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ABSTRACT 

FAREEHA KANWAL MALIK.  Hydrogen bond energy-based comparative analysis of 

protein-ligand interactions and similarity assessment of protein-DNA complex models.  (Under 

the direction of DR. JUN-TAO GUO) 

 

Hydrogen bonds play a vital role in protein-DNA interactions. In particular, side chain-

base hydrogen bonds are crucial to the binding specificity between protein and DNA.  Mutations 

effecting interface hydrogen bonds in protein-DNA complexes have been linked to changes in 

binding specificity and are implicated in various diseases. However, knowledge about the 

distribution of hydrogen bond energy (HBE) in protein-DNA complexes as compared to other 

important biomolecular complexes is unknown. Here, we performed a systematic comparative 

analysis of hydrogen bond energy (HBE) in three protein-ligand complexes; protein-DNA, 

protein-protein and protein-peptide. Our results show that while the hydrogen bonds in protein-

protein and protein-peptide complexes are predominantly strong, a unique, almost equal 

distribution of strong and weak hydrogen bonds is observed in protein-DNA complexes. More 

importantly, more strong hydrogen bonds are observed in the minor grooves of highly specific 

protein-DNA complexes than multispecific complexes indicating the role of minor groove 

hydrogen bonds in protein-DNA binding specificity. The knowledge gained from these analyses 

was applied to develop a novel hydrogen bond energy-based method to assess the similarity 

between protein-DNA complex models and reference structures, an important step towards 

computational prediction of complex structures. We show that HBE based method provides more 

accurate assessment of similarity for models generated by both homology modeling and 

computational docking methods. 
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CHAPTER 1: INTRODUCTION 

 1.1. Background 

Proteins bind to DNA with varying degrees of specificity ranging from highly specific, 

where proteins bind to specific DNA sequences, to non-specific where proteins can bind to variety 

of DNA sequences  [1–6]. Previous studies have shown that structural or genetic mutations causing 

alterations in binding specificity of protein-DNA complexes can have serious medical 

consequences such as cancer [2,7–9]. In tumor suppressor transcription factor-DNA complexes, 

such as p53 and leucine zipper family, changes in binding specificity have been linked to problems 

with stem cell maintenance and differentiation and metastasis of tumor cells [3,10–12]. It is, 

therefore, crucial to consider binding specificity of protein-DNA complexes  in various 

applications such as drug design or interface design of inhibitor-ligand complexes [11,13].  

Binding specificity in protein-DNA complexes is achieved through two readout 

mechanisms; direct/base and indirect/shape [14–20]. Direct or base readout is achieved through 

several interactions such as hydrogen bonds, electrostatic interactions and hydrophobic 

interactions while indirect or shape readout of DNA by proteins is facilitated by changes in the 

shape and conformation of DNA [14–20]. Hydrogen bonds are weak electrostatic interactions 

which play a central role in protein-DNA binding specificity due to their directional nature [21–

24]. While the role of hydrogen bonds in protein-DNA interactions has been extensively studied, 

knowledge about the energy distribution of hydrogen bonds and its application in structure 

prediction of protein-DNA complexes is under-explored [25–28]. In this dissertation, we provide 

an insight into the binding specificity of protein-DNA interactions based on a comparative analysis 

of energy distribution of hydrogen bonds in protein-ligand complexes. The knowledge gained from 
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this analysis is then applied to develop a novel approach to assess the similarity of computationally 

predicted models of protein-DNA complexes to their reference structure.  

1.2. Hydrogen bonds 

A hydrogen bond is a weak interaction in which a hydrogen atom is shared between two 

highly electronegative atoms, a donor atom and an acceptor atom. The donor atom carries a partial 

negative charge and is covalently bonded to a hydrogen atom whereas the acceptor atom has a lone 

pair of electrons and carries a partial negative charge. This electrostatic interaction creates a dipole, 

orienting hydrogen atoms toward the lone pair of acceptor atoms, providing directionality to 

hydrogen bonds [29–31]. In addition to electrostatic interactions, the directionality is also 

explained by partial covalent character of hydrogen bonds which results from the penetration of 

positively polarized hydrogen atom into the van der Waal’s sphere of acceptor atom [32]. The 

orientation of hydrogen bonds is addressed through the angle and distance estimation between the 

interacting partners (Fig. 1.1.). 

 

Figure 1.1. Hydrogen bond geometry representation between N and O atoms carrying partial 

negative charges. 𝜃 is the angle and d is the distance between interacting partners. 

1.2.1. Energy of hydrogen bonds 

The strength of hydrogen bond depends on geometry, nature and environment of the 

interacting atoms. Stronger hydrogen bonds form between neighboring atoms separated by smaller 
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interatomic distances. The optimal distance for a strong hydrogen bond in the biological systems 

is between 2.6 Å  and 3.6 Å [33]. Quantum mechanics studies have shown that linear arrangement 

of donor, acceptor and hydrogen atom is ideal for a strong hydrogen bond. Hydrogen bonds within 

proteins are generally weaker because of the solvation effects. The energy of isolated hydrogen 

bonds in proteins is lower (~ -5-6 kcal/mol) as compared to that of proteins in solutions (-0.5 

kcal/mol to -4.7 kcal/mol) because they do not have to compete with the solvation effects [34]. 

Estimating the energy of hydrogen bonds in a complex is a challenging task. Several 

quantum mechanical studies such as hybrid density functional theory and second-order 

Møller−Plesset theory (MP2) are used to estimate the energy of hydrogen bonds [35–44]. 

However, the application of these methods on larger biomolecular complexes such as protein-

DNA complexes is complicated [38]. Several approximations, assumptions and simplifications are 

required for such purposes [45–47]. For example, a simplified version to estimate the hydrogen 

bond energy involves simply counting the number of donor and acceptor atoms in the complexes. 

One of the most widely used models to estimate hydrogen bond energy was proposed by Dahiyat 

et. al. which accounts for different hybridization states of the donor and acceptor atoms through 

the angle term [48] .  

1.2.2. Hydrogen bonds in protein-ligand interactions 

Hydrogen bonds play an important role in stability of monomeric proteins and nucleic acids 

structure, and the specificity of protein-ligand interactions [49–54]. In proteins, the folding of 

amino acid residues into secondary structures, such as alpha helices and beta sheets, is primarily 

facilitated by backbone hydrogen bonds [55–57]. The failure of a buried polar group to form 

hydrogen bonds results in destabilization of the structure [57]. In DNA, specific hydrogen bonds 
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between complementary nucleotides are central to the structure of double helix. Two hydrogen 

bonds are formed between adenine and thymine whereas three hydrogen bonds are formed between 

cytosine and guanine. Incorrect base pairing between nucleotides, such as cytosine-thymine 

instead of cytosine-guanine could cause a ten-fold difference in energy of DNA, resulting in 

destabilization[58]. In protein-ligand interactions, the directional nature of hydrogen bonds plays 

an important role to facilitate the ligand binding selectivity [25,59]. They are the second most 

frequent type of interaction observed in experimentally solved structures of protein-ligand 

complexes after hydrophobic interactions [60]. Hydrogen bonds are vital in enzyme catalysis and 

drug-target interactions. Introducing a hydrogen donating group in thrombin inhibitors, which act 

as anticoagulants, results in a remarkable increase in their binding affinity [61]. Mutations causing 

a decrease in the number of hydrogen bonds in several ribonuclease enzymes destabilize the 

structure of the complex [57,62–66]. Alterations in hydrogen bonding framework of protein-ligand 

complexes has shown to affect their function.  

Hydrogen bonds mediate different types of protein-ligand interactions through differences 

in their geometry and packing at the interface. For instance, the binding interface in protein-protein 

complexes with stable monomeric partners in the unbound form exhibits dual features. It acts as 

protein surface in the unbound form and protein-interior in the bound form. This is thought to be 

achieved through a large number of less geometrically optimal hydrogen bonds at the binding 

interface than the protein interior [67–69]. On the other hand, small number of geometrically 

optimal hydrogen bonds are observed at the interface of permanent protein-protein complexes, 

where one of the partner is intrinsically unstructured in the unbound form [70]. The interfaces of 

protein-peptide complexes is also closely packed with hydrogen bonds to stabilize the otherwise 

unstructured peptide [34,71]. In protein-DNA complexes, In protein-DNA interactions, directional 
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nature of hydrogen bond plays a vital role in providing the shape complementarity for indirect 

readout [72]. They are major type of interaction involved in recognition, specificity and stability 

of the complex [73–76]. The hydrogen bonds formed between amino acid side chains and 

nucleotide base edges in particular have major role in binding specificity. Bidentate hydrogen 

bonds, where two hydrogen bonds are formed with a base or base pair, also play important roles 

in specific protein-DNA interactions [73]. Highly specific protein-DNA complexes contain more 

hydrogen bonds than multispecific and non-specific [5]. 

1.3. Computational modeling of protein-ligand complexes 

Knowledge about the structure of protein-DNA complexes is important to gain insight into 

their function and is crucial in applications such as binding site prediction, drug-target interaction 

and rational drug design [76]. Despite recent advances in structural biology, the knowledge about 

the structure of protein-DNA complexes is incomplete [77–81]. Several technical challenges, such 

as solving phase problem in X-ray diffraction studies hinder successful structure determination of 

larger complexes involving nucleic acids [82–86]. Moreover, all the experimental methods are 

time consuming which limits their use in time-sensitive applications such as screening a large 

number of inhibitors in drug design. Therefore, in-silico methods for prediction of complex 

structures are being explored [87–92]. Two approaches of computational structure prediction are 

widely used to predict models of complexes; homology modeling and docking. 

1.3.1. Homology modeling 

Homology modeling of protein-DNA complexes, also referred to as comparative modeling 

or template-based modeling, employs the evolutionary principal; similar protein sequences share 

similar structures [93–95]. Conventional homology modeling approaches involve iteration of four 
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steps until the best model is predicted. First, an evolutionarily related homolog or set of homologs 

for the target sequence, called template(s), is identified by searching through an existing database, 

usually the PDB [96–99]. Second, an alignment of the query and template sequence is generated 

using any of the several different methods of sequence alignment [100–104]. Third, the three-

dimensional atomic coordinates of the template and their corresponding alignments are used to 

generate a model of the query sequence [105–110]. Homology modeling of protein-DNA 

complexes requires some additional steps. Structural alignment of models predicted using 

aforementioned steps is performed to the native structure followed by complexing the model with 

the interacting DNA.  

While the homology modeling methods have shown considerable success in drug-

discovery among other important applications, it has several limitations [111–115]. Selection of 

an evolutionarily related template of high structural quality is crucial. A homology model is not 

considered reliable if no template with more than 25% sequence identity is found [116]. This is a 

major limitation because about 60% of DNA binding proteins do not have an experimentally 

solved homolog. Sequence alignment is another major bottleneck which effects the quality of 

predicted structure. A misplaced gap in the sequence alignment can put two otherwise adjacent 

residues 40 Å apart, resulting in an incorrect model [117].  Finally, two highly similar target-

template complexes could potentially have different interaction interfaces [118]. New methods are 

being developed which use interaction interface as template to model novel protein-DNA 

interactions. 

1.3.2. Docking 
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Docking methods predict structure of the complex by exploring the free energy landscape 

and identifying the lowest energy near-native binding state of the interacting partners [119]. The 

docking algorithms can be classified into two groups; rigid docking and flexible docking. Rigid 

docking algorithms sample the relative positions between protein and DNA while keeping the 

conformations of both protein and DNA molecules unchanged. Flexible docking algorithms, on 

the other hand, also consider the conformational changes of protein and DNA while sampling 

different positions between protein and DNA [120,121]. Semi-flexible docking methods explore 

the flexibility of the smaller, ligand molecule while keeping the larger receptor molecule rigid.  

There are two main steps in all docking algorithms: sampling and scoring. The first step of 

docking involves exploring the entire energy landscape forming the conformational space of the 

complex and identifying the energy minima. This process is repeated until the identification of 

several “docked” poses of the complex. The second step involves evaluation of docked poses using 

a mathematical scoring function based on different parameters such as free energy of binding or a 

machine-learning based objective function based on different structural features [122]. 

Even though docking methods have shown success in practical applications, they are not 

devoid of limitations [123–136]. The selection of the best model is a daunting task because the 

energy minima of a complex explored by docking algorithm can account for a large number of 

possible solutions [137]. While a false negative model can result in missing the correct results 

whereas selection of a false positive model could lead to catastrophic results in drug development 

due to the underlying financial and liability cost. One way to filter false positives is to run a short 

molecular dynamics (MD) simulation. However, the MD simulations are very time consuming and 

computationally expensive specially in case of large number of macromolecules. Additionally, 

similar to homology models, this method is also dependent on the availability of experimentally 
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solved structures of the binding partners. An ideally designed docking algorithm explores all 

available degrees of freedom in both the unbound components of the complex to identify the best 

docked pose. This is computationally very expensive [123,138]. Another major limitation of 

docking algorithm is the scoring problem, the ability to distinguish between a near-native model 

and decoy. An accurate scoring function considers complex physical phenomenon such as entropy 

and electrostatic interaction. However, these calculations make scoring computationally expensive 

and time consuming. The existing scoring functions trade-off between computational cost and 

accuracy through over-simplification and assumptions of several physical phenomena. 

1.4. Summary 

Existing computational modeling methods of complexes require several improvements to 

accurately capture the structure of complexes. Modifications in existing methods or development 

of new methods is needed to tackle the challenges associated with predicting structures of 

complexes. In order to test the performance of novel structure prediction methods, the similarity 

between the structures of predicted complex models and reference structure needs to be accurately 

assessed. While several similarity assessment criteria exist for monomeric protein structures, no 

such metric exists for protein-ligand complexes which accurately considers the biologically 

relevant features to measure similarity. It is challenging to capture a variety of biologically relevant 

features unique to different types of protein-ligand interactions through existing metrics. 

Development of tailored methods for different types of protein-ligand complexes could potentially 

provide more accurate assessment of similarity.  As discussed above, the role of hydrogen bonds 

is slightly different in different types of complexes and especially in protein-DNA complexes. The 

goal of this dissertation is to develop a hydrogen bond-based method for similarity assessment of 

protein-DNA complex models with their reference structure. However, instead of considering a 
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single distance or energy-based threshold to define hydrogen bonds, we aim to consider the overall 

energy distribution of hydrogen bonds at the interface of protein-DNA complexes. However, the 

role of energy of hydrogen bonds in protein-DNA complexes as compared to other types of 

protein-ligand interactions is not well understood. To this end, we have performed a systematic 

comparative analysis of energy of hydrogen bonds between protein-protein, protein-peptide and 

protein-DNA complexes.  The knowledge gained by this analysis is implemented in the 

development of our novel similarity assessment method for protein-DNA complexes.   
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CHAPTER 2. INSIGHTS INTO PROTEIN-DNA INTERACTIONS FROM 

HYDROGEN BOND ENERGY-BASED COMPARATIVE PROTEIN-LIGAND ANALYSES 

This project was originally published in Proteins: Structure, Function and Bioinformatics 

(https://onlinelibrary.wiley.com/doi/10.1002/prot.26313)  

Hydrogen bonds play important roles in protein folding and protein-ligand interactions, 

particularly in specific protein-DNA recognition. However, the distributions of hydrogen bonds, 

especially hydrogen bond energy in different types of protein-ligand complexes, is unknown.  Here 

we performed a comparative analysis of hydrogen bonds among three non-redundant datasets of 

protein-protein, protein-peptide and protein-DNA complexes. Besides comparing the number of 

hydrogen bonds in terms of types and locations, we investigated the distributions of hydrogen bond 

energy. Our results indicate that while there is no significant difference of hydrogen bonds within 

protein chains among the three types of complexes, interfacial hydrogen bonds are significantly 

more prevalent in protein-DNA complexes. More importantly, the interfacial hydrogen bonds in 

protein-DNA complexes displayed a unique energy distribution of strong and weak hydrogen 

bonds whereas majority of the interfacial hydrogen bonds in protein-protein and protein-peptide 

complexes are of predominantly high strength with low energy. Moreover, there is a significant 

difference in the energy distributions of minor groove hydrogen bonds between protein-DNA 

complexes with different binding specificity. Highly specific protein-DNA complexes contain 

more strong hydrogen bonds in the minor groove than multi-specific complexes, suggesting 

important role of minor groove in specific protein-DNA recognition. These results can help better 

understand protein-DNA interactions and have important implications in improving quality 

assessments of protein-DNA complex models.  
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2.1. Introduction 

Proteins interact with DNA, peptides and other proteins to form macromolecular 

assemblies that carry out fundamental and essential biological functions [139]. Protein-DNA (PD) 

complexes, for example, play critical roles in regulation of gene expression, histone packaging, 

DNA replication, repair, modification and recombination [140]. The interactions between protein 

and DNA display different degrees of specificity that ranges from highly specific to non-specific 

[5]. Protein-peptide (PT) interactions account for up to 40% of cellular interactions and are 

involved in mediating signal transduction, regulating apoptotic pathways and immune responses 

[141–143]. Protein-protein (PP) interactions form essential complexes like hormone-receptor, 

antibody-antigen, and protease-inhibitor, which control cell signaling, electron transport, signal 

transduction, and cell metabolism [144]. Disruptions in these interactions can cause serious 

medical conditions such as cancer, cardiovascular and neurodegenerative disorders [2,7,9,144]. 

Knowledge of detailed interactions among these complexes at atomic resolution is therefore 

essential to understanding the underlying mechanisms that govern biochemical processes. It also 

has important implications in biomedical applications such as protein-ligand docking, in-silico 

design of inhibitors and interfaces, and virtual screening of drugs library in pharmaceutical 

industry.   

Hydrogen bonds (HBs) play key roles in conferring binding specificity of macromolecular 

complexes [56,68,145,146]. An HB is generally considered as a weak, electrostatic interaction 

between a polar acceptor atom that carries a lone pair of electrons and a hydrogen atom that is 

covalently linked to a polar atom, oriented toward each other at an equilibrium distance. This 

orientation and distance dependent nature of hydrogen bonds is vital in providing the shape and 

chemical complementarity for selective recognition and binding of complexes [145]. In PD 



 12 

complexes, for example, HBs play a key role in DNA base readout by proteins and act as the major 

contributor to binding specificity that is vital for the biomolecular function of protein-DNA 

complexes [147]. The recognition of DNA by proteins is guided by an innate hydrogen bonding 

pattern that generates an initial unstable non-specific, intermediate complex with high energy 

[3,148–150]. While most of this recognition is expected to occur through the signature hydrogen 

bonding pattern of major groove, many DNA binding proteins also bind to the minor groove 

through hydrogen bonding and shape readout [22,147]. Later, this complex transitions to a stable 

and highly specific low energy state through reversible structural deformations that are also guided 

by a specific HB pattern [145].  In PP complexes, HBs influence stability as well as binding 

specificity at the interface [68]. Interfacial hydrophilic side chains of a PP complex have a high 

charge density that is stabilized primarily through hydrogen bonding. Buried polar atoms at the 

interface not involved in hydrogen bonding may destabilize the complex [151–154]. Peptide 

binding, on the other hand, utilizes HBs to improve interface packing density as well as minimize 

the entropic cost of transitioning from a highly flexible, unstructured peptide to a well-defined 

rigid structure in a complex with protein [71]. On average, PT interface contains more HBs per 

100 Å2 interface area when compared to PP interface and PT interface HBs generally are more 

linearly oriented [71]. In addition to binding, HBs are the primary driving force in folding of 

protein chains into core secondary structures such as alpha helices and beta sheets and base pairing 

in nucleic acids [56]. HBs also bring flexibility to the structure, which is central to the dynamic 

nature of proteins and plays a key role in allosteric, catalytic, and binding activities [56,155].  

The role of hydrogen bonds in binding and folding of complexes has previously been 

studied as individual cases as well as a group of cases [149,156–159]. Mandel-Gutfreund et al. 

studied different types of hydrogen bonds at the interface of 28 X-ray crystal structures of protein-
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DNA complexes. The hydrogen bonds were classified according to the types of donor and acceptor 

atoms, such as backbone, sidechain or base edges [146]. Xu et al. performed a similar analysis on 

319 protein-protein complexes [68]. London et al. compared the types of hydrogen bonds at the 

interface and within protein chains of 103 protein-peptide complexes. They further compared the 

types of hydrogen bonds in protein-peptide complexes to those in protein-protein complexes [71]. 

Rawat and Biswas in 2011 performed a comparison of HBs along with several other structural 

features to investigate the role of flexibility in protein-DNA, protein-RNA and protein-protein 

complexes [21]. Jiang et. al. demonstrated that in protein-protein complexes, the average energy 

contribution of a hydrogen bond is ~30% [160]. Zhou and Wang recently compared short hydrogen 

bonds, where donor-acceptor distance is less than 2.7Å, in1663 high quality protein, protein-ligand 

and protein-nucleic acid structures [161]. Itoh et al. showed that the interaction energy of even the 

weaker N+-C-H···O hydrogen bonds is comparable to other protein-ligand interactions such as π/π 

interactions suggesting the importance of considering HB energy in drug design [28].  

While analyses based on the number of hydrogen bonds with a single energy cutoff or a 

distance/angle cutoff can provide useful information about the role of hydrogen bonds in protein-

ligand interaction, they have an intrinsic flaw since strong and weak hydrogen bonds are treated 

equally. Moreover, the distributions of interfacial hydrogen bonds in terms of HB strength or HB 

energy in protein-ligand complexes, and more importantly, the distributions of interfacial HB 

energy among different types of protein-ligand complexes remain unknown. To address these 

issues, in this study we performed a holistic statistical comparative analysis of hydrogen bonds 

across interfaces and within protein chains (intrachain) among PP, PT and PD complexes to get an 

insight into their roles in each type of complexes. In addition to comparing the types and locations 

of hydrogen bonds in each type of complexes, we investigated the HB energy distributions and 



 14 

found significant differences among these three types of complexes, especially a unique pattern in 

protein-DNA complexes. To the best of our knowledge, an HB energy based large-scale 

comparison of macromolecular complexes has never been explored before.   

2.2. Materials and methods 

2.2.1 Datasets 

Seven previously published and widely used datasets of protein-DNA, protein-peptide and 

protein-protein complexes were selected, including three datasets of protein-DNA complexes: 

highly specific (HS), multi-specific (MS) [5], and rigid docking protein-DNA (RDPD) complexes 

[162]; two protein-peptide complex datasets: LEADS-PEP [163] and InterPep [164]; and two 

datasets for protein-protein complexes: an updated M-TASSER dimer library [165] and the 

protein-protein Docking benchmark (RDPP, version 5) (Table 2.1.) [166] . Since the M-TASSER 

dimer library was published over 10 years ago, we generated an updated dataset, called protein 

homo/heterodimer library (PHDL) using some of the guidelines described in the original paper 

(Supplementary Table S1).  

Each of the three datasets for PD represents a specific category of protein-DNA complexes. 

The HS dataset comprises 29 PD complexes with high binding specificity between protein and 

DNA whereas the MS dataset comprises 104 cases, in which proteins can bind to multiple 

conserved DNA sequences [5]. The RDPD dataset consists of 38 highly diverse non-redundant 

TF-DNA complexes that cover 11 structural folds, 15 super-families and 28 families [162].  
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Table 2.1. The protein-DNA, protein-peptide and protein-protein datasets 

Types Datasets Number 

of 

complexes 

Experimental 

method and selection 

criteria 

Ligand  Average 

interface area 

 

 

Protein-

DNA 

Highly 

Specific 

28 X-ray (<= 3 Å) 

R-factor < 0.3 

Double stranded 

DNA 

~1100 Å2 

 

Multi-

specific 

105 X-ray (<= 3 Å) 

R-factor < 0.3 

Double stranded 

DNA 

~700 Å2 

 

Rigid 

docking 

38 X-ray (<= 3 Å) Double stranded 

DNA 

~1100 Å2 

 

Protein-

Peptide 

InterPep 502 X-ray (<= 3 Å) 

or NMR 

5-25 residues ~665 Å2 

LEADS-

PEP 

53 X-ray < 2Å, 

R-factor < 0.3 

3-12 residues ~512 Å2 

 

 

Protein-

Protein 

Protein 

homo/hetero 

dimer 

library 

2608  

X-ray (<= 3 Å) 

 

>40 residues per 

protein chain 

~1374 Å2 

Docking 

Benchmark 

V5 

230 X-ray (<=3.25 Å) >= 30 residues per 

protein chain 

~1847 Å2 

The two PT complex datasets differ mainly in the peptide chain lengths. InterPep comprises 

protein complexes with peptides ranging from 5 to 25 amino acids whereas peptides in LEADS-

PEP are 3-12 amino acids long [163,164]. InterPep is a larger dataset with 502 X-ray and NMR 

structures, which was originally developed for testing a peptide-binding site prediction pipeline 

[164]. LEADS-PEP, on the other hand, is a much smaller dataset with 53 carefully curated and 

widely used complexes designed specifically for peptide-based therapeutics and peptide docking. 

It contains only X-ray crystal structures with a resolution better than 2Å [163].   

The complexes in the PP datasets differ mainly in size and definition of interaction unit. 

The protein-protein docking benchmark (RDPP) has 230 complex structures that were 

experimentally solved with corresponding unbound components available [166]. The structures in 

the RDPP dataset represent a diverse combination of antigen-antibody, enzyme-substrate, enzyme-
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regulatory complex, GPCR proteins and several other classes of proteins. The docking benchmark 

defines a true interaction as one that has functional significance as identified in the literature and 

agreed upon by the scientific community. The second PP dataset PHDL, a protein homo/hetero 

dimer library, determines the oligomeric state from PDB files [167]. PHDL contains non-

redundant heterodimers (Supplementary Table S1A) and homodimers (Supplementary Table 

S1B), where no two chains share more than 30% sequence identity with each other and each 

interacting partner has at least 40 amino acids.   

 

 

Figure 2.1. A flow chart for generating non-redundant datasets of protein-protein, protein-peptide 

and protein-DNA complexes.  

 

In addition to these individual datasets, we pooled the datasets of the same type of 

complexes together and generated three larger, non-redundant and highly diverse datasets (Figure 

2.1): (i) PDnrall, a protein-DNA dataset comprising HS, MS and RDPD; (ii) PTnrall, a protein-

peptide dataset comprising LEADS-PEP and InterPep; and (iii) PPnrall, a protein-protein dataset 

comprising PHDL and RDPP.  The redundancy after combining the respective datasets was 

removed with PISCES using a sequence identity cutoff of 30% [168], which resulted in 2724 non-

PP 

Docking
PHDL InterPep

LEADS-

PEP
HS/MS RDPD

Redundant 

PP dataset

Redundant 

PT dataset

Redundant 

PD dataset

PPnrall PTnrall PDnrall

Protein-protein (PP) datasets Protein-peptide (PT) datasets Protein-DNA (PD) datasets

Pool them together

Remove redundant complexes
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redundant protein-protein complexes (PPnrall), 346 non-redundant protein-peptide complexes 

(PTnrall) and 126 non-redundant protein-DNA complexes (PDnrall).    

2.2.2. Dataset processing 

The datasets were filtered rigorously for accurate analysis. In case of multiple models for 

one native structure as in the NMR entries, only the first model was selected. All the heteroatoms, 

including water molecules were removed since we do not consider solvation effects for the sake 

of simplicity and fair comparison. Proteins that have residues with insertion codes were 

renumbered accordingly. Since considering the alternate locations of a residue in an 

experimentally solved crystal structure may result in over counting the number of HBs, only the 

state with the highest occupancy for a given residue was included for analysis. The complexes 

with internal missing residues, i.e., residues that are not on the N or C terminal of the chain were 

discarded. Lastly, interactions between proteins and ligands were calculated based on interaction 

units for complexes composed of multiple chains of proteins and ligands. For example, 4FQI 

protein unit has two chains H, L and the ligand unit has six chains A, B, C, D, E, and F. For such 

cases, we only considered the inter-unit interaction between protein and ligand. In the case of 

4FQI, H and L were identified as one unit while ABCDEF as another unit.   

2.2.3. Identification of HBs 

Two widely used hydrogen bond annotation programs, FIRST (Floppy Inclusion and Rigid 

Substructure Topography) and HBPLUS, were used to identify HBs with default parameters 

[33,169]. Reduce was used to add hydrogen atoms to pdb files for FIRST HB calculations while 

HBPLUS calculates the hydrogen atom positions within the program [170]. FIRST employs an 

energy-based approach and the HB energy is calculated as in Eq. 2.1 [33,48]  
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𝐸𝐻𝐵 = 𝑉0 {5 (
𝑑0

𝑑
)

12

− 6 (
𝑑0

𝑑
)

10

} 𝐹(𝜃, 𝜙, 𝜑) 
Eq. 2.1 

 

Where d is the donor-acceptor distance. d0 (2.8 Å) and V0 (8 kcal/mol) represent the 

equilibrium distance and well-depth respectively [171]. The angle term F(,,) is calculated 

based on the hybridization state of the acceptor and donor atoms, where  is the donor-hydrogen-

acceptor angle,  is the hydrogen-acceptor-base angle, and  is the angle between the normals of 

the planes defined by the six atoms attached to the sp2 center as described by Dahiyat et al.[48]. 

The FIRST program was used for both the number of hydrogen bonds annotations using a widely 

used HB energy cutoff of -0.6 kcal/mol as well as for HB energy-based analysis.  HBPLUS 

identifies HB with a distance-angle approach and defines the optimal distance between the donor 

and acceptor as 2.5 Å or smaller and the optimal angle as 90 degrees or higher [169]. 

2.2.4.  Interface analysis and comparison 

Since the interface sizes are different among different types of complexes (Table 2.1), in 

order to accurately assess the roles of HB at the interface of PP, PT and PD complexes, the numbers 

of HBs were compared with respect to the interfacial surface area. The interfacial surface area 

(iSA) of a complex, was calculated using NACCESS v2.1.1 with default parameters as shown in 

Eq. 2 [162,172]: 

𝑖𝑆𝐴 =  
𝑆𝐴𝑃 + 𝑆𝐴𝐿 − 𝑆𝐴𝐶

2
 

Eq. 2.2 
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where SAL and SAP represent the surface area of protein and ligand respectively, and SAC 

is the surface area of the protein-ligand complex. For multichain components, SAP is the surface 

area of the protein unit while SAC is the surface area of the ligand unit.   

The HB distributions were compared at three different aspects: HB types, HB locations, 

and HB energy ranges. The types of HB were grouped depending on the types of atoms involved 

in hydrogen bonding, sidechain (or base in DNA) or backbone. HB types include SC-SC 

(representing side chain-side chain in PP and PT or sidechain-base in PD), BB-BB (for backbone-

backbone) and Mixed type (for SC-BB or BB-SC). A union of all three types encompasses all 

hydrogen bonds (HBall). The SC-SC hydrogen bonds, also termed here as HBSP, are generally 

considered more specific in molecular recognition and binding as the backbone atoms are the same 

for each type of molecules, protein or DNA. There are two different HB location types, interface 

(between proteins and ligands) and intrachain (within proteins). 

Table 2.2. Hydrogen bond energy (HBE) categories based on energy ranges 

CATEGORY HBE RANGE (KCAL/MOL) 

I -0.6  HBE < -0.1 

II -1.0  HBE < -0.6 

III -1.5  HBE < -1.0 

IV HBE < -1.5 

 

We divided hydrogen bond energy (HBE) from the FIRST program into four categories 

based on different energy cutoffs used in previous studies [33,34,148] and personal 

communication with the FIRST program developer as shown in Table 2.2. 
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2.2.5. Statistical tests: 

Wilcoxon rank sum test was employed to assess if there are significant differences between 

samples across datasets. Chi-squared goodness of fit test was used to test the categorical 

distributions of types and the energy of hydrogen bonds at interface and within intrachain.   

2.3. Results 

2.3.1. Hydrogen bonds at the interface of complexes 

We first compared the number of HBall and HBSP in PDnrall, PPnrall and PTnrall datasets. 

Based on HB annotations from FIRST with the widely used energy cutoff of -0.6 kcal/mol [34], 

we found that the number of interface HBall and the number of interface HBSP in PD complexes 

are significantly higher than those in the PP and PT complexes (Figure 2.2 A&B). The number of 

HBall and HBSP in PT complexes are significantly less than those in PP complexes (Figure 2.2 

A&B). Results from HBPLUS are consistent with the data from FIRST except that the number of 

HBSP in PP complexes is larger than that in PD complexes with HBPLUS (Figure S1 A&B). 

Interestingly, when the FIRST energy cutoff is set at -0.1 kcal/mol, the results are more similar to 

the HBPLUS data (Figure S2 A&B). 

Since the interface areas among the three types of complexes are different with PP 

complexes having the largest average interfacial area and PT complexes having the smallest 

average interfacial area (Table 2.1), comparing the raw number of interface HBs might be biased 

towards the complexes with a larger contact surface. Therefore, we normalized the number of 

interface hydrogen bonds, HBall and HBSP, by the interfacial surface area (iSA). Figure 2.2C and 

2.22D show that both HBall/iSA and HBSP/iSA ratios of PD complexes are significantly higher 
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than those in the PP complexes and PT complexes. There is a clear pattern for the iSA normalized 

HBSP, PD> PP> PT. When the analyses were carried out with HBPLUS, the results are consistent 

with the results from FIRST (Figure S1). Even though no significant difference of the ratio 

HBall/iSA from FIRST is found between PP and PT complexes for a two-tailed test (Figure 2C), 

one tailed test with a null hypothesis that HBall/iSA in PP is not smaller than HBall/iSA in PT 

results a p-value of 0.043, which is in line with the result from HBPLUS as well as that from 

FIRST with an energy cutoff at -0.1 kcal/mol: the ratio of HBall/iSA in PT complexes is 

significantly higher than PP complexes (Figure S1C & S2C). These results are also in agreement 

with a previous study that PT interface has more total HBs per 100 Å2 interface area than that in 

PP [71]. However, the HBSP/iSA ratio is the opposite, suggesting relatively fewer interface HBSP 

in PT complexes when the interface area is taken into consideration. 

 

Figure 2.2. Comparison of interfacial hydrogen bonds based on FIRST with an energy cutoff of -

0.6 kcal/mol: (A) the number of total hydrogen bonds (HBall); (B) the number of SC-SC or SC-

Base hydrogen bonds (HBSP); (C) the ratio of HBall to interfacial surface area (iSA); and (D) the 

ratio of HBSP to iSA. *** = p-value ≤ 0.001, ** = p-value ≤ 0.01 
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2.3.2. Types of hydrogen bonds at interface and within intrachain 

We compared the distributions of the HB types at complex interface or within protein 

(intrachain) in PP, PT and PD complexes and between individual complexes of the same type of 

complexes. Figure 2.3A and Table 2.3 show that there is no significant difference among the types 

of hydrogen bonds within proteins in all three types of complexes. BB-BB hydrogen bonds 

represent the largest number of overall hydrogen bonds within proteins (65-69%) followed by the 

Mixed (17-20%) and SC-SC (14-15%) hydrogen bonds respectively (Figure 2.3A). This is not 

surprising because the two major secondary structure types of the core protein structure, -helices 

and -sheets, are stabilized by backbone-backbone hydrogen bonds.  

 

Figure 2.3. Comparisons of the distribution of different types of hydrogen bonds, backbone-

backbone (BB-BB), sidechain-sidechain (SC-SC) and Mixed (BB-SC and SC-BB) for (A) 

intrachain within proteins and (B) at interface of PP, PT and PD complexes. The hydrogen bonds 

are annotated from the FIRST program with an energy cutoff of -0.6 kcal/mol. 

The distributions of the hydrogen bond types at interface, however, are significantly 

different from the intrachain and among the three types of complexes (Figure 2.3B and Table 2.3). 
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The percentages of SC-SC hydrogen bonds at interface increase dramatically when compared with 

those within proteins while the BB-BB is the least type in all three complexes. The proportions of 

BB-BB hydrogen bonds at the interface are approximately one third of those from intrachain in PP 

and PD complexes and approximately half of that in PT complexes (Figure 2.3). The proportions 

of interface SC-SC HBs are at least twice more than those in intrachain in all three types of 

complexes. There is an increase of the Mixed HB type at interface when compared with intrachain. 

In PD complexes, the Mixed HB type consists of about half of all interfacial hydrogen bonds.  

Table 2.3. p-values of chi-square tests between HB types from FIRST (-0.6 kcal/mol cutoff) and 

HBPLUS at interface and intrachain. 

 Intrachain Interface Interface/Intrachain 

Dataset1/

Dataset2 

FIRST HBPLUS FIRST HBPLUS Dataset FIRST HBPLUS 

PPnrall, 

PDnrall 

0.720 0.647 2.2e-16 0.025 PDnrall <2.2e-16 <2.2e-16 

PTnrall, 

PDnrall 

0.874 0.945 0.002 0.0005 PPnrall <2.2e-16 <2.2e-16 

PTnrall, 

PPnrall 

0.972 0.774 2.2e-16 <2.2e-16 PTnrall 8.904e-14 <2.2e-16 

A previous study on protein-protein complexes indicated that the larger number of BB-BB 

hydrogen bonds within protein chains as compared to the interface is likely due to the differences 

in the degrees of freedom available to the corresponding atoms [68]. On both PP and PT interfaces, 

the highest proportion of HB types is SC-SC between interacting components while the percentage 

of BB-BB hydrogen bonds is the lowest. The percentage of interface BB-BB hydrogen bonds in 

PT complexes is higher than those in the PP and PD complexes.  It has been suggested that a higher 

number of interface BB-BB hydrogen bonds in PT complexes is a result of bridging beta strands 
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at the interface between interacting peptides and protein molecules [71]. Once the interfacial beta-

sheet containing complexes are removed from the dataset, BB-BB hydrogen bonds are comparable 

between PP and PT complexes [71]. Similar results were observed for the comparison of HB types 

annotated by HBPLUS and by FIRST with an energy cutoff of −0.1 kcal/mol (Table 2.3, Figure 

S3-S4 and Table S2) .  

Besides comparisons among the three different types of non-redundant complexes, we also 

compared the distributions between individual datasets for each type of complexes (Figures S5-

S6). For example, PHDL is composed of homodimers and heterodimers and the PD dataset has 

HS and MS complexes with different binding specificity. We found that there is no significant 

difference in the distribution of HB types for both intrachain and at interface between HS and MS 

(p-values of 0.3743 and 0.6685 respectively) as well as between homodimers and heterodimers (p-

values of 0.9371 and 0.9746 respectively) from FIRST (Figure S5A). There is also no significant 

difference of HB type distributions for intrachain and at interface between PHDL and RDPP (p-

values of 0.992 and 0.246 respectively). While there is no difference for the intrachain distributions 

between InterPep and LEADSPEP (p-value = 0.954), the interface distributions are different (p-

value = 0.003) from FIRST HB annotations (Figure S6A). This might be a result of the relatively 

small LEADSPEP dataset with a small number of total hydrogen bonds (Figure 2.2). Similarly, no 

significant differences were found between any two of the above datasets of the same types of 

protein-ligand complexes based on HBPLUS annotations (Figures S5B and S6B).   

2.3.3. Strength of hydrogen bonds at interface and within protein chain 

We classified the strength of hydrogen bonds into four categories based on hydrogen bond 

energy from the FIRST program with different energy cutoffs used in previous studies as shown 
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in Table 2.2 [33,34,148]. For intrachain hydrogen bonds within proteins, no significant differences 

were found among the three types of complexes (Figure 2.4A and Table 2.4). Most of the hydrogen 

bonds (67-70%) are strong ones with lower than -1.5 kcal/mol energy (category IV) while very 

few of them are of intermediate energy (less than 15% when categories II and III are combined), 

suggesting that the hydrogen bonds in all types of proteins have similar energy distribution with 

predominantly strong hydrogen bonds.  

 

Figure 2.4. Comparisons of the distributions of hydrogen bond energy for (A) intrachain and (B) 

at interface. 

To investigate if the energy categories are related to different HB types, we compared the 

distributions of each type of intrachain hydrogen bonds in each energy category (Figure 2.5A and 

Table S3). Similar trends for BB-BB, SC-SC and Mixed types were observed among the three 

types of complexes and there is no significant difference of intrachain hydrogen bond energy 

distribution for each HB type among the PP, PT, and PD complexes. There is a higher percentage 

of strong BB-BB hydrogen bonds in all complexes, but relatively fewer strong ones for the Mixed 

HBs, suggesting that the major secondary structure types patterned by the BB-BB hydrogen bonds 

are optimized in terms of both distance and angle and form strong hydrogen bonds. However, the 



 26 

interface hydrogen bond energy distributions among different types of complexes are significantly 

different and exhibit a unique pattern for the PD complexes (Figure 2.4B and Table 2.4). There is 

a higher percentage of weak HB (category I) at PD complex interface when compared to those in 

PP and PT complexes as well as the intrachain HB energy in PD complexes. PD has the smallest 

percentage of strong HBs (category IV) among the three types of complexes. The difference 

between category I and IV HB percentage is much smaller in PD complexes (39% and 44.4%) 

than those in PP (18.9% and 66.2%) and PT (19.1% and 65.9%) complexes (Figure 2.4B). PP and 

PT complexes have similar distributions of interface HB energy categories.  In addition, the 

interface and intrachain HB energy distributions in both PP and PT complexes are also similar 

(Table 2.4).  

Table 2.4. p-values of chi-square tests between HBE categories at interface and within 

intrachain. 
 

Dataset1/Dataset2 intrachain interface Dataset interface/intrachain 

PPnrall, PDnrall 0.919 2.2e-16 PDnrall 5.3e-07 

PTnrall, PDnrall 0.994 3.73e-06 PPnrall 0.871 

PTnrall, PPnrall 0.995 0.5247 PTnrall 0.979 
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Figure 2.5. Comparison of (A) intrachain hydrogen bond energy and (B) interface hydrogen 

bond energy in different hydrogen bond types. 
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We also compared the energy distributions of each HB type across interfaces (Figure 2.5B). 

Similar to the pattern observed for all HBs in PD, energy distributions of different types of 

interface HB in PD complexes also differ significantly from PP and PT complexes while there is 

no significant difference between PP and PT complexes (Table S3). Interestingly, SC-SC HBs in 

PD complexes have a much larger percentage of strong, category IV HBs (59.5%) while the BB-

BB and Mixed types in PD complexes have more weak, category I HBs (43.1% and 43.8% 

respectively) than the SC-SC HBs (24.3%), suggesting important functional applications of HBs 

in specific protein-DNA interactions.  

2.3.4. Comparison of hydrogen bonds between HS and MS datasets 

In our previous study, we demonstrated that highly specific HS protein-DNA complexes 

have more hydrogen bonds than the multi-specific MS protein-DNA complexes, including both 

total hydrogen bonds and sidechain-base hydrogen bonds [5]. It is intriguing to see whether there 

is any relationship between the HB strength and protein-DNA binding specificity. We first 

compared the HB types and energy categories within proteins as well as at the interface of HS and 

MS complexes. No significant differences between HS and MS complexes were found in terms of 

energy categories (Figures S7-S8) while there are significant differences between the intrachain 

and interface for both HS (p-value: 9.673e-07) and MS complexes (p-value: 6.413e-07). We did 

observe some statistically non-significant small differences. For example, the number of SC-SC 

interface HBs in HS (32%) is slightly higher than that in MS (28.2%) (Figure S5A). Both HS and 

MS complexes show similar interface HB energy distributions with an overall balance of strong 

and weak HBs, but HS complexes have a slightly higher percentage of HBs in category IV (Figure 

S7).   
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Figure 2.6. Comparison of major groove for (A) HBall and (B) HBSP energy distributions 

between HS and MS complexes. 

Figure 2.7. Comparison of minor groove for (A) HBall and (B) HBSP energy distributions between 

HS and MS complexes. 

Since both major and minor grooves are known to play important roles in the base and 

shape readout mechanisms in specific protein-DNA recognition [5,22,147,173], we compared the 

energy distributions of total hydrogen bonds and sidechain-base hydrogen bonds in the major and 

minor grooves. Between major and minor grooves, there is no significant difference in terms of 

hydrogen bond energy distributions within each type of PD complexes, PDnrall, HS and MS with 
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high p-values (data not shown). For major groove HBs, while we observed more strong and fewer 

weak major groove HBs in HS complexes than those in the MS complexes, the differences in the 

energy distributions of HBall and HBSP in the major groove between HS and MS complexes are 

not statistically significant (Figure 2.6). However, we observed a significant difference in the 

energy distributions in the minor groove for both HBall and HBSP between HS and MS complexes 

(Figure 2.7). In general, HS complexes have more strong hydrogen bonds (category IV) and fewer 

weak hydrogen bonds (category I) than those in the MS complexes in the minor groove. The MS 

complexes have about double the percentage of weak hydrogen bonds in category I than that in 

HS complexes. These results suggest a clear and important role of HB energy of the minor groove 

in specific protein-DNA interaction. 

2.4. Discussion 

Despite the generally known importance of hydrogen bonds in protein-ligand interactions, 

the relative contribution of different types of hydrogen bonds, especially their energy in different 

types of complexes, is unknown. Previous studies mainly focused on analyses of the number of 

hydrogen bonds.  Here we performed a systematic comparative analysis of hydrogen bonds and 

their energy at the interface and within protein chains among three non-redundant protein-ligand 

complexes, PP, PT and PD. To the best of our knowledge, this is the first study that compares the 

energy of hydrogen bonds in different types of complexes. In addition, our use of large non-

redundant datasets not only maximizes diversity of the complexes but also avoids potential biases. 

Results between HBPLUS and FIRST are in high agreement even though they use different 

algorithms for identifying hydrogen bonds. We also showed similar results between individual 

datasets for each type of complexes suggesting the results are robust regardless of the datasets and 

the tools used for hydrogen bonds annotations.   
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Our analyses revealed several important findings. First, for intrachain hydrogen bonds, our 

analysis not only corroborates several previous findings [68,71], but also provide additional 

information by demonstrating no significant difference in the distributions of HB energy among 

different complexes. Second, at the interface, the hydrogen bond distributions of PD complexes 

differ from both PP and PT complexes significantly in three aspects: (a) the total number of 

hydrogen bonds, the number of sidechain-base hydrogen bonds, and the normalized numbers by 

interface area in PD complexes are significantly higher than those in both PP and PT complexes; 

(b) more importantly, PD complexes have significantly different distributions of HB types and 

energy than those of either PP or PT complexes. There is a unique balance between strong and 

weak hydrogen bonds in protein-DNA interfaces; and (c) there is a significant difference of the 

minor groove hydrogen bonds between HS and MS complexes with HS having more low energy 

strong HBs.    

Our comparative analyses on energy categories are based on HB energy cutoffs (-0.1 

kcal/mol, -0.6 kcal/mol, -1.0 kcal/mol, and -1.5kcal/mol) from previous studies (Table 2.2) 

[33,34,148]. To test if similar results can be observed with different HB energy discretization, the 

hydrogen bonds were grouped using a larger energy range separated by -0.1 kcal/mol, -0.7 

kcal/mol, -1.3 kcal/mol, and -2.0 kcal/mol (Table S4). The results of HB energy distributions, 

shown in Figures S9-S12 and Table S5-S6, are in agreement with conclusions (Figures 2.4-2.7, 

Table 2.4 and Table S3) with energy ranges in Table 2.2, suggesting our key findings are not 

affected by different discretization of HB energy. 

The above findings have important functional and practical implications. While omitting 

HB information in assessing predicted PP and PT complex models may have minimal effect, our 

results suggest consideration of hydrogen bonds is beneficial to quality assessment of protein-
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DNA complexes models since both the raw number and the normalized number of interface HBs 

in PD complexes are much higher than those in PP and PT complexes. The use of conserved 

numbers of native hydrogen bonds in models was suggested to evaluate the quality of protein-

peptide models [174].  We found that using the number of HBs can improve quality assessment of 

protein-DNA complex models [175].  However, due to the unique pattern of interface HB energy 

distributions in PD complexes and the dynamic nature of macromolecules, it could help model 

evaluations by considering the HB energy instead of using the raw number of HBs.  We 

demonstrated in our previous study that the accuracy of structure-based prediction of transcription 

factor binding sites could be improved by adding an HB energy term [176,177].  

Our data also provide an insight into the mechanism of binding specificity between protein 

and DNA. We observed an approximate balance of high and low energy interface hydrogen bonds 

in PD complexes, but not in the other two types of complexes (Figures 2.4B and 2.5B). One 

possibility of such difference lies in the geometry of interacting components as geometry is one of 

the key factors affecting hydrogen bond energy and strength [171]. While DNA is not a rigid 

molecule, the double helical nature restricts the atoms that can form optimal hydrogen bonds with 

protein sidechains while the peptide and protein surfaces have a relatively higher flexibility to 

position atoms for stronger HBs. Other than the unique structure of DNA double-helix that 

contributes to the pattern of energy distribution, it may also reflect the kinetics of protein-DNA 

recognition and binding, and the functions of many DNA binding proteins. For example, most of 

the DNA binding proteins are transcription factors, which bind to conserved DNA binding 

sequences while allowing variations at certain sites to regulate gene expression. Recent structural 

and dynamic analyses have shown that transcription factors typically bind to a preferred strand of 

the DNA double helix [150,178]. A fine balance of strong and weak HBs helps transcription factors 
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bind to conserved yet different sequences by allowing easier association and disengagement. This 

is further supported by the comparison between protein-DNA complexes of different binding 

specificity.  Highly specific DNA binding proteins have more strong HBs than the MS group 

comprising transcription factors (Figures 2.6 and 2.7) [5]. 

The most interesting finding is from the DNA minor groove HB analysis. Both the energy 

of all hydrogen bonds and the sidechain-base hydrogen bonds of highly specific protein-DNA 

complexes are significantly different from that of multi-specific protein-DNA complexes (Figure 

2.7). While it is generally thought that minor groove contacts play little role in conferring specific 

protein-DNA interactions, more studies have shown that this might not be the case. It has been 

reported that local sequence-dependent minor groove shape plays an important role in specific 

recognition between protein and DNA [22,147,179–181]. The number of contacts in minor 

grooves of HS complexes is more than that in MS complexes and the HS complexes contain wider 

minor grooves than MS [5], thus making it possible for optimal orientation of atoms to form 

stronger hydrogen bonds.  Our results further demonstrate that the minor groove HBs play more 

critical roles in conferring binding specificity than previously thought. 
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Chapter 3. COMPAREPD: IMPROVING PROTEIN-DNA COMPLEX MODEL 

COMPARISON WITH HYDROGEN BOND ENERGY-BASED METRICS 

Computational modeling of protein-DNA complexes is a cost-efficient alternative to 

experimental structure determination methods to fill the void in the protein-DNA complex 

structure landscape and has important implications in biomedical applications such as structure-

based computer aided drug design. One of the key steps in developing methods for accurate 

modeling of protein-DNA complexes is the similarity assessment between models and reference 

complex structures. Existing methods assess complex structure similarities with distance-based 

methods such as interface root mean square deviation (iRMSD), ligand RMSD (lRMSD), and the 

fraction of the contacts in the native structure that is reproduced in the model (Fnat) or a 

combination of these terms (DockQ). However, one important interaction type between the 

complex units especially in protein-DNA interactions, hydrogen bonds, is generally not considered 

in scoring the complex similarity. Here, we present a new scoring function that considers interface 

hydrogen bond energy, ComparePD, for accurate similarity measure of protein-DNA complexes. 

ComparePD was tested on both homology and docking protein-DNA complex models. The results 

were compared with a modified version of DockQ, ModifiedDockQ (tailored for protein-DNA 

complexes) as well as the metrics employed in the community-wide experiment CAPRI (Critical 

Assessment of PRedicted Interactions). We demonstrated that ComparePD was able to accurately 

describe the similarity of protein-DNA complex models by capturing interface hydrogen bond 

interactions.  

3.1. Introduction 
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Protein-DNA complexes play a vital role in the regulation of gene expression, cellular 

growth, differentiation and development [182,183]. Knowledge of protein-DNA complex 

structures is essential to gain insight into their function [184–188]. Structures of most of the 

protein-DNA complexes, however, remain unsolved due to the technical challenges in 

experimental methods to solve larger biomolecular assemblies and nucleic acids [189]. Recent 

data showed that protein-DNA complexes in Protein Data Bank (PDB) represent less than 5% of 

all the known structures [81,190]. To address this issue, in-silico prediction of protein-DNA 

complex structures has been explored using methods such as homology modeling and docking 

[191–193]. Both methods can predict a large number of models in a short time by exploring a wide 

conformational energy landscape [111,194,195]. While structure prediction of monomeric proteins 

is at an advanced stage, the methods for modeling complexes still has several challenges to 

overcome [111,196–199]. For example, sequence similarity, a limiting factor for the success of 

homology modeling methods, does not guarantee interface similarity.  It has previously been 

shown that many homologous proteins can have different interaction modes [200]. New methods 

of structure prediction for complexes are increasingly being developed to overcome these 

challenges [201–203].  

A key step in the development of computational modeling methods is to assess the 

structural similarity between predicted models and the experimentally solved reference structure. 

It is a challenging task to accurately capture the functionally meaningful interface structural 

similarity and no standard method has been widely accepted for complexes. Existing measures of 

similarity such as iRMSD, lRMSD and Fnat are all distance-based and have several limitations 

[204–214]. For example, RMSD treats each position equally and is therefore highly sensitive to 

conformational changes and can be misleading for complexes with larger loops [138,215]. Models 
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of similar quality can have largely different RMSDs because of larger flexibility in loops or termini 

of proteins [208]. Despite being widely used, these metrics alone do not accurately reflect the true 

overall quality of the model [205,208,216]. The community wide CAPRI (Critical Assessment of 

PRedicted Interactions) interaction prediction experiment group these metrics in four discrete 

classes (Table 3.1) [217]. Models are classified as high, medium, acceptable quality or incorrect. 

While this provides a reasonable initial assessment of the quality, classifying models into four 

main types is too restrictive for assessing true model quality. To this end, Basu et. al. proposed a 

continuous scoring function, DockQ which combines these criteria in a single score for assessment 

of complex similarity [205].  

Table 3.1. Classification scheme of CAPRI based on Fnat, iRMSD and lRMSD ranges 

Model quality Ranges 

High 𝐹𝑛𝑎𝑡 ≥ 0.5 𝑎𝑛𝑑 (𝑙𝑅𝑀𝑆𝐷 ≤ 1.0 Å 𝑜𝑟 𝑖𝑅𝑀𝑆𝐷 ≤ 1.0 Å 

Medium 1. (0.3 ≤ 𝐹𝑛𝑎𝑡 < 0.5) 𝑎𝑛𝑑 (𝑙𝑅𝑀𝑆𝐷 ≤ 5.0 Å 𝑜𝑟 𝑖𝑅𝑀𝑆𝐷 ≤ 2.0 Å) 

2. 𝐹𝑛𝑎𝑡 ≥ 0.5 𝑎𝑛𝑑 𝑙𝑅𝑀𝑆𝐷 > 1.0 Å 𝑎𝑛𝑑 𝑖𝑅𝑀𝑆𝐷 > 1.0 Å 

Acceptable 1. (0.1 ≤ 𝐹𝑛𝑎𝑡 < 0.3) 𝑎𝑛𝑑 (𝑙𝑅𝑀𝑆𝐷 ≤ 10.0 Å 𝑜𝑟 𝑖𝑅𝑀𝑆𝐷 ≤ 4.0 Å) 

2. 𝐹𝑛𝑎𝑡 ≥ 0.3 𝑎𝑛𝑑 𝑙𝑅𝑀𝑆𝐷 > 5.0 Å 𝑎𝑛𝑑 𝑖𝑅𝑀𝑆𝐷 > 2.0 Å 

Incorrect 𝐹𝑛𝑎𝑡 < 0.1 𝑜𝑟 (𝑙𝑅𝑀𝑆𝐷 > 10.0 Å 𝑎𝑛𝑑 𝑖𝑅𝑀𝑆𝐷 > 4.0 Å) 

Despite being widely accepted, these methods do not represent a global measure of 

similarity for all complexes. For example, the distance cut-off in these metrics was modified for 

comparing protein-peptide complexes to reflect their smaller interface area [218,219]. A major 

limitation of these metrics is that they do not consider biological features of the complex relevant 

to its function which reflects a more meaningful comparison of complexes. For comparison of 

protein-DNA complexes, this can be achieved by incorporating hydrogen bonds which are central 

to their binding specificity and function [56,147–149,169,174,220–224]. Hydrogen bonds are 
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weak intermolecular interactions which are significantly more prevalent in protein-DNA 

complexes as compared to protein-protein and protein-peptide complexes [225]. Side chain-base 

hydrogen bonds between proteins and nucleic acids in particular play vital roles in binding 

specificity [149]. There is a significantly higher number of hydrogen bonds in highly specific 

protein-DNA complexes as compared to non-specific and multi-specific protein-DNA complexes 

[5]. Ferrell and Guo previously demonstrated that incorporating a hydrogen bonding term in a 

scoring function improves the prediction of transcription factor binding specificity [176]. A 

hydrogen bond-based comparison of protein-DNA complexes could result in the selection of more 

functionally meaningful models. A recent study by Marcu et. al. has suggested fnathb, the number 

of conserved hydrogen bonds in model, to compare the models with the native complex. An 

intrinsic limitation of the methods based on a single distance or energy cut-off is that hydrogen 

bonds of different strength are treated equally [56,171]. While this might be effective in complexes 

with mostly strong hydrogen bonds such as protein-protein and protein-peptide, it might not work 

well for protein-DNA complexes which present a unique, almost equal distribution of weak and 

strong hydrogen bonds [225]. Furthermore, conventional methods to identify hydrogen bonds are 

based on a single energy threshold. An energy threshold of -0.6 kcal/mol is generally suggested 

for protein-DNA complexes by the author of FIRST [33]. However, in terms of hydrogen bond 

comparison between protein-DNA complexes, a small difference in hydrogen bond energy 

between -0.595 kcal/mol and -0.605 kcal/mol would result in different conclusion: 0 vs. 1 

hydrogen bond.  Such discrete cut-off can be too rigid for protein-DNA complexes where hydrogen 

bonds of high energy are almost as prevalent as hydrogen bonds of low energy [225]. 

Here, we present a novel weighted hydrogen bond energy-based method to compare 

protein-DNA complexes. To the best of our knowledge, this is the first time an approach 
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considering different strengths of hydrogen bond has been employed to compare protein-DNA 

complexes. The results were compared with the standard CAPRI-based criteria of comparison 

(Table 3.1) and ModifiedDockQ to test the performance of our comparison score.  

3.2. Materials and methods 

3.2.1. Datasets 

Two datasets of protein-DNA complex models generated through homology modeling and 

docking respectively were used [226,227]. The homology modeling dataset comprises 90 models 

of 5 non-redundant homeodomain complexes (Table 3.2). Several templates of high structural 

quality and varying sequence similarity ranging between 35% and 70% were selected for each 

target complex. Since the existing homology modeling methods do not efficiently model interfaces 

of larger biomolecular assemblies and nucleic acids, several additional steps were performed 

(Figure 3.1). First, the protein component of each template structure was used to generate 5 

homology models of the target sequence. Next, each of these homology models was structurally 

aligned with the native complex. Finally, the aligned protein models complexed with native DNA 

were generated. Modeller was used to generate protein models and TM-align was used for 

structural alignment [228,229].   
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Figure 3.1. Homology modeling of 9antB protein-DNA complex using 1le8A as the template 

structure (n = 5). 

Table 3.2. Homology models of homeodomain based on templates of varying sequence identity  

Target Template (Sequence identity) 

1pufB 3cmyA (35%), 1akhA (46%) and 4xrmA (51%) 

1zq3P 2xsdC (34%), 4rduA (45%) and 6m3dC (51%) 

2me6A 1fjlA (40%), 1ig7A (59%), 6m3dC (48%) 

3sjmA 3osfA (42%), 7c4pA (55%) 

9antB 1le8A (33%), 4rduA (42%), 1jggA (52%), 1pufA (70%) 

 

The docking dataset comprises 500 docked models of 25 protein-DNA complexes from 

previously published and widely used HADDOCK protein-DNA docking benchmark (Table 3.3) 

[226,227]. The models generated by Honorato et. al. using MARTINI force field for DNA in 

HADDOCK, were obtained from publicly available repository. The HADDOCK-MARTINI 

dataset originally comprises 43 protein-DNA complexes each comprising 1000 models ranked 

according to their HADDOCK score [225,230]. We filtered these complexes rigorously using 

methods described previously and eliminated 14 of these complexes [225]. Two more complexes 

with missing residues near the interface were removed after visual analysis of complexes. Of the 

resulting 27 complexes, FIRST was unable to annotate hydrogen bonds in two complexes resulting 
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in a final dataset of 25 complexes. Finally, the highest ranking 20 models for each complex 

according to HADDOCK score were selected. 

Table 3.3. PDB ids of selected complexes from protein-DNA docking benchmark of HADDOCK 

1azp 1f4k 1kc6 1rva 2fio 

1a74 1fok 1mnn 1vas 2irf 

1by4 1gi9z 1qrv 1z9c 3bam 

1ddn 1h9t 1r4o 2oaa 3cro 

1ea4 1h9c 1rpe 2fl3 7mht 

In addition to the datasets of protein-DNA complex models, two previously published non-

redundant datasets of native protein-protein complexes and two non-redundant datasets of native 

protein-DNA complexes were used to estimate the RMSD scaling factors and optimize weights in 

the ComparePD function [166,225]. Our previously developed dataset PPnrall was used to 

estimate the scaling factor for iRMSD [166,225]. It comprises high quality experimental structures 

of homodimers, heterodimers and protein-protein docking benchmark version 5.0 [166,225].  The 

protein-protein docking benchmark version 5.0 was used to estimate scaling factor of ligand 

RMSD [162,231]. For protein-DNA complexes, we used PDnrall which comprises non-redundant 

specific protein-DNA complexes and protein-DNA rigid docking benchmark [225]. In order to 

estimate weights for scoring function, we combined previously published highly specific and 

multi-specific datasets of protein-DNA complexes [5]. 

3.2.2. Hydrogen bond energy 

FIRST (Floppy Inclusion and Rigid Substructure Topography) was used to annotate 

hydrogen bonds in the complex and calculate their energy using the equation 2.1 [33,171]. The 
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annotated hydrogen bonds were classified into three categories based on their energy (Table 3.4). 

Information from previous studies was used to define these energy bins [24,33,34,225]. Weights 

0.5, 0.8 and 1.0 are arbitrarily assigned to reflect the strength of hydrogen bonds because we do 

not have sufficient number of protein-DNA complexes for training.  In addition to FIRST, 

HBPLUS with default parameters was also used annotate hydrogen bonds in PPnrall, Docking 

benchmark version 5.0, PDnrall and pooled dataset of highly specific and multi-specific protein-

DNA complexes [56].  

Table 3.4. Energy bins for each category of hydrogen bonds energy (HBE) and their corresponding 

weights 

Category HBE range 

(kcal/mol) 

weights 

I -0.6 ≤ HBE < -0.1 0.5 

II -1.0 ≤ HBE < -0.6 0.8 

III HBE <  -1.0 1 

3.2.3. ModifiedDockQ 

DockQ is a continuous score between [0,1] based on Fnat, iRMSD, and lRMSD, originally 

developed for comparing protein-protein complexes [205].  Since protein-protein complexes and 

protein-DNA complexes have different interface [225], we implemented a modified version of 

DockQ for protein-DNA complexes using different scaling factors (Eq. 3.1).   

𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑𝐷𝑜𝑐𝑘𝑄 =
𝐹𝑛𝑎𝑡 + 𝑖𝑅𝑀𝑆𝐷𝑠𝑐𝑎𝑙𝑒𝑑 + 𝑙𝑅𝑀𝑆𝐷𝑠𝑐𝑎𝑙𝑒𝑑

3
 

Eq. 3.1 

A contact is defined between two heavy atoms if they are separated by a distance of 4.5 Å 

or less. Interface is defined as pairs of heavy atoms from the proteins and DNA within 10 Å of 
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each other. iRMSD is based on C atoms of proteins and N1 or N9 atoms of DNA in the binding 

interface (iRMSDCB-N1N9). lRMSD is based on N1 and N9 interface atoms of DNA backbone 

(lRMSD N1N9). 

Estimation of scaling factors di and dl 

RMSDs in DockQ were scaled using inverse square scaling method to account for two 

problems. First, a near-native model has higher Fnat and lower RMSD values. Second, arbitrarily 

large RMSD values can be misleading. Inverse square scaling of iRMSD and lRMSD provides an 

efficient solution (Eq. 3.2). Basu et. al. have shown that scaled RMSD measures provide a more 

sensitive discrimination between the quality of protein-protein models [205].  The scaled RMSD 

values are calculated as in Eq. 3.2. 

𝑅𝑀𝑆𝐷𝑠𝑐𝑎𝑙𝑒𝑑𝑗
=  

1

1 + (
𝑅𝑀𝑆𝐷𝑗

𝑑𝑗
)

2 
Eq. 3.2 

where j is for iRMSD or lRMSD respectively and dj represents the scaling factor di for iRMSD 

and dl for lRMSD respectively. In the original publication, the scaling factors di and dl were 

optimized by performing a grid search on a dataset of 56,015 docked models of 118 protein-protein 

complexes. Due to the small number of experimentally solved protein-DNA complexes, a grid 

search optimization of scaling factors is not practical. We estimated the scaling factor protein-

DNA complexes for iRMSD (di ~ 1.2) by comparing the average and median interface areas of 

PPnrall for protein-protein complexes and PDnrall for protein-DNA complexes [225].  Both the 

mean and median interface area of PPnrall are about 1.7 times those of PDnrall. In order to account 

for inverse-square scaling function, di for protein-protein complexes in the original publication 
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(1.5) was normalized by √1.7 to get an updated di of ~1.2. The scaling factor for lRMSD, dl, was 

estimated similarly by comparing the number of backbone atoms (dl ~ 2). Protein-DNA docking 

benchmark version 5 was used for protein-protein complexes to correspond better to the original 

publication since models of the native complexes in this benchmark were used to train dl in the 

original publication.  

3.2.4. ComparePD: a function for comparison of protein-DNA complexes 

We developed a new linear continuous function for comparing protein-DNA complexes by 

combing the traditional features Fnat, iRMSD and lRMSD, and a novel weighted hydrogen bond 

energy-based score, CompositeHBE (Eq. 3.3). 

𝐶𝑜𝑚𝑝𝑎𝑟𝑒𝑃𝐷 =
𝐹𝑛𝑎𝑡 + 𝑖𝑅𝑀𝑆𝐷𝑠𝑐𝑎𝑙𝑒𝑑 + 𝑙𝑅𝑀𝑆𝐷𝑠𝑐𝑎𝑙𝑒𝑑 + 𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒𝐻𝐵𝐸

4
 Eq. 3.3 

CompositeHBE: Weighted hydrogen bond energy algorithm 

The key part of CompositeHBE is a weighted hydrogen bond (WHB) based on the hydrogen 

bond energy between a protein-DNA complex model and a reference complex (Fig. 3.2). 

Hydrogen bonds in native and model complexes are first annotated with FIRST. Weights wm and 

wn are assigned to each hydrogen bond in the model and native complex, respectively (Table 4.4). 

The weight of each conserved hydrogen bonds in the model wm is compared to the corresponding 

wn in the reference structure. WHB is then calculated to reflect the conservation of the hydrogen 

bond in the reference structure with a value between 0 and 1 (Eq. 3.4):  
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𝑤𝐻𝐵 = {
𝑤𝑚 𝑤𝑛⁄ , 𝑤𝑚 < 𝑤𝑛

𝑤𝑛 𝑤𝑚⁄ , 𝑤𝑚 ≥ 𝑤𝑛
 

Eq. 3.4 

Figure 3.2. A flowchart of weighted hydrogen bond energy algorithm 

Since side chain-base hydrogen bonds at the interface of protein-DNA complexes are a 

significant contributor to the binding specificity [22], we calculate them separately as wHBSP using 

equation 3.5. wHB and wHBSP scores for all conserved hydrogen bonds at the interface of protein-

DNA complex are then added and normalized by the weighted sum of total number of hydrogen 

bonds (Eq. 3.5, 3.6).   

𝐹𝐻𝐵𝑁𝑎𝑡 =  
∑ 𝑊𝐻𝐵

∑ 𝑊𝑖(𝐶𝐻𝐵)𝑖
3
𝑖=1

 Eq. 3.5 

𝐹𝐻𝐵𝑆𝑃𝑁𝑎𝑡 =  
∑ 𝑊𝐻𝐵𝑆𝑃

∑ 𝑊𝑖(𝐶𝐻𝐵𝑆𝑃)𝑖
3
𝑖=1

 Eq. 3.6 
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where FHBNat and FHBSPNat are the scores that represent fraction of hydrogen bonds captured in the 

model. CHB and CHBSP are the total number of hydrogen bonds and sidechain-base hydrogen bonds 

respectively for the corresponding three energy categories (i= 1,2,3) of hydrogen bonds (Table 

3.4). Finally, a composite score of FHBNat and FHBSPNat is calculated to reflect overall similarity in 

the energy of hydrogen bonds between the native complex and the model (Eq. 3.7).  

𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒𝐻𝐵𝐸 =  
(𝑤1𝐶𝐻𝐵𝐹𝐻𝐵𝑁𝑎𝑡 + 𝑤2𝐶𝐻𝐵𝑆𝑃𝐹𝐻𝐵𝑆𝑃𝑁𝑎𝑡)

𝑤1𝐶𝐻𝐵 + 𝑤2𝐶𝐻𝐵𝑆𝑃
 Eq. 3.7 

where w1 = 0.3 and w2 = 1-w1 =0.7. w1 is estimated by comparing the average number of 

all interface hydrogen bonds to the sidechain-base hydrogen bonds in a pooled non-redundant 

dataset of highly specific and multi-specific protein-DNA complexes (Supplementary Figure S13). 

Higher weight is assigned to sidechain-base hydrogen bonds because of their important role in 

protein-DNA binding specificity. CHB and CHBSP represent the total number of hydrogen bonds and 

total number of sidechain-based hydrogen bonds in the reference protein-DNA complex 

respectively.  

3.3. Results 

ComparePD was used to rank MARTINI-based docking models of each of the 25 

complexes from HADDOCK protein-DNA docking benchmark and the homology models of each 

of the 5 non-redundant homeodomain complexes. The results were compared with the standard 

CAPRI classification (Table 3.1) and ModifiedDockQ rankings (Eq. 3.2). The comparison of 

scoring methods was performed in two ways. First, the best model identified by ModifiedDockQ 

was compared to the corresponding top selection of ComparePD. Second, top three models ranked 

by both scores were compared to check if both methods agree on selection of at least one common 

model.  
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Table 3.5. CAPRI-based classification of models into 4 categories based on Table 3.1. 

Category Homology Models Docked 

Models 

High 1 (20%) 0 

Medium 1 (20%) 19 (76%) 

Acceptable 2 (40%) 6 (24%) 

Incorrect 1 (20%) 0 

Table 3.1. shows the best model category according to CAPRI classification in each case. 

Homology models of high quality were generated in only 1 out of 5 targets (Table 3.5). The 

MARTINI-based docking dataset did not generate any high-quality models. Most of the docked 

models are of medium (76%) or acceptable quality (24%).  

ComparePD selects a different, potentially better-quality model in terms of hydrogen 

bonds for 52% of docked and 60% of homology modeled complexes as compared to 

ModifiedDockQ. When the top 3 models were compared, ComparePD selects at least one 

common model as ModifiedDockQ in 88% and orientation potential in 68% targets in docked 

models. In all homology models, at-least one of the top 3 models ranked by ComparePD is also 

captured by ModifiedDockQ (Tables 3.6). 

 Table 3.6A. Comparison of scoring methods for the selection of top model in docked dataset*  

Same\Different ComparePD 

(Top/Top3) 

ModifiedDockQ 

(Top/Top3) 

ComparePD  13 (52%)/3(12%) 

ModifiedDockQ 12(48%)/22(88%)  

Table 3.6B. Comparison of scoring methods for the selection of top models in homology 

modeling dataset* 

Same\Different ComparePD ModifiedDockQ 
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ComparePD  3 (60%)/0 (0%) 

ModifiedDockQ 2(40%)/5(100%)  

*  The lower half of the table presents similarities and the upper half shows differences between scores 

3.3.1. Performance evaluation 

The ability of ComparePD to accurately capture the distance-based measures was assessed 

through a correlation analysis (Fig. 3.3). Figure 3.3. shows correlations of ComparePD scores 

against ModifiedDockQ score, Fnat and RMSDs. Significant correlation of ComparePD with 

ModifiedDockQ and Fnat (correlation coefficient of 0.79 and 0.72) indicate its performance is 

comparable to these metrics. The RMSD values are also significantly correlated and similar pattern 

is observed for both homology modeling and docking datasets. lRMSD is only shown for docking 

models because native DNA is complexed with protein model in homology models (Fig. 3.3B). 
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Figure 3.3. Correlation analysis of scores between (A) ComparePD, ModifiedDockQ, fnat and 

iRMSD for all models, docking models and homology models and (B) ComparePD against 

lRMSD for docking models. 
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Figure 3.4. Comparison plots of models scored by ComparePD and ModifiedDockQ alongwith 

their individual Fnat, normalized iRMSD and lRMSD scores for (A) 7mht, (B) 1z9c and (C) 2irf. 

Top three models are highlighted, and corresponding ranks are reported as (ComparePD, 

ModifiedDockQ) for each complex. 
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Figure 3.5. Comparison plots of models scored by ComparePD and ModifiedDockQ alongwith 

their individual Fnat, normalized iRMSD and lRMSD scores for (A) 9antB, (B) 1mnn and (C) 

1rva. Top three models are highlighted, and corresponding ranks are reported as (ComparePD, 

ModifiedDockQ) for each complex. 
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In 48% cases of docking and 40% of homology modeling, ComparePD identifies same top 

model as ModifiedDockQ. Figure 3.4 shows three such examples. For 7mht, same top 3 models 

are selected by both scores although ranking of Model 9 and 3 is reversed in ComparePD (Fig. 

3.4A). In case of 1z9c and 2irf, top two models selected by both methods are the same (Fig. 3.4B). 

ComparePD in these cases has been able to capture the top selection by ModifiedDockQ and it has 

provided further confidence in selection based on interface hydrogen bond energy.  Thus, in 

addition to being structurally comparable, model predicted by ComparePD also has the nearest-

native hydrogen bond energy distribution.  

In 52% of the cases in docking dataset and 60% of cases in homology modeling, 

ComparePD identifies a different top model from ModifiedDockQ. Figure 3.5 shows three 

examples (1 homology modeling case 9antB and 2 docking cases 1mnn and 1rva) where 

ComparePD selects a better model in each case. A detailed analysis of hydrogen bonds and their 

energy in the model selected by both methods is given below.  

3.3.1.1. 9antB: homeodomain homology models  

We used ComparePD and ModifiedDockQ to score homology models of homeodomain 

protein-DNA complex 9ant built by using templates of varying sequence identity (Fig. 3.5A). 

1jggA_52_Model_1 for example corresponds to the first model of 9antB using the experimental 

structure of 1jggA as template with a sequence identity of 52%. ComparePD ranks homology 

model 1 with template 4rduA (sequence identity 42%) as the top model, whereas ModifiedDockQ 

selects model 5 from template 1jggA (sequence identity 52%) as the top model. Even though the 

ModifiedDock scores for both models are similar (0.601 for top selection of ComparePD and 0.641 

for top selection by ModifiedDockQ), an examination of hydrogen bonds in each of these models 
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indicate that ComparePD selects a better overall model (Fig. 3.6). The top model selected by 

ComparePD conserves 7 out of 8 native hydrogen bonds. Five of these conserved native hydrogen 

bonds also conserve the energy categories. These low energy, strong hydrogen bonds including: 

ARG55-C406, ARG33-A404, ARG7-T518 and ASN53-A520. The two hydrogen bonds whose 

energy category changes in the model selected by ComparePD (GLN8-A519 and ARG55-C406) 

are high energy, weaker hydrogen bonds. The energy of hydrogen bond between GLN8-A519 

decreased in ComparePD selection whereas in ARG45-T521 it increases. This is also evident by 

the change in conformation of sidechains of the corresponding atoms. Sidechain confirmations for 

hydrogen bonds with conserved energy categories in the model selected by ComparePD is similar 

to near-native. The top model from ModifiedDockQ conserves only 5 hydrogen bonds. Four of the 

native hydrogen bonds (ARG33-A404, ARG45-T521 and two hydrogen bonds in ASN53-520) are 

of low energies. Despite the hydrogen bonds being conserved, the category of energy of 3 of these 

(ARG33-A404, ARG45-T521 and one hydrogen bond between ASN53-520) changes. The energy 

category of only one hydrogen bond (ARG45-T521) is conserved in this model. Even though Fnat 

and iRMSD of ModifiedDockQ selection (0.631 and 0.878 Å) is slightly better than ComparePD 

selection (0.591 and 0.959 Å), poor conservation of hydrogen bonds energy result in lower overall 

score for the latter. 
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Figure 3.6. Interface hydrogen bonds and their energy in the native complex 9antB and top 

models predicted by ComparePD and ModifiedDockQ.  

3.3.1.2. 1mnn: MARTINI-based docked models of HADDOCK protein-DNA benchmark  

For 1mnn, ComparePD selects model 9 as the top model whereas ModifiedDockQ 
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9 is a better model (Fig. 3.7). The model selected by ComparePD conserves 7 native hydrogen 

bonds, whereas the models selected by ModifiedDockQ only captures 2 hydrogen bonds. Four of 

the conserved native hydrogen bonds (ARG277-G4, ARG79-G25 and two hydrogen bonds in 

ARG65-G23) in model 9 also conserve the native energy category whereas neither of the hydrogen 

bonds conserved in model 10 conserve the hydrogen bond in the native energy category.   

 

Figure 3.7. Interface hydrogen bonds and their energy in the native complex 1mnn and top 

models predicted by ComparePD and ModifiedDockQ.  
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3.3.1.3. 1rva: MARTINI-based docking models from the HADDOCK protein-DNA benchmark  

The top selection by ComparePD is model 9 whereas that from ModifiedDockQ is model 

10. (Fig. 3.5C). In this case the top ComparePD model is ranked the second best according to 

ModifiedDockQ. Figure 3.8 shows a comparison of hydrogen bonds and their energies in all these 

models to the native complex. Six low energy native hydrogen bonds are shown in the first column 

of the table. Model 10 has 5 conserved hydrogen bonds, whereas model 9 conserves 4 hydrogen 

bonds. Even though model 10 conserves more hydrogen bonds as compared to Model 9, the energy 

categories of two conserved hydrogen bonds (ASN184-GG16 and GLN312-C9) in model 10 is not 

conserved. Model 9, on the other hand, conserves energy categories of all the hydrogen bonds. 

Model 9 has better lRMSD but worse Fnat as compared to model 10 which is why it was ranked 

the second best by ModifiedDockQ.  
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Figure 3.8. Interface hydrogen bonds and their energy in the native complex 1rva and top models 

predicted by ComparePD and ModifiedDockQ.  
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computer aided structure-based drug-design. Modeling the structure of complexes requires 

accurate mapping of interface features which is a challenging task and is not yet at a mature stage 

of development. New methods are being rapidly developed but they face several challenges. For 

example, unlike protein structure prediction where new methods can be assessed by several scores 

such as TM-score, GDT_TS and IS score, no standard criteria exist for comparing protein-DNA 

complexes [232–234]. Recent studies have stressed that incorporating biologically relevant 

measures in the development of in-silico structure prediction of complexes can help improve their 

performance [203]. We have presented here ComparePD, a novel scoring function to assess the 

similarity of protein-DNA complexes by incorporating energy of hydrogen bonds which are 

central to the binding specificity of protein-DNA complexes. A combination of conventional start-

of-the-art criteria Fnat, iRMSD and lRMSD with the hydrogen bond energy in ComparePD could 

better reflect the true quality of a model. Proteins are dynamic in nature making it impossible to 

precisely conserve the exact energy of native hydrogen bonds. Instead of using discrete energy 

cut-offs, ComparePD treats native hydrogen bonds of varying strengths differently by assigning 

higher weights to stronger hydrogen bonds and lower weights to weaker. Small shifts in energy of 

hydrogen bonds within the same category are not penalized. A large shift in energy of conserved 

native hydrogen bond where the category of hydrogen bond has changed, is considered with a 

lower score (Table 3.4). While the use of hydrogen bond numbers for similarity assessment of 

complexes has previously been suggested, to the best of our knowledge, this is the first time a 

similarity assessment method based on different energy ranges has been explored to compare 

protein-DNA complexes.  

ComparePD shows improvement in assessment of similarity over ModifiedDockQ by 

incorporating a single hydrogen bond energy-based term. It is significantly correlated to other 
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scoring metric indicating that while it focuses on hydrogen bonds, it does not neglect essential 

criteria of similarity assessment offered by other metrics. Overall, it outperforms ModifiedDockQ 

in more than 50% of the cases in our datasets by identifying a different, potentially better model. 

For instance, in homology models of 9antB, there is a clear difference between ModifiedDockQ 

and ComparePD scores for top models despite both having similar Fnat and iRMSD (Fig. 3.5A). 

A structural analysis of hydrogen bonds in both models reveals that the model selected by 

ComparePD is not only able to reproduce a larger number of native hydrogen bonds but also 

conserve the categories of their energy. In 1rva (Fig. 3.8) the model selected by ModifiedDockQ 

conserved more (5) hydrogen bonds as compared to ComparePD (4) but it does not conserve the 

energy of 3/5 hydrogen bonds. The selection by ComparePD conserves the energy of all four 

hydrogen bonds and also has better lRMSD as compared to both ModifiedDockQ selection (Fig. 

3.5C).  

ComparePD can serve as the standard criteria of comparison for protein-DNA complexes. 

It can facilitate the development of new methods for modeling and evaluating the structures of 

protein-DNA complexes.  Since it is a continuous scoring function, it can be adapted in machine 

learning based methods to assess the quality of protein-DNA complexes. The performance of 

ComparePD can be further enhanced by training several weights used in this function.  
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Chapter 4. CONCLUSIONS AND FUTURE DIRECTIONS 

4.1. Concluding remarks 

Interface hydrogen bonds are pivotal to protein-DNA complexes and those formed between 

amino acid side chains and nucleotides base edges are central to the binding specificity. In this 

dissertation, we explored the importance of using hydrogen bond energy in similarity assessment 

of protein-DNA complexes, a key step in developing in-silico structure prediction methods. We 

first performed a comparative analysis of hydrogen bond energy distribution in protein-DNA 

complexes as compared to other biomolecular complexes [225]. The insight gained from these 

analyses was used to develop a novel hydrogen bond energy-based scoring function for structural 

similarity assessment of protein-DNA complexes. We showed that incorporating hydrogen bond 

energy leads to a clear improvement in accurate assessment of structural similarity in both 

homology and docking protein-DNA complex models. Our method selected different, potentially 

better models for more than 50% of targets which would otherwise be neglected using previous 

methods. 

Computational structure prediction of protein-ligand complexes is a developing area of 

research and requires attention to the biologically relevant features of the type of complex. While 

the significance of hydrogen bonds in protein-DNA complexes is well studied, no comparative 

analysis of energy of hydrogen bonds exists. To this end, we first compared different features of 

hydrogen bonds, including their energy, in protein-DNA complexes, to two other major 

biomolecular complexes, protein-protein and protein-peptide complexes. The energy of hydrogen 

bonds was categorized into four bins corresponding to their strength. We showed that hydrogen 

bonds in protein-DNA complexes are significantly more prevalent than protein-protein and 
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protein-peptide complexes[225]. Moreover, a unique, almost equal distribution of weak and strong 

interface hydrogen bonds is observed in protein-DNA complexes. The hydrogen bonds at the 

interface of protein-protein and protein-peptide complexes are mostly strong. There is a significant 

difference in the energy of hydrogen bonds at the minor groove between highly specific and multi-

specific complexes corroborating the importance of minor grooves in binding specificity of 

protein-DNA complexes reported by previous studies [22,147,179–181]. These results suggest that 

while a generic method of structural comparison can be used for protein-protein and protein-

peptide complexes, special attention to hydrogen bonds is required in designing functions for 

protein-DNA complexes. 

A key step in developing the computational methods for structure prediction of protein-

DNA complexes is the comparison of predicted models to experimentally determined native 

structures. Accurate assessment of structural similarity is an important measure to evaluate and 

compare the performance of modeling methods. While generic criteria of evaluation have shown 

considerable success in the similarity assessment of monomeric proteins, special attention to the 

biologically relevant features is required in designing methods for complexes. For example, 

CAPRI based criteria of comparison use different distance cut-offs in protein-peptide complexes 

to reflect their compact interface as compared to protein-protein complexes. The existing methods 

of comparison are distance-based and do not consider the relevant energetic contribution of 

interactions. We developed a scoring function which combines the existing criteria of comparison 

to a novel hydrogen bond-based scoring term to compare the structures of protein-DNA 

complexes. We showed that assessing the similarity of complexes based on hydrogen bonds, which 

are critical to the function and binding specificity of protein-DNA complexes, results in marked 

improvements over existing methods. 
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4.2. Future directions: model quality assessment of protein-DNA complexes 

The ultimate goal is to develop an accurate protein-DNA complex model assessment by 

applying the knowledge gained by comparative analysis of hydrogen bonds towards development 

of new interface potentials for quality assessment of protein-DNA complex models. We performed 

preliminary analyses by comparing the performance of three previously developed interface 

potentials to select the best model against our hydrogen bond energy-based similarity assessment 

method. Two knowledge-based potentials, orientation potential and multibody potential, and one 

physics based potential, HADDOCK score were used. Multibody potential is a distance-based, 

residue level energy function which assesses the interactions between amino acids and interaction 

units of DNA. DNA tri-nucleotides, referred to as triplets by multibody potential are used as 

interaction units to calculate two body, three body and four body interactions. Short distance 

hydrogen bonds and van der Waals interactions are considered in multibody potential [235]. 

Orientation potential is a knowledge-based, residue level energy function previously developed by 

our lab to discriminate near-native models from decoys [236]. The interaction energy in this 

method is calculated through statistical thermodynamic calculations of distance-based contact 

energies obtained for all residue-base interactions. Each interaction is assessed based on its 

geometrical properties, distance and angle. Due to its orientation dependent nature, it implicitly 

captures hydrogen bonds. HADDOCK score is a physics-based function of weighted energy terms 

such as van der Waals, electrostatic, desolvation, buried surface area and restraint violation 

energies [230,237]. The scoring function has previously been used to distinguish between near-

native, acceptable and incorrect decoys [230,238]. Our analysis shows that no energy potential 

was able to select the model with the best hydrogen bond energy for more than 80% of targets in 

both docking and homology modeling dataset (Table 4.1). While both knowledge-based potentials 
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do not agree over the selection of top models in most cases (92% targets in docking dataset and 4 

out of 5 targets in homology models), the orientation potential performs slightly better (Table 4.1). 

However, implicitly including hydrogen bonds through orientation potential results in selection of 

only 12% models with better hydrogen bond energy. While this is an improvement over multibody 

potential (4% same as ComparePD in docking and 1 out of 5 in homology modeling), it is not 

sufficient for accurate model quality assessment. Even though ComparePD and HADDOCK score 

do not agree over selection of top model for any complexes, both identify at least common model 

ranked among top three best models in 48% cases (Table 4.2). 

Table 4.1A. Comparison of scoring methods for the top model in the docking dataset*  

Same\Different ComparePD Orientation 

potential 

Multibody 

potential 

HADDOCK 

score 

ComparePD  22 (88%) 24(96%) 25(100%) 

Orientation potential 12(48%)  23(92%) 25(100%) 

Multibody potential 1 (4%) 2(8%)  23(92%) 

HADDOCK score 0 (0%) 0(0%) 2(8%)  

 

Table 4.1B. Comparison of scoring methods for the top model in the homology modeling 

dataset* 

Same\Different ComparePD Orientation 

potential 

Multibody 

potential 

ComparePD  4 (80%) 5(100%) 

Orientation potential 1 (20%)  4(80%) 

Multibody potential 0 (0%) 1(20%)  

 

Table 4.2A. Comparison of scoring methods for the top three models in the docking dataset*  

Same\Different ComparePD Orientation 

potential 

Multibody 

potential 

HADDOCK 

score 
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ComparePD  8 (32%) 11(44%) 25(100%) 

Orientation potential 17(68%)  11(44%) 15(60%) 

Multibody potential 14 (56%) 14(56%)  14(56%) 

HADDOCK score 12(48%) 10(40%) 11(44%)  

 

Table 4.2B. Comparison of scoring methods for the top three models in the homology modeling 

dataset* 

Same\Different ComparePD Orientation 

potential 

Multibody 

potential 

ComparePD  0(0%) 4(80%) 

Orientation potential 5(100%)  3(60%) 

Multibody potential 1(20%) 2(40%)  

*  The lower half of the table presents similarities and the upper half shows differences between scores 

Figure 4.1 shows three cases where these energy functions were compared against our 

method. Overall, orientation potential performed better than both HADDOCK and multibody 

potential. For example, in 7mht, only orientation potential predicted the near-native model with 

better hydrogen bond energy distribution (Fig. 4.1B). In the quality assessment of homology 

models of homeodomain-DNA complex 9antB, orientation potential also performed better than 

multibody and HADDOCK score. Yet, it still does not identify the best model. The model with 

best hydrogen bond energy, as identified by our method, ComparePD, is not even in the top 3 

rankings by either of the energy function (Fig. 4.1A). The ideal candidate in terms of hydrogen 

bond energy should be model 1 predicted by using 4rduA as template with sequence identity of 

42%. It conserves 7 out of 8 native hydrogen bonds and also conserves the energy of 5 strong 

hydrogen bonds (Fig. 4.2). All of these are low energy, strong hydrogen bonds including: ARG55-

C406, ARG33-A404, ARG7-T518 and ASN53-A520. The two hydrogen bonds whose energy 

category changes in the model selected by ComparePD (GLN8-A519 and ARG55-C406) are high 
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energy, weaker hydrogen bonds. The energy of hydrogen bond between GLN8-A519 decreased in 

ComparePD selection whereas in ARG45-T521 it increases. This is also evident by the change in 

conformation of sidechains of the corresponding atoms. Sidechain conformations for hydrogen 

bonds with conserved energy categories in the model selected by ComparePD are similar to the 

near-native. The model selected by orientation potential is better than multibody potential in that 

it conserves 5 hydrogen bonds (ARG33-A404, ARG45-T521 and two hydrogen bonds in ASN53-

520) with a change in category of 3 conserved hydrogen bonds (ARG33-A404, ARG45-T521 and 

one hydrogen bond between ASN53-520). The model selected by multibody potential reproduced 

only two of these hydrogen bonds (ASN53-520) and also conserves the category of their energy. 

A comparison of scores in the only case where multibody identified the model with near-native 

hydrogen bond energy distribution is shown (Fig. 4.1C).  

Our analyses show that the existing methods to assess the model quality assessment of 

protein-DNA complexes do not capture the hydrogen bond energy framework of native complex. 

New methods are needed which explicitly incorporate the energy of hydrogen bonds to assess the 

quality of computationally predicted models. The knowledge gained in this study can be expanded 

towards the development of such functions. 
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Figure 4.1. Comparison plots of the models scored by ComparePD along with the corresponding 

orientation potential, multibody potential and HADDOCK score for (A) 9antB, (B) 7mht and (C) 

1ea4. The top three models selected by each method are highlighted and corresponding ranks are 

reported as (ComparePD, Orientation potential, multibody potential) for each complex. 
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Figure 4.2. Hydrogen bond comparison in different homology models of the homeodomain-DNA 

complex 9antB selected by ComparePD, orientation potential and multibody potential. 
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APPENDIX A: SUPPLEMENTARY TABLES 

Table S1. PDB ids in the protein homo/heterodimer library (PHDL) 

(A) PDB ids of the heterodimers in PHDL 

1AY7 1BDJ 1BH9 1BVN 1CXZ 1D0D 1D4T 1DJ7 1DOW 1DS6 1E44 1E96 1EUV 1F3V 1FM2 

1FXW 1GK9 1J2J 1JIW 1JQL 1KTP 1M2T 1MK2 1MTP 1MZW 1NME 1NPE 1OO0 1ORY 1PDK 

1QGE 1QTX 1R0R 1R8S 1SPP 1SVD 1T0P 1TA3 1TMQ 1U0S 1UGH 1V5I 1V74 1W98 1WMH 

1WQJ 1WRD 1WYW 1XG2 1XTG 1Y43 1Z0J 1Z3E 1Z5Y 2A5D 2A9K 2AQ2 2BCG 2BKR 2C1M 

2C7M 2D5R 2DVW 2EHB 2F4M 2FCW 2FHZ 2FTX 2GSK 2H7Z 2H9A 2HRK 2HTH 2IE4 2O3B 

2OOB 2OZN 2P45 2P8Q 2PA8 2PTT 2QWO 2R25 2UUY 2V3B 2V8S 2V9T 2VPB 2WBW 2WWX 

2WY8 2XJY 2XN6 2XPP 2YGG 2Z30 3A2F 3A8G 3AA7 3AON 3AQF 3B0C 3BH7 3BS5 3BY4 

3CF4 3CKI 3CNQ 3D3B 3D6N 3DAW 3DGP 3EGV 3F1P 3F75 3FJU 3FMO 3FPU 3FXE 3GJ3 

3GOV 3K1R 3KNB 3L51 3LQC 3MCB 3ME0 3MKR 3MXN 3N1M 3NCE 3NVN 3NY7 3O2P 3O3O 

3ONA 3OQ3 3P71 3P73 3PLV 3PNL 3PT8 3QDR 3QHY 3QQ8 3SDE 3SHG 3TBI 3TJ5 3UB5 

3V61 3VF0 3VRD 3VYR 3VZ9 3WDG 3X37 3YGS 3ZG9 4APX 4BVX 4C2A 4C4P 4CMM 4CRW 

4CSR 4DBG 4DHI 4DRI 4F7G 4FBJ 4G01 4G6T 4GN4 4H5S 4H6J 4HST 4HT3 4IU3 4IUM 

4J38 4JE3 4JS0 4K12 4K5A 4KAX 4L2I 4LJO 4LLD 4LZX 4M0W 4MRT 4NBX 4NTQ 4NUT 

4OB0 4PAS 4PZ5 4QJF 4QLP 4QO1 4R1D 4RCA 4RHZ 4RLJ 4U9H 4UAF 4UHZ 4UN2 4UQZ 

4UYQ 4UZZ 4W8P 4WKS 4X86 4X8K 4XAX 4XYD 4YH8 4YI0 4YYP 4ZGM 4ZHY 4ZQU 5AQV 

5B64 5B78 5BY8 5BZ0 5C50 5CEC 5CHL 5D6J 5DYN 5EU0 5EUI 5F22 5FOY 5G1X 5GNA 

5GXW 5GZT 5H3J 5HE9 5HKQ 5HKY 5I4H 5INB 5IVA 5JCA 5JP1 5JW9 5KYC 5L0R 5L0V 

5L3D 5L9Z 5LSI 5LXR 5M0Y 5M2O 5M72 5MAW 5ML9 5MS2 5MU7 5NCW 5NRM 5O33 5OOV 

5OW0 5OXZ 5OYL 5SVH 5T51 5T86 5TUU 5TVQ 5TZP 5UIW 5UN7 5UNI 5UUK 5V7P 5VGB 

5VKO 5VMO 5WUJ 5WXK 5XA5 5XEC 5XLU 5Y27 5Y38 5YCA 5YR0 5YWR 5Z51 5ZNG 5ZWL 

5ZZA 6APP 6AU8 6BN1 6BSC 6BW9 6DLM 6DRE 6DXZ 6EH4 6EM7 6ES1 6F2G 6F6R 6FDK 

6FFA 6FUD 6GHO 6GR8 6H02 6H9U 6HM3 6HUL 6IUA 6J4P 6JLE 6JXH 6K06 6K3B 6KGC 

6KHS 6KMJ 6KXD 6L4P 6L8G 6LBX 6LKI 6LPH 6M0J 6MBB 6MGN 6MIB 6MS4 6NE2 6NVX 

6ODD 6OP8 6OQ7 6OVM 6OX6 6Q00 6QBA 6QUP 6R6M 6RCX 6RM9 6RTW 6S07 6S3F 6S8Q 

6SWT 6U3B 6U54 6UUI 6V7M 6VE5 6VJJ 6W0V 6W9S 6WCW 6WG4 6WH1 6WJC 6WUD 6XRU 

6XZU 6YX5 6YZ5 6ZXW 7A48 7BQV 7BZK 7C96 7CE4 7CN7 7CQ3 7EDP 7JTU 7MC5  

 

 

(B) PDB ids of the homodimers in PHDL 

1A8U 1AA7 1AOC 1B2P 1B43 1B5E 1B6Z 1BD9 1BDY 1BO4 1BYF 1C77 1C8U 1CI9 1CKM 

1CKU 1CQX 1D0C 1D0Q 1D1G 1D2C 1D2O 1D7F 1D9C 1DEB 1DJ0 1DL5 1DOK 1DPG 1DQE 

1DQP 1DQZ 1DU5 1DYS 1E0B 1E19 1E5L 1E7L 1E8U 1EAJ 1EBF 1EE8 1EEJ 1EF0 1EJF 

1ELU 1EVX 1EXT 1EYQ 1EZG 1F08 1F0K 1F46 1F5V 1F86 1FBQ 1FBT 1FLM 1FN9 1G29 

1G64 1G8E 1G8L 1G8M 1GDE 1GE7 1GQI 1GT1 1GU7 1GVJ 1GXJ 1GYO 1GYX 1H18 1HKQ 

1HQS 1HRU 1HYO 1HZ5 1I07 1I0R 1I4S 1I4U 1I6W 1I78 1I7N 1IAZ 1IG0 1IGU 1II7 

1IPS 1IQ8 1IRQ 1ITU 1ITV 1IUJ 1IX2 1IX9 1IYB 1IZY 1J0H 1J3M 1J49 1JAD 1JAY 

1JK6 1JLY 1JNP 1JR8 1JYA 1JZT 1K3Y 1K4Z 1K66 1KAE 1KDG 1KFI 1KJN 1KKO 1KNQ 

1KPT 1KQL 1KQP 1KTJ 1KV0 1KZQ 1LGQ 1LJM 1LN0 1LQ9 1LQA 1M2D 1M4J 1M76 1MBY 

1MK4 1MKF 1MKK 1MKZ 1MO9 1MXR 1MY7 1MZG 1N1E 1N2Z 1NBC 1ND4 1NKI 1NNW 1NO5 

1NS5 1NSZ 1NU4 1NV7 1NWP 1NWW 1NXM 1NXU 1O5X 1O63 1O6A 1OC2 1OC9 1OCK 1OFZ 

1OH0 1OI6 1OKI 1ON2 1OOE 1OR4 1ORD 1ORU 1OSY 1OTK 1OVN 1OX8 1P1C 1P4O 1P5T 

1P65 1P6O 1PC6 1PIW 1PIX 1PKV 1PL5 1PPV 1PSR 1Q6O 1QAH 1QC5 1QFH 1QH5 1QI9 

1QKS 1QL0 1QLW 1QMH 1QO8 1QQ5 1QSD 1QUP 1QVE 1QVZ 1QXR 1R11 1R12 1R1D 1R61 

1R7A 1RDO 1REG 1RFY 1RKT 1RKU 1RW0 1S0P 1S4K 1S9R 1SBY 1SD4 1SEI 1SFN 1SGM 

1SJ1 1SMO 1SNN 1SQS 1SU2 1SXH 1SXR 1SZQ 1T06 1T1V 1T3C 1T6S 1T6T 1T7S 1T92 

1TBX 1TE2 1TE5 1TEJ 1TJ7 1TLJ 1TU1 1TV8 1TVN 1TXG 1U07 1U5U 1U6R 1U6Z 1UCR 

1UDV 1UIX 1UKK 1USC 1USO 1UWK 1UZ3 1V4E 1V58 1V5V 1V5X 1V6P 1V6Z 1V7L 1V7O 

1V8H 1VB5 1VC4 1VH5 1VHD 1VHQ 1VHZ 1VJH 1VJQ 1VL7 1VSC 1W5R 1W9C 1WKV 1WLG 

1WMX 1WPN 1WR8 1WRA 1WTJ 1WWA 1WWP 1WWZ 1WY2 1WY5 1WZ3 1WZD 1X2I 1X7D 1X9I 

1X9Z 1XEQ 1XGS 1XHK 1XJ4 1XNF 1XNG 1XRK 1XRU 1XSV 1XTA 1XVI 1XVS 1Y0H 1Y0U 

1Y2O 1Y7M 1Y7R 1Y89 1Y9B 1Y9W 1YDY 1YGA 1YLM 1YLQ 1YLR 1YLX 1YOC 1YRB 1Z41 

1Z4E 1Z5B 1ZBO 1ZBR 1ZC6 1ZK8 1ZKI 1ZO2 1ZQ9 1ZUO 1ZV1 1ZVF 1ZZG 2A0U 2A2J 

2A4N 2A9U 2AIB 2AKZ 2ANX 2AQ6 2AQP 2AQX 2ARC 2ASK 2AUW 2AXW 2AYT 2B4H 2B6C 

2B9D 2BDR 2BJI 2C0D 2C1L 2C2I 2C49 2C5A 2CAR 2CB5 2CC0 2CDU 2CH7 2CMG 2CO3 
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2CO5 2CTZ 2CU6 2CUN 2CVI 2CWK 2CXN 2D4G 2D73 2D7V 2D8D 2DBS 2DC0 2DC1 2DC3 

2DC4 2DCT 2DFJ 2DJ5 2DKJ 2DLB 2DM9 2DOU 2DQL 2DR1 2DS5 2DSJ 2DSK 2DST 2DTC 

2DXQ 2E2N 2E2X 2E5F 2E5Y 2E85 2EBE 2ECS 2ECU 2EG4 2EGD 2EGV 2EIX 2EJN 2EK0 

2ERB 2ESR 2ETX 2EV1 2F02 2F07 2F1F 2F22 2F2E 2F48 2F5G 2F62 2F96 2F9H 2FA1 

2FAE 2FBN 2FCA 2FFG 2FG0 2FHQ 2FIU 2FJR 2FM6 2FNU 2FP1 2FRE 2FSW 2FTR 2FUR 

2FXV 2FZF 2FZT 2G3W 2G84 2GA1 2GAN 2GAX 2GBO 2GEC 2GEX 2GFF 2GIY 2GJ3 2GJA 

2GKM 2GLZ 2GOM 2GSV 2GU9 2GUD 2GV8 2H1T 2H28 2H2N 2H2R 2H8G 2H98 2HA8 2HBV 

2HDW 2HHJ 2HIN 2HIQ 2HO1 2HQ7 2HQY 2HS1 2HXR 2HZG 2I2O 2I5E 2I5G 2I7R 2I8D 

2I9U 2IAB 2IB0 2IG3 2IGI 2IPR 2IUT 2IYC 2J05 2J85 2J8W 2J98 2JD3 2JDJ 2JHF 

2NLV 2NNH 2NOG 2NQL 2NQT 2NS9 2NTT 2NX9 2NXV 2NYS 2NZ5 2NZ7 2O4C 2O6P 2O7M 

2OB3 2OD0 2OD4 2ODA 2OEM 2OFC 2OGB 2OGI 2OHC 2OKU 2OKX 2OM6 2OMD 2OND 2ONF 

2OPI 2OPL 2OQB 2OR2 2ORI 2OTA 2OU3 2OU5 2OXL 2OY9 2P08 2P0M 2P12 2P1A 2P1J 

2P23 2P2S 2P3Y 2P4P 2P4R 2P62 2P64 2P8U 2P97 2P9H 2PA7 2PEB 2PFW 2PH0 2PIH 

2PJS 2PL7 2PO3 2PR8 2PRV 2PS1 2PS5 2PUZ 2Q03 2Q0X 2Q24 2Q3V 2Q5C 2Q6Q 2Q7A 

2Q8O 2Q8V 2QBU 2QE8 2QFR 2QGY 2QH9 2QHQ 2QIW 2QJD 2QJF 2QL8 2QLX 2QMX 2QND 

2QQZ 2QRR 2QSI 2QU7 2QV0 2QVH 2QXY 2QYC 2QZZ 2R15 2R1F 2R1I 2R5O 2R74 2R8Q 

2R8W 2RAS 2RB7 2RBB 2RBG 2RC8 2RCZ 2RDC 2RDE 2RGM 2RK0 2UUZ 2UW1 2V27 2V6K 

2V9B 2VD8 2VGX 2VH3 2VKJ 2VOK 2VQ3 2VSW 2VVW 2W1T 2W1V 2W2K 2W31 2W3G 2W43 

2W6A 2W8X 2WCR 2WCU 2WD6 2WK4 2WLV 2WMM 2WNS 2WNW 2WU9 2WUF 2WVF 2WW4 2WZV 

2X2W 2X65 2X7X 2XDG 2XFN 2XFV 2XGG 2XHF 2XJ3 2XMJ 2XOL 2XR4 2XT2 2XUA 2XW7 

2XWL 2XZ8 2XZ9 2Y27 2Y43 2YA8 2YEQ 2YFA 2YIO 2YMA 2YMQ 2YMY 2YR2 2YVE 2YVS 

2YW2 2YWL 2YWW 2YXH 2YYB 2YYV 2YYY 2YZI 2Z0U 2Z5E 2Z6R 2Z73 2Z76 2Z8R 2ZB9 

2ZDP 2ZEW 2ZGL 2ZGY 2ZO9 2ZOG 2ZVX 2ZVY 2ZW2 2ZW5 2ZX2 2ZYQ 2ZZV 3A1D 3A3D 

3A8R 3AAB 3ABH 3AIA 3AJ6 3ALY 3AMI 3AOW 3ATJ 3B0F 3B42 3B4U 3B73 3B8X 3BA3 

3BBD 3BBZ 3BCW 3BED 3BGA 3BHQ 3BJE 3BKX 3BL4 3BMZ 3BNK 3BOS 3BRC 3BRU 3BS9 

3BWS 3BYP 3BZY 3C1Q 3C3Y 3C8C 3CCD 3CGU 3CJL 3CJP 3CKA 3CNK 3CP7 3CQR 3CRN 

3CRY 3CSX 3CT6 3CTP 3CU2 3CW9 3CZ1 3CZ6 3CZZ 3D0F 3D34 3D3I 3D5P 3D7A 3DA5 

3DFU 3DMC 3DME 3DN7 3DNF 3DP7 3DS2 3DSB 3DUP 3DUW 3DXO 3E1W 3E2C 3E2D 3E48 

3E4V 3E7Q 3E8O 3E96 3EDE 3EDN 3EFY 3EGO 3EIK 3EKG 3ENT 3EO6 3EOF 3EOQ 3EPY 

3EQZ 3ER7 3ERX 3ES4 3EUU 3EVI 3EWW 3EY8 3EZH 3F08 3F1L 3F3S 3F5H 3F6G 3F6O 

3F6T 3F7E 3F84 3F9S 3F9T 3F9U 3FA5 3FCH 3FD4 3FD7 3FF9 3FGV 3FGY 3FH3 3FHU 

3FIL 3FJ4 3FK9 3FKR 3FLD 3FOU 3FPF 3FPK 3FQM 3FR7 3FRQ 3FV6 3FVV 3FX7 3FYB 

3G0T 3G16 3G1P 3G3Q 3G3S 3G3Z 3G46 3G4E 3G67 3G8K 3G8R 3GAE 3GAZ 3GB3 3GBY 

3GDW 3GE6 3GFA 3GKX 3GLV 3GMG 3GMX 3GO6 3GOC 3GPV 3GR3 3GRD 3GRN 3GRO 3GU3 

3GVE 3GW4 3GWK 3GWL 3GWN 3GWO 3GWR 3GZR 3H2B 3H3N 3H6R 3H8L 3H8U 3HA2 3HCN 

3HDO 3HEB 3HG9 3HIM 3HIN 3HJ9 3HJG 3HL4 3HLU 3HLX 3HM4 3HMT 3HN0 3HNW 3HO7 

3HOA 3HPE 3HPF 3HR0 3HS3 3HU5 3HUP 3HV2 3I0Z 3I2Z 3I3W 3I5Q 3I9F 3IA1 3IAV 

3IBS 3IBW 3ICY 3IGR 3IJM 3IKK 3ILW 3IN6 3IPO 3ITF 3IUO 3IUP 3IUW 3IX1 3IX3 

3IX7 3JSL 3JU7 3JX9 3JXO 3K0Z 3K2N 3K67 3K86 3K8R 3K9U 3K9V 3KBY 3KD4 3KD6 

3KE7 3KEA 3KF3 3KGZ 3KHF 3KIZ 3KKB 3KKZ 3KMA 3KPH 3KUV 3KUZ 3KWR 3KWS 3KZP 

3KZT 3L0Q 3L32 3L46 3L5Z 3L6I 3L6U 3LAG 3LAS 3LF5 3LF6 3LFI 3LGD 3LHN 3LHR 

3LIA 3LID 3LJD 3LM2 3LMB 3LQ6 3LQS 3LR2 3LRT 3LS9 3LV4 3LVC 3LYD 3LYN 3LYY 

3LZX 3LZZ 3M33 3M8J 3MAB 3MAD 3MBK 3MC1 3MCW 3MCZ 3MEX 3MGD 3MGG 3MGJ 3MGK 

3MIL 3MIZ 3MJQ 3MMH 3MOZ 3MQM 3MQQ 3MTR 3MUJ 3MUQ 3MUX 3MVE 3MVG 3MWJ 3MZ2 

3N08 3N10 3N1E 3N8B 3NAU 3NAW 3NDO 3NEK 3NI0 3NI6 3NJ2 3NO7 3NOI 3NPF 3NPI 

3NPP 3NQB 3NQW 3NRL 3NS6 3NTL 3NTV 3NUF 3NVA 3NX3 3NYD 3O0L 3O4W 3O5Y 3O6V 

3O7O 3OAJ 3OCP 3OFG 3OHE 3OMT 3OMY 3ONX 3OOO 3OPC 3OQ2 3OQP 3OT2 3OTN 3OVP 

3OY2 3OZI 3OZY 3P1X 3P2C 3P6B 3P6K 3P7J 3P8T 3P9V 3PA8 3PC7 3PDY 3PET 3PFO 

3PIJ 3PJT 3PJV 3PJY 3PMC 3PMR 3PN3 3PPB 3PPL 3PPM 3PSM 3PU9 3PUB 3PUH 3PX2 

3Q18 3Q20 3Q31 3Q4N 3QBM 3QGU 3QHA 3QKC 3QTA 3QWU 3QYF 3R3P 3R41 3R5G 3R89 

3RA5 3RAU 3RBY 3RKC 3ROT 3RQ9 3RQB 3RRI 3RRS 3S06 3S18 3S84 3SBU 3SG8 3SK2 

3SLZ 3SON 3SY6 3T2Z 3T6S 3T7Y 3T8K 3TAK 3TB6 3TC9 3TDQ 3TE8 3TFJ 3THF 3TJ8 

3TP9 3TRI 3TY2 3TYY 3U1Y 3U4Z 3U6G 3U7R 3U96 3UB6 3UBU 3UEJ 3UEP 3UF6 3UFE 

3UHA 3UMO 3UMZ 3UPL 3URY 3USS 3UT4 3UUN 3UV0 3UV1 3UX3 3V1E 3V4K 3V4M 3V67 

3V6G 3VAY 3VB8 3VCC 3VEJ 3VK5 3VM9 3VRC 3VTX 3VW9 3VZX 3W08 3W0E 3W1O 3W36 

3W77 3WAE 3WGT 3WHA 3WJE 3WRB 3WSC 3WV8 3WX7 3X3Y 3ZFI 3ZIG 3ZIT 3ZJL 3ZRP 

3ZRX 3ZTB 3ZTH 3ZX4 3ZYL 3ZYY 4A7U 4AB5 4AE4 4AG0 4AG7 4AML 4AUU 4AVR 4AXO 

4AYN 4B0N 4B0Z 4B54 4BE3 4BE9 4BF5 4BG7 4BG8 4BI3 4BK0 4BLG 4BND 4BOL 4BRC 

4BWO 4BWV 4BX2 4C0R 4C86 4CHI 4CI8 4CJN 4CL3 4COB 4CWC 4D3D 4D3Q 4DCZ 4DJN 

4DMG 4DNN 4DNX 4DO2 4DT5 4DZZ 4E0A 4E0U 4EBG 4EF0 4EGU 4EHS 4EHU 4EI0 4EIB 

4EIR 4EJR 4EP4 4EPU 4EQ7 4EQQ 4EQS 4ESW 4ETK 4EU9 4EVX 4EW5 4EZG 4FBM 4FDI 

4FKB 4FKZ 4FRY 4FU3 4FVF 4FYP 4FZL 4G06 4G3V 4G5A 4GEK 4GHO 4GI2 4GIT 4GKM 

4GOF 4GP7 4GR6 4GXO 4GYT 4H5B 4H7L 4H8A 4HAH 4HBE 4HBQ 4HCE 4HCF 4HEH 4HEI 

4HEQ 4HFQ 4HFS 4HHV 4HI7 4HIA 4HL2 4HMS 4HU7 4HW5 4HWV 4HYL 4I1Q 4I4K 4I4O 

4I6R 4I6Y 4IBG 4IC3 4ICS 4ID0 4IGU 4IHU 4IJ5 4IJ7 4IJZ 4IKB 4IP5 4IQD 4IQI 

4ITB 4IV9 4IX3 4IXN 4IY4 4IYJ 4J0N 4J3Y 4J42 4J5R 4J6C 4J7R 4J8C 4J8E 4J8Z 

4JAW 4JEM 4JG9 4JGP 4JLE 4JN9 4JOQ 4JTM 4JXR 4JYS 4K0U 4K26 4K28 4K6H 4KEM 

4KR5 4KTP 4KTW 4KV2 4L1J 4L3K 4L3R 4L57 4L7A 4L9C 4LAN 4LIR 4LJ3 4LJI 4LJL 

4LM4 4LMY 4LS9 4LSM 4LTB 4LXQ 4M0Q 4M0S 4M73 4M7Y 4MAC 4MAE 4MAK 4MAM 4MDU 

4MEB 4MGE 4MIS 4MJD 4MN7 4MPM 4MT8 4MUV 4MYP 4N04 4N06 4N0R 4N0V 4N6J 4N7W 

4N8O 4NAD 4NC7 4NDS 4NEX 4NK2 4NLH 4NOG 4NPR 4NQ8 4NQF 4NRN 4NSV 4NTC 4NU3 



 95 

4O6I 4O6Y 4O7J 4O9K 4OH9 4OHJ 4OK4 4OKE 4OKI 4OM8 4OO4 4OPM 4OQQ 4OS3 4OTN 

4OYU 4OZ0 4P33 4P5N 4P7C 4P93 4P94 4PAG 4PE0 4PHJ 4PIC 4PRS 4PUH 4PVC 4PXE 

4PYQ 4PZK 4Q04 4Q1V 4Q25 4Q51 4Q69 4Q6Z 4Q7O 4Q9A 4Q9V 4QBN 4QE0 4QGB 4QGE 

4QGX 4QHJ 4QI3 4QJY 4QNC 4QR8 4QUS 4R16 4R27 4R3N 4R60 4R8D 4R8O 4R8Z 4R9X 

4RAY 4RBR 4RDZ 4RE5 4RGB 4RGD 4RGP 4RLZ 4RO3 4RP3 4RPT 4RRQ 4RSW 4RT5 4RUN 

4RVS 4RZ3 4RZB 4S1H 4S23 4S26 4S3I 4S3P 4TLJ 4TMT 4TN5 4TPV 4TQJ 4TR6 4TRH 

4TRT 4TSD 4TT0 4TTY 4TVI 4TWL 4TX5 4U13 4U5G 4U9N 4UAB 4UAI 4UC2 4UEJ 4UG1 

4UIQ 4UNU 4UOP 4UP3 4UR6 4USK 4UTU 4UU3 4UUL 4UX7 4UXU 4UZ8 4V15 4V17 4V29 

4W7Y 4W9R 4WBP 4WF5 4WH5 4WJT 4WPM 4WWF 4WX0 4WZN 4X08 4X3L 4X51 4X6X 4X8Y 

4XFW 4XIN 4XO6 4XQ4 4XQC 4XVV 4XWT 4XZZ 4Y1R 4Y7D 4YEA 4YEP 4YMG 4YNX 4YPO 

4YSL 4YT2 4YTD 4YTO 4YX1 4YY5 4YZG 4YZZ 4Z24 4Z27 4Z39 4Z4A 4ZBD 4ZBW 4ZCE 

4ZDS 4ZFV 4ZKY 4ZO2 4ZSI 4ZUR 4ZV5 4ZVA 4ZVC 5A3V 5A48 5A9D 5ACS 5AIF 5AL7 

5AMT 5AQ0 5AVN 5AWI 5AXG 5AYV 5AZW 5B08 5B0H 5B0P 5B1Q 5B4N 5B5I 5B7G 5BIR 

5BJX 5BNC 5BR4 5BTU 5BU6 5BWI 5C04 5C1F 5C40 5C5Z 5C7Q 5C8Z 5CES 5CL2 5CQG 

5CR4 5CRB 5CRH 5CUO 5CX8 5CXO 5CYJ 5D1P 5D1R 5D1V 5D3A 5DCL 5DY1 5E2C 5ECC 

5EDX 5EIU 5EK5 5EQ2 5ER9 5EUV 5F29 5F2K 5F46 5F5N 5F6R 5FAV 5FCN 5FFP 5FFQ 

5FI3 5FID 5FIS 5FLH 5FVJ 5FXD 5FZP 5G4I 5GGY 5GPK 5GSM 5GT5 5GUK 5GVY 5GX8 

5GXE 5GXX 5GY7 5H1N 5H34 5H3Z 5H78 5HB6 5HCB 5HDM 5HEE 5HHJ 5HI8 5HIF 5HJL 

5HOP 5HRA 5HS7 5HTL 5HWV 5HX0 5I0Y 5I5M 5I90 5I96 5IDB 5IN1 5IOJ 5IPY 5IRB 

5IT3 5ITJ 5IW9 5IXV 5IZ3 5J0A 5J41 5J4I 5J7M 5J90 5JAZ 5JBR 5JE6 5JEL 5JHX 

5JIP 5JKJ 5JNP 5JNU 5JSI 5JTD 5JWC 5K3X 5K4W 5KAY 5KEF 5KHD 5KO4 5KX4 5L0L 

5L73 5LLJ 5LTL 5LVS 5LWK 5LZK 5M7C 5M97 5M99 5MOZ 5MQ8 5MUY 5MWX 5N6X 5NCK 

5NCR 5NEG 5NL6 5NLZ 5NO5 5NZO 5O10 5O2Z 5OI7 5OLY 5OO7 5ORG 5OVY 5SY4 5T3E 

5T3U 5TD6 5TFP 5TJJ 5TO5 5TTA 5TXC 5U35 5U4H 5U5N 5U85 5UCT 5UE1 5UE7 5UEJ 

5UF5 5UFN 5UH7 5UI9 5UJD 5UKV 5UQS 5UUO 5UZX 5V01 5V4A 5V4P 5V4R 5V5U 5V6I 

5VAZ 5VDN 5VHT 5VJ4 5VM2 5VSJ 5VT2 5VX1 5W4Z 5W8Q 5WEC 5WFX 5WHX 5WI2 5WPP 

5WUT 5WWD 5X03 5X56 5X9I 5XAQ 5XGT 5XKT 5XNA 5XNE 5XOM 5XP0 5XPV 5XSP 5XUN 

5XVJ 5XXA 5Y78 5Y8L 5Y9Q 5Y9Z 5YA6 5YAD 5YAT 5YDD 5YET 5YGE 5YGH 5YHR 5YJC 

5YKR 5YKZ 5YN4 5YNX 5YRH 5YZ1 5Z11 5Z16 5Z28 5Z2G 5Z2H 5Z2V 5Z49 5Z50 5Z8O 

5ZFK 5ZI1 5ZI2 5ZKT 5ZQJ 5ZUM 5ZVV 5ZXN 6A51 6A55 6A5F 6A6F 6A71 6A80 6AE9 

6AEF 6AEP 6ALL 6AMG 6AQE 6AR4 6AT3 6AWL 6AWR 6B7C 6B9F 6BHY 6BIE 6BND 6BSU 

6BSY 6C0G 6C3C 6C5B 6C6N 6C8R 6CDB 6CKK 6CMK 6COF 6CPB 6CPD 6CQP 6CS9 6CW0 

6CWW 6D2W 6D3V 6D41 6DAO 6DB1 6DBP 6DEB 6DGK 6DGM 6DJC 6DKK 6DQP 6DT3 6DVR 

6E28 6EDQ 6EID 6EJT 6EL2 6ENI 6EP6 6ES9 6EW7 6EWM 6EY5 6F1J 6F43 6F5C 6FDC 

6FF2 6FHG 6FIY 6FP5 6FU3 6G6U 6G96 6GDJ 6GF6 6GFB 6GHU 6GU1 6GYG 6GZA 6H1W 

6H31 6H59 6H6O 6H86 6H8F 6HAT 6HAZ 6HBV 6HIU 6HJO 6HK8 6HNM 6HPQ 6HQ2 6HQZ 

6HTJ 6HZY 6I1A 6I5B 6I6S 6IAU 6IFQ 6ILS 6IME 6IOW 6IPT 6IRP 6J1O 6J25 6J3E 

6J4K 6J5X 6J66 6J6A 6J6L 6J8L 6J94 6JDH 6JHV 6JIE 6JNJ 6JQW 6JSX 6K2F 6K2Y 

6K62 6K7C 6K8V 6KEW 6KFM 6KGJ 6KHL 6KI2 6KLK 6KNL 6L2U 6L3Q 6L5H 6L6G 6L85 

6LAC 6LCQ 6LEB 6LF1 6LGI 6LH6 6LIY 6LPN 6LZH 6M2O 6M31 6M4B 6M9G 6MB8 6MRV 

6MTW 6MX1 6MXV 6N7O 6N91 6N9Q 6NAL 6NDI 6NIM 6NJC 6NK3 6NL2 6NNH 6NNR 6NNW 

6NP6 6NQY 6NRX 6O0B 6O14 6O5K 6O6Y 6O8N 6OH8 6OIB 6OJF 6OMP 6ON4 6OVP 6OZU 

6P1E 6P2I 6P58 6P73 6PCE 6PNR 6PT4 6PT8 6Q2C 6QJ6 6QLA 6QSI 6QUW 6QWO 6R5J 

6R6U 6RCH 6RIV 6RJB 6RK0 6RK1 6RS4 6RWD 6RYK 6S2R 6S33 6S6F 6S7X 6S95 6SAN 

6SCB 6SCQ 6SEK 6SF4 6SFH 6SI6 6SIZ 6SJ8 6SRB 6SSG 6SU3 6SW4 6T7O 6TCB 6TEK 

6TJ8 6TJR 6TL7 6TVV 6TY0 6TY2 6TYK 6U2U 6U60 6UBL 6UBO 6UD6 6UH8 6UN8 6URE 

6USS 6UXU 6V1B 6V3Z 6V42 6VD8 6VH6 6VJC 6VJU 6VPE 6VTV 6VUD 6VZ0 6W40 6W6X 

6WE8 6WJA 6WN2 6WU7 6WXW 6XB6 6XNO 6XPH 6Y04 6Y1W 6Y1Y 6Y7F 6YF6 6YIZ 6YJ9 

6YKB 6Z68 6ZA0 6ZII 6ZK8 6ZMB 6ZN7 6ZT4 7A1F 7A5C 7AED 7AG6 7AO3 7APP 7ASV 

7B5J 7B67 7BB3 7BIO 7BJN 7BM8 7BR1 7BRA 7BU2 7C02 7C23 7C38 7C4A 7C5Y 7C64 

7C8G 7C8P 7CBI 7CCB 7CDV 7CIK 7CJ3 7CJ7 7CKH 7CMA 7CSV 7CWQ 7EV1 7JJV 7JKV 

7JW2 7KB9 7KL8 7KPZ 7KQA 7KSB 7KWD 7LZG 7MBK 7NBI 7NET 7NUU 7O39 12AS  

 

Table S2. p-values of chi-square tests between hydrogen bond types from FIRST with an energy 

cutoff of -0.1 kcal/mol.   

 
 Intrachain Interface Interface/Intrachain 

Dataset1/Data

set2 

p-values  p-values  Dataset p-values  

PPnrall, 

PDnrall 

0.858 0.0047 PDnrall 6.941e-10 
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PTnrall, 

PDnrall 

0.845 0.0043 PPnrall 3.831e-10 

PTnrall, 

PPnrall 

0.963 0.0137 PTnrall 3.369e-06 

 

Table S3. p-values of chi squared tests comparing proportions of different types of HB energy 

categories based on Table 2. 

Intrachain Interface 

Dataset1/Dataset2 p-values Dataset1/Dataset2 p-values 

BB-BB: PDnrall, PPnrall 0.924 

*BB-BB: PDnrall, 

PPnrall 

2.2e-16 

BB-BB: PDnrall, PTnrall 0.986 

*BB-BB: PDnrall, 

PTnrall 

2.2e-16 

BB-BB: PPnrall, PTnrall 0.991 

*BB-BB: PPnrall, 

PTnrall 

0.703 

SC-SC: PDnrall, PPnrall 0.948 SC-SC: PDnrall, PPnrall 4.031e-06 

SC-SC: PDnrall, PTnrall 0.989 SC-SC: PDnrall, PTnrall 1.036e-10 

SC-SC: PPnrall, PTnrall 0.994 SC-SC: PPnrall, PTnrall 0.399 

Mixed: PDnrall, PPnrall 0.741 Mixed: PDnrall, PPnrall 2.2e-16 

Mixed: PDnrall, PTnrall 0.987 Mixed: PDnrall, PTnrall 2.2e-16 

Mixed: PPnrall, PTnrall 0.839 Mixed: PPnrall, PTnrall 0.816 

 

* Since the numbers of HBs of the interface BB-BB types for category II and III are small, the chi-square statistical analysis was 

performed by combining the numbers in category II and III. 

 

Table S4. HB energy (HBE) categories based on different energy ranges 

Category HBE range (kcal/mol) 

I -0.7  HBE < -0.1 

II -1.3  HBE < -0.7 

III -2.0  HBE < -1.3 

IV HBE < -2.0 

 

Table S5. p-values of chi-square tests between hydrogen bond energy categories (based on the 

discretization in Table S4) at interface and within intrachain. 
 

Dataset1/Dataset2 p-values 

(intrachain) 

p-values 

(interface) 

Dataset p-values 

(interface/intrachain) 

PPnrall, PDnrall 0.959 0.007 PDnrall 0.005 
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PTnrall, PDnrall 0.999 0.009 PPnrall 0.944 

PTnrall, PPnrall 0.980 0.999 PTnrall 0.99 

 

Table S6. p-values of chi squared tests comparing proportions of different types of HB energy 

categories based on the discretization in Table S4. 

Intrachain Interface 

Dataset1/Dataset2 p-values Dataset1/Dataset2 p-values 

BB-BB: PDnrall, PPnrall 0.859 

*BB-BB: PDnrall, 

PPnrall 

2.2e-16 

BB-BB: PDnrall, PTnrall 0.986 

BB-BB: PDnrall, 

PTnrall 

2.2e-16 

BB-BB: PPnrall, PTnrall 0.973 

*BB-BB: PPnrall, 

PTnrall 

0.726 

SC-SC: PDnrall, PPnrall 0.926 SC-SC: PDnrall, PPnrall 6.935e-15 

SC-SC: PDnrall, PTnrall 0.948 SC-SC: PDnrall, PTnrall 4.83e-12 

SC-SC: PPnrall, PTnrall 0.946 SC-SC: PPnrall, PTnrall 0.968 

Mixed: PDnrall, PPnrall 0.926 Mixed: PDnrall, PPnrall 9.802e-05 

Mixed: PDnrall, PTnrall 0.948 Mixed: PDnrall, PTnrall 0.009 

Mixed: PPnrall, PTnrall 0.946 Mixed: PPnrall, PTnrall 0.756 

 

* Since the numbers of HBs of the interface BB-BB types for category II and III are small, the chi-square statistical analysis was 

performed by combining the numbers in category II and III. 

 

Supplementary Table S7. Mean and median of interface surface area and backbone atoms at 

interface 

Statistic\Dataset PDnrall PPnrall RDPP 

mean(interface surface area) 1404.46 2926.04  

median(interface surface area) 798.87 1703.67  

mean(number of backbone atoms at interface) 35.021  722.139 

median(number of backbone atoms at interface) 32  560 
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APPENDIX B: SUPPLEMENTARY FIGURES 

 

Figure S1. Comparison of interfacial hydrogen bonds based on HBPLUS with default parameters: 

(A) the number of total hydrogen bonds (HBall); (B) the number of SC-SC or SC-base hydrogen 

bonds (HBSP); (C) the ratio HBall to interfacial surface area (iSA); and (D) the ratio of HBSP to 

iSA. 

*** = p-value ≤ 0.001;  ** = p-value ≤ 0.01 
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Figure S2. Comparison of interfacial hydrogen bonds based on FIRST with an energy cutoff of -

0.1 kcal/mol: (A) the number of total hydrogen bonds (HBall); (B) the number of SC-SC or SC-

Base hydrogen bonds (HBSP); (C) the ratio of HBall to interfacial surface area (iSA); and (D) the 

ratio of HBSP to iSA.  

*** = p-value ≤ 0.001, ** = p-value ≤ 0.01 

 

Figure S3. Comparison of the distributions of hydrogen bond types with HBPLUS: backbone-

backbone (BB-BB), sidechain-sidechain (SC-SC) and mixed (BB-SC and SC-BB) at (A) 

intrachain and (B) interface of PP, PT and PD complexes. (See p-values in Table 3) 
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Figure S4. Comparisons of the distribution of different types of hydrogen bonds, backbone-

backbone (BB-BB), sidechain-sidechain (SC-SC) and Mixed (BB-SC and SC-BB) for (A) 

intrachain within proteins and (B) at interface of PP, PT and PD complexes. The hydrogen bonds 

are annotated from the FIRST program with an energy cutoff of -0.1 kcal/mol. (See p-values in 

Table S2) 
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Figure S5. Comparison of the percentages of HB types: backbone-backbone (BB-BB), sidechain-

sidechain (SC-SC) and mixed (BB-SC and SC-BB) in intrachain and interface of homodimers, 

heterodimers, highly specific and multi-specific protein-DNA complexes. (A)The hydrogen bonds 

are annotated by FIRST with an energy cutoff of -0.6 kcal/mol. (B) The hydrogen bonds are 

annotated by HBPLUS. 
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Figure S6. Comparison of the percentages of HB types: backbone-backbone (BB-BB), sidechain-

sidechain (SC-SC) and mixed (BB-SC and SC-BB) for intrachain and interface of individual PP, 

PT and PD complexes. (A) The hydrogen bonds are annotated by FIRST with an energy cutoff of 

-0.6 kcal/mol. (B) The hydrogen bonds are annotated by HBPLUS. 
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Figure S7. Comparison of the categories of hydrogen bond energy (based on Table 2) between HS 

and MS complexes.  (A) intrachain; (B) interface. 
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Figure S8. Comparison of hydrogen bond energy categories (based on Table 2) in different 

hydrogen bond types between HS and MS complexes. (A) intrachain; (B) interface. 
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Figure S9. Comparisons of the distributions of hydrogen bond energy based on the discretization 

in Table S4 for (A) intrachain and (B) at interface. (See Table S5 for p-values). 
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Figure S10. Comparison of (A) intrachain hydrogen bond energy and (B) interface hydrogen bond 

energy (based on the discretization in Table S4) in different hydrogen bond types (See Table S6 

for p-values). 
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Figure S11. Comparison of major groove for (A) HBall and (B) HBSP energy distributions (based 

on the discretization in Table S4) between HS and MS complexes. 

 

 

Figure S12. Comparison of minor groove for (A) HBall and (B) HBSP energy distributions (based 

on the discretization in Table S4) between HS and MS complexes. 
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Figure S13. Comparison of side chain-base hydrogen bonds to all hydrogen bonds at the interface 

of protein-DNA complexes from HBPLUS and FIRST with three different energy thresholds. 
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