights for dimensions in a PCA, I allow

users to interactively assign a non-negative weight wj to an anchor dimension j. The

deformed projection
−→
u′ is calculated with the following equation:

−→
u′ =

∑n
j=1

−→
S jwjdj∑n

j=1wjdj
(4.3)

Equation 4.1 is a special case of equation 4.3 where all weights are 1. Assume I

adjust w1 and keep the other weights 1. It is trivial to see that if d1 = 0,
−→
u′ will be

the same as −→u , the position calculated with equation 4.1. If d1 > 0 (all dimensions

are normalized to [0,1]), by defining α =

∑n

j=2
dj

d1
, I get the displacement from −→u to

−→
u′ with the following equation:

−→
u′ −−→u =

w1 − 1

w1 + α
(
−→
S1 −−→u ) (4.4)

It shows that when w1 > 1 or w1 < 1, all the projections will move toward or away

from the anchor position of dimension 1 along straight lines connecting the anchor

position and the original projections. It makes the distortion results visually easy to

follow. The smaller α, the bigger the movement. Thus, increasing the weight will

amplify the influence of a dimension in RadViz. When w1 = 0, dimension 1 has no

influence on RadViz according to equation 4.3.

Fig. 4.5(a) illustrates how u moves to u′ after the weight of the dimension on the

top is increased. Fig. 4.5(c) shows Fig. 4.5(b) after increasing the weight of the top

dimension from 1 to 5.

Besides the distortion techniques, EVis allows users to interactively add/remove
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Figure 4.5: Adjust the weight of a dimension. (a) An illustration of how the distortion
works when the weight of the dimension on the top is increased. (b) A skewed RadViz
view. (c) (b) after the weight of the dimension on the top is increased to w = 5.

dimensions to/from RadViz and manually relocate the dimension anchors by

dragging the anchors around the circle. The discrete-time-point projections will be

changed accordingly. After a manual relocation, users can use the auto-adjustment

function to evenly distribute the anchors around the circle without changing their

order to get a balanced view. If users do not like the angles of the anchors, they can

rotate the whole RadViz view by dragging a scale for preferred orientations.

By interactively selecting dimensions for RadViz and changing their anchor posi-

tions, scientists can experiment with different RadViz setups for hypothesis testing.

For example, a scientist hypothesized that the larger the differences between the top

and bottom surface temperatures of a rock, the more frequently the rock will crack.

Thus, she placed the top/bottom surface temperatures to the top/bottom of the

RadViz circle, as shown in Fig. 4.1(b). The distribution of large bubbles verified her

hypothesis. Scientists can also experiment with different layouts and keep the layouts

with interesting patterns, which may reveal novel relationships they have not noticed

before.

Users can interactively select discrete-time-points from RadViz using a rectangle

or a selection box with an arbitrary shape. Since dimension reduction always causes

information loss, examining the POIs in other views helps users get a more precise

picture of them.
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4.4.5 RadViz-Leash

RadViz-Leash aims to allow scientists to visually analyze temporally lagging rela-

tionships among the DOI and multiple variables. It projects the time series ahead

of a POI, which consists of the anchor dimensions of RadViz within a user-selected

time span, as a trajectory on RadViz. Because the time series is temporally ’in front

of’ the POI, the trajectory is called a ’leash’ of the POI (Fig. 4.6(a) and (b)). The

geometric shape and position of the leash visually depict the changing PE-conditions

of the POI within the time span. To analyze PE-conditions of a large number of POIs,

RadViz-Leash automatically clusters the POIs based on their leash similarity. The

clusters are visually presented to users in multiple views, where users can visually

examine groupings of the most commonly recurring PE-conditions associated with

the POIs, as well as their relationships to the DOI.

Projection and Leash Visualization: Denote a POI as pt = (d1,t, d2,t, ...dn,t),

where n is the number of anchor dimensions and t is the time stamp of the POI. The

PE-conditions (anchor dimensions only) of pt in a time span of length k is a multivari-

ate time series {pt−k, ...pt−1, pt}. To visualize this time series, RadViz-Leash projects

pt−k, ...pt−1, pt to the RadViz space. The projections are denoted as p′t−k, ...p′t−1, p′t.

RadViz-Leash connects p′t−k, ...p′t−1, p′t in their temporal order using line segments and

draws a bubble at p′t to represent the DOI at the POI. Colors of the line segments

indicate their temporal distances to the POI. The resulting visualization is a leash

representing the POI and its PE-conditions (see Fig. 4.6(a) and (b)). Fig. 4.6 shows

a set of leashes with k = 24 hours. The lengths and directions of the line segments in

a leash provide rich information about how the PE-conditions of a POI evolve over

time. For example, the PE-conditions of the POIs in the third row changed much

more significantly than those of the POIs in the first row of Fig. 4.6.

Distance Calculation: RadViz-Leash clusters POIs based on leash distance rather

than PE-condition distance in the raw data space. In this way, clustering results are
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Figure 4.6: A portion of the cluster sequential view (sorted by leash similarity) of
POIs at freezing temperatures (leash length = 24 hours). (a) and (b) are zoomed-in
views of leashes from different clusters. The POI in (a) is an event hour and the POI
in (b) is a non-event hour.

consistent with what users see from the visualization, and domain knowledge inte-

grated into the dimension reduction process is preserved. To calculate leash distance,

I borrowed ideas from trajectory distance metrics. Magdy et al. [63] presented a

survey on measures for trajectory distance between two moving objects. Measures

considering both spatial information and speeds of the moving objects were unneces-

sarily complex for my application since trajectories in this application have uniformed

time steps. Because the absolute positions of the leashes in a RadViz view are impor-

tant, I excluded spatial assembling distance [64] and angular metric for shape distance

[65] from consideration because they are not strict in the distance of absolute posi-

tions. Hausdorff and Frechet distance [66] did not have this drawback. It defined the

distance of two trajectories A and B using the following equation:

H(A,B) = max
a∈A

min
b∈B
||a− b|| (4.5)

This distance captured how dissimilar two undirected trajectories are based on their



53

geometry. However, it was not strict in the directions of the trajectories. For example,

the distance of two leashes with the same geometry but with opposite directions,

indicating conditions changing in opposite directions in my application, would be

’0’ with Equation 4.5. This was misleading in my application. Thus, I decided to

modify Hausdorff and Frechet distance to take the temporal order of the leashes into

consideration. Denoting leash A as {ak, ak−1, ...a0} and leash B as {bk, bk−1, ...b0}, I

calculate the distance between leash A and leash B δ(A,B) as follows:

δ(A,B) = max(δ(A→ B), δ(B → A)) (4.6)

δ(A→ B) = max
ai∈A

min
bj∈B[i−φ,i+φ]

||ai − bj|| (4.7)

B[i − φ, i + φ] is a subsequence of B with the range of index from i − φ to i + φ.

φ = 0, if 0 < i < 4; φ = 1, if 4 < i < 7; φ = 2, if i > 7. δ(A,B) is decided by the

maximum of the point-to-point distances between the two leashes. In general, a point

in a leash should be compared with the point with the same temporal order in the

other leash. However, it is too strict for long leashes. Thus, equation 4.7 relaxes this

requirement by φ to compare a point with points appearing a little sooner or later in

the other leash and use the minimum distance when the point is temporally far away

from the POI. The parameters used here are set by expert users based on domain

knowledge.

Clustering: RadViz-Leash uses k-means clustering [38] to group a set of POIs into

a user-defined number of clusters based on their leash distances. The centroid of a

cluster in each iteration is defined as the POI with the minimum sum of distances to

all other POIs in the same cluster. I chose k-means over other clustering algorithms

since (1) it minimizes within-cluster variances, which is a desired feature for the POI

clusters. Clustering algorithms generating non-spherically shaped clusters are not
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suitable in my application since they may group leashes representing quite different

PE-conditions together; (2) it allows scientists to flexibly set the number of clusters

to examine; and (3) it is fast enough for interactive visual exploration.

Overview: Overviews of clustering results are provided to allow users to (1) browse

typical PE-conditions associated with POIs and learn their relationships with the

DOI, anchor dimensions, and time; (2) identify PE-conditions of interest for further

examination. I chose to display PE-conditions in the overviews as leashes since they

are compact and information-rich. Two alternative designs were considered: (1) to

display all or a cluster of POIs and their leashes in the same RadViz view; (2) to

display each POI and its leash in their own RadViz view using small graphics. I

chose Design 2 since Design 1 led to a heavily cluttered RadViz view. In addition,

the layout of the small graphics can reveal useful information to users.

Multiple layout strategies were tested and two were chosen in the final prototype.

One is the cluster timeline view. It emphasizes relationships between the clusters

and time. It places the small graphics on a set of parallel, horizontal timelines, each

for a cluster (see Fig. 4.1(d)). The circles of RadViz are hidden, but the centers of

the circles of the same cluster are vertically aligned to allow users to compare the

vertical positions of the leashes in RadViz. The X positions of the endpoints of the

leashes indicate the timestamps of the POIs. This view allows users to examine and

compare leash colors, leash shapes, and time frequencies of different clusters in a

compact display. Since it is important to compare event rates of different clusters,

interactions are provided to allow users to sort the clusters by event rate, dim leashes

of non-event hours to highlight leashes of event hours, and read event rates which are

displayed as text on the left end of the timelines (see Fig. 4.1(d)).

In my initial design, I displayed the circles to provide a better picture of the relative

positions of leashes in RadViz. Since the circles caused severe clutter and distracted

users from observing the colors and shapes of the leashes, they were removed from
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the final design. I experimented using the Y positions of the circle centers to reveal

the similarity between a POI and the center of its cluster or a user-selected POI.

This layout was confusing after the circles were removed. I also tried mapping the

timestamps of the POIs to the X positions of the circle centers, but since the circle

centers are not displayed, users could not judge when an event happened with this

design.

Although the cluster timeline view is space-efficient and presents a nice overview of

the clusters, it is difficult to select and compare individual leashes in it. To address this

problem, a zoom function is provided. It allows users to drag and drop a rectangle

on this view. All leashes in the rectangle will be displayed, together with their circles,

in a pop-up window without overlaps. Users can create multiple pop-up windows

at the same time to compare leashes in different time ranges or different clusters.

However, it is trivial to do so. Thus, the second layout, the cluster sequential

view is provided in the final prototype.

The cluster sequential view keeps the row-by-row layout of clusters in the time-

line view so that users can switch between the two views without losing the positions

of the clusters. In each row, the leashes and their circles are displayed sequentially

without overlaps. Users need to horizontally scroll the screen if there are more POIs

in a cluster than the screen width can hold. To reduce the need for scrolling and

highlight important features of a cluster, sorting, and filtering interactions are pro-

vided. Users can sort the leashes by sum of DOIs of all discrete-time-points

in the leashes in descending order since scientists are interested in PE-conditions of

significant events, or by leash similarity, so that similar leashes are placed adjacent

to each other to help users observe variations within a cluster (the sorting algorithm

presented in [67] is used to minimize the total distance between adjacent leashes). A

cluster may contain many POIs with redundant leashes, namely those leashes only

shifting one or two hours in time. Inspired by Schreck et al.[30], a filtering interac-
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Figure 4.7: A portion of the detail view of a cluster. The first column is selected
for comparison. (a)-(e) are zoomed-in views of several line charts of the Wind Speed
variable. (a) is the chart of the selected POI. (b)-(e) compare (a) (gray lines) with
charts of other POIs. They reveal high wind speeds might be related to events.

tion is provided to filter out POIs with redundant leashes using a user-defined time

subinterval. Only the latest POI among consecutive POIs within the time subinterval

is displayed in a cluster.

There are other possible ways to layout the leashes to form an overview (see [68]

for a survey of glyph placement). For example, all leashes can be mapped to a 2D

space where the distances between two leashes reveal the similarity between them.

However, they may introduce extra complexities and clutter to the visualization.

Detail View: To understand relationships between events and PE-conditions, sci-

entists need to examine and compare POIs and their PE-conditions in full detail. To

support this task, a detail view is provided in the prototype. It is a matrix of small

graphics to show leashes and detailed PE-conditions of a group of POIs (see Figure

4.7). In the matrix, each column displays a POI and its PE-conditions. The columns
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can be sorted and filtered by the methods introduced in the cluster sequential view.

The first row displays the leashes of the POIs. Each of the other rows displays line

charts [19] of the POIs on an environmental variable in small graphics. The anchor

dimensions of RadViz are displayed on the top, followed by non-anchor dimensions.

In the line charts, the Y axes are time axes, with the time of the starting points of the

leashes at the top and the POIs at the bottom. The Y values of the line are double

encoded using colors of the lines, in the same way as the leash segments. The X-axes

represent the variables with the smallest values on the left. Note the X-axes in the

same row have the same scale for all columns while the Y axes are aligned by the

timestamps of the POIs.

Since each line chart only shows one time series on one dimension, I can map the

DOI values of all event hours in the leashes to bubbles without cluttering the line

charts (see Figure 4.7(a)). Our domain experts commented that this is extremely

useful since the bubbles enable them to directly relate the evolving PE-conditions to

all events that occurred during the periods of the leashes, which is of interest.

The detail view is useful for finding new event triggers by comparing POIs with

similar leashes (selected by clustering or similarity search). Those POIs have similar

temporal patterns on the anchor dimensions, which may be selected by scientists since

they are known triggers. Why would a POI/leash have different DOI values from

other POIs/leashes? The reason might be that they behave differently on non-anchor

dimensions, which may be triggers not noticed by the scientists. The detail view

provides a comparison interaction to facilitate this type of analyses. In particular,

users can set a POI as a focus by clicking its leash, and compare it with other POIs

on all the dimensions (see Fig. 4.7). In the comparison mode, the line charts in

focus are copied to other line charts in the same rows and displayed in gray for a

direct comparison (see Fig. 4.7(b)-(e)). The background color of the other line charts

indicates the difference. Red means the focus has higher average values and green



58

means the focus has lower average values on that dimension. The larger the difference,

the darker the color. The background colors allow users to capture insights from a

large matrix at a glance. In Fig. 4.7, the dark red background reveals a focus with

large events having higher wind speeds than most POIs with small or no events, which

inspires the scientists that wind speed might be a trigger for rock cracking.

An alternative design to the line chart matrix was to overlay all the line charts of

the same dimensions in the same view. This design was not used since the view was

cluttered and it was difficult for users to examine and compare multiple leashes in

detail with the overlapping line charts. Another alternative design was to map the

time series to timelines, one for each POI on each dimension, whose colors indicated

the values of the PE-conditions. This design was not used because the color was

used in leashes to encode the time dimension. Using color in a different way confused

users.

The detail view can be triggered by clicking a cluster name in the overviews to

examine POIs in the cluster. It can also be triggered by clicking a POI to set it as

a focus, and then setting a leash distance threshold d to select POIs with similar

leashes to the focus (leash distance < d) from the whole dataset. In this similarity

search mode, a new window is opened (see Fig. 4.3), which contains basic charts

(Fig. 4.3(a) and (c)), RadViz (Fig. 4.3(b)), a timeline view (Fig. 4.3(d)) and a detail

view for the selected POIs. The basic charts and RadViz allow users to compare

selected POIs against POIs with similar conditions on the anchor dimensions when

the events happened (POI projection distance < d), but dissimilar PE-conditions on

the anchor dimensions (leash distance >= d). They are displayed in green (event

hours) or light gray (non-event hours) to provide context to selected POIs (orange

for event hours and dark gray for non-event hours). Other discrete-time-points are

hidden in this window to reduce clutter.
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4.5 Conclusion

Earth scientists are increasingly employing time series data with multiple dimen-

sions and high temporal resolution to study the impacts of climate and environmental

changes on Earth’s atmosphere, biosphere, hydrosphere, and lithosphere. However,

the large number of variables and varying time scales of antecedent conditions con-

tributing to natural phenomena hinder scientists from completing more than the

most basic analyses. In this chapter, I present EVis, a new visual interface to help

scientists analyze and explore recurring environmental events (e.g. rock fracture,

landslides, heatwaves, floods) and their relationships with high dimensional time se-

ries of continuous numeric environmental variables, such as ambient temperature and

precipitation. EVis provides coordinated scatterplots, heatmaps, histograms, and

RadViz for foundational analyses. They allow users to interactively examine rela-

tions between events and one, two, three, or more environmental variables. EVis also

provides a novel visual analytics approach to allowing users to discover temporally

lagging relationships related to antecedent conditions between events and multiple

variables, which is a critical task in Earth sciences. In particular, this latter approach

projects multivariate time series onto trajectories in a 2D space using RadViz, and it

clusters the trajectories for temporal pattern discovery.



CHAPTER 5: Evaluation of EVis

EVis has been evaluated via case studies and expert feedback. They are reported

in this chapter.

5.1 Case Studies

I illustrate the usefulness of EVis using two case studies. They were conducted on

the New Mexico Rock dataset [9] by a senior Earth scientist and two vis-researchers

from our team via several Zoom meetings (all recorded). In the meetings, a vis-

researcher ran EVis on his PC and shared his screen. The scientist orally instructed

the vis-researcher what she wanted to do and why, while drawing on the screen with

the Zoom annotation function to point to the places where she wanted to select or

zoom in. She also verbalized what she found and which hypotheses she had. The

other vis-researcher took notes during the meetings and summarized the case studies

after the meetings based on the notes and the recordings. EVis settings used in the

explorations were saved using a save function provided by EVis, so the results could

be duplicated when writing this paper.

5.1.1 Case 1: Temperature and Rock Cracking

The scientist had discovered through past work that temperature is related to crack-

ing [9]. However, there was a lack of detailed analysis—or full understanding—of this

complicated relationship. Thus, she decided to use EVis to get more insights into

how temperature is related to cracking events. Based on theoretical modeling [69],

she hypothesized that rocks would crack when their top and bottom temperatures

are diverging in their rate of temperature change. Previously, she had only employed

surface air temperature change as a proxy for this effect but had not observed it
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directly in the dataset. So, using EVis, she manually set up four anchor dimen-

sions to the RadViz view. Surface_Temperature_1 and Surface_Temperature_1p,

which record top surface temperatures of the rock, were placed on the top of RadViz.

Surface_Temperature_6 and Surface_Temperature_6p, which record the bottom

surface temperatures of the rock, were placed on the bottom of RadViz (Fig. 4.1(b)).

The discrete-time-points were concentrated around the center. Thus, she distorted

the projections to separate the points cluttered at the center. From Fig. 4.1(b), she

observed that most hours with large DOIs are either high or low in the circle, which

meant that the top surface temperatures were much higher or much lower than the

bottom temperatures. This supported her discovery from the previous study, as well

as the theoretical models.

According to her previous research, high cracking rates correlate with negative

Ambient Temperature Change (ATC). A negative ATC value means a large per-

minute drop in temperature within the discrete-time-point. To explore more details,

she opened the value-time scatterplot for ATC (Fig. 4.1(a)). She saw large bubbles

(hours with high DOI values) with negative ATC values. She dragged a rectangle

in the scatterplot to select discrete-time-points in that region (Fig. 4.1(a)). She

scanned the histograms (Fig. 4.1(c)) for patterns of the selected hours. According

to the orange crosses in the histogram, the POIs have much higher event rates than

the whole dataset in most value ranges of variables such as Vapor Pressure and

Temperature. It confirmed her prior knowledge that multiple variables align during

high DOI periods.

Next, she explored the temporally-lagging relationships between the top and bot-

tom surface temperatures of the POIs. She set a leash length of three hours with

a cluster number of eight, based on her prior knowledge of expected lag-importance

and the data selected. Then, she clustered the POIs. From the cluster timeline view

(Fig. 4.1(d)), she examined the leashes of each cluster and checked their event rates
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from both the text and the ratio between bright leashes (event hours) and dimmed

leashes (non-event hours). She found several clusters with long leashes, indicating the

temperatures changed significantly within the three hours before the selected hours.

Interestingly, she found that after the temperatures changed significantly from a sit-

uation where top temperatures were lower than bottom temperatures to a situation

where top temperatures were higher than bottom temperatures (C_7), the cracking

rates in both energy and counts were much lower than when they changed in the

opposite direction (C_0, C_1, C_2). She also noticed that these long leash clusters

are dominated by different colors, which indicate different temporal patterns. For

example, most POIs in C_2 were preceded by relatively slow changes in the first two

hours (short purple and light green lines) and then rapid changes in the third hour

(long red lines). Identifying these clusters of different, specific, lagging conditions

leading to events was a novel and impactful finding from the dataset.

To further explore one of the clusters, the scientist set a leash from C_2 as a sample

and opened the similarity search view to further analyze it (Fig. 4.3). In this view,

she set a similarity threshold. All event/non-event hours whose leash distances to the

sample are less than the threshold are displayed as orange/dark gray circles. Other

event/non-event hours whose distance to the event hour of the sample leash in the

RadViz view are displayed in green/light gray circles. From the date-diurnal time

scatterplot (Fig. 4.3(a)), it can be seen that the orange circles, namely the event

hours with leashes of the pattern of interest, are distributed close to the daily time of

15:00 pm. The green circles do not have this pattern. This result supported the idea

that leashes can better describe the characteristics of cracking events than discrete-

time-points. In addition, from the histograms (Fig. 4.3(c)), she found that the orange

set has different event rates from the green set in multiple bars. The discrete-time-

points, however, have similar conditions themselves in the anchor dimensions - again

a novel finding.
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5.1.2 Case 2: Exploratory Analyses and Unexpected Patterns about Wind Speed

The scientist conducted another exploratory analysis on the New Mexico Rock

dataset [9]. Her initial interest was in events with low to sub-freezing ambient tem-

peratures, a condition well-documented in her field to produce cracking. Thus, she

selected those discrete-time-points from the Ambient Temperature histogram and set

up RadViz with Vapor Pressure, Relative Humidity, Ambient Temperature, Surface

Moisture, and Soil Moisture which were hypothesized to influence cracking rates.

Then, she set the leash length to 24 hours and conducted clustering to examine how

event rates are related to leash shapes in this RadViz space. The clustering results

are shown in Fig. 4.6. Cluster C_1 with small leashes but big events triggered her

attention. She opened its detail view (Fig. 4.7). Sorting the leashes by total event

energy in 24 hours, she noticed multiple leashes with many large bubbles on them in

the first several columns. As expected, their conditions with respect to the anchor

dimensions in 24 hours are fairly stable, since their leashes are small in RadViz. This

is similar to other members of this cluster with small or no events. Are there any

other triggers for those big events? She clicked a leash with many large bubbles (Fig

4.7(a)) to compare its line charts with other columns (Fig 4.7(b)-(e)). A row with

light backgrounds for event-heavy time series and dark backgrounds for few/no event

time series was immediately visible. It was the Wind Speed dimension. She zoomed

in to this row and found that high wind speeds are almost always coupled with high

cracking rates under the selected low ambient temperatures.

The scientist knew that negative temperature changes are related to cracking. She

suspected those high cracking rates were related to temperature drops caused by

strong winds. She opened the heatmaps to test her hypothesis. She set Wind Speed as

the X-axis of the heatmaps, Ambient Temperature Change as the Y-axis, and Vapor

Pressure, another strong event trigger, as the outer dimension (Fig. 4.2(a)). The

heatmaps indicate that with low vapor pressures, wind speed has a clear correlation
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with event rate. Then, she opened the scatterplots overlaying on the heatmaps. To

her surprise, she found POIs with big events under conditions of high wind speed and

positive ambient temperature changes from the heatmap of the lowest vapor pressures.

This was different from her understanding. Now she learned that temperatures may

increase when the winds are strong. Thus, the cracking that occurred in strong winds

may also be related to some thermal mechanisms.

Were the selected high-wind event hours caused by antecedent temporal changes

of the triggers she knew? She added ambient temperature change into the RadViz

view and created another selection of discrete-time-points with high wind speeds. She

observed that event hours are well distributed in the RadViz view (Fig. 4.2(b)). In

other words, there are event hours with high wind speeds no matter their values of

the anchor dimensions are high or low. She ran the clustering algorithm and found all

clusters had an extremely high event rate, no matter whether their leashes were long

or short. The conclusion that can be drawn from this visualization is that cracking

is not strongly related to antecedent temporal changes of the anchor dimensions.

Finally, she opened the value-time scatterplot of wind speed. She found multiple

non-event hours with high wind speed. This indicated that another hypothesis she

had, namely that cracking could be caused by sands blown against the rock by strong

winds, might also be wrong since otherwise, all high wind speed hours should have

had events. The findings were unexpected and exciting to her. She decided to further

investigate these relationships between high wind speeds and rock cracking.

Visualization Take-away for the Case Studies: The process of conducting the

case studies was very exciting to the scientist. In a few hours, she was able to confirm

multiple insights for which she and her collaborators and graduate students spent mul-

tiple years to discover, as well as to discover new insights she had not expected before

the case studies. According to her, the visualizations and interactions are intuitive,

and the combination of them provides novel and powerful functions never feasible to
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her in the past. Though the interface has multiple views, she readily and continuously

employed needed information from multiple portions of the interface—providing ev-

idence that the interface density is warranted. She commented that both distortion

methods are intuitive and useful. She liked that the second distortion method al-

lowed her to strengthen the impact of critical E-conditions, which was exactly what

she wanted. It was observed that the coordinated visualizations enabled her to ana-

lyze her hypotheses following multiple exploration paths smoothly—she started her

explorations from multiple views, depending on the hypotheses she had.

5.2 Expert Feedback

My team demonstrated EVis to Earth scientists from a range of disciplines to learn

whether EVis was applicable and useful for their research, as well as to collect feedback

for improving EVis (their concern about existing visualizations has been addressed in

this paper; new functions they requested will be the future work). Thirteen scientists

attended a one-hour Zoom meeting with the co-authors. They were known to us to be

actively collecting or working on complex time-series datasets. They represented sub-

disciplines of climatology, geology, rock mechanics, physical geography, and ecology.

They included a range of professions and career stages: late-stage Ph.D. students

(2), post-doctoral researchers and early-career academics (3), mid-career academics

(3), international governmental employees (1), full professors (2), and experienced

industry professionals (2). In the Zoom meeting, the Earth scientist coauthor first

introduced her rock mechanical weathering research for five minutes and then gave a

live demo of EVis with the New Mexico Rock dataset [9] for 40 minutes. A 15-minute

discussion about EVis followed the demonstration. A Google Form questionnaire

was distributed to the scientists before the demo started. Eleven out of the thirteen

scientists returned their answers to us within four days after the meeting—there had

been no requirement to submit the form to attend the demonstration. Below are

the questions and answers of the questionnaire (the original words of the experts are
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quoted):

Is the software applicable in your field? Nine scientists answered yes to this ques-

tion. They commented that EVis is “extremely relevant and applicable” to their fields

of research. “Its unique capability to visualize high-density multi-variable time-series

data is exciting and is directly applicable” to their projects dealing with processes

such as landscape evolution and subsurface fracturing. It is “useful for testing and

exploring hypothesized mechanistic linkages between an observed process in the field

and variability in the environmental conditions that drive it”, or even for “reveal-

ing linkages that were not hypothesized ahead of the experiment”. One scientist

wrote: “This software could totally be useful in my field (structural geology). Re-

search projects in my field typically collected 20+ variables which are almost never

visualized or compared due to not having software capable of doing this. Being able

to show all variables across multi-year projects might show relationships that were

not considered before.” Two scientists answered maybe since they either do not work

with complex time series or do not conduct open-end exploratory analyses.

Do you think the visualizations and functions are useful in data exploration? Ten

scientists answered yes to this question. They commented that “based on the demo

EVis is a really novel and useful set of visualizations” and “is great for opening up the

possibilities of seeing connections that one might not have been previously looking

for”. They confirmed the usefulness of RadViz-Leash: “Rock properties are inherently

linked but it’s very difficult to see how many trends co-vary. The plots of data leashes

show how the complex strain fields vary leading up to deformation events, which is

very difficult to visualize, even with models and lab analysis. This is often done

as 2D models which lose a lot of the important details. The tails allow you to see

what is happening and better interpret the data.” “RadViz is a useful quantitative

visualization tool to explore relations within multi-variable data and in the time

domain. The ’leash’ function is extremely useful to help zoom in on specific data
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streams and their relationship with independent measures of process.” They also

commented that the basic visualization charts and the interactions are beneficial.

One scientist answered not sure since he does not use complex time series.

What are the potential benefits/advantages (if any) of exploring data using this

software compared with existing approaches researchers are using in your field? The

scientists commented their work was done piecemeal and they were not aware of any

visualization tools tailored to their needs. They wrote “EVis seems better customized

to flexible numbers of variables and to providing a straightforward workflow compared

to existing more generic software” and “while EVis does not prove causation, it can

shed light on potential connections. Traditional tools require you to actively look

for specific connections (or lack thereof) that you had already suspected.” They

commented “EVis has a strong potential to attract many more of us” and “EVis has

the potential to be a game changer”.

What are the limitations? Please provide your top 2 suggestions to improve the

software The scientists provided a set of suggestions to improve the usability and

functionality of EVis. Two commented that the detail view was busy with too many

plots. To address this problem, I (1) added the dissimilarity background, (2) added

the sorting interactions so that users can focus on more interesting POIs, and (3)

added the filtering interaction to hide redundant leashes. The scientists also sug-

gested extending the applicability of EVis from the following aspects: (1) add 3D

spatial visualization; (2) add statistics and signal analysis capabilities, such as basic

1D spectral analysis (e.g., FFT and wavelets); (3) provide thorough documentation,

tutorial videos, and a user manual with examples; (4) allow users to upload datasets

with different time scales, provide build-in tools to extrapolate and interpolate data

between points, and allow users to create new variables via calculations; and (5)

provide output functions for further analysis and make EVis compatible with other

software such as R. I will add these functions into EVis in the future.
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5.3 Discussions

Compared with popular dimension reduction methods, RadViz is less familiar to

Earth scientists and, therefore, has a steeper learning curve. However, it supports

required tasks better than existing commonly employed techniques. The projection

of a data point generated by MDS [29, 39], PCA [40, 25], t-SNE [41], and UMAP [27]

is influenced by other data points in the input. Therefore, leashes generated by them

will change when the set of POIs changes. RadViz does not have this problem—the

projection of a data point is independent of other data points. Moreover, RadViz

allows users to examine data points/leashes in relation to their attributes, which is

a desired feature for Earth scientists. PCA [40] and related displays, such as biplots

[42], are not optimized for this task [43]. MDS [29, 39] and t-SNE [41] cannot support

this task explicitly since they lose the data-dimension relationships in the projection

process [43].

In EVis, users can interactively adjust RadViz, which will be propagated to leashes,

using distortion and anchor relocation interactions. I believe these interactions are

necessary and beneficial. First, without distortions, with an anchor setting as the one

used in the first case study, most points are clustered at the center of RadViz, which

makes insight discovery and leash clustering extremely difficult. Second, since dis-

tortions magnify subtle differences in data, RadViz-Leash can group data with those

differences captured, which helps users capture insights hidden from other analysis

approaches. Third, the process of interactively adjusting RadViz is a visual explo-

ration process for insights—when users see interesting patterns in RadViz (e.g., big

bubbles are clustered in RadViz), they can fix the layout and make selections from

RadViz (e.g., selecting the big bubbles clustered) for further analyses from other

views. This is a unique approach unavailable in existing practices. A limitation of

our current approach is that users may need to experiment with multiple layouts to

find interesting ones. In the future, I will study how to leverage this with automated
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approaches so that users can conduct explorations more efficiently.

5.4 Conclusion

In this paper, I propose EVis, a new visual analytics prototype for Earth scien-

tists. It provides a rich set of visualizations and interactions for exploratory analyses

of natural phenomena and their driving E-conditions. The case studies with a do-

main expert illustrated the usefulness of EVis in rock mechanical weathering studies.

Feedback from eleven scientists from varying sub-disciplines of Earth science revealed

the broad applicability and potential usefulness of EVis in Earth science. Mean-

while, my practice of RadViz on Earth science further illustrates the functionality

and uniqueness of this long-existing dimension reduction technique. The evaluations

also demonstrated the usefulness of RadViz-Leash, the new RadViz projection and

clustering-based visual analytics approach for multivariate time series analyses I pro-

posed.

I believe EVis has the potential to bridge the gap between Earth scientists and their

visualization needs. To be fully employed by scientists, input and output functions,

insight management functions, signal analysis and statistics functions commonly used

by Earth scientists, and more functions the domain experts suggested in Section 5.2

still need to be added into EVis.



CHAPTER 6: EVis 2.0 and a Case Study on Rockfalls at Yosemite National Park

6.1 Introduction

Rockfall, which is a natural and dynamic geologic process involving the detachment

and rapid downward movement of rock, has been a serious threat to people’s safety

[70, 71, 72]. The earliest study found for rockfalls was given by Ritchie in 1963 [73].

He proposed simple guidelines for the design of boulder trap ditches or trenches at

the toes of rock slopes. The time to start collecting rockfall data was even earlier.

Earth scientists have been studying rockfalls to reduce the hazard to human life.

Yosemite National Park, which contains a beautiful great valley, experiences many

rockfalls each year. Historical records indicate that more than 1,000 rockfalls have

occurred in the park during the past 150 years [73]. Earth scientists have been collect-

ing rockfall information since 1857, including location, time, and types of rockfalls.

Additionally, Earth scientists have linked climate data of the park to the rockfalls to

discover the relationships between the rockfalls and the climate. The dataset is called

the Yosemite Rockfalls dataset.

EVis is a promising tool for analyzing the temporal lagging relationship and other

relationships between rockfalls and the climate. However, EVis suffered from the

following problems when visualizing the Yosemite Rockfalls dataset. First, there are

a large number of missing data in the dataset since it covers a very long period

(1905-2017). Missing data processing was not addressed in EVis since missing data

has been removed from the New Mexico Rock dataset, the dataset used to develop

EVis. Second, the rockfall events have multiple categorical attributes, which can’t

be processed in EVis. Third, the Yosemite Rockfalls dataset has a large number of

attributes and data records, which makes the rendering of the visualizations too slow
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to support interactive visual explorations. In addition, the New Mexico Rock dataset

evenly sampled environmental conditions while the Yosemite Rockfalls dataset only

recorded environmental conditions when there were events in many years. Therefore,

the event rate calculation needs to be revised to handle this issue. I upgraded EVis

to EVis 2.0 to address these issues so that the Yosemite Rockfalls dataset can be

analyzed.

In this chapter, I will describe the Yosemite Rockfalls dataset in detail and intro-

duce the new features of EVis 2.0 to address the aforementioned issues. They include

a new rendering method, missing data processing capacity, new categorical event at-

tributes visualization, and a new data import interface. The new features make EVis

2.0 a more general visualization tool than EVis since the aforementioned issues are

common in datasets analyzed by Earth scientists.

6.2 Data Description

The Yosemite Rockfalls dataset consists of rockfall data and climate data, both

of which are recorded daily. Each rockfall is considered an event, similar to the

AE events of the New Mexico rock cracking dataset. Scientists collected rockfall

records from 1857 to 2020. A total of 1,489 records were collected. Each record

has 28 columns. They contain the date and location of the occurrence, size of the

rock, damage caused, triggering conditions, and narrative descriptions. To study this

dataset, after discussing with Earth scientists, I picked the median volume of the rock

as an event measure (similar to the cracking energy of the New Mexico Rock dataset).

Triggering Condition and General Location are considered as categorical attributes

of the events. They are visually explored in EVis 2.0 using the new features.

The daily climate data records of Yosemite park came from two datasets. One is

the climate records of Yosemite park headquarter from January 12, 1905, to December

31, 2020, with climate variables of minimum, maximum, and average of temperature,

precipitation, and snow. The other is the climate records of Yosemite village from
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September 28, 2007, to December 31, 2020, with the minimum, maximum, and av-

erage value of daily temperature, surface temperature, and relative humidity, along

with vapor pressure, and soil moisture and soil temperature for 5, 10, 20, 50, and 100

days.

The rockfall records and climate records were joined via time to get 41,003 daily

discrete-time-point. It includes 858 event days and 40,145 non-event days. The

rockfall events out of the time range of the climate records are not collected. There

are much missing data in the dataset.

6.3 System Improvement

6.3.1 SCanvas, a JS Library of Scalable Canvas

The two most used rendering containers of Web Applications are svg and canvas.

The HTML element svg is a vector-based graphic container with high flexibility for

interactions since the container renders the visualization as vector graphics. However,

when there are a large number of graphical objects, the rendering of svg turns slow.

On the other hand, the HTML 5 element canvas is a raster-based graphic container

and has better performance than svg with a large number of graphical objects. How-

ever, a canvas with all rendered objects is like a painted picture. It needs to be

re-rendered with any tiny changes, which makes a canvas not easy to be rescaled,

updated, interacted with, and resized.

To take advantage of both techniques and overcome their disadvantages, I devel-

oped a JS library SCanvas, which stands for Scalable Canvas, to improve rendering

performance without losing interactivity. The container of SCanvas consists of a

canvas layer and an overlapping svg layer. The canvas layer is used to render

graphical objects and the svg layer provides event listeners to respond to users’ oper-

ations. The container provides an attribute viewBox that is similar to the viewBox

of svg. Users calculate graphics according to their relative positions and sizes to the

viewBox without considering the real size of the container. The build-in rescaling
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function handles the rescaling of the container and synchronizes the two layers to

map users’ operations to the rendered graphical objects.

I conducted an experiment comparing the rendering speed with D3 and the render-

ing speed with SCanvas. The experiment used D3 and SCanvas to render a million

circles from the same synthesized dataset respectively. As a result, D3 rendering took

12.15 seconds, and SCanvas rendering took just 1.54 seconds for this task. EVis

2.0 have employed SCanvas for rendering to improve the performance of the whole

application.

6.3.2 Missing data processing

When processing the New Mexico Rock data, I used linear interpolation to fill miss-

ing values in the time series data. However, the Yosemite Rockfalls dataset contains

climate records from two datasets with different time ranges and even different vari-

ables. We got many missing values while combining them together. For example, the

daily average temperature at Yosemite part headquarter were recorded from January

12, 1905, to December 31, 2020, and the vapor pressure at Yosemite village and were

recorded from September 28, 2007, to December 31, 2020 (Figure 6.1). In this case, it

is impossible to apply any interpolation algorithm to fill a big missing data for vapor

pressure. So, EVis 2.0 needs methods to handle the missing data, especially in the

value-time scatterplots and the RadViz view.

A value-time scatterplot maps discrete-time points to a 2D ’value vs. time’ scat-

terplot as bubbles. Even if the value of a specific dimension is missed, the bubble

still contains time and event information. Hollow gray bubbles represent non-event

days and the solid blue bubble represents event days with size representing the sum

of the volumes of all rocks that fell on the day or the count of how many rocks fell.

So a bubble needs to be kept even if the value on the Y dimension is missing. A

horizontal line is added above the scatterplot and all bubbles with missing values are

placed on it according to their timestamps. They are displayed as hollow circles to be
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Figure 6.1: A value-time scatterplot for vapor pressure at Yosemite village (upper)
and average daily temperature at Yosemite park headquarter (lower). There are a
large number of days with missing values in the upper chart for quite a long period
of time. They are displayed on the line above the scatterplot range as hollow bubbles
so that analysts can still examine their time and the event information.

distinguished from solid event bubbles in the scatterplot. Analysts can still examine

their time and event information (Figure 6.1).

The position of a data point in RadViz is decided by its values on the anchor

dimensions. If the value on any of the anchor dimensions is missing, the position

will be incorrect. So, in RadViz, all data with missing values on any of the anchor

dimensions are removed from the RadViz view.

In RadViz-Leash, leashes with missing values on the anchor dimensions are re-

moved. However, leashes with no missing values on the anchor dimensions may have

missing values on non-anchor dimensions. They may cause clutter in the line charts

of those dimensions in the RadViz-Leash detail view. To address this problem, points

with a missing value on a dimension are removed from the line chart of that dimen-

sion, together with line segments connecting them to their adjacent points in the line

chart. Figure 6.2 shows an example of a line chart matrix with missing values in the

detail view. The call-out shows some line charts with missing values. It reserves more

information than the solution of removing the whole leashes with missing data from
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Figure 6.2: An example of the timeline matrix. Rows with a light background are
anchor dimensions. The red frame highlights timelines of non-anchor dimensions with
missing data.

the visualization without introducing clutters.

6.3.3 Categorical attributes of events

Each rockfall event has two categorical attributes, the triggering condition and

the location of the event. It is important to allow users to filter data based on

these attributes to analyze events under different triggering conditions or at different

locations. Two new histograms, one for triggering conditions and another one for

locations, are added to EVis 2.0. The triggering condition/location histogram has a

bar for each triggering condition/location and the height of a bar indicates how many

event days encountered the corresponding condition/happened at the corresponding

location (Figure 6.3). Since only events have triggers, no non-event days will be

selected when a user clicks a trigger bar. To provide context information to event

days selected using a trigger bar, a gray bar representing non-event days is added

to the triggering condition histogram. Users can select it along with the triggers to
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Figure 6.3: The triggering condition histogram (orange frame) for selecting events
according to triggering conditions. It has a bar for each possible triggering condition
whose height represents the count of event days with that trigger. The Y-position of
the orange cross on a bar represents the event rate of that trigger, calculated with
the enhanced event rate calculation method. All non-event days are represented by
a gray bar.

provide context to the event days selected. The non-event days are displayed as gray

circles in other views such as scatterplot and RadViz.

6.3.4 New data import interface

To import the Yosemite Rockfalls datasets and other datasets to EVis 2.0, a new

data import interface (see Figure 6.4) has been added to EVis 2.0. It allows users to

upload new datasets to the database of EVis 2.0 and retrieve an existing dataset from

the database to be visually explored in EVis 2.0. After a dataset is selected, users

can select dimensions in the dataset to be visualized and assign an alias to them (the

alias will be displayed as dimension labels in the visualizations) via this interface.

In addition, users can create new dimensions derived from original dimensions using

arithmetic operations and visualize them in the visualizations. In Figure 6.4, a new

dimension Trange = Tmax − Tmin has been created.

6.4 Case Study

When collecting the rockfall records, Earth scientists marked the triggering condi-

tions that might cause a rockfall to occur. The triggers include but are not limited

to earthquake, precipitation (rain or snow, or combination of both), snow avalanche,
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Figure 6.4: The data import interface. Users can upload a new data set to the
EVis 2.0 database and select a dataset from the database for visual exploration. All
dimensions of the selected dataset are displayed on the left of the list. Users can add
a dimension to the visualization by typing an alias for the dimension on the right
column. Users can create new dimensions derived from original dimensions using the
entries placed at the bottom of the interface.
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lightning, wind, wildfire, etc. Among the triggers, there is a category marked as

’unrecognized trigger’, which indicates the observers were not sure of the reason that

caused the rockfall. In this case study, I worked with a senior Earth scientist to

explore how environmental conditions changes are related to rockfall events.

Since there were too much missing data in most dimensions to conduct effective

analysis in climate records before 2007, we used a subset of the Yosemite Rockfall

dataset in this study. It has a time range from September 28, 2007, to December

31, 2020. To simplify the settings of this case study, the Earth scientist only consid-

ered temperature, precipitation, and vapor pressure. They were considered as major

contributors to the rockfall events according to previous research. The scientist set

daily average temperature and surface temperature, precipitation, and vapor pressure

from Yosemite village as anchors of RadViz ( see left of Figure 6.5). She put the two

temperature variables very close to each other on RadViz. The other two anchors,

the precipitation and vapor pressure, were distributed evenly on the circumference of

RadViz. To make the data points better distributed in RadViz, the vapor pressure

was weighted to 2 and the precipitation was weighted to 4.

In the screenshot on top of Figure 6.5, events with a precipitation triggering con-

dition were selected using the triggering condition histogram. Through the RadViz

view, it can be easily seen that the precipitation triggered rockfall events are dis-

tributed in the whole value range of precipitation. In the screenshot at bottom of

Figure 6.5, events with an unrecognized triggering condition were selected. It can

be seen that the selected points (events with unrecognized triggers) are mainly dis-

tributed in the area with no precipitation. To further explore the subset of events

with an unrecognized triggering condition, the scientist set the leash length to 7 days

and set the number of clusters to 5, and ran K-Means clustering. The clustering

result is shown in Figure 6.6.

The resulting five clusters revealed several potential relationships between rockfall
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Figure 6.5: The settings for the case study. Top: Events with a precipitation trig-
gering condition were selected using the histogram. Bottom: Events with an unrec-
ognized triggering condition were selected. Left of both figures: The RadViz view.
Two temperature anchors were put close to each other. The weight of Vapor Pressure
was set to 2 and the weight of Precipitation was set to 4 to make the whole shape
balanced.

Figure 6.6: The clustering result of leashes of events with an unrecognized triggering
condition.
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Figure 6.7: The detailed view of cluster C_2 with a timeline charts matrix.

events and their antecedent environmental conditions. In the clusters C_0 and C_2,

even though the events occur on days without precipitation, the leashes indicate that

before the events happened, the precipitation was going up and then down. Then

the temperature increased till the events occurred. The difference between clusters

C_0 and C_2 was the colors of leashes. According to the colors, the precipitation

increase happened around four days before the events in cluster C_0 and seven days

before the events in cluster C_2.

To check the detailed information of this pattern, the scientist opened the detailed

view of cluster C_0, shown in (Figure 6.7). The first row of the matrix shows leashes

of all events in this cluster. Below the first row is a matrix of line charts. It can be

seen that there was always a peak of precipitation around four days before the event

and the precipitation always reduced to zero right when the events happened. There

is also a slight rise in the two temperature variables when the events happened.

This pattern is among multiple hidden patterns of how environmental condition

changes are related to the rockfall events we discovered using EVis 2.0. It is difficult

to discover such patterns with traditional analysis methods.

6.5 Conclusion

This chapter presented EVis 2.0, an expansion of EVis to improve its applicability.

A data import interface has been added to allow EVis 2.0 to upload customized data

(in a given format). The data import interface also provides a way for users to create
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derived dimensions from original dimensions. To improve the rendering performance,

I developed a standalone JavaScript library, SCanvas, to set up a scalable HTML

canvas with svg combined. The library improves the rendering performance while

keeping as much scalability for interactions as possible. The EVis 2.0 also handles

missing data. For scatterplots, data points with missing values on the Y dimension are

displayed out of the scatterplot. But in RadViz, any data point with a missing value

of any anchor dimensions will be hidden since the missing data affects the position of

the data point on the RadViz space, which may mislead users to data distributions on

the anchor dimensions. EVis 2.0 visualizes categorical event attributes via histograms

and allows users to select events based on those attributes.

To evaluate EVis 2.0, the Yosemite Rockfalls dataset was loaded to EVis 2.0 and

a case study was conducted with a domain expert. Rockfall events with different

triggering conditions were analyzed and leashes with different patterns were discov-

ered. They revealed the varying antecedent environmental conditions of the rockfall

events. This evaluation shows the ability of EVis 2.0 to explore the temporally lagging

relationships between rockfall events and changes in environmental conditions.



CHAPTER 7: Summary and Future Direction

7.1 Summary

Multidimensional time-series data visualization always attracts and challenges data

analysts. In this dissertation, I demonstrated two design studies to reflect the efforts

in multidimensional time-series data visualization.

In Chapter 1, I introduced the typical workflow of data science and the role of data

visualization in the process. I then demonstrated the importance of multidimensional

time-series data visualization and explained the challenges in this field.

In Chapter 2, I discussed existing approaches to multivariate time series visualiza-

tion. Approaches such as TimeSearcher2 [2] coordinated multiple views of univariate

time series; approaches such as Fujiwara et al. [24] applied dimensional reduction

method to visualize the multivariate time series in a 2D plane; approaches such as

Takami and Takama [3] used animation to show how multivariate status changes

over time; approaches such as a trajectory-based financial time series visualization

proposed by Schreck et al. [30] created trajectory to represent the time process and

implement unsupervised machine learning to analyze the trajectories. All but not

limited to these approaches inspired my research. I also introduced RadViz in this

chapter and discussed existing efforts to extend its usability. These efforts were mainly

focused on developing algorithms to reduce the clutter of data points on the RadViz

plane. The main purpose of RadViz in existing work was to classify data points and

examine data clusters. In the visual analytics approaches I presented in this disserta-

tion, RadViz is used to visualize multivariate time series, which is an innovative new

use case for RadViz.

In Chapter 3, I proposed t-RadViz, a new, fulling working prototype that is
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currently being employed by an automobile manufacturer to analyze the real-time,

streaming continuous motion workbench data. t-RadViz uses socket.io to build the

communication between a server end and a front end to achieve real-time data detec-

tion. t-RadViz provides users a comprehensive visual interface that can be interac-

tively customized to address their analysis needs. t-RadViz is among the first efforts

to use RadViz for visualizing multidimensional time series. It projects real-time mul-

tidimensional time series to a 2D RadViz plane to form time-oriented trajectories to

examine temporal trends and compare multiple time series. I also developed an algo-

rithm to synchronize line charts of multiple testbench runs based on their projections

on RadViz. In addition, t-RadViz provides coupled delta bar charts and line charts to

help users compare the performance of multiple testbench runs on the fly. t-RadViz

received positive feedback from its target users and is currently used in almost all

their continuous motion tests.

In Chapter 4, I proposed EVis, another new, fulling working prototype to ana-

lyze time series of multiple environmental conditions and rock cracking events. EVis

provides basic visualizations such as scatterplots, heatmap, and histograms to allow

users to interactively select an interesting subset and explore the relationship between

events and different dimensions. EVis also provides a RadViz view to project the

multiple environmental conditions along with events to the 2D RadViz plane. I also

developed a new visual analytics approach called RadViz-Leash for discovering tem-

porally lagging relationships between events and antecedent multiple environmental

conditions. RadViz-Leash projects multidimensional time series of antecedent envi-

ronmental conditions of events to trajectories, called leashes, on the RadViz plane,

calculates similarities among the leashes based on distances of the trajectories with

temporal attributes considered, and clusters the leashes based on the similarities for

interactive visual exploration of temporally lagging relationships between events and

antecedent multiple environmental conditions. All the visualizations are coordinated
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for flexible analyses.

In Chapter 5, to evaluate EVis, I worked with a senior Earth scientist to conduct

two case studies using EVis to study rock mechanical weathering. The first case

confirmed multiple insights from the existing knowledge of the Earth scientist. The

second case discovered a few insights the Earth scientist had not expected. Besides

the case studies, I also collected feedback from a set of Earth scientists of a range of

sub-disciplines. The feedback was positive and many suggestions were collected for

the future development of EVis.

In Chapter 6, I proposed EVis 2.0 with significant updates to improve the applica-

bility of EVis according to the feedback from the Earth scientists. A data management

interface has been added to allow users to upload data and derive dimensions. A stan-

dalone library, named SCanvas, has been developed and employed in EVis 2.0 to

improve its rendering performance on large datasets. EVis 2.0 also handles missing

data, supports the visualization of categorical variables, and uses an enhanced event

rate calculation method in the histogram. A case study has been conducted with EVis

2.0 to analyze the relationship between rockfall events and the climate of Yosemite

national park. It illustrated the applicability and effectiveness of EVis 2.0.

7.2 Future Direction

Visualization of time series data always attracts researchers’ attention and mul-

tidimensional time-series visualization has been a challenge for a long time. With

more and more needs for time-oriented data analyses, the methods proposed in this

dissertation will be valuable for future research.

The automobile manufacturer is planning to add more dimensions to the data

stream. It means t-RadViz is facing the challenge of more data with more complex

information. Using SCanvas library to increase the rendering speed of t-RadViz to

support real-time updates of the visualizations is under discussions with engineers of

the manufacturer, the true end users. Also, the method I proposed in this dissertation
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to synchronize incoming data with matching historical data segments seems to have

the potential to be applied in more application areas.

EVis and EVis 2.0 have been used to analyze rock mechanical weathering and rock-

fall in Yosemite national park. It is exciting that scientists from many sub-disciplines

of Earth sciences have shown their interests in applying EVis to their research areas.

Many research topics in Earth sciences share a similar scenario that involves multiple

environmental variables changing over time and time-oriented events. It is important

to discover the hidden relationship between the event occurrences and the environ-

mental changes. EVis is good for analyzing this type of relationship and thus it will

be valuable for these applications. Besides Earth sciences, other disciplines may also

have similar challenges. One of the future directions of EVis development is to make

it a more general tool for more application of more areas.

During my research, I have developed a standalone library SCanvas to improve the

rendering speed without damaging the interactivity of HTML graphics. I also plan to

create standalone libraries for the rich set of RadViz interactions and RadViz-Leash

I developed in my research. These standalone libraries will allow more researchers to

reuse my research results in their applications.
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